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Abstract. Ciminion is an MPC-friendly pseudo-random function (PRF)
recently proposed at Eurocrypt’21. As in the case of other MPC-friendly
constructions proposed in the literature (e.g., MiMC, HadesMiMC, Res-
cue), it aims to minimize the number of multiplications in large finite
fields. While MiMC, HadesMiMC, and Rescue are block ciphers, Cimin-
ion is a (modified) Farfalle-like cryptographic function. At the current
state of the art, it achieves the best performance in MPC applications.
However, Ciminion has a critical weakness. Its security highly relies on
the independence of its subkeys, which is achieved by using an expensive
key schedule. Many MPC use cases involving symmetric PRFs rely on
secretly shared symmetric keys, and hence the expensive key schedule
must also be computed in MPC. As a result, Ciminion’s performance is
significantly reduced in these use cases.
In this paper, we solve this problem. Following the approach introduced
by Ciminion’s designers, we propose Megafono, a modified version of
Farfalle designed for achieving a small multiplicative complexity without
any key schedule. Following this strategy, we present the PRF Hydra,
which utilizes both a Lai–Massey construction and a novel construction
we name Amaryllises in its nonlinear layer. Amaryllises can be seen as
a generalized variant of a Lai–Massey scheme, which allows us to further
decrease the multiplicative complexity of Hydra.
Based on an extensive security analysis, we implement Hydra in an
MPC framework. The results show that it outperforms all MPC-friendly
schemes currently published in the literature.

Keywords: Megafono – Hydra – Farfalle – Ciminion – Lai–Massey
– Amaryllises – MPC Applications

1 Introduction

Secure multi-party computation (MPC) allows several parties to jointly and se-
curely compute a function on their combined private inputs. Thereby, the correct



output is computed and given to all (or a subset of the) parties while simulta-
neously hiding the private inputs from other parties. In this work we focus on
secret-sharing based MPC schemes, such as the popular SPDZ protocol [22, 21],
or protocols based on Shamir’s Secret Sharing [51]. In these protocols private
data is shared among all parties, such that each party receives a share which
– on its own – does not contain any information about the initial data. When
combined, however, the parties are able to reproduce the shared value. Further-
more, the parties can use these shares to compute complex functions on the data
which in turn produce shares of the output.

In recent years, MPC has been applied to many use cases, including privacy-
preserving machine learning [49], private set intersection [39], truthful auctions
[14], and revocation in credential systems [36]. In the literature describing these
use cases, data is often directly entered from and delivered to the respective
parties. However, in practice, this data often has to be transferred securely from
and to third parties before it can be used in the MPC protocol. Besides that,
in some applications, intermediate results of an MPC computation may need to
be stored securely in a database. As described in [31], one can use MPC-friendly
Pseudo-Random Functions (PRFs), i.e., PRFs designed to be efficient in MPC
applications, to efficiently realize this secure data storage and data transfer by
directly encrypting the data using a secret-shared symmetric key.

These MPC-friendly PRFs, however, cannot only be used to securely trans-
mit data in given MPC computations, they can also be used as a building
block to speed up many MPC applications, such as secure database join via
an MPC-evaluation of a PRF [44], distributed data storage [31], virtual hard-
ware security modules5, MPC-in-the-head based zero-knowledge proofs [37] and
signatures [16], oblivious TLS [1], among many others. In all these use cases,
the symmetric encryption key is shared among all participating parties. Conse-
quently, if one has to apply a key schedule for a given PRF, one has to compute
this key schedule at least once in MPC for every fresh symmetric key.

In order to be MPC-friendly, a PRF must minimize the number of multipli-
cations in the native field of the MPC protocol. At the current state of the art,
Ciminion [24] is one of the most competitive symmetric encryption schemes for
PRF applications. Proposed at Eurocrypt’21, it is based on the Farfalle mode
of operation [9]. However, as we will show in detail, Ciminion has a serious
drawback: Its security heavily relies on the assumption that the subkeys are in-
dependent. In order to satisfy this requirement, the subkeys are generated via a
sponge hash function [10] instantiated with an expensive permutation from the
point of view of the multiplicative complexity. As a result, in all the (common)
cases in which the key is shared among the parties, the key schedule cannot
be computed locally and also needs to be evaluated in MPC. This leads to a
significant increase in the multiplicative complexity of Ciminion. In this paper,
we handle this problem in two steps. First, we propose a new mode of oper-
ation inspired by Farfalle and Ciminion, called Megafono, which is designed

5 https://www.unboundsecurity.com/wp-content/uploads/2020/09/vHSM-3.pdf
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to be competitive in all MPC applications.6 Secondly, we show how to instan-
tiate it in order to minimize the multiplicative complexity. The obtained PRF
called Hydra is the most competitive MPC-friendly PRF currently present in
the literature.

1.1 Related Works: Ciminion and the MPC Protocols

Modern MPC protocols are usually split into a data-independent offline phase
and a data-dependent online phase. In the offline phase, a bundle of shared
correlated randomness, most notably beaver triples [8], is generated, which is
then used in the online phase to perform the actual computation on the private
data. The performance scales with the number of nonlinear operations. Indeed,
each multiplication requires one beaver triple, which is computed in the offline
phase, as well as one round of communication during the online phase. In con-
trast, linear operations do not require any offline computations and can directly
be applied to the shares without communication. Consequently, MPC-friendly
PRFs usually try to minimize the number of multiplications.

Traditional PRFs such as AES or Keccak/SHA-3 are not efficient in MPC
settings. First, MPC applications usually work over a prime field Fp for a large
p (e.g., p ≈ 2128), while traditional cryptographic schemes are usually bit-/byte-
oriented schemes. Hence, a conversion from F2n to Fp and vice versa must take
place, which can impact the overall performance. Secondly, and most impor-
tantly, traditional schemes are designed to minimize their implementation cost
in software and/or hardware, and therefore no particular focus is laid on mini-
mizing specifically the number of nonlinear operations (e.g., AND gates).

For these reasons, several MPC-friendly schemes over Ftq for q = ps and
t ≥ 1 have been proposed in the literature, including LowMC [4], MiMC [3],
GMiMC [2], HadesMiMC [28], and Rescue [5]. All those schemes are block ci-
phers – hence, invertible – and they are often used in counter (CTR) mode.
However, the invertibility property is not required in MPC applications, and a
lower multiplicative complexity can (potentially) be achieved by working with
non-invertible functions, as recently shown by Dobraunig et al. [24]. In the follow-
ing, we briefly discuss the Farfalle construction and the MPC-friendly primitive
Ciminion based on it.

Farfalle. Farfalle [9] is an efficiently parallelizable permutation-based construc-
tion of arbitrary input and output length, taking as input a key. As shown in
Fig. 1a and recalled in Section 2.1, the Farfalle construction consists of a com-
pression layer followed by an expansion layer. The compression layer produces
a single accumulator value from the input data. A permutation is potentially
applied to the obtained state. Then, the expansion layer transforms it into a

6 “Megafono” is the Italian word for “megaphone”, a cone-shaped horn used to amplify
a sound and direct it towards a given direction. Our strategy resembles this goal.
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(b) The Ciminion PRF.

Fig. 1: Farfalle and Ciminion (notation adapted to the one used in this paper).

tuple of (truncated) output blocks. Both the compression and expansion lay-
ers involve the secret key, and they are instantiated via a set of permutations
(namely, P(c),P,P(e)) and rolling functions.

Since an attacker never has access to both the input and output of a per-
mutation call, the number of rounds of the involved iterated permutations is,
in general, smaller than in e.g. sponge/duplex constructions [10] and/or block
ciphers (used e.g. in CTR mode).

Ciminion. At Eurocrypt’21, Dobraunig et al. [24] showed that a modified ver-
sion of Farfalle can be competitive for MPC protocols, an application which the
Farfalle’s designers did not take into account. They propose the PRF Ciminion,
a modified version of Farfalle instantiated with a Feistel scheme, whose round
function is defined via the Toffoli gate (x, y) 7→ x · y. As shown in Fig. 1b, and
recalled in Section 2.2

(1) compared to Farfalle, the compression phase is missing, a final truncation is
applied, and the key addition is performed before P(e) is applied, and

(2) in contrast to MPC-friendly block ciphers, Ciminion is a non-invertible PRF.
For encryption it is used as a stream cipher, where the input is defined as
the concatenation of the secret key and a nonce.

The main reason why Ciminion is currently the most competitive scheme in MPC
protocols is related to one crucial feature of Farfalle, that is, the possibility to
instantiate its internal permutations with a smaller number of rounds compared
to other design strategies. In the case of Ciminion, the permutation P(c) is
designed in order to behave like a pseudo-random permutation, while the number
of rounds of the permutation P(e) is kept as low as possible in order to provide
security and achieve good performance.

Besides minimizing the number of nonlinear operations, Ciminion’s designers
paid particular attention to the number of linear operations. Indeed, even though
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the main cost in MPC applications depends on the number of multiplications,
other factors (e.g., the number of linear operations) affect efficiency as well.

1.2 The Megafono Design Strategy

The main drawback of Ciminion is the expensive key schedule to generate sub-
keys that can be considered independent. This implies that Ciminion only excels
in MPC applications where the key schedule can be precomputed for a given
shared key, or in the (non-common) scenarios where the key is not shared among
the parties. However, in the latter case the party knowing the key can also com-
pute Ciminion’s keystream directly in plain (i.e., without MPC) if the nonce and
IV are public in a given use case (which is also true for any stream cipher).

Clearly, the easiest possible solution is the removal of the nonlinear key sched-
ule. However, by e.g. defining the subkey as an affine transformation of the master
key, the security analysis of Ciminion does not hold anymore.

As we are going to discuss in detail in Section 3, the problem follows from the
Farfalle construction itself. Even if the attacker does not have any information
about the internal states of Farfalle, they can exploit the fact that its outputs
are generated from the same unknown input (namely, the output of P(c) and/or
P). Given these outputs and by exploiting the relations of the corresponding
unknown inputs (which are related to the definition of the rolling function), the
attacker can potentially find the key and break the scheme. For example, the
attacks [15, 18] on the Farfalle schemes Kravatte and Xoofff exploit exactly this
strategy. In Ciminion, this problem is solved by including an addition with the
secret master key in the application of the rolling function. In this way, the
mentioned relation is unknown due to the presence of the key, and P(e) can be
instantiated via an efficient permutation.

We make two crucial changes in the Farfalle design strategy. We first replace

the permutation P(e) with a keyed permutation P(e)
K , where a key addition takes

place in each round. Secondly, we expand the input of this keyed permutation.
The second change aims to frustrate algebraic attacks, whose cost is related to
both the degree and the number of variables of the nonlinear equation system
representing the attacked scheme. In order to create new independent variables
for “free” (i.e., without increasing the overall multiplicative complexity), we reuse
the computations needed to evaluate P. That is, we define the new variable as
the sum of all the internal state of P, and we conjecture that it is sufficiently
independent of its output (details are provided in the following).

Finally, we replace the truncation in Ciminion with the summation-truncation
hybrid technique introduced in [33], in order to reduce the amount of the dis-
carded randomness without any impact on the security. Our result is a new
design strategy which we call Megafono.

1.3 The PRF Hydra

Given the mode of operation, we instantiate it with two distinct permutations,
one for the initial phase and one for the expansion phase. As in Ciminion, as-
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suming the first permutation behaves like a pseudo-random permutation and
since the attacker does not know the internal states of Megafono, it is possible
to guarantee security of the overall design by choosing a second permutation
that is significantly cheaper to evaluate in the MPC setting than the first one.
In particular, it is crucial to keep in mind that while the first permutation is
evaluated only once, the number of calls to the second permutation (and so the
overall cost) is proportional to the output size.

In order to minimize the multiplicative complexity, we focused on quadratic
functions for the definition of the round functions of the second permutation.
However, since no quadratic function is invertible over Fp, we use them in a
mode of operation that guarantees invertibility. We opted for the generalized
Lai–Massey constructions recently proposed in [29].

While the round function of the second (keyed) permutation is instantiated
with a quadratic Lai–Massey scheme, the first permutation uses the Hades de-
sign strategy [28]. Its main feature regards the use of both rounds with full S-box
layers and rounds with partial S-box layers in order to achieve both security and
good performance. Following Neptune [29], we use two different round func-
tions, one for the internal part and one for the external one. We decided to in-
stantiate the internal rounds with a Lai–Massey scheme. For the external rounds,
we modified the original Lai–Massey scheme (x0, x1, . . . , xt−1) 7→ (x0+F (

∑
j λj ·

xj), x1 + F (
∑
j λj · xj), . . . , xt−1 + F (

∑
j λj · xj)), where

∑
j λj = 0 by modi-

fying the sum with the multiplication operation, that is, (x0, x1, . . . , xt−1) 7→
(x0 × F ′(

∑
j λ
′
j · xj), x1 + F ′(

∑
j λ
′
j · xj), . . . , xt−1 + F ′(

∑
j λ
′
j · xj)) for a func-

tion F ′, with specific properties given in Theorem 1. In Section 5, we show
how to instantiate F ′ in order to guarantee invertibility and minimize the num-
ber of multiplications. This modified Lai–Massey construction, which we call
Amaryllises,7 ensures to mix the state in a nonlinear way.

The obtained PRF scheme called Hydra is presented in Section 4 – Section 6,
and its security analysis is proposed in Section 7 – Section 8.

1.4 MPC Performance and Comparison

As discussed above, the performance of any MPC calculation scales with the
number of nonlinear operations, in other words, multiplications of shared ele-
ments. In Figure 2 we compare the number of these multiplications which are
required to evaluate different PRFs for different state sizes t using secret shared
keys. One can observe that Hydra requires the smallest number of multiplica-
tion, with the difference growing further for larger state sizes. The only PRF
that is competitive to Hydra is Ciminion, and only if the key schedule does not
have to be computed which is only the case if shared round keys can be reused
from a previous computation. However, this implies that the key schedule was al-
ready computed once in MPC, requiring a significant amount of multiplications.
Hydra, on the other hand, does not require the computation of an expensive

7 The flowers “ama(r)yl(l)ises” is (almost) the anagram of Lai–Massey.
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and t ≥ 2 (security level of 128 bits).

key schedule and also requires fewer multiplications than Ciminion without a
key schedule for larger state sizes.

In Section 9, we implement and compare the different PRFs in the MP-
SPDZ [40] library and confirm the performance expected from Figure 2. Con-
cretely, taking key schedules into account, Hydra is 5 times faster than Ciminion
for t = 8, which grows to a factor of 19 for t = 128. Without key schedules, Ci-
minion is only slightly faster than Hydra for smaller t, until it gets surpassed
by Hydra for t > 64, showing that Hydra is also competitive, even if the
round keys are already present. Compared to all other benchmarked PRFs, Hy-
dra is significantly faster for any state size t. Furthermore, Hydra requires the
least amount of communication between the parties due to its small number of
multiplications, giving it an advantage in low-bandwidth networks.

2 Starting Points: Farfalle and Ciminion

Notation. We work over a finite field Fq, where q = ps, for an odd prime
number p and s ≥ 1 an integer (when needed, we will also assume a fixed vector
space isomorphism Fps ≡ Fsp). The · || · operator denotes the concatenation of
two elements. Given x ∈ Frq, it is represented as x = (x0, x1, . . . , xr−1), where xi
denotes its i-th element. We use the notation F?q to denote Fq strings of arbitrary
length. We use the fraktur font notation to denote a subspace of Frq, while we
sometimes use the calligraphic notation to emphasize functions.

Definition 1. Let a, b ∈ N \ {0} be such that a > b. We define respectively the
left and the right truncation functions T La,b : Faq → Fbq and T Ra,b : Faq → Fbq as

T La,b(x0, . . . , xa−1) = (x0, . . . , xb−1), T Ra,b(x0, . . . , xa−1) = (xa−b−1, xa−b, . . . , xa−1).
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Clearly, for each x ∈ Ftq and for each i ∈ {1, . . . , t−2}, x = T Lt,i(x) || T Rt,t−i(x).

