
Asymptotically Faster Multi-Key Homomorphic Encryption
from Homomorphic Gadget Decomposition⋆

Taechan Kim1, Hyesun Kwak2, Dongwon Lee2, Jinyeong Seo2, and Yongsoo Song2

1 Samsung Research, South Korea
taechan.kim@samsung.com

2 Seoul National University, South Korea
{hskwak, dongwonlee95, jinyeong.seo, y.song}@snu.ac.kr

Abstract. Homomorphic Encryption (HE) is a cryptosytem that allows us to perform an arbi-
trary computation on encrypted data. The standard HE, however, has a disadvantage in that the
authority is concentrated in the secret key owner as the computation can be performed only on
ciphertexts under the same key. In order to overcome this problem, research is underway on Multi-
Key Homomorphic Encryption (MKHE), which enables operations between encrypted data possibly
under different keys. Despite its strength to cover privacy of multiple parties, the existing MKHE
schemes suffer from poor performance that the multiplication cost grows at least quadratically with
the number of parties involved.

In this paper, we propose a new notion of the gadget decomposition, which enables arithmetic
operations to be performed on the decomposed vectors with guarantee of functionality and noise
bound. We redesign the multi-key multiplication algorithm of Chen et al. (ACM CCS 2019) using
the homomorphic property of gadget decomposition and thereby reduce the complexity significantly
from quadratic to linear in the number of parties involved. Finally, we implement our MKHE schemes
and provide benchmarks which outperform the previous results.

1 Introduction

Homomorphic encryption (HE) is a cryptosystem that enables computation on encrypted messages with-
out decrypting them first. It has been a long-standing open problem to construct a fully HE (which
supports arbitrary computations) until Gentry’s breakthrough [18]. Since then, there have been made
lots of progress on construction of HE, to name a few, BFV [5, 16], GSW [20], BGV [6], TFHE [13], and
CKKS [12]. HE inherently supports an on-the-fly secure computation, i.e., no need for data owners to be
online during the computation since the whole evaluation process can be done by a public server. Such
characteristic is especially well-suited for the cases such as cloud-based environments.

However, the standard HE is less amenable to the multi-party setting. For instance, when there are
multiple data sources, the standard HE causes an authority concentration issue. If one considers directly
applying standard single-key HE, data should be encrypted under the same encryption key. In this case,
the person who has the corresponding secret key gains access to all data and thus the privacy of data
owners may be exposed. In the last decade, there have been several attempts to extend the functionality
of HE to deal with the aforementioned issues. Threshold HE [4], multi-party HE [2, 26], and multi-key
HE (MKHE) [25, 14, 27, 29, 8, 9] are some examples which overcome the limitation of single-key HE by
distributing the decryption authority among multiple parties so that no single party has access to plain
data. Moreover, these primitives can be naturally extended to build multi-party protocols that keeps the
advantages of HE.

We focus on MKHE which enjoys considerable advantages in terms of interaction and flexibility.
To be precise, an MKHE scheme allows a participant to generate secret and public keys which can be
used to encrypt data without any knowledge of other parties. It supports homomorphic operations of
ciphertexts under different keys so that all computation can be done by a public cloud. Moreover, recent
MKHE schemes are fully dynamic, i.e., the computational task does not have to be pre-determined but an

⋆ This work is supported by Samsung Research, Samsung Electronics Co., Ltd.

2 H. Kwak et al.

arbitrary circuit can be evaluated over any ciphertexts on the fly, and new users (ciphertexts) can be intro-
duced into the computation anytime. Therefore, one can build a secure multi-party computation(MPC)
protocol on top of MKHE which inherits this dynamic nature [27].

While MKHE enables flexible and dynamic setup, it is technically challenging, compared to other HE
variants, to design an efficient MKHE scheme due to the strong requirement on the functionality. After
López-Alt at al. [25] presented the first MKHE scheme based on NTRU, there have been several stud-
ies [14, 27, 29, 7, 8, 10, 9] which convert the existing single-key HE schemes into multi-key versions, but
the poor performance of MKHE still remains a major bottleneck. Earlier schemes were relatively imprac-
tical, but recent researches [8, 9] demonstrated viable instantiations with implementation results which
are currently the best-performing MKHE schemes in terms of both asymptotic and concrete complexity.

