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Abstract

A wiretap coding scheme (Wyner, Bell Syst. Tech. J. 1975) enables Alice to reliably commu-
nicate a message m to an honest Bob by sending an encoding c over a noisy channel ChB, while
at the same time hiding m from Eve who receives c over another noisy channel ChE.

Wiretap coding is clearly impossible when ChB is a degraded version of ChE, in the sense that
the output of ChB can be simulated using only the output of ChE. A classic work of Csiszár and
Korner (IEEE Trans. Inf. Theory, 1978) shows that the converse does not hold. This follows
from their full characterization of the channel pairs (ChB,ChE) that enable information-theoretic
wiretap coding.

In this work, we show that in fact the converse does hold when considering computational
security; that is, wiretap coding against a computationally bounded Eve is possible if and only if
ChB is not a degraded version of ChE. Our construction assumes the existence of virtual black-
box (VBB) obfuscation of specific classes of “evasive” functions that generalize fuzzy point
functions, and can be heuristically instantiated using indistinguishability obfuscation. Finally,
our solution has the appealing feature of being universal in the sense that Alice’s algorithm
depends only on ChB and not on ChE.
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1 Introduction

The wiretap channel, first introduced by Wyner [Wyn75], captures a unidirectional communication
setting in which Alice transmits an encoding of a message across two discrete memoryless channels:
a main channel (Bob’s channel) for the intended receiver Bob and an eavesdropping channel (Eve’s
channel) for an adversarial receiver Eve. Two conditions are desired: correctness and security.
Informally, correctness guarantees that Bob can decode the message with overwhelming probability,
and security requires that Eve learn essentially nothing about the message. The wiretap coding
problem is then to find a (randomized) encoding algorithm that satisfies both conditions. The
wiretap coding question represents a basic and fundamental question regarding secure transmission
over noisy channels, and indeed Wyner’s work has been incredibly influential: Google Scholar
reports that the literature citing [Wyn75] surpasses 7000 papers, and Wyner’s work is considered
the foundational work on using noisy channels for cryptography. Much of the interest in this
question comes from its relevance to physical layer security, a large area of research that exploits
physical properties of communication channels to enhance communication security through coding
and signal processing. See, e.g., [PS17] for a survey.

The classic work of Csiszár and Korner [CK78] completely characterized the pairs of channels
for which wiretap coding is possible information theoretically. Roughly speaking, their work defined
a notion of one channel being less noisy than the other, and they proved that wiretap coding is
possible information theoretically if and only if Eve’s channel is not less noisy than Bob’s channel.

To illustrate this, let’s consider a specific case: suppose that Bob’s channel is a binary symmetric
channel, flipping each bit that Alice sends with probability p = 0.1; at the same time, suppose Eve’s
channel is a binary erasure channel, erasing each bit that Alice sends (i.e., replacing it with ⊥)
with probability ϵ. Then, it turns out [Nai10] that Bob’s channel is less noisy than Eve’s channel if
and only if ϵ > 0.36 = 4p(1− p), and thus by [CK78], information-theoretic wiretap coding is only
possible under this condition.

A new feasibility result for wiretap coding. In cryptography, we often take for granted that
assuming adversaries to be computationally bounded should lead to improved feasibility results.
Indeed, we have seen this many times especially in the early history of cryptography: from re-usable
secret keys for encryption [BM84, Yao82] to the feasibility of secure multi-party computation with
a dishonest majority [GMW87]. However, despite the popularity of Wyner’s work, no improvement
over [CK78] in terms of feasibility against computationally bounded adversaries has been obtained
in over 40 years.

Nevertheless, in this work, we ask: is it possible to obtain new feasibility results for wiretap
coding for computationally bounded eavesdroppers?

Taking a fresh look at this scenario, we observe that if ϵ ≤ 0.2 = 2p, then wiretap coding is
completely impossible: If ϵ ≤ 0.2 = 2p, then Eve can simulate Bob’s channel. For example, if
ϵ = 0.2 = 2p, then Eve can assign each ⊥ that Eve receives uniformly to {0, 1}, and this would
exactly yield a binary symmetric channel with flip probability p = 0.1, thus exactly simulating
the distribution received by Bob. Since wiretap coding is non-interactive, if Bob can recover the
message with high probability, then so can Eve, violating security. Indeed, whenever Eve can
efficiently simulate Bob’s channel, we say that Bob’s channel is a degraded version of Eve’s channel.
When this is true, wiretap coding is clearly impossible, even for efficient eavesdroppers Eve.

In our main result, we show that assuming secure program obfuscation for simple specific
classes of functionalities (as we describe in more detail below), the above limitation presents the
only obstacle to feasibility of wiretap coding against computationally bounded eavesdroppers. In
particular, for the scenario described above, we show that wiretap coding is possible whenever
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ϵ > 0.2 = 2p, even though [CK78, Nai10] showed that information-theoretic wiretap coding is
impossible for ϵ < 0.36 = 4p(1 − p). More generally, we show that wiretap coding is possible
whenever Bob’s channel is not a degraded version of Eve’s channel. We now describe our results
in more detail.

1.1 Our Contributions

Let ChB represent Bob’s channel, and let ChE represent Eve’s channel. Observe that the input
alphabets for the channels ChB and ChE must be identical; we will denote this input alphabet by
X , and consider 1-bit messages for simplicity1.

We first consider an oracle-based model in which a wiretap coding scheme consists of two
algorithms:

• Enc(1λ,m): The (randomized) encoder takes as input a security parameter λ and a message
bit m ∈ {0, 1}. The output of Enc consists of: (1) a string c ∈ X ∗, and (2) a circuit
describing a function f . The string c is transmitted over channels ChB and ChE to Bob and
Eve respectively. However, both Bob and Eve are granted oracle access to f .

• Decf (y): The deterministic decoder is a polynomial-time oracle algorithm with oracle access
to f . Decf takes as input the string y received by Bob over his channel.

We obtain our main result in two steps. In our first and primary step, we prove:

Theorem 1.1 (Informal). For any pair of discrete memoryless channels (ChB,ChE) where ChB
is not a degraded version of ChE, there exist PPT encoding and decoding algorithms (Enc,Dec(·))
which achieve:

• Correctness: For all messages m ∈ {0, 1},

Pr[Decf (1λ,ChB(c)) = m | (f, c)← Enc(1λ,m)] ≥ 1− negl(λ)

• Security: For all computationally unbounded adversaries A(·) that are allowed to make poly-
nomially many queries to their oracle,

Pr[Afb(1λ,ChE(cb)) = b | (fb, cb)← Enc(1λ, b)] ≤ 1

2
+ negl(λ)

where b is uniformly distributed over {0, 1}.

Theorem 1.1 can be viewed as an unconditional construction using an ideal obfuscation of the
oracle f . Our use of obfuscation in this context was inspired by the recent work of Agrawal et
al. [AIK+21], which used ideal obfuscation to obtain a new feasibility result for secure computation
using unidirectional communication over noisy channels (see Section 1.2 for comparison and more
related work).

In our second step, we show how to bootstrap from Theorem 1.1 to obtain wiretap coding in
the plain model secure against computationally bounded adversaries, via a suitable form of cryp-
tographic program obfuscation. More concretely, we use the notion of virtual black-box (VBB)
obfuscation for evasive circuits [BBC+14], for a specific class of evasive circuits that we call gener-
alized fuzzy point functions, and with a very simple kind of auxiliary information that corresponds
to the message that Eve receives when Alice transmits a uniformly random message (see Section 7
for details). Using this kind of obfuscation, we obtain the following result in the plain model:

1In the computational setting, any wiretap coding scheme for 1-bit messages can be bootstrapped into one that
encodes long messages with rate achieving the capacity of ChB via the use of a standard hybrid encryption technique.
(See the full version or the supplementary material.)
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Theorem 1.2 (Informal). Assume that O is a secure evasive function obfuscation scheme for
the class of generalized fuzzy point functions. Then, for any pair of discrete memoryless channels
(ChB,ChE) where ChB is not a degraded version of ChE, there exist PPT encoding and decoding
algorithms (Enc,Dec) which achieve:

• Correctness: For all messages m ∈ {0, 1},

Pr[Dec(1λ,O(f),ChB(c)) = m | (f, c)← Enc(1λ,m)] ≥ 1− negl(λ)

• Security: For all computationally bounded adversaries A,

Pr[A(1λ,O(fb),ChE(cb)) = b | (fb, cb)← Enc(1λ, b)] ≤ 1

2
+ negl(λ)

where b is uniformly distributed over {0, 1}.
Note that since O(f) can be made public to both Bob and Eve, it can be communicated by

using a standard encoding scheme for ChB, with no security requirements.

On instantiating obfuscation. We conjecture that indistinguishability obfuscation (iO) pro-
vides a secure realization of the obfuscation needed in our wiretap coding scheme. The recent work
of [JLS21] provides a construction of iO from well-studied hardness assumptions, and thus gives
a conservative and explicit candidate realization. We provide several arguments in favor of our
conjecture (see Section 7 for details regarding all the points below):

• First, we stress that VBB obfuscation for evasive circuit families is not known to be subject
to any impossibility results, under any hardness assumptions, even wildly speculative ones.
This is because the notion of evasiveness that we consider is statistical in the following sense:
even a computationally unbounded Eve, that can make any polynomially bounded number
of queries to our oracle, cannot find an input z to the oracle f such that f(z) = 1. This
property rules out all known techniques for proving impossibility of obfuscation that we are
aware of (c.f. [BGI+01, GK05]). But in fact, our situation is even further away from impos-
sibility results because we obfuscate simple distributions of evasive functions that generalize
random fuzzy point functions, and only need to leak a simple auxiliary information about the
obfuscated function.

• Furthermore, in fact, the work of [BMSZ16] gives a construction of VBB obfuscation for
evasive circuits from multilinear maps, which is designed to be immune to all known attacks
on multilinear map candidates, and has never been successfully attacked.

• Finally, indistinguishability obfuscation is a “best-possible obfuscation” [GR07], and there-
fore, roughly speaking, if any way exists to securely realize the ideal oracle in our construction
to achieve wiretap coding, then using iO must also yield secure wiretap coding.

Optimal-rate wiretap coding. We stress that the problem of achieving asymptotically optimal
rate follows almost immediately from our solution to the feasibility question above. This is because
the feasibility solution can be used to transmit a secret key, and then the encrypted message can
be transmitted using any reliable coding scheme to Bob. The security of encryption will ensure
that even if Eve learns the ciphertext, because she is guaranteed not to learn the encryption key
due to our solution to the feasibility problem above, the (computationally bounded) Eve cannot
learn anything about the message. Using standard Rate 1 symmetric key encryption, therefore, we
achieve asymptotic wiretap coding rate equal to the capacity of Bob’s channel, regardless of the
quality of Eve’s channel.
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Universal wiretap coding. An appealing feature of our solution to the wiretap problem is that
it gives a universal encoding, meaning that (Enc,Dec) depend only on the main channel ChB and
not on the eavesdropper’s channel ChE. This is not possible in the information-theoretic regime.

1.2 Related Works

Our work was inspired by the recent work of Agrawal et al. [AIK+21], who proposed a similar
obfuscation-based approach for establishing a feasibility result for secure computation over unidi-
rectional noisy channels. In contrast to our work, the use of ideal obfuscation in [AIK+21] applies
to more complex functions that are not even “evasive” in the standard sense. We stress that beyond
inspiration and a common use of obfuscation, there is no other technical overlap between [AIK+21]
and our work.

Another closely related line of work studies the notion of fuzzy extractors, introduced by Dodis
et al. [DORS08]. A fuzzy extractor can be used to encode a message m in a way that: (1) any
message m′ which is “close” to m (with respect to some metric) can be used to decode m, and (2)
if m has sufficiently high min-entropy, its encoding hides m. The possibility of constructing strong
forms of computational fuzzy extractors from strong forms of fuzzy point function obfuscation was
discussed by Canetti et al. [CFP+21] and Fuller et al. [FMR20]. The wiretap coding problem can
be loosely cast as a variant of fuzzy extractors where the metric is induced by the main channel ChB
and security should hold with respect to a specific entropic source defined by the eavesdropper’s
channel ChE. The latter relaxation makes the notion of obfuscation we need qualitatively weaker.

Various extensions to the wiretap setting have been studied in the information theoretic setting,
and we discuss a very limited subset here that relate most closely to our work. Further generaliza-
tions were made by Liang et al’s [LKP09] introduction of the compound wiretap channel, in which
there are finitely many honest receiver and finitely many eavesdroppers, modeling a transmitter’s
uncertainty about the receiver’s channel and the eavesdropper’s channel. The upper and lower
bounds on secrecy capacity of the compound wiretap channel suggest the impossibility of positive
rate universal encodings. Maurer [Mau93] showed that a public channel and interaction between
the transmitter and honest receiver circumvent the necessity of ChE being not less noisy than ChB
for security. We stress that the focus of our paper is the non-interactive case, without any feedback
channels. Nair [Nai10] studied information-theoretic relationships between BSC and BEC channels.

Bellare et al. [BTV12] introduced stronger security notions for wiretap coding than the no-
tions that existed within the information theoretic community. In particular, they introduced an
information theoretic notion of semantic security, which we also achieve in our work. They also
provided an efficient information-theoretic encoding and decoding scheme for many channels that
achieves correctness, semantic security, and rate achieving the Csiszár-Korner bound. Previously,
most works on wiretap coding had only proven the existence of wiretap encoding and decoding
schemes, and not provided explicit constructions.

2 Technical Overview

In the wiretap setting, we consider two discrete memoryless channels (DMCs): ChB : X → Y from
Alice to the intended receiver Bob, and ChE : X → Z from Alice to an eavesdropper Eve. Alice’s
goal is to transmit an encoding of a message m ∈ M = {0, 1} across both channels so that Bob
can decode m with high probability and Eve learns negligible information about m. Our goal is to
build an encoder and a decoder that satisfies these requirements.

Definition 2.1 (Discrete Memoryless Channel (DMC)). We define a discrete memoryless channel
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(DMC) ChW : X → Y to be a randomized function from input alphabet X to output alphabet Y.
We associate ChW with its stochastic matrix PW = [pW (y|x)]x∈X ,y∈Y .

Warmup: The BSC0.1-BEC0.3 Wiretap Setting. We first consider a simple example. Consider
a wiretap setting in which Alice has a BSC0.1 between her and Bob and a BEC0.3 between her and
Eve. Alice wishes to send m ∈ {0, 1} to Bob, but not to Eve. First observe that on a uniform
random input distribution, Eve’s information about the input is greater than Bob’s information.
Indeed, Eve’s BEC0.3 channel has greater capacity than Bob’s BSC0.1 channel. In fact, it can be
proven [CK78, Nai10] that in the information theoretic setting with these channel parameters, then
there does not exist any encoding scheme that Alice can use to encode her message so that Bob
can decode with high probability but Eve cannot.

Acknowledging this obstacle, how can we favor Bob’s decoding probability and disadvantage Eve
in the computational setting? A simple observation is that on a uniform random input r ∈ {0, 1}n
to the channels, then Bob’s output distribution is different from Eve’s output distribution. Indeed,
for large enough n, Bob’s BSC0.1’s output rB should contain approximately 10% bit flips relative
to r, whereas Eve’s BEC0.3 output rE should contain approximately 30% erasures.

Now, suppose Bob and Eve both had access to an oracle that outputs m on binary inputs
containing approximately 10% bit flips relative to r and outputs ⊥ on all other inputs. Then, Bob
can decode m by simply sending his received output rB to the oracle. However, in order to learn
m, Eve must be able to guess a r̂B that has 10% bit flips relative to r. It is simple to observe
that Eve’s best strategy for guessing such an r̂B is to generate it from her channel output rE by
replacing each erasure in rE with a uniformly random bit. But observe that with high probability
this r̂B will contain roughly 15% bit flips relatives to r. Thus, with high probability, Eve cannot
generate a r̂B with only 10% bit flips, so she cannot learn m.

This motivates our use of the ideal obfuscation model in which Alice, in addition to specifying a
string r to send across both channels can also specify an oracle f which is perfectly transmitted to
Bob and Eve who get bounded access to the oracle. In this model, we can achieve secure wiretap
coding schemes. To encode m ∈ {0, 1}, Alice picks a random string r that will be sent across both
channels and specifies the oracle mentioned above which is perfectly transmitted to Bob and Eve.
By the above argument, this encoding satisfies both correctness and security.

Handling all Non-Degraded Channels. Now, consider the case where Bob’s channel ChB :
X → Y and Eve’s channel ChE : X → Z are arbitrary channels with the same input domain X with
the sole restriction that ChB is not a degradation of ChE. We first build intuition about channel
degradation.

Definition 2.2 (Channel Degradation). We say that channel ChB is a degradation of channel ChE
if there exists a channel ChS such that

ChB = ChS ◦ ChE

where ◦ denotes channel concatenation, that is (ChS ◦ ChE)(x) = ChS(ChE(x)).

Observe that if ChB is a degradation of ChE, then secure wiretap coding schemes are impossible
even in the computational setting since then there exists a ChS such that ChB = ChS ◦ ChE,
which means Eve can simulate Bob’s output by running her channel output through ChS and learn
everything that Bob learns.
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On the other hand, if ChB is not a degradation of ChE, then this means that for every channel
ChS, there exists an x∗ ∈ X and y∗ ∈ Y such that

|pB(y∗ | x∗)− pE·S(y
∗ | x∗)| > 0

where pB(y
∗ | x∗) = Pr[ChB(x∗) = y∗] and pE·S(y

∗ | x∗) = Pr[ChS(ChE(x∗)) = y∗]. In fact, by
using properties of continuity and compactness, we can prove that there is a constant d > 0 such
that for every ChS, there exists an x∗ ∈ X and y∗ ∈ Y such that

|pB(y∗ | x∗)− pE·S(y
∗ | x∗)| ≥ d

Now, define the following notation.

Definition 2.3. Let X and Y be any two discrete finite sets and n ∈ N. For r ∈ X n and s ∈ Yn

and for any x ∈ X and y ∈ Y, we define the fraction of x’s in r that are y’s in s to be

Ratiox→y(r, s) =
|i ∈ [n] : ri = x, si = y|
|i ∈ [n] : ri = x|

.

If |i ∈ [n] : ri = x| = 0, then we define Ratiox→y(r, s) = 0.

Fix any ChS : Z → Y and let x∗ and y∗ be defined as above. Consider sending a uniform
random string r ∈ X n through ChB and ChS◦ChE. By a Chernoff bound, we expect that with high
probability, Ratiox∗→y∗(r,ChB(r)) should be close to pB(y

∗ | x∗) and Ratiox∗→y∗(r,ChS(ChE(r)))
should be close to pE·S(y

∗ | x∗). But since pE·S(y
∗ | x∗) and pB(y

∗ | x∗) differ by a constant, we
expect Ratiox∗→y∗(r,ChS(ChE(r))) to differ by a constant from pB(y

∗ | x∗) with high probability.
Thus, Ratiox∗→y∗ forms a distinguisher between ChB and ChS ◦ChE. Therefore, we can define

the following function which outputs m with high probability on an input sampled from ChB(r)
and outputs m with negligible probability on an input sampled from ChS(ChE(r)) for any channel
ChS.2

hm,r,ChB,n(rB):

If for all x ∈ X and y ∈ Y, |Ratiox→y(r, rB)− pB(y | x)| ≤ n−
1
3 , output m.

Else, output ⊥.

In fact, since we are considering the ratios of all pairs (x, y) ∈ X × Y, the same observation holds
for the following function.

fm,r,ChB,n(rB):

If for all x ∈ X and y ∈ Y, Ratiox→y(r, rB) ≤ pB(y | x) + n−
1
3 , output m.

Else, output ⊥.

Construction Overview. We now describe our coding scheme for wiretap channel (ChB,ChE).
Our encoder EncChB takes a security parameter 1λ and a message m ∈M and outputs a description
of a circuit computing some function f and a string r ∈ X n. Our decoder Dec(·) takes as input a
security parameter 1λ and a string in Yn and outputs some message in M. The string r is sent
across both channels, and both Bob and Eve obtain bounded oracle access to f .

2A slight caveat is that this holds only when r contains sufficiently many of each x ∈ X , but this occurs with
overwhelming probability over the choice of r.
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EncChB(1
λ,m):

1. Let n = λ

2. Sample r ← X n.

3. Define fm,r,ChB,n : Yn → {M,⊥} where

fm,r,ChB,n(rB):

If for all x ∈ X and y ∈ Y, Ratiox→y(r, rB) ≤ pB(y | x) + n−
1
3 , output m.

Here, pB(y | x) = Pr[ChB(x) = y].

Else, output ⊥.

4. Output (fm,r,ChB,n, r).

DecfChB(1
λ, rB):

1. Output f(rB).

For convenience, we define R to be a uniform random input over X n, RE = ChE(R), and RB =
ChB(R).

Correctness holds since Bob can decode with high probability since fm,r,ChB,n on ChB(r) will
output m with high probability.

Security Overview. Now consider security. Intuitively, since r is independent of the message bit
b, then Eve should only be able to learn b if she can generate a guess r̂B such that fb,r,ChB,n(r̂B) = b.
Consider a strategy g that given input rE ← ChE(r) from Eve’s channel seeks to produce an output
r̂B that maximizes the probability that fb,r,ChB,n(g(rE)) = b. We say that g wins if this occurs and
b is output.