2.1 Farfalle Strategy and 1/2×Farfalle

Farfalle is a keyed pseudo-random function proposed in [9]. Both its input and its
output are of an arbitrary length. As shown in Fig. 1a, it has a compression layer
and an expansion layer, each involving the parallel application of a permutation.
We refer to Appendix B for a generic description of Farfalle.

For the goal of this paper, we focus only on the expansion phase, and we use
the term 1/2×Farfalle for identifying the specific version of Farfalle in which the
initial compression phase is missing, or equivalently, if the input message is an
element of Fq. Let K ∈ Fκq be the secret key for κ ≥ 1. 1/2×Farfalle uses

(1) a key schedule K : Fκq → F?q for generating the subkeys used in the expansion
phase,8 that is, K(K) = (k0, k1, . . . , kn, . . .),

(2) two unkeyed functions F ,F (e) : Fq → Fq, and
(3) an expansion function E : Fq → F?q defined as E(x) = (E0(x), E1(x), . . . ) for
Ei : Fq → Fq. Given E ′ : Fq → Fq, called the rolling function, Ei can be
defined iteratively as Ei(x) = E ′ ◦Ei−1(x) for a certain function E0 (including
e.g. E0(x) = E ′(x) or e.g. the identity function E0(x) = x).

Given an input x ∈ Fq, 1/2×Farfalle : Fq → Fnq operates as

1/2×Farfalle(x) = (k1 + F (e), . . . , kn + F (e)︸ ︷︷ ︸
n times

) ◦ E ◦ F(x+ k0),

where (k1 +F (e), . . . , kn +F (e))(z) := (k1 +F (e)(z0), . . . , kn +F (e)(zn−1)) given
z = (z0, . . . , zn−1) ∈ Fnq .

2.2 From 1/2×Farfalle to Ciminion

Ciminion [24] is based on a modified version of the 1/2×Farfalle design strategy
over Fq ≡ Fps for s ≥ 2. As shown in Fig. 1b, the main difference with respect to
1/2×Farfalle regards the definition of the function k+F (e). In Farfalle/1/2×Farfalle,
the function F (e) is usually instantiated via a permutation P(e) over Fq, and the
key addition is the last operation to take place. In Ciminion, k + P(e)(·) is re-
placed by F (e)(· + k) := T Ls,s′ ◦ P(e)(· + k) for a non-invertible function F (e)

instantiated via a truncated permutation. Moving the key inside the scheme al-
lows to prevent its cancellation when considering the difference of two outputs.

In Ciminion, the key schedule K : Fq → F?q uses a sponge hash function [10],
instantiated via the permutation P. We refer to [24, Section 2] for more details.
8 We mention that in [9], authors use the terms “masks” and “rolling function” instead

of “subkeys” and “key schedule”. In Farfalle, the same subkey is used for in the
expansion phase, that is, k1 = k2 = · · · = kn = · · · . Here, we consider the most
generic case in which the subkeys are not assumed to be equal.
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3 The Megafono Strategy for Hydra

The security argument proposed by the designers of Ciminion heavily relies on
the subkeys k0, k1, . . . being linearly independent. To achieve this goal, such sub-
keys are generated via a sponge hash function built from a permutation P that
resembles a Pseudo-Random Permutation (PRP). This approach is expensive in
terms of multiplications needed. As a result, at the current state, Ciminion is
the most competitive scheme only in the case in which the key schedule does not
have to be computed. However, if the secret keys are shared among the parties,
the key schedule has to be computed in MPC for every new key, and Ciminion is
not competitive against other MPC-friendly schemes such as e.g. HadesMiMC.

Another (small) weakness of Ciminion regards the final truncation. It is cru-
cial for the security, since without it one could easily compute the inverse of the
final permutations P(e) and potentially break the scheme. However, the trunca-
tion is wasteful, in the sense that one can achieve the same result of preventing
the inverse computation of P(e) by e.g. using a different approach as the feed-
forward one or by replacing the permutation with a non-invertible function.

With Hydra, our goal is to propose an MPC-friendly scheme that takes
into account the advantages of Ciminion and at the same time does not have
its limitations. In particular, our aim is to design an MPC-friendly PRF that
is competitive for both cases in which a fresh key is shared among the parties
and an old one is reused. As we are going to show, reaching this goal requires
crucial modifications in the design strategy of Ciminion (and so of 1/2×Farfalle).
We refer to the design strategy that we are going to present as the Megafono
design strategy.

3.1 Initial Considerations

The Summation-Truncation Hybrid. In Ciminion, the final truncation on
each permutation call is crucial in order to prevent backward attacks. However,
outright truncation is wasteful, in the sense that one can make more economical
use of the discarded randomness without any impact on the security. A way to
achieve this was demonstrated at Crypto 2020 in [33], where authors present
the summation-truncation technique. In such a case, the idea is to combine
two well known techniques used to set up a Pseudo-Random Function (PRF)
given Pseudo-Random Permutations (PRPs), i.e., the truncation one [35] and
the sum of two independent permutations [47]. Let 1 ≤ s′ < s. Given two (keyed)
permutations P(1),P(2) over Fps , let F : Fps → Fps+s′ be defined as

F(x) = T Ls,s′ ◦ P(1)(x)

∥∥∥∥T Rs,s−s′ ◦ P(1)(x) + T Ls,s−s′ ◦ P(2)(x)

∥∥∥∥T Rs,s′ ◦ P(2)(x).

The resulting summation-truncation function has the same security level of a
truncation function (that is, it is indistinguishable from a PRF up to ps−s

′/2

queries), while the size of the output is obviously bigger.
Based on this simple consideration, we decided to replace the final truncation

of Ciminion with the summation-truncation one. For the follow-up, we recall that
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two independent permutations can be set up via a single permutation P through
domain separation by fixing part of the inputs [47]. That is, given a PRP P, let
P(1) and P(2) be defined as P(j)(x) := P(x‖ij) for j ∈ {1, 2}, with the only
condition that i1 6= i2. Then, P(1) and P(2) are two independent PRPs.

Removing the Key Schedule. As we mentioned before, in order to make the
permutation P(e) as cheaper as possible, the designers of Ciminion assume the
subkeys k0, k1, k2, . . . to be independent. This result can be achieved by working
with a key schedule K that simulates a PRF, expensive in term of multiplicative
complexity. In order to fix this, one option would consist in considering a lighter
(but still nonlinear) key schedule. In such a case, one should adapt the security
analysis of Ciminion to the case in which the subkeys are not independent.
Instead, we decided to remove the key schedule completely.

3.2 From 1/2×Farfalle to the Megafono Design Strategy

Instead of relying on independent subkeys for security, we work as follows.

– We define each subkey to be equal to the master key K (or an affine trans-
formation of it).

– We perform a key addition before the expansion phase.
– Instead of having independent subkeys, we create new Fq elements at the

input of P(e) by reusing the operations necessary for computing PK.
– We replace the (unkeyed) permutation in the expansion phase with a keyed

permutation in which a key addition takes place in each round.

Due to the last point, we will use the notation P(e)
K to emphasize the presence

of round key additions.

Key Addition Before the Expansion Phase. In Ciminion, the permutation
P is chosen in order to resemble a PRP. By performing a key addition before
the expansion phase, the first part of the scheme becomes an Even–Mansour
construction [26] of the form

x 7→ PK(x) := K + P(x+ K). (1)

Assuming PK is a PRP and if the attacker knows both the inputs and the outputs,
the security of this part is equal to qt/2 for K ∈ Ftq, as proven in [19, 25]. This
allows us to make a security claim on a subcomponent of the entire scheme, and
so to simplify the overall security analysis.

Keyed Permutation. In Ciminion, the key has been moved from the end of
the permutation P(e) to the beginning in order to avoid its cancellation by con-
sidering differences of the outputs. At the same time, by considering differences
of the (unknown) inputs, it is possible to eliminate the key as a variable in the
system of equations that describe the expansion phase. In order to avoid this

problem, we decided to consider a keyed permutation P(e)
K , that is, a permutation

in which the key addition takes place at each round.
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Creating New Variables. Due to the structure of 1/2×Farfalle and of Ci-
minion, and under the assumption in which P behaves like a PRP, an attacker
cannot control the inputs and the outputs of the expansion phase. At the same
time, attacks that require only the knowledge of the outputs of such and expan-
sion phase are possible, due to the fact that multiple outputs are created via a
single common (unknown) input. E.g., several attacks on the expansion phase
of Farfalle schemes are based on the Meet-in-the-Middle approach [15, 18], that
is, the attacker exploits the relation among several inputs of P(e) for breaking
the scheme. In such a scenario, another powerful attack is the Gröbner basis
one. As we are going to explain in more details in Section 8.2, Gröbner basis is
a technique that allows to solve/factorize a system of nonlinear equations. The
cost of such attack is proportional to the number of unknown and independent
variables and on the degree of the equation to solve. Hence, in order to guarantee
security against such attack, it is necessary to increase the degree of the equa-
tions or/and the number of unknown and independent variables. In Ciminion,
this goal is achieved by introducing new independent sub-keys k0, k1, . . . at the
input of every P(e) call, where the subkeys are generated by a pseudo-random
function. However, as we have already pointed out, this turns out not to be
efficient when the key is shared among the parties.

In order to increase the number of variables “for free”, we propose to re-
use the computation needed to evaluate PK. Since PK will be instantiated as an
iterated permutation, we can fabricate a new Fq element by considering e.g. the
sum of all internal states of PK. More formally, let

PK(x) := K + Pr−1 ◦ Pr−2 ◦ · · · ◦ P1 ◦ P0(K + x) (2)

for some permutations Pr−1,Pr−2, . . . ,P1,P0 : Fq → Fq and for r � 1 such that
PK resembles a PRP. For a given input x ∈ Fq, let y, z ∈ Fq be defined as

y := PK(x), z :=

r−2∑
i=0

Pi ◦ Pi−1 ◦ · · · ◦ P1 ◦ P0(x+ K) . (3)

We claim that the variables y and z are “independent” elements of Fq, in the
sense that given x and y and assuming K is secret, it is computationally infeasible
to (partially) find z or any information regarding it, and vice versa.

Claim. Let K
$←− Fq be a uniform random drawing secret key. Let Pr−1,Pr−2, . . . ,

P1,P0 be r � 1 non-trivial permutations over Fq so that x 7→ PK(x) defined as
in Eq. (2) is indistinguishable from a PRP. Given an arbitrary x ∈ Fq, and
y = PK(x) ∈ Fq defined as before, the probability of any distinguisher D (with
query and time complexity at most equal to q) to distinguish between z ∈ Fq as

defined in Eq. (3) and a random z′
$←− Fq is negligible.

We point out that for each fixed key K, a collision can occur in z for two
different inputs, but it can never occur in y. Further, computing z requires only
a negligible amount of additional linear operations. Hence, we propose to make

11



P(e)
K dependent on both y and z, in order to achieve the goal of increasing the

number of variables “for free”.
For completeness, we mention that the idea of re-using the internal computa-

tion of an iterated function/permutation is not new in the literature. In [48], for
example, a similar idea to set up a PRF is exploited. Given an iterated cipher

Ek of r-rounds, let Ek = E
(2)
k ◦E

(1)
k , where E

(1)
k denotes the first r

′
rounds and

E
(2)
k denotes the last r

′′
rounds such that r = r

′
+r
′′

(usually r′ ≈ r/2). In there,

Mennink and Neves proposed to set up a PRF of the form x 7→ Ek(x) +E
(1)
k (x),

where Ek and E
(1)
k are treated as two independent permutations. Later on, a

similar approach has been exploited in the Fork design strategy [6].

3.3 The Megafono Design Strategy

Let 1 ≤ s′ < s. Let

– P : Fps → Fps and P(e)
K : Fp2s → Fp2s be two permutations;

– Ri : Fps → Fps be the i-th rolling function, for each i ≥ 0.

Let F (e)
K : (Fps)2 × N→ (Fps)3 be defined as

F (e)
K (y, z, i) := T L2s,s+s′ ◦ P

(e)
K (y,Ri(z), i)

∥∥∥∥T R2s,s′ ◦ P(e)
K (y,Ri(z), i)+

+ T L2s,s′ ◦ P
(e)
K (y,Ri+1(z), i+ 1)

∥∥∥∥T R2s,s+s′ ◦ P(e)
K (y,Ri+1(z), i+ 1).

Based on all the considerations just given, MegafonoK : Fps → F?p is defined as

MegafonoK(x) := F (e)
K (y, z, 0) || F (e)

K (y, z, 2) || · · · || F (e)
K (y, z, 2 · i) || · · · ,

where y, z ∈ Fps are defined as in Eq. (3), i.e., y = PK(x) := K + P(x + K) and
z is the sums of all intermediate values of PK. We emphasize that the rolling

function is applied only on the variable z, so that a collision at the input of P(e)
K

can never occur (remember that y is the output of a permutation).9

4 Specification of Hydra

4.1 The PRF Hydra

Let p > 263 (i.e., dlog2(p)e ≥ 64) and let t ≥ 4 be the size of the output. Let κ be
the security level such that 280 ≤ 2κ ≤ min{p2, 2256}. Let K ∈ F4

p be the master

key. Let 240 ≤ 2κ/2 ≤ min{p, 2128} be the data limit available for the attack.
Given a plaintext P ∈ Ftp, the ciphertext is defined by

C = Ĥ([N || IV]) + P,

where Ĥ : F4
p → Ftp is the Hydra PRF, IV ∈ F3

p is a fixed initial value and
N ∈ Fp is a nonce (e.g., a counter).

9 We point out that a collision at the input of any P(e) is possible in Farfalle/Ciminion,
but the probability of such event is (much) smaller than the security level.
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Fig. 3: The Hydra PRF.

Hydra. An overview of Hydra Ĥ : F4
p → Ftp is given in Fig. 3,10 where

(1) y = K+P(B)([N || IV] +K) for a certain permutation P(B) : F4
p → F4

p defined
in the following,

(2) P(H)
K : F8

p → F8
p is a keyed permutation defined in the following, and

(3) Ri(z) ≡ R(z, i) : F4
p × N → F4

p is an affine function defined as R(z, i) =

M i
R × z, where MR ∈ F4×4

p is an invertible matrix that does not admit any
(invariant) subspace trails, i.e., for each subspace U ⊂ F4

p and for each i ≥ 0

dim
(
U ∩ (M i

R × U)
)
≤ dim (U)− 1.

We give an algorithmic description of Hydra in Algorithm 1 in Appendix C.1.

4.2 The Body of the Hydra: The Permutation P(B)

The permutation P(B) : F4
p → F4

p is defined as

P(B)(·) = E7 ◦ · · · ◦ E4︸ ︷︷ ︸
4 times

◦ IR−1 ◦ · · · ◦ I0︸ ︷︷ ︸
R times

◦ E3 ◦ · · · ◦ E0︸ ︷︷ ︸
4 times

(ME × ·), (4)

where the external/internal rounds Ei, Ij : F4
p → F4

p are defined as

Ei(·) = ϕ(E,i) +ME × SE(·), Ij(·) = ϕ(I,j) +MI × SI(·)

for i ∈ {0, 1, . . . , 7} and each j ∈ {0, 1, . . . , R − 1} where ϕ(E,i), ϕ(I,j) ∈ F4
p are

randomly chosen round constants.

10 The (Lernaean) Hydra is a mythological serpentine water monster with many heads.
In our case, we can see P(B) as the body of the Hydra, and the multiple parallel
permutations P(H)

K as its multiple heads.
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The Round Function E. Let d ≥ 5 be the smallest odd integer such that
gcd(d, p2 − 1) = 1.11 Let α, α′ ∈ Fp \ {0} be arbitrarily chosen. The nonlinear
layer SE : F4

p → F4
p is defined as

SE(x0, x1, x2, x3) := S
(1)
E (x0, x1) || S(2)

E (x2, x3),

where S
(1)
E (x0, x1) = (y0, y1) and S

(2)
E (x2, x3) = (y2, y3) such that

yi =

{
xi · D′d,α(x0 + x1) if i ∈ {0, 1},
xi · D′d,α′(x2 − x3) if i ∈ {2, 3},

and where

D′d,α(x) :=
Dd,α(x)

x
≡
bd/2c∑
j=0

d

d− j
·
(
d− j
j

)
· (−α)j · xd−2j−1 (5)

is defined via the Dickson polynomial Dd,α(·) (see Definition 2). As we are going
to show, the function SE is invertible.