This paper is an extension of the work by Chen, Dai, Kim and Song (CDKS) [9] which presents
multi-key variants of the RLWE-based BFV and CKKS schemes supporting homomorphic operations in
a SIMD manner. In CDKS, a multi-key ciphertext is of the form (c0, c1, . . . , cn) where n is the number
of associated parties and ci’s are elements of the base polynomial ring. It can be decrypted by the secret
keys s1, . . . , sn of n participants so that c0+c1 ·s1+ · · ·+cn ·sn is a randomized encoding of the plaintext.
The most expensive operation is homomorphic multiplication which consists of two steps: tensor product
and subsequent relinearization. For given encryptions (ci)0≤i≤n and (c′i)0≤j≤n of m and m′, respectively,
it first computes their product (ci,j := ci · c′j)0≤i,j≤n which can be viewed as a valid encryption of mm′

decryptable by si · sj . Then, the relinearization procedure is followed that converts (ci,j)0≤i,j≤n back
to the standard form with linear decryption structure. The total complexity of relinearization grows
quadratically with n since the process should be repeated on ci,j for all 1 ≤ i, j ≤ n.

1.1 Our Contributions

In this paper, we design new multi-key BFV and CKKS schemes with better performance by modifying
the construction of CDKS. Let us give a technical overview on the previous method to explain our idea.
The gadget toolkit [17] is a well-known technique in the construction of HE schemes which can be used
to reduce the noise growth from homomorphic operations. A gadget toolkit over a modulus Q consists of
a fixed gadget vector g and a gadget decomposition h which transforms an element a into a short vector
h(a) such that ⟨h(a),g⟩ = a (mod Q).3 The relinearization algorithm of CDKS operates the ciphertext
components ci,j with the public keys, which also involves the computation of gadget decompositions
h(ci,j) for all 1 ≤ i, j ≤ n yielding O(n2) complexity in total.

To avoid the expensive computation of h(ci,j), we define a new notion of homomorphic gadget de-
composition. We say that a gadget decomposition is homomorphic if it supports the computation over
decomposed vectors. In other words, we can perform arithmetic operations over the gadget decomposi-
tions h(a), h(b) of any elements a, b so that h(a) + h(b) and h(a) ⊙ h(b) satisfy ⟨h(a) + h(b),g⟩ = a + b
(mod Q) and ⟨h(a)⊙ h(b),g⟩ = ab (mod Q) where ⊙ denotes the component-wise product of vectors.
Hence h(a) + h(b) and h(a)⊙ h(b) can be considered valid decompositions of a+ b and ab, respectively.

In our MKHE construction, we first take advantage of homomorphic gadget decomposition and replace
the term h(ci,j) by h(ci)⊙ h(c′j). As a result, instead of repeating n2 gadget decompositions for all pairs
(i, j), we compute h(ci) and h(c′j) separately for 1 ≤ i, j ≤ n and combine them to represent a valid
decomposition of ci · c′j . Moreover, we depart from the conventional multiplication strategy based on
tensor product and relinearization. Instead of computing h(ci)⊙h(c′j) independently, we merge two steps
and refactor the whole multiplication algorithm so that each ciphertext can be pre-processed before
being multiplied to another ciphertext. As a result, we reduce the complexity of n-key homomorphic
multiplication from O(n2) down to O(n) operations which we believe is asymptotically optimal.

While our idea is directly applicable to design an efficient multi-key CKKS scheme, there still remains
an issue for BFV. The tensor product and relinearization procedures are proceeded over different algebraic
spaces in BFV, and such inconsistency inhibits applying our method. We resolve this issue by tweaking
the public key structure so that the whole computation can be performed in the same ring. In addition,
we present another implementation-friendly variant of our multi-key BFV scheme which requires no
multi-precision arithmetic.