If strategy g is to send Eve’s channel output rE through some discrete memoryless channel ChS
(i.e. g(rE) = ChS(rE)), then by our previous discussion on non-degraded channels, there exists
some x∗ ∈ X and y∗ ∈ Y such that with high probability, Ratiox∗→y∗(r, g(ChE(r))) differs from
pB(y

∗ | x∗) by at least a constant. Thus, such a g would only win with negligible probability.
However, Eve can choose any arbitrary strategy g. Nevertheless, we can still prove that any

strategy g has only a negligible chance of winning. To do so, we show through a series of hybrids
that any strategy g is only polynomially better than a strategy Eve3, where Eve3’s strategy is to
apply a DMC independently to each symbol of rE . Then, we can use the non-degraded condition to
show that Eve3’s probability of success on a single query to the oracle is negligible, and thus that
any g’s probability of success on a single query to the oracle is negligible. This hybrid argument is
the main technical argument in our work, and it is summarized below.

The hybrid argument: Proving g has a negligible chance of winning. We first observe
that an arbitrary strategy g cannot perform better than an optimal strategy g∗ defined as follows:

Definition 2.4. For any m, we say that a strategy g∗ : Zn → Yn for guessing r̂B is optimal if

g∗ = argmax
g

(
Pr

R,ChE
[fm,R,ChB,n(g(RE)) = m]

)
.
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Now, consider any deterministic optimal strategy. (Observe that there always exists an optimal
g∗ that is deterministic since g∗ can arbitrarily break ties in the maximum.)

Our first step is to simplify our function g∗ by a symmetrization argument. We observe that
our definition of evaluation function fm,r,ChB,n on input r̂B considers only the mapping ratios
Ratiox→y(r, r̂B) for all x ∈ X , y ∈ Y from r to r̂B. An immediate consequence of this recollection
is that the probability of success for Eve when the input string is r and the guessed string is
r̂B = g∗(rE) is permutation-invariant. That is, for every permutation π ∈ Sn, the probability of
succeeding on r̂B when the input string is r is equivalent to the probability of succeeding on π(r̂B)
when the input string is π(r) because

Ratiox→y(r, r̂B) = Ratiox→y(π(r), π(r̂B)).

Thus, since r is uniformly random, then we have Pr[R = π(r)] = Pr[R = r], so morally an
optimal g∗’s success probability on rE and π(rE) should be the same. This is formally seen by a
symmetrization argument regarding the equivalence relation we define below.

Definition 2.5. For rE ∈ Zn, we define the weight of rE as

wt(rE) = (Nz1(rE), . . . , Nz|Z|(rE))

where Z = {z1, . . . , z|Z|} and Nzi(rE) = |i ∈ [n] | rEi = zi|. We define an equivalence relation
Eqwt on Zn ×Zn by

Eqwt = {(rE , rE ′) ∈ Zn ×Zn | wt(rE) = wt(rE
′)}

= {(rE , rE ′) ∈ Zn ×Zn | ∃π ∈ Sn, rE = π(rE
′)}.

Let rEw,0 denote the lexicographically first vector in the equivalence class {rE ∈ Zn | wt(rE) = w}.

Then since g∗ performs equally well on all permutations of rE , we can create a new optimal
deterministic strategy Eve0 which behaves in a structured manner on all strings rE from the same
equivalence class. Importantly, Eve0 has the nice property that for any permutation π, then
π(Eve0(rE)) = Eve0(π(rE)).

Eve0(rE):
Given optimal deterministic strategy g∗.

1. Let w = wt(rE). Let rEw,0 be the lexicographically first vector in Zn of weight w.

2. Let permutation σ ∈ Sn be such that σ(rEw,0) = rE .

3. Output r̂B = σ(g∗(σ−1(rE))) = σ(g∗(rEw,0)).

Now, consider a probabilistic Eve1 that on input rE ∈ Zn deviates slightly from the deter-
ministic Eve0. For any z ∈ Z, y ∈ Y, and input rE ∈ Zn, observe that Eve0 will map some
deterministically chosen subset of size kz,y of the y’s in rE to be a z in r̂B. Instead, we will have
Eve1 map a random subset of size kzy of the y’s in rE to be a z in r̂B. By a similar symmetrization
argument and the construction of Eve0, then Eve1’s probability of success is equal to that of
Eve0.
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Eve1(rE):

1. For each y ∈ Y and z ∈ Z, compute kz,y = Nz(rE) ·Ratioz→y(rE ,Eve0(rE)).

2. Start with S = [n].
For each y ∈ Y and z ∈ Z

(a) Pick a random set Sz,y ⊂ S ∩ {i ∈ [n] | rE,i = z} such that |Sz,y| = kz,y.

(b) Set r̂B,i = y for all i ∈ Sz,y.

(c) Set S = S\Sz,y.

3. Output r̂B.

Now, we relax the necessity of requiring that exactly kz,y of the z’s in rE map to y’s in r̂B.
This relaxation is done by defining a set of stochastic matrices that model a DMC. In particular,
we use the probabilistic strategy of Eve1 to define a set of DMCs ChrE where prE (z | y) =
Ratioz→y(rE ,Eve1(rE)) (which is also equal to Ratioz→y(rEw,0,Eve0(rEw,0)) by definition of
Eve1). We then define a new strategy Eve2 which on input rE applies the corresponding channel
ChrE on each symbol of rE to get r̂B. Then Eve2 acts identically to Eve1 whenever each of the ratios
Ratioz→y(rE ,Eve2(rE)) hit their expected value. We prove that this happens with probability at
least 1

poly(n) , so therefore, Eve2 wins at least inverse polynomially as often as Eve1.

Eve2(rE):

1. Define a channel ChrE from Z to Y by stochastic matrix

PrE = [prE (y | z)]z∈Z,y∈Y = [Ratioz→y(rE ,Eve0(rE))]z∈Z,y∈Y

2. For i ∈ [n], set r̂Bi = ChrE (rEi).

3. Output r̂B.

Although Eve2’s strategy is to apply a channel ChrE to each symbol of her input rE , the choice of
channel she applies is dependent on which rE she received. However, it turns out that there are only
polynomially many possible channels that Eve2 may construct. In particular, the set of channels
that Eve2 can construct is in bijective correspondence with the equivalence classes Eqwt. To see
this, observe that for any permutation π, ChrE = Chπ(rE) because Eve0(π(rE)) = π(Eve0(rE)).
Thus, the total number of possible channels that Eve2 may apply to rE is bounded by the number
of equivalence classes of Eqwt, which is polynomial in size. We define Chw to be equal to ChrE for
any rE of weight w.

Thus, instead of having Eve2 choose a channel based on rE ’s weight, we define a new strategy
that randomly selects the channel before seeing rE . In particular, we construct an Eve3 which in
addition to getting input rE also gets an independently chosen random input w that defines which
channel Chw that Eve3 should apply to rE .

Eve3(w, rE):

1. Let rEw,0 ∈ Zn be the lexicographically first vector in Zn of weight w.

9



2. Define a channel Chw from Z to Y by stochastic matrix

Pw = [pY |Z(y | z)]z∈Z,y∈Y = [Ratioz→y(rEw,0,Eve0(rEw,0))]z∈Z,y∈Y

3. For i ∈ [n], set r̂Bi = Chw(rEi).

4. Output r̂B.

Now, if the randomly chosen w equals wt(rE), then Eve3 acts identically to Eve2. But since there
are only polynomially many weight vectors, an independently chosen random w equals wt(rE) with
probability 1

poly(n) . Thus, the probability that Eve3 succeeds given a random w is only polynomially
worse than the probability that Eve2 succeeds.

However, for any weight w, it is now the case that Eve3 applies an input-independent channel
to each symbol of rE . Thus, we can now apply the non-degraded condition to prove that Eve3’s
probability of success is negligible for any input weight w. This then implies that any arbitrary
strategy g has a negligible probability of winning.

3 Preliminaries

Throughout, we will use λ to denote a security parameter.

Notation

• We say that a function f(λ) is negligible in λ if f(λ) = λ−ω(1), and we denote it by f(λ) =
negl(λ).

• We say that a function g(λ) is polynomial in λ if g(λ) = p(λ) for some fixed polynomial p,
and we denote it by g(λ) = poly(λ).

• For n ∈ N, we use [n] to denote {1, . . . , n}.

• If R is a random variable, then r ← R denotes sampling r from R. If T is a set, then i← T
denotes sampling i uniformly at random from T .

• Let Sn denote the symmetric group on n letters.

Definition 3.1 (Max Norm of a Matrix). Let A by any n ×m matrix. We define the max norm
to be the maximal magnitude of any entry and denote it with

∥A∥max = max
i,j
|Ai,j | .

Lemma 3.2 (Chernoff Bound). Let X1, . . . , Xn be independent random variables taking values in
{0, 1}, and let X =

∑n
i=1Xi and E[X] = µ. Then a two-sided Chernoff bound for 0 ≤ δ ≤ 1 is

Pr [|X − µ| ≥ δµ] ≤ 2 · exp
(
−δ2µ

3

)
And a one sided Chernoff bound for 0 ≤ δ ≤ 1 is

Pr[X ≥ (1 + δ)µ] ≤ exp

(
−δ2µ
3

)
Remark 3.3. As a reminder, computationally bounded adversaries are described as non-uniform
polynomial-time throughout the paper but can be equivalently given as a family of polynomial-size
circuits.
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3.1 Channel Definitions

Definition 3.4 (Discrete Memoryless Channel (DMC)). We define a discrete memoryless channel
(DMC) ChW : X → Y to be a randomized function from input alphabet X to output alphabet Y.
We associate ChW with its stochastic matrix

PW = [pW (y|x)]x∈X ,y∈Y

For x ∈ X , we use ChW(x) to denote a random variable over Y such that for y ∈ Y,

Pr[ChW(x) = y] = pW (y|x)

For n ∈ N and r = (r1, . . . , rn) ∈ X n, we define

ChW(r) = ChW(r1) . . .ChW(rn)

Notation If ChE is a channel, we may use PrChE to denote the probability over the randomness of
ChE. Similarly, if f is a randomized function, we may use Prf to denote the probability over the
randomness of f .

Definition 3.5 (Binary Symmetric Channel (BSC)). A binary symmetric channel with crossover
probability p (BSCp) is a DMC with binary input and binary output such that on input bit b, it
outputs 1− b with probability p and b otherwise.

Definition 3.6 (Binary Erasure Channel (BEC)). A binary erasure channel with erasure probability
ϵ (BECϵ) is a DMC with binary input and output {0, 1,⊥} such that on input bit b, it outputs ⊥
(i.e. erases the bit) with probability ϵ and b otherwise.

3.1.1 Less Noisy and Channel Degradation

Definition 3.7 (Less Noisy, [CK78]). Channel ChE is less noisy than channel ChB if for every
Markov chain V → X → Y Z such that pY |X(y|x) corresponds to ChB and pZ|X(z|x) correspond to
ChE then

I(V ;Z) ≥ I(V ;Y ).

Definition 3.8 (Channel Degradation). We say that channel ChB is a degradation of channel ChE
if there exists a channel ChS such that

ChB = ChS ◦ ChE

where ◦ denotes channel concatenation, that is (ChS ◦ ChE)(x) = ChS(ChE(x)).

Definition 3.9 (Channel Degradation Equivalent Definition). Equivalently, we say that channel
ChB : X → Y is a degradation of channel ChE : X → Z if there exists a stochastic matrix
PS = [pS(y | z)]z∈Z,y∈Y such that

PB = PE · PS

where PB = [pB(y | x)]x∈X ,y∈Y is the stochastic matrix of ChB and PE = [pE(z | x)]x∈X ,z∈Z is the
stochastic matrix of ChE.

Consider two channels ChB and ChE. To better understand the relationship between less noisy
and channel degradation, consider a concrete example where ChB is a BSCp and ChE is a BECϵ.
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Theorem 3.10 (Imported from [Nai10], claim 4). Let ChB be a BSCp for p ∈ [0, 12) and let ChE
be a BECϵ. Then the following holds:

1. If 0 ≤ ϵ ≤ 2p, then ChB is a degradation of ChE.

2. If 2p < ϵ ≤ 4p(1− p), then ChE is less noisy than ChB, but ChB is not a degradation of ChE.

We remark that ChE may have higher capacity than ChB but may still not be considered
less noisy than ChB, e.g. (ChB,ChE) = (BSC0.1,BEC0.4). Additionally, there are many channels
where ChE is not less noisy than ChB, but ChB is not a degradation of ChE, e.g. (ChB,ChE) =
(BSC0.1,BEC0.3).

3.1.2 Limiting Channel Degradation

We also prove that if channel ChB is not a degradation of channel ChE then there is a constant
separation between the probability distribution of ChB and the distribution of any channel formed
by concatenating ChE with some other channel.

Definition 3.11 (Limiting Channel Degradation). We say that channel ChB is a limiting degra-
dation of channel ChE if there exists a sequence of stochastic matrices (PS,1, PS,2, PS,3, . . .) such
that

lim
i→∞
∥PB − PE · PS,i∥max = 0

where PB = [pB(y | x)]x∈X ,y∈Y is the stochastic matrix of ChB and PE = [pE(z | x)]x∈X ,z∈Z is the
stochastic matrix of ChE.

Lemma 3.12 (Channel Degradation is equivalent to Limiting Channel Degradation). Channel
ChB is a degradation of channel ChE if and only if ChB is a limiting degradation of ChE

Proof. One direction is immediate: if channel ChB is a degradation of channel ChE, then ChB is a
limiting degradation of ChE.

For the other direction, proceed by contrapositive. We show that if channel ChB is not a
degradation of channel ChE, then ChB is not a limiting degradation of ChE. Let ChB : X → Y
and ChE : X → Z be channels such that ChB is not a degradation of ChE. Let PB and PE be
the stochastic matrices of ChB and ChE respectively. Let T be the set of all stochastic matrices
from Z to Y. Observe that T is a compact set: The set of stochastic matrices T is defined
by finitely many constraints, each of which define either a closed halfspace (0 ≤ Mij ≤ 1) or a
hyperplane (

∑
iMij = 1) for M ∈ T . The finite intersection of these constraints forms a closed

convex polytope which is indeed compact. We consider the metric given by the max norm ∥·∥max.
Let δB,E : T → [0, 1] be such that δB,E(PS) = ∥PB − PE · PS∥max. Then observe that δB,E is
a continuous function since it is a composition of two continuous functions. Now, consider any
converging sequence in [0, 1]

(δB,E(PS,1), δB,E(PS,2), δB,E(PS,3), . . .)

Then note that T equipped with the max norm metric is sequentially compact so the correspond-
ing sequence (PS,1, PS,2, PS,3, . . .) has a converging subsequence (PS,i1 , PS,i2 , PS,i3 , . . .) such that
limj→∞ PS,ij = PS

∗ for some stochastic matrix PS
∗ ∈ T . Since δB,E is continuous, limj→∞ δB,E(PS,ij ) =

δB,E(PS
∗). Since channel ChB is not a degradation of channel ChE and PS

∗ is a stochastic ma-
trix, then ∥PB − PE · PS

∗∥max = δB,E(PS
∗) > 0. But all converging subsequences of a converging

sequence converge to the same limit; therefore the converging sequence

(δB,E(PS,1), δB,E(PS,2), δB,E(PS,3), . . .)
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converges to δB,E(PS
∗) > 0. Therefore no converging sequence can have limit 0, so ChB is not a

limiting degradation of ChE.

Lemma 3.13. If channel ChB is not a degradation of channel ChE, then there exists a constant
d > 0 such that for all stochastic matrices PS = [pS(y | z)]z∈Z,y∈Y ,

∥PB − PE · PS∥max ≥ d

where PB = [pB(y | x)]x∈X ,y∈Y is the stochastic matrix of ChB and PE = [pE(z | x)]x∈X ,z∈Z is the
stochastic matrix of ChE.

Proof. The non-existence of such d would imply that channel ChB is a limiting degradation of
channel ChE. But by Lemma 3.12, this would imply that ChB is a degradation of ChE which is a
contradiction.

4 Wiretap Channels

4.1 Wiretap Channel Definitions

A wiretap channel [Wyn75, CK78] is defined by two discrete memoryless channels (ChB,ChE) with
the same input domain X where ChB : X → Y is the main channel and ChE : X → Z is the
eavesdropper channel. We characterize ChB by its stochastic matrix PB = [pB(y | x)]x∈X ,y∈Y and
ChE by its stochastic matrix PE = [pE(z | x)]x∈X ,z∈Z . Throughout, we will use X ,Y,Z to denote
respectively the input alphabet of ChB and ChE, the output alphabet of ChB, and the output
alphabet of ChE. We useM to denote the message space.

Definition 4.1 (Wiretap Coding Scheme: Syntax). A wiretap coding scheme Π for wiretap channel
(ChB,ChE) and message spaceM is a pair of algorithms (Enc,Dec). Enc is a randomized encoding
algorithm that takes as input a security parameter 1λ, a message m ∈ M, and outputs a finite
length encoding in X n where n = n(λ). Dec is a deterministic decoding algorithm that takes as
input a security parameter 1λ, and a string from Yn and outputs a message inM.

A wiretap coding scheme satisfies correctness if Bob can decode the output of ChB on an
encoding of a message. Security holds if Eve when given the output of ChE on the encoding of the
message cannot learn the message. Similarly to [BTV12]3, we use the standard notion of semantic
security [GM84]. For simplicity, we only consider the case when M = {0, 1}. However, we can
easily generalize our definition to consider larger families of message spaces (see Definition 4.19).

3Our security definition corresponds to requiring the distinguishing advantage Advds of [BTV12] to be negligible.
[BTV12] define a separate notion for semantic security, but prove that the two definitions are equivalent.

13



Definition 4.2 (Statistically Secure Wiretap Coding Scheme). A wiretap coding scheme Π =
(Enc,Dec) is a statistically secure wiretap coding scheme for wiretap channel (ChB,ChE) and mes-
sage spaceM = {0, 1} if there exist negligible functions ϵ(λ), µ(λ) such that

• Correctness: For all messages m ∈ {0, 1},

Pr[Dec(1λ,ChB(Enc(1λ,m))) = m] ≥ 1− ϵ(λ)

• Security: For all adversaries A,

Pr[A(1λ,ChE(Enc(1λ, b))) = b] ≤ 1

2
+ µ(λ)

where b is uniformly distributed over {0, 1}.

We may similarly refer to a finite scheme Π0 (with a fixed λ) as being ϵ0-correct and µ0-secure.

Definition 4.3 (Computationally Secure Wiretap Coding Scheme). Π = (Enc,Dec) is a compu-
tationally secure wiretap coding scheme if Enc and Dec are PPT algorithms, and if it satisfies the
above definition except that we only require security against non-uniform polynomial-time adver-
saries A.

Notation We say that a wiretap channel (ChB,ChE) admits a statistically (resp. computationally)
secure wiretap coding scheme if there exists a statistically (resp. computationally) secure wiretap
coding scheme for (ChB,ChE).

We can also consider a finite version of Definition 4.2 where both error parameters are fixed to
constants.

Definition 4.4. A wiretap coding scheme Π = (Enc,Dec) is a δ-statistically secure wiretap coding
scheme for wiretap channel (ChB,ChE) and message spaceM = {0, 1} if

• Rate: For all m ∈ {0, 1}, |Enc(b)| = c for some constant c.

• Correctness: For all m ∈ {0, 1},

Pr[Dec(ChB(Enc(m))) = m] ≥ δ

• Security: For all adversaries A,

Pr[A(ChE(Enc(b))) = b] ≤ 1

2
+ (1− δ)

where b is uniformly distributed over {0, 1}.

4.2 Ideal Obfuscation Model

Similarly to the recent use of obfuscation in [AIK+21], it is convenient to describe and analyze our
constructions in an ideal obfuscation model in which the sender can give a receiver (either Bob
or Eve) bounded query access to an oracle. In this model, the encoding function outputs both
an encoding of m and a description f̂ of a circuit computing a deterministic function f . (We will
typically abuse notation by using f to denote both the function and its description.) The receiver
Bob and the adversary Eve are both given oracle access to f . In addition, though we require Eve to
only make polynomially many queries to the oracle f , we allow Eve to be otherwise unbounded by
default (see Remark 4.7 below for a relaxed definition variant). We will later consider the question
of instantiating the ideal obfuscation primitive in the plain model under concrete cryptographic
assumptions (see Section 7).
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Definition 4.5 (Wiretap Coding Scheme in the Ideal Obfuscation Model: Syntax). A wiretap
coding scheme Π for wiretap channel (ChB,ChE) and message space M in the ideal obfuscation
model is a pair of algorithms (Enc,Dec(·)). Enc is a randomized encoding algorithm that takes as
input a security parameter 1λ and a message m ∈ M, and outputs a finite length encoding in X n

where n = n(λ) and a description f̂ of a circuit computing some deterministic function f . Dec(·) is
a deterministic decoding algorithm with polynomially bounded access to an oracle. It takes as input
a security parameter 1λ, a string from Yn, and outputs a message inM.

Definition 4.6 (Bounded Query Secure Wiretap Coding Scheme in the Ideal Obfuscation Model).
A wiretap coding scheme Π = (Enc,Dec(·)) is a bounded query secure wiretap coding scheme in the
ideal obfuscation model for wiretap channel (ChB,ChE) and message space M = {0, 1} if Enc and
Dec(·) are PPT algorithms which satisfy

• Correctness: For all messages m ∈ {0, 1},

Pr[Decf (1λ,ChB(c)) = m | (f, c)← Enc(1λ,m)] ≥ 1− negl(λ)

• Security: For every polynomial query bound q(λ) and (computationally unbounded) adversary
A(·) that makes at most q(λ) queries to its oracle f ,

Pr[Afb(1λ,ChE(cb)) = b | (fb, cb)← Enc(1λ, b)] ≤ 1

2
+ negl(λ)

where b is uniformly distributed over {0, 1}.