The invertible matrix ME ∈ F4×4
p is an MDS matrix such that no (invariant)

subspace trails generated by 〈(1,−1, 0, 0)〉 ⊆ F4
p and 〈(0, 0, 1, 1)〉 ⊆ F4

p exist (see
Appendix D.2 for more details). For our purposes, we choose the AES matrix,
i.e., ME = circ(3, 2, 1, 1).

The Round Function I. The nonlinear layer SI : F4
p → F4

p is defined as

SI(x0, x1, x2, x3) = (x0 + ŷ, x1 + ŷ, x2 + ŷ, x3 + ŷ),

where ŷ ∈ Fp is defined as

ŷ =

( 3∑
j=0

λ
(0)
j xj

)2

+

(
3∑
j=0

λ
(1)
j xj

)
+ λ′

 ·
( 3∑

j=0

λ
(0)
j xj

)2

+

(
3∑
j=0

λ
(1)
j xj

)
+ λ

′′


such that

(1) λ
(0)
0 , . . . , λ

(0)
3 , λ

(1)
0 , . . . , λ

(1)
3 , λ′, λ

′′ ∈ Fp \ {0},
(2)

∑3
j=0 λ

(0)
j =

∑3
j=0 λ

(1)
j = 0, and

(3) {λ(0)j }3j=0 and {λ(1)j }3j=0 are linearly independent.

The invertible matrix MI ∈ F4×4
p must provide full diffusion and must satisfy

the following conditions:

(i) for i ∈ {0, 1} :
∑3
j=0 λ

(i)
j ·

(∑3
l=0MI [j, l]

)
6= 0,

(ii) for i ∈ {0, 1} and for j ∈ {0, 1, . . . , 3} :
∑3
l=0 λ

(i)
l ·MI [l, j] 6= 0, and

11 Note that d = 3 does not satisfy gcd(d, p2 − 1) = 1 for any p ≥ 3.
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(iii) it prevents infinitely long subspace trails for the generalized Lai–Massey
construction SI (details are given in Appendix F).

In particular, we suggest using a matrix of the form

MI =


µ
(I)
0,0 1 1 1

µ
(I)
1,0 µ

(I)
1,1 1 1

µ
(I)
2,0 1 µ

(I)
2,2 1

µ
(I)
3,0 1 1 µ

(I)
3,3

 (6)

where the values µ
(I)
i,j ∈ Fp \{0} are found using the tool given in Appendix F.2,

in order to satisfy conditions (i) – (iii) above.

4.3 The Heads of the Hydra: The Permutation P(H)
K

The keyed permutation P(H)
K : (F4

p)
2 × N→ F8

p is defined as

P(H)
K (·, i) = K′ + JRH−1 ◦ (K′ + JRH−2) ◦ . . . ◦ (K′ + J1) ◦ (K′ + J0)︸ ︷︷ ︸

RH times

(·, i)

where K′ = K || (circ(3, 2, 1, 1) × K) ∈ F8
p. For j ∈ {0, 1, . . . , RH − 1}, we define

Jj(·, i) : F8
p → F8

p as

Jj(·, i) = ϕj,i +M
(i mod 2)
J × S(i,j)

J (·),

where ϕj,i ∈ F8
p are random round constants.

The nonlinear layer S
(i,j)
J (x0, x1, . . . , x7) = (y0, . . . , y7) is defined by

yl = xl + ψi,j ·

(
ψ′i,j +

7∑
h=0

λ
(i mod 2)
h · xh

)2

for 0 ≤ l ≤ 7,

where

(1) ψ′i,j , ψi,j ∈ Fp \ {0} are random round constants, and

(2) for i ∈ {0, 1}, λ(i)0 , . . . , λ
(i)
7 ∈ Fp \ {0} are arbitrary s.t.

∑7
h=0 λ

(i)
h = 0.

We also assume that λ
(0)
0 , . . . , λ

(0)
7 and λ

(1)
0 , . . . , λ

(1)
7 are linearly independent.

The invertible matrices M
(i)
J ∈ F8×8

p must fulfill similar conditions to (i) – (iii)
described in Section 4.2 for each i ∈ {0, 1}. That is, for each i ∈ {0, 1}: (i)∑7
h=0 λ

(i)
h

(∑7
l=0M

(i)
J [h, l]

)
6= 0; (ii)

∑7
l=0 λ

(i)
l ·M

(i)
J [l, h] 6= 0, for h ∈ 0, . . . , 7;

and (iii) M
(i)
J prevents infinitely long subspace trails related to λ

(i)
0 , . . . , λ

(i)
7 , 12

as detailed in Appendix F. We recommend that M
(i)
J has a similar form to the

matrix in Eq. (6) extended to eight rows and columns.

12 Note that if the scheme instantiated with {λh}7h=0 is secure against invariant sub-
spaces, then it is also secure when instantiated with {ψ ·λh}7h=0 for each ψ ∈ Fp\{0}.
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4.4 Number of Rounds

In order to provide κ bits of security (with a data limit of 2κ/2), the number of
rounds must satisfy

RI =
⌈
1.125 ·

⌈
max

{κ
4
− log2(d) + 3, R̂I

}⌉⌉
,

RH =
⌈
1.25 ·

⌈
max

{
24, R̂H, 3 +R∗H

}⌉⌉
,

where R̂I , R̂H, and R∗H are the minimum positive integers that satisfy Eq. (14),
Eq. (16), and Eq. (10) respectively, and where we added a security margin of
12.5% and 25% respectively. In Appendix A, we provide a script that given p and
κ, returns the number of rounds RI and RH. E.g., RI = RH = 38 for p ≈ 2128

and κ = 128.
Finally, we refer to Appendix C.2 for details on how we generate the pseudo-

random constants. We also emphasize that we do not claim security against
related-key attacks.

5 From Lai–Massey to the Amaryllises Scheme

5.1 The Lai–Massey Scheme

The Lai–Massey scheme [43] over F2
q is defined as (x, y) 7→ (x + F ′(x − y), y +

F ′(x− y)), where F ′ : Fq → Fq. Two generalizations over Fnp have recently been
proposed in [29], defined as (x0, x1, . . . , xn−1) 7→ (y0, y1, . . . , yn−1), where

(1) yi = xi +
∑n−1
j=0 F

′(xj − xj−1) for i ∈ {0, 1, . . . , n− 1}, and any n ≥ 3; or

(2) yi = xi + F ′
(∑n−1

j=0 (−1)j · xj
)

for i ∈ {0, 1, . . . , n− 1}, and n ≥ 3 even.

These schemes can be further generalized as described in the following.

Proposition 1. Let q = ps, where p ≥ 3 is a prime and s is a positive integer,

and let n ≥ 2. Given 1 ≤ l ≤ n − 1, let λ
(i)
0 , λ

(i)
1 , . . . , λ

(i)
n−1 ∈ Fq be such that∑n−1

j=0 λ
(i)
j = 0 for i ∈ {1, 2, . . . , l}. Let F ′ : Flq → Fq. The function F : Fnq → Fnq

defined as F(x0, . . . , xn−1) = (y0, . . . , yn−1) is invertible when

yl = xl + F ′

n−1∑
j=0

λ
(1)
j · xj ,

n−1∑
j=0

λ
(2)
j · xj , . . . ,

n−1∑
j=0

λ
(l)
j · xj

 , for 0 ≤ l ≤ n− 1.

No conditions are imposed on F ′. Even if not strictly necessary, it make

sense to choose {λ(1)j }
n−1
j=0 , {λ

(2)
j }

n−1
j=0 , . . . , {λ

(l)
j }

n−1
j=0 such that they are linearly

independent. Since
∑n−1
j=0 λ

(i)
j = 0 for i ∈ {1, 2, . . . , l}, there are at most n − 1

linearly independent combinations. For a proof we refer to Appendix G.1.
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5.2 The Amaryllises Scheme

Next, we introduce the Amaryllises scheme, in which the sum operation in the
Lai–Massey scheme is replaced by a multiplication.

Theorem 1 (The Amaryllises Scheme.). Let q = ps, where p ≥ 3 is a
prime and s is a positive integer, and let t ≥ 2 be an integer. Let

1. F : Fq → Fq be a function such that (1st) F (0) 6= 0 and (2nd) G(x) := x·F (x)
is invertible over Fq;

2. H : Fq → Fq be any function;

3. β0, β1, . . . , βn−1 ∈ Fq \ {0} such that
∑n−1
i=0 βi = 0 if there exists (at least)

one x ∈ Fp such that H(x) 6= 0 (equivalently, no condition on
∑n−1
i=0 βi is

imposed if H(x) = 0 for each x ∈ Fq).

The Amaryllises construction x 7→ y over Ftq defined as

yi = xi × F

(
n−1∑
i=0

βi · xi

)
+H

(
n−1∑
i=0

βi · xi

)

for i ∈ {0, 1, . . . , n− 1} is invertible.

Proof. First of all, we prove that F (z) 6= 0 for each z ∈ Fq. Since G is a per-
mutation and since G(0) = F (0) · 0 = 0 by definition, then G(x) 6= 0 for each
x 6= 0. It follows that F (x) = G(x)/x 6= 0 for any x ∈ F \ {0}, while F (0) 6= 0
by assumption.

The invertibility of Amaryllises follows from the fact that

n−1∑
i=0

βi · yi =

(
n−1∑
i=0

βi · xi

)
× F

(
n−1∑
i=0

βi · xi

)
+H

(
n−1∑
i=0

βi · xi

)
×
n−1∑
i=0

βi︸ ︷︷ ︸
=0

=G

(
n−1∑
i=0

βi · xi

)
,

where G is invertible by definition. Note that the condition
∑n−1
i=0 βi = 0 is not

necessary if H(x) = 0 for each x ∈ Fq. It follows that

n−1∑
i=0

βi · xi = G−1

(
n−1∑
i=0

βi · yi

)
=⇒ xi =

yi −H
(
G−1

(∑n−1
i=0 βi · yi

))
F
(
G−1

(∑n−1
i=0 βi · yi

)) ,

where F (z) 6= 0 for each z.

5.3 Constructing F as in Theorem 1

Here we show how to construct functions F that satisfy the assumptions of
Theorem 1 and that can be efficiently computed.
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Constructing F via Power Maps. Let d ≥ 3 be the smallest integer such that
x 7→ xd is invertible over Fq, hence gcd(d, q − 1) = 1. By applying the change of

variable x = z−α for α ∈ Fq \{0}, we get xd = (z±α)d =
∑d
i=0

(
d
i

)
·zi ·(±α)d−i.

Let F over Fq be defined as

F (z) =
(z ± α)d ∓ αd

z
=

d∑
i=1

(
d

i

)
zi−1 · (±α)d−i . (7)

F satisfies the requirements of Theorem 1, i.e., F (0) = ±d · αd−1 6= 0 (since
α 6= 0) and F (z) · z = (z ± α)d ∓ αd is invertible since x 7→ xd is invertible.

Prime Case – Dickson Polynomials. Dickson polynomials generalize the
power maps x 7→ xd, that is, Dd,0(x) = xd.

Definition 2 (Dickson Polynomials). Let q = ps, where p ≥ 3 is a prime
and s is a positive integer. Let α ∈ Fq fixed. The Dickson polynomial Dd,α(x) of
degree d over Fq is defined as

Dd,α(x) :=

bd/2c∑
j=0

d

d− j
·
(
d− j
j

)
· (−α)j · xd−2j .

For the following, note that if d is odd, only monomials with odd exponents
appear, and if d is even, only monomials with even exponents appear.

Theorem 2 ([50]). Let q = ps as before. Let α ∈ Fq. The Dickson polynomial
Dd,α(x) is a permutation polynomial of Fq if and only if gcd(d, q2− 1) = 1. The

inverse of Dd,α is the Dickson polynomial Dd̂,αd where d · d̂ = 1 mod q2 − 1.

Based on this, we can prove the following (see Appendix G.2 for details).

Lemma 1. Let q = ps, where p ≥ 3 is a prime and s is a positive inte-
ger. Let d ≥ 5 be the smallest odd integer such that gcd(d, q2 − 1) = 1. Let
α, β0, . . . , βt−1 ∈ Fq \{0}. The nonlinear layer J : Fnq → Fnq defined as J (x0, x1,
. . . , xn−1) = (y0, y1, . . . , yn−1) where yi = xi · D′d,α(β0 · x0 + β1 · x1 + . . .+ βn−1 ·
xn−1) and where D′d,α is defined as in Eq. (5) is invertible.

To prove such result, it is sufficient to show that D′d,α satisfies the require-

ments of Theorem 1. Note thatD′d,α(x) can be computed via d−1
2 Fq-multiplications,

with respect to d− 1 Fq-multiplications required to compute the function given
in Eq. (7).

6 Design Rationale of P(B), Ri and of P(H)
K

Initial Considerations. We start by pointing out the following.

– The Even–Mansour construction x 7→ K+P(B)(x+K) guarantees 2·log2(p) ≥
κ bits of security [19, 25] since P(B) is designed in order to resemble a PRP.
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– Since 2κ ≤ p2, we have to truncate at least two Fp elements in order to
prevent trivial brute-force attacks (i.e., guessing of the truncated part), and
therefore we chose this amount.

The keyed permutation P(H)
K is defined over F8

p in order to take into account
y ∈ F4

p and z ∈ F4
p defined as before.

6.1 The Hades Design Strategy

In order to design P(B), we aim to retain the advantages of the Hades strat-
egy [28], in particular the security arguments against statistical attacks and the
efficiency of the partial middle rounds. The Hades strategy is a way to de-
sign SPN schemes over Ft in which rounds with full S-box layers are mixed
with rounds with partial S-box layers. The external rounds with full S-box lay-
ers (that is, t S-boxes in each nonlinear layer) at the beginning and at the end
of the construction ensure security against statistical attacks. The rounds with
partial S-box layers (that is, t′ < t S-boxes and t− t′ identity functions) in the
middle of the construction are cheaper to evaluate in e.g. MPC settings, and
help to prevent algebraic attacks. In all rounds, the linear layer is defined via
the multiplication of a MDS matrix.

This strategy has been recently pushed to its limit in Neptune [29]. In such
a case, instead of using the same matrix and the same S-box both for the external
and the internal rounds, Neptune’s designers propose to use two different S-
boxes and two different matrices, one dedicate for the external rounds and one
dedicate for the internal ones.

6.2 The External Rounds of P(B): The Nonlinear Layer SE

As in Hades, Poseidon, and Neptune, we use the external rounds to provide
security against statistical attacks. In the case of Hades and Poseidon, this is
achieved by instantiating the external full rounds with power maps x 7→ xd for
each of the t words. Since computing x 7→ xd requires hw(d) + blog2(d)c − 1 ≥ 2
multiplications, the total number of multiplications for this nonlinear layer is
t · (hw(d) + blog2(d)c), i.e., at least 2 multiplications per word.13 Moreover, no
diffusion among the words takes place.

The Amaryllises scheme from Theorem 1 allows to solve these issues. As we
have already seen, the best choice for minimizing the number of multiplications is
to instantiate F in Theorem 1 with a Dickson polynomial (precisely, with D′d,α)
and to fix H = 0. The only drawback is the existence of invariant subspaces [45,
46] for this function (these would exist even if H 6= 0). E.g., by instantiating SE
with yi = xi · D′d,α(β0x0 + β1x1 + β2x2 + β3x3) for i ∈ {0, 1, 2, 3}, the round

13 Given d =
∑blog2(d)c
i=0 di · 2i for di ∈ {0, 1}, computing x 7→ xd requires computing

x2
j

for each j ∈ {0, 1, . . . , blog2(d)c} for a cost of blog2(d)c multiplications, plus
hw(d)− 1 multiplications to get x 7→ xd (hw(·) is the Hamming weight).
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function E admits

Dr =

{
(x0, . . . , x3) ∈ F4

p

∣∣∣∣∀l ∈ {0, . . . , r−1} :

3∑
i=0

βi·

 3∑
j=0

(ME [i, j])
l · xj

 = 0

}

as an invariant subspace for r ≥ 1 rounds (where (ME)
0 is the identity matrix).