3 The bit-decomposition is a typical example of gadget decomposition.

Asymptotically Faster Multi-Key Homomorphic Encryption from Homomorphic Gadget Decomposition 3

Finally, we implement our MKHE schemes and provide some benchmarks. We measure the per-
formance for n = 2, 4, . . . , 64 parties and the experimental results show that our construction rapidly
outperforms the CDKS scheme [9] as n increases.

1.2 Related Works

As mentioned above, there are several directions to generalize HE. For example, threshold HE [4] also
distributes the authority and provides t-out-of-n access structure, but the key generation is done by a
trusted third party. On the other hand, multi-party HE [2, 26, 28] is another HE primitive where multiple
parties jointly generate a shared public key while the corresponding secret is additively shared among
the parties. Although MPHE has advantages in performance, it does not have the flexibility of MKHE in
the sense that the set of parties should be fixed at the setup phase and the same key should be used for
encryption.

MKHE schemes can be classified with respect to the underlying HE scheme. Early studies [14, 27, 29]
constructed MKHE schemes from GSW [20], but they require huge space and time complexity. Brakerski
and Perlman [7] designed an MKHE scheme from LWE with quasi-linear expansion rate, but its concrete
performance was not clearly understood. A follow-up study was conducted by Chen, Chillotti and Song [8]
who presented a multi-key variant of TFHE and demonstrated the first implementation result. On the
other hand, there has been another line of work [10, 9] constructing multi-key variants of batch HE
schemes such as BGV, BFV and CKKS. One common problem of the previous MKHE constructions is
that they rely on the CRS assumption. Recently, Ananth et al. [1] constructed the first MKHE scheme
in the plain model by combining the oblivious transfer protocol, MKHE with trusted setup, and MKHE
in the plain model with interactive decryption.

2 Background

2.1 Notation

Let N be a power of two and Q be an integer. We denote by R = Z[X]/(XN + 1) the ring of integers of
the (2N)-th cyclotomic field and RQ = ZQ[X]/(XN + 1) the residue ring of R modulo Q. We represent
an element a =

∑
0≤i<n ai ·Xi ∈ Rq by the vector of its coefficients (a0, . . . , an−1) ∈ Zn

q . For an integer
q, we use Z ∩ (−q/2, q/2] as a representative of Zq, and denote by [a]q the reduction of a modulo q. For
a polynomial a in R or Rq, we define ∥a∥∞ as the ℓ∞-norm of its coefficient vector.

Throughout the paper, we write x ← D to represent that x is sampled from the distribution D. We
denote by U(S) the uniform distribution over a finite set S. For σ > 0, we denote by Dσ a distribution
over R sampling N coefficients independently from the discrete Gaussian distribution of variance σ2, and
Bσ an (overwhelming probability) upper bound of Dσ with respect to the infinite norm.

2.2 Ring Learning with Errors

The Ring Learning with Errors (RLWE) assumption guarantees strong security of RLWE-based cryp-
tosystems. Given the parameters (N,Q, χ, σ), consider the polynomial number of samples (ai, bi) ∈ R2

Q

where ai ← U(RQ), bi = s · ai + ei (mod Q) and ei ← Dσ for a fixed s ← χ. The RLWE assumption
states that the distribution of RLWE samples (ai, bi) is computationally indistinguishable from U(R2

q).
In this paper, we assume that the secret key s has ternary coefficients in {±1, 0}.

2.3 Multi-Key Homomorphic Encryption

A multi-key homomorphic encryption (MKHE) is an encryption scheme which enables computation on
encrypted data whose secret key may not be identical. Remark that in plain HE scheme, inputs should
have the identical secret key to perform homomorphic operations. However, in MKHE scheme, inputs
need not to have identical secret key, hence one can think of MKHE scheme as a superset of HE scheme.
MKHE scheme consists of five PPT algorithms (Setup, KeyGen, Enc, Eval, Dec).

4 H. Kwak et al.

– Setup: pp ← MKHE.Setup(1λ). Given the security parameter λ, it returns the public parameter set
pp.

– Key Generation: {ski, pki}i∈I ← MKHE.KeyGen(pp, I). Each party i ∈ I initially holds pp and outputs
the secret key ski and the public key pki.