Remark 4.7 (Computationally bounded adversaries). Definition 4.6 only bounds the number of
queries made by A but does not otherwise bound its computational complexity. This makes our
main feasibility results stronger. One may also consider a relaxed variant of the definition in which
A is computationally bounded, as in Definition 4.3. This relaxation can be used for bootstrapping
from a low-rate wiretap coding scheme in the ideal obfuscation model to a high-rate computationally
secure scheme (with a “small” oracle f) via a hybrid encryption technique (see Remark 4.18).

4.3 Wiretap Feasibility in the Information Theoretic Setting

We will prove the following characterization of the wiretap feasibility region in the information
theoretic setting:

Theorem 4.8. ChE is not less noisy than ChB if and only if there exist a statistically secure wiretap
coding scheme for (ChB,ChE).

In fact, we will prove a stronger claim (Theorem 4.17) relating the definitions of wiretap security
from prior work to our definitions. As historically information theorists have focused more on
obtaining the maximal achievable rate R for the encoding function Enc than on achieving strong
notions of cryptographic security, their definitions of security are framed differently from the typical
cryptographic definitions. This disconnect was addressed in [BTV12], who bridged the gap between
the information theoretic and cryptographic communities and proposed new security definitions for
the wiretap channel.

We now define the following in terms of the correctness and security requirements of [CK78].

Definition 4.9 (CK Rate-R Wiretap Coding Family [CK78]). A family of wiretap encoder-decoder
pairs {(Encn,Decn)}n∈N is a rate-R information theoretic wiretap coding family for a wiretap chan-
nel (ChB,ChE) and message family {Mn}n∈N if each Encn outputs an encoding of length n such
that
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• Message Rate R:

lim
n→∞

1

n
log |Mn| = R

• Correctness: For all m ∈Mn,

Pr[Decn(ChB(Encn(m))) = m] ≥ 1− ϵn

where
lim
n→∞

ϵn = 0

• Security:

lim
n→∞

1

n
I(Mn;ChE(Encn(Mn))) = 0

where Mn is uniform overMn.

We denote the set of all achievable rate pairs as R.

We define secrecy capacity as the maximum rate of such an encoding.

Definition 4.10 (Secrecy Capacity). The secrecy capacity Cs of a wiretap channel (ChB,ChE), is
the maximum of the rates R of any CK rate-R wiretap coding family for wiretap channel (ChB,ChE)
for any message family {Mn}n∈N.

Furthermore, [CK78] completely characterized the region in which positive rate CK wiretap
coding schemes are possible.

Theorem 4.11 ([CK78]). Cs > 0 if and only if ChE is not less noisy than ChB.

Note that if Cs = 0, then no positive rate encoding can satisfy both correctness and security.
Additionally, [MW00] show that the security requirement can be strengthened to the following:

Definition 4.12 (CK Rate-R Wiretap Coding Family with Strong Secrecy [CK78, MW00]). This
is the same as the definition of a CK Rate-R wiretap coding family except that we replace the
security requirement with the following:

• Strong Security:
lim
n→∞

I(Mn;ChE(Encn(Mn))) = 0

where Mn is uniform overMn.

We can then define the strong secrecy capacity.

Definition 4.13 (Strong Secrecy Capacity (Adapted from [MW00])). The strong secrecy capacity
Cs of a wiretap channel (ChB,ChE), is the maximum of the rates R of any CK rate-R wiretap coding
family with strong secrecy for wiretap channel (ChB,ChE) for any message family {Mn}n∈N.

Theorem 4.14 (Equivalence of Strong and Weak Secrecy Capacity (Imported from [MW00])).
For all wiretap channels (ChB,ChE), we have Cs = Cs.

Remark 4.15. The definition of Cs above is written differently from the definition in [CK78].
However, it is equivalent and follows easily from the definitions used in [CK78]. The definitions
of Cs and Cs are similar, but slightly different from the definitions used in [MW00]. However,
Theorem 4.14 still holds with respect to our definitions. We provide a short explanation of these
two facts in Appendix A.
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As observed by [BTV12], both the correctness and security definitions of [CK78] are weaker than
our definitions and are insufficient for cryptographic purposes4. Thus, [BTV12] defined several new
notions of security including the semantic security definition we use. They also prove that this
semantic security definition implies an information theoretic security notion.

Theorem 4.16 ([BTV12]). The semantic security requirement of Definition 4.2 of a statistically
secure wiretap coding scheme implies that I(M ;ChE(Enc(1λ,M))) = negl(λ) where M is uniform
overM = {0, 1}.

We now prove the following theorem which implies Theorem 4.8.

Theorem 4.17. The following are equivalent:

1. ChE is not less noisy than ChB. (Definition 3.7)

2. Cs > 0 (Definition 4.10)
i.e. There exists a CK Rate-R wiretap coding family for (ChB,ChE) with positive rate R.
(Definition 4.9)

3. Cs > 0 (Definition 4.13)
i.e. There exists a CK Rate-R wiretap coding family with strong secrecy for (ChB,ChE) with
positive rate R. (Definition 4.12)

4. There exists a 0.99-statistically secure wiretap coding scheme for (ChB,ChE). (Definition 4.4)

5. There exists a statistically secure wiretap coding scheme for (ChB,ChE). (Definition 4.2)

6. There exists a statistically secure wiretap coding scheme for general message spaces for (ChB,ChE)
with a positive constant rate. (Definition 4.19. See Section 4.4 below for the definition.)

Proof. The theorem follows from the relations below.

• 1 ⇐⇒ 2. This follows from Theorem 4.11.

• 2 ⇐⇒ 3. This follows from Theorem 4.14.

• 6⇒ 5. A statistically secure wiretap coding scheme for general message spaces can be easily
transformed into one for a binary message spaces by ignoring all but the first bit of the
message from the general message space.

• 5⇒ 2. This proof can be found in Appendix C.

• 3⇒ 4. This proof can be found in Appendix C.

• 4⇒ 6. This proof can be found in Appendix C.

4As the growth rate of the correctness and security functions is not specified, correctness would be sat-
isfied even if the probability of correct decryption is 1 − 1

log(n)
and security would be satisfied even if

limn→∞ I(Mn;ChE(Encn(Mn))) = log(n). Even when using the strong secrecy definition of [MW00, Mau94], se-
curity is defined only with respect to a uniformly random message distribution.
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4.4 Rate and General Message Spaces

Previously, we only considered the case when M = {0, 1}. This means that any secure wiretap
coding scheme must be rate 0.

Remark 4.18. When the adversary is computationally bounded, and potentially has oracle ac-
cess, we note that any computationally secure wiretap coding scheme can be made optimal rate,
meaning rate asymptotically approaching Bob’s channel’s capacity. This is achieved by using the
computationally secure wiretap coding scheme to share a secret key between Alice and Bob and
then subsequently using a PRG to build a stream cipher between Alice and Bob. The ciphertext
must then be sent across Bob’s channel; therefore the maximal rate is given by the capacity.

Unfortunately, in the information theoretic setting, we cannot improve rate in the same manner.
Thus, we define a notion of secure wiretap coding schemes for general message spaces.

Definition 4.19 (Statistically Secure Wiretap Coding Schemes for General Message Spaces).
A wiretap coding scheme Π = (Enc,Dec) is a secure wiretap coding scheme for wiretap chan-
nel (ChB,ChE) and a polytime computable message length ℓ(λ) if there exist negligible functions
ϵ(λ), µ(λ) such that

• Correctness: For all messages m ∈ {0, 1}ℓ(λ),

Pr[Dec(1λ,ChB(Enc(1λ,m))) = m] ≥ 1− ϵ(λ)

• Security: For all adversaries A and all messages m0 ̸= m1 ∈ {0, 1}ℓ(n),

Pr[A(1λ,m0,m1,ChE(Enc(1
λ,mb))) = b] ≤ 1

2
+ µ(λ)

where b is uniformly distributed over {0, 1}.

Similarly, we can define this in the computational setting and in the ideal obfuscation model.

Remark 4.20. Our main result of Theorem 5.3 still holds with respect to this general definition
with only notational changes in the proofs.

5 Constructing Bounded Query Secure Wiretap Coding Schemes
in the Ideal Obfuscation Model

5.1 Construction

We consider the setting of a (ChB,ChE) wiretap channel where the main channel ChB : X → Y
is not a degradation of the eavesdropping channel ChE : X → Z. For the entirety of this section,
we will characterize ChB by its stochastic matrix PB = [pB(y | x)]x∈X ,y∈Y and channel ChE by its
stochastic matrix PE = [pE(z | x)]x∈X ,z∈Z . We letM = {0, 1}.

Let λ be a security parameter, and let n = λ. Our encoding of a message m ∈M will specify a
codeword and an oracle. The codeword will be a random string r ∈ X n which will be sent across
the two channels. We define

• R: uniform random variable over X n

• RB := ChB(R)
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• RE := ChE(R)

The oracle, which is transmitted perfectly to both parties, will output the message m if it receives
an input which is “typical” for RB conditioned on R = r (notationally RB |R=r) and will output ⊥
otherwise. We will define typicality in terms of the expected number of x’s in r that should turn
into y’s in RB |R=r for each pair (x, y) ∈ X × Y as specified by Bob’s channel probability matrix
PB. The receiver Bob should be able to recover m simply by sending his received value of RB to
the oracle. Thus, the decoder will simply output the value of the oracle on its input. Security holds
if the eavesdropper Eve cannot create a “typical” channel value for RB |R=r given only RE |R=r. To
specify this more formally, we first define the following:

Definition 5.1. Let X be any discrete finite set and n ∈ N. For any r ∈ X n and x ∈ X , we define
the number of x’s in r to be

Nx(r) = |{i ∈ [n] : ri = x}|

Definition 5.2. Let X and Y be any two discrete finite sets and n ∈ N. For r ∈ X n and s ∈ Yn

and for any x ∈ X and y ∈ Y, we define the fraction of x’s in r that are y’s in s to be

Ratiox→y(r, s) =
|i ∈ [n] : ri = x, si = y|

Nx(r)
.

If Nx(r) = 0, then we define Ratiox→y(r, s) = 0.

We now describe our wiretap encoder-decoder pair (EncChB,DecChB) for main channel ChB.

EncChB(1
λ,m):

1. Let n = λ

2. Sample r ← X n.

3. Define fm,r,ChB,n : Yn → {M,⊥} where

fm,r,ChB,n(rB):

If for all x ∈ X and y ∈ Y, Ratiox→y(r, rB) ≤ pB(y | x) + n−
1
3 , output m.

Else, output ⊥.

4. Output (fm,r,ChB,n, r).

DecfChB(1
λ, rB):

1. Output f(rB).

We then prove that our coding scheme gives us both correctness and security.

Theorem 5.3. If (ChB,ChE) is a wiretap channel where ChB is not a degradation of ChE, then

(EncChB,Dec
(·)
ChB) achieves

• Correctness: For all messages m ∈ {0, 1},

Pr[Dec
fm,r,ChB,n

ChB (1λ,ChB(r)) = m | (fm,r,ChB,n, r)← EncChB(1
λ,m)] ≥ 1− negl(λ)
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• Security: For every polynomial query bound q(λ) and (computationally unbounded) adversary
A(·) that makes at most q(λ) queries to its oracle,

Pr[Afb,r,ChB,n(1λ,ChE(r)) = b | (fb,r,ChB,n, r)← EncChB(1
λ, b)] ≤ 1

2
+ negl(λ)

where b is uniformly distributed over {0, 1}.

Proof. Correctness follows by Theorem 5.8, and security follows by Theorem 5.34 which are proven
below.

Since EncChB and Dec
(·)
ChB are PPT, we get the following corollary.

Corollary 5.4. If (ChB,ChE) is a wiretap channel where ChB is not a degradation of ChE, then

(EncChB,Dec
(·)
ChB) is a bounded query secure wiretap coding scheme in the ideal obfuscation model.

Remark 5.5. Theorem 5.3 and Corollary 5.4 hold even if we modify fm,r,ChB,n to have binary
output domain by outputting 0 in place of ⊥. Correctness still holds since the probability that the
decoder using the original function outputs ⊥ is negligible, so changing ⊥ to 0 results in at most a
negligible change in correctness. For security, observe that by outputting 0 instead of ⊥, Eve gets
strictly less information as she cannot tell whether an observed 0 from the oracle is an indicator of
failure to receive the message bit or is the message bit itself.

5.2 Correctness

Correctness follows by a simple Chernoff bound over each set of symbols x ∈ X in R. However, for
the Chernoff bound to apply, we need R to have a sufficient number of each symbol in X . By an
additional Chernoff bound, this occurs with overwhelming probability over R.

Definition 5.6. Let Good = {r ∈ X n | ∀x ∈ X , Nx(r) ≥ n
2|X |} ⊂ X

n.

Observe that for all r ∈ Good and x ∈ X , then Nx(r) = Θ(n).

Lemma 5.7. Pr[R ∈ Good] ≥ 1− negl(λ)

Proof. We defer the proof to Appendix B.

Now, we apply a Chernoff bound and a union bound to get correctness.

Theorem 5.8. For all messages m ∈ {0, 1},

Pr
[
Dec

fm,r,ChB,n

ChB (1λ,ChB(r)) = m | (fm,r,ChB,n, r)← EncChB(1
λ,m)

]
≥ 1− negl(λ)

Proof. By definition of EncChB and Dec
(·)
ChB,

Pr
[
Dec

fm,r,ChB,n

ChB (1λ,ChB(r)) = m | (fm,r,ChB,n, r)← EncChB(1
λ,m)

]
= Pr[fm,r,ChB,n(ChB(r)) = m | r ← R ]

= Pr
[
∀x ∈ X , y ∈ Y, Ratiox→y(R,ChB(R)) ≤ pB(y|x) + n−

1
3

]
= 1− Pr

[
∃x ∈ X , y ∈ Y, Ratiox→y(R,ChB(R)) > pB(y|x) + n−

1
3

]
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Thus, since Pr[R /∈ Good] ≤ negl(λ) by Lemma 5.7, it suffices to prove that for all r ∈ Good,

Pr
[
∃x ∈ X , y ∈ Y, Ratiox→y(r,ChB(r)) > pB(y|x) + n−

1
3

]
≤ negl(λ)

Fix any r ∈ Good, x ∈ X , and y ∈ Y. For all i ∈ [n], define

Vi =

{
1 if ri = x and (ChB(r))i = y

0 else

Let Sx = {i ∈ [n] | ri = x}. Then by a Chernoff bound,

Pr
[
Ratiox→y(r,ChB(r))− pB(y|x) ≥ n−

1
3

]
= Pr

[∑
i∈Sx

Vi −Nx(r) · pB(y|x) ≥ Nx(r) · n−
1
3

]

≤ exp

(
−Nx(r) · n−2/3

3 · pB(y|x)

)
.

Since pB(y|x) ≤ 1 and r ∈ Good implies Nx(r) = Θ(n),

Pr

[∑
i∈Sx

Vi −Nx(r) · pB(y|x) ≥ Nx(r) · n−
1
3

]
≤ e−Ω(n1/3) = negl(n).

Thus, by a union bound, for all r ∈ Good

Pr
[
∃x ∈ X , y ∈ Y, Ratiox→y(r,ChB(r)) > pB(y|x) + n−

1
3

]
≤ |X | · |Y| · negl(n) = negl(λ)

and the proof follows.

5.3 Security

5.3.1 Overview

In our security game, the adversary receives RE = ChE(R) and oracle access to fb,R,ChB,n for a
random b ∈ {0, 1} and tries to guess b. Intuitively, since R is independent of b, if for all b ∈ {0, 1},
an adversary is unable to generate an input r̂B such that fb,r,pB ,n(r̂B) ̸= ⊥, then the adversary
should be unable to learn anything about b. Thus, we will first attempt to show this.

To simplify our proof, we define the following function hr,ChB,n which on input rB outputs 1 if
all of the ratios Ratiox→y(r, rB) are sufficiently close to the channel probabilities pB(y | x) and 0
otherwise.

Definition 5.9. Let r ∈ X n and rB ∈ Yn. Define hr,ChB,n : Yn → {0, 1} as

hr,ChB,n(rB):

If for all x ∈ X and y ∈ Y, |Ratiox→y(r, rB)− pB(y | x)| ≤ |Y| · n−
1
3 , output 1.

Else, output 0.
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We will first show that for any arbitrary strategy g that an adversary applies to RE ,

Pr[hR,ChB,n(g(RE)) = 1] ≤ negl(λ).

We will then prove that this implies that for any arbitrary strategy g that an adversary applies to
RE ,

Pr[fm,R,ChB,n(g(RE)) ̸= ⊥] ≤ negl(λ).

Then we will prove that this implies security.
To prove the first step, we will need to rely on the fact that ChB is not a degradation of ChE.

This means that for all channels ChS, then

ChB ̸= ChS ◦ ChE

Thus, if Eve’s strategy g was to apply a DMC channel ChS to each symbol of RE , then the
distribution of g(RE) = ChS(ChE(R)) should differ from the distribution of ChB(R), and therefore
result in hR,ChB,n(g(RE)) = 0 with high probability.

However, Eve may instead choose any arbitrary strategy g. Thus, to prove our result, we will
show through a series of hybrids g,Eve0,Eve1,Eve2,Eve3 that strategy g is only polynomially
better that strategy Eve3, where Eve3’s strategy is to apply a DMC independently to each symbol
of RE . Then, we can use the not-degraded condition to show that Eve3’s probability of success is
negligible. We refer further intuition to the Technical Overview.

We will first assume that Eve’s arbitrary strategy g is optimal, defined below:

Definition 5.10. We say that a strategy g∗ : Zn → Yn for guessing r̂B is optimal if

g∗ = argmax
g

(
Pr

R,ChE
[hR,ChB,n(g(RE)) = 1]

)
.

Remark 5.11. By definition, for any optimal strategy g∗,

g∗(rE) = max
r̂B

(
Pr

R,ChE
[hR,ChB,n(r̂B) = 1 | RE = rE ]

)
Observe that there may be multiple possible optimal strategies g∗ which achieve the same maximal
probability of success. Furthermore, since g∗ may arbitrarily break ties for the maximum, then
there always exists an optimal strategy which is deterministic.

We also define a notion of weight.

Definition 5.12. For rE ∈ Zn, we define the weight of rE as

wt(rE) = (Nz1(rE), . . . , Nz|Z|(rE))

where Z = {z1, . . . , z|Z|}. We define an equivalence relation Eqwt on Zn ×Zn by

Eqwt = {(rE , rE ′) ∈ Zn ×Zn | wt(rE) = wt(rE
′)}

= {(rE , rE ′) ∈ Zn ×Zn | ∃π ∈ Sn, rE = π(rE
′)}.

We define the lexicographically first element in the equivalence class to be the canonical repre-
sentative of the class.

Definition 5.13. Let rEw,0 denote the lexicographically first vector in the equivalence class {rE ∈
Zn | wt(rE) = w}.
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5.3.2 Applying Symmetry

Let g∗ be any optimal deterministic strategy. We will first construct a new optimal strategy Eve0
that has the property that for all rE ∈ Zn and all permutations π, Eve0(π(rE)) = π(Eve0(rE)).

First, we prove a fact about the symmetry of r and rE .

Claim 5.14. For all r ∈ X n, rE ∈ Zn, π ∈ Sn,

Pr[R = r | RE = rE ] = Pr[R = π(r) | RE = π(rE)]

Proof. The proof follows by symmetry. We defer the proof to Appendix B.

Then we concretize the observation that hr,ChB,n depends only on the global probabilities of
input-output pairs in X × Y.

Claim 5.15. For a fixed r ∈ X n, rB ∈ Yn, and any π ∈ Sn, hr,ChB,n(rB) = 1 if and only if
hπ(r),ChB,n(π(rB)) = 1.

Proof. Again, the proof follows by symmetry. We defer the proof to Appendix B.

Claim 5.14 and Claim 5.15 give the following corollary which states that a guess r̂B given
received string rE should succeed with the same probability as a guess π(r̂B) given received string
π(rE). More concretely,

Corollary 5.16. For all r̂B ∈ Yn, rE ∈ Zn, π ∈ Sn,

Pr
R,ChE

[hR,ChB,n(r̂B) = 1 | RE = rE ] = Pr
R,ChE

[hR,ChB,n(π(r̂B)) = 1 | RE = π(rE)]

Proof. This follows immediately from Claim 5.14 and Claim 5.15. We defer the proof to Ap-
pendix B.

Now, we can prove that any optimal deterministic strategy g∗ : X n → Yn does equally well on
all permutations of received string rE .