Independently of the linear layer, this subspace covers (at least) three rounds.
To solve this issue, besides choosing a suitable matrix, we decided to set up
SE via the concatenation of two independent S-boxes, each one defined via the
Amaryllises scheme. Compared to a nonlinear layer built with independent
power maps, diffusion also takes place among the different words and a higher
degree can be reached for the same multiplicative cost.

6.3 The Internal Rounds of P(B)

The main goal of the internal rounds is to increase the overall degree of the func-
tion. In HadesMiMC and Poseidon, the nonlinear layer in the middle rounds
are instantiated with a single power map x 7→ xd and (t− 1) identity functions.
As mentioned in the introduction, the cost metric in an MPC application is
related to the number of nonlinear operations, i.e., multiplications over Fp.

To minimize this number, it could be desirable to use only one multiplication
per round. Indeed, let us compare the cost in terms of Fp multiplications in order
to reach a certain degree ∆ when using a round instantiated with the quadratic
map x 7→ x2 versus one instantiated via an invertible power map x 7→ xd with
d ≥ 3. By comparing the overall number of Fp multiplications, the first option
is always the most competitive, since

dlog2(∆)e = dlogd(∆) · logd(2)e︸ ︷︷ ︸
using x7→x2

< dlogd(∆)e · (blog2(d)c+ hw(d)− 1)︸ ︷︷ ︸
using x 7→xd

,

where dlogd(∆) · logd(2)e < dlogd(∆)e · dlogd(2)e and where blog2(d)c+ hw(d)−
1 ≥ blog2(d)c + 1 = dlog2(d)e. As a concrete example, let us focus on the case
d = 3 and ∆ = 2128. In the first case, 128 rounds and 128 Fp multiplications
are required to reach the degree ∆. In the second case, 81 rounds and 162 Fp
multiplications are required, i.e., 21% fewer multiplications in total.

However, the function x 7→ x2 is not invertible, and a partial nonlinear layer
instantiated with it could result in an insecure PRF. The problem can be solved
by using the quadratic map in a mode that preserves the invertibility, as in a
Feistel construction or in a generalized Lai–Massey construction as proposed
in Section 5.1. In order to reduce the depth, we decided for a generalized Lai–
Massey construction instantiated with nonlinear function of degree 4 that can
be computed with 2 multiplications only.

As already pointed out e.g. in [52], invariant subspaces exist for the Lai–
Massey construction. Hence, it is crucial to choose the matrix MI in order to
break them. In Appendix F, we show how to adapt the analysis/tool proposed
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in [32, 34] for breaking arbitrarily long subspace trails for P-SPN schemes to the
case of the generalized Lai–Massey constructions.

Finally, we point out that the conditions (i) – (ii) in Section 4.2 are crucial to
guarantee the density of the interpolation polynomial, as shown in Appendix E.1.

6.4 About Ri and P(H)
K

As in the case of Farfalle and Ciminion, the attacker knows the outputs of the
expansion phase of Megafono, but they cannot choose them (in order to set
up e.g. a chosen-ciphertext attack). Further, they do not know (and so choose)
its inputs. By designing P(B) in order to resemble a PRP, the attacker is not
able to choose texts at the input of P(B) which result in texts with some specific

statistical/algebraic properties at the inputs of P(H)
K (respectively, output of

P(B)). Based on these considerations, it turns out that only few attacks could
work at the expansion phase of Megafono, and so of Hydra. Since the possible
attacks are mainly algebraic ones and since the overall cost of Hydra growths

linearly with the cost of computing P(H)
K , we decided to work with a generalized

Lai–Massey construction of degree 2. This allows us to defeat possible attacks,
and to get good overall performance, as we are going to show.

We decided to keep the rolling function Ri linear, contrary to what is done in
e.g. Xoofff [20] and Ciminion. As already noted, due to the particular structure
of Farfalle and of Megafono, an attacker can exploit the relation between

consecutive evaluations of P(H)
K on the same output of P in order to break the

scheme [15, 18]. Instead of dealing with (low-degree) nonlinear rolling functions,
we frustrate such an attack strategy by (1st) working with the keyed permutation

P(H)
K , (2nd) truncating the final output, and (3rd) imposing that no (invariant)

subspace trail exists, via the condition dim
(
U ∩ (M i

R × U)
)
≤ dim (U) − 1 for

each U ⊂ F4
p and for each i ≥ 0.

7 Security Analysis of P(B)

Attacks taking into account the relations between the inputs and the outputs of
Hydra are in general harder than the attacks taking into account the relations
between the inputs and the outputs of P(B). In this section, we assume the
attacker knows both the inputs and outputs of x 7→ K + P(B)(x+ K). Note that
this is an unrealistic but favorable scenario for the attacker, since the outputs of

x 7→ K+P(B)(x+K) are actually hidden from P(H)
K . It follows that, if an attacker

is not able to break x 7→ K + P(B)(x + K) in a scenario in which they have full
control over the inputs and outputs, they cannot break Hydra by exploiting
the relation of its inputs and outputs.

The chosen number of rounds guarantees that x 7→ K+P(B)(x+K) resembles
a PRP against attacks with a computational complexity of at most 2κ and with
a data complexity of at most 2κ/2. We assume that the last two external rounds
E7, E6 are part of the security margin (hence, not considered in our security

21



analysis). Due to the page limit and the similarity between x 7→ K+P(B)(x+ K)
and HadesMiMC/Poseidon, here we only highlight the main points of the
security analysis of P(B). We refer to Appendices D and E for all details.

Statistical Analysis and the External Rounds. Similar to HadesMiMC
and Poseidon, we make use of the external rounds in order to provide security
against statistical attacks. In particular, we claim the following.

Claim. Consider a permutation P̂(B) over F4
p defined as P(B) in Eq. (4), albeit

with the middle rounds replaced by an invertible linear layer LP(B) ∈ F4×4
p and

where two external rounds are removed, i.e.,

P̂(B)(·) := F ◦ F︸ ︷︷ ︸
2 times

◦LP(B) ◦ F ◦ · · · ◦ F︸ ︷︷ ︸
4 times

(·) .

The security against statistical attacks of P(B) is not lower than that of P̂(B).

In a differential attack [12, 13], given pairs of inputs with fixed input dif-
ferences, differential attacks consider the probability distribution of the corre-
sponding output differences produced by the cryptographic primitive. As our
design is an iterated scheme, a cryptanalyst searches for ordered sequences of
differences over any number of rounds that are called differential characteris-
tics/trails. In Appendix D.1, we show that

– the maximum differential probability of the function (x, y) 7→ S
(i)
E (x, y) for

i ∈ {0, 1} is d/p, and
– the probability of any differential characteristic over three pairs of consecu-

tive rounds it is at most (d/p)9 � 2−2.5·κ, where p−2 ≤ 2−κ and 5 ≤ d� p.

Variants of differential attacks include truncated differentials [42], in which
the attacker can specify only part of the difference between pairs of texts. In Ap-
pendix D.2, we show that the matrix ME is chosen in order to destroy trun-
cated differential with probability 1 (which correspond to the invariant subspaces
〈(1,−1, 0, 0)〉 ⊆ F4

p and 〈(0, 0, 1, 1)〉 ⊆ F4
p of the nonlinear layer).

Finally, other statistical attacks do not pose any threat to P(B) due to the
facts that (1st) full diffusion is achieved over a single round and (2nd) the ar-
rangement/alignment of SE and the one of ME are different (SE mixes two Fp-
elements in a nonlinear way, while ME is defined as a matrix in F4×4

p which does

not admit an equivalent representation in F2×2
p2 ).

Algebraic Analysis and the Internal Rounds. Regarding the internal
rounds, we point out that no subspace trail [45, 46, 30] can cover an arbitrary
number of rounds I, due to the choice of the matrix MI , as explained in Ap-
pendix F. In there, we show how to adapt the analysis/tool proposed in [32, 34]
for breaking arbitrarily long subspace trail for P-SPN schemes to the case of the
generalized Lai–Massey constructions.
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Algebraic attacks exploit the low degree and/or the sparsity of the system of
equations that describes the scheme in order to break it. One of the most pow-
erful algebraic attack is the interpolation attack [38], whose goal is to construct
an interpolation polynomial that describes the function. The cost of setting up
such an attack depends on the number of different monomials in the interpo-
lation polynomial, where (an upper/lower bound of) the number of different
monomials can be estimated via the degree of the function. For this purpose,
in Appendix E.1, we show that the equations that describe P(B) are dense and
in Appendix E.2 we show that RI ≥ κ

4 − log2(d) + 3 rounds are necessary for
preventing Meet-in-the-middle (MitM) interpolation attacks. In particular, only
a few E rounds are sufficient to reach the maximum degree in the backward
direction, since the inverse of the Dickson polynomial has a high degree (i.e., of
the same order as p) if d� p is a small integer (see Theorem 2).

Next, we show that the number of rounds necessary for preventing interpola-
tion attacks are also sufficient to prevent Gröbner basis attack in Appendix E.4
(see also Section 8.2 for more information on Gröbner basis attacks). In a similar
way, other algebraic attacks as the higher-order differential one [42, 11] do not
pose any threat on the security of P(B).

8 Security Analysis of P(H)
K

While x 7→ K + P(B)(x + K) is designed to behave like a PRP (in a scenario in
which an attacker can can choose its inputs/outputs), we do not impose such

a strong condition for P(H)
K . In order to be competitive in MPC scenarios, our

strategy can be summarized as follows: P(H)
K is designed so that Hydra is secure

under the assumption that K+P(B)(x+ K) behaves like a PRP. Hence, P(H)
K will

be studied assuming that the attacker only knows the outputs of P(H)
K after

summation-truncation and that the attacker does not know the inputs of P(H)
K .

The attacker is still able to utilize that the outputs from a (potentially large)

number of permutations P(H)
K hail from the same unknown input y, z ∈ F4

p. This
can, for instance, be used when constructing systems of polynomial equations

from P(H)
K . Indeed, we will later see that the most competitive attacks will be

based on Gröbner bases.

8.1 Statistical and Invariant Subspace Attacks

Statistical attacks are particularly frustrated by the fact that it is infeasible for
the attacker to choose a set of inputs {xj}j for P(B), such that the correspond-
ing outputs {yj}j satisfy certain statistical/algebraic properties that can be ex-

ploited to break P(H)
K . Besides, we point out that the round constants ϕ(j,i) ∈ F8

p

and the ψi,j ∈ Fp \ {0} change at every round j and at every consecutive P(H)
K

call. This design strategy was introduced in Rasta [23] (where the affine layer
changes at every encryption) for preventing statistical attacks. In addition to

these precautions, it is still desirable that P(H)
K has good statistical properties.
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To this end, the invertible matrices M
(i mod 2)
J ∈ F8×8

p are chosen so that no
invariant subspace trail can cover more than 7 rounds. We refer to Appendix F
for more details. Based on this, the probability of each differential characteristic
over RH rounds is at most p−bRH/8c, since the maximum differential probability

of S
(i,j)
J is p−1 (see Appendix H.1) and at least one S

(i,j)
J function is active every 8

rounds. By choosing RH ≥ 24, the probability of each differential characteristic
is at most p−3 ≤ 2−1.5·κ, which we conjecture to be sufficient for preventing
differential (and, more generally, other statistical) attacks in our scenario.

8.2 Algebraic and Gröbner Basis Attacks

We start by pointing out that it is not possible to mount an interpolation attack,
since the input y, z is unknown, and the polynomials associated with the various

heads P(H)
K (y,Ri(z), i) differ for each i.

Thus the remainder of this section will be devoted to Gröbner basis attacks.
Note that the variables y and z are clearly not independent, as they both depend
on x. Moreover, z can be written out as a function of y (the converse does not
hold, since the function that outputs z is, in general, not invertible). However, the
mentioned functions would be dense and reach maximum degree, which implies
that the cost of an attack making use of these functions would be prohibitively
expensive (see Section 3.2 for details). Hence, we will treat y and z as independent
variables in the following.

Preliminaries: Gröbner Basis Attacks. The most efficient methods for solv-
ing multivariate systems over large finite fields involve computing a Gröbner
basis associated with the system. We refer the reader to [17] for details on the
underlying theory.

Computing a Gröbner basis (in the grevlex order) is, in general, only one
of the steps involved in solving a system of polynomials. In our setting, an
attacker is able to set up an overdetermined polynomial system where a unique
solution can be expected. In this case it is often possible to read the solution
directly from the grevlex Gröbner basis, which is why we will solely focus on the
step of computing said basis. There are no general complexity estimates for the
running time of state-of-the-art Gröbner basis algorithms, such as F4 [27]. There
is, however, an important class of polynomial systems, known as semi-regular
(see [7] for a definition), that is well understood. For a semi-regular system the
degree of the polynomials encountered in F4 is expected to reach the degree of
regularity which can, in this case, be defined as the index of the first non-positive
coefficient in the series

H(z) =

∏ne

i=1(1− zdi)
(1− z)nv

, (8)

for a system of ne polynomials in nv variables, where di is the degree of the i-th
equation. The time complexity for computing a grevlex Gröbner basis for such
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a system is then estimated by

O
((

Dreg + nv
nv

)ω)
, (9)

where 2 ≤ ω ≤ 3 is the linear algebra constant representing the cost of matrix
multiplication, and Dreg the associated degree of regularity [7].

Gröbner Basis Attacks on P(H)
K . There are many possible ways to represent

a cipher as a system of multivariate polynomials, and this choice of representation
impacts the performance of the Gröbner basis algorithm. We will consider the
two representations that seem most promising. The first representation only
works with the input and the output of the function (i.e., no additional variables
are introduced). This allows an attacker to take advantage of collecting many
outputs (each of which will yield a new equation in the same variables), up
until the entire polynomial system can be linearized. The details of this first
strategy are outlined in Appendix H.2. The second representation introduces
new variables and equations for each round. While this increases the number of
variables, it keeps the degree low, and allows exploitation of the small number of
multiplications in each round. Since the second strategy yields the better attack,
here we sum up our findings, with more details included in Appendix H.3.

As described in Appendix H.3, the most promising intermediate modeling can
be reduced to a system of RH quadratic equations in RH − 2 variables, where

RH is the number of rounds in P(H)
K . Further analysis presented in the same

appendix shows that while this system is not semi-regular, we nevertheless find
that the degrees encountered in the F4 algorithm is estimated well by the series
H(z) in Eq. (8), and that the solving times are comparable to that of solving
randomly generated semi-regular systems of the same size. Still, the systems from

P(H)
K have some properties we do not expect in semi-regular systems. To ensure

that they cannot be exploited, we conservatively add 3 extra rounds on top of
this baseline (see Appendix H.3 for a more detailed exposition of the underlying
arguments). Hence, for a security level κ we follow Eq. (9) and define R∗ = R∗(κ)
to be the minimum positive integer that satisfies the following inequality

(
2 ·R∗ − 2 +Dreg

2 ·R∗ − 2

)2

≥ 2κ where Dreg = R∗ + 1−
⌊√

2 ·R∗ + 2

2

⌋
. (10)

Appendix H.4 provides details on how this particular expression for Dreg is
derived from the series in Eq. (8). We then claim that R∗(κ) + 3 is sufficient to
provide κ-bit security against this Gröbner basis attack.

9 Hydra in MPC Applications

In this section, we evaluate the performance of Hydra compared to other PRFs
in MPC use cases which assume a secret shared key. We implemented Hydra,
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Table 1: Online and offline phase performance for evaluating different ciphers
with different state sizes t in MPC using a secret shared key. Prec is the number
of precomputed elements, i.e., multiplication triples, squares, and inverses; Depth
describes the number of online communication rounds. Runtime averaged over
200 runs. Bold values are best values with key schedules, Italic the best without.