– Encryption: ct← MKHE.Enc(µ; pki). A party i encrypts its plaintext µ in the message spaceM and
outputs the ciphertext ct.

– Evaluation: ct← MKHE.Eval(C, ct1, . . . , ctk; pk1, . . . , pkl). Given a circuit C and ciphertexts ct1, . . . , ctk
with the corresponding public keys pk1, . . . , pkl, it returns a ciphertext ct. We assume for convenience
that the reference to the associated parties is contained in the output ciphertext.

– Decryption: µ← MKHE.Dec(ct; sk1, . . . , skk). Given a ciphertext ct and the corresponding secret keys
sk1, . . . , skk, it outputs a plaintext µ.

Note that it requires all the secret keys to decrypt a ciphertext. However, in practice, there can be an
authority issue if a specific party holds other parties’ secret keys. We can solve this issue with a distributed
decryption which is a protocol that multiple key owners jointly decrypt the ciphertext. In the protocol,
each party partially decrypts the ciphertext using their own secret and recover the message by merging
partial decryptions of all parties. More details about distributed decryption are described in [27, 9].

A semantic security of MKHE is achieved if following distributions are computationally indistinguish-
able for encryption of any two messages µ1 and µ2:

(pp, pki, MKHE.Enc(µ1, pki))
comp
≈ (pp, pki, MKHE.Enc(µ2, pki))

where pp← MKHE.Setup(1λ) and {ski, pki}i∈I ← MKHE.KeyGen(pp, I).
MKHE scheme is also said to be secure if it is semantically secure.

3 Homomorphic Gadget Decomposition

The gadget decomposition technique is conventionally used in HE schemes to manage the noise growth
from homomorphic operations such as homomorphic multiplication. Informally, the purpose of gadget
decomposition is to represent an arbitrary element of Rq as a linear combination of the entries of a fixed
vector (called the gadget vector) with small coefficients which determine the size of an error introduced
by the key-switching procedure.

The RNS decomoposition is one of the most widely used as the gadget decomposition, since it can
be efficiently implemented using techniques such as Number Theoretic Transform (NTT). In this work,
while the most of the previous works merely focus on its advantages in the aspect of implementation,
we interestingly observe that its inherent homomorphic properties can be exploited to improve the re-
linearization step in multi-key variants of HE.

To begin with, we briefly recall the definition of the gadget decomposition and define its homomorphic
properties. Then, we observe that the RNS decomposition satisfies these homomoprhic properties.

3.1 Basic Terminology

We review basic terminology related to gadget decomposition. We first revisit the definition of gadget
decomposition and gadget encryption, and then we remind special modulus method and gadget decom-
position in smaller modulus.

Definition 1. Let Q be an integer. We say that h : RQ → Rk is a gadget decomposition if there exist
a fixed vector g = (g0, g1, . . . , gk−1) ∈ Rk

Q and a constant Bh > 0 with the properties: ⟨h(a),g⟩ = a
(mod Q) and ∥h(a)∥∞ ≤ Bh for all a ∈ RQ.

We call g a gadget vector and Bh a bound of the gadget decomposition h. We also denote by g :
Rk → RQ the inner product function defined by g(u) = ⟨u,g⟩ (mod Q). We remark that h is a right

Asymptotically Faster Multi-Key Homomorphic Encryption from Homomorphic Gadget Decomposition 5

inverse of g, i.e., g ◦ h is the identity function on RQ.
4 In general, the bound B is much smaller than

the modulus Q. In other words, a gadget decomposition aims to find a short vector in the inverse image
g−1(a) = {u ∈ Rk : ⟨u,g⟩ = a (mod Q)} of input a ∈ RQ.

The base decomposition [16, 6] is a typical example. For an integer B > 1, it represents the coefficients
of an input polynomial a in base B: h(a) = (a0, a1, . . . , ak−1) such that

∑
0≤i<k ai · Bi = a where

k = ⌈logB Q⌉. Note that the corresponding gadget vector is g = (1, B, . . . , Bk−1) and ∥h(a)∥∞ < B for
any a ∈ RQ.