Lemma 5.17. For all rE ∈ Zn, π ∈ Sn, and for any optimal deterministic strategy g∗ : X n → Yn,

Pr
R,ChE

[hR,ChB,n(g
∗(RE)) | RE = rE ] = Pr

R,ChE
[hR,ChB,n(g

∗(RE)) | RE = π(rE)]

Proof. Using the definition of an optimal strategy and Corollary 5.16 we have

Pr
R,ChE

[hR,ChB,n(g
∗(RE)) | RE = rE ] = max

r̂B
Pr

R,ChE
[hR,ChB,n(r̂B) = 1 | RE = rE ]

= max
r̂B

Pr
R,ChE

[hR,ChB,n(π(r̂B)) = 1 | RE = π(rE)]

Define rB
′ = π(r̂B). Then express the above as follows:

Pr
R,ChE

[hR,ChB,n(g
∗(RE)) | RE = rE ] = max

rB ′
Pr

R,ChE
[hR,ChB,n(rB

′) = 1 | RE = π(rE)]

= Pr
R,ChE

[hR,ChB,n(g
∗(RE)) = 1 | RE = π(rE)]
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Although g∗ has the same probability of success on all permutations of a given string rE ,
g∗ may still behave rather differently on each permutation. To deal with this, we construct a
new optimal strategy Eve0 that acts in a structured manner on each permutation of rE so that
Eve0(π(rE)) = π(Eve0(rE)) for all π ∈ Sn.

We define Eve0 from g∗ as follows:

Eve0(rE):
Given optimal deterministic strategy g∗.

1. Let w = wt(rE). Let rEw,0 be the lexicographically first vector in Zn of weight w.

2. Let permutation σ ∈ Sn be such that σ(rEw,0) = rE .

3. Output r̂B = σ(g∗(σ−1(rE))) = σ(g∗(rEw,0)).

Remark 5.18. For any weight w and any permutation τ ∈ Sn,

Eve0(τ(rEw,0)) = τ(g∗(rEw,0))

In particular,
Eve0(rEw,0) = g∗(rEw,0)

Lemma 5.19. If g∗ : Zn → Yn is an optimal deterministic strategy, then Eve0 : Zn → Yn is an
optimal strategy. Moreover, for any rE ∈ Zn and π ∈ Sn, Eve0(π(rE)) = π(Eve0(rE)).

Proof. Fix any rE ∈ Zn. Let w = wt(rE), and let rEw,0 be the lexicographically first vector of
weight w in Zn. Let σ ∈ Sn such that σ(rEw,0) = rE .

By Corollary 5.16, we have that

Pr
R,ChE

[hR,ChB,n(σ(g
∗(rEw,0))) = 1 | RE = σ(rEw,0)] = Pr

R,ChE
[hR,ChB,n(g

∗(rEw,0)) = 1 | RE = rEw,0]

By Lemma 5.17, we have that

Pr
R,ChE

[hR,ChB,n(g
∗(rEw,0)) = 1 | RE = rEw,0] = Pr

R,ChE
[hR,ChB,n(g

∗(rE)) = 1 | RE = rE ]

Therefore, by definition of Eve0 and σ and applying the above corollary and lemma,

Pr
R,ChE

[hR,ChB,n(Eve0(RE)) = 1 | RE = rE ] = Pr
R,ChE

[hR,ChB,n(σ(g
∗(rEw,0))) = 1 | RE = σ(rEw,0)]

= Pr
R,ChE

[hR,ChB,n(g
∗(rEw,0)) = 1 | RE = rEw,0]

= Pr
R,ChE

[hR,ChB,n(g
∗(rE)) = 1 | RE = rE ]

Thus, Eve0 has the same probability of success as g∗, so Eve0 is also an optimal strategy.
Finally, for any rE ∈ Zn and any π ∈ Sn, to show that Eve0(π(rE)) = π(Eve0(rE)), by

Remark 5.18 we have that

Eve0(π(rE)) = Eve0(π(σ(rEw,0)))

= π(σ(g∗(rEw,0))

= π(Eve0(σ(rEw,0)))

= π(Eve0(rE))
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5.3.3 Randomized Locations

Consider a probabilistic Eve1 that on input rE ∈ Zn deviates slightly from the deterministic Eve0.
For any z ∈ Z, y ∈ Y, and input rE ∈ Zn, Eve0 maps some deterministically chosen subset of size
kzy of the y’s in rE to be a z in r̂B. Instead, Eve1, will map a random subset of size kzy of the y’s
in rE to be a z in r̂B.

More formally, we define Eve1 as follows.

Eve1(rE):

1. For each y ∈ Y and z ∈ Z, compute kz,y = Nz(rE) ·Ratioz→y(rE ,Eve0(rE)).

2. Start with S = [n].
For each y ∈ Y and z ∈ Z

(a) Pick a random set Sz,y ⊂ S ∩ {i ∈ [n] | rE,i = z} such that |Sz,y| = kz,y.

(b) Set r̂B,i = y for all i ∈ Sz,y.

(c) Set S = S\Sz,y.

3. Output r̂B.

Remark 5.20. Observe that for any fixed randomness e of Eve1 and any rE ∈ Zn, then there
exists a permutation πe ∈ Sn such that Eve1(rE ; e) = πe(Eve0(rE)) where πe(rE) = rE .

We show that such a probabilistic Eve1 has the same success probability as Eve0.

Lemma 5.21.

Pr
R,ChE,Eve1

[hR,ChB,n(Eve1(RE)) = 1] = Pr
R,ChE

[hR,ChB,n(Eve0(RE)) = 1]

Proof. It suffices to prove that for all rE ∈ Zn and randomness e for Eve1,

Pr
R,ChE

[hR,ChB,n(Eve1(RE ; e)) = 1 | RE = rE ] = Pr
R,ChE

[hR,ChB,n(Eve0(RE)) = 1 | RE = rE ]

Fix some choice of randomness e for Eve1 and some rE ∈ Zn. By Remark 5.20, there exists a
permutation πe ∈ Sn such that Eve1(rE ; e) = πe(Eve0(rE)). By our construction of Eve0 as
stated in Lemma 5.19, πe(Eve0(RE)) = Eve0(πe(RE)). Therefore,

Pr
R,ChE

[hR,ChB,n(Eve1(RE ; e)) = 1 | RE = rE ] = Pr
R,ChE

[hR,ChB,n(πe(Eve0(RE))) = 1 | RE = rE ]

= Pr
R,ChE

[hR,ChB,n(Eve0(πe(RE))) = 1 | RE = rE ]

= Pr
R,ChE

[hR,ChB,n(Eve0(RE)) = 1 | RE = rE ]

where the last equality follows since πe(rE) = rE .

5.3.4 Stochastic Matrix Strategy

Consider a probabilistic Eve2 that on input rE ∈ Zn defines a new channel ChrE from Z to Y such
that prE (z | y) = Ratioz→y(rE ,Eve0(rE)) and applies this channel to each symbol of rE to get
r̂B.
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Eve2(rE):

1. Define a channel ChrE from Z to Y by stochastic matrix

PrE = [prE (y | z)]z∈Z,y∈Y = [Ratioz→y(rE ,Eve0(rE))]z∈Z,y∈Y

2. For i ∈ [n], set r̂Bi = ChrE (rEi).

3. Output r̂B.

We will now prove that Eve2 cannot perform much worse than Eve1. In particular, we will prove
that for an overwhelming fraction of rE ∈ Zn, then with probability at least 1

poly(n) , Eve2(rE) will

produce an output that is distributed identically to the distribution of Eve1(rE).
First, we prove a fact about multinomial distributions and about RE .

Claim 5.22. Let n ∈ N, let ℓ be a nonnegative constant, and let p1 = p1(n), . . . , pℓ = pℓ(n) be
such that

∑ℓ
i=1 pi = 1 and ∀i ∈ [ℓ], pi ∈ [0, 1] and n · pi ∈ N ∪ {0}. Let X = (X1, . . . , Xℓ) ∼

Multinomial(n; p1, p2, . . . , pℓ) where Xi is a random variable denoting the number of occurrences of
outcome i in n independent trials where Pr[outcome i occurs in a trial] = pi. Then the probability
that each Xi hits its expected value is

Pr
X

[
ℓ∧

i=1

(Xi = n · pi)

]
= Ω

(
1

nℓ/2

)
Proof. We defer the proof to Appendix B.

Definition 5.23. Let GoodE = {rE ∈ Zn | ∀z ∈ Z, Nz(rE) ≥ n
2|X | ·maxx∈X (pE(z|x))} ⊂ Zn.

Observe that for all rE ∈ GoodE and z ∈ Z, then Nz(rE) = Θ(n).

Lemma 5.24. PrR,ChE[rE ∈ GoodE ] ≥ 1− negl(λ)

Proof. We defer the proof to Appendix B.

Lemma 5.25. For all rE ∈ GoodE, there exists a polynomial p(n) = O
(
n|Z||Y|/2

)
such that

Pr
R,ChE,Eve2

[hR,ChB,n(Eve2(RE)) = 1 | RE = rE ] ≥
1

p(n)
· Pr
R,ChE,Eve1

[hR,ChB,n(Eve1(RE)) = 1 | RE = rE ]

Proof. Fix any rE ∈ GoodE . We first want to show that with probability at least 1
poly(λ) , we have

that
∀z ∈ Z, y ∈ Y,Ratioz→y(rE ,Eve2(rE)) = Ratioz→y(rE ,Eve0(rE)).

Fix any z ∈ Z. Let Y = (y1, . . . , y|Y|) and let Vz = (Vz,1, . . . , Vz,|Y|) be a random variable over the
randomness of Eve2 defined by

Vz,i = Nz(rE) ·Ratioz→yi(rE ,Eve2(rE)).

For i ∈ [|Y|], let pi = Ratioz→yi(rE ,Eve0(rE)). Now, by definition of Eve2,

Vz = (Vz,1, . . . , Vz,ℓz) ∼ Multinomial(Nz(rE); p1, . . . , p|Y|).
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Then by Claim 5.22 and since rE ∈ GoodE implies Nz(rE) = Θ(n), then

Pr
V

[
ℓz∧
i=1

(Vz,i = Nz(rE) · pi)

]
= Ω

(
1

n|Y|/2

)
.

Observe that since Eve2’s choice of r̂Bi is conditionally independent of r̂Bj given rE for i ̸= j, then
for all z ̸= z′, Vz is independent of Vz′ given rE . Therefore,

Pr
V

[∧
z∈Z

ℓz∧
i=1

(Vz,i = Nz(rE) · pi)

]
= Ω

(
1

n|Z||Y|/2

)
.

Now, for a fixed rE ∈ GoodE , observe that
∧

z∈Z
∧ℓz

i=1(Vz,i = Nz(rE) · pi) is equivalent to the
statement that ∀z ∈ Z, y ∈ Y, Ratioz→y(rE ,Eve2(rE)) = Ratioz→y(rE ,Eve1(rE)). Thus, the
distribution of Eve2(rE) conditioned on this event is uniformly distributed over all r̂B ∈ Yn with
the property that ∀z ∈ Z, y ∈ Y, Ratioz→y(rE , r̂B) = Ratioz→y(rE ,Eve0(rE)). But this means
that conditioned on this event, the distribution of Eve2(rE) is identical to the distribution of
Eve1(rE) and so Eve2 succeeds with equal probability as Eve1. Therefore there exists a polynomial
p(n) = O

(
n|Z||Y|/2

)
such that

Pr
R,ChE,Eve2

[hR,ChB,n(Eve2(RE)) = 1 | RE = rE ] ≥
1

p(n)
· Pr
R,ChE,Eve1

[hR,ChB,n(Eve1(RE)) = 1 | RE = rE ].

Corollary 5.26. There exists a polynomial p(n) = O
(
n|Z||Y|/2

)
such that

p(n) · Pr
R,ChE,Eve2

[hR,ChB,n(Eve2(RE)) = 1] + negl(λ) ≥ Pr
R,ChE,Eve1

[hR,ChB,n(Eve1(RE)) = 1]

Proof. For rE ∈ GoodE , let prE (n) be the polynomial for rE described in Lemma 5.25. Let
p(n) = maxrE∈GoodE

(prE (n)) = O
(
n|Z||Y|/2

)
. Then, by Lemma 5.25,

p(n) · Pr
R,ChE,Eve2

[hR,ChB,n(Eve2(RE)) = 1] + Pr[RE /∈ GoodE ]

≥
∑

rE∈GoodE

(
p(n) · Pr

R,ChE,Eve2
[hR,ChB,n(Eve2(RE)) = 1 | RE = rE ] · Pr[RE = rE ]

)
+ Pr[RE /∈ GoodE ]

≥
∑

rE∈GoodE

(
p(n)

prE (n)
· Pr
R,ChE,Eve2

[hR,ChB,n(Eve2(RE)) = 1 | RE = rE ] · Pr[RE = rE ]

)
+ Pr[RE /∈ GoodE ]

≥ Pr
R,ChE,Eve2

[hR,ChB,n(Eve2(RE)) = 1 | RE ∈ GoodE ] + Pr[RE /∈ GoodE ]

≥ Pr
R,ChE,Eve2

[hR,ChB,n(Eve2(RE)) = 1]

The corollary then follows since Pr[RE /∈ GoodE ] = negl(λ) by Lemma 5.24.

5.3.5 Input-Independent Strategy

Now, although Eve2’s strategy is to apply a channel ChrE to each symbol of her input rE , the
choice of channel she applies is dependent on which rE she received. To remove this dependence,
we construct an Eve3 who in addition to getting input rE also gets an independent random input
w that defines which channel Chw that Eve3 should apply to rE . More formally,
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Eve3(w, rE):

1. Let rEw,0 ∈ Zn be the lexicographically first vector of weight w.

2. Define a channel Chw from Z to Y by stochastic matrix

Pw = [pY |Z(y | z)]z∈Z,y∈Y = [Ratioz→y(rEw,0,Eve0(rEw,0))]z∈Z,y∈Y

3. For i ∈ [n], set r̂Bi = Chw(rEi).

4. Output r̂B.

Notation

• Let Wn = {w = (w1, . . . , w|Z|) |
∑|Z|

i=1(wi) = n} = {w ∈ Nn | w = wt(rE) for some rE ∈ Zn}
be the set of all weight vectors of Zn.

• Note that |Wn| =
(n+|Z|−1
|Z|−1

)
= poly(n).

• Let W be a random variable uniformly distributed over Wn.

Now, we will show that Eve3(wt(rE), rE) has the same behavior as Eve2(rE).

Lemma 5.27. For all weights w ∈ Wn and all rE ∈ Zn such that wt(rE) = w, then

Chw = ChrE

where Chw is defined as in Eve3 and ChrE is defined as in Eve2.

Proof. Since for all rE ∈ Zn and π ∈ Sn, Eve0(π(rE)) = π(Eve0(rE)), then

[Ratioz→y(rE ,Eve0(rE))]z∈Z,y∈Y = [Ratioz→y(π(rE), π(Eve0(rE)))]z∈Z,y∈Y

= [Ratioz→y(π(rE),Eve0(π(rE)))]z∈Z,y∈Y

Therefore, for all (rE , rE
′) ∈ Eqwt, ChrE = ChrE ′ . Thus, Chw = ChrEw,0

= ChrE .

Corollary 5.28. For any rE ∈ Zn, the distribution of Eve3(wt(rE), rE) is the same as the distri-
bution of Eve2(rE).

Proof. This follows directly from Lemma 5.27 by definition of Eve2 and Eve3.

We claim that given a uniformly randomly chosen weight vector w, Eve3’s probability of success
is not much worse than Eve2’s probability of success. This follows since there are only polynomially
many possible weight vectors, so with some inverse polynomially probability, the randomly chosen
weight w for Eve3 will be equal to wt(rE) and thus Eve3 will act identically to Eve2.

Lemma 5.29.

Pr
R,ChE,Eve3,W

[hR,ChB,n(Eve3(W,RE)) = 1] ≥ 1

q(n)
· Pr
R,ChE,Eve2

[hR,ChB,n(Eve2(RE)) = 1]

where q(n) =
(n+|Z|−1
|Z|−1

)
= |Wn| = poly(n).
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Proof.

Pr
R,ChE,Eve3,W

[hR,ChB,n(Eve3(W,RE)) = 1]

= Pr
R,ChE,Eve3,W

[W = wt(RE)] · Pr
R,ChE,Eve3,W

[hR,ChB,n(Eve3(W,RE)) = 1 |W = wt(RE)]

=
1

|Wn|
Pr

R,ChE,Eve3,W
[hR,ChB,n(Eve3(W,RE)) = 1 |W = wt(RE)]

=
1

|Wn|
Pr

R,ChE,Eve2
[hR,ChB,n(Eve2(RE)) = 1]

where the last equality follows by Corollary 5.28.

Finally, we prove that Eve3 only succeeds with negligible probability. This step crucially
requires that the main channel ChB is not a degradation of Eve’s channel ChE. Recall that Good =
{r ∈ X n | ∀x ∈ X , Nx(r) ≥ n

2|X |} ⊂ X
n and that for all r ∈ Good and x ∈ X , then Nx(r) = Θ(n).

Lemma 5.30.
Pr

R,ChE,Eve3,W
[hR,ChB,n(Eve3(W,RE)) = 1] ≤ negl(λ)

Proof. First,

Pr
R,ChE,Eve3,W

[hR,ChB,n(Eve3(W,RE)) = 1]

≤ Pr
R,ChE,Eve3,W

[hR,ChB,n(Eve3(W,RE)) = 1 | R ∈ Good] + Pr
R
[R /∈ Good]

≤ max
w∈W,r∈Good

(
Pr

R,ChE,Eve3,W
[hR,ChB,n(Eve3(W,RE)) = 1 |W = w,R = r]

)
+ Pr

R
[R /∈ Good]

= max
w∈W,r∈Good

(
Pr

ChE,Eve3
[hr,ChB,n(Eve3(w,ChE(r)) = 1]

)
+ Pr

R
[R /∈ Good]

By Lemma 5.7, PrR[R /∈ Good] ≤ negl(λ), so it suffices to prove that ∀w ∈ Wn and ∀r ∈ Good,

Pr
ChE,Eve3

[hr,ChB,n(Eve3(w,ChE(r)) = 1] = negl(λ)

Fix any w ∈ Wn and any r ∈ Good. Let Chw be defined by stochastic matrix

Pw = [pw(y | z)]z∈Z,y∈Y = [Ratioz→y(rEw,0,Eve0(rEw,0))]z∈Z,y∈Y

Let R̂B |r,w be a random variable representing the output of Eve3(w,ChE(r)). Now, by definition

of Eve3, the distribution of each (R̂B |r,w)i = Chw(ChE(ri)). In other words, R̂B |r,w is produced by
sending r symbol by symbol through a channel formed by concatenating ChE with Chw. Intuitively,
since ChB is not a degradation of ChE then this concatenated channel should not emulate ChB well,
and therefore we expect some ratio Ratiox→y(r, R̂B |r,w) to be far from the ratio pB(y|x) expected
by fm,r,ChB,n.

Indeed, since ChB is not a degradation of ChE, then by Lemma 3.13 there exists a constant
d > 0 and x∗ ∈ X , y∗ ∈ Y such that

|[PB − PE · Pw]x∗,y∗ | ≥ d.
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Or equivalently, for pE·w(y
∗|x∗) = [PE · Pw]x∗,y∗ = Pr[Chw(ChE(x

∗)) = y∗],

|pB(y∗|x∗)− pE·w(y
∗|x∗)| ≥ d

Therefore, since d is constant,

Pr
ChE,Eve3

[hr,ChB,n(Eve3(w,ChE(r))) = 1]

≤ Pr
ChE,Eve3

[
|Ratiox∗→y∗(r, R̂B |r,w)− pB(y

∗|x∗)| ≤ |Y| · n−
1
3

]
≤ Pr

ChE,Eve3

[
|Ratiox∗→y∗(r, R̂B |r,w)− pE·w(y

∗|x∗)| ≥ |Y| · n−
1
3

]
For all i ∈ [n], define

Vi =

{
1 if ri = x∗ and (R̂B |r,w)i = y∗

0 else

Let Sx∗ = {i ∈ [n] | ri = x∗}. Then,

∀i ∈ Sx∗ ,Pr[Vi = 1] = pE·w(y
∗|x∗)

E

∑
i∈Sx∗

Vi

 = Nx∗(r) · pE·w(y∗|x∗)∑
i∈Sx∗

Vi = Nx∗(r) ·Ratiox∗→y∗(r, R̂B |r,w)

By a Chernoff bound,

Pr
ChE,Eve3

[
|Ratiox∗→y∗(r, R̂B |r,w)− pE·w(y

∗|x∗)| ≥ |Y| · n−
1
3

]
= Pr

∣∣∣∣∣∣
∑
i∈Sx∗

Vi −Nx∗(r) · pE·w(y∗|x∗)

∣∣∣∣∣∣ ≥ Nx∗(r) · |Y| · n−
1
3


≤ 2 · exp

(
−Nx∗(r) · |Y|2 · n−2/3

3 · pE·w(y∗|x∗)

)
.

Since pE·w(y
∗|x∗) ≤ 1 and r ∈ Good implies Nx∗(r) = Θ(n),

Pr

∣∣∣∣∣∣
∑
i∈Sx∗

Vi −Nx∗(r) · pE·w(y∗|x∗)

∣∣∣∣∣∣ ≥ Nx∗(r) · |Y| · n−
1
3

 ≤ 2 · e−Ω(n1/3) = negl(λ).