Offline Online Combined
Cipher Rounds Prec. Time Data Depth Time Data Time Data

ms MB ms kB ms MB

t = 8:

Hydra 8, 38, 38 216 41.09 4.87 139 7.99 7.19 49.09 4.88
Ciminion (No KS)a 90, 14 148 27.30 3.34 107 4.10 5.02 31.39 3.35
Ciminion 90, 14 867 181.50 19.55 735 20.47 28.02 201.97 19.58
HadesMiMC 6, 71 238 45.77 5.37 79 13.84 5.99 59.62 5.38
Rescue (No KS)a 10 480 97.08 10.83 33 5.95 11.80 103.03 10.84
Rescue 10 960 205.17 21.65 33 10.44 23.32 215.61 21.68

t = 32:

Hydra 8, 38, 38 330 63.69 7.44 139 12.80 11.22 76.49 7.46
Ciminion (No KS)a 90, 14 328 63.31 7.40 119 5.38 11.16 68.69 7.41
Ciminion 90, 14 3207 808.91 72.30 2895 71.92 103.29 880.83 72.41
HadesMiMC 6, 71 526 108.22 11.87 79 162.15 13.29 270.36 11.88
Rescue (No KS)a 10 1920 409.76 43.30 33 30.94 46.74 440.70 43.35
Rescue 10 3840 983.05 86.60 33 77.30 92.82 1060.35 86.70

t = 64:

Hydra 8, 38, 38 520 105.23 11.73 139 20.20 17.82 125.43 11.75
Ciminion (No KS)a 90, 14 568 117.38 12.81 135 6.77 19.35 124.15 12.83
Ciminion 90, 14 6327 1819.67 142.64 5775 141.30 203.64 1960.97 142.84
HadesMiMC 6, 71 910 191.50 20.53 79 613.61 23.02 805.11 20.55
Rescue (No KS)a 10 3840 989.10 86.60 33 97.35 93.34 1086.44 86.70
Rescue 10 7680 2255.42 173.20 33 270.98 185.50 2526.40 173.39

t = 128:

Hydra 8, 38, 38 862 178.32 19.44 139 32.19 29.78 210.51 19.47
Ciminion (No KS)a 90, 14 1048 220.69 23.63 167 9.96 35.74 230.65 23.67
Ciminion 90, 14 12567 3842.51 283.32 11535 272.65 404.34 4115.16 283.72
HadesMiMC 6, 71 1678 361.24 37.85 79 2443.52 42.47 2804.76 37.89
Rescue (No KS)a 10 7680 2284.69 173.20 33 359.10 186.52 2643.79 173.39
Rescue 10 15360 4740.96 346.40 33 1022.45 370.84 5763.41 346.77

a Assumes round keys are present, i.e., no key schedule computation in MPC.

alongside its competitors, using the MP-SPDZ library [40]14 (version 0.2.8, files
can be found in Appendix A) and benchmark it using SPDZ [22, 21] with the
MASCOT [41] offline phase protocol. Concretely, we benchmark a two-party
setting in a simulated LAN network (1 Gbit/s and � 1 ms average round-
trip time) using a Xeon E5-2669v4 CPU (2.6 GHz, turboboost up to 3.6 GHz),
where each party was assigned only 1 core. SPDZ, and therefore all the PRFs,

14 https://github.com/data61/MP-SPDZ/
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is instantiated using a 128-bit prime p, with gcd(3, p − 1) = gcd(5, p2 − 1) = 1,
thus ensuring that x 7→ x3 and x 7→ D5,α(x) are permutations, as required by
Poseidon, Rescue, MiMC, GMiMC, and Hydra). All PRFs are instantiated
with κ = 128. Hydra requires #mul = RE · (2

⌊
d
2

⌋
+ 4) + 2 ·RI +RH ·#heads

multiplications, hence 140 + 38 ·#heads in this setting.

We implemented all x3 evaluations using the technique from [31], which re-
quires one precomputed beaver triple, one precomputed shared random square,
and one online communication round. Furthermore, we implemented x1/3 (as
used in Rescue) using the technique described in [5], which requires two precom-
puted beaver triples, one precomputed random square, one precomputed random
inverse, and two communication rounds.15

In Table 1, we compare the performance of Hydra to some competitors for
different state sizes t, for a comparison with more PRFs we refer to Appendix I.
For Ciminion and Rescue we give the performance for the case in which the
key schedule has to be computed (i.e., a fresh shared key is provided), and
the case in which an old key is used (i.e., round keys can be reused). We give
concrete runtimes, as well as the amount of data transmitted by each party
during evaluation of the offline and online phases. Further, we give the combined
number of triples, squares, and inverses which need to be created during the
offline phase, as well es the total number of communication rounds (i.e., the
depth of the PRF) during the online phase. During the offline phase only the
required number of triples, squares, and inverses is precomputed.

Table 1 shows that the offline phase dominates both the overall runtime and
the total communication between the parties. Hydra always requires less pre-
computation than HadesMiMC and Rescue (with and without a key schedule),
hence, it has a significantly more efficient offline phase with the advantage grow-
ing with t. Compared to Ciminion one can observe that if one has to compute the
key schedule its offline performance is worse than HadesMiMC, consequently
also worse than Hydra. Only if we do not consider the key schedule, Ciminion
has a more efficient offline phase than Hydra for small t < 64.

Looking a the online phase, Hydra is faster and requires less communication
than HadesMiMC and Rescue, which is due to the smaller number of multiplica-
tions and the better plain performance. HadesMiMC requires many expensive
MDS matrix multiplications (see Appendix J) and Rescue requires expensive
x1/d evaluations. Comparing Hydra to Ciminion without a key schedule, one
can observe that Ciminion is always faster. For small state sizes t < 64 it also
requires less communication. However, Ciminion has an expensive key schedule,
which drastically impacts its online phase performance if it has to be computed.
Thus, considering key schedules, Hydra also has the most efficient online phase.

To summarize, our experiments show that Hydra is the most efficient PRF
in both phases of the MPC protocols. Only if we discard the key schedules,
Ciminion is competitive for small state sizes t < 64.

15 Precomputed squares and precomputed inverses can be computed in the offline phase
using in total one extra round of communication from one beaver triple each.
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The Effect of the Network. The performance of any MPC application depends on
the network speed. On one hand, the lower the bandwidth, the bigger the effect
of the communication between the parties on the overall performance; on the
other hand, a big round-trip time leads to bigger contributions of the number of
communication rounds. In the offline phase only shared correlated randomness
is created, thus, the network performance affects all PRF in the same way. Con-
sequently, if a PRF has a faster offline phase in the LAN setting, it is also faster
in a slower network environment. The situation is quite different in the online
phase: In very fast networks, the online phase performance is mostly determined
by the plain runtime. The slower a network gets, the more time is spent waiting
for the network to deliver packages. Hydra has a small number of multiplica-
tion, hence, in all networks a preferable offline phase. Further, it requires very
little communication in the online phase, making it suitable for low bandwidth
networks. However, it has a larger depth compared to HadesMiMC and Rescue,
leading to worse runtimes in high-delay networks. Ciminion’s key schedule has
a large depth and requires lots of communication between the parties. Thus,
Ciminion is only competitive in slow networks if the key schedule does not need
to be computed. Overall, Hydra has a good balance between small number of
multiplications, small communication, decent plain performance, as well as a
reasonable depth, making it the preferred PRF for MPC applications in most
network environments.
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SUPPLEMENTARY MATERIAL

A Supplementary Files

In the repository

https://extgit.iaik.tugraz.at/krypto/hydra

we provide the following files as supplementary material.

– MP-SPDZ: This folder contains the MP-SPDZ framework and cipher imple-
mentations used for benchmarking.

– calc round numbers.sage: This script calculates the number of rounds for
a given security level κ.

– hydra.sage: This script contains the reference implementation of Hydra,
written in sage.

We refer to the Readme.md file in the repository for more information about
the supplied files.

B Details about Farfalle

Let K ∈ Fκq be the secret key for κ ≥ 1. Farfalle uses six components, namely

1. key schedules Kc : Fκq → F?q and Ke : Fκq → F?q for generating the subkeys
used in the compression and in the expansion phases respectively,16 that is,

Kc(K) = (k
(c)
0 , k

(c)
1 , k

(c)
2 , . . .), Ke(K) = (k

(e)
0 , k

(e)
1 , k

(e)
2 , . . .),

2. two keyed functions F (c)
k ,F (e)

k : Fq → Fq defined via two unkeyed functions
F (c),F (e) : Fq → Fq as

F (c)
k (x) = F (c)(k + x), F (e)

k (x) = k + F (e)(x),

3. an unkeyed function F ′ : Fq → Fq,
4. a compression function C : F?q → Fq, defined in [2] as C(x0, x1, . . . , xnc−1) =∑nc−1

j=0 xj , and
5. an expansion function E : Fq → F?q defined as

E(x) = (E0(x), E1(x), E2(x), . . .) (11)

for some functions Ei : Fq → Fq.
Given an input x = (x0, . . . , xnc−1) ∈ Fnc

q , Farfalle : Fnc
q → Fne

q is defined by

Farfalle(x) = (F (e)

k
(e)
0

,F (e)

k
(e)
1

, · · · ,F (e)

k
(e)
ne−1︸ ︷︷ ︸

ne times

) ◦ E ◦ F ′
nc−1∑

j=0

F (c)

k
(c)
j

(xj)

 ,

where (F (e)

k
(e)
0

, · · · ,F (e)

k
(e)
ne−1

)(z) :=
(
F (e)

k
(e)
0

(z0), · · · ,F (e)

k
(e)
ne−1

(zne−1)
)

for any z = (z0, z1,

. . . , zne−1) ∈ Fne
q .

16 In [2], given the master key K, an initial mask K is defined as K := P(b)(K || 10?).

The masks k
(c)
i and k

(e)
j are obtained via a rolling function applied on K.
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C The Hydra PRF – Specification Details

C.1 Pseudo Code

Algorithm 1: The Hydra PRF.

Data: Prime integer p ≥ 263, 4 ≤ t ≤ 2κ/2, N ∈ Fp, K ∈ F4
p.

Result: h ∈ Ftp.
1 Let t = 14 · t′ + t′′ for t′, t′′ ∈ N, where t′′ = t mod 14.
2 Let x, y, z ← 0 ∈ F4

p.

// First step (computing P(B))

3 x←ME × (K + [N || IV]).
4 for i← 0 to 3 do
5 x← Ei(x).
6 z ← z + x.

7 for i← 0 to R− 1 do
8 x← Ii(x).
9 z ← z + x.

10 for i← 4 to 6 do
11 x← Ei(x).
12 z ← z + x.

13 y ← E7(x) + K.

// Expansion step (using P(H)
K )

14 for i← 0 to t′ − 1 do

15 a← P(H)
K (y,R(z, 2 · i), 2 · i).

16 b← P(H)
K (y,R(z, 2 · i+ 1), 2 · i+ 1).

17 hi ← T L8,6(a) || (T R8,2(a) + T L8,2(b)) || T R8,6(b).

18 ht′ ← 0.
19 if t′′ > 0 then

20 a← P(H)
K (y,R(z, 2 · t′), 2 · t′).

21 ht′ ← T L8,min{t′′,6}(a).

22 if t′′ > 6 then

23 b← P(H)
K (y,R(z, 2 · t′ + 1), 2 · t′ + 1).

24 ht′ ← T L14,t′′
(
ht′ || (T R8,2(a) + T L8,2(b)) || T R8,6(b)

)
.

25 return h := h0 || h1 || · · · || ht′−1 || ht′ ∈ Ftp.

C.2 Generation of Matrices and Constants

We pseudo-randomly generate all matrices and constants using Shake-128 [3]
seeded with the string Hydra and the used prime. Thereby, we use rejection
sampling to sample field elements, and we reject and resample matrices and
constants if they do not meet the requirements specified in this paper. We refer
to our source code present in the supplementary material (Appendix A) for more
details.
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D Statistical Attacks against P(B)

Similar to HadesMiMC and Poseidon, we make use of the external rounds in
order to provide security against statistical attacks. As already discussed before,
we claim that the security against statistical attacks of P(B) is not lower than
that of

P̂(B)(·) := F ◦ F︸ ︷︷ ︸
2 times

◦LP(B) ◦ F ◦ · · · ◦ F︸ ︷︷ ︸
4 times

(·) .

For this reason, here we study the security of P̂(B) against statistical attacks.

D.1 Differential Cryptanalysis

Differential cryptanalysis [6, 7] and its variations are the most widely used tech-
niques to analyze symmetric-key primitives. Given pairs of inputs with fixed
input differences, differential attacks consider the probability distribution of the
corresponding output differences produced by the cryptographic primitive. Let
δI , δO ∈ Ftp be respectively the input and the output differences through a func-
tion f over Ftp. The differential probability (DP) of having a certain output
difference δO given a particular input difference δI is equal to

Prob(δI → δO) =
|{x ∈ Ftp | f(x+∆I)− f(x) = δO}|

pt
.

As Hydra is an iterated scheme and assuming the independence of the rounds,
the DP of a differential trail is the product of the DPs of its one-round differences.

Our goal is to find the minimum number of rounds such that the probability
of each differential characteristic is smaller than 2−2.5·κ. Since multiple charac-
teristics can be used simultaneously in order to set up a differential attack, we
arbitrary chose the value 2−2.5·κ instead of 2−κ to provide security.

Proposition 2. Let α ∈ Fp \ {0}, and let d ≥ 5 such that gcd(d, p2 − 1) = 1.

Let β ∈ Fp \ {0}, and let ŜE : F2
p → F2

p be defined as

ŜE(x0, x1) = x0 · D′d,α(x0 + β · x1)‖x1 · D′d,α(x0 + β · x1),

where D′d,α(·) is defined as in Eq. (5). Given an input difference ∆I = (δ0, δ1) ∈
F2
p \ {(0, 0)} and an output difference ∆O = (δ′0, δ

′
1) ∈ F2

p, we have that

Prob(∆I → ∆O) ≤

{
d−1
p if δ0 + β · δ1 = δ′0 + β · δ′1 = 0 ,

(d−1)2
p2 otherwise.

Proof. Our goal is to count the number of solutions of

(x0 + δ0) · D′d,α(x0 + β · x1 + δ0 + β · δ1)− x0 · D′d,α(x0 + β · x1) = δ′0 ,

(x1 + δ1) · D′d,α(x0 + β · x1 + δ0 + β · δ1)− x1 · D′d,α(x0 + β · x1) = δ′1 .
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By summing the first with the second multiplied by β, we get

Dd,α(x0 + β · x1 + δ0 + β · δ1)−Dd,α(x0 + β · x1) = δ′0 + β · δ′1 ,

where Dd,α(x) := x · D′d,α(x) for each x ∈ Fp.
Let’s introduce the variable z:

z := x0 + β · x1 .

The system of equations becomes

(x0 + δ0) · D′d,α(z + δ0 + β · δ1)− x0 · D′d,α(z) = δ′0 ,

Dd,α(z + δ0 + β · δ1)−Dd,α(z) = δ′0 + β · δ′1 .

As a result, the second equation depends only on z, which is independent of x0
(since x1 is independent of x0).

Note that if

δ0 + β · δ1 = δ′0 + β · δ′1 = 0 ,

then the second equation is always satisfied, independently of z. Otherwise, it
admits at most d− 1 solutions (since it is an equation of degree d− 1 in z).

For each solution z of the second equation, the first equation admits at most
d− 1 solutions (since again it is an equation of degree d− 1 in x0).

It follows that the maximum differential probability of S
(·)
E over F2

p is at most
(d− 1)/p < d/p, that is,

max
∆I ,∆O∈F2

p\{(0,0)}
Prob

(
∆I

S
(·)
E−−→ ∆O

)
≤ d

p
.

The wide-trail design strategy [13] does not apply directly to P̂(B), since S
(·)
E

mixes two Fp elements in a nonlinear way and since ME is defined as a matrix
multiplication in F4×4

p . However,

(1) since ME is an MDS matrix, at least five Fp elements must be active among
the output of SE and the input of the consecutive SE , and

(2) since S(·)E is defined over F2
p, at least three S(·)E functions are active over two

rounds.