We now introduce the notion of gadget encryption which is particularly useful when constructing a
secure multiplication with a small noise growth.

Definition 2. Let s be an RLWE secret. We call U = (u0,u1) ∈ Rk×2
Q a gadget encryption of µ ∈ R

under s if u0 + s · u1 ≈ µ · g (mod Q).

Definition 3. For a ∈ RQ and u ∈ Rk
Q, the external product of a and u is denoted and defined by

a⊡ u = ⟨h(a),u⟩ (mod Q). We also write a⊡U = (a⊡ u0, a⊡ u1) when U = (u0,u1) ∈ Rk×2
Q .

It is directly obtained from the definition that a ⊡ g = a (mod Q) for all a ∈ RQ. Moreover, if
U = (u0,u1) ∈ Rℓ×2

Q is a gadget encryption of µ ∈ R under s so that u0 + s · u1 = µ · g+ e (mod Q) for

some small e ∈ Rk, then the external product a⊡U = (c0, c1) of a and U satisfies that

c0 + s · c1 = ⟨h(a),u0 + s · u1⟩ = ⟨h(a), µ · g + e⟩ = a · µ+ e (mod Q) (1)

where the noise term is obtained as e = ⟨h(a), e⟩ ∈ R, which is bounded by ∥e∥ ≤ kN ·Bh∥e∥∞.

Special modulus: The special modulus method [19] is a widely used optimization technique in HE which
reduces the noise growth of homomorphic operations. Roughly speaking, it temporarily raises the cipher-
text modulus from Q up to PQ for some integer P when performing an external product so that the noise
is scaled by P while recovering the modulus into Q. We do not describe this technique specifically in the
main body for simplicity, but we take this optimization technique in our implementation. We provide a
detailed description of the special modulus method in Appendix A.

Gadget decomposition in a smaller modulus: We often need to define several gadget decompositions in
different moduli since the ciphertext modulus may decrease after homomorphic evaluation of a circuit.
The rescaling operation of CKKS is a typical example which reduces the ciphertext modulus. Fortunately,
we can reuse a gadget decomposition over RQ in smaller moduli. More precisely, if (h,g) is a pair of gadget
decomposition and gadget vector over RQ and Q′|Q, then the restriction of h to RQ′ is a valid gadget
decomposition corresponding to [g]Q′ . Hence we will define only one gadget decomposition with the
largest modulus in scheme description.

3.2 Homomorphic Property

We introduce a new concept for the gadget framework which will play a major part in the construction
of our MKHE scheme later.

Definition 4. A homomorphic gadget decomposition h : RQ → Rk is a gadget decomposition which
satisfies that

⟨h(a) + h(b),g⟩ = a+ b (mod Q),

⟨h(a)⊙ h(b),g⟩ = ab (mod Q)

for all a, b ∈ RQ where ⊙ denotes the element-wise product of two vectors.

4 This is why the gadget decomposition is often denoted by g−1 in the literature, however, this is an abuse of
notation since g may have multiple preimages.

6 H. Kwak et al.

The first additive condition is always true for any gadget decomposition, but the other multiplicative
property may not hold in general. Fortunately, many of the gadget decompositions currently in use in the
state-of-the-art HE libraries have this homomorphic property, which we will show in the next section.

Our key observation is that the primary goal of gadget decomposition is not to compute a specific
vector but it suffices to find a good enough decomposition, which is an element of the inverse image g−1(a)
with a reasonably small size. For example, the correctness of (1) still holds even if we replace h(a) by
another vector in g−1(a) as long as its size is much smaller than Q.

If h : RQ → Rk is a homomorphic gadget decomposition, we can perform homomorphic operations
over two gadget decompositions of a, b to obtain valid decompositions h(a)+h(b) of a+ b and h(a)⊙h(b)
of ab, which are bounded by ∥h(a) + h(b)∥∞ ≤ 2B and ∥h(a)⊙ h(b)∥∞ ≤ B2, respectively.