Thus, our lemma holds since for any w ∈ Wn and any r ∈ Good,

Pr
ChE,Eve3

[hr,ChB,n(Eve3(w,ChE(r))) = 1] ≤ negl(λ)
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5.3.6 Putting it Together

Theorem 5.31. For all randomized functions g : Zn → Yn,

Pr
R,ChE,g

[hR,ChB,n(g(RE)) = 1] ≤ negl(λ)

Proof. By Lemma 5.19, Eve0 is an optimal strategy so

Pr
R,ChE,g

[hR,ChB,n(g(RE)) = 1] ≤ Pr
R,ChE

[hR,ChB,n(Eve0(RE)) = 1]

Then, by Lemma 5.21, Corollary 5.26, Lemma 5.29, and Lemma 5.30 for some polynomials p(n), q(n) =
poly(n),

Pr
R,ChE

[hR,ChB,n(Eve0(RE)) = 1] = Pr
R,ChE,Eve1

[hR,ChB,n(Eve1(RE)) = 1]

≤ p(n) · Pr
R,ChE,Eve2

[hR,ChB,n(Eve2(RE)) = 1] + negl(λ)

≤ p(n) · q(n) · Pr
R,ChE,Eve3,W

[hR,ChB,n(Eve3(W,RE)) = 1] + negl(λ)

≤ p(n) · q(n) · negl(λ) + negl(λ)

≤ negl(λ)

We now show that this implies that any strategy g can only cause fm,R,ChB,n to output m with
negligible probability. This follows from the lemma below:

Lemma 5.32. For any r ∈ X n and r̂B ∈ Yn,

∀x ∈ X , y ∈ Y, Ratiox→y(r, r̂B) ≤ pB(y|x) + n−
1
3

implies

∀x ∈ X , y ∈ Y, |Ratiox→y(r, r̂B)− pB(y|x)| ≤ |Y| · n−
1
3

Proof. Fix any r ∈ X n and r̂B ∈ Yn. Suppose that ∀x ∈ X , y ∈ Y, Ratiox→y(r, g(RE)) ≤
pB(y|x) + n−

1
3 . Then, clearly

∀x ∈ X , y ∈ Y,Ratiox→y(r, r̂B) ≤ pB(y|x) + |Y| · n−
1
3

Now fix any x∗ ∈ X and y∗ ∈ Y. Then, by definition of the ratio function,

Nx∗(r) =
∑
y∈Y

Nx∗(r) ·Ratiox∗→y(r, r̂B)

1 =
∑
y∈Y

Ratiox∗→y(r, r̂B)

This implies

Ratiox∗→y∗(r, r̂B) = 1−
∑

y ̸=y∗∈Y
Ratiox∗→y(r, r̂B)

≥ 1−
∑

y ̸=y∗∈Y

(
pB(y|x∗) + n−

1
3

)

=

1−
∑

y ̸=y∗∈Y
pB(y|x∗)

− ∑
y ̸=y∗∈Y

n−
1
3

= pB(y
∗ | x∗)− (|Y| − 1)n−

1
3
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Thus,

∀x ∈ X , y ∈ Y,Ratiox→y(r, r̂B) ≥ pB(y|x)− |Y| · n−
1
3

so the claim follows.

Therefore, we obtain

Theorem 5.33. For all randomized functions g : Zn → Yn and any message m ∈ {0, 1},

Pr
R,ChE,g

[fm,R,ChB,n(g(RE)) ̸= ⊥] ≤ negl(λ)

Proof. By Theorem 5.31 and Lemma 5.32

Pr
R,ChE,g

[fm,R,ChB,n(g(RE)) ̸= ⊥]

= Pr
R,ChE,g

[∀x ∈ X , y ∈ Y, Ratiox→y(R, g(RE)) ≤ pB(y|x) + n−
1
3 ]

≤ Pr
R,ChE,g

[∀x ∈ X , y ∈ Y, |Ratiox→y(R, g(RE))− pB(y|x)| ≤ n−
1
3 ]

= Pr
R,ChE,g

[hR,ChB,n(g(RE)) = 1] ≤ negl(λ)

We now prove full security.

Theorem 5.34. For every polynomial query bound q(λ) and (computationally unbounded) adver-
sary A(·) that makes at most q(λ) queries to its oracle,

Pr[Afb,r,ChB,n(1λ,ChE(r)) = b | (fb,r,ChB,n, r)← EncChB(1
λ, b)] ≤ 1

2
+ negl(λ)

where b is uniformly distributed over {0, 1}.

Proof. Consider any unbounded adversary A(·) which will make at most a polynomial number q(n)

of queries to its oracle. For i ∈ {0, 1, 2, . . . , q(n)}, define View
(i)
b to be the distribution of views

(transcripts) of A interacting with the oracle fb,r,ChB,n i-times when the challenge bit is b. Let V
(i)
b

be a random variable over View
(i)
b and define for convenience an indicator Q : View

(i)
b → {⊤,⊥}

such that Q(v) = ⊥ if and only if fb,r,ChB,n output ⊥ for all queries in v. For example, the starting
view is (rE) and after a single query r̂B1 to the oracle that returned ⊥ the view is (rE , r̂B1,⊥).
Observe that if A submits no queries to the oracle, then A is completely unable to distinguish
between the b = 0 and b = 1 case as v = (rE) is a random string chosen independently from b, so

Pr
View

(0)
0

[
V

(0)
0 = v

]
= Pr

View
(0)
1

[
V

(0)
1 = v

]
Then the first query r̂B1 is equally like to be chosen regardless of b since the views were identically
distributed when i = 0. Therefore as long as the oracle does not reveal the message–doing so reveals
the challenge bit–the distribution of views is identical.

Pr
View

(1)
0

[
V

(1)
0 = v | Q(v) = ⊥

]
= Pr

View
(1)
1

[
V

(1)
1 = v | Q(v) = ⊥

]
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Then by induction the ith query is equally likely to be chosen assuming all previous queries do not
reveal the message.

Pr
View

(q(n))
0

[
V

(q(n))
0 = v | Q(v) = ⊥

]
= Pr

View
(q(n))
1

[
V

(p(n))
1 = v | Q(v) = ⊥

]
Now it remains to show that the probability that Q(v) = ⊥ over v ∈ View

(q(n))
b is negligible.

We proceed by a standard union bound strategy. Suppose g1 is the first randomized strategy that
A uses to produce a query to the oracle. By Theorem 5.33 the probability that any randomized
strategy g1 produces a guess that reveals the message b is negligible:

Pr
R,ChE,g1

[fb,R,ChB,n(g1(rE)) ̸= ⊥] ≤ negl(λ)

Now consider any randomness (r∗1, . . . , r
∗
i−1) needed for generating the first i− 1 queries of A. Let

gi be the randomized strategy that A would use to produce the ith query assuming that all of the
first i− 1 queries to the oracle (that would have been generated by (RE , r

∗
1, . . . , r

∗
i−1)) all returned

⊥. Again by Theorem 5.33 the probability that any randomized strategy gi produces a guess that
reveals the message b is negligible.

Pr
R,ChE,gi

[fb,r,ChB,n(gi(RE)) ̸= ⊥] ≤ negl(λ)

By a union bound, the probability that A learns b from any polynomial q(n) number of queries is
q(n) · negl(λ). Thus, with probability 1− q(n) · negl(λ) = 1− negl(λ), A will not learn b from any
oracle query, so

Pr
View

(q(n))
b

[
Q
(
V

(q(n))
b

)
= ⊥

]
= 1− negl(λ).

In other words, A can only distinguish between b = 0 and b = 1 when Q(V (q(n))
b ) = ⊤, but this

occurs with negl(λ) probability.

6 Universal Coding Schemes

A universal coding scheme for a main channel ChB is a wiretap coding scheme that allows decoding
for Bob but is secure against any eavesdropping channel ChE from some set E .

Definition 6.1 (Secure (ChB, E)-universal coding scheme). A statistically secure (resp. computa-
tionally secure, resp. bounded query secure in the ideal obfuscation model) (ChB, E)-universal coding
scheme for channel ChB, a class of eavesdropping channels E, and message space M is a wiretap
coding scheme (Enc,Dec) that is a statistically secure (resp. computationally secure, resp. bounded
query secure in the ideal obfuscation model) wiretap coding scheme for all wiretap channels in the
set {(ChB,ChE) | ChE ∈ E} and for message spaceM.

6.1 Our Construction is a Universal Coding Scheme in the Ideal Oracle Model

We observe that for any channel ChB, our wiretap coding scheme (EncChB,DecChB) in the ideal
oracle model gives us a universal coding scheme against all eavesdropping channels for which secure
wiretap coding schemes are possible. Recall, that if ChB is a degradation of ChE, then no secure
wiretap coding scheme is possible since the adversary can simulate anything that ChB produces.
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Theorem 6.2. Let ChB be any channel and let

Not-Degraded(ChB) = {ChE | ChB is not a degradation of ChE}.

Then, (EncChB,Dec
(·)
ChB) is a bounded query secure (ChB,Not-Degraded(ChB)) wiretap coding scheme

in the ideal oracle model.

Proof. The proof follows by Corollary 5.4 and the observation that (EncChB,Dec
(·)
ChB) only depend

on ChB.

6.2 Universal Coding Schemes in the Information Theoretic Setting

In contrast, in the information theoretic setting, there exist channels ChB for which there is no
positive rate universal coding schemes against all channels ChE that are not less noisy than ChB.
Recall that there exist positive rate statistically secure wiretap codings for general message spaces
for wiretap channel (ChB,ChE) if and only if ChE is not less noisy than ChB (Theorem 4.17).

Remark 6.3. As we are considering positive rate wiretap codings, we consider universality with
respect to the definition of statistically secure wiretap codings for general message spaces (see
Section 4.4).

We consider a simple example where both ChB and ChE are BSC channels. Note that if ChB =
BSCp and ChE = BSCp′ with p′ > p, then ChE is a degradation of ChB and therefore not less noisy
than ChB.

Theorem 6.4. There is no positive rate statistically secure (ChB, E)-universal coding scheme, where
ChB = BSCp and E = {BSC′p : p′ > p}.

Proof. Suppose for sake of contradiction that (Enc,Dec) is a statistically secure (ChB, E)-universal
coding scheme with rate R > 0 for some message spaceM. Now, the secrecy capacity of a (ChB =
BSCp,ChE = BSCp′) wiretap channel is the difference of their capacities, namely Cs(BSCp,BSCp′) =
h2(p

′) − h2(p) [Mau93]. Thus, for any ε > 0, there exists a parameter pε > 0.1 such that
Cs(BSC0.1,BSCpε) = ε. Choose any positive ε′ < R. Then, BSCpε′ ∈ E and Cs(BSCp,BSCpε′ ) <
R. But by definition of secrecy capacity, this means that a wiretap coding scheme with rate
R > Cs cannot satisfy both CK correctness and security. But since CK correctness and security
are weaker than requiring overwhelming correctness and semantic security, then this means that
(Enc,Dec) cannot be a statistically secure wiretap coding scheme for (BSCp,BSCpε′ ), which is a
contradiction.

Theorem 6.4 shows that in general, there are no positive rate statistically secure universal coding
schemes for every channel ChB against all channels that are not less noisy than ChB. We conjecture
that outside this case there are many settings in which there are no positive rate statistically secure
universal coding schemes. To prove this conjecture, it suffices to show that for any main channel
ChB and any ε > 0, there exists a channel ChEε whose secrecy capacity with ChB is equal to ε.

7 Instantiating the Oracle via Obfuscation

7.1 Obfuscation Definitions

We now give obfuscation definitions that suffice for building computationally secure wiretap coding
schemes. Crucially, we will use the fact that the function classes we are obfuscating are statistically
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evasive – that is, even given the information that Eve receives over her channel, it is infeasible for
(even a computationally unbounded) Eve to find even one input that causes the function to output
anything but 0. We formalize this notion now.

Definition 7.1 (Statistically Evasive Circuit Collection with Auxiliary Input). A statistically eva-
sive circuit collection with auxiliary input (F ,G ) is defined by

• a collection F = {Cλ}λ∈N of circuits such that each C ∈ Cλ maps λ input bits to a single
output bit and has size poly(λ)

• a collection G of pairs (D,Aux) where D is a PPT sampler that takes as input the security
parameter 1λ and output circuits from Cλ, and Aux is a PPT auxiliary input generator that
takes as input the security parameter 1λ and a circuit in Cλ and outputs an auxiliary input

such that for every computationally unbounded oracle machine A(·) that is limited to polynomially
many queries to the oracle, and for every (D,Aux) ∈ G , there exists a negligible function µ such
that for every λ ∈ N,

Pr
C←D(1λ)

[
C
(
AC

(
1λ,Aux(1λ, C)

))
= 1
]
≤ µ(λ).

Obfuscation for evasive functions has been studied in several works, most relevantly for us
in [BBC+14, BMSZ16]. We stress that while there are impossibility results for several definitions of
obfuscation, there are no impossibility results known for obfuscation of statistically evasive circuits
with auxiliary input. Indeed, this is for good reason: all known impossibilities for obfuscating cir-
cuits involve either: (i) providing (computationally hiding) obfuscations as auxiliary input [GK05],
which is ruled out in the statistically evasive case; or (ii) “feeding an obfuscated circuit to it-
self” [BGI+01] which requires a non-evasive circuit family. Beyond merely avoiding impossibilities,
both the circuit families that we are obfuscating and the auxiliary inputs we are considering are
quite natural, and there are multiple natural avenues for instantiating our obfuscation using previ-
ous work.

In particular, we consider essentially Definition 2.3 from [BMSZ16], which is itself a generaliza-
tion of the standard average-case VBB definition of obfuscation [BGI+01], but extended to consider
auxiliary input. The work of [BMSZ16] gives a construction achieving this definition for evasive
functions based on multilinear map candidates [GGH13, CLT13], that remain secure even in light
of all known attacks on multilinear map candidates (when instantiated with sufficiently large se-
curity parameters). Below, we also comment that the recent construction of indistinguishability
obfuscation from well-studied assumptions [JLS21] also gives a plausible candidate for obfuscating
our oracle.

Here, our definition slightly extends the average-case VBB definition given in [BMSZ16] only in
that we consider security with respect to a class of possibly randomized auxiliary input generators
as opposed to a single deterministic auxiliary input generator. The proof of security in [BMSZ16] is
oblivious to this change. We also restrict our notion of obfuscation to statistically evasive circuits
collections with auxiliary input.

Definition 7.2 (Average-Case Virtual Black Box Obfuscation for Statistically Evasive Circuit
Collections with Auxiliary Input). Consider a statistically evasive circuit collection with auxiliary
input, (F ,G ) where F = {Cλ}λ∈N and G are defined as in Definition 7.1. A uniform PPT
algorithm Obf is an average-case virtual black box obfuscator for (F ,G ) if there exist negligible
functions ϵ and µ such that
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• Correctness: For all λ ∈ N, every circuit C ∈ Cλ, and every input y to C,

Pr
[
Obf(1λ, C)(y) ̸= C(y)

]
≤ ϵ(λ)

• G -VBB Security: For all non-uniform polynomial time adversaries A, there exists a non-
uniform polynomial time oracle algorithm Sim(·) such that for all λ ∈ N and for every
(D,Aux) ∈ G , ∣∣∣ Pr

C←D(1λ)
[A(1λ,Obf(1λ, C),Aux(1λ, C)) = 1]

− Pr
C←D(1λ)

[SimC(1λ, 1|C|,Aux(1λ, C)) = 1]
∣∣∣ ≤ µ(λ)

7.2 Fuzzy Point Function Obfuscation for the BSC-BEC Case

As a warm-up we consider fuzzy point function obfuscation which suffices when the main channel
is a BSCp channel and Eve’s channel is a BECϵ channel such that ϵ > 2p. Notably this fuzzy
point function solution uses only Hamming distance. Therefore this solution is based on a standard
definition of fuzzy point functions.

Notation Define ∆H(x, y) for two binary strings x, y to be the Hamming distance between x and
y.

Definition 7.3 (Fuzzy Point Function (FPF)). A fuzzy point function fuzzyb,x,δ,n : {0, 1}n → {0, 1}
contains a hardcoded bit b ∈ {0, 1} and x ∈ {0, 1}n, and takes as input y ∈ {0, 1}n. If the Hamming
distance ∆H(x, y) is less than nδ, then fuzzyb,x,δ,n outputs b. Otherwise, fuzzyb,x,δ,n outputs 0.

Consider again the wiretap channel (ChB,ChE) = (BSCp,BECϵ). Recall that in our ideal obfus-
cation model construction from Section 5, our wiretap coding scheme uses an encoder EncBSCp that
outputs a description of a circuit computing fm,r,BSCp,n where n = λ, m ∈ {0, 1}, and r ← {0, 1}n.
This function checks if its input rB is in the set

Sr,p,n ≜ {r′ ∈ {0, 1}n : ∀i, j ∈ {0, 1},Ratioi→j(r, r
′) ≤ δijp+ (1− δij)(1− p) + n−

1
3 }.

where δij is the Kronecker-delta and outputs m if rB ∈ Sr,p,n and 0 otherwise.5 This function is not
a fuzzy point function; however, we show below that there exists a fuzzy point function that suffices
for constructing a secure wiretap coding scheme. This arises from the observation that every string
in Sr,p,n has no more than pn+ n2/3 bit flips.

An Alternate Fuzzy Point Function Solution

Definition 7.4. Let gm,r,p,n : {0, 1}n → {0, 1} be the fuzzy point function which outputs m ∈ {0, 1}
if the input is contained in the set

Ar,p,n ≜ {r′ ∈ Yn : ∆H(r′, r) ≤ pn+ n2/3}

and 0 otherwise. Note that gm,r,p,n = fuzzym,r,p+n−1/3,n

5Here we use Remark 5.5 to assume fm,r,BSCp,n has binary output.
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Remark 7.5 (Sr,p,n ⊊ Ar,p,n). Observe that Sr,p,n ⊊ Ar,p,n. Let N0(r) be the number of 0’s in r.
If r′ ∈ Sr,p,n, then the number of additional flips over the expected number pn of flips is

N0(r) ·
∣∣Ratio0→1(r, r

′)− p
∣∣+ (n−N0(r)) ·

∣∣Ratio1→0(r, r
′)− p

∣∣ ≤ n2/3.

Thus, the total number of flips is less than pn+ n2/3. The reverse inclusion does not hold: There
exist strings in Ar,p,n that are not in Sr,p,n: for example r = 0n is in A0n,p,n, but not in S0n,p,n.

Definition 7.6 (FPF Function Class and Sampler). For p ∈ [0, 12), define a class of FPFs Pp =
{Pp,n}n∈N by

Pp,n = {gm,r,p,n}r∈{0,1}n,m∈{0,1}
For m ∈ {0, 1}, we define Dm,p to be a PPT circuit sampler for P such that

Dm,p(1
n) outputs a uniformly random circuit from {gm,r,p,n}r∈{0,1}n .

Definition 7.7 (FPF Wiretap Auxiliary Input Generator). For p ∈ [0, 12), we define a class of
auxiliary input generators for Pp by

ABSCϵ>2p ≜ {AuxBECϵ | ϵ > 2p}

where
AuxBECϵ(1

n, gm,r,p,n) outputs BECϵ(r)

Lemma 7.8 (Wiretap Fuzzy Point Functions are Statistically Evasive with Auxiliary Input). For
every p ∈ [0, 12), (Pp,Gp) where Gp = {D0,p, D1,p} × ABSCϵ>2p is a statistically evasive circuit
collection with auxiliary input.

Proof. Let p ∈ [0, 12). Using the definition of statistically evasive circuit collections and the def-
initions of (Pp,Gp), it suffices to show that for all n ∈ N, m ∈ {0, 1}, ϵ > 2p, and for every
computationally unbounded oracle machine A(·) that is limited to polynomially many queries to
the oracle,

Pr[gm,R,p,n(Agm,R,p,n(1n,BECϵ(R))) = 1] ≤ negl(n)

where R is a uniform random variable over {0, 1}n. First, we show that no adversary given a single
query to gm,R,p,n can cause gm,R,p,n to output 1 with more than negligible probability.

Claim 7.9. Let n ∈ N, p ∈ [0, 12), and ϵ > 2p. Let R be a uniform random variable over {0, 1}n.
For any randomized function A,

Pr
R,BECϵ,A

[
∆H(R,A(BECϵ(R))) ≤ n2/3 + pn

]
≤ negl(n)

Proof. Choose η′, η′′ > 0 to be some small enough constants such that (1 − η′)
(
ϵ
2

)
> (1 + η′′) · p.

Such constants exist since ϵ > 2p. Let η be a constant such that 0 < η < η′. By a Chernoff bound
BECϵ(R) contains with overwhelming probability at least (1− η)(ϵ · n) erasures. A’s best strategy
is to guess randomly on the erasures, resulting with overwhelming probability (by Chernoff) an
output string with Hamming distance from R at least (1− η′)

(
ϵ·n
2

)
. Then,

Pr
R,BECϵ,A

[
∆H(R,A(BECϵ(R))) > (1− η′)

(ϵ · n
2

)]
≥ 1− negl(n).

But since (1− η′)
(
ϵ·n
2

)
> (1 + η′′)(pn) > pn+ n2/3 for sufficiently large n,

Pr
R,BECϵ,A

[
∆H(R,A(BECϵ(R))) ≤ n2/3 + pn

]
≤ negl(n).
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Then, by using the above claim and a similar proof as in Theorem 5.34, we obtain security
against an adversary that is given polynomially many queries to gm,R,p,n.

Theorem 7.10. Let p ∈ [0, 12). If there exists an average-case virtual black box with auxiliary input
obfuscator Obfp for (Pp,Gp) where Gp = {D0,p, D1,p}×ABSCϵ>2p, then there exists a computationally
secure wiretap coding scheme for every (BSCp,BECϵ)-wiretap channel where ϵ > 2p.

