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Abstract. The area of multi-party computation (MPC) has recently
increased in popularity and number of use cases. At the current state
of the art, Ciminion, a Farfalle-like cryptographic function, achieves the
best performance in MPC applications involving symmetric primitives.
However, it has a critical weakness. Its security highly relies on the in-
dependence of its subkeys, which is achieved by using an expensive key
schedule. Many MPC use cases involving symmetric Pseudo-Random
Functions (PRFs) rely on secretly shared symmetric keys, and hence the
expensive key schedule must also be computed in MPC. As a result,
Ciminion’s performance is significantly reduced in these use cases.

In this paper we solve this problem. Following the approach introduced
by Ciminion’s designers, we present a novel primitive in symmetric cryp-
tography called Megafono. Megafono is a keyed extendable PRF,
expanding a fixed-length input to an arbitrary-length output. Similar
to Farfalle, an initial keyed permutation is applied to the input, fol-
lowed by an expansion layer, involving the parallel application of keyed
ciphers. The main novelty regards the expansion for “free” of the inter-
mediate/internal state, by appending the sum of the internal states of
the first permutation to its output. The combination of this (and other)
modification(s) together with the impossibility for the attacker to have
access to the input state of the expansion layer make Megafono very
efficient in the target application.

As a concrete example, we present the PRF Hydra, an instance of
Megafono based on the Hades strategy and on generalized versions
of the Lai–Massey scheme. Based on an extensive security analysis, we
implement Hydra in an MPC framework. The results show that it out-
performs all MPC-friendly schemes currently published in the literature.
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1 Introduction

Secure multi-party computation (MPC) allows several parties to jointly and se-
curely compute a function on their combined private inputs. Thereby, the correct
output is computed and given to all (or a subset of the) parties while simulta-
neously hiding the private inputs from other parties. In this work we focus on
secret-sharing based MPC schemes, such as the popular SPDZ protocol [24, 23]
or protocols based on Shamir’s Secret Sharing [46]. In these protocols private
data is shared among all parties, such that each party receives a share which
– on its own – does not contain any information about the initial data. When
combined, however, the parties are able to reproduce the shared value. Further-
more, the parties can use these shares to compute complex functions on the data
which in turn produce shares of the output.

In recent years, MPC has been applied to many use cases, including privacy-
preserving machine learning [45], private set intersection [39], truthful auctions
[13], and revocation in credential systems [37]. In the literature describing these
use cases, data is often directly entered from and delivered to the respective
parties. However, in practice, this data often has to be transferred securely from
and to third parties before it can be used in the MPC protocol. Besides that,
in some applications, intermediate results of an MPC computation may need to
be stored securely in a database. As described in [34], one can use MPC-friendly
Pseudo-Random Functions (PRFs), i.e., PRFs designed to be efficient in MPC
applications, to efficiently realize this secure data storage and data transfer by
directly encrypting the data using a secret-shared symmetric key.

Besides being used to securely transmit data in given MPC computations,
these MPC-friendly PRFs can also be used as a building block to speed up
many MPC applications, such as secure database join via an MPC-evaluation of
a PRF [43], distributed data storage [34], virtual hardware security modules5,
MPC-in-the-head based zero-knowledge proofs [38] and signatures [16], oblivious
TLS [1], any many more. In all these use cases, the symmetric encryption key is
shared among all participating parties. Consequently, if one has to apply a key
schedule for a given PRF, one has to compute this key schedule at least once in
MPC for every fresh symmetric key.

To be MPC-friendly, a PRF should minimize the number of multiplications
in the native field of the MPC protocol. At the current state of the art, Cimin-
ion [26] is one of the most competitive schemes for PRF applications. Proposed
at Eurocrypt’21, it is based on the Farfalle mode of operation [9]. However, as
we are going to discuss in detail, Ciminion has a serious drawback: Its secu-
rity heavily relies on the assumption that the subkeys are independent. For this
requirement, the subkeys are generated via a sponge hash function [10] instanti-
ated via an expensive permutation. As a result, in all (common) cases where the
key is shared among the parties, the key schedule cannot be computed locally
and needs to be evaluated in MPC. This leads to a significant increase in the
multiplicative complexity of Ciminion. In this paper, we approach this problem

5 https://www.fintechfutures.com/files/2020/09/vHSM-Whitepaper-v3.pdf
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(b) The Ciminion PRF.

Fig. 1: Farfalle and Ciminion (notation adapted to the one used in this paper).

in two steps. First, we propose a new mode of operation inspired by Farfalle and
Ciminion, called Megafono, which is designed to be competitive in all MPC
applications.6 Secondly, we show how to instantiate it in an efficient way. The
obtained PRF Hydra is currently the most competitive MPC-friendly PRF in
the literature.

1.1 Related Works: Ciminion and the MPC Protocols

Traditional PRFs such as AES or Keccak/SHA-3 are not efficient in MPC set-
tings. First, MPC applications usually work over a prime field Fp for a large p
(e.g., p ≈ 2128), while traditional cryptographic schemes are usually bit-/byte-
oriented schemes. Hence, a conversion from F2n to Fp and vice versa must take
place, which can impact the overall performance. Secondly, and most impor-
tantly, traditional schemes are designed to minimize their implementation cost
in software and/or hardware, and therefore no particular focus is laid on mini-
mizing specifically the number of nonlinear operations (e.g., AND gates).

For these reasons, several MPC-friendly schemes over Ftq for q = ps and
t ≥ 1 have been proposed in the literature, including LowMC [4], MiMC [3],
GMiMC [2], HadesMiMC [32], and Rescue [5]. All those schemes are block ci-
phers – hence, invertible – and they are often used in counter (CTR) mode.
However, the invertibility property is not required in MPC applications, and a
lower multiplicative complexity can (potentially) be achieved by working with
non-invertible functions, as recently shown by Dobraunig et al. [26]. In the follow-
ing, we briefly discuss the Farfalle construction and the MPC-friendly primitive
Ciminion based on it.

6 “Megafono” is the Italian word for “megaphone”, a cone-shaped horn used to amplify
a sound and direct it towards a given direction. Our strategy resembles this goal.
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Farfalle. Farfalle [9] is an efficiently parallelizable permutation-based construc-
tion of arbitrary input and output length, taking as input a key. As shown in
Fig. 1a and recalled in Section 3, the Farfalle construction consists of a com-
pression layer followed by an expansion layer. The compression layer produces
a single accumulator value from the input data. A permutation is potentially
applied to the obtained state. Then, the expansion layer transforms it into a
tuple of (truncated) output blocks. Both the compression and expansion lay-
ers involve the secret key, and they are instantiated via a set of permutations
(namely, P(c),P,P(e)) and rolling functions.

Ciminion. At Eurocrypt’21, Dobraunig et al. [26] showed that a modified ver-
sion of Farfalle can be competitive for MPC protocols, an application which the
Farfalle’s designers did not take into account. The PRF Ciminion is a modified
version of Farfalle instantiated with a Feistel scheme. As shown in Fig. 1b and
recalled in Section 3

(1) compared to Farfalle, the compression phase is missing, a final truncation is
applied, and the key addition is performed before P(e) is applied, and

(2) in contrast to MPC-friendly block ciphers, Ciminion is a non-invertible PRF.
For encryption it is used as a stream cipher, where the input is defined as
the concatenation of the secret key and a nonce.

The main reason why Ciminion is currently the most competitive scheme in MPC
protocols is related to one crucial feature of Farfalle, namely the possibility to
instantiate its internal permutations with a smaller number of rounds compared
to other design strategies. This is possible since the attacker does not have access
to the internal states of the Farfalle construction. Hence, while the permutation
P(c) is designed in order to behave like a Pseudo-Random Permutation (PRP),
the number of rounds of the permutation P(e) can be kept lower for both security
and good performance.

Besides minimizing the number of nonlinear operations, Ciminion’s designers
paid particular attention to the number of linear operations. Indeed, even though
the main cost in MPC applications depends on the number of multiplications,
other factors (e.g., the number of linear operations) affect efficiency as well.

1.2 The Megafono Design Strategy

The main drawback of Ciminion is the expensive key schedule to generate sub-
keys that can be considered independent. This implies that Ciminion only excels
in MPC applications where the key schedule can be precomputed for a given
shared key, or in the (non-common) scenarios where the key is not shared among
the parties. However, in the latter case, the party knowing the key can also com-
pute Ciminion’s keystream directly in plain (i.e., without MPC) if the nonce and
IV are public in a given use case (which is also true for any stream cipher).

Clearly, the easiest solution is the removal of the nonlinear key schedule.
However, by e.g. defining the subkey as an affine function of the master key, the

4



security analysis of Ciminion does not hold anymore. As we discuss in detail in
Section 4, this is a direct consequence of the Farfalle construction itself. Even if
the attacker does not have any information about the internal states of Farfalle,
they can exploit the fact that its outputs are generated from the same unknown
input (namely, the output of P(c) and/or P). Given these outputs and by ex-
ploiting the relations of the corresponding unknown inputs (which are related to
the definition of the rolling function), the attacker can potentially find the key
and break the scheme. For example, the attacks [15, 19] on the Farfalle schemes
Kravatte and Xoofff exploit exactly this strategy. In Ciminion, this problem is
solved by including additions with independent secret sub keys in the application
of the rolling function. In this way, the mentioned relation is unknown due to the
presence of the key, and P(e) can be instantiated via an efficient permutation.

We make the following three crucial changes in the Farfalle design strategy:

1. First, we replace the permutation P(e) with a keyed permutation Ck, where
a key addition takes place in each round.

2. Secondly, we expand the input of this keyed permutation. The second change
aims to frustrate algebraic attacks, whose cost is related to both the degree
and the number of variables of the nonlinear equation system representing
the attacked scheme. In order to create new independent variables for “free”
(i.e., without increasing the overall multiplicative complexity), we reuse the
computations needed to evaluate P. That is, we define the new variable as
the sum of all the internal state of P, and we conjecture that it is sufficiently
independent of its output (details are provided in the following).

3. Finally, we replace the truncation in Ciminion with a feed-forward operation,
for avoiding to discard any randomness without any impact on the security.

Our result is a new design strategy which we call Megafono.

1.3 The PRF Hydra

Given the mode of operation, we instantiate it with two distinct permutations,
one for the initial phase and one for the expansion phase. As in Ciminion, as-
suming the first permutation behaves like a PRP and since the attacker does not
know the internal states of Megafono, we choose a second permutation that is
cheaper to evaluate in the MPC setting. In particular, while the first permuta-
tion is evaluated only once, the number of calls to the second permutation (and
so the overall cost) is proportional to the output size.

For minimizing the multiplicative complexity, we instantiate the round func-
tions of the keyed permutations Ck in the expansion part with quadratic func-
tions. However, since no quadratic function is invertible over Fp, we use them in
a mode of operation that guarantees invertibility. We opted for the generalized
Lai–Massey constructions similar to the ones recently proposed in [33]. Moreover,
we show that the approach of using of high-degree power maps with low-degree
inverses proposed in Rescue does not have any benefits in this scenario.
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and t ≥ 2 (security level of 128 bits).

We instantiate the first permutation P via the Hades strategy [32], which
mixes rounds with full S-box layers and rounds with partial S-box layers. Fol-
lowing Neptune [33], we use two different round functions, one for the internal
part and one for the external one. We decided to instantiate the internal rounds
with a Lai–Massey scheme, and the external ones with invertible power maps.

The obtained PRF scheme called Hydra is presented in Section 5 and Sec-
tion 6, and its security analysis is proposed in Section 7.

1.4 MPC Performance and Comparison

The performance of any MPC calculation scales with the number of nonlinear
operations. In Figure 2 we compare the number of multiplications required to
evaluate different PRFs for various plaintext sizes t using secret shared keys. One
can observe that Hydra requires the smallest number of multiplication, with
the difference growing further for larger sizes. The only PRF that is competitive
to Hydra is Ciminion, but only if the key schedule does not have to be computed,
which happens if shared round keys can be reused from a previous computation.
However, this implies that the key schedule was already computed once in MPC,
requiring a significant amount of multiplications. Hydra, on the other hand,
does not require the computation of an expensive key schedule and also requires
fewer multiplications than Ciminion without a key schedule for larger state sizes.

In Section 8, we implement and compare the different PRFs in the MP-
SPDZ [40] library and confirm the performance expected from Figure 2. Con-
cretely, taking key schedules into account, Hydra is five times faster than Ci-
minion for t = 8, which grows to a factor of 21 for t = 128. Without key
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schedules, Ciminion is only slightly faster than Hydra for smaller t, until it gets
surpassed by Hydra for t > 16, showing that Hydra is also competitive, even if
the round keys are already present. Compared to all other benchmarked PRFs,
Hydra is significantly faster for any state size t. Furthermore, Hydra requires
the least amount of communication between the parties due to its small number
of multiplications, giving it an advantage in low-bandwidth networks.

1.5 Notation

Throughout the paper, we work over a finite field Fq, where q = ps for an odd
prime number p and an integer s ≥ 1 (when needed, we will also assume a
fixed vector space isomorphism Fps ∼= Fsp). We use Fnq , for n ≥ 1, to denote the
n-dimensional vector space over Fq, and we use the notation F?q to denote Fq
strings of arbitrary length. The · || · operator denotes the concatenation of two
elements. An element x ∈ Ftq is represented as x = (x0, x1, . . . , xt−1), where xi
denotes its i-th entry. Given a matrix M ∈ Ft×sq , we denote its entry in row
r and column c either as Mr,c or M [r, c]. We use the frankfurt font notation
to denote a subspace of Frq, while we sometimes use the calligraphic notation
to emphasize functions. Given integers a ≥ b ≥ 1, we define the truncation
function Ta,b : Faq → Fbq as Ta,b(x0, . . . , xa−1) = (x0, . . . , xb−1). Finally, for MPC,
we describe that the value x ∈ Fp is secret shared among all parties by [x].

2 Symmetric Primitives for MPC Applications

Here we elaborate on why expensive key schedules are not desirable in many
MPC use cases, and we discuss the cost metric in MPC protocols in more details.

2.1 MPC Use Cases and Key Schedules

To highlight that expensive key schedules are not suitable for many scenarios, we
describe the use cases discussed in [26] and [34] in greater detail. Concretely, we
discuss the data transfer into and out of the MPC protocol, as well as using sym-
metric PRFs to securely store intermediate results during an MPC evaluation.
In the latter case, the setting is the following: The parties want to suspend the
MPC evaluation and continue at a later point. As discussed in [34], the trivial
solution for this problem is that each party encrypts their share of the data with
a symmetric key and store the encrypted share, e.g., at a cloud provider. The to-
tal storage overhead of this approach is a factor n for n MPC parties, since each
party stores their encrypted shares of the data. Additionally, each party needs
to memorize their symmetric key. The solution to reduce the storage overhead is
to use a secret shared symmetric key (i.e., each party knows only a share of the
key and the real symmetric key remains hidden), which can directly be sampled
as part of the MPC protocol, and encrypt the data using MPC. The resulting
ciphertexts cannot be decrypted by any party since no one knows the symmetric
key, but can be used inside the MPC protocols at a later point to again create
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the shares of the data. Using this approach avoids the storage overhead of the
data, and each party only has to memorize its share of the symmetric key which
has the same size as the symmetric key itself. However, if the used PRF involves
a key schedule, it also has to be computed in MPC for this use case. Other
solutions either involve precomputing the round keys, or instead of sampling a
random symmetric key, directly sampling random round keys in MPC. These
approaches require no storage overhead for the encrypted data, but each party
needs to memorize its shares of the round keys. In Ciminion, the size of the round
keys is equivalent to the size of the encrypted data (when using the same nonce
for encrypting the full dataset), hence the whole protocol would be more efficient
if each party would just memorize its shares of the dataset instead. Providing
fewer round keys and using multiple nonces instead requires the recomputation
of Ciminion’s initial permutation in MPC, decreasing its performance.