It follows that the probability of any differential characteristic over two rounds
is at most (d/p)3, which implies that for three pairs of consecutive rounds it is

d9

p9
≤ d9

24.5·κ
� 2−2.5·κ,

since p−2 ≤ 2−κ and 5 ≤ d� p.
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For completeness, we mention that the probability of a differential charac-
teristic for P(B) is even smaller. Indeed, following [21], it corresponds to

d9

p9
·
(

3

p

)⌊
RI
4

⌋
,

where at least one quadratic Lai–Massey function is active every four rounds
(due to the considerations made in Appendix F.1) and the probability of a

differential for one degree-d̂ Lai–Massey function (where d̂ = 4 in our case) is at

most (d̂− 1)/p (see Lemma 2 for more details).

D.2 Truncated Differential Attacks

Truncated differential cryptanalysis [22] is a variant of classical differential crypt-
analysis, in which the attacker can specify only part of the difference between
pairs of texts. As shown in [26], truncated differential and subspace trails are
strictly related.

Definition 3 ((Invariant) Subspace Trail [24, 25, 17]). Let I : Ftp → Ftp.
Let (U0, . . . ,Ur) denote a set of r + 1 subspaces with dim(Ui) ≤ dim(Ui+1). If
for each i ∈ {1, . . . , r} and for each ai ∈ Ft there exists ai+1 ∈ Ft such that
I(Ui + ai) ⊆ Ui+1 + ai+1, then (U0, . . . ,Ur) is a subspace trail of length r. If the
subspace is invariant (that is, Ui = Uj for each i, j = 0, . . . , r), the trail is called
an invariant subspace trail.

The linear layer ME ∈ F4×4
p of E must be chosen such that (1st) it is MDS

and (2nd) no invariant and iterative subspace trails generated by 〈[1,−1, 0, 0]〉 ⊆
F4
p or 〈[0, 0, 1, 1]〉 ⊆ F4

p exist. Indeed, note that the subspaces generated by
〈[1,−1, 0, 0]〉 and 〈[0, 0, 1, 1]〉 are invariant through the S-box layer due to the

definition of S
(1)
E and S

(2)
E , respectively.

Since we only focus on a state size of 4 elements, our approach is exhaustive.
In particular, we first generate all d-dimensional subspaces T ⊆ F4

p, where d < 4.
For every subspace T for which (1,−1, 0, 0) ∈ T and/or (0, 0, 1, 1) ∈ T (i.e., if
the subspaces generated by (1,−1, 0, 0) and/or (0, 0, 1, 1) are in T) we use the
following approach.

1. We determine whether T = M×T. If this is the case, we discard the matrix.
2. Otherwise, if T 6= M × T, we determine if T = M2 × T. For example, this

happens for matrices which merely move the subspaces from one half of the
state to the other (e.g., M = circ(0, 0, 1, 0)), which then results in an iterative
subspace trail with T = M2 ×T 6= M ×T. If this is the case, we discard the
matrix.

In all other cases, we consider the matrix as viable for our goal. It turns out that
the AES matrix ME = circ(3, 2, 1, 1) with its fast plain performance fulfills these
requirements and can be used in our setting.
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By choosing the matrix in such a way, a truncated differential with proba-
bility 1 can cover for one round only. Over more rounds, any subspace trail has

probability smaller than the security level. It follows that P̂(B) (and so P(B)) is
secure against truncated differential (equivalently, subspace trail) attacks.

D.3 Other Statistical Attacks

Finally, since P̂(B) (and so P(B)) is secure against classical and truncated dif-
ferential attacks, then we conjecture that it is also secure against other statis-
tical attacks, including linear and zero-correlation attacks [27, 1, 8], impossible
differential [5], boomerang attack [29], integral [12], multiple-of-n and mixture
differential attacks [18, 15]. This conclusion is also supported by the facts that
(1st) full diffusion is achieved over a single round and (2nd) the arrangement of
SE and the one of ME are different, that is, the nonlinear layer SE mixes two
Fp-elements in a nonlinear way (hence, it admits a natural description over F2

p2),

while ME is defined as a matrix multiplication in F4×4
p , and it does not admit

any equivalent representation as a matrix in F2×2
p2 (see also [10, 9, 16] for details).

E Details about Algebraic Attacks against P(B)

E.1 Density of the Algebraic Representation

Algebraic attacks are especially efficient against schemes that have a simple
algebraic structure in larger fields. It is well-known that many attacks (e.g., the
interpolation one or the Gröbner basis one) can be stronger if the polynomials
that represent the scheme are sparse. Consequently, it is important to study the
density of these polynomials. We recall (see, e.g, Theorem 2.4 in [14]) that the
number of possible monomials in a polynomial of degree D in t variables is

N(d, t) :=

(
t+D

D

)
. (12)

Conditions (i) – (ii) on MI . First of all, here we explain the condition (i) – (ii)
on MI . Let x ∈ Ftp be the input of one round. By simple computation, the j-th
Fp-output of the next round is

yj =

t−1∑
l=0

MI [j, l] · xl +

(
t−1∑
l=0

MI [j, l]

)
·G

(
t−1∑
h=0

λh · xh

)

for a certain (simplified) quadratic function G, and where we omitted constant

additions for simplicity. Let ŷ = G
(∑t−1

h=0 λh · xh
)

. By applying the nonlinear
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Fig. 4: Comparison of the maximum number of monomials and the observed
number of monomials in P(B) for the E rounds.
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Fig. 5: Comparison of the maximum number of monomials and the observed
number of monomials in P(B) for the I rounds.

SI , the i-th Fp-output is

yi +G

(
t−1∑
h=0

λh ·

(
t−1∑
l=0

MI [h, l] · xl +

(
t−1∑
l=0

MI [h, l]

)
· ŷ

))

=yi +G

(
t−1∑
l=0

xl ·

(
t−1∑
h=0

λh ·MI [h, l]

)
+ ŷ ·

t−1∑
h=0

λh ·

(
t−1∑
l=0

MI [h, l]

))
.

Hence, the condition
∑t−1
h=0 λh ·

(∑t−1
l=0 MI [h, l]

)
6= 0 is crucial in order to ensure

the growth of the degree, while the conditions
∑t−1
h=0 λh ·MI [h, l] 6= 0 for each

l ∈ {0, 1, . . . , t− 1} ensure that the polynomial is not sparse.

Forward Direction. For the external rounds E , our practical tests show that
the maximum number of possible monomials at the i-th round is reached and
exceeded in round i+ 1. In the internal rounds I, the growth of the number of
monomials is closer to the optimum, reaching its maximum in some of our tests.
The behavior of E and I is shown in Figs. 4 and 5.

Backward Direction. The inverse of the S
(·)
E layer is defined as

S
(·)
E (y0, y1) =

y0

D′d,α
(
D−1d,α(y0 ± y1)

) ∥∥∥∥ y1

D′d,α
(
D−1d,α(y0 ± y1)

) ,
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as given in the proof of Theorem 1. The inverse of the degree-d Dickson poly-
nomial in E is a degree-d̂ Dickson polynomial, where d · d̂ = 1 mod p2 − 1 (see

Theorem 2). Since d � p2 − 1, it follows that d̂ is of the same order as p, and
therefore the inverse has a significantly higher degree and contains more mono-

mials. The same is true for the inverse of S
(·)
E , as confirmed by our tests. In the

I rounds, the degree is the same in both directions, and the above result is also
valid here.

E.2 Interpolation Attack

The goal of the interpolation attack [20] is to construct an interpolation polyno-
mial that describes the function. The cost of setting up such an attack depends
on the number of different monomials in the interpolation polynomial, where (an
upper/lower bound of) the number of different monomials can be estimated via
the degree of the function. If the number of unknown monomials is sufficiently
large, then it is not possible to construct the interpolation polynomial faster
than via a brute-force attack. Roughly speaking, if the degree of the interpola-
tion polynomial is high enough and if such polynomial is dense/full, then this
attack does not work.

Let us consider a scenario in which only one input component is active and
the others are fixed, that is, in the case in which the polynomial depends only
on a single variable. First of all, note that three external rounds are sufficient to
reach the maximum degree in the backward direction. Moreover, note that the
output of the first round does not correspond to a dense polynomial of degree
d (see Appendix E.1 for more details). Hence, out of six external rounds, only
two play a role concerning the number of monomials. Since the data available
for constructing the polynomial is restricted to 2κ/2, RI must satisfy

4RI−3 · d2 ≥ 2κ/2 =⇒ RI ≥
κ

4
− log2(d) + 3 ,

where 4 and d ≥ 5 are the degrees of the internal and of the external rounds
respectively, and where we arbitrarily add 3 internal rounds for destroying pos-
sible relations existing between the coefficients of the monomials (due to the fact
that the degree-4 function that defines the nonlinear layer is not generic, but has
a particular structure). As a result,

RI ≥
κ

4
− log2(d) + 3 (13)

rounds are necessary for preventing MitM interpolation attacks.

E.3 Linearization Attack

Preliminary: Linearization Attacks. Many well-known techniques for solv-
ing multivariate polynomial systems of equations, uses linearization (see, e.g.,
[11]). Given a system of polynomial equations, the idea is to turn it into a system
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of linear equations by adding new variables that replace all the monomials of
the system whose degree is strictly greater than 1. The resulting linear system
of equations can be solved using linear algebra if there are enough equations to
make the linearized system over-determined, or at least on the same order as the
number of variables after linearization.

Consider a system in t unknowns of degree limited by D that we want to
linearize. As we have already seen in Eq. (12), the set of monomials considered
has cardinality N(D, t) :=

(
t+D
D

)
. The costs of the attack are given by:

– computational cost of O(N(D, t)ω) operations (for 2 < ω ≤ 3);
– memory cost of O(N(D, t)2) to store the linear equations.

Depending on parameter choices, the hybrid approach which combines exhaus-
tive search with this approach may lead to a reduced cost. Guessing x < t
variables leads to a complexity of

O (px ·N(D, t− x)ω) .

Linearization Attack on P(B). For simplicity, we start by assuming that the
attacker can collect enough inputs/output data to directly linearize a polynomial
system representing P(B) with 4 key variables. The degree D is given by D =
d2·4RI−3, where (1st) the last three E rounds are excluded to account for possible
MitM variants, and (2nd) one extra external round and three extra I rounds are
required in order to achieve full diffusion (see Appendix E.1 for more details).
Since 2κ ≤ p2, it follows that the attack is not feasible if

∀x ∈ {0, 1} : px ·
((

4− x+ d2 · 4RI−3

4− x

))2

≥ 2κ ,

where we consider ω = 2 and where we have 4 variables (namely, the key). Let
x′ = 4− x. Note that

px ·
((

D + x′

x′

))2

≥ px ·

(∏x′

j=1(D + j)

x′!

)2

≥ px ·

(
(D + 1)x

′

x′x
′

)2

≥ px ·
(
D

x′

)2·x′

where zz ≥ z! for each z ≥ 1. Hence, this attack is prevented if

RI ≥ 4− log2(d) + max
x∈{0,1}

κ− x · log2(p)

4 · (4− x)
. (14)

Recalling the restriction 4RI−3 · d2 ≥ 2κ/2 from Appendix E.2, we note that it
will, in practice, not be possible to linearize directly, as assumed above. Rather,
algorithms such as [11] must go to a higher degree, and linearize a larger system,
making the lower bound in Eq. (14) extremely conservative for preventing attacks
of this kind. Even when ignoring the issues of data complexity, we point out that
the number of rounds necessary for preventing interpolation attacks are largely
sufficient for preventing linearization strategies when κ = log2(p).
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E.4 Gröbner Basis Attack

Given a system of ne nonlinear equations in nv variables, a Gröbner basis allows
to factorize this system of equations and find a solution (if it exists). We refer
to Section 8.2 for the details regarding such attack. Here we limit ourselves to
recall that

– the cost of such attack depends on the number of nonlinear equations that
compose the system to solve, their degree and on the number of variables;

– the cost of the Gröbner basis attack depends on the particular representation
of the studied system of equations considered.

Here, we consider the two extreme cases, one in which the attacker only works
with the input and the output of the permutation (i.e., no additional variables
are introduced), and one in which the attacker introduced intermediate variables
in every round.

Inputs and Outputs. The polynomial system in this modeling is the same
as described in Appendix E.3, i.e., 4 key variables with polynomials of degree
d5 ·4RI−3. The tools presented in Section 8.2 can be used for estimating how this
attack performs, depending on the number of equations (i.e., input/output pairs)
the attacker has access to. Similar to what we described in Appendix E.3, this
attack is optimized when it is possible to directly linearize the system, meaning
that Eq. (14) provides a conservative lower bound on RI to prevent this strategy
as well.

Intermediate Variables. For this strategy, we introduce additional variables
in each round in order to reduce the overall degree growth. For simplicity, we
focus on a slightly modified permutation with only two external rounds, one
at the beginning and one at the end. We emphasize that adding the remaining
external rounds will not make the resulting equation system easier to solve.

In our representation, we replace both sums in the Lai–Massey construction
of each internal round by two new variables. More formally, let

z
(0)
i =

3∑
j=0

λ
(0)
j · xj , z

(1)
i =

3∑
j=0

λ
(1)
j · xj ,

where z
(0)
i , z

(1)
i are two new variables introduced in the i-th internal round. Using

this approach, each internal round adds two degree-2 equations. Moreover, we
use four variables for the key, and we introduce a layer of four new variables
after the first external round (i.e., before starting with the internal rounds in
our scenario) and after the last internal round (i.e., before the last external round
in our scenario). Note that for the first internal round we can reuse the variables
introduced after the first external round, and thus we do not need to add two
new variables.
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In total, we have thus 4 variables for the key, 2 · 4 = 8 variables for the
transitions between the external and internal rounds, and 2(r − 1) variables for
r internal rounds. The number of equations is the same, and hence

ne = nv = 12 + 2(r − 1).

Of these equations, 8 are of degree d ≥ 5 and 4 + 2(r − 1) are of degree 4.
We implemented this modeling for an increasing number of r intermediate

rounds, and computed the associated grevlex Gröbner basis using the F4 algo-
rithm on the same setup described in Appendix H.3. For r = 1, the basis was
computed after almost 4 minutes. When r = 2, the same computation took 3
hours and 6 minutes. The case r = 3 was manually canceled after over 10 days
of running time.

Based on these results, we find it highly unlikely that this approach will
outperform the other methods we have investigated. For a rough comparison,
consider the interpolation attack in Appendix E.2, which requires r ' κ/4. Thus,
to outperform this attack, any algorithm with constant exponential growth will
have to grow by at most a factor of 16 for any additional intermediate round.
The growth we observe in our experiments is nowhere close to this:

– The running time when going from 1 to 2 internal rounds is increased by a
factor of around 46;

– The factor between 2 rounds and the data point where computations for 3
rounds was halted, is more than 80.

This observation, along with the conservative choice of only including two exter-
nal rounds in these tests, leads us to reasonably conjecture that the complexity
of Gröbner basis attacks greatly exceeds the complexity of interpolation attacks.

E.5 Higher-Order Differential Attack

Given a vectorial Boolean function F over Fn2 of degree d, the higher-order
differential attack [23, 22] exploits the fact that∑

x∈V+v

x =
∑

x∈V+v

F(x) = 0

for each affine subspace V + v ⊆ Fn2 of dimension strictly bigger than d (i.e.,
dim(V) ≥ d + 1). The corresponding attack in the case of a prime field Fp has
been recently proposed in [4]. Since this result is related to the degree of the
polynomial that describes the permutation, we claim that the number of rounds
necessary to guarantee security against the interpolation attack provides security
against this attack as well.

F Preventing Infinitely Long Subspace Trails in
Lai–Massey Constructions

As shown in [28], a weakness of the Lai–Massey construction is the possibility
to choose a nonzero input difference such that the quadratic function in the I
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rounds is not active. Here, we show how to choose the matrix MI in order to fix
this problem.

For reaching this goal, we follow the same strategy proposed for HadesMiMC
in [19]. Instead of talking of differences, we deal with subspaces and we make use
of the subspace trail notation introduced in [17], and recalled in Definition 3. As
in the case of HadesMiMC, the choice of the linear layer M plays a crucial role
for preventing subspace trails that can cover an arbitrary number of rounds. In
this section, we focus on the general case given in Section 5.1, where

yi = xi + F

t−1∑
j=0

λ
(1)
j · xj ,

t−1∑
j=0

λ
(2)
j · xj , . . . ,

t−1∑
j=0

λ
(s)
j · xj

 .