We also remark that a gadget decomposition h cannot be a ring homomorphism in a mathematical
manner, but g can be. Nevertheless, we still use the term “homomorphic gadget decomposition” to
describe the properties above.5

3.3 Examples

In this section, we introduce some concrete examples of homomorphic gadget decompositions. First of
all, we recall the Residue Number System (RNS). When we set the public parameters, the ciphertext
modulus Q can be chosen as a product of pairwise coprime integers q0, . . . , qℓ−1 so that we obtain the
ring isomorphism RQ →

∏
0≤i<ℓ Rqi , a 7→ ([a]qi)0≤i<ℓ from the Chinese Remainder Theorem (CRT). We

call ([a]qi)0≤i<ℓ the RNS representation of a ∈ ZQ with respect to the base {q0, . . . , qℓ−1}.
Informally, a function on RQ is said to be RNS-friendly if it can be computed while staying in

RNS. Currently, the RNS representation is widely used in design and implementation of HE schemes
since performing independent arithmetic operations over Rqi is much faster than one operation over
the large ring RQ. In particular, several HE libraries have been developed without relying on number
theory libraries for multi-precision arithmetic after full RNS variants of HE schemes are designed using
RNS-friendly gadget decompositions [3, 21, 11, 22]. Below we will provide formal descriptions of two
RNS-friendly gadget decompositions and show their homomorphic property.

1. In the first example, we set the RNS base {q0, q1, . . . , qℓ−1} as a set of distinct word-size (single-
precision) prime numbers. The decomposition function is defined as

h : RQ → Rℓ, h(a) = ([a]q0 , [a]q1 , . . . , [a]qℓ−1
).

We point out that this decomposition function looks similar to the CRT isomorphism, but its
codomain is Rℓ, i.e., each component [a]qi is treated as an element of R instead of Rqi . The cor-
responding gadget vector is g = (g0, . . . , gℓ−1) ∈ Rℓ

Q where gi’s are the constants such that gi = 1
(mod qi) and gi = 0 (mod qi′) for all i

′ ̸= i. It is also clear that h is RNS-friendly.
The primary condition ⟨h(a),g⟩ = a (mod Q) of gadget decomposition is satisfied since ⟨h(a),g⟩ =
[a]qi (mod qi) for all i, and its upper bound is ∥h(a)∥∞ ≤ 1

2 maxi{qi}. Finally, we can show that h has
the homomorphic property since [a]qi · [b]qi = ab (mod qi) for all i and thereby ⟨h(a)⊙ h(b),g⟩ = ab
(mod Q) whenever a, b ∈ RQ.

2. We also present a generalized version of the first example which allows us to reduce the degree of
decomposition by using larger RNS bases. To be precise, we choose a partition {I0, I1, . . . , Ik−1} of
{0, 1, . . . , ℓ− 1} and define partial products Di =

∏
j∈Ii

qj for 0 ≤ i < k which can be multi-precision

integers. We also define maps hi : RQ → R as hi(a) =
∑

j∈Ii
[(Di/qj)

−1 · a]qj · (Di/qj) for 0 ≤ i < k.
Then, the decomposition function is defined as

h : RQ → Rk, h(a) = (h0(a), h1(a), . . . , hk−1(a))

with the gadget vector g = (g0, . . . , gk−1) ∈ Rk
Q where gi’s are the constants satisfying gi = 1

(mod Di) and gi = 0 (mod Di′) for all i
′ ̸= i. From the definition of gi and hi, we have ⟨h(a),g⟩ =

5 Similarly, the encryption procedure of a homomorphic encryption is not a homomorphism, but the decryption
is.

Asymptotically Faster Multi-Key Homomorphic Encryption from Homomorphic Gadget Decomposition 7

hi(a) = a (mod qj) for all 0 ≤ i < k and j ∈ Ii. Hence, the primary condition ⟨h(a),g⟩ = a (mod Q)
is true for all a ∈ RQ, and h has an upper bound ∥h(a)∥∞ = max{∥h0(a)∥, . . . , ∥hk−1(a)∥} ≤
1
2 maxi{|Ii| ·Di}. In addition, h has the homomorphic property since hi(a) · hi(b) = ab (mod Di) for
0 ≤ i < k and thereby ⟨h(a)⊙ h(b),g⟩ = ab (mod Q) whenever a, b ∈ RQ.