Similar considerations also apply if the MPC parties are different from the
actual data providers or if the output of the computation needs to be securely
transferred to an external party. The solutions to both problems involve storing
the dataset encrypted at some public place (e.g., in a cloud) alongside a public-
key encryption of the shares of the symmetric key, such that only the intended
recipient can get the shares. If the parties want to avoid expensive key sched-
ules in MPC, they either have to provide shares of the round keys (which have
the same size as the encrypted data in Ciminion), or provide fewer round keys
alongside multiple nonces, decreasing the performance in MPC.

Remark 1. In this paper, we focus our comparison to MPC-friendly PRFs which
are optimized for similar use cases as the ones discussed in this section, i.e., use
cases which require fast MPC en-/decryption of large amounts of data. Hence,
we do not focus on PRF’s not defined over Fp which are optimized for, e.g.,
Picnic-style signatures, such as LowMC [4], Rain [27], or weakPRF [25].

2.2 Cost Metric for MPC Applications

Modern MPC protocols are usually split into a data-independent offline phase
and a data-dependent online phase. In the offline phase, a bundle of shared
correlated randomness is generated, most notably Beaver triples [8], random
preshared triples of the form ([a], [b], [a · b]). This bundle is then used in the
online phase to perform the actual computation on the private data.

Roughly speaking, the performance scales with the number of nonlinear op-
erations necessary to evaluate the symmetric primitives in the MPC protocol
(sometimes we use the term “multiplication” to refer to the nonlinear opera-
tion). This is motivated by the fact that each multiplication requires one Beaver
triple, which is computed in the offline phase, as well as one round of communi-
cation during the online phase (see Algorithm 1). In contrast, linear operations
do not require any offline computations and can directly be applied to the shares
without communication. Consequently, the number of multiplications is a decent
first estimation of the cost metric in MPC and MPC-friendly PRFs usually try
to minimize this number. Whereas each multiplication requires communication
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between the parties, the depth directly defines the required number of communi-
cation rounds, since parallel multiplications can be processed in the same round.
Thus, the depth should be low in high-latency networks. To summarize,

– the cost of the offline phase of the MPC protocols directly scales with the
number of required Beaver triples (i.e., multiplications), and

– the cost of the online phase scales with both the number of multiplications
and the multiplicative depth.

As a concrete example, in many MPC-friendly PRFs, such as HadesMiMC,
MiMC, GMiMC, and Rescue, the nonlinear layer is instantiated with a power
map R(x) = xd for d ≥ 2 over Fq. Then, the cost per evaluation is

#triples = costd := hw(d) + blog2(d)c − 1 , depthonline = costd . (1)

Several algorithms to reduce the number of multiplications and communication
rounds were developed in the literature. Here we discuss those relevant for our
goals. They require random pairs [r], [r2], and [r], [r−1], which can be generated
from Beaver triples in the offline phase (see Algorithm 2 and Algorithm 3).

Decreasing the Number of Online Communication Rounds. In the pre-
ferred case of d = 3, the cost is two Beaver triples and a depth of two. However,
in [34] the authors propose a method to reduce the multiplicative depth by del-
egating the cubing operation to a random value in the offline phase. Hence, all
cubings can be performed in parallel reducing the depth. This algorithm (see
Algorithm 4) requires two triples, but only one online communication round.

Special Case: R(x) = x1/d. Optimizations can also be applied for the case
R(x) = xd with very large d. In [5], the authors propose two different algorithms
to evaluate R (see Algorithm 5 and Algorithm 6), in which the cost of evaluating
R(x) = xd can be reduced to the cost of evaluating R(x) = x1/d (plus an
additional multiplication in the online phase) which requires significantly fewer
multiplications if 1/d is smaller than d. This is, for example, relevant when
evaluating Rescue with its high-degree power maps in MPC. The algorithm
works by delegating the 1/d power map evaluation to the offline phase, and
evaluating the costly d power map on a random value in plain. Furthermore,
since the main MPC work (i.e., 1/d) is evaluated in the input-independent offline
phase, all communication rounds can be parallelized, significantly reducing the
multiplicative depth. Using these algorithms and costd from Eq. (1), the cost
of evaluating xd in MPC is modified to the following, with significantly smaller
multiplicative depth and smaller number of multiplications for large d:

#triples = 2 + min
{
costd, cost1/d

}
, depthonline = 2.

3 Starting Points of Megafono: Farfalle and Ciminion

In this section, we recall the structures of Farfalle and Ciminion, which will be
served as starting point for the Megafono design strategy.
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Farfalle and 1/2×Farfalle. Farfalle is a keyed PRF proposed in [9] with inputs
and outputs of arbitrary length. As shown in Fig. 1a, it has a compression layer
and an expansion layer, each involving the parallel application of a permutation.
For our goal, we focus only on the expansion phase, and introduce the term
1/2×Farfalle for a modified version of Farfalle that lacks the initial compression
phase and only accepts input messages of a fixed size n.

Let K ∈ Fκq be the secret key for κ ≥ 1. 1/2×Farfalle uses a key schedule
K : Fκq → (Fnq )? for the subkeys used in the expansion phase, two unkeyed

permutations P,P(e) : Fnq → Fnq , and a rolling function R : Fnq → Fnq .7 We
define Ri as Ri(y) = ρi + R ◦ Ri−1(y) for each i ≥ 1 and ρi ∈ Fnq , where we
assume R0 to be the identity function, i.e., R0(y) = y.

Given an input x ∈ Fq, 1/2×Farfalle : Fnq → (Fnq )? operates as 1/2×Farfalle(x) =
y0 || y1 || y2 || · · · || yj || · · · , where

∀i ≥ 0 : yi := ki+1 + P(e) (Ri (P(x+ k0))) .

From 1/2×Farfalle to Ciminion. Ciminion [26] is based on a modified version
of 1/2×Farfalle over Fnq for a certain n ≥ 2. As shown in Fig. 1b, the main

difference with respect to 1/2×Farfalle is the definition of the function k + P(e).
In Farfalle/1/2×Farfalle, the key addition is the last operation. In Ciminion, k+
P(e)(x) is replaced by F (e)(x+k) for a non-invertible function F (e) instantiated
via a truncated permutation, i.e., F (e)(x+ k) := Tn,n′ ◦P(e)(x+ k) for a certain
1 ≤ n′ < n. Moving the key inside the scheme prevents its cancellation when
using the difference of two outputs.

In Ciminion, the key schedule K : Fκq → (Fnq )? uses a sponge function [10]
instantiated via the permutation P. We refer to [26, Section 2] for more details.

4 The Megafono Strategy for Hydra

Generating the subkeys of Ciminion via a sponge function and a strong per-
mutation is expensive in terms of multiplications. This makes it inefficient in
cases where the secret keys are shared among the parties, as discussed in Sec-
tion 2.1. Another weakness of Ciminion is the final truncation. While it prevents
an attacker from computing the inverse of the final permutations P(e), it is
wasteful as it lowers the output of each iteration. To fix these issues, here we
propose the Megafono strategy, based on the design strategy of Ciminion (and
1/2×Farfalle), but with some crucial modifications.

Definition of Megafono. Let n ≥ 1 be an integer, and let Fq be a field (where
q = ps for a prime integer p ≥ 2 and a positive integer s ≥ 1). Let K ∈ Fκq be the
secret key for n ≥ κ ≥ 1. The ingredients of Megafono are

7 We mention that in [9], authors use the terms “masks” and “(compressing) rolling
function” instead of “subkeys” and “key schedule”. In Farfalle, the same subkey is
used in the expansion phase, that is, k1 = k2 = · · · = ki. Here, we consider the most
generic case in which the subkeys are not assumed to be equal.
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(1) a key schedule K : Fκq → (Fnq )? for generating the subkeys, that is, K(K) =
(k0, k1, . . . , ki, . . .) where ki ∈ Fnq for each i ≥ 0,

(2) an iterated unkeyed permutation P : Fnq → Fnq defined as

P(x) = Pr−1 ◦ . . . ◦ P1 ◦ P0(x) (2)

for round permutations P0,P1, . . . ,Pr−1 over Fnq ,
(3) a (sum) function S : Fnq → Fnq defined as

S(x) :=

r−1∑
i=0

Pi ◦ . . . ◦ P1 ◦ P0(x), (3)

(4) a function Fk : F2n
q → F2n

q defined as

Fk(x) := Ck(x) + x,

where Ck : F2n
q → F2n

q is a block cipher for a secret key k ∈ F2n
q ,

(5) A rolling function R : F2n
q → F2n

q . For y, z ∈ Fn, we further define

Ri(y, z) := ϕi +R ◦Ri−1(y, z),

for i ≥ 1, where ϕi ∈ F2n
q and R0(y, z) = (y, z).

MegafonoK : Fnq → (Fnq )? is a PRF that takes as input an element of Fnq and
returns an output of a desired length, defined as

MegafonoK(x) := Fk2(y, z) || Fk3(R1(y, z)) || · · · || Fki+2(Ri(y, z)) || · · ·

for i ∈ N, where y, z ∈ Fnq are defined as

y := k1 + P(x+ k0) and z := S(x+ k0) .

Remark 2. The main goal of Megafono is a secure variant of Ciminion without
a heavy key schedule and without relying on independent subkeys (k0, k1, . . . ).
For this reason, we only consider the case k = n and K(K) = (K, . . . , K, . . . ) in
the following. Nevertheless, there may be applications in which a key schedule
is acceptable, and hence we propose Megafono in its more general form.

Remark 3. The function Fk is meant to play the role of P(e) (in the notation we
have used to describe Farfalle and Ciminion). We use this notation to emphasize
that the function is keyed and that we no longer require it to be a permutation.

4.1 Rationale of Megafono

Since Megafono is a modified version of Ciminion and 1/2×Farfalle, it shares
several characteristics with them. Indeed, many attacks on Farfalle (and so on
Ciminion and 1/2×Farfalle) discussed in [9, Sect. 5] apply to Megafono as well.
Here we focus on the differences between them, by explaining and motivating
the criteria for designing Megafono.
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Expansion Phase. Before starting, we emphasize the following point which is
crucial for understanding the design rationale of Megafono. As in 1/2×Farfalle
and Ciminion, the attacker has access to outputs wi = Fk (Ri(y, z)) for i ≥ 0
that depend on a single common unknown input (y, z) (in addition to the key).
By exploiting the relation among several inputs of Fk and the knowledge of the
corresponding outputs, the attacker can break the entire scheme. Examples of
such attacks can be found in [15, 19]. In this scenario, one attack consists of solv-
ing the system of equations {wi −Fk (Ri(y, z)) = 0}1≤i≤i0 with Gröbner bases.
We provide details in Section 7.4 and point out that the cost depends on several
factors, including (i) the number of variables, (ii) the number of equations, (iii)
the degree of the equations, and (iv) the considered representative of the system
of equations.

P as an Even–Mansour Construction. In Ciminion, the permutation P is
chosen in order to resemble a PRP. Indeed, since P is computed only once, it
has little impact on the overall cost. Further, if P resembles a PRP, it is unlikely
that an attacker can create texts with a special structure at the input of P(e).
This allows for a simplified security analysis of the expansion phase, as it rules
out attacks that require control of the inputs of P(e).

By performing a key addition before the expansion phase, the first part of the
scheme becomes an Even–Mansour construction [29] of the form x 7→ K+P(x+K).
Assuming P to be a PRP, and that the attacker knows both the inputs and
outputs, the security of this part of the scheme is equal to qn/2 for K ∈ Fnq , as
proven in [20, 28]. This allows us to make a security claim on a subcomponent
of the entire scheme, and so to further simplify the overall security analysis.

Keyed Permutation in the Expansion Phase. In Farfalle, the final key
addition is crucial against attacks inverting the final permutation P(e). However,
an attacker can cancel the influence of the key by using the differences of two
outputs if the key schedule is linear. For example, assume that the key schedule
for the expansion phase is the identity map (as in Farfalle), and let x be the input
of the expansion phase. Let yj = K + P(e)(Rj(x)) and yh = K + P(e)(Rh(x)) be
two outputs of the expansion phase. Any difference of the form

yj − yh = P(e)(Rj(x))− P(e)(Rh(x))

results in a system of equations that is independent of the key or, equivalently,
that depends only on the intermediate unknown state. This is an advantage
when trying to solve the associated polynomial system with Gröbner bases.

The key in Ciminion has been moved from the end of P(e) to the beginning,
with the goal of preventing its cancellation by considering differences of the
outputs. Inverting P(e) is instead prevented by introducing a final truncation,
which has the side effect of reducing the output size and thus the throughput.

Instead of working with a permutation-based non-invertible function, we pro-
pose to instantiate the last permutation with a block cipher Ck, defined as an
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iterated permutation with a key addition in each round. In this way, we achieve
the advantages of both 1/2×Farfalle and Ciminion. Firstly, the output size of Ck
is equal to the input size and it is not possible to invert Ck without guessing the
key (as in 1/2×Farfalle). Secondly, a carefully chosen Ck will prevent the possi-
bility to set up a system of equations for the expansion part that is independent
of the key by considering differences of outputs (as in Ciminion).

Feed-Forward in Expansion Phase and Nonlinear Rolling Function.
The proposed changes in Megafono may allow new potential problems. Let
vj = Ck (Rj(y, z)), vl = Ck (Rl(y, z)) be two outputs of the expansion phase for
a shared input (y, z) and let R′j−l denote the function satisfying R′j−l ◦ Rl(·) =
Rj(·) for j > l. Since Ck(·) is invertible for each fixed k, we have that

∀j > l : Ck ◦ R′j−l ◦ C−1k (vl) = vj =⇒ R′j−l ◦ C−1k (vl) = C−1k (vj) .

That is, it is possible to set up a system of equations that depend on the keys
only (equivalently, that do not depend on the internal unknown state (y, z)). We
therefore apply the feed-forward technique on the expansion phase, i.e., we work
with (y, z) 7→ Fk(y, z) := Ck(y, z) + (y, z), which prevents this problem.

Assume moreover that the functions Ri, i ≥ 1 are linear. Given two outputs
wj = Fk (Rj(y, z)) and wl = Fk (Rl(y, z)),

R′j−l(wl)− wj = R′j−l (Fk (Rl(y, z)))−Fk (Rj(y, z))
= R′j−l (Rl(y, z) + Ck (Rl(y, z)))−Rj(y, z)− Ck (Rj(y, z))
= R′j−l (Rl(y, z)) +R′j−l (Ck (Rl(y, z)))−Rj(y, z)− Ck (Rj(y, z))
= R′j−l (Ck (Rl(y, z)))− Ck (Rj(y, z))

for each j, l with j > l. Similar equations can be derived for affine Ri. Even if we
are not aware of any attack that exploits such an equality, we suggest to work
with a nonlinear rolling function. We point out that using a nonlinear function
is also suggested by Farfalle’s designers in order to frustrate meet-in-the-middle
attacks in the expansion phase (see [9, Sect. 5] for more details).