We note that this includes both the nonlinear layer in I of the P permuta-

tion, defined over F4, and the nonlinear layer in each of the rounds of the P(e)
K

permutation, defined over F8.
We point out that it is not possible that both an arbitrarily long sub-

space trail exists (e.g., M i × U = U for a certain i ≥ 1) and the condition
dim

(
U ∩ (M i × U)

)
≤ dim (U)−1 is satisfied. Before going on, we also recall the

concept of infinitely long invariant/iterative subspace trails.

Definition 4 (Infinitely Long Invariant/Iterative Subspace Trail [19]).
Let (V0,V1, . . . ,Vl−1) be a constant-dimensional subspace trail for l rounds. We
call this subspace trail an infinitely long iterative subspace trail of period l for
the considered scheme if it repeats itself an arbitrary number of times, i.e., if

(V0,V1, . . . ,Vl−1,V0,V1, . . . ,Vl−1, . . . ,V0,V1, . . . ,Vl−1, . . . )

is an infinitely long subspace trail.

F.1 Necessary Condition for Preventing Infinitely Long Subspace
Trails

First, we define the subspaces X(i) which are the starting points of our analysis.

Definition 5. For i ≥ 0 and t ≥ 2, let X(i) ⊆ Ftp be the subspace defined as

X(i) =

{
x ∈ Ftp

∣∣∣∣∣
t−1∑
l=0

(
λ
(h)
l ·

(
M j × x

)
l

)
= 0 ∈ Ft for each j ≤ i, 0 ≤ h ≤ s

}

=

s⋂
h=0

{
x ∈ Ftp

∣∣∣∣∣
t−1∑
l=0

(
λ
(h)
l ·

(
M j × x

)
l

)
= 0 ∈ Ft for each j ≤ i

}
. (15)

Moreover, let I be the largest i ≥ t− 1 such that 1 ≤ dim(X(i)) ≤ t− 1 (that is,
dim(X(I)) ≥ 1 and dim(X(I+1)) = 0).
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By taking a pair of texts in the same coset of X(i), the first i rounds are
essentially linear, since the input difference of F is always zero. More pre-
cisely, the output difference F (∆1, ∆2, . . . ,∆s) is zero for the input differences
(∆1, ∆2, . . . ,∆s) = (0, 0, . . . , 0). Depending on M , this behavior may repeat for
an arbitrary number of rounds, and our goal is to avoid this by choosing M
properly.

Inactive F Function. We will first focus on the case where F is not active (i.e.,
the input difference is always zero). Working as in [19], we derive the following
result.

Proposition 3. A subspace I ⊂ Ftp defines an infinitely long subspace trail with

inactive F if and only if I ⊆ X(0) and M × I = I.

Proof. Clearly, a subspace I ⊆ X(0) fulfilling M × I = I generates an infinitely
long invariant subspace trail with inactive F functions, since this function is
inactive in the first round and then I is repeated infinitely.

Next, we show that, given an infinitely long invariant subspace trail I with
inactive F functions, it must satisfy I ⊆ X(0) and M × I = I. Indeed, I ⊆ X(0),
otherwise F would be active in the first round. Moreover, I is invariant if and
only if M × I = I. The result follows immediately.

It remains to show that the nonexistence of infinitely long invariant subspace
trails implies the nonexistence of infinitely long iterative subspace trails. For this
purpose, we prove that if an infinitely long iterative subspace trail with inactive
F functions exists, then an invariant one exists as well. Let {I,M · I,M2 ·
I, . . . ,M l−1 · I} be an l-round iterative subspace trail. Let I′ := 〈I,M · I,M2 ·
I, . . . ,M l−1 · I〉. By definition, I′ generates an invariant subspace. Moreover, it
is a non-trivial subspace of Ftp (that is, I′ ⊂ Ftp) since on such a subspace F is
never active by assumption.

Active F Function. In order to provide security, we must also consider in-
finitely long subspace trails in which the input difference of the F function is
nonzero. If such a subspace exists, it would be possible to skip the middle rounds
without increasing the degree, which reduces the resistance against algebraic at-
tacks.

To give a concrete example, consider again the case t = 4, where λ0 = λ2 = 1
and λ1 = λ3 = −1. Moreover, let

MI =


µ0 1 1 1
1 µ1 1 1
1 1 µ1 1
1 1 1 µ1


for µ0, µ1 ∈ Fp. The two-dimensional subspace I = 〈(1, 0, 0, 0), (0, 1, 1, 1)〉 ⊆ F4

p

generates an infinitely long invariant subspace trail in which F is active. Indeed,
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given (x, y, y, y) ∈ I, note that the input of F is (x−y, x−y, x−y, x−y), which
is in general not equal to zero.

In the following, we give a necessary condition that, if satisfied, guarantees
that no infinitely long invariant subspace trail with active F functions exists.

Proposition 4. If a subspace I ⊂ Ftp defines an infinitely long invariant sub-
space trail with active F functions, then

〈(1, 1, . . . , 1)〉 ⊆ I.

Proof. Let I be an invariant subspace trail. For each x ∈ I,

M × (x0 + F (x0, . . . , xt−1), x1 + F (x0, . . . , xt−1), . . . , xt−1 + F (x0, . . . , xt−1))T ∈ I,

or equivalently M × x+ F (x0, . . . , xt−1) ·M × (1, 1, . . . , 1)T ∈ I, i.e.,

M × I + 〈M × (1, 1, . . . , 1)T 〉 = I =⇒ M × (I + 〈(1, 1, . . . , 1)T 〉) = I

where M is invertible. Since I is an invariant subspace, we have that

dim
(
M × (I + 〈(1, 1, . . . , 1)T 〉)

)
= dim

(
I + 〈(1, 1, . . . , 1)T 〉

)
= dim(I) ,

and hence

〈(1, 1, . . . , 1)T 〉 ⊆ I.

Finally, in the case of infinitely long iterative subspace trails with active F
functions, we simply reuse the results just given by observing that an infinitely
long iterative subspace trail of period l is an infinitely long l-round invariant
subspace trail.

F.2 Sufficient Condition for Preventing Infinitely Long Subspace
Trails

Note that in the approaches described above, the existence of an infinitely long
subspace trail relies on a matrix M for which a nontrivial M -invariant subspace
exists. Equivalently, a matrix M for which no M -invariant subspace exists is
considered secure. Therefore, we can reuse [19, Proposition 12], i.e., we determine
if the minimal polynomial of a given matrix has degree 8 and is irreducible.
If this is the case, no infinitely long subspace trails with inactive or active F
functions exist, and the same result can also be applied to ME in P(B). We
refer to Algorithm 2 for the detailed approach. We point out that this approach
provides a sufficient condition for preventing infinitely long subspace trails which
is not necessary in general.
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Algorithm 2: Determining if a given matrix is potentially vulnerable
to subspace trails in Hydra.

Data: Matrix M ∈ Fn×np , where n ∈ {4, 8}.
Result: False if there is a nonzero chance of vulnerability, True otherwise.

1 l← n.
2 M ′ ←M .
3 for i← 0 to l do
4 if deg(φM′) < n or φM′ is not irreducible then
5 return False

6 M ′ ←M ×M ′.
7 return True

G Proofs for the Constructions

G.1 Proof of Proposition 1

Proof. As in a Lai–Massey construction, the invertibility follows from the fact
that for i ∈ {1, 2, . . . , t}

n−1∑
h=0

λ
(i)
h yh =

n−1∑
h=0

λ
(i)
h ·

(
xh + F ′

(
n−1∑
j=0

λ
(1)
j xj ,

n−1∑
j=0

λ
(2)
j xj , . . . ,

n−1∑
j=0

λ
(t)
j xj

))

=

n−1∑
h=0

λ
(i)
h xh +

n−1∑
h=0

λ
(i)
h︸ ︷︷ ︸

=0

·F ′
(
n−1∑
j=0

λ
(1)
j xj ,

n−1∑
j=0

λ
(2)
j xj , . . . ,

n−1∑
j=0

λ
(t)
j xj

)
=

n−1∑
h=0

λ
(i)
h xh.

It follows that for l ∈ {0, 1, . . . , n− 1} we have

xl = yl − F ′
n−1∑
j=0

λ
(1)
j · yj ,

n−1∑
j=0

λ
(2)
j · yj , . . . ,

n−1∑
j=0

λ
(t)
j · yj

 .

G.2 Proof of Lemma 1

Proof. The proof follows from the fact that D′ satisfies the requirements of
Theorem 1:

(1) D′d,α(0) 6= 0, since D′d,α(0) = d
d−bd/2c ·

(
d−bd/2c
bd/2c

)
· (−α)bd/2c 6= 0, and

(2) Dd,α(z) = z·D′d,α(z) is a permutation due to Theorem 2, since gcd(d, p2−1) =
1.
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H Details about Security Analysis of P(H)
K

H.1 Details about Statistical Attacks against P(H)
K

Lemma 2. Let t ≥ 2. Let ω0, ω1, ω2, . . . , ωt−1 ∈ Fp \ {0} where
∑t−1
h=0 ωh = 0.

Let S
′′

: Ftp → Ftp be defined as S
′′
(x) = y where

∀l ∈ {0, 1, . . . , t− 1} : yl = xl +

(
t−1∑
h=0

ωh · xh

)2

.

Then, for each ∆I , ∆O ∈ Ftp:

Prob(∆I → ∆O) =

{
p−1 if ∆O[0] = ∆O[1] = . . . = ∆O[t− 1]( 6= 0)

0 otherwise
.

Proof. In order to prove such result, we count the number of solutions x ∈ Ftp
of S

′′
(x+∆I)− S

′′
(x) = ∆O, that is,

∀l ∈ {0, 1, . . . , t− 1} :

(
t−1∑
h=0

ωh · (xh +∆I [l])

)2

−

(
t−1∑
h=0

ωh · xh

)2

= ∆O[l]

First of all, such system of equation admits solution only if ∆O[l] = ∆O[j] for
each l, j ∈ {0, 1, . . . , t − 1}. Secondly, it is not hard to check that each one of
the equations in the system is linear in x0, x1, . . . , xt−1. Hence, the number of
solutions is at most pt−1 (t−1 variables are free to take any possible value, while

the remaining one is fixed), which implies that Prob(∆I → ∆O) ≤ pt−1

pt = p−1.

We emphasize that the previous result can be easily generalized to the case
in which the quadratic function is replaced by a generic degree-d function. In
such a case, its maximum differential probability is (d− 1)/p.

H.2 Linearization Attacks against P(H)
K

We refer to Appendix E.3 for details about the linearization attack.

Density of P(H)
K . Reusing Eq. (12), we can confirm with practical tests that

this bound is almost reached in all of the rounds, including the maximum degree
being 2r. This comparison is also shown in Fig. 6.
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Fig. 6: Comparison of the maximum number of monomials and the observed

number of monomials in P(H)
K .

Linearization Attack on P(H)
K . As in Appendix E.3 we will ignore data

complexity, in order to arrive at a conservative bound on RH for preventing
linearization attacks. In other words, we will assume that the attacker can collect
enough inputs/outputs data to directly linearize the system. The degree D is
given by D = 2RH after RH rounds. Since 2κ ≤ p2, it follows that the attack is
not feasible if

∀x ∈ {0, 1} : px ·
((

12− x+ 2RH

12− x

))2

≥ 2κ ,

where we consider ω = 2 and where we have 12 variables (namely, the key, y
and z). Let x′ = 12− x. As before:

px ·
((

D + x′

x′

))2

≥ px ·

(∏x′

j=1(D + j)

x′!

)2

≥ px ·

(
(D + 1)x

′

x′x
′

)2

≥ px ·
(
D

x′

)2·x′

where zz ≥ z! for each z ≥ 1. Hence, this attack is prevented if

RH ≥ 3 + max
x∈{0,1}

κ− x · log2(p)

2 · (12− x)
+ log2(12− x) , (16)

where we arbitrary add 3 rounds for destroying possible relations existing be-
tween the coefficients of the monomials (due to the fact that the degree-4 function
that defines the nonlinear layer is not generic, but has a particular structure).

In the case κ ≈ log2(p), our tests suggest that the number of rounds necessary
to satisfy Eq. (10) satisfies Eq. (16) as well.

H.3 Details About Gröbner Basis Attacks Against P(H)
K

This appendix focuses on Gröbner basis attacks where the intermediate rounds

of P(H)
K are modeled with extra variables and equations. The final output (after

summation-truncation) is assumed to be known. In the following, Dreg(ne, nv)
denotes the degree of regularity associated with a quadratic semi-regular system
of ne equations in nv variables, as predicted by Eq. (8).
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Best Scenario for the Attacker. Each head P(H)
K (·, i) included in the mod-

eling increases the number of variables, so the attacker wants to include as few
of them as possible. On the other hand, at least two heads are needed to con-
struct an (over-)determined polynomial system. Two choices of pairs stand out:

P(H)
K (·, 0), P(H)

K (·, 1), which has 14 final output entries, and P(H)
K (·, 0), P(H)

K (·, 2)

which share the matrix M0
J and constants λ

(0)
i . However, the latter modeling

only yields 12 final output variables, and the testing we have done suggests that

the modeling from P(H)
K (·, 0) and P(H)

K (·, 1) is faster to solve. Hence, we will focus
on the analysis of this case.

Number of Variables and Equations. Since there is only a single squaring

repeated in S
(i,j)
J (·), we can, after taking suitable linear combinations, model

each intermediate round Jj(·, i) with one quadratic equation and seven linear
equations, in eight new variables. Twelve variables are used for the input y, z,K,

and the output of the last round of P(H)
K (·, 0) and P(H)

K (·, 1) is, when taken
together, described by two quadratic equations and six linear equations (as there
are only 14 output values after the truncation-summation). We use the linear
equations in the system to eliminate variables. Assuming they are all linear
independent, we can reduce to a smaller system of 2r quadratic equations in
2r − 2 variables, where r is the number of rounds. This is indeed the case we
have observed in all our experiments.

Practical Tests. We have tested the difficulty of computing a grevlex Gröbner
basis for these reduced systems, with a varying number of rounds r, over F7741.
The tests have been performed running the F4 algorithm implemented in the
computer algebra system MAGMA V2.22-6, on 72 x Intel(R) Xeon(R) CPU E5-
2699 v3 @ 2.30GHz, with 252 GiB RAM. The results are presented in Table 2.
‘Step Degrees’ lists the degree of the polynomials associated with each step. The
maximal step, i.e., the most costly step in terms of running time, is underlined.
We present the total running time, as well as the time spent at the maximal step,
to give an impression of how the problem scales as r increases. For comparison,
we also give the degree of regularity for semi-regular systems of the same size.
More precisely, Dreg(m,n) denotes the degree of regularity of a semi-regular
system of m quadratic equations in n variables, as described in Section 8.2. For
comparison, we also include the running time for random quadratic systems of
2r polynomials in 2r− 2 variables (i.e., the coefficients of all possible monomials
up to degree two is a random element of Fp), with a unique solution. Random
systems are believed to be semi-regular with high probability (and they indeed
turned out to be so in our tests), and the practical hardness of solving them has
been studied in cryptographic solving challenges17. Note that the unique solution
can be directly read from the grevlex Gröbner basis in all our experiments. We
can see from Table 2 that the polynomial systems do in general not behave as

17 https://www.mqchallenge.org/
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Table 2: Running time (in seconds) and step degrees in the F4 algorithm when
solving polynomial systems from Hydra over F7741.
r Step Degrees Total Time Time Max Step Dreg(2r, 2r − 2) Time Random

6 2,3,4,5,5,5 0.18 0.07 6 0.18

7 2,3,4,5,6,6,5 2.88 1.00 6 2.68

8 2,3,4,5,6,6,7,7,5 63.44 29.63 7 51.36

9 2,3,4,5,6,7,7,7,8,7,6 1918.31 1023.13 8 1965.89

10 2,3,4,5,6,7,8,8,8,8,9,7 82330.73 62141.87 9 78647.85

semi-regular quadratic systems of the same size. Indeed, for r = 6, the degree at
the maximal step is one less than the associated generic degree of regularity. For
r = 8, 9 and 10, the degree at the maximal step is equal to the associated Dreg,
but we observe that the systems emit degree fall polynomials at degree Dreg− 1
(which, by definition, would not occur in semi-regular systems). We note that
the number of degree fall polynomials found prior to the maximal degree in these
cases are relatively small. For r = 8, the first step at degree 6 finds 5:1, 6:633
new polynomials, i.e., a single polynomial of degree 5, and 633 polynomials of
degree 6. When r = 9 the numbers for the first and second steps at degree 7 are
6:16, 7:2432; and 6:5, 7:244. Finally, when r = 10 the three first step at degree
8 finds 7:151, 8:8590; 7:92, 8:1946; and 7:9, 8:1476 new polynomials. The degree
fall polynomials do not seem to have a major impact on the running time, as in
all cases these times are comparable to that of solving random systems of the
same size.