Finally, h is RNS-friendly since the RNS representation of each hi(a) can be computed using only
single-precision modular operations. We also note that there is another variant of h which computes
the exact [a]Di instead of hi(a) using the formula [a]Di = hi(a)−Di · ⌊hi(a)/Di⌉ where the last term
hi(a)/Di =

∑
j∈Ii

[(Di/qj)
−1 · a]qj · q−1

j is computed via floating-point operations [21]. This variant

is also a homomorphic gadget decomposition and has a better bound 1
2 maxi{Di}.

Interestingly, RNS-friendly gadget decompositions were originally introduced to accelerate basic HE
algorithms, but we take advantage of their homomorphic property and design a new multi-key homomor-
phic multiplication algorithm with asymptotically better complexity in the next section.

4 A Faster Multi-Key Variant of CKKS

In Sections 4 and 5, we design new MKHE schemes from CKKS and BFV. In each section, we will first
recall the construction by Chen-Dai-Kim-Song (CDKS) [9], and then modify some algorithms to achieve
better performance. In particular, the notion of homomorphic gadget decomposition plays a key role in
our construction.

All MKHE schemes presented in the paper are based on the Common Random String (CRS) model,
i.e., all parties have access to the same random polynomials sampled in the setup phase. A fresh ciphertext
looks like a standard (single key) RLWE encryption, but the ciphertext length may increase when we
operate on multiple ciphertexts under different keys. For example, if ct = (c0, c1), ct

′ = (c′0, c
′
1) are two

ciphertexts under secrets s and s′, respectively, then their summation is defined as a two-key encryption
ctadd = (c0 + c′0, c1, c

′
1) which is decrytable by the secret (s, s′).

More generally, a multi-key ciphertext takes the form of ct = (c0, c1, . . . , cn) ∈ Rn+1
Q where n is the

number of involved parties. It implicitly contains a tuple of the party indices to indicate which secret
or public keys should be used in decryption or homomorphic evaluation. Moreover, when performing
arithmetic operations on two ciphertexts associated with different sets of parties, the input ciphertexts
are embedded into a larger space by padding zeros or permuting some entries to synchronize their secrets.

For simplicity, we assume that this pre-processing is always applied to input ciphertexts so that they
are encrypted under the same secret sk = (s1, s2, . . . , sn) even if it is not explicitly stated in scheme
description.

4.1 Overview of Multi-key CKKS by CDKS

In this section, we revisit the multi-key CKKS scheme of CDKS [9].

• MK-CKKS.Setup(1λ): Set the RLWE dimension N and the ciphertext modulus Q =
∏L

i=0 qi for some

integers qi. We write Qℓ =
∏ℓ

i=0 qi for 0 ≤ ℓ ≤ L. Set the key distribution χ over R and the error
parameter σ. Sample a ← U(Rk

Q). Choose a gadget decomposition h : RQ → Rk with a gadget vector

g ∈ Rk
Q. Output the public parameter pp = (N,Q, χ, σ,a, h,g).

• MK-CKKS.KeyGen(i): A party i generates secret and public keys as follows:

– Sample si ← χ and set the secret key as ski = si.

– Sample e0,i ← Dk
σ and let bi = −si · a+ e0,i (mod Q).

– Sample ri ← χ and e1,i ← Dk
σ. Let di = −ri · a+ si · g + e1,i (mod Q).

– Sample ui ← U(Rk
Q) and e2,i ← Dk

σ. Let vi = −si · ui − ri · g + e2,i (mod Q).

– Set the public key as pki = (bi,di,ui,vi). We also denote the encryption key as eki = (bi[0],a[0]).