Creating New Variables as a Replacement of a Heavy Key Schedule.
Due to the structure of 1/2×Farfalle and Ciminion, and under the assumption
that P behaves like a PRP, an attacker cannot control the inputs and outputs
of the expansion phase. At the same time, (Meet-in-the-Middle) attacks that re-
quire only the knowledge of the outputs of such an expansion phase are possible,
due to the fact that multiple outputs are created via a single common (unknown)
input. As already noted, the cost of such an attack depends on the number of
involved variables and on the degree of the equations. We start by examining
how Farfalle and Ciminion prevent such an attack.

Farfalle has been proposed for achieving the best performances in Software
and/or Hardware implementation. For this reason, the field considered in appli-
cations is typically Fn2 , where n is large (at least equal to the security level k).
This implies that a large number of variables is needed to model the scheme as a
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polynomial system, which prevents the attack previously described, even when
working with a small degree permutation P(e). Depending on the details of the
analyzed permutation, the number of variables could potentially be minimized
by working over an equivalent field Fm2l where n = m·l, without crucially affecting
the overall degree of the equations that describe the scheme. For instance, 16 vari-
ables, as opposed to 128, are sufficient for describing AES, since all its internal
operations (namely, the S-Box, the ShiftRows and the MixColumns) are natu-
rally defined over F16

28 . This is not the case of SHA-3/Keccak, for which only the
nonlinear layer (defined as the concatenation of chi functions) admits a natural
description over F5·l

25 . In general, this scenario can be easily prevented when work-
ing with weak-arranged SPN schemes [17] or/and unaligned SPN schemes [14],
for which this equivalent representation that minimizes the number of variables
comes at the price of huge/prohibitive degrees of the corresponding functions.

Ciminion has, on the other hand, been proposed for minimizing the mul-
tiplicative complexity in the natural representation of the scheme over Fnq for
large/huge q and small n, namely, the opposite situation considered in Farfalle.
Hence, in order to work with small degree permutations P(e), it is necessary
to “artificially” increase the number of variables in order to prevent attacks.
By making used of a heavy key schedule, one can guarantee that the algebraic
relation between the keys k0, k1, k2, · · · is very complex, that is, described by
dense algebraic functions of high degree. Such a complex relation could not be
exploited in an algebraic attack, and the attacker is then forced to treat the
subkeys as independent variables. To summarize,

– in Farfalle, the (MitM) attack on the expansion phase is prevented by work-
ing over a field Fnp for a small prime p and a large integer n, and

– in Ciminon, it is prevented by “artificially” increasing the number of vari-
ables, working with a heavy key schedule.

None of the two approaches is suitable for our goal, since we mainly target appli-
cations over a field Fnp for a huge prime p in which a heavy key schedule cannot
be computed efficiently. For this reason, we propose to increase the number of
variables “for free” by reusing the computation needed to evaluate P. Since P is
instantiated as an iterated permutation in practical use cases, we can fabricate
a new Fnq element by considering the sum of all internal states of P. This corre-
sponds to the definition of the function S in Eq. (3). In this way, we can double
the size of the internal state (and so, the number of variables) for free.

In more detail, for a given input x ∈ Fnq , let y ∈ Fnq be the output K+P(x+K),
and let z ∈ Fnq be the output S(x+ K). Then y and z are not independent, since
z = S(P−1(y−K)).8 However, for proper choices of P and S, the relation between
the two variables is too complex to be exploited in practice, exactly as in the
case of the keys k0, k1, k2, · · · in Ciminion. As a result, the attacker is forced to
consider both y and z as two independent variables, which is exactly our goal.

8 Note that it is not possible to define y as a function of z, since there is no way to
uniquely recover x given z.
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Similar Techniques in the Literature. For completeness, we mention that the
idea of reusing internal states of an iterated function is not new in the literature.

E.g., let E
(r)
k be an iterated cipher of r ≥ 1 rounds. In [44], the authors set up

a PRF F as the sum of the output of the iterated cipher after r rounds and the

output after s rounds for s 6= r, that is, F (x) = E
(r)
k (x) + E

(s)
k (x). Later on, a

similar approach has been exploited in the Fork design strategy [6], which is an

expanding invertible function defined as x 7→ E
(r0)

k̂
(E

(s)
k (x))‖E(r1)

k̃
(E

(s)
k (x)).

4.2 Modes of Use of Megafono

As in the case of Farfalle and Ciminion, Megafono can be used for key deriva-
tion and key-stream generation. It allows amortizing the computation of the key
among different computations with the same initial master key K. Besides that,
other possible use cases of Megafono are a wide block cipher, in which Mega-
fono is used to instantiate the round function of a contracting Feistel scheme,
and a (session-supporting) authenticated encryption scheme. Since these appli-
cations were also proposed for Farfalle, we do not describe them here, but refer
to [9, Sect. 4] for further details.

We conclude by pointing out the following. Megafono is designed to be
competitive for applications that require a natural description over Fnq , where q is
a large prime of order at least 264. However, this does not mean that Megafono
cannot be efficiently used in other applications, e.g., for designing schemes that
aim to be competitive in software or hardware. From this point of view, the
main difference with respect to Farfalle and Ciminion is the fact that Megafono
requires two permutations with different domains, namely, Fnq and F2n

q . However,
this is not a problem when e.g. considering the family of the SHA-3/Keccak
permutations [11], defined over Fn2 for n = 25 · 2l for l ∈ {0, 1, . . . , 6}. In this
case it is possible to instantiate P and C with two unkeyed/keyed permutations
defined over domains whose size differs by a factor of two. The resulting PRF
based on Megafono would be similar to the PRF Kravatte based on Farfalle
proposed in [9, Sect. 7]. (Proposing concrete round numbers for this version is
beyond the scope of this paper. Rather, we leave the open problem to evaluate
and compare the performances of the two PRFs for future work.)

5 Specification of Hydra

5.1 The PRF Hydra

Let p > 263 (i.e., dlog2(p)e ≥ 64) and let t ≥ 4 be the size of the output. The
security level is denoted by κ, where 280 ≤ 2κ ≤ min{p2, 2256}, and K ∈ F4

p is
the master key. We assume that the data available to an attacker is limited to
240 ≤ 2κ/2 ≤ min{p, 2128}. For a plaintext P ∈ Ftp, the ciphertext is defined by

C = Hydra([N || IV]) + P,

where Hydra : F4
p → Ftp is the Hydra PRF, IV ∈ F3

p is a fixed initial value and
N ∈ Fp is a nonce (e.g., a counter).
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Fig. 3: The Hydra PRF (where r := RI − 1 for aesthetic reasons).

Hydra. An overview of Hydra is given in Fig. 3,9 where

(1) y := K+B([N || IV] + K) ∈ F4
p for a certain permutation B : F4

p → F4
p defined

in the following,
(2) z ∈ F4

p defined as z =: SK([N‖IV]) for the non-invertible function SK : F4
p →

F4
p which corresponds to the sum of the internal states of K+B([N‖IV] + K),

(3) HK : F8
p → F8

p is a keyed permutation defined in Section 5.4, and

(4) the functions Ri :
(
F4
p

)2 → F8
p are defined as

∀i ≥ 1 : Ri(y, z) := ϕi +R ◦Ri−1(y, z) , (4)

where R0(y, z) = (y, z), and where R :
(
F4
p

)2 → F8
p is the rolling function

defined in Section 5.3, and ϕi ∈ F8
p are random constants.

We give an algorithmic description of Hydra in Algorithm 7.

5.2 The Body of the Hydra: The Permutation B

The permutation B : F4
p → F4

p is defined as

B(x) = E5 ◦ · · · ◦ E2︸ ︷︷ ︸
4 times

◦ IRI−1 ◦ · · · ◦ I0︸ ︷︷ ︸
RI times

◦ E1 ◦ E0︸ ︷︷ ︸
2 times

(ME × x), (5)

9 The (Lernaean) Hydra is a mythological serpentine water monster with many heads.
In our case, we can see B as the body of the Hydra, and the multiple parallel
permutations HK as its multiple heads.

16



where the external and internal rounds Ei, Ij : F4
p → F4

p are defined as

Ei(·) = ϕ(E,i) +ME × SE(·), Ij(·) = ϕ(I,j) +MI × SI(·)

for i ∈ {0, 1, . . . , 5} and each j ∈ {0, 1, . . . , RI − 1}, where ϕ(E,i), ϕ(I,j) ∈ F4
p are

randomly chosen round constants (we refer to Appendix D for details on how
we generate the pseudo-random constants).

The Round Function E. Let d ≥ 3 be the smallest odd integer such that
gcd(d, p− 1) = 1. The nonlinear layer SE : F4

p → F4
p is defined as

SE(x0, x1, x2, x3) = (xd0, x
d
1, x

d
2, x

d
3) .

We require ME ∈ F4×4
p to be an MDS matrix and recommend an AES-like matrix

such as circ(2, 3, 1, 1) or circ(3, 2, 1, 1).

The Round Function I. The nonlinear layer SI : F4
p → F4

p is defined as

SI(x0, x1, x2, x3) = (x0 + ŷ, x1 + ŷ, x2 + ŷ, x3 + ŷ), (6)

where ŷ ∈ Fp is defined as

ŷ =

( 3∑
j=0

λ
(0)
j xj

)2

+

(
3∑
j=0

λ
(1)
j xj

)
+ λ′

 ·
( 3∑

j=0

λ
(0)
j xj

)2

+

(
3∑
j=0

λ
(1)
j xj

)
+ λ

′′


such that λ

(0)
0 , . . . , λ

(0)
3 , λ

(1)
0 , . . . , λ

(1)
3 , λ′, λ

′′ ∈ Fp \ {0}, where (i)
∑3
j=0 λ

(0)
j =∑3

j=0 λ
(1)
j = 0 and (ii) {λ(0)j }3j=0 and {λ(1)j }3j=0 are linearly independent.

MI ∈ F4×4
p is an invertible matrix that satisfies the following conditions

(which are justified in Appendix F.2):

(a) for i ∈ {0, 1} :
∑3
j=0 λ

(i)
j ·

(∑3
l=0MI [j, l]

)
6= 0,

(b) for i ∈ {0, 1} and for j ∈ {0, 1, . . . , 3} :
∑3
l=0 λ

(i)
l ·MI [l, j] 6= 0, and

(c) it prevents infinitely long subspace trails for the generalized Lai–Massey
construction SI (details are given in Appendix G).

In particular, we suggest using a matrix of the form

MI =


µ
(I)
0,0 1 1 1

µ
(I)
1,0 µ

(I)
1,1 1 1

µ
(I)
2,0 1 µ

(I)
2,2 1

µ
(I)
3,0 1 1 µ

(I)
3,3

 , (7)

for which the conditions (a), (b), and (c) are satisfied (we suggest to use the
tool given in Appendix G.2 in order to check that the condition (c) is satisfied).
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5.3 The Rolling Function

The rolling function R :
(
F4
p

)2 → F8
p is defined as R(y, z) = MR × SR(y, z),

where a random round constant addition is also included in the definition of Ri
(Eq. (4)) and where

– the nonlinear layer SR is defined as SR(y0, y1, y2, y3, z0, z1, z2, z3) = (y0 +
v, . . . , y3 + v, z0 + w, . . . , z3 + w) with

v =

(
3∑
i=0

λi · yi

)
·

(
3∑
i=0

ϕi · zi

)
and w =

(
3∑
i=0

λi · zi

)
·

(
3∑
i=0

ϕ′i · yi

)
(8)

such that λ0, . . . , λ3, ϕ0, . . . , ϕ3, ϕ
′
0, . . . , ϕ

′
3 ∈ Fp \ {0}, where (i)

∑3
i=0 λi =∑3

i=0 ϕ
′
i = 0, (ii) (λ0, . . . , λ3) ∈ F4

p and (ϕ′0, . . . , ϕ
′
3) ∈ F4

p are linearly inde-

pendent, and (iii)
∑3
i=0 ϕi 6= 0;

– the linear layerMR ∈ F8×8
p is defined asMR = diag(M ′R,M

′
R) = [M ′R, 0; 0,M ′R],

where M ′R ∈ F4×4
p has e.g. the same form as in Eq. (7) to destroy invari-

ant subspaces of the form {x ∈ F4
p |

∑3
i=0 λi · xi = 0 or

∑3
i=0 ϕi · xi =

0 or
∑3
i=0 ϕ

′
i · xi = 0}.

5.4 The Heads of the Hydra: The Permutation HK

The keyed permutation HK : F8
p → F8

p is defined as

HK(y, z) = K′ + JRH−1 ◦ (K′ + JRH−2) ◦ . . . ◦ (K′ + J1) ◦ (K′ + J0)︸ ︷︷ ︸
RH times

(y, z),

where K′ = K || (ME × K) ∈ F8
p, and Jj : F8

p → F8
p is defined as

Ji(·) = ϕi +MJ × SJ (·),

where ϕi ∈ F8
p are random round constants for each i ∈ {0, 1, . . . , RH − 1}. The

nonlinear layer SJ (x0, x1, . . . , x7) = (y0, . . . , y7) is defined by

yl = xl +

(
7∑

h=0

λh · xh

)2

for 0 ≤ l ≤ 7,

where λ0, . . . , λ7 ∈ Fp \ {0} are arbitrary constants such that
∑7
h=0 λh = 0.

MJ ∈ F8×8
p is an invertible matrix that must fulfill similar conditions to (a),

(b), and (c) described in Section 5.2, i.e., (a)
∑7
h=0 λh

(∑7
l=0MJ [h, l]

)
6= 0, (b)∑7

l=0 λl ·MJ [l, h] 6= 0, for h ∈ {0, . . . , 7}, and (c) MJ prevents infinitely long
subspace trails related to λ0, . . . , λ7, as detailed in Appendix G. We recommend

that M
(i)
J has a similar form to the matrix in Eq. (7) for eight rows and columns.
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5.5 Number of Rounds

In order to provide κ bits of security, assuming a data limit of 2κ/2, the number
of rounds for the functions B and HK must be at least

RI =
⌈
1.125 ·

⌈
max

{κ
4
− log2(d) + 6, R̂I

}⌉⌉
,

RH = d1.25 ·max {24, 2 +R∗H}e ,

where R̂I , and R∗H are the minimum positive integers that satisfy Eq. (14) and
Eq. (11) respectively. Note that we have added a security margin of 12.5% for B
and 25% for HK. For instance, with κ = 128, we get RI = 42 and RH = 39. In
Appendix A, we provide a script that returns the number of rounds RI and RH
for given p and κ.