The degree fall polynomials in the tests may be explained by an observation
that the homogeneous quadratic part of the polynomial systems (after the pre-
computed linear reduction) does not contain all variables. Consider the r = 8
case, where 8 polynomials had 13 variables in its homogeneous quadratic part.
3 polynomials included 7 variables in their quadratic terms, and the remaining
5 polynomials had 8,9,10,11 and 12 variables respectively. The quadratic part
of these polynomials are dense in this number of variables, e.g., the polynomials
with 13 variables contain

(
13+1

2

)
terms of degree two. Note that this only holds

for the homogeneous quadratic part, as the polynomials contain more variables
in their linear forms. In particular, one of the 14 variables only appears in the
linear forms.

Adding 3 Extra Rounds. With all these considerations in mind, we find that
the complexity of solving a semi-regular system with 2r quadratic polynomials
in 2r−2 variables is indeed useful as a baseline, when estimating the complexity

of solving P(H)
K . However, we note that the fact that not all polynomials contain

every variable, adds a certain structure that an attacker might be able to use
when reducing the matrices encountered in F4. In Table 2 we also observe cases
where the algorithm either terminates at degree Dreg−1, or at least finds a small
number of degree fall polynomials. To account for these properties, we add three
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extra rounds on top of this baseline (in addition to the conservative choice of
using ω = 2 for the linear algebra constant).

H.4 Computation of the Degree of Regularity given in Eq. (10)

In this Appendix we want to simplify the series in Eq. (8) when applied to the
case discussed in the previous subsection, i.e., ne − nv = 2, ne = 2 · R∗, and
di = 2. Moreover, we want to derive at an easy expression for the first non-
positive coefficient, which corresponds to the degree of regularity for the system.
These restrictions allow us to rewrite the Hilbert series as

H(z) =

∏ne

i=1(1− z2)

(1− z)nv
= (1− z)ne−nv · (1 + z)ne = (1− z)2 · (1 + z)ne ,

where

(1− z)2 = 1− 2z + z2, and (1 + z)ne =

ne∑
i=0

(
ne
i

)
· zi .

Hence,

H(z) =

ne∑
i=0

(
ne
i

)
· zi − 2

ne∑
i=0

(
ne
i

)
· zi+1 +

ne∑
i=0

(
ne
i

)
· zi+2

=1 + (ne − 2) · z +

ne−2∑
i=0

((
ne
i+ 2

)
− 2 ·

(
ne
i+ 1

)
+

(
ne
i

))
· zi+2+

+ (ne − 2) · zne+1 + zne+2 .

(17)

Since(
ne
i+ 1

)
=

(
ne + 1

i+ 1

)
−
(
ne
i

)
, and(

ne
i+ 2

)
=

(
ne + 1

i+ 2

)
−
(
ne
i+ 1

)
=

(
ne + 2

i+ 2

)
− 2 ·

(
ne + 1

i+ 1

)
+

(
ne
i

)
,

the coefficients in the sum in the right hand side of Eq. (17) can be written out
as (

ne
i+ 2

)
− 2 ·

(
ne
i+ 1

)
+

(
ne
i

)
=

(
ne + 2

i+ 2

)
− 4 ·

(
ne + 1

i+ 1

)
+ 4 ·

(
ne
i

)
=

(
ne
i

)
·
(

(ne + 2) · (ne + 1)

(i+ 2) · (i+ 1)
− 4

ne + 1

i+ 1
+ 4

)
.

Since our goal is to find the first non-positive coefficient ofH(z), we are interested
in solving

4 · (i+ 2) · (i+ 1)− 4 · (ne + 1) · (i+ 2) + (ne + 2) · (ne + 1)

=4 · i2 + i · (8− 4ne) + (n2e − 5ne + 2) = 0 ,
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w.r.t i. That is,

i =
4ne − 8±

√
(8− 4ne)2 − 16 · (n2e − 5ne + 2)

8
=
ne − 2±

√
ne + 2

2
.

Recalling that ne = 2R∗, and adding 2 to account for the shift zi+2 in the sum
in the right hand side of Eq. (17), we arrive at

Dreg = R∗ + 1−
⌊√

2R∗ + 2

2

⌋
.

I Full MPC Benchmarks

Table 3 and Table 4, we give the full MPC benchmarks. Compared to Table 1,
we additionally compare Hydra to GMiMCerf and MiMC-CTR and give bench-
marks for more state sizes t. Looking at MiMC, one can observe, that it has a
fast online phase performance, but it requires significantly more data transmis-
sion between the parties. Furthermore, its large number of multiplications also
leads to an expensive offline phase. GMiMC, on the other hand, has a decent
performance for very small t, but its number of rounds does not scale well with
larger state sizes. Consequently, our benchmark show that it is somewhat com-
petitive for t = 8, but its runtime and data transmission explodes with larger
t. In any case, Hydra has the faster offline phase performance and also a com-
parable online phase performance with less data communication compared to
MiMC and GMiMC, with the advantage of Hydra growing with the state size
t.

J Effect of the linear layer

In Section 9, we discussed, that HadesMiMC has a slow online phase perfor-
mance when evaluated in a LAN setting due to having many MDS matrix multi-
plications with bad plain performance. To highlight this effect, we compare Hy-
dra and HadesMiMC (with and without its linear key schedule) to a (insecure)
version of HadesMiMC (dubbed HadesMiMC-circ) for which we replaced the
random MDS matrices with the matrix M = circ(2, 1, 1, . . . , 1). The correspond-
ing matrix-vector multiplications can purely be implemented using additions.
In Table 5 one can observe, that this change, as expected, has no effect on the
offline phase performance and the communication between the parties. However,
the runtime of the online phase became significantly faster and is now twice as
fast as the online phase of Hydra. However, combining both phases, one can
observe, that Hydra still leads to faster runtimes and less communication due
to overall having less multiplications, with larger state sizes further increasing
the advantage of Hydra.
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Table 3: Online and offline phase performance for evaluating different ciphers
with different state sizes t in MPC using a secret shared key. Prec is the number
of precomputed elements, i.e., multiplication triples, squares, and inverses; Depth
describes the number of online communication rounds. Runtime averaged over
200 runs. Bold values are best values with key schedules, Italic the best without.

Offline Online Combined
Cipher Rounds Prec. Time Data Depth Time Data Time Data

ms MB ms kB ms MB

t = 8:

Hydra 8, 38, 38 216 41.09 4.87 139 7.99 7.19 49.09 4.88
Ciminion (No KS)a 90, 14 148 27.30 3.34 107 4.10 5.02 31.39 3.35
Ciminion 90, 14 867 181.50 19.55 735 20.47 28.02 201.97 19.58
HadesMiMC 6, 71 238 45.77 5.37 79 13.84 5.99 59.62 5.38
Rescue (No KS)a 10 480 97.08 10.83 33 5.95 11.80 103.03 10.84
Rescue 10 960 205.17 21.65 33 10.44 23.32 215.61 21.68
GMiMC 177 354 68.69 7.99 179 5.80 8.78 74.49 8.00
MiMC 81 1296 270.79 29.23 83 4.85 31.38 275.64 29.26

t = 16:

Hydra 8, 38, 38 254 47.74 5.73 139 9.67 8.54 57.41 5.74
Ciminion (No KS)a 90, 14 208 37.32 4.69 111 4.80 7.06 42.12 4.70
Ciminion 90, 14 1647 346.28 37.13 1455 37.72 53.11 384.00 37.19
HadesMiMC 6, 71 334 66.60 7.54 79 44.78 8.42 111.38 7.55
Rescue (No KS)a 10 960 203.46 21.65 33 12.00 23.45 215.47 21.68
Rescue 10 1920 412.22 43.30 33 26.42 46.49 438.64 43.35
GMiMC 546 1092 228.89 24.63 548 14.55 26.62 243.44 24.66
MiMC 81 2592 582.32 58.46 83 5.99 62.62 588.31 58.52

t = 32:

Hydra 8, 38, 38 330 63.69 7.44 139 12.80 11.22 76.49 7.46
Ciminion (No KS)a 90, 14 328 63.31 7.40 119 5.38 11.16 68.69 7.41
Ciminion 90, 14 3207 808.91 72.30 2895 71.92 103.29 880.83 72.41
HadesMiMC 6, 71 526 108.22 11.87 79 162.15 13.29 270.36 11.88
Rescue (No KS)a 10 1920 409.76 43.30 33 30.94 46.74 440.70 43.35
Rescue 10 3840 983.05 86.60 33 77.30 92.82 1060.35 86.70
GMiMC 2114 4228 1114.55 95.35 2116 49.61 102.14 1164.16 95.46
MiMC 81 5184 1360.13 116.91 83 9.11 125.08 1369.24 117.04

a Assumes round keys are present, i.e., no key schedule computation in MPC.
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Table 4: Online and offline phase performance for evaluating different ciphers
with different state sizes t in MPC using a secret shared key. Prec is the number
of precomputed elements, i.e., multiplication triples, squares, and inverses; Depth
describes the number of online communication rounds. Runtime averaged over
200 runs. Bold values are best values with key schedules, Italic the best without.

Offline Online Combined
Cipher Rounds Prec. Time Data Depth Time Data Time Data

ms MB ms kB ms MB

t = 64:

Hydra 8, 38, 38 520 105.23 11.73 139 20.20 17.82 125.43 11.75
Ciminion (No KS)a 90, 14 568 117.38 12.81 135 6.77 19.35 124.15 12.83
Ciminion 90, 14 6327 1819.67 142.64 5775 141.30 203.64 1960.97 142.84
HadesMiMC 6, 71 910 191.50 20.53 79 613.61 23.02 805.11 20.55
Rescue (No KS)a 10 3840 989.10 86.60 33 97.35 93.34 1086.44 86.70
Rescue 10 7680 2255.42 173.20 33 270.98 185.50 2526.40 173.39
GMiMC 8322 16644 5179.08 375.36 8324 196.46 400.63 5375.54 375.76
MiMC 81 10368 3239.21 233.82 83 14.61 250.01 3253.82 234.07

t = 96:

Hydra 8, 38, 38 672 140.01 15.15 139 24.69 23.19 164.70 15.18
Ciminion (No KS)a 90, 14 808 165.58 18.22 151 8.55 27.54 174.13 18.25
Ciminion 90, 14 9447 2809.31 212.98 8655 208.44 303.99 3017.75 213.28
HadesMiMC 6, 71 1294 275.63 29.19 79 1402.92 32.74 1678.56 29.22
Rescue (No KS)a 10 5760 1602.94 129.90 33 205.80 139.93 1808.74 130.04
Rescue 10 11520 3545.07 259.80 33 584.85 278.17 4129.92 260.08
GMiMC 18626 37252 11607.40 840.11 18628 457.22 895.74 12064.62 841.01
MiMC 81 15552 4801.74 350.73 83 21.74 374.94 4823.48 351.11

t = 128:

Hydra 8, 38, 38 862 178.32 19.44 139 32.19 29.78 210.51 19.47
Ciminion (No KS)a 90, 14 1048 220.69 23.63 167 9.96 35.74 230.65 23.67
Ciminion 90, 14 12567 3842.51 283.32 11535 272.65 404.34 4115.16 283.72
HadesMiMC 6, 71 1678 361.24 37.85 79 2443.52 42.47 2804.76 37.89
Rescue (No KS)a 10 7680 2284.69 173.20 33 359.10 186.52 2643.79 173.39
Rescue 10 15360 4740.96 346.40 33 1022.45 370.84 5763.41 346.77
GMiMC 33026 66052 20802.30 1489.61 33028 849.75 1587.45 21652.05 1491.20
MiMC 81 20736 6442.85 467.64 83 27.24 499.86 6470.09 468.14

a Assumes round keys are present, i.e., no key schedule computation in MPC.
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Table 5: Online and offline phase performance for evaluating different ciphers
with different state sizes t in MPC using a secret shared key. Prec is the number
of precomputed elements, i.e., multiplication triples, squares, and inverses; Depth
describes the number of online communication rounds. Runtime averaged over
200 runs. Bold values are best values with key schedules, Italic the best without.

Offline Online Combined
Cipher Rounds Prec. Time Data Depth Time Data Time Data

ms MB ms kB ms MB

t = 8:

Hydra 8, 38, 38 216 41.09 4.87 139 7.99 7.19 49.09 4.88
HadesMiMC (No KS)a 6, 71 238 45.54 5.37 79 8.81 5.99 54.35 5.38
HadesMiMC 6, 71 238 45.77 5.37 79 13.84 5.99 59.62 5.38
HadesMiMC-circ (No KS)a 6, 71 238 44.30 5.37 79 3.79 5.99 48.10 5.38
HadesMiMC-circ 6, 71 238 44.59 5.37 79 3.88 5.99 48.47 5.38

t = 16:

Hydra 8, 38, 38 254 47.74 5.73 139 9.67 8.54 57.41 5.74
HadesMiMC (No KS)a 6, 71 334 64.85 7.54 79 24.72 8.42 89.57 7.55
HadesMiMC 6, 71 334 66.60 7.54 79 44.78 8.42 111.38 7.55
HadesMiMC-circ (No KS)a 6, 71 334 66.70 7.54 79 4.65 8.42 71.35 7.55
HadesMiMC-circ 6, 71 334 64.69 7.54 79 4.97 8.42 69.66 7.55

t = 32:

Hydra 8, 38, 38 330 63.69 7.44 139 12.80 11.22 76.49 7.46
HadesMiMC (No KS)a 6, 71 526 108.21 11.87 79 84.74 13.29 192.95 11.88
HadesMiMC 6, 71 526 108.22 11.87 79 162.15 13.29 270.36 11.88
HadesMiMC-circ (No KS)a 6, 71 526 108.77 11.87 79 6.02 13.29 114.86 11.88
HadesMiMC-circ 6, 71 526 109.42 11.87 79 6.09 13.29 115.44 11.88

t = 64:

Hydra 8, 38, 38 520 105.23 11.73 139 20.20 17.82 125.43 11.75
HadesMiMC (No KS)a 6, 71 910 187.95 20.53 79 316.71 23.02 504.66 20.55
HadesMiMC 6, 71 910 191.50 20.53 79 613.61 23.02 805.11 20.55
HadesMiMC-circ (No KS)a 6, 71 910 191.96 20.53 79 9.57 23.02 201.53 20.55
HadesMiMC-circ 6, 71 910 191.63 20.53 79 9.90 23.02 201.52 20.55

t = 128:

Hydra 8, 38, 38 862 178.32 19.44 139 32.19 29.78 210.51 19.47
HadesMiMC (No KS)a 6, 71 1678 362.36 37.85 79 1222.09 42.47 1584.45 37.89
HadesMiMC 6, 71 1678 361.24 37.85 79 2443.52 42.47 2804.76 37.89
HadesMiMC-circ (No KS)a 6, 71 1678 370.05 37.85 79 16.33 42.47 386.70 37.89
HadesMiMC-circ 6, 71 1678 358.10 37.85 79 16.66 42.47 374.43 37.89

a Assumes round keys are present, i.e., no key schedule computation in MPC.
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