Proof. Let (BSCp,BECϵ) be a wiretap channel where p ∈ [0, 12) and ϵ > 2p. Let Obfp be an average-
case virtual black box with auxiliary input obfuscator for (Pp,Gp). Let ECC = (ECC.Enc,ECC.Dec)
be a sufficiently strong error correcting code for BSCp such that for all x ∈ {0, 1}∗,

Pr[ECC.Dec(1λ,BSCp(ECC.Enc(1
λ, x))) = x] ≥ 1− negl(λ)

We define the following wiretap coding scheme (Encp,Decp). Recall that Alice sends a message
m ∈ {0, 1} to Bob by sending Encp(1

λ,m) over BSCp and BECϵ to Bob and Eve respectively. Bob
decodes his channel’s output using Decp.

• Encp takes as input a security parameter 1λ and a message m ∈ {0, 1}, and sets n = λ. The
encoder outputs a uniformly random chosen r ∈ {0, 1}n, and an error-correcting encoding
E = ECC.Enc(1n,Obfp(1

n, gm,r,p,n)) of the obfuscation of the circuit description of gm,r,p,n

from Definition 7.4.

• Decp takes as input a security parameter 1λ, the noisy encoding Ê = ChB(E), and a string

rB = ChB(r). The decoder first uses the error-correcting code to decode Ê to Obfp(1n, gm,r,p,n)
and then outputs (Obfp(1

n, gm,r,p,n))(rB).

Observe that Πp = (Encp,Decp) above is essentially the same as the ideal oracle model construction
ΠBSCp = (EncBSCp ,DecBSCp) from Section 5 except that we have replaced the oracle for fm,r,BSCp,n

with an error correcting encoding of the obfuscation of gm,r,p,n.
For correctness, first observe that by correctness of the error correcting code and the obfusca-

tion, the decoder outputs a value equal to gm,r,p,n(rB) = gm,r,p,n(ChB(r)) except with negligible
probability. By Remark 7.5, for any r and m, the set of strings Sr,p,n on which the original function
fm,r,ChB,n from the ideal obfuscation model construction outputs bit m is a subset of the set of
strings Ar,p,n on which gm,r,p,n outputs the bit m. Therefore,

Pr
R,ChB

[fm,R,BSCp,n(ChB(R)) = m] ≤ Pr
R,ChB

[gm,R,p,n(ChB(R)) = m]

Then we note by Theorem 5.8 that

Pr
R,ChB

[fm,R,BSCp,n(ChB(R)) = m] ≥ 1− negl(λ)

Therefore, for all m ∈ {0, 1},

Pr[Decp(1
λ,ChB(Encp(1

λ,m))) = m] ≥ 1− negl(λ)

For semantic security, the proof is nearly identical to the proof we will later show for generalized
fuzzy point functions in Theorem 7.17, so we omit it here.
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7.3 Generalized Fuzzy Point Function Obfuscation

In general wiretap settings, a fuzzy point function obfuscation does not suffice to produce secure
wiretap coding schemes. Thus, we define a generalization of fuzzy point functions that do suffice.

Definition 7.11 (Generalized Fuzzy Point Function (GFPF)). Let X and Y be finite alphabets.
For a value n ∈ N, a message m ∈ {0, 1}, a string r ∈ X n, a parameter δ ∈ [0, 1], and a stochastic
matrix P = [p(y | x)]x,y∈X×Y , the generalized fuzzy point function fm,r,P,n,δ : Yn → {0, 1} is defined
as

fm,r,P,n,δ(rB):

1. If for all alphabet pairs (x, y) ∈ X × Y such that Ratiox→y(r, rB) ≤ p(y | x) + δ, then
output m.

2. Otherwise output 0.

As we will only be concerned with the case where δ = n−1/3 and P is some stochastic matrix
for a channel ChB, we define the following:

Definition 7.12. Let ChB be a channel with stochastic matrix PB. We define

fm,r,ChB,n = fm,r,PB ,n,n−1/3 .

Remark 7.13. The definition above is identical to the definition for the function with the same
notation used in Section 5.6

Definition 7.14 (GFPF Function Class and Sampler). For a channel ChB, we define a class of
GFPFs FChB = {FChB,n}n∈N by

FChB,n = {fm,r,ChB,n}r∈Xn,m∈{0,1}.

For m ∈ {0, 1}, we define Dm,ChB to be a PPT circuit sampler such that

Dm,ChB(1
n) outputs a uniformly random circuit from {fm,r,ChB,n}r∈Xn .

Definition 7.15 (GFPF Wiretap Auxiliary Input Generator). For a channel ChB : X → Y, we
define a class of auxiliary input generators

AChB = {AuxChE | channel ChE : X → Z such that ChB is not a degradation of ChE}

where
AuxChE(1

n, fm,r,ChE,n) outputs ChE(r)

Lemma 7.16 (Wiretap Generalized Fuzzy Point Functions are Statistically Evasive with Aux-
iliary Input). For every channel ChB, (FChB,GChB) where GChB = {D0,ChB, D1,ChB} × AChB is a
statistically evasive circuit collection with auxiliary input.

Proof. Let ChB be any channel, and let X be the input domain of ChB. Using the definition of
statistically evasive circuit collections and the definitions of (FChB,GChB), it suffices to show that
for all n ∈ N, m ∈ {0, 1}, channels ChE such that ChB is not a degradation of ChE, and for every

6Here we use Remark 5.5 to assume fm,r,ChB,n has binary output.
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computationally unbounded oracle machine A(·) that is limited to polynomially many queries to
the oracle,

Pr[fm,R,p,n(Afm,R,p,n(1n,ChE(R))) = 1] ≤ negl(n)

where R is a uniform random variable over X n. The proof then follows directly from Theorem 5.34.

Theorem 7.17. Let ChB be a channel. If there exists an average-case virtual black box with
auxiliary input obfuscator ObfChB for (FChB,GChB) where GChB = {D0,ChB, D1,ChB} × AChB, then
there exists a computationally secure wiretap coding scheme for every (ChB,ChE)-wiretap channel
where ChE is not a degradation of ChB.

Proof. Let (ChB,ChE) be a wiretap channel where ChE is not a degradation of ChB. Let ObfChB
be an average-case virtual black box with auxiliary input obfuscator for (FChB,GChB). Let ECC =
(ECC.Enc,ECC.Dec) be a sufficiently strong error correcting code for ChB such that for all x ∈
{0, 1}∗,

Pr[ECC.Dec(1λ,ChB(ECC.Enc(1λ, x))) = x] ≥ 1− negl(λ)

We define the following wiretap coding scheme dependent only on ChB. Recall that Alice sends a
message m ∈ {0, 1} to Bob by sending Enc(1λ,m) over ChB and ChE to Bob and Eve respectively.
Bob decodes his channel’s output using Dec.

• Enc takes as input a security parameter 1λ and a message m ∈ {0, 1}, and sets n = λ.
The encoder outputs a uniformly random r ∈ X n, and an error-correcting encoding E =
ECC.Enc(1n,ObfChB(1

n, fm,r,ChB,n)) of the obfuscation of the circuit description of fm,r,ChB,n

from Definition 7.12.

• Dec takes as input a security parameter 1λ, the noisy encoding Ê = ChB(E), and a string rB =
ChB(r). The decoder first uses the error-correcting code to decode Ê to ObfChB(1

n, fm,r,ChB,n)
and then outputs (ObfChB(1

n, fm,r,ChB,n))(rB).

Observe that Π = (Enc,Dec) above is essentially the same as the ideal oracle model construction
ΠChB = (EncChB,DecChB) from Section 5 except that we have replaced the oracle for fm,r,ChB,n with
an error correcting encoding of the obfuscation of fm,r,ChB,n.

For correctness, first observe that by correctness of the error correcting code and the obfuscation,
the decoder outputs a value equal to fm,r,ChB,n(rB) = fm,r,ChB,n(ChB(r)) except with negligible
probability. Thus, with high probability, Dec outputs the same value as DecChB, so correctness
follows by Theorem 5.8.

Now we analyze the semantic security of the encoding scheme. Recall semantic security requires:

Pr[A(1λ,ChE(Enc(1λ, b))) = b] ≤ 1

2
+ negl(λ).

Note that this is equivalent to requiring∣∣∣Pr[A(1λ,ChE(Enc(1λ, 0))) = 1]− Pr[A(1λ,ChE(Enc(1λ, 1))) = 1]
∣∣∣ ≤ negl(λ).

By construction of the encoder above, the above statement is equivalent to∣∣∣ Pr
r←R

[A(1n,ChE(ECC.Enc(1n,ObfChB(1n, f0,r,ChB,n))),ChE(r)) = 1]

− Pr
r←R

[A(1n,ChE(ECC.Enc(1n,ObfChB(1n, f1,r,ChB,n))),ChE(r)) = 1]
∣∣∣ ≤ negl(n)
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where R is the uniform distribution on X n. A strengthening of A is to assume A correctly decodes
the encoded obfuscated circuit description. Therefore, rewriting the above using the notation from
Definition 7.14 and Definition 7.15, it suffices to prove∣∣∣ Pr

C0←D0,ChB(1n)
[A(1n,ObfChB(1n, C0),AuxChE(1

n, C0)) = 1]

− Pr
C1←D1,ChB(1n)

[A(1n,ObfChB(1n, C1),AuxChE(1
n, C1)) = 1]

∣∣∣ ≤ negl(n). (⋆)

Now we aim to show (⋆) through a series of inequalities.
First, the security definition of average-case virtual black box with auxiliary input obfuscation

in Definition 7.2 yields a simulator non-uniform polynomial time oracle machine Sim such that,∣∣∣ Pr
C0←D0,ChB(1n)

[A(1n,ObfChB(1n, C0),AuxChE(1
n, C0)) = 1]

− Pr
C0←D0,ChB(1n)

[SimC0(1n, 1|C0|,Aux(1n, C0)) = 1]
∣∣∣ ≤ negl(n) (1)

∣∣∣ Pr
C1←D1,ChB(1n)

[A(1n,ObfChB(1n, C1),AuxChE(1
n, C1)) = 1]

− Pr
C←D1,ChB(1n)

[SimC1(1n, 1|C1|,Aux(1n, C1)) = 1]
∣∣∣ ≤ negl(n) (2)

Next, we note by Lemma 7.16, that (FChB,GChB) is statistically evasive. Therefore, with high proba-
bility, since Sim(·) is polynomial time, SimC0(1n, 1|C0|,Aux(1n, C0)) and SimC1(1n, 1|C0|,Aux(1n, C0))
both only ever receive 0’s from their oracles, so∣∣∣ Pr

C0←D0,ChB(1n)
[SimC0(1n, 1|C0|,Aux(1n, C0)) = 1]

− Pr
C0←D0,ChB(1n),C1←D1,ChB(1n)

[SimC1(1n, 1|C0|,Aux(1n, C0))) = 1]
∣∣∣ ≤ negl(n). (3)

Then, observe that since the auxiliary input generator is only dependent on r, and D0,ChB and
D1,ChB output circuits of the same size, then the resulting distribution of

(1n, 1|C0|,Aux(1n, C0))

when C0 ← D0,ChB is identical to that of

(1n, 1|C1|,Aux(1n, C1))

when C1 ← D1,ChB. Therefore,∣∣∣ Pr
C0←D0,ChB(1n),C1←D1,ChB(1n)

[SimC1(1n, 1|C0|,Aux(1n, C0))) = 1]

− Pr
C′

1←D1,ChB(1n),C1←D1,ChB(1n)
[SimC1(1n, 1|C′

1|,Aux(1n, C ′1))) = 1]
∣∣∣ ≤ negl(n). (4)

Then, again since (FChB,GChB) is evasive,∣∣∣ Pr
C′

1←D1,ChB(1n),C1←D1,ChB(1n)
[SimC1(1n, 1|C′

1|,Aux(1n, C ′1))) = 1]

− Pr
C1←D1,ChB(1n)

[SimC1(1n, 1|C1|,Aux(1n, C1))) = 1]
∣∣∣ ≤ negl(n). (5)

Applying the triangle inequality on (1), (2), (3), (4), (5) yields (⋆). As mentioned earlier, (⋆)
suffices to show semantic security of the scheme.
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7.4 Construction from iO

Finally, we remark that if there exists a uniformly bounded average case virtual black box with
auxiliary input obfuscator, then iO (indistinguishability obfuscation) also implies secure wiretap
coding schemes for (ChB,ChE) wiretap channels where ChB is not a degradation of ChE.

Definition 7.18. A uniform PPT algorithm Obf for a collection {Fλ}λ∈N of circuits is said to be
be uniformly bounded if it satisfies the following property:

• Polynomially Bounded Obfuscation Circuit Size: There exists a polynomial p(λ) such
that for all λ ∈ N and for all C ∈ Fλ, we have

∣∣Obf(1λ, C)
∣∣ = p(|C|) where |C| is the circuit

size of C.

Definition 7.19 (Indistinguishability Obfuscation (iO) for Circuits, Imported from [JLS21]). A
uniform PPT algorithm iO is called a (T, γ)-secure indistinguishability obfuscator for polynomial-
sized circuits if the following holds:

• Completeness: For every λ ∈ N, every circuit C with input length n, every input x ∈ {0, 1}n
we have that

Pr
[
C ′(x) = C(x) : C ′ ←− iO(1λ, C)

]
= 1

• (T, γ)-Indistinguishability: For every two ensembles {C0,λ}, {C1,λ} of polynomial-sized cir-
cuits that have the same size, input length, and output length, and are functionally equiva-
lent, that is, ∀λ, C0,λ(x) = C1,λ(x) for every input x, the following distributions are (T, γ)-
indistinguishable.

{iO(1λ, C0,λ)} {iO(1λ, C1,λ)}

meaning that for all adversaries running in time T · poly(λ) we have that for all sufficiently
large λ, ∣∣∣Pr [A(1λ, iO(1λ, C0,λ)) = 1

]
− Pr

[
A(1λ, iO(1λ, C1,λ)) = 1

]∣∣∣ ≤ γ(λ).

Following the discussion on iO in [AIK+21], we note that iO is a ”best-possible” obfusca-
tion [GR07]. More specifically, if there exists some instantiation of the ideal obfuscation that gives
a secure computational wiretap coding scheme, then replacing that instantiation with iO should
preserve the security properties. However, in our setting, the adversary is given additional auxil-
iary information that may depend on the obfuscated circuit. Despite this auxiliary information, we
formally show below that iO still behaves as a best possible obfuscation.

Lemma 7.20. Let ChB be a channel and λ be a security parameter. If there exists a uniformly
bounded average-case virtual black box with auxiliary input obfuscator ObfChB with perfect correct-
ness for (FChB,GChB) where GChB = {D0,ChB, D1,ChB}×AChB, then (λ, µ)-secure iO for a negligible
µ implies a computationally secure wiretap coding scheme for any (ChB,ChE)-wiretap channel where
ChB is not a degraded version of ChE.

Proof. Let (ChB,ChE) be a wiretap channel where ChB is not a degration of ChE. Let ObfChB be
a uniformly bounded average-case virtual black box with auxiliary input obfuscator with perfect
correctness for (FChB,GChB). Let p be the polynomial which bounds the obfuscation circuit size
(i.e. |Obf(1λ, C)| = p(|C|)). Let Padp be a function that pads a circuit C ∈ FChB to a functionally
identical circuit of size p(|C|).
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Our computationally secure wiretap coding scheme construction is identical to the construction
in Theorem 7.17 except we replace Obf(1n, fm,r,ChB,n) with iO(1n,Padp(fm,r,ChB,n)). Correctness
follows in the same way as in Theorem 7.17 by correctness of iO.

Analogously to the proof of Theorem 7.17, to show semantic security, it suffices to show for all
non-uniform polynomial time adversaries A that∣∣∣ Pr

C0←D0,ChB(1λ)

[
A(1λ, iO(1λ,Padp(C0)),AuxChE(1

λ, C0)) = 1
]

− Pr
C1←D1,ChB(1λ)

[
A(1λ, iO(1λ,Padp(C1)),AuxChE(1

λ, C1)) = 1
] ∣∣∣ ≤ negl(λ). (⋆)

First we show the following claim:

Claim 7.21.∣∣∣ Pr
C0←D0,ChB(1λ)

[
A(1λ, iO(1λ,Padp(C0)),AuxChE(1

λ, C0)) = 1
]

− Pr
C0←D0,ChB(1λ)

[
A(1λ, iO(1λ,ObfChB(1λ, C0)),AuxChE(1

λ, C0)) = 1
] ∣∣∣ ≤ µ(λ). (1)

Proof. For the sake of contradiction, suppose not. Then there exists an adversary A∗ such that∣∣∣ Pr
C0←D0,ChB(1λ)

[
A∗(1λ, iO(1λ,Padp(C0)),AuxChE(1

λ, C0)) = 1
]

− Pr
C0←D0,ChB(1λ)

[
A∗(1λ, iO(1λ,ObfChB(1λ, C0)),AuxChE(1

λ, C0)) = 1
] ∣∣∣ > µ(λ).

Let (C∗, r∗) be the circuit C∗ from D0,ChB and the randomness r∗ for the auxiliary input generator
that maximizes A∗’s distinguishing advantage. Now, we construct a distinguisher A′ that breaks
the (λ, µ)-indistinguishability of iO on circuits Padp(C

∗) and ObfChB(C
∗). A′ takes as input Q

which is either iO(1λ,Padp(C∗)) or iO(1λ,ObfChB(C∗)) as well as non-uniform advice r∗ and circuit
descriptions of A∗ and C∗, and outputs either 0 or 1.

A′(1λ, Q, ⟨A∗⟩, ⟨C∗⟩, r∗):

• Output A∗(1λ, Q,AuxChE(1
λ, C∗; r∗))

Then, A′ on input iO(1λ,Padp(C∗)) outputsA∗(1λ, iO(1λ,Padp(C∗)),AuxChE(1λ, C∗; r∗)) and on in-
put iO(1λ,ObfChB(C∗)) outputs A∗(1λ, iO(1λ,ObfChB(1λ, C∗)),AuxChE(1λ, C∗; r∗)). But then since
A∗ has greater than µ(λ) advantage in distinguishing the two, then A′ has greater than µ(λ)
advantage in distinguishing the obfuscations, contradicting (λ, µ)-indistinguishability.

The same exact argument gives∣∣∣ Pr
C1←D1,ChB(1λ)

[
A(1λ, iO(1λ,Padp(C1)),AuxChE(1

λ, C1)) = 1
]

− Pr
C1←D1,ChB(1λ)

[
A(1λ, iO(1λ,ObfChB(1λ, C1)),AuxChE(1

λ, C1)) = 1
] ∣∣∣ ≤ µ(λ). (2)

Then, as shown in (⋆) of the proof of Theorem 7.17, by security of ObfChB and since (FChB,GChB)
is statistically evasive,∣∣∣ Pr

C0←D0,ChB(1λ)
[A(1λ,ObfChB(1λ, C0),AuxChE(1

λ, C0)) = 1]

− Pr
C1←D1,ChB(1λ)

[A(1λ,ObfChB(1λ, C1),AuxChE(1
λ, C1)) = 1]

∣∣∣ ≤ negl(n).
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which implies∣∣∣ Pr
C0←D0,ChB(1λ)

[
A(1λ, iO(1λ,ObfChB(1λ, C0)),AuxChE(1

λ, C0)) = 1
]

− Pr
C1←D1,ChB(1λ)

[
A(1λ, iO(1λ,ObfChB(1λ, C1)),AuxChE(1

λ, C1)) = 1
] ∣∣∣ ≤ µ(λ). (3)

Applying the triangle inequality on (1), (2), (3) gives (⋆).
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[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear
maps over the integers. In Ran Canetti and Juan A. Garay, editors, Advances in Cryp-
tology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Science,
pages 476–493, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg,
Germany.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam D. Smith. Fuzzy extrac-
tors: How to generate strong keys from biometrics and other noisy data. SIAM J.
Comput., 38(1):97–139, 2008.

[FMR20] Benjamin Fuller, Xianrui Meng, and Leonid Reyzin. Computational fuzzy extractors.
Inf. Comput., 275:104602, 2020. Earlier version in Asiacrypt 2013.

45



[GGH13] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal
lattices. In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology
– EUROCRYPT 2013, volume 7881 of Lecture Notes in Computer Science, pages 1–17,
Athens, Greece, May 26–30, 2013. Springer, Heidelberg, Germany.

[GK05] Shafi Goldwasser and Yael Tauman Kalai. On the impossibility of obfuscation with
auxiliary input. In 46th Annual Symposium on Foundations of Computer Science, pages
553–562, Pittsburgh, PA, USA, October 23–25, 2005. IEEE Computer Society Press.

[GM84] Shafi Goldwasser and Silvio Micali. Probabilistic encryption. Journal of computer and
system sciences, 28(2):270–299, 1984.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A
completeness theorem for protocols with honest majority. In Alfred Aho, editor, 19th
Annual ACM Symposium on Theory of Computing, pages 218–229, New York City, NY,
USA, May 25–27, 1987. ACM Press.

[GR07] Shafi Goldwasser and Guy N. Rothblum. On best-possible obfuscation. In Salil P. Vad-
han, editor, TCC 2007: 4th Theory of Cryptography Conference, volume 4392 of Lecture
Notes in Computer Science, pages 194–213, Amsterdam, The Netherlands, February 21–
24, 2007. Springer, Heidelberg, Germany.

[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, pages 60–73, 2021.

[LKP09] Yingbin Liang, Gerhard Kramer, and H Vincent Poor. Compound wiretap channels.
EURASIP Journal on Wireless Communications and Networking, 2009:1–12, 2009.

[Mau93] U.M. Maurer. Secret key agreement by public discussion from common information.
IEEE Transactions on Information Theory, 39(3):733–742, 1993.