About Related-Key Attacks. We do not claim security against related-key
attacks, since the keys are randomly sampled in each computation, without any
input or influence of a potential attacker. Thus, an attacker cannot know or
choose any occurring relations between different keys. Indeed, since we focus on
MPC protocols in a malicious setting with either honest or dishonest majority
(e.g., SPDZ [24, 23]), any difference added to one shared key would be immedi-
ately detected by the other parties in the protocol. We also emphasize that the
same assumption has been made in previous related works [32, 26].

6 Design Rationale of B, Ri and HK

6.1 The Body B as a Variant of the Hades Design Strategy

The Hades Design Strategy. For B, we aim to retain the advantages of
Hades [32], in particular the security arguments against statistical attacks and
the efficiency of the partial middle rounds. The Hades strategy is a way to design
SPN schemes over Ftq in which rounds with full S-box layers are mixed with
rounds with partial S-box layers. The external rounds with full S-box layers (t S-
boxes in each nonlinear layer) at the beginning and at the end of the construction
provide security against statistical attacks. The rounds with partial S-box layers
(t′ < t S-boxes and t−t′ identity functions) in the middle of the construction are
more efficient in settings such as MPC, and help to prevent algebraic attacks. In
all rounds, the linear layer is defined via the multiplication of a MDS matrix.

This strategy has recently been pushed to its limit in Neptune [33], a mod-
ified version of the sponge hash function Poseidon [31]. In such a case, instead
of using the same matrix and the same S-box both for the external and the
internal rounds, Neptune’s designers propose to use two different S-boxes and
two different matrices for the external and internal rounds.
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The External Rounds of B. As in Hades, Poseidon, and Neptune, we use
the external rounds to provide security against statistical attacks. In the case of
Hades and Poseidon, this is achieved by instantiating the external full rounds
with power maps x 7→ xd for each of the t words. We recall that this nonlinear
layer requires t · (hw(d) + blog2(d)c− 1) multiplications (see e.g. [33] for details).

We adopt this approach for B, using 2 external rounds at the beginning and
2 + 2 = 4 external rounds at the end, where 2 rounds are included as a security
margin against statistical attacks (see Appendix F.1 for more details). With
respect to Hades and Poseidon, we do not impose that the number of external
rounds at the beginning is equal to the number of external rounds at the end
(even if we try to have a balance between them). Instead, we choose the number
of external rounds to be even at each side in order to maximize the minimum
number of active S-boxes from the wide-trail design strategy [22] (the minimum
number of active S-boxes over two consecutive rounds is related to the branch
number of the matrix that defines the linear layer).

The Internal Rounds of B. To minimize our primary cost metric (the number
of multiplications over Fp), we opt for using degree–2l ≥ 2 maps which cost
l ≥ 1 multiplications in the internal rounds. Indeed, let us compare the cost in
terms of Fp multiplications in order to reach a certain degree ∆ when using a
round instantiated with the quadratic map x 7→ x2, with one instantiated via
an invertible power map x 7→ xd with d ≥ 3, for odd d. Comparing the overall
number of Fp multiplications, the first option is the most competitive, since

dlog2(∆)e = dlogd(∆) · log2(d)e︸ ︷︷ ︸
using x7→x2

≤ dlogd(∆)e · (blog2(d)c+ hw(d)− 1)︸ ︷︷ ︸
using x 7→xd

,

where dlogd(∆) · log2(d)e ≤ dlogd(∆)e · dlog2(d)e and blog2(d)c + hw(d) − 1 ≥
blog2(d)c+1 = dlog2(d)e. For example, consider d = 3, ∆ = 2128. With quadratic
maps we need 128 Fp multiplications to reach degree ∆. In the second case, 162
Fp multiplications are needed, requiring 27% more multiplications in total.

However, the function x 7→ x2 is not invertible, which may lead to security
issues. This problem can be solved by using the quadratic map in a mode that
preserves the invertibility, as in a Feistel construction or in a Lai–Massey con-
struction [42]. The latter over F2

q is defined as (x, y) 7→ (x+F (x−y), y+F (x−y)),
where F : Fq → Fq. Generalizations over Fnp have recently been proposed
in [33], including one defined as (x0, x1, . . . , xn−1) 7→ (y0, y1, . . . , yn−1) where

yi = xi + F
(∑n−1

j=0 (−1)j · xj
)

for i ∈ {0, 1, . . . , n − 1} and n ≥ 3 even. This

scheme can be further generalized as described in the following.

Proposition 1. Let q = ps, where p ≥ 3 is a prime and s is a positive integer,

and let n ≥ 2. Given 1 ≤ l ≤ n − 1, let λ
(i)
0 , λ

(i)
1 , . . . , λ

(i)
n−1 ∈ Fq be such that∑n−1

j=0 λ
(i)
j = 0 for i ∈ {0, 1, . . . , l− 1}. Let F : Flq → Fq. The function F : Fnq →
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Fnq defined as F(x0, . . . , xn−1) = (y0, . . . , yn−1) is invertible when

yh = xh+F

n−1∑
j=0

λ
(0)
j · xj ,

n−1∑
j=0

λ
(1)
j · xj , . . . ,

n−1∑
j=0

λ
(l−1)
j · xj

 , for 0 ≤ h ≤ n−1 .

We provide the proof in Appendix E.1. No conditions are imposed on F . Even

if not strictly necessary, we choose {λ(0)j }
n−1
j=0 , . . . , {λ

(l−1)
j }n−1j=0 such that they are

linearly independent. Since we require
∑n−1
j=0 λ

(i)
j = 0 for i ∈ {0, . . . , l−1}, there

can be at most l = n− 1 linearly independent {λ(i)j }-vectors.
To reduce the number of rounds and matrix multiplications, we chose a gener-

alized Lai–Massey construction instantiated with a nonlinear function of degree
4 that can be computed with 2 multiplications only.

As already pointed out, e.g. in [47], invariant subspaces exist for the Lai–
Massey construction. Hence, it is crucial to choose the matrix MI in order to
break them, corresponding to condition (c) in Section 5.2. In Appendix G, we
show how to adapt the analysis/tool proposed in [35, 36] for breaking arbitrarily
long subspace trails for P-SPN schemes to the case of the generalized Lai–Massey
constructions. The further conditions (a) and (b) in Section 5.2 are crucial to
guarantee the density of the interpolation polynomial, as shown in Appendix F.2.

6.2 About the Heads HK

As in the case of Farfalle and Ciminion, the attacker knows the outputs of the
expansion phase of Megafono, but cannot choose them (e.g., in order to set
up a chosen-ciphertext attack). By designing B in order to resemble a PRP, the
attacker cannot know or choose the inputs of HK (i.e., output of B). Further, it
is not possible to choose inputs of B which result in specific statistical/algebraic
properties at the inputs of HK. This severely limits the range of attacks that may
work at the expansion phase of Megafono, and so of Hydra.

As a result, we find that the possible attacks are largely algebraic in nature,
such as using Gröbner bases. The idea of this attack is to construct a system
of equations that links the inputs and the outputs of HK in order to find the
intermediate variables and the key. In our case, this corresponds to 12 variables:
eight to represent the input and four variables related to the key. With this
number of variables over such a large field (relative to the security level), we
will see in Section 7.4 that it will not be necessary for HK to reach its maximal
degree. Since HK is an iterated permutation, it is also possible to introduce new
variables at the outputs of each round Ji in order to reduce the overall cost
of the Gröbner basis attack. In such a case, the cost of the attack depends on
min{deg(J−1),deg(J )}. Indeed, since we can work at round level, each round
function y = J (x) can be rewritten as J−1(y) = x, and the cost of the attack
depends on the minimum degree among these equivalent representations.

Therefore, we instantiate the round function ofHK with a low-degree function,
in particular a generalized Lai–Massey construction of degree 2. An alternative
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approach (used e.g. in Rescue) applies both high-degree and low-degree nonlinear
power maps (recalled in Section 2.2). It is efficient in the MPC setting, and
would prompt HK to quickly reach its maximal degree. However, since reaching
the maximal degree will not be a primary concern of ours (due to the high
number of variables), we opt for the former choice of round functions, which
allows Hydra to be fast in the plain setting as well.

6.3 About the Rolling Functions Ri

Finally, we consider a nonlinear rolling function, as already done in Xoofff [21]
and Ciminion. This has multiple advantages, such as frustrating the Meet-in-
the-Middle attacks on the expansion phase described in [15, 19] and previously
recalled in Section 4.1, and destroying possible relation between consecutive
outputs due to the feed-forward operation (see Section 4.1 for details).

We work with a rolling function that is different from what is used in the
heads, in order to avoid certain approaches such as slide attacks [12]. The follow-
ing (generalized) result ensures the invertibility of the chosen rolling function.

Proposition 2. Let n = 2 · n′ ≥ 4, with n′ ≥ 2, and {λi, λ′i, ϕi, ϕ′i}0≤i≤n′−1 be

a set of constants in Fp satisfying
∑n′−1
i=0 λi =

∑n′−1
i=0 λ′i =

∑n′−1
i=0 ϕ′i = 0. Let

furthermore G,H : Fp → Fp be any Fp-function. Then the function F over Fnp
defined as F(x0, . . . , xn−1) = (y0, . . . , yn−1), where

yi :=

xi +
(∑n−1

j=n′ ϕj−n′ · xj
)
·G
(∑n′−1

j=0 λj · xj
)

if i ∈ {0, . . . , n′ − 1},

xi +
(∑n′−1

j=0 ϕ′j · xj
)
·H
(∑n−1

j=n′ λ
′
j−n′ · xj

)
if i ∈ {n′, . . . , n− 1},

is invertible.

The proof is given in Appendix E.2. We further imposed that (λ0, . . . , λn′−1),
(λ′0, . . . , λ

′
n′−1), (ϕ0, . . . , ϕn′−1), (ϕ′0, . . . , ϕ

′
n′−1) ∈ Fn′−1p are linearly indepen-

dent (also via
∑n′−1
i=0 ϕi 6= 0) in order to guarantee that the variables v and w

in Eq. (8) are independent (i.e., there is no ω ∈ Fp such that v = ω · w).

7 Security Analysis

Inspired by Ciminion, we choose the number of rounds such that x 7→ K+B(x+K)
behaves like a PRP (in a scenario where an attacker is free to choose its inputs
and outputs) and no attack works on the expansion phase of Hydra. In the
following, we motivate this choice and justify the number of rounds given in
Section 5.5.

7.1 Overview

Attacks on the Body. Attacks taking into account the relations between the
inputs and the outputs of Hydra are in general harder than the attacks taking
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into account the relations between the inputs and the outputs of B. Hence, if an
attacker is not able to break x 7→ K + B(x+ K) if they have full control over the
inputs and outputs, they cannot break Hydra by exploiting the relation of its
inputs and outputs. Based on this fact, the chosen number of rounds guarantees
that x 7→ K + B(x + K) resembles a PRP against attacks with a computational
complexity of at most 2κ and with a data complexity of at most 2κ/2.

We point out that this approach results in a very conservative choice for
the number of rounds of B. Indeed, in a realistic attack scenario the outputs of
x 7→ K + B(x+ K) are hidden by HK, and the overall design will still be secure if
B is instantiated with a smaller number of rounds. However, B is computed only
once, and the overall cost grows linearly with the number of computed heads HK.
Hence, we find that the benefits of allowing us to simplify the security analysis
of the heads outweighs this modest increase in computational cost.

Attacks on the Heads. In order to be competitive in MPC scenarios, we
design HK such that Hydra is secure under the assumption that K + B(x + K)
behaves like a PRP. In particular, the attacker only knows the outputs of the
HK calls, and cannot choose any inputs with particular statistical or algebraic
properties. Hence, the only possibility is to exploit the relations among the out-
puts of consecutive HK calls, which originate from the same (unknown) input
y, z ∈ F4

p. For example, this fact can be used when constructing systems of poly-
nomial equations from HK. Indeed, we will later see that the most competitive
attacks are Gröbner bases ones.

7.2 Security Analysis of B

Since B is heavily based on the Hades construction, its security analysis is also
similar. In particular, the external rounds of a Hades design provide security
against statistical attacks. Since this part of B is the same as in HadesMiMC,
the security analysis proposed in [32, Sect. 4.1 – 5.1] also applies here. The inter-
nal rounds of B are instantiated with a Lai–Massey scheme, while the internal
rounds of HadesMiMC are instantiated with a partial SPN scheme. However,
the security argument proposed for HadesMiMC in [32, Sect. 4.2 – 5.2] regarding
algebraic attacks can be easily adapted to the case of B.

We refer to Appendix F for more details. We point out that x 7→ K+B(x+K)
is an Even–Mansour construction in which B is independent of the key, while
a key addition takes place among every round in HadesMiMC. This fact is
taken care of in the analysis proposed in Appendix F, keeping in mind that the
Even–Mansour construction cannot guarantee more than 2 · log2(p) ≥ κ bits of
security [20, 28] (this value is reached when B resembles a PRP).

Finally, in Appendix G we show how to choose the matrix that defines the
linear layer of the internal rounds of B in order to break the invariant subspace
trails of the Lai–Massey scheme, by modifying the strategy proposed in [35] for
the case of partial SPN schemes.
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7.3 Statistical and Invariant Subspace Attacks on HK

It is infeasible for the attacker to choose inputs {xj}j for B such that the cor-
responding outputs {yj}j satisfy certain statistical/algebraic properties, which
makes it hard to mount statistical attacks on the heads HK. However, it is still
desirable that HK has good statistical properties.

To this end, the matrix MJ ∈ F8×8
p is chosen such that no (invariant) sub-

space trail and probability-1 truncated differential can cover more than 7 rounds
(see Appendix G). Hence, the probability of each differential characteristic over
RH rounds is at most p−bRH/8c, since the maximum differential probability of
SJ is p−1 (see Appendix H.1) and at least one SJ function is active every 8
rounds. By choosing RH ≥ 24, the probability of each differential characteristic
is at most p−3 ≤ 2−1.5κ, which we conjecture to be sufficient for preventing dif-
ferential and, more generally, other statistical attacks in the considered scenario.

7.4 Algebraic and Gröbner Basis Attacks on HK

It is not possible to mount an interpolation attack, since the input y, z is unknown
and the polynomials associated with the various heads differ for each i. Thus,
the remainder of this section will be devoted to Gröbner basis attacks.

Note that the variables y and z are clearly not independent, as they both
depend on x. Moreover, z can be written as a function of y (the converse does not
hold, since the function that outputs z is, in general, not invertible). However,
these functions would be dense and reach maximum degree, which implies that
the cost of an attack making use of them would be prohibitively expensive.
Hence, we will treat y and z as independent variables in the following.

Preliminaries: Gröbner Basis Attacks. The most efficient methods for solv-
ing multivariate systems over large finite fields involve computing a Gröbner basis
associated with the system. We refer to [18] for details on the underlying theory.

Computing a Gröbner basis (in the grevlex order) is, in general, only one
of the steps involved in solving a system of polynomials. In our setting, an
attacker is able to set up an overdetermined polynomial system where a unique
solution can be expected. In this case it is often possible to read the solution
directly from the grevlex Gröbner basis, which is why we will solely focus on the
step of computing said basis. There are no general complexity estimates for the
running time of state-of-the-art Gröbner basis algorithms, such as F4 [30]. There
is, however, an important class of polynomial systems, known as semi-regular
(see [7] for a definition), that is well understood. For a semi-regular system the
degree of the polynomials encountered in F4 is expected to reach the degree
of regularity Dreg, which in this case can be defined as the index of the first
non-positive coefficient in the series

H(z) =

∏ne

i=1(1− zdi)
(1− z)nv

, (9)
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for a system of ne polynomials in nv variables, where di is the degree of the i-th
equation. The time complexity for computing a grevlex Gröbner basis for such
a system is then estimated by

O
((

Dreg + nv
nv

)ω)
, (10)

where 2 ≤ ω ≤ 3 is the linear algebra constant representing the cost of matrix
multiplication and Dreg the associated degree of regularity [7].

Gröbner Basis Attacks on HK. There are many possible ways to represent
a cryptographic construction as a system of multivariate polynomials, and this
choice impacts the performance of the Gröbner basis algorithm. Note that the
degree of HK(Ri(y, z)) increases with i, and it is therefore not possible to col-
lect enough polynomials for solving by direct linearization at a relatively small
degree, as discussed in Appendix F.2. Instead, we find that the most efficient at-
tack includes only HK(y, z) and HK(R1(y, z)) in a representation that introduces
new variables and equations for each round. While this increases the number of
variables, it keeps the degree low, and allows exploitation of the small number
of multiplications in each round. We outline our findings in the following, and
we refer to Appendix H.2 for more details on the underlying arguments.

The most promising intermediate modeling can be reduced to a system of
2RH + 2 quadratic equations in 2RH − 2 variables, where RH is the number of
rounds in HK. Further analysis shows that the tested systems are semi-regular,
and in particular that the degrees encountered in the F4 algorithm are well-
estimated by the series H(z) in Eq. (9). Solving times are also comparable to that
of solving randomly generated semi-regular systems with the same parameters.
Still, the systems from HK are sparser than what can be expected from randomly
generated systems. To ensure that this cannot be exploited, we conservatively
add 2 extra rounds on top of this baseline. Hence, for a security level κ we follow
Eq. (10) and define R∗H = R∗H(κ) to be the minimum positive integer such that(

2R∗H − 2 +Dreg

2R∗H − 2

)2

≥ 2κ , (11)

where Dreg is computed from the series in Eq. (9) using ne = 2R∗H + 2 and
nv = 2R∗H − 2. We then claim that R∗H(κ) + 2 is sufficient to provide κ-bit
security against this Gröbner basis attack.

Concrete Example for κ = 128. In this case we get R∗H(128) = 29, which in
turn yields ne = 60 quadratic equations in nv = 56 variables. By expanding the
resulting series in Eq. (9), we get Dreg = 23 for this system, and the security

estimate
(
56+23

23

)2 ≈ 2130.8 follows. Thus, we claim that R∗H(128) + 2 = 31 is
sufficient to provide 128-bit security against Gröbner basis attacks.
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Table 1: Online and offline phase performance in MPC for different constructions
with state sizes t using a secret shared key. Prec is the number of precomputed
elements (multiplication triples, squares, inverses). Depth describes the number
of online communication rounds. The runtime is averaged over 200 runs.

Offline Online Combined
t Cipher Rounds Prec. Time Data Depth Time Data Time Data

ms MB ms kB ms MB

8

Hydra 6, 42, 39 171 39.99 3.86 131 6.81 5.37 46.80 3.87
Ciminion 90, 14 867 227.47 19.55 735 21.81 28.02 249.29 19.58
HadesMiMC 6, 71 238 52.66 5.37 79 17.58 5.99 70.24 5.38
Rescue 10 960 254.80 21.65 33 12.65 23.32 267.45 21.68

32

Hydra 6, 42, 39 294 72.67 6.63 134 13.36 9.69 86.03 6.64
Ciminion 90, 14 3207 910.11 72.30 2895 84.37 103.29 994.47 72.41
HadesMiMC 6, 71 526 137.49 11.87 79 225.86 13.29 363.35 11.88
Rescue 10 3840 1253.76 86.60 33 109.80 92.82 1363.56 86.70

64

Hydra 6, 42, 39 458 119.07 10.33 138 20.57 15.45 139.64 10.35
Ciminion 90, 14 6327 2262.55 142.64 5775 178.66 203.64 2441.21 142.84
HadesMiMC 6, 71 910 251.44 20.53 79 899.55 23.02 1150.99 20.55
Rescue 10 7680 2851.56 173.20 33 402.34 185.50 3253.90 173.39

128

Hydra 6, 42, 39 786 206.08 17.72 146 37.49 26.97 243.58 17.75
Ciminion 90, 14 12567 4854.43 283.32 11535 328.79 404.34 5183.22 283.72
HadesMiMC 6, 71 1678 463.59 37.85 79 4371.02 42.47 4834.61 37.89
Rescue 10 15360 5934.39 346.40 33 1549.16 370.84 7483.55 346.77

8 Hydra in MPC Applications

In this section, we evaluate the performance of Hydra compared to other PRFs
in MPC use cases which assume a secret shared key. We implemented Hydra
and its competitors using the MP-SPDZ library [40]10 (version 0.2.8, files can
be found in Appendix A) and benchmark it using SPDZ [24, 23] with the MAS-
COT [41] offline phase protocol. Concretely, we benchmark a two-party setting
in a simulated LAN network (1 Gbit/s and� 1 ms average round-trip time) us-
ing a Xeon E5-2669v4 CPU (2.6 GHz), where each party is assigned only 1 core.
SPDZ, and therefore all the PRFs, is instantiated using a 128-bit prime p, with
gcd(3, p − 1) = 1, thus ensuring that x 7→ x3 is a permutation, as required by
HadesMiMC, Rescue, MiMC, GMiMC, and Hydra. All PRFs are instantiated
with κ = 128. Hydra requires 4 ·RE · (hw(d) + blog2(d)c − 1) + 2 ·RI + (RH +
2) ·

⌈
t
8

⌉
− 2 multiplications, hence 130 + 41 ·

⌈
t
8

⌉
in this setting.

We implemented all x3 evaluations using the technique from [34] (see Al-
gorithm 4), which requires one precomputed beaver triple, one precomputed
shared random square, and one online communication round. Furthermore, we
implemented x1/3 (as used in Rescue) using the technique described in [5] (see

10 https://github.com/data61/MP-SPDZ/
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Table 2: Online and offline phase performance in MPC for different constructions
with state sizes t using a secret shared key. Prec is the number of precomputed
elements (multiplication triples, squares, inverses). Depth describes the number
of online communication rounds. The runtime is averaged over 200 runs.

Offline Online Combined
t Cipher Rounds Prec. Time Data Depth Time Data Time Data

ms MB ms kB ms MB

8

Hydra 6, 42, 39 171 39.99 3.86 131 6.81 5.37 46.80 3.87
Ciminion (No KS)a 90, 14 148 35.64 3.34 107 3.98 5.02 39.62 3.35
Rescue (No KS)a 10 480 129.47 10.83 33 6.95 11.80 136.42 10.84

32

Hydra 6, 42, 39 294 72.67 6.63 134 13.36 9.69 86.03 6.64
Ciminion (No KS)a 90, 14 328 80.79 7.40 119 5.42 11.16 86.21 7.41
Rescue (No KS)a 10 1920 538.19 43.30 33 47.35 46.74 585.54 43.35

64

Hydra 6, 42, 39 458 119.07 10.33 138 20.57 15.45 139.64 10.35
Ciminion (No KS)a 90, 14 568 154.38 12.81 135 8.05 19.35 162.42 12.83
Rescue (No KS)a 10 3840 1226.39 86.60 33 144.14 93.34 1370.53 86.70

128

Hydra 6, 42, 39 786 206.08 17.72 146 37.49 26.97 243.58 17.75
Ciminion (No KS)a 90, 14 1048 274.90 23.63 167 10.70 35.74 285.60 23.67
Rescue (No KS)a 10 7680 2943.21 173.20 33 737.84 186.52 3681.05 173.39

a Assumes round keys are present, i.e., no key schedule computation in MPC.

Algorithm 6). MP-SPDZ allows to precompute squares and inverses from beaver
triples in an additional communication round in the offline phase (see Section 2).

In Table 1, we compare the performance of Hydra to some competitors for
different state sizes t, for a comparison with more PRFs we refer to Appendix I.
We give concrete runtimes, as well as the amount of data transmitted by each
party during evaluation of the offline and online phases. Further, we give the
combined number of triples, squares, and inverses which need to be created
during the offline phase, as well as the total number of communication rounds
(i.e., the depth of the PRF) during the online phase. During the offline phase
only the required number of triples, squares, and inverses is precomputed.

Table 1 shows that the offline phase dominates both the overall runtime
and the total communication between the parties. Hydra always requires less
precomputation than Ciminion, HadesMiMC, and Rescue, hence, it has a sig-
nificantly more efficient offline phase with the advantage growing with t. Look-
ing at the online phase, Hydra is faster and requires less communication than
Ciminion, HadesMiMC, and Rescue, which is due to the smaller number of
multiplications and the better plain performance. While Ciminion is slow due to
the expensive keyschedule, HadesMiMC requires many expensive MDS matrix
multiplications (see Appendix J) and Rescue requires expensive x1/d evaluations.

For the sake of completeness, in Table 2 we also compare the performance
of Hydra to Ciminion and Rescue in the case in which the round keys are
already present. Comparing Hydra to Ciminion without a key schedule, one
can observe that Ciminion’s online phase is always faster. However, Hydra’s
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number of multiplications scales significantly better than Ciminion’s, hence, for
larger statesizes (t ≥ 32) Hydra has a faster offline phase performance, as well
as less communication in the online phase.

To summarize, our experiments show that Hydra is the most efficient PRF
in both phases of the MPC protocols. Only if we discard the key schedules,
Ciminion is competitive for small state sizes t < 32.

The Effect of the Network. The performance of MPC applications depends
on the network speed. A lower bandwidth leads to a larger effect of the com-
munication between the parties on the overall performance. Moreover, a longer
round-trip time leads to larger contributions of the number of communication
rounds. In the offline phase only shared correlated randomness is created, thus
the network performance affects all PRFs in the same way. Consequently, if a
PRF has a faster offline phase in the LAN setting, it is also faster in a slower
network environment. The situation is different in the online phase: In fast net-
works, the online phase performance is mostly determined by the plain runtime.
In a slower network, more time is spent waiting for the network to deliver pack-
ages. Hydra has a small number of multiplication, hence a preferable offline
phase in all networks. Further, it requires little communication in the online
phase, making it suitable for low-bandwidth networks. However, it has a larger
depth compared to HadesMiMC and Rescue, leading to worse runtimes in high-
delay networks. Ciminion’s key schedule has a large depth and requires lots of
communication between the parties. Thus, Ciminion is only competitive in slow
networks if the key schedule does not need to be computed. Overall, Hydra has
a good balance between a small number of multiplications, little communication,
decent plain performance, as well as a reasonable depth, making it the preferred
PRF for MPC applications in most network environments.
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SUPPLEMENTARY MATERIAL

A Supplementary Files

In the repository

https://extgit.iaik.tugraz.at/krypto/hydra

we provide the following files as supplementary material.

– MP-SPDZ: This folder contains the MP-SPDZ framework and cipher imple-
mentations used for benchmarking.

– calc round numbers.sage: This script calculates the number of rounds for
a given security level κ.

– hydra.sage: This script contains the reference implementation of Hydra,
written in sage.

We refer to the Readme.md file in the repository for more information about
the supplied files.

B Megafono and Hydra Version 0

In the first version of this paper, Megafono and Hydra were different from
the ones proposed in this current version. Here we list the main differences.

About Megafono Version 0:

– in the first version, a final truncation-summation techniques was applied to
the outputs of the expanding parts. We decided to replace it with a feed-
forward operation both in order to avoid wasting encryption material and in
order to increase the security with respect to guessing attacks;

– we apply the rolling function on the entire state y‖z, as opposed to only z.
We also suggest to make use of a nonlinear rolling function;

– we re-formulated the security assumption of Megafono regarding the in-
dependence between y and z;

– we also added a discussion regarding the possibility to use Megafono for
more traditional confidentiality/authenticity goals as a possible replacement
of Farfalle.

About Hydra Version 0:

– the main change regards the fact that we replaced the Amaryllises con-
struction with power maps. We noticed that for the proposed design, the
construction instantiated with the power maps has almost the same secu-
rity and efficiency as the one instantiated with Amaryllises. Using power
maps helps simplify the construction, and allows us to devote more space
to discuss the design rationale. We point out that the Amaryllises will be
discussed in a separate paper;
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– due to this change, the body of Hydra is almost equivalent to the cipher
HadesMiMC. As a result, we can simplify the security analysis by re-using
results from the HadesMiMC paper;

– we decided to instantiate B with only 6 external rounds, and show that this
is indeed sufficient for achieving security;

– we replaced the linear rolling function with a nonlinear one.

We emphasize that we are currently not aware of any attack on Hydra Version
0.

C MPC Subprotocols

In this section, we restate well known MPC subprotocols, such as beaver mul-
tiplication (Algorithm 1), generating shared squares (Algorithm 2) and shared
inverses (Algorithm 3) from Beaver triples, calculating [x]3 (Algorithm 4), as
well as two methods for calculating [x]d (Algorithm 5 and Algorithm 6).

Algorithm 1: Beaver Multiplications [2].

Data: [x], [y]
Result: [xy]
// Offline Phase

1 [a], [b], [ab]← GenTriple()

// Online Phase

2 s← Open([x]− [a])
3 t← Open([x]− [b])
4 [xy]← [ab] + [x] · t+ [y] · s− s · t
5 return [xy]

Algorithm 2: Random square from Beaver triple.

Data: [a], [b], [ab]
Result: [a], [a2]

1 y ← Open([a] + [b])
2 [a2]← y · [a]− [ab]
3 return [a], [a2]
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Algorithm 3: Random inverse from Beaver triple.

Data: [a], [b], [ab]
Result: [a], [a−1]

1 y ← Open([ab])
2 if y = 0 then
3 Abort.
4 [a−1]← [b] · y−1

5 return [a], [a−1]

Algorithm 4: Optimized [x]3 evaluation [11].

Data: [x]
Result: [x3]
// Offline Phase

1 [a], [b], [ab]← GenTriple()
2 [r], [r2]← GenSquare()
3 [r3]← [r] · [r2] // Using [a], [b], [ab]

// Online Phase

4 y ← Open([x]− [r])
5 [x3] = 3 · y · [r2] + 3 · y2 · [r] + y3 + [r3]
6 return [xy]

Algorithm 5: Forward method to calculate [x]d [1].

Data: [x]
Result: [xd]
// Offline Phase

1 [a], [b], [ab]← GenTriple()
2 [r], [r−1]← GenInv()

3 [r−d]← Pow([r−1], d) // Using multiple Beaver triples or squares

// Online Phase

4 y ← Open([x] · [r]) // Using [a], [b], [ab]

5 [xd]← yd · [r−d]
6 return [xd]
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Algorithm 6: Backwards method to calculate [x]d [1].