[Mau94] Ueli MMaurer. The strong secret key rate of discrete random triples. In Communications
and Cryptography, pages 271–285. Springer, 1994.

[MW00] Ueli M. Maurer and Stefan Wolf. Information-theoretic key agreement: From weak
to strong secrecy for free. In Bart Preneel, editor, Advances in Cryptology – EU-
ROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 351–368,
Bruges, Belgium, May 14–18, 2000. Springer, Heidelberg, Germany.

[Nai10] Chandra Nair. Capacity regions of two new classes of two-receiver broadcast channels.
IEEE Transactions on Information Theory, 56(9):4207–4214, 2010.

[PS17] H. Vincent Poor and Rafael F. Schaefer. Wireless physical layer security. Proceedings
of the National Academy of Sciences, 114(1):19–26, 2017.

[Wyn75] Aaron D Wyner. The wire-tap channel. Bell system technical journal, 54(8):1355–1387,
1975.

[Yao82] Andrew C Yao. Theory and application of trapdoor functions. In 23rd Annual Sympo-
sium on Foundations of Computer Science (SFCS 1982), pages 80–91. IEEE, 1982.

46



A [CK78] and [MW00] Definitions

In this section, we connect the definitions of wiretap channels and secrecy capacity used in [CK78]
and [MW00] to the definitions used in our preliminaries.

A.1 [CK78] Definitions

First, we state the definitions from [CK78].

Definition A.1 (Achievable Rate Pairs, Imported from [CK78]). A rate pair (R,Re) of non-
negative numbers is an achievable rate pair for a (ChB,ChE)-wiretap channel if there exists a
family of messages {Mn}n∈N and encoder-decoder pairs {(Encn,Decn)}n∈N where Encn outputs
an encoding of length n and such that

• Message Rate R:

lim
n→∞

1

n
log |Mn| = R

• Correctness: For all m ∈Mn,

Pr[Decn(ChB(Encn(m))) = m] ≥ 1− ϵn

where
lim
n→∞

ϵn = 0

• Equivocation Rate (Secrecy) Re:

lim
n→∞

1

n
H(Mn | ChE(Encn(Mn))) ≥ Re

where Mn is uniform overMn.

We denote the set of all achievable rate pairs as R.

The equivocation rate Re captures a notion of statistical secrecy for a uniform random message.
As the equivocation rate increases, the information that Eve has about the message decreases:

lim
n→∞

1

n
I(Mn;ChE(Encn(Mn))) = lim

n→∞

1

n
[H(Mn)−H(Mn | ChE(Encn(Mn)))] ≤ R−Re

In particular, when R = Re, then limn→∞
1
nI(Mn;ChE(Encn(Mn))) = 0.

This motivates the definition of secrecy capacity.

Definition A.2 (Secrecy Capacity, Imported from [CK78] ). The secrecy capacity of a wiretap
channel is defined to be

Cs = max
(R,R)∈R

R.

The definition of CK Rate-RWiretap Encoding Family (Definition 4.9) then follows by requiring
R = Re, and the alternate definition of secrecy capacity (Definition 4.10) is immediate.
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A.2 [MW00] Definitions

The definitions of secrecy capacity and strong secrecy capacity used in [MW00] are essentially the
same as the definitions used in [CK78] and our preliminaries except that

• The message space is binary:
Mn = {0, 1}k where k := ⌊(R− ϵn)n⌋

• We only require correctness with respect to a random message:

Pr[Decn(ChB(Encn(Mn))) = Mn] ≥ 1− ϵn

where Mn is uniformly distributed overMn = {0, 1}k.

Note that if we have a wiretap coding that satisfies the [CK78] definition, then it also satisfies
the [MW00] definition as we can simply map each m ∈Mn to a binary string in {0, 1}k.

Now, suppose we have a wiretap coding scheme that satisfies the [MW00] definition. Observe
that by an averaging argument, if

Pr[Decn(ChB(Encn(Mn))) = Mn] ≥ 1− ϵn

where Mn is uniformly distributed over {0, 1}k, then for at least a
√
1− ϵn fraction of the messages

m ∈ {0, 1}k,
Pr[Decn(ChB(Encn(m))) = m] ≥

√
1− ϵn

Thus, we can define a new message space

M′n = {m | Pr[Decn(ChB(Encn(m))) = m] ≥
√
1− ϵn}

Then, the encoding scheme satisfying the [MW00] definition satisfies the [CK78] definition with
respect to M′n and ϵ′n = 1 −

√
1− ϵn. Note that since we only removed a 1 −

√
1− ϵn fraction

of messages from Mn and ϵn → 0, then the rate and secrecy requirement of [CK78] also hold in
the limit since ϵ′n → 0. In particular, this means that Theorem 4.14 holds with respect to the
definitions we use in the preliminaries.

B Main Theorem Additional Proofs

In this section, we prove some theorems deferred from Section 5.

Definition 5.6. Let Good = {r ∈ X n | ∀x ∈ X , Nx(r) ≥ n
2|X |} ⊂ X

n.

Lemma 5.7. Pr[R ∈ Good] ≥ 1− negl(λ)

Proof. For any x ∈ X and i ∈ [n], define

Vx,i =

{
1 if Ri = x

0 else

Since R is uniformly random over X n, then E[Vx,i] = 1
|X | . Let Nx(R) =

∑
i∈[n] Vx,i. Then,

E[Nx(R)] = n
|X | . Therefore, by a Chernoff bound, for any x ∈ X , we have

Pr

[
Nx(R) ≤ 1

2
· n

|X |

]
< e
− n

8|X| = negl(n)
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Thus,

Pr[∀x ∈ X , Nx(R) ≥ n

2|X|
] = 1− Pr[∃x ∈ X , Nx(R) <

n

2|X|
]

≥ 1−
∑
x∈X

Pr[Nx(R) <
n

2|X|
]

= 1− |X | · negl(n) = 1− negl(λ)

Claim 5.14. For all r ∈ X n, rE ∈ Zn, π ∈ Sn,

Pr[R = r | RE = rE ] = Pr[R = π(r) | RE = π(rE)]

Proof. Let r = (r1, . . . , rn) and rE = (rE1, . . . , rEn). Since each bit of r is chosen identically and
independently and ChE acts independently on each input symbol, then

Pr[R = r | RE = rE ] =
Pr[RE = rE | R = r] · Pr[R = r]

Pr[RE = rE ]

=
∏
i∈[n]

Pr[REi = rEi | Ri = ri] · Pr[Ri = ri]

Pr[REi = rEi]

=
∏

j∈π([n])

Pr[REj = rEj | Rj = rj ] · Pr[Rj = rj ]

Pr[REj = rEj ]

=
Pr[RE = π(rE) | R = π(r)] · Pr[R = π(r)]

Pr[RE = π(rE)]

= Pr[R = π(r) | RE = π(rE)]

Claim 5.15. For a fixed r ∈ X n, rB ∈ Yn, and any π ∈ Sn, hr,ChB,n(rB) = 1 if and only if
hπ(r),ChB,n(π(rB)) = 1.

Proof. Consider the multiset of input-output pairs {(ri, rBi)}i∈[n] of r and rB. This is equal to the
multiset of input-output pairs {(π(r)i, π(rB)i)}i∈[n] of π(r) and π(rB). Therefore for all x ∈ X and
y ∈ Y, we have

Ratiox→y(r, rB) =
|i ∈ [n] : ri = x, rBi = y|

Nx(r)

=
|i ∈ [n] : π(r)i = x, π(rB)i = y|

Nx(π(r))

= Ratiox→y(π(r), π(rB))

Thus, hr,ChB,n(rB) = hπ(r),ChB,n(π(rB)).

Corollary 5.16. For all r̂B ∈ Yn, rE ∈ Zn, π ∈ Sn,

Pr
R,ChE

[hR,ChB,n(r̂B) = 1 | RE = rE ] = Pr
R,ChE

[hR,ChB,n(π(r̂B)) = 1 | RE = π(rE)]
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Proof. This follows immediately from Claim 5.14 and Claim 5.15:

Pr
R,ChE

[hR,ChB,n(r̂B) = 1 | RE = rE ] =
∑
r

hr,ChB,n(r̂B) · Pr[R = r | RE = rE ]

=
∑
r

hπ(r),ChB,n(π(r̂B)) · Pr[R = π(r) | RE = π(rE)]

=
∑
π(r)

hπ(r),ChB,n(π(r̂B)) · Pr[R = π(r) | RE = π(rE)]

=
∑
r′

hr′,ChB,n(π(r̂B)) · Pr[R = r′ | RE = π(rE)]

= Pr
R,ChE

[hR,ChB,n(π(r̂B)) = 1 | RE = π(rE)]

Claim 5.22. Let n ∈ N, let ℓ be a nonnegative constant, and let p1 = p1(n), . . . , pℓ = pℓ(n) be
such that

∑ℓ
i=1 pi = 1 and ∀i ∈ [ℓ], pi ∈ [0, 1] and n · pi ∈ N ∪ {0}. Let X = (X1, . . . , Xℓ) ∼

Multinomial(n; p1, p2, . . . , pℓ) where Xi is a random variable denoting the number of occurrences of
outcome i in n independent trials where Pr[outcome i occurs in a trial] = pi. Then the probability
that each Xi hits its expected value is

Pr
X

[
ℓ∧

i=1

(Xi = n · pi)

]
= Ω

(
1

nℓ/2

)
Proof. First consider the case where each pi > 0. Then, the Multinomial distribution’s probability
mass function gives

Pr
X

[
ℓ∧

i=1

Xi = n · pi

]
=

n!∏ℓ
i=1(n · pi)!

·
ℓ∏

i=1

pn·pii .

Apply Stirling’s Approximation7 to obtain

n!∏ℓ
i=1(n · pi)!

= Θ

(
1

(
√
2πn)ℓ−1

∏ℓ
i=1 p

n·pi+1/2
i

)
Therefore, we get

Pr
X

[
ℓ∧

i=1

Xi = n · pi

]
= Θ

(
1

(
√
2πn)ℓ−1

∏ℓ
i=1

√
pi

)
Since each pi ≤ 1,

Pr
X

[
ℓ∧

i=1

Xi = n · pi

]
= Ω

(
1

n(ℓ−1)/2

)
Now, consider the case where pi = 0 for some i ∈ [l]. Let S = {i ∈ [l] | pi ̸= 0}. Then, for i /∈ S,
we always have Xi = npi = 0, and for j ∈ S, then the distribution of Xj is not affected by events
of probability 0. Therefore,

Pr
X

[
ℓ∧

i=1

Xi = n · pi

]
= Pr

X

[∧
i∈S

Xi = n · pi

]
= Ω

(
1

n(|S|−1)/2

)
= Ω

(
1

nℓ/2

)
.

7Note that since we have assumed n, pi > 0 and npi ∈ N ∪ {0}, then npi = Ω(1). If npi is a constant, then
Stirling’s approximation still holds up to a constant since in this case (npi)! = Θ(

√
2πnpi

(
npi
e

)npi) = Θ(1)
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Definition 5.23. Let GoodE = {rE ∈ Zn | ∀z ∈ Z, Nz(rE) ≥ n
2|X | ·maxx∈X (pE(z|x))} ⊂ Zn.

Observe that for all rE ∈ GoodE and z ∈ Z, then Nz(rE) = Θ(n).

Lemma 5.24. PrR,ChE[rE ∈ GoodE ] ≥ 1− negl(λ)

Proof. For any z ∈ Z and i ∈ [n], define

Vz,i =

{
1 if REi = z

0 else

Then,

E[Vz,i] =
∑
x∈X

pE(z|x) Pr[Ri = x]

=
∑
x∈X

pE(z|x)
1

|X |

≥ 1

|X |
·max
x∈X

(pE(z|x))

Therefore, by the Chernoff bound, for any z ∈ Z, we have Nz(RE) =
∑

i∈[n] Vz,i, and

Pr

[
Nz(RE) ≤

1

2

n

|X |
·max
x∈X

(pE(z|x))
]

≤ Pr

[
Nz(RE) ≤

1

2
· E[Nz(RE)]

]
< exp

(
−E[Nz(RE)]

8

)
≤ exp

(
− n

8|X |
·max
x∈X

(pE(z|x))
)

= negl(n)

Thus,

Pr

[
∀z ∈ Z, Nz(RE) ≥

n

2|X |
·max
x∈X

(pE(z|x))
]
= 1− Pr

[
∃z ∈ Z, Nz(RE) <

n

2|X |
·max
x∈X

(pE(z|x))
]

≥ 1−
∑
z∈Z

Pr

[
Nz(RE) <

n

2|X |
·max
x∈X

(pE(z|x))
]

= 1− |Z| · negl(n)
= 1− negl(λ)

C Proof of Theorem 4.17

In this section, we prove Theorem 4.17.

Theorem 4.17. The following are equivalent:

1. ChE is not less noisy than ChB. (Definition 3.7)
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2. Cs > 0 (Definition 4.10)
i.e. There exists a CK Rate-R wiretap coding family for (ChB,ChE) with positive rate R.
(Definition 4.9)

3. Cs > 0 (Definition 4.13)
i.e. There exists a CK Rate-R wiretap coding family with strong secrecy for (ChB,ChE) with
positive rate R. (Definition 4.12)

4. There exists a 0.99-statistically secure wiretap coding scheme for (ChB,ChE). (Definition 4.4)

5. There exists a statistically secure wiretap coding scheme for (ChB,ChE). (Definition 4.2)

6. There exists a statistically secure wiretap coding scheme for general message spaces for
(ChB,ChE) with a positive constant rate. (Definition 4.19. See Section 4.4 below for the
definition.)

C.1 Background Information

To prove the theorem, we will use universal hash functions and average case extractors. We include
some useful definitions and lemmas below.

Definition C.1 (Universal Hash Function). A family of functions H = {Hk : {0, 1}n → {0, 1}ℓ}k∈K
is universal if ∀x ̸= x′ ∈ {0, 1}n,

Pr
k←K

[Hk(x) = Hk(x
′)] = 2−ℓ

Lemma C.2 (Generalized Leftover Hash Lemma, imported from [DORS08]). Assume H = {Hk :
{0, 1}n → {0, 1}ℓ}k∈K is a family of universal hash functions. Then, for any random variables X
and Aux,

∆((HK(X),K,Aux), (Uℓ,K,Aux)) ≤ 1

2

√
2−H̃∞(X|Aux)2ℓ

where K is uniform on K and Uℓ is uniform over {0, 1}ℓ.

Definition C.3 (Average Conditional Min-Entropy). The average conditional min-entropy of a
random variable A given a random variable B is defined as

H̃∞(A | B) ≜ − log
(
Eb←B[max

a
Pr [A = a | B = b]

)
Definition C.4 (Average Case Extractor). Let Ext : {0, 1}n × {0, 1}r → {0, 1}ℓ be a polynomial
time probabilistic function which uses r bits of randomness. We say that Ext is an efficient average-
case (n,m, ℓ, ϵ)-strong extractor if for all pairs of random variables (X,Aux) such that X is an n-bit
string satisfying H̃∞(X | Aux) ≥ m,

∆((Ext(X;R), R,Aux), (Uℓ, R,Aux)) ≤ ϵ

where R is uniform on {0, 1}r and Uℓ is uniform on {0, 1}ℓ.

Corollary C.5 (Imported from [DORS08]). Universal hash functions are average-case (n,m, ℓ, ϵ)-
strong extractors whenever ℓ ≤ m− 2 log(1/ϵ) + 2.
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Lemma C.6. If (A1, . . . , An) and (B1, . . . , Bn) are random variables such that for all i ∈ [n],
(Ai, Bi) is independent of {(Aj , Bj)}j∈[n]\i, then

H̃∞((A1, . . . , An) | (B1, . . . , Bn)) =
n∑

i=1

H̃∞(Ai | Bi)

Proof.

H̃∞((A1, . . . , An) | (B1, . . . , Bn))

= − log

 ∑
b1,...,bn

Pr[B1 = b1, . . . , Bn = bn] max
a1,...an

Pr [A1 = a1, . . . An = an | B1 = b1, . . . Bn = bn]


= − log

 ∑
b1,...,bn

n∏
i=1

Pr[Bi = bi] max
a1,...an

n∏
i=1

Pr [Ai = ai | Bi = bi]


= − log

 ∑
b1,...,bn

n∏
i=1

Pr[Bi = bi] max
ai

Pr [Ai = ai | Bi = bi]


= − log

 n∏
i=1

∑
bi

Pr[Bi = bi] max
ai

Pr [Ai = ai | Bi = bi]


=

n∑
i=1

− log

∑
bi

Pr[Bi = bi] max
ai

Pr [Ai = ai | Bi = bi]


=

n∑
i=1

H̃∞(Ai | Bi)

Lemma C.7. Let {Xn}n∈N be a sequence of discrete random variables where each Xn is over a set
Xn. Let {fn}n∈N be a sequence of functions and let Zn = fn(Xn). If

lim
n→∞

I(Xn;Zn) = 0

then for all ϵ > 0, there exists Nϵ such that for all n > Nϵ,

H̃∞(Xn | Zn) ≥ log log(|Xn|)− log(log(|Xn|)−H(Xn) + 1 + ϵ)

Proof. Define gn by gn(z) = argmaxx∈Xn
Pr[Xn = x | Zn = z]. Then, define pn such that

1− pn := Pr[gn(Zn) = Xn] =
∑
z

Pr[Zn = z]

(
max
x∈Xn

Pr[Xn = x | Zn = z]

)
By Fano’s inequality,

H(Xn | Zn) ≤ H2(pn) + pn log(|Xn|) ≤ 1 + pn log(|Xn|)

which implies that

pn ≥
H(Xn | Zn)− 1

log(|Xn|)
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Then, since limn→∞ I(Xn;Zn) = 0, for all ϵ > 0, there exists Nϵ such that for all n > Nϵ,

H(Xn | Zn) = H(Xn)− I(Xn;Zn) ≥ H(Xn)− ϵ

Thus, for all n > Nϵ,

1− pn ≤ 1− (H(Xn)− ϵ− 1)

log(|Xn|)
=

log|Xn| −H(Xn) + 1 + ϵ

log|Xn|
Now, by definition of average conditional min-entropy.

H̃∞(Xn | Zn) := − log

(∑
z

Pr[Zn = z]

(
max
x∈Xn

Pr[Xn = x | Zn = z]

))
= − log(1− pn)

Thus, for all n > Nϵ,

H̃∞(Xn | Zn) ≥ − log

(
log|Xn| −H(Xn) + 1 + ϵ

log|Xn|

)
= log log(|Xn|)− log(log(|Xn|)−H(Xn) + 1 + ϵ)

Lemma C.8 (Imported from [DORS08]). If the support of B has size at most 2λ, then

H̃∞(A | (B,C)) ≥ H̃∞(A | C)− λ

Lemma C.9 (Maximal Guessing Probability). Let X be a random variable over {0, 1}, let Y be
a random variable over Y, and let U be a uniform distribution over {0, 1} that is independent of
(X,Y ). Then, over all function f : Y → {0, 1},

max
f

Pr[f(Y ) = X] = ∆((X,Y ), (U, Y )) +
1

2

Furthermore,
H̃∞(X | Y ) = − log(max

f
Pr[f(Y ) = X])

Proof.

max
f

Pr[f(Y ) = X] =
∑
y∈Y

(
Pr[Y = y] max

x∈{0,1}
Pr[X = x | Y = y]

)

=
∑
y∈Y

(
Pr[Y = y]

(
max

x∈{0,1}
Pr[X = x | Y = y]− 1

2

))
+

1

2

=
1

2

∑
y∈Y

(
Pr[Y = y] · 2 max

x∈{0,1}

∣∣∣∣Pr[X = x | Y = y]− 1

2

∣∣∣∣)+
1

2

=
1

2

∑
y∈Y

Pr[Y = y] ·
∑

x∈{0,1}

∣∣∣∣Pr[X = x | Y = y]− 1

2

∣∣∣∣
+

1

2

=
1

2

∑
x∈{0,1},y∈Y

(∣∣∣∣Pr[X = x | Y = y] Pr[Y = y]− 1

2
Pr[Y = y]

∣∣∣∣)+
1

2

=
1

2

∑
x∈{0,1},y∈Y

(|Pr[X = x, Y = y]− Pr[U = x, Y = y]|) + 1

2

= ∆((X,Y ), (U, Y )) +
1

2
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This proves the first statement. The second follows by definition:

H̃∞(X | Y ) = − log

∑
y∈Y

(
Pr[Y = y] max

x∈{0,1}
Pr[X = x | Y = y]

) = − log(max
f

Pr[f(Y ) = X])

Lemma C.10. If A and B are discrete random variables with support in X and f : X → Y is any
(possibly randomized) function, then

∆(f(A), f(B)) ≤ ∆(A,B)

Furthermore, if f is a bijection,

∆(f(A), f(B)) = ∆(A,B)

Proof.

∆(f(A), f(B)) =
1

2

∑
y∈Y
|Pr[f(A) = y]− Pr[f(B) = y]|

=
1

2

∑
y∈Y

∣∣∣∣∣∑
x∈X

(Pr[f(A) = y | A = x] Pr[A = x]− Pr[f(B) = y | B = x] Pr[B = x])

∣∣∣∣∣
=

1

2

∑
y∈Y

∣∣∣∣∣∑
x∈X

Pr[f(x) = y](Pr[A = x]− Pr[B = x])

∣∣∣∣∣
≤ 1

2

∑
y∈Y

∑
x∈X

Pr[f(x) = y] |(Pr[A = x]− Pr[B = x])|

=
1

2

∑
x∈X
|(Pr[A = x]− Pr[B = x])|

= ∆(A,B)

If f is a bijection, the statistical distances are equal since (A,B) = (f−1(f(A)), f−1(f(B))) addi-
tionally implies that ∆(f(A), f(B)) ≥ ∆(A,B).