Data: [x]
Result: [xd]
// Offline Phase

1 [a], [b], [ab]← GenTriple()
2 [r], [r−1]← GenInv()

3 [r1/d]← Pow([r], 1/d) // Using multiple Beaver triples or squares

// Online Phase

4 y ← Open([x] · [r1/d]) // Using [a], [b], [ab]

5 [xd]← yd · [r−1]

6 return [xd]

D The Hydra PRF – Specification Details

Pseudo Code. A pseudo code of Hydra is proposed in Algorithm 7.

Generation of Matrices and Constants. We pseudo-randomly generate all
matrices and constants using Shake-128 [3] seeded with the string Hydra and
the used prime. Thereby, we use rejection sampling to sample field elements,
and we reject and resample matrices and constants if they do not meet the
requirements specified in this paper. We refer to our source code present in the
supplementary material (Appendix A) for more details.

E Proofs

E.1 Proof of Proposition 1

Proof. As in a Lai–Massey construction, the invertibility follows from the fact
that for i ∈ {0, 1, . . . , l − 1}

n−1∑
h=0

λ
(i)
h · yh =

n−1∑
h=0

λ
(i)
h ·

(
xh + F

(
n−1∑
j=0

λ
(1)
j xj ,

n−1∑
j=0

λ
(2)
j xj , . . . ,

n−1∑
j=0

λ
(t)
j xj

))

=

n−1∑
h=0

λ
(i)
h xh +

n−1∑
h=0

λ
(i)
h︸ ︷︷ ︸

=0

·F

(
n−1∑
j=0

λ
(1)
j xj ,

n−1∑
j=0

λ
(2)
j xj , . . . ,

n−1∑
j=0

λ
(t)
j xj

)
=

n−1∑
h=0

λ
(i)
h xh.

It follows that xh = yh−F
(∑n−1

j=0 λ
(0)
j · yj ,

∑n−1
j=0 λ

(1)
j · yj , . . . ,

∑n−1
j=0 λ

(l−1)
j · yj

)
for each h ∈ {0, 1, . . . , n− 1}.
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Algorithm 7: The Hydra PRF.

Data: Prime integer p ≥ 263, 4 ≤ t ≤ 2κ/2, N ∈ Fp, K ∈ F4
p.

Result: h ∈ Ftp.
1 Let t = 8 · t′ + t′′ for t′, t′′ ∈ N, where t′′ = t mod 8.
2 Let x, y, z ← 0 ∈ F4

p.
// First step (computing B)

3 x←ME × (K + [N || IV]).
4 for i← 0 to 1 do
5 x← Ei(x).
6 z ← z + x.

7 for i← 0 to RI − 1 do
8 x← Ii(x).
9 z ← z + x.

10 for i← 2 to 5 do
11 x← Ei(x).
12 z ← z + x.

13 y ← E7(x) + K.
// Expansion step (using HK)

14 for i← 0 to t′ do
15 hi ← HK(Ri(y, z)).
16 ht′ ← T8,t′′(ht′).
17 return h := h0 || h1 || · · · || ht′−1 || ht′ ∈ Ftp.

E.2 Proof of Proposition 2

Proof. We will show the invertibility of F by constructing a pre-image for any
given (y0, . . . , yn−1) ∈ Fnq . To this end, define

a =

n′−1∑
i=0

λi · yi , a′ = G(a) and b =

n−1∑
i=n′

λ′i−n′ · yi , b′ = H(b) ,

and consider the n× n-matrix Ma,b =

[
I A
B I

]
, where

A = a′ ·


ϕ0 ϕ1 . . . ϕn′−1
ϕ0 ϕ1 . . . ϕn′−1
...

. . .
...

ϕ0 ϕ1 . . . ϕn′−1

 , B = b′ ·


ϕ′0 ϕ

′
1 . . . ϕ

′
n′−1

ϕ′0 ϕ
′
1 . . . ϕ

′
n′−1

...
. . .

...
ϕ′0 ϕ

′
1 . . . ϕ

′
n′−1

 ,

and I is the n′ × n′-identity matrix. By Theorem 3 in [19], we have

det(Ma,b) = det(I −B ×A) ,
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and we can furthermore write

B ×A = a′ · b′ ·

n′−1∑
j=0

ϕ′j

 ·

ϕ0 ϕ1 . . . ϕn′−1
ϕ0 ϕ1 . . . ϕn′−1
...

. . .
...

ϕ0 ϕ1 . . . ϕn′−1

 .
The assumption

(∑n′−1
j=0 ϕ′j

)
= 0 ensures that B × A is the zero matrix, and

hence det(Ma,b) = 1. In particular, Ma,b is invertible and there is a tuple
(x0, . . . , xn−1) ∈ Fnq satisfying

Ma,b × (x0, . . . , xn−1)> = (y0, . . . , yn−1)> .

In particular, we have that (x0, . . . , xn−1) is the pre-image of (y0, . . . , yn−1) under

F . Indeed, by construction of Ma,b, we only need to show that a =
∑n′−1
i=0 λi ·xi

and that b =
∑n−1
i=n′ λ

′
i−n′ · xi. In a manner similar to that of Appendix E.1, we

get

a =

n′−1∑
i=0

λi · yi =

n′−1∑
i=0

λi · xi + a′ ·

n−1∑
j=n′

ϕj−n′ · xj

n′−1∑
h=0

λh


︸ ︷︷ ︸

=0

=

n′−1∑
i=0

λi · xi .

The case of b is identical, which completes the proof.

F Details about the Security Analysis of B

In this section, we assume the attacker knows both the inputs and outputs
of x 7→ K + B(x + K). The aim is to determine a sufficient number of rounds
to guarantee that x 7→ K + B(x + K) resembles a PRP against attacks with a
computational complexity of at most 2κ, and data complexity at most 2κ/2.

F.1 Statistical Attacks

The security of B against statistical attacks as the differential one [5, 6], trun-
cated differentials [15], and others, follows the security argument proposed for
HadesMiMC and Poseidon. Indeed, the external rounds of B are the same as
in HadesMiMC and Poseidon, and the security argument of HadesMiMC and
Poseidon against statistical attacks depends on these external rounds only. In
[9, Sect. 4 – 5], it is shown that the permutation

x 7→ E3 ◦ E2︸ ︷︷ ︸
2 times

◦L ◦ E1 ◦ E0︸ ︷︷ ︸
2 times

(·),

where Ei are the external rounds and L : F4×4
p → F4

p is an invertible linear layer
that is secure against statistical attacks. Moreover, the security against statistical
attacks does not decrease when replacing L with an invertible nonlinear function
(i.e., the internal rounds). Hence we refer to the analysis proposed in [9], from
which we deduce that statistical attacks do not pose any threat to B.
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F.2 Algebraic Attacks

We mainly use the internal rounds of B in order to gain security against algebraic
attacks. First, we point out that no subspace trail [17, 18, 10] can cover an
arbitrary number of rounds I, due to the choice of the matrix MI , as explained
in Appendix G. In there, we show how to adapt the analysis/tool proposed in [12,
13] for breaking arbitrarily long subspace trail for P-SPN schemes to the case of
the generalized Lai–Massey constructions.

Density of the Algebraic Representation. Algebraic attacks are especially
efficient against schemes that have a simple algebraic structure in larger fields.
It is well-known that many attacks, such as interpolation and Gröbner basis
attacks, can exploit a sparse polynomial representation of the scheme. Conse-
quently, it is important to study the density of these polynomials. We recall (see,
e.g, Theorem 2.4 in [8]) that the number of possible monomials in a polynomial
of degree D in t variables is

N(d, t) :=

(
t+D

D

)
. (12)

The conditions (a) and (b) on MI , described in Section 5.2, are introduced to
ensure that the density of the polynomials representing the scheme are close to
this upper bound. We justify them in the following.

Conditions on the Linear Layer. Let x ∈ Ftp be the input of one round. By
simple computation, the j-th Fp-output of the next round is

yj =

t−1∑
l=0

MI [j, l] · xl +

(
t−1∑
l=0

MI [j, l]

)
·G

(
t−1∑
h=0

λh · xh

)

for a certain (simplified) quadratic function G, and where we omitted constant

additions for simplicity. Let ŷ = G
(∑t−1

h=0 λh · xh
)

. By applying the nonlinear

SI , the i-th Fp-output is

yi +G

(
t−1∑
h=0

λh ·

(
t−1∑
l=0

MI [h, l] · xl +

(
t−1∑
l=0

MI [h, l]

)
· ŷ

))

=yi +G

(
t−1∑
l=0

xl ·

(
t−1∑
h=0

λh ·MI [h, l]

)
+ ŷ ·

t−1∑
h=0

λh ·

(
t−1∑
l=0

MI [h, l]

))
.

Hence, the condition
∑t−1
h=0 λh ·

(∑t−1
l=0 MI [h, l]

)
6= 0 is crucial in order to ensure

the growth of the degree, while the conditions
∑t−1
h=0 λh ·MI [h, l] 6= 0 for each

l ∈ {0, 1, . . . , t− 1} ensure that the polynomial is not sparse.
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Fig. 4: Comparison of the maximum number of monomials and the observed
number of monomials in B for the E rounds.
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Fig. 5: Comparison of the maximum number of monomials and the observed
number of monomials in B for the I rounds.

Forward Direction Density. For the external rounds E , our practical tests (Fig. 4)
indicate that the maximum number of possible monomials is not reached at the
i-th round. The growth in number of monomials is nevertheless strong, and the
results seem to suggest that the discrepancy can be more than accounted for by
including an additional round E . For the internal rounds I, the growth of the
number of monomials is closer to the optimum, reaching its maximum in some
of our tests (Fig. 5).

Backward Direction Density. We note that the inverse of each E round has a
larger degree than the forward direction for small d, since x 7→ x1/d is used
instead of x 7→ xd. The polynomial is also more dense, and hence we conclude
that an E−1 round provides at least the degree and density of an E round.

Interpolation Attack. The goal of the interpolation attack [14] is to construct
an interpolation polynomial that describes the function. The cost of setting up
such an attack depends on the number of monomials in the interpolation poly-
nomial, which can be estimated with the degree of the function. If the number of
unknown monomials is sufficiently large, then it is not possible to construct the
interpolation polynomial faster than using a brute-force attack. Roughly speak-
ing, if the interpolation polynomial is dense and has a sufficiently high degree,
this attack does not work.
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Let us consider a scenario in which only one input component is active and
the others are fixed, that is, the polynomial depends only on a single variable. We
make the following three conservative assumptions when estimating the degree
growth for a MitM interpolation attack. Firstly, we only count one out of the two
initial external rounds. This is to account for the fact that the external rounds
do not produce dense polynomials of maximal degree, as observed in Fig. 4.
Secondly, we arbitrarily discount 3 internal rounds in order to destroy possible
relations existing between the coefficients of the monomials (due to the fact that
the degree-4 function that defines the nonlinear layer is not generic, but has a
particular structure). Thirdly, we expect that three external rounds are needed
to prevent an attacker going in the backwards direction. Thus only one of the
four final rounds will be counted toward our degree estimate. Since the data
available for constructing the polynomial is restricted by 2κ/2, the number of
internal rounds RI must satisfy

4RI−3 · d2 ≥ 2κ/2 =⇒ RI ≥
κ

4
− log2(d) + 3,

where 4 and d ≥ 3 are the degrees of the internal and the external rounds
respectively. Finally, we add an extra 3 rounds in order to destroy invariant
subspaces of the Lai–Massey scheme, and hence estimate that

RI ≥
κ

4
− log2(d) + 6 (13)

rounds are necessary for preventing MitM interpolation attacks.

Higher-Order Differential Attack. Given a vectorial Boolean function F
over Fn2 of degree d, the higher-order differential attack [16, 15] exploits that∑

x∈V+v

x =
∑

x∈V+v

F(x) = 0

for each affine subspace V + v ⊆ Fn2 of dimension strictly larger than d (i.e.,
dim(V) ≥ d + 1). The corresponding attack in the case of a prime field Fp has
recently been proposed in [4]. Since this result is related to the degree of the
polynomial that describes the permutation, we claim that the number of rounds
necessary to guarantee security against the interpolation attack provides security
against this attack as well.

Linearization Attack. Many well-known techniques for solving multivariate
polynomial systems of equations use linearization (see, e.g., [7]). Given a system
of polynomial equations, the idea is to turn it into a system of linear equations
by adding new variables that replace all the monomials in the system of degree
larger than 1. The resulting linear system of equations can be solved using linear
algebra if there are sufficiently many equations.

Consider a system in t unknowns of degree limited by D, where the number
of monomials, N(D, t), is given by Eq. (12). The attack has a computational cost
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of O(N(D, t)ω) operations (for 2 < ω ≤ 3) and a memory cost of O(N(D, t)2) to
store the linear equations. Depending on parameter choices, the hybrid approach
which combines exhaustive search with this approach may lead to a reduced cost.
Guessing x < t variables leads to a complexity of

O (px ·N(D, t− x)ω) .

For simplicity, we start by assuming that the attacker can collect enough (input,
output) pairs to directly linearize a polynomial system representing B with 4 key
variables. The degree D is given by D = d2 · 4RI−3, using the same assumptions
as the analysis for the interpolation attack that yielded Eq. (13). Since 2κ ≤ p2,
it follows that the attack is not feasible if

∀x ∈ {0, 1} : px ·
((

4− x+ d2 · 4RI−3

4− x

))2

≥ 2κ ,

where we consider ω = 2 and where we have 4 variables (namely, the key). Let
x′ = 4− x. Note that

px ·
((

D + x′

x′

))2

≥ px ·

(∏x′

j=1(D + j)

x′!

)2

≥ px ·

(
(D + 1)x

′

x′x
′

)2

≥ px ·
(
D

x′

)2·x′

where zz ≥ z! for each z ≥ 1. Hence, this attack is prevented if

RI ≥ 4− log2(d) + max
x∈{0,1}

κ− x · log2(p)

4 · (4− x)
. (14)

Recalling the restriction 4RI−3 · d2 ≥ 2κ/2 discussed in the analysis for the in-
terpolation attack, we note that it will, in practice, not be possible to linearize
directly as assumed above. Rather, algorithms such as [7] must go to a higher
degree, and linearize a larger system, making the lower bound in Eq. (14) ex-
tremely conservative for preventing attacks of this kind. Even when ignoring the
issues of data complexity, we point out that the number of rounds necessary for
preventing interpolation attacks are largely sufficient for preventing linearization
strategies when κ = log2(p).

F.3 Gröbner Basis Attack

Given a system of ne nonlinear equations in nv variables, a Gröbner basis allows
to factorize this system of equations and find a solution (if it exists). We refer
to Section 7.4 for more details. Here we limit ourselves to recall that the cost
of this attack depends on the number of nonlinear equations, their degree, the
number of variables, and on the particular representation of the studied system.
Here we consider the two extreme cases: one in which the attacker only works
with the input and the output of the permutation (i.e., no additional variables
are introduced), and one in which the attacker introduces intermediate variables
in every round.
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Inputs and Outputs. The polynomial system in this modeling is the same
as described in Appendix F.2, i.e., 4 key variables with polynomials of degree
d2 ·4RI−3. The tools presented in Section 7.4 can be used for estimating how this
attack performs depending on the number of equations the attacker has access
to. Similar to what we described in Appendix F.2, this attack is optimized when
it is possible to directly linearize the system, meaning that Eq. (14) provides a
conservative lower bound on RI to prevent this strategy as well.