Notation If f is a function with a binary domain {0, 1}, then for x = (x1, . . . , xt) ∈ {0, 1}t, we
use f(x) to denote f(x1)|| . . . ||f(xt).

C.2 Proof

We now prove Theorem 4.17.

Proof.
The theorem follows from the relations below.

• 1 ⇐⇒ 2. This follows from Theorem 4.11.

• 2 ⇐⇒ 3. This follows from Theorem 4.14.
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• 6⇒ 5. A statistically secure wiretap coding scheme for general message spaces can be easily
transformed into one for a binary message spaces by ignoring all but the first bit of the
message from the general message space.

• 5 ⇒ 2 Although, the correctness and security requirements of a statistically secure wiretap
coding scheme are strictly stronger than those of a CK rate-R wiretap coding family, (2)
requires the rate R to be positive8 whereas (5) has no requirement on rate and can be satisfied
with rate 0. Thus, our proof though simple is not immediate.

Assume for contradiction that there is a statistically secure wiretap coding scheme for (ChB,ChE),
but there does not exist a CK Rate-R wiretap coding family for (ChB,ChE) with positive rate.
Let M be a uniform random variable over {0, 1}. By correctness there exists some negligible
function ϵ(λ) such that

Pr[Dec(1λ,ChB(Enc(1λ,M))) = M ] ≥ 1− ϵ(λ).

Observe also that

I(M ;ChB(Enc(1λ,M))) = 1−H(M | ChB(Enc(1λ,M)))

Then by Fano’s inequality and for sufficiently large λ, we have H(M | ChB(Enc(1λ,M))) ≤
H(ϵ(λ)) so that

I(M ;ChB(Enc(1λ,M))) ≥ 1−H(ϵ(λ)) = 1− negl(λ)

Moreover, by Theorem 4.16, for Eve, we have that

I(M ;ChE(Enc(1λ,M))) = negl(λ).

By the above, there exists some n0 ∈ N such that I(M ;ChB(Enc(1n0 ,M))) ≥ 2/3 and
I(M ;ChE(Enc(1n0 ,M))) ≤ 1/3. Let Encn0 ≜ Enc(1n0 , ·). We now define a new wiretap
channel (ChB′,ChE′) where

ChB′ ≜ ChB ◦ Encn0

ChE′ ≜ ChE ◦ Encn0

are two channels that first apply the encoder with block size n0 and then apply the original
channel ChB (resp. ChE). Then observe that

I(M ;ChB(Encn0(M)))− I(M ;ChE(Encn0(M))) ≥ 1/3

so ChE′ is not less noisy than ChB′. Then Theorem 4.11 implies there exists a positive rate
R > 0 CK rate-R code for the (ChB′,ChE′)-wiretap channel with encoder-decoder family
{(Enc′n,Dec′n)} and message family {M′n}. This CK rate-R wiretap coding family for the
(ChB′,ChE′)-wiretap channel can be converted into a CK rate-R/n0 code for the (ChB,ChE)-
wiretap channel by constructing the encoder-decoder family

{(Encn0 ◦ Enc′n,Decn0 ◦ Dec′n)}n

with message space {M′n}. Since n0 is a fixed positive constant, R/n0 is a positive constant.
This contradicts our assumption that there are no positive rate CK coding families for this
(ChB,ChE)-wiretap channel.

8A CK rate-0 wiretap coding family is ill-posed for security: A zero rate encoding satisfies limn→∞
log|Mn|

n
= 0 so

even if Eve learns all information, meaning I(Mn;Y ) = H(Mn) = log |Mn|, Eve would satisfy the security definition
as limn→∞

1
n
I(Mn;Y ) = 0.
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• 3⇒ 4 Suppose that (Encn,Decn)n∈N satisfies 3 for (ChB,ChE). Recall the definition of 3:

Definition C.11 (CK Rate-R Wiretap Coding Family with Strong Secrecy [CK78, MW00]).
A family of wiretap encoder-decoder pairs {(Encn,Decn)}n∈N is a rate-R information theoretic
wiretap coding family for a wiretap channel (ChB,ChE) and message family {Mn}n∈N if each
Encn outputs an encoding of length n such that

– Message Rate R:

lim
n→∞

1

n
log |Mn| = R

– Correctness: For all m ∈Mn,

Pr[Decn(ChB(Encn(m))) = m] ≥ 1− ϵn

where
lim
n→∞

ϵn = 0

– Strong Security:
lim
n→∞

I(Mn;ChE(Encn(Mn))) = 0

where Mn is uniform overMn.

We denote the set of all achievable rate pairs as R.

To construct a 0.99-statistically secure wiretap encoding family for (ChB,ChE), we first need
to move to a binary message space. To do so, we will use an extractor to extract a secure bit
from a random message m over the larger message spaceMn which we will then use to pad
our binary message b. The 0.99 correctness of the new scheme will follow from the correctness
of (Encn,Decn). Then, using the security of the extractor, we can show that Eve’s probability
of decoding the message is at most 1

2 + 0.01.

Let ℓ(n) = ⌈log(|Mn|)⌉. For the remainder of this proof, we will assume that there is some
canonical mapping betweenMn and {0, 1}ℓ(n) and will allow for implicit conversions between
the two representations.

– Let ECC = (ECC.Enc,ECC.Dec) be an error correcting code for ChB for single bit
messages such that for b ∈ {0, 1},

Pr[ECC.Dec(1n,ChB(ECC.Enc(1n, b)))] ≥ 1− negl(n)

and
|ECC.Enc(1n, b)| = dn

for some constant d.

– Let Extn : {0, 1}ℓ(n) → {0, 1} be a (ℓ(n), log(nR) − 2, 1, (nR)−1/4) average case strong
extractor that takes rn bits of randomness. Such an extractor exists for large enough n
(i.e. n > 4/R) by Corollary C.5 since

1 ≤ log(nR)− 2− 2 log((nR)1/4) + 2 = log(nR)− 1

2
log(nR) =

1

2
log(nR)

Furthermore, for large n, since limn→∞
1
n log(|Mn|) = R, then ℓ(n) = O(n), so rn =

O(n).

Define (Enc′n,Dec′n)n∈N by
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Enc′n(b):

1. On input a message b ∈ {0, 1}
2. Sample extractor randomness v ← {0, 1}rn .
3. Sample uniform random x←Mn.

4. Let c1 = ECC.Enc(1n, v, p = (Extn(x; v)⊕ b)).a

5. Let c2 = Encn(x).

6. Output (c1, c2).

Dec′n(c):

1. Parse c as (ChB(c1),ChB(c2)).

2. Use ECC.Dec(1n,ChB(c1)) to recover (v, p).

3. Let x̂ = Decn(ChB(c2)) = Decn(ChB(Encn(x))).

4. Output Extn(x̂; v)⊕ p.

aWe use this notation to mean running the error-correcting code on each bit of the input to ECC.Enc
and similarly for ECC.Dec.

We claim that for a large enough n∗, (Enc∗,Dec∗) = (Enc′n∗ ,Dec′n∗) satisfies 4.

Correctness: If the decoder correctly recovers (v, p) and x̂ = x, then the decoder will
output

Extn(x̂; v)⊕ p = Extn(x̂; v)⊕ Extn(x; v)⊕ b = b

By our choice of error correcting code, since |(v, p)| = O(n), the probability of correctly
recovering (v, p) is at least 1− negl(n). By the correctness of (Encn,Decn), the probability of
correctly recovering x̂ = x is at least 1− ϵn where limn→∞ ϵn = 0. Thus, for large enough n,
the decoder outputs the message b with probability at least 0.99.

Security: Let Xn, Vn, B, U be uniform random variables onMn, {0, 1}rn , {0, 1}, and {0, 1}
respectively. Let Zn = ChE(Encn(Xn)). Then, by security of (Encn,Decn) and by Lemma C.7,
for large enough n,

H̃∞(Xn | Zn) ≥ log log(|Mn|)− log(log(|Mn|)−H(Xn) + 2)

= log log(|Mn|)− 1

By the rate property of (Encn,Decn), limn→∞
1
n log|Mn| = R, so for large enough n,

log|Mn| ≥
nR

2

Thus, for large enough n,

H̃∞(Xn | Zn) ≥ log

(
nR

2

)
− 1 = log(nR)− 2

Then since Ext is an (ℓ(n), log(nR)− 2, 1, (nR)−1/4)-average case extractor, for large enough
n, we have

∆((Vn,Ext(Xn;Vn), Zn), (Vn, U, Zn)) ≤ (nR)−1/4
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Claim C.12. For large n,

max
f

Pr[f(ChE(Enc′n(B))) = B] ≤ 1

2
+ (nR)−1/4

where f is taken over all functions.

Proof. By Lemma C.9 and the definition of Enc′n, we have

max
f

Pr[f(ChE(Enc′n(B))) = B]

=
1

2
+ ∆((B,ChE(Enc′n(B))), (U,ChE(Enc′n(B))))

=
1

2
+∆((B,ChE(ECC.Enc(1n, Vn,Ext(Xn;Vn)⊕B)), Zn),

(U,ChE(ECC.Enc(1n, Vn,Ext(Xn;Vn)⊕B)), Zn))

Then, by Lemma C.10,

∆((B,ChE(ECC.Enc(1n, Vn,Ext(Xn;Vn)⊕B)), Zn), (U,ChE(ECC.Enc(1
n, Vn,Ext(Xn;Vn)⊕B)), Zn))

≤ ∆((B, Vn,Ext(Xn;Vn)⊕B,Zn), (U, Vn,Ext(Xn;Vn)⊕B,Zn))

= ∆((B, Vn,Ext(Xn;Vn), Zn), (U, Vn,Ext(Xn;Vn)⊕B ⊕ U,Zn))

Furthermore, since (B,U) is independent of (Vn,Ext(Xn;Vn), Zn), we have

∆((B, Vn,Ext(Xn;Vn), Zn), (U, Vn,Ext(Xn;Vn)⊕B ⊕ U,Zn))

= ∆((B, Vn,Ext(Xn;Vn), Zn), (B, Vn,Ext(Xn;Vn)⊕ U ⊕B,Zn))

= ∆((B, Vn,Ext(Xn;Vn), Zn), (B, Vn, U, Zn))

= ∆((Vn,Ext(Xn;Vn), Zn), (Vn, U, Zn))

≤ (nR)−1/4

and the claim follows.

Thus, for large enough n∗, we have that maxf Pr[f(ChE(Enc
′
n∗(B))) = B] ≤ 1

2 + 0.01.

Rate For any b ∈ {0, 1}, for some fixed n∗,

Enc∗(b) = Enc′n∗(b) = (ECC.Enc(1n
∗
, v,Extn∗(x; v)⊕ b),Encn∗(x))

and it is then easy to observe that |Enc∗(b)| is a constant.

• 4 ⇒ 6 Let (ChB,ChE) be a wiretap channel. We claim that the following construction is
a statistically secure wiretap coding scheme for general messages space for (ChB,ChE) with
positive constant rate.

Construction 1. We will construct 6 from the following ingredients:

– A wiretap coding (Enc∗,Dec∗) satisfying

∗ Rate: For all b ∈ {0, 1}, |Enc∗(b)| = c for some constant c.
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∗ Correctness: For all b ∈ {0, 1},

Pr[Dec∗(ChB(Enc∗(b))) = b] ≥ 0.95

∗ Security:
H̃∞(B | ChE(Enc∗(B))) ≥ 0.95

where B is uniform over {0, 1}.
Note that a wiretap coding (Enc∗,Dec∗) satisfying 4 also satisfies this definition as

max
f

Pr[f(ChE(Enc∗(B))) = B] ≤ 1

2
+ 0.01

implies by Lemma C.9 that

H̃∞(B | ChE(Enc∗(B))) = − log(max
f

Pr[f(ChE(Enc∗(B))) = B]) ≥ 0.95

– An error-correcting code ECC = (ECC.Enc,ECC.Dec) for single bit messages for ChB
such that for b ∈ {0, 1},

Pr[ECC.Dec(1λ,ChB(ECC.Enc(1λ, b)] ≥ 1− negl(λ)

and
|ECC.Enc(1λ, b)| = dλ

for some constant d.

– A universal hash family Hλ ≜
{
Hk : {0, 1}λ → {0, 1}0.6λ

}
k∈Kλ

where log(|Kλ|) = O(λ).

– An efficient average-case (λ, 0.35λ, 0.1λ, 2−0.1λ)-strong extractor Extλ : {0, 1}λ×{0, 1}rλ →
{0, 1}0.1λ that take rλ = O(λ) bits of randomness. Such an extractor exists by Corol-
lary C.5 since

0.1λ ≤ 0.35λ− 2 log(20.1λ) + 2 = 0.35λ− 0.2λ+ 2 = 0.15λ+ 2

We now define our wiretap encoding scheme which has message length ℓ(n) = 0.1λ.

Enc(1λ,m):

1. On input a message m ∈ {0, 1}0.1λ = {0, 1}ℓ(λ)

2. Sample a hash key k ← Kλ and extractor randomness v ← {0, 1}rλ .
3. Sample a uniform random x← {0, 1}λ.
4. Let c1 = ECC.Enc(1λ, k, v, y = Hk(x), p = (Extλ(x; v)⊕m)).

5. Let c2 = Enc∗(x).

6. Output (c1, c2).

Dec(1λ, c):

1. Parse c as (ChB(c1),ChB(c2)).

2. Use ECC.Dec(1λ,ChB(c1)) to recover (k, v, y, p).

3. Let x̂ = Dec∗(ChB(c2)) = Dec∗(ChB(Enc∗(x))).
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4. Compute all elements in the set

Tx̂ ≜
{
x′ ∈ {0, 1}λ | Hk(x

′) = y ∧∆H(x′, x̂) < 0.1λ
}

where ∆H(x′, x̂) is the hamming distance between x′ and x̂. If Tx̂ is a singleton
element x∗, return Extλ(x

∗; v)⊕ p. Otherwise return ⊥.

Correctness: We need to show that for all messages m ∈ {0, 1}ℓ(λ),

Pr[Dec(1λ,ChB(Enc(1λ,m))) = m] ≥ 1− negl(λ)

First, we assume that the decoder correctly recovers (k, v, y = Hk(x), p = (Extλ(x; v)⊕m)).
By our choice of error-correcting code ECC for ChB, this occurs with overwhelming prob-
ability. We will also assume x ∈ Tx̂. By a Chernoff bound, if x̂ = Dec∗(ChB(c2)) =
Dec∗(ChB(Enc∗(x))), by the 0.95 correctness of (Enc∗,Dec∗), ∆H(x̂, x) < 0.1λ with over-
whelming probability so x ∈ Tx̂ with overwhelming probability. We now claim that Tx̂ is a
singleton element x∗ = x with all but negligible probability. Observe by definition of Tx̂ that

|Tx̂| ≤
(

λ

0.1λ

)
≤
(

eλ

0.1λ

)0.1λ

= (10e)0.1λ ≤ 20.5λ

Then, for any fixed x and for any x′ ∈ {0, 1}λ, since H is a universal hash function, we have

Pr
k←Kλ

[Hk(x) = Hk(x
′)] ≤ 2−0.6λ

Therefore, by a union bound,

Pr
k←Kλ

[∃x′ ∈ Tx̂ | x′ ̸= x ∧Hk(x
′) = Hk(x)] ≤ 2−0.6λ · 20.5λ = 2−0.1λ = negl(λ)

Thus, with overwhelming probability, Tx̂ is a singleton element x∗ = x, which means that
the decoder outputs Extλ(x

∗; v)⊕ p = Extλ(x
∗; v)⊕ Extλ(x; v)⊕m = m with overwhelming

probability.

Security: We need to show that for all adversaries A and all messagesm0 ̸= m1 ∈ {0, 1}ℓ(n),

Pr[A(1λ,m0,m1,ChE(Enc(1
λ,mB))) = B] ≤ 1

2
+ negl(λ)

where B is uniformly distributed over {0, 1}. Let (m0,m1) be any two messages of length
ℓ(n), and let A be any adversary. Let B and U be uniform random variables over {0, 1}. Let
Xλ = (X

(1)
λ , . . . , X

(λ)
λ ) where eachX

(i)
λ is an independently and identically distributed uniform

random variable over {0, 1}, and let Zλ = (Z
(1)
λ , . . . , Z

(λ)
λ ) where Z

(i)
λ = ChE(Enc∗(X

(i)
λ )). Let

Kλ, Vλ be uniform random variables over Kλ and {0, 1}rλ respectively, and let Yλ = HKλ
(Xλ).

First we show the following claim:

Claim C.13.

∆((Kλ, Yλ, Vλ,Extλ(Xλ;Vλ), Zλ), (Kλ, Yλ, Vλ, U0.1λ, Zλ)) ≤ 2−0.1λ

where U0.1λ is uniform over {0, 1}0.1λ.
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Proof. Since Extλ is a (λ, 0.35λ, 0.1λ, 2−0.1λ)-average case extractor, it suffices to prove that

H̃∞(Xλ | Kλ, Yλ, Zλ) ≥ 0.35λ

Now, since |Yλ| = 0.6λ, by Lemma C.8,

H̃∞(Xλ | Kλ, Yλ, Zλ) ≥ H̃∞(Xλ | Kλ, Zλ)− 0.6λ

Then since Kλ is independent of (Xλ, Zλ), we have

H̃∞(Xλ | Kλ, Zλ) = H̃∞(Xλ | Zλ)

Then by Lemma C.6 and by the security property of (Enc∗,Dec∗),

H̃∞(Xλ | Zλ) =
n∑

i=1

H̃∞(X
(i)
λ | Z

(i)
λ ) ≥ 0.95λ

Therefore, we get
H̃∞(Xλ | Kλ, Yλ, Zλ) ≥ 0.95λ− 0.6λ = 0.35λ

By Lemma C.9 and Lemma C.10 and since (B,U) is independent of (Xλ, Vλ,Kλ, Zλ), we have

Pr[A(1λ,m0,m1,ChE(Enc(1
λ,mB))) = B]

≤ max
A

Pr[A(1λ,m0,m1,ChE(Enc(1
λ,mB))) = B]

= max
A

Pr[A(1λ,m0,m1,ChE(ECC.Enc(1
λ,Kλ, Vλ, Yλ,Extλ(Xλ;Vλ)⊕mB)), Zλ) = B]

=
1

2
+ ∆((B, 1λ,m0,m1,ChE(ECC.Enc(1

λ,Kλ, Vλ, Yλ,Extλ(Xλ;Vλ)⊕mB)), Zλ),

(U, 1λ,m0,m1,ChE(ECC.Enc(1
λ,Kλ, Vλ, Yλ,Extλ(Xλ;Vλ)⊕mB)), Zλ))

≤ 1

2
+ ∆((B,Kλ, Vλ, Yλ,Extλ(Xλ;Vλ)⊕mB, Zλ), (U,Kλ, Vλ, Yλ,Extλ(Xλ;Vλ)⊕mB, Zλ))

=
1

2
+∆((B,Kλ, Vλ, Yλ,Extλ(Xλ;Vλ), Zλ), (U,Kλ, Vλ, Yλ,Extλ(Xλ;Vλ)⊕mB ⊕mU , Zλ))

=
1

2
+∆((B,Kλ, Vλ, Yλ,Extλ(Xλ;Vλ), Zλ), (B,Kλ, Vλ, Yλ,Extλ(Xλ;Vλ)⊕mU ⊕mB, Zλ))

Then, using the claim, Lemma C.10, and the fact that B is independent of (Kλ, Yλ, Vλ, Zλ),
we have that

∆((B,Kλ, Yλ, Vλ,Extλ(Xλ;Vλ), Zλ), (B,Kλ, Yλ, Vλ, U0.1λ, Zλ)) ≤ 2−0.1λ

and similarly that

∆((B,Kλ, Yλ, Vλ,Extλ(Xλ;Vλ)⊕mB ⊕mU , Zλ), (B,Kλ, Yλ, Vλ, U0.1λ, Zλ)) ≤ 2−0.1λ

Therefore,

∆((B,Kλ, Vλ, Yλ,Extλ(Xλ;Vλ), Zλ), (B,Kλ, Vλ, Yλ,Extλ(Xλ;Vλ)⊕mU⊕mB, Zλ)) ≤ 2 ·2−0.1λ

and so

Pr[A(1λ,m0,m1,ChE(Enc(1
λ,mB))) = B] ≤ 1

2
+ 2 · 2−0.1λ =

1

2
+ negl(λ)
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Rate For a message m ∈ {0, 1}0.1(λ), the encoding of m is (c1, c2) = (ECC.Enc(1λ, k, v, y =
Hk(x), p = (Extλ(x; v)⊕m)),Enc∗(x)). Then, we have

– |k| = O(λ)

– |v| = O(λ)

– |y| = 0.6λ

– |p| = 0.1λ

– Thus, since ECC is a constant rate error correcting code, we have |c1| = O(λ).

– Since for any bit b, |Enc∗(b)| is constant and since |x| = λ, then |c2| = |Enc∗(x)| = O(λ).

Therefore, |c1, c2| = O(λ). Thus, the rate is a positive constant.
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