Intermediate Variables. For this strategy, we introduce additional variables
in each round in order to reduce the overall degree growth. For simplicity we
focus on a slightly modified permutation with only two external rounds: one
at the beginning and one at the end. We emphasize that adding the remaining
external rounds will not make the resulting equation system easier to solve.

In our representation, we replace both sums in the Lai–Massey construction
of each internal round by two new variables. More formally, let

z
(0)
i =

3∑
j=0

λ
(0)
j · xj , z

(1)
i =

3∑
j=0

λ
(1)
j · xj ,

where z
(0)
i , z

(1)
i are two new variables introduced in the i-th internal round. Using

this approach, each internal round adds two degree-2 equations. Moreover, we
use four variables for the key, and we introduce a layer of four new variables
after the first external round (i.e., before starting with the internal rounds in
our scenario) and after the last internal round (i.e., before the last external round
in our scenario). Note that for the first internal round we can reuse the variables
introduced after the first external round, and thus we do not need to add two
new variables.

In total, we have thus 4 variables for the key, 2 · 4 = 8 variables for the
transitions between the external and internal rounds, and 2(r − 1) variables for
r internal rounds. The number of equations is the same, and hence

ne = nv = 12 + 2(r − 1).

Of these equations, 8 are of degree d ≥ 3 and 4 + 2(r − 1) are of degree 4.
We implemented this modeling for an increasing number of r intermediate

rounds, and computed the associated grevlex Gröbner basis using the F4 algo-
rithm on the same setup described in Appendix H.2. The results are presented
in Table 3. Based on these results, we find it highly unlikely that the Gröbner
basis approach will outperform the other methods we have investigated. For a
rough comparison, consider the interpolation attack in Appendix F.2, which re-
quires r ' κ/4. Thus, to outperform this attack, any algorithm with constant
exponential growth will have to grow by at most a factor of 16 for any addi-
tional intermediate round. The growth we observe in our experiments seems to
increase from this factor. Indeed, the running time when going from 1 to 2 in-
ternal rounds is increased by a factor of around 15.5, and the factor between
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Table 3: Running time (in seconds) for the F4 algorithm on scaled down versions
of B over F7741. r denotes the number of internal rounds.

r 1 2 3 4

Running Time (s) 28 433 18408 639614∗

∗ The computation was not completed, but ran out of memory at the given time.

2 and 3 rounds is 42.5. The factor between r = 3, and the data point where
the computations for r = 4 ran out of memory is 34.7. This observation, along
with the conservative choice of only including two external rounds in these tests,
leads us to reasonably conjecture that the complexity of Gröbner basis attacks
greatly exceeds the complexity of interpolation attacks.

The conclusion does not change when the attacker covers 2 internal rounds
for free by exploiting the invariant subspace of the Lai–Massey construction.

G Preventing Infinitely Long Subspace Trails in
Lai–Massey Constructions

As shown in [20], a weakness of the Lai–Massey construction is the possibility
to choose a nonzero input difference such that the quadratic function in the I
rounds is not active. Here, we show how to choose the matrix MI in order to fix
this problem.

For reaching this goal, we follow the same strategy proposed for HadesMiMC
in [12]. Instead of talking of differences, we deal with subspaces and we make
use of the subspace trail notation introduced in [10].

Definition 1 ((Invariant) Subspace Trail [17, 18, 10]). Let I : Ftp → Ftp.
Let (U0, . . . ,Ur) denote a set of r + 1 subspaces with dim(Ui) ≤ dim(Ui+1). If
for each i ∈ {1, . . . , r} and for each ai ∈ Ft there exists ai+1 ∈ Ft such that
I(Ui + ai) ⊆ Ui+1 + ai+1, then (U0, . . . ,Ur) is a subspace trail of length r. If the
subspace is invariant (that is, Ui = Uj for each i, j = 0, . . . , r), the trail is called
an invariant subspace trail.

As in the case of HadesMiMC, the choice of the linear layer M plays a
crucial role for preventing subspace trails that can cover an arbitrary number of
rounds. Here we focus on the general case where

yi = xi + F

t−1∑
j=0

λ
(1)
j · xj ,

t−1∑
j=0

λ
(2)
j · xj , . . . ,

t−1∑
j=0

λ
(s)
j · xj

 .

We note that this includes both the nonlinear layer in I of the B permuta-
tion, defined over F4, and the nonlinear layer in each of the rounds of the HK

permutation, defined over F8.
For the follow-up, we recall the concept of infinitely long invariant/iterative

subspace trails.
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Definition 2 (Infinitely Long Invariant/Iterative Subspace Trail [12]).
Let (V0,V1, . . . ,Vl−1) be a constant-dimensional subspace trail for l rounds. We
call this subspace trail an infinitely long iterative subspace trail of period l for
the considered scheme if it repeats itself an arbitrary number of times, i.e., if

(V0,V1, . . . ,Vl−1,V0,V1, . . . ,Vl−1, . . . ,V0,V1, . . . ,Vl−1, . . . )

is an infinitely long subspace trail.

G.1 Preventing Infinitely Long Subspace Trails

An infinitely long subspace trail can be used in order to find a distinguisher for
the internal rounds of B. In particular, since B is unkeyed, two main issues arise
for the internal rounds. First, it may be possible to prepare two inputs whose
difference lies in a known subspace with a probability of 1 after an arbitrary
number of internal rounds. Secondly, we may also find a single input which leads
to a linearization of an arbitrary number of internal rounds. However, both of
these approaches are only possible for vulnerable matrices. Since B is used in an
Even–Mansour construction, we want to avoid this behavior, and therefore in
this section we show how to find secure matrices. For further information about
this attack vector we refer to [12, 4].

As a starting point for our analysis, we first define the subspaces X(i).

Definition 3. For i ≥ 0 and t ≥ 2, let X(i) ⊆ Ftp be the subspace defined as

X(i) =

{
x ∈ Ftp

∣∣∣∣∣
t−1∑
l=0

(
λ
(h)
l ·

(
M j × x

)
l

)
= 0 ∈ Ft for each j ≤ i, 0 ≤ h ≤ s

}

=

s⋂
h=0

{
x ∈ Ftp

∣∣∣∣∣
t−1∑
l=0

(
λ
(h)
l ·

(
M j × x

)
l

)
= 0 ∈ Ft for each j ≤ i

}
. (15)

Moreover, let I be the largest i ≥ t− 1 such that 1 ≤ dim(X(i)) ≤ t− 1 (that is,
dim(X(I)) ≥ 1 and dim(X(I+1)) = 0).

By taking a pair of texts in the same coset of X(i), the first i rounds are
essentially linear, since the input difference of F is always zero. Depending on
M , this behavior may repeat for an arbitrary number of rounds, and our goal is
to avoid this by choosing M properly.

Inactive F Function. We will first focus on the case where F is not active
(i.e., the input differences are always zero). This corresponds to the case in which
the inputs of F are elements of X(i) for a certain i. Working as in [12], we derive
the following result.

Proposition 3. A subspace I ⊂ Ftp defines an infinitely long subspace trail with

inactive F if and only if I ⊆ X(0) and M × I = I.
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Proof. Clearly, a subspace I ⊆ X(0) fulfilling M × I = I generates an infinitely
long invariant subspace trail with inactive F functions, since this function is
inactive in the first round and then I is repeated infinitely.

Next, we show that, given an infinitely long invariant subspace trail I with
inactive F functions, it must satisfy I ⊆ X(0) and M × I = I. Indeed, I ⊆ X(0),
otherwise F would be active in the first round. Moreover, I is invariant if and
only if M × I = I. The result follows immediately.

It remains to show that the nonexistence of infinitely long invariant subspace
trails implies the nonexistence of infinitely long iterative subspace trails. For this
purpose, we prove that if an infinitely long iterative subspace trail with inactive
F functions exists, then an invariant one exists as well. Let {I,M · I,M2 ·
I, . . . ,M l−1 · I} be an l-round iterative subspace trail. Let I′ := 〈I,M · I,M2 ·
I, . . . ,M l−1 · I〉. By definition, I′ generates an invariant subspace. Moreover, it
is a non-trivial subspace of Ftp (that is, I′ ⊂ Ftp) since on such a subspace F is
never active by assumption.

Finding a Subspace Trail. In order to prevent all invariant subspace trails with
inactive F functions, it is thus sufficient to determine that the condition I =
M × I is never reached for a proper subspace I ⊆ X(0). This is the case if
dim (I ∩ (M × I)) ≤ dim (I)− 1, which means that the dimension of I exceeds
the dimension of I ∩ (M × I). Further, note that an iterative subspace trail
of the form {I,M · I,M2 · I, . . . ,M l−1 · I} does not exist either in this case,
since otherwise U = M × U for U = 〈I,M · I,M2 · I, . . . ,M l−1 · I〉 ⊆ X(0) =⇒
dim (U) < t, where l ∈ N denotes the period of the iterative subspace trail.

Active F Function. In order to provide security, we must also consider in-
finitely long subspace trails in which the input difference of the F function is
nonzero. If such a subspace exists, it would be possible to skip the middle rounds
without increasing the degree, which reduces the resistance against algebraic at-
tacks.

To give a concrete example, consider again the case t = 4, where λ0 = λ2 = 1
and λ1 = λ3 = −1. Moreover, let

MI =


µ0 1 1 1
1 µ1 1 1
1 1 µ1 1
1 1 1 µ1


for µ0, µ1 ∈ Fp. The two-dimensional subspace I = 〈(1, 0, 0, 0), (0, 1, 1, 1)〉 ⊆ F4

p

generates an infinitely long invariant subspace trail in which F is active. Indeed,
given (x, y, y, y) ∈ I, note that the input of F is (x−y, x−y, x−y, x−y), which
is in general not equal to zero.

In the following, we give a necessary condition that, if satisfied, guarantees
that no infinitely long invariant subspace trail with active F functions exists.
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Proposition 4. If a subspace I ⊂ Ftp defines an infinitely long invariant sub-
space trail with active F functions, then

〈(1, 1, . . . , 1)〉 ⊆ I.

Proof. Let I be an invariant subspace trail. For each x ∈ I,

M × (x0 + F (x0, . . . , xt−1), x1 + F (x0, . . . , xt−1), . . . , xt−1 + F (x0, . . . , xt−1))T ∈ I,

or equivalently M × x+ F (x0, . . . , xt−1) ·M × (1, 1, . . . , 1)T ∈ I, i.e.,

M × I + 〈M × (1, 1, . . . , 1)T 〉 = I =⇒ M × (I + 〈(1, 1, . . . , 1)T 〉) = I

where M is invertible. Since I is an invariant subspace, we have that

dim
(
M × (I + 〈(1, 1, . . . , 1)T 〉)

)
= dim

(
I + 〈(1, 1, . . . , 1)T 〉

)
= dim(I) ,

and hence

〈(1, 1, . . . , 1)T 〉 ⊆ I.

Finding a Subspace Trail. We can determine the existence of infinitely long
subspace trails in the case of active F functions with a simple method. First, we
start with the subspace I0 = 〈(1, . . . , 1)〉. If I0 = M × I0, I0 generates such a
subspace trail and M is vulnerable. If I0 6= M ×I0, we define I1 = 〈I0,M ×I0〉
and again determine if I1 = M × I1. Note that, since I0 6= M × I0 and M is
nonzero, dim(I1) > dim(I0). Eventually, we will either reach full dimension or
an invariant subspace. If the largest possible dimension t is reached, no infinitely
long invariant subspace trail for active F functions exists.

G.2 Sufficient Condition for Preventing Infinitely Long Subspace
Trails

Note that in the approaches described above, the existence of an infinitely long
subspace trail relies on a matrix M for which a nontrivial M -invariant subspace
exists. Equivalently, a matrix M for which no M -invariant subspace exists is
considered secure. Therefore, we can reuse [12, Proposition 13], i.e., we determine
if the minimal polynomial of a given t × t matrix has maximum degree t and
is irreducible. If this is the case, no infinitely long subspace trails with inactive
or active F functions exist, and the same result can also be applied to ME in
B. We refer to Algorithm 8 for the detailed approach. We point out that this
approach provides a sufficient condition for preventing infinitely long subspace
trails which is not necessary in general.
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Algorithm 8: Determining if a given matrix is potentially vulnerable
to subspace trails in Hydra.

Data: Matrix M ∈ Fn×np , where n ∈ {4, 8}.
Result: False if there is a nonzero chance of vulnerability, True otherwise.

1 l← n.
2 M ′ ←M .
3 for i← 0 to l do
4 if deg(φM′) < n or φM′ is not irreducible then
5 return False

6 M ′ ←M ×M ′.
7 return True

H Details about the Security Analysis of HK

H.1 Maximum Differential Probability of a Generalized Lai–Massey
Construction

Lemma 1. Let t ≥ 2. Let ω0, ω1, ω2, . . . , ωt−1 ∈ Fp \ {0} where
∑t−1
h=0 ωh = 0.

Let S
′′

: Ftp → Ftp be defined as S
′′
(x0, x1, . . . , xt−1) = y0‖y1‖ . . . ‖yt−1 where

∀l ∈ {0, 1, . . . , t− 1} : yl = xl +

(
t−1∑
h=0

ωh · xh

)2

.

Then, for each ∆I , ∆O ∈ Ftp

Prob(∆I → ∆O) =

{
p−1 if ∆O[0] = ∆O[1] = · · · = ∆O[t− 1](6= 0)

0 otherwise
.

Proof. We count the number of solutions x ∈ Ftp of S
′′
(x+∆I)− S

′′
(x) = ∆O,

that is, of (
t−1∑
h=0

ωh · (xh +∆I [l])

)2

−

(
t−1∑
h=0

ωh · xh

)2

= ∆O[l]

for each l ∈ {0, 1, . . . , t − 1}. First of all, such system of equations admits so-
lution(s) only if ∆O[l] = ∆O[j] for each l, j ∈ {0, 1, . . . , t − 1}. Secondly, it
is not hard to check that each one of the equations in the system is linear in
x0, x1, . . . , xt−1. Hence, the number of solutions is at most pt−1 (t− 1 variables
are free to take any possible value, while the remaining one is fixed), which

implies that Prob(∆I → ∆O) ≤ pt−1

pt = p−1.

We emphasize that the previous result can be easily generalized to the case
in which the quadratic function is replaced by a generic degree-d function. In
such a case, its maximum differential probability is (d− 1)/p.
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H.2 Details About Gröbner Basis Attacks Against HK

This appendix focuses on Gröbner basis attacks against HK. We start by briefly
discussing the case where we only keep the 12 initial variables y, z and K, be-
fore we consider in greater detail the case where the intermediate rounds of HK

are modeled with extra variables and equations. The final output of Hydra is
assumed to be known in all scenarios.

Polynomial System with Initial Variables We make two observations on
HK(y, z), as described in Section 5.4. Firstly, the initial round J0 only affects
y and z. Secondly, Ji includes only a single multiplication. Thus we can, after
taking suitable linear combinations, write the output of HK(y, z) as one polyno-
mial in degree 2RH , and seven polynomials of degree 2RH−1. Upon generalizing
this second point, we find that we can further write HK(y, z) out as eight poly-
nomials; one in degree 2RH , one in degree 2RH−1, and so on, all the way down
to degree 2RH−7. Moreover, this maximal degree will only be in the eight vari-
ables from y and z (the K-variables will only appear in monomials of smaller
degree, due to the first observation). A similar statement holds for successive
heads, HK (Ri(y, z)), with each degree multiplied by a factor 2i. Hence, while an
attacker can use more output to sample more polynomials, the degree of these
polynomials increases exponentially, thus limiting their use in the polynomial
solving process. As noted in Section 7.3, we already require RH ≥ 24 (and we
typically require an even greater number due to Eq. (11)). At these magnitudes,
we find that modeling with only the initial variables will simply not be compet-
itive when compared to other attack approaches.

Setup and Reduction of the Intermediate Variable Polynomial System
Each head HK included in this modeling now increases the number of variables,
so the attacker wants to include as few of them as possible. On the other hand, as
HK depends on the 12 unknown field elements comprising y, z and K, at least two
heads are needed to construct an (over-)determined polynomial system. Thus,
we choose to set up the system of equations using HK(y, z) and HK (R1(y, z)).

Since there is only a single squaring repeated in SJ , we can, after taking suit-
able linear combinations, model each intermediate round Jj with one quadratic
equation and seven linear equations, in eight new variables. Similarly, the rolling
function R1 can be modeled using two quadratic equations and six linear equa-
tions in eight new variables. The 16 output elements ofHK(y, z) andHK (R1(y, z))
are assumed known, and twelve variables are used for the input y, z and K. We
use the linear equations in the system to eliminate variables. Further 16 variables
can be eliminated using the known output. Assuming these relations are linear
independent, we can reduce to a smaller system of 2r + 2 quadratic equations
in 2r − 2 variables, where r is the number of rounds. This is indeed the case we
have observed in all our experiments.

Practical Tests We have tested the difficulty of computing a grevlex Gröbner
basis for the reduced systems described above, with a varying number of rounds
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Table 4: Running time (in seconds) and step degrees in the F4 algorithm when
solving polynomial systems from Hydra over F7741.

r Step Degrees Total Time Time Max Step Time Random

6 2345 0.1 0.1 0.1

7 234555 0.9 0.4 0.5

8 234566 13.4 7.3 8.8

9 2345676 293.8 198.4 229.2

10 23456786 8799.5 6250.7 7740.8

11 234567888 229606.8 89768.6 209272.9

r, over F7741. The tests have been performed running the F4 algorithm imple-
mented in the computer algebra system MAGMA V2.22-6, on 72 x Intel(R)
Xeon(R) CPU E5-2699 v3 @ 2.30GHz, with 252 GiB RAM.

The results are presented in Table 4. ‘Step Degrees’ lists the degree of the
polynomials associated with each step. The maximal step, i.e., the most costly
step in terms of running time, is underlined. We find that all tested cases behave
like quadratic semi-regular systems of 2r+ 2 polynomials in 2r− 2 variables. In
particular, the degree of the maximal step coincides with the degree of regularity
(as described in Section 7.4) for such systems. We present the total running time
of F4, as well as the time spent at the maximal step, to give an impression of how
the problem scales as r increases. For comparison, we also include the running
time for random quadratic systems of 2r+2 polynomials in 2r−2 variables (i.e.,
the coefficients of all possible monomials up to degree two is a random element
of Fp), with a unique solution. Random systems are believed to be semi-regular
with high probability (and they indeed turned out to be so in our tests), and
the practical hardness of solving them has been studied in cryptographic solving
challenges11 [21]. In our tests, the step degrees for the random systems coincide
with the associated systems from Hydra, yet the time for solving the former
systems are consistently smaller.

Finally, we point out that the unique solution can be directly read from the
grevlex Gröbner basis in all our experiments. Hence, there is no need for any
further steps in the solving process.

Adding 2 Extra Rounds Due to the above results, we conclude that the
Gröbner basis attack against HK is comparable to that of of solving a semi-
regular system with 2r + 2 quadratic polynomials in 2r − 2 variables. However,
we note that not all polynomials in our modeling will contain every variable,
which adds a certain structure that an attacker might be able to use when
reducing the matrices encountered in F4. To account for this property, we add
two extra rounds on top of this baseline (in addition to the conservative choice
of using ω = 2 for the linear algebra constant).

11 https://www.mqchallenge.org/
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I Full MPC Benchmarks

Table 5 and Table 6, we give the full MPC benchmarks. Compared to Table 1,
we additionally compare Hydra to GMiMCerf and MiMC-CTR and give bench-
marks for more state sizes t. Looking at MiMC, one can observe, that it has a
fast online phase performance, but it requires significantly more data transmis-
sion between the parties. Furthermore, its large number of multiplications also
leads to an expensive offline phase. GMiMC, on the other hand, has a decent
performance for very small t, but its number of rounds does not scale well with
larger state sizes. Consequently, our benchmark show that it is somewhat com-
petitive for t = 8, but its runtime and data transmission explodes with larger
t. In any case, Hydra has the faster offline phase performance and also a com-
parable online phase performance with less data communication compared to
MiMC and GMiMC, with the advantage of Hydra growing with the state size
t.

J Effect of the linear layer

In Section 8, we noted that HadesMiMC has a slow online phase performance
when evaluated in a LAN setting due to having many MDS matrix multiplica-
tions with bad plain performance. To highlight this effect, we compare Hydra
and HadesMiMC (with and without its linear key schedule) to a (insecure)
version of HadesMiMC (dubbed HadesMiMC-circ) for which we replaced the
random MDS matrices with the matrix M = circ(2, 1, 1, . . . , 1). The correspond-
ing matrix-vector multiplications can purely be implemented using additions.
In Table 7 one can observe that this change, as expected, has no effect on the
offline phase performance and the communication between the parties. However,
the runtime of the online phase became significantly faster and is now twice as
fast as the online phase of Hydra. However, combining both phases, one can
observe that Hydra still leads to faster runtimes and less communication due
to overall having less multiplications, with larger state sizes further increasing
the advantage of Hydra.
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Table 5: Online and offline phase performance in MPC for different constructions
with state sizes t using a secret shared key. Prec is the number of precomputed
elements (multiplication triples, squares, inverses). Depth describes the number
of online communication rounds. The runtime is averaged over 200 runs. Bold
values are best values with key schedules, Italic the best without.

Offline Online Combined
Cipher Rounds Prec. Time Data Depth Time Data Time Data

ms MB ms kB ms MB

t = 8:

Hydra 6, 42, 39 171 39.99 3.86 131 6.81 5.37 46.80 3.87
Ciminion (No KS)a 90, 14 148 35.64 3.34 107 3.98 5.02 39.62 3.35
Ciminion 90, 14 867 227.47 19.55 735 21.81 28.02 249.29 19.58
HadesMiMC 6, 71 238 52.66 5.37 79 17.58 5.99 70.24 5.38
Rescue (No KS)a 10 480 129.47 10.83 33 6.95 11.80 136.42 10.84
Rescue 10 960 254.80 21.65 33 12.65 23.32 267.45 21.68
GMiMC 177 354 92.78 7.99 179 5.96 8.78 98.74 8.00
MiMC 81 1296 372.63 29.23 83 6.28 31.38 378.91 29.26

t = 16:

Hydra 6, 42, 39 212 52.72 4.78 132 9.87 6.81 62.59 4.79
Ciminion (No KS)a 90, 14 208 50.51 4.69 111 5.22 7.06 60.74 4.70
Ciminion 90, 14 1647 458.36 37.13 1455 49.75 53.11 508.11 37.19
HadesMiMC 6, 71 334 84.86 7.54 79 69.08 8.42 153.95 7.55
Rescue (No KS)a 10 960 263.58 21.65 33 18.80 23.45 282.38 21.68
Rescue 10 1920 531.54 43.30 33 38.68 46.49 570.21 43.35
GMiMC 546 1092 292.14 24.63 548 15.81 26.62 307.96 24.66
MiMC 81 2592 770.12 58.46 83 6.21 62.62 776.33 58.52

t = 32:

Hydra 6, 42, 39 294 72.67 6.63 134 13.36 9.69 86.03 6.64
Ciminion (No KS)a 90, 14 328 80.79 7.40 119 5.42 11.16 86.21 7.41
Ciminion 90, 14 3207 910.11 72.30 2895 84.37 103.29 994.47 72.41
HadesMiMC 6, 71 526 137.49 11.87 79 225.86 13.29 363.35 11.88
Rescue (No KS)a 10 1920 538.19 43.30 33 47.35 46.74 585.54 43.35
Rescue 10 3840 1253.76 86.60 33 109.80 92.82 1363.56 86.70
GMiMC 2114 4228 1424.02 95.35 2116 57.97 102.14 1481.99 95.46
MiMC 81 5184 1713.06 116.91 83 13.77 125.08 1726.83 117.04

a Assumes round keys are present, i.e., no key schedule computation in MPC.
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Table 6: Online and offline phase performance in MPC for different constructions
with state sizes t using a secret shared key. Prec is the number of precomputed
elements (multiplication triples, squares, inverses). Depth describes the number
of online communication rounds. The runtime is averaged over 200 runs. Bold
values are best values with key schedules, Italic the best without.

Offline Online Combined
Cipher Rounds Prec. Time Data Depth Time Data Time Data

ms MB ms kB ms MB

t = 64:

Hydra 6, 42, 39 458 119.07 10.33 138 20.57 15.45 139.64 10.35
Ciminion (No KS)a 90, 14 568 154.38 12.81 135 8.05 19.35 162.42 12.83
Ciminion 90, 14 6327 2262.55 142.64 5775 178.66 203.64 2441.21 142.84
HadesMiMC 6, 71 910 251.44 20.53 79 899.55 23.02 1150.99 20.55
Rescue (No KS)a 10 3840 1226.39 86.60 33 144.14 93.34 1370.53 86.70
Rescue 10 7680 2851.56 173.20 33 402.34 185.50 3253.90 173.39
GMiMC 8322 16644 6253.29 375.36 8324 255.78 400.63 6509.07 375.76
MiMC 81 10368 4060.68 233.82 83 23.71 250.01 4084.39 234.07

t = 96:

Hydra 6, 42, 39 622 172.42 14.03 142 33.99 21.21 206.40 14.05
Ciminion (No KS)a 90, 14 808 213.55 18.22 151 9.76 27.54 223.31 18.25
Ciminion 90, 14 9447 3693.60 212.98 8655 257.04 303.99 3950.64 213.28
HadesMiMC 6, 71 1294 344.34 29.19 79 2114.35 32.74 2458.69 29.22
Rescue (No KS)a 10 5760 2011.83 129.90 33 303.15 139.93 2314.98 130.04
Rescue 10 11520 4457.93 259.80 33 803.78 278.17 5261.71 260.08
GMiMC 18626 37252 12907.70 840.11 18628 547.09 895.74 13454.79 841.01
MiMC 81 15552 5771.92 350.73 83 27.49 374.94 5799.41 351.11

t = 128:

Hydra 6, 42, 39 786 206.08 17.72 146 37.49 26.97 243.58 17.75
Ciminion (No KS)a 90, 14 1048 274.90 23.63 167 10.70 35.74 285.60 23.67
Ciminion 90, 14 12567 4854.43 283.32 11535 328.79 404.34 5183.22 283.72
HadesMiMC 6, 71 1678 463.59 37.85 79 4371.02 42.47 4834.61 37.89
Rescue (No KS)a 10 7680 2943.21 173.20 33 737.84 186.52 3681.05 173.39
Rescue 10 15360 5934.39 346.40 33 1549.16 370.84 7483.55 346.77
GMiMC 33026 66052 23295.70 1489.61 33028 955.50 1587.45 24251.20 1491.20
MiMC 81 20736 7588.20 467.64 83 35.43 499.86 7623.63 468.14

a Assumes round keys are present, i.e., no key schedule computation in MPC.
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Table 7: Online and offline phase performance in MPC for different constructions
with state sizes t using a secret shared key. Prec is the number of precomputed
elements (multiplication triples, squares, inverses). Depth describes the number
of online communication rounds. The runtime is averaged over 200 runs. Bold
values are best values with key schedules, Italic the best without.

Offline Online Combined
Cipher Rounds Prec. Time Data Depth Time Data Time Data

ms MB ms kB ms MB

t = 8:

Hydra 6, 42, 39 171 39.99 3.86 131 6.81 5.37 46.80 3.87
HadesMiMC (No KS)a 6, 71 238 51.49 5.37 79 10.67 5.99 62.16 5.38
HadesMiMC 6, 71 238 52.66 5.37 79 17.58 5.99 70.24 5.38
HadesMiMC-circ (No KS)a 6, 71 238 51.06 5.37 79 3.57 5.99 54.62 5.38
HadesMiMC-circ 6, 71 238 55.10 5.37 79 3.82 5.99 58.92 5.38

t = 16:

Hydra 6, 42, 39 212 52.72 4.78 132 9.87 6.81 62.59 4.79
HadesMiMC (No KS)a 6, 71 334 88.46 7.54 79 41.36 8.42 129.82 7.55
HadesMiMC 6, 71 334 84.86 7.54 79 69.08 8.42 153.95 7.55
HadesMiMC-circ (No KS)a 6, 71 334 89.95 7.54 79 5.84 8.42 105.99 7.55
HadesMiMC-circ 6, 71 334 83.93 7.54 79 6.06 8.42 99.78 7.55

t = 32:

Hydra 6, 42, 39 294 72.67 6.63 134 13.36 9.69 86.03 6.64
HadesMiMC (No KS)a 6, 71 526 138.03 11.87 79 128.36 13.29 266.38 11.88
HadesMiMC 6, 71 526 137.49 11.87 79 225.86 13.29 363.35 11.88
HadesMiMC-circ (No KS)a 6, 71 526 137.72 11.87 79 6.14 13.29 144.86 11.88
HadesMiMC-circ 6, 71 526 138.15 11.87 79 6.70 13.29 144.85 11.88

t = 64:

Hydra 6, 42, 39 458 119.07 10.33 138 20.57 15.45 139.64 10.35
HadesMiMC (No KS)a 6, 71 910 242.49 20.53 79 411.90 23.02 654.39 20.55
HadesMiMC 6, 71 910 251.44 20.53 79 899.55 23.02 1150.99 20.55
HadesMiMC-circ (No KS)a 6, 71 910 242.01 20.53 79 11.40 23.02 253.51 20.55
HadesMiMC-circ 6, 71 910 244.90 20.53 79 11.53 23.02 256.33 20.55

t = 128:

Hydra 6, 42, 39 786 206.08 17.72 146 37.49 26.97 243.58 17.75
HadesMiMC (No KS)a 6, 71 1678 456.94 37.85 79 1864.89 42.47 2321.83 37.89
HadesMiMC 6, 71 1678 463.59 37.85 79 4371.02 42.47 4834.61 37.89
HadesMiMC-circ (No KS)a 6, 71 1678 477.78 37.85 79 21.48 42.47 505.26 37.89
HadesMiMC-circ 6, 71 1678 463.89 37.85 79 21.83 42.47 485.72 37.89

a Assumes round keys are present, i.e., no key schedule computation in MPC.
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