8 H. Kwak et al.

Algorithm 1 Relinearization of CDKS

Input: ctmul = (ci,j)0≤i,j≤n ∈ R
(n+1)×(n+1)
Qℓ

, {pki = (bi,di,ui,vi)}1≤i≤n

Output: ct
∗
= (c∗i)0≤i≤n ∈ Rn+1

Qℓ

1: c∗0 ← c0,0
2: for 1 ≤ i ≤ n do
3: c∗i ← c0,i + ci,0 (mod Qℓ)
4: end for
5: for 1 ≤ i, j ≤ n do
6: c∗j ← c∗j + ci,j ⊡ di (mod Qℓ)
7: c′i,j ← ci,j ⊡ bj

8: (c∗0, c
∗
i)← (c∗0, c

∗
i) + c′i,j ⊡ (vi,ui) (mod Qℓ)

9: end for

The key distribution is not specifically defined to keep the generality, but we assume in the noise
analysis that χ is defined over the set of polynomials in R with ternary coefficients {±1, 0} for simplicity.

• MK-CKKS.Enc(ek;µ): Sample w ← χ and e0, e1 ← Dσ. Given a plaintext µ ∈ R, output the ciphertext
ct = w · ek+ (µ+ e0, e1) (mod Q).

• MK-CKKS.Dec({ski}1≤i≤n; ct): Given a ciphertext ct = (c0, c1, . . . , cn) ∈ Rn+1
Qℓ

and associated secret keys

{ski}1≤i≤n, return µ = c0 +
∑

1≤i≤n ci · si (mod Qℓ).

• MK-CKKS.Add(ct, ct′): Given two ciphertexts ct, ct
′ ∈ Rn+1

Qℓ
, output ctadd = ct+ ct

′
(mod Qℓ).

• MK-CKKS.Mult({pki}1≤i≤n; ct, ct
′
): Given two input ciphertexts ct = (ci)0≤i≤n, ct

′
= (c′i)0≤i≤n ∈ Rn+1

Qℓ

and associated public keys {pki}1≤i≤n, compute ctmul = (ci,j)0≤i,j≤n where ci,j = ci · c′j (mod Qℓ)
for 0 ≤ i, j ≤ n. Output the ciphertext Relin({pki}1≤i≤n; ctmul) where Relin(·) is the relinearization
procedure described in Alg. 1.

• MK-CKKS.Rescale(ct): Given a ciphertext ct = (c0, c1, . . . , cn) ∈ Rn+1
Qℓ

, output ct
′
= (c′0, c

′
1, . . . , c

′
n) ∈

Rn+1
Qℓ−1

where c′i =
⌊
q−1
ℓ · ci

⌉
(mod Qℓ−1) for 0 ≤ i ≤ n.

In lines 5–9 of Alg 1, each entry ci,j of ctmul is relinearized by bj of pkj and di,ui,vi of pki to obtain a
ciphertext decryptable by si and sj instead of si · sj . More precisely, it adds ci,j ⊡ di and c′i,j ⊡ (vi,ui)
to c∗j and (c∗0, c

∗
i), respectively, so that

(ci,j ⊡ di) · sj + c′i,j ⊡ (vi + si · ui) ≈ (ci,j ⊡ di) · sj − ri · c′i,j
= ci,j ⊡ (sj · di − ri · bj) ≈ ci,j ⊡ (ri · a+ di) · sj ≈ ci,j · sisj (mod Qℓ).

In addition, a relinearization error can be written as ei,j = c′i,j ⊡ e2,i + ci,j ⊡ (sj · e1,i − ri · e0,j) which
is bounded by∥ei,j∥∞ ≤ kN · BhBσ + 2kN2 · BhBσ ≈ 2kN2 · BhBσ. Therefore, the total relinearization
noise has an upper bound ∥∥∥∥∥∥

∑
1≤i,j≤n

ei,j

∥∥∥∥∥∥
∞

⪅ 2kn2N2 ·BhBσ. (2)

The relinearization process involves four external products for each ci,j , yielding 4n2 external products
in total.

4.2 Accelerating Multi-Key CKKS Multiplication Using Homomorphic Gadget
Decomposition

In this section, we present an improved multiplication method which is asymptotically faster than the
previous algorithm. We are inspired by a recent work by Kwak et al. [24] which optimized the relineariza-

Asymptotically Faster Multi-Key Homomorphic Encryption from Homomorphic Gadget Decomposition 9

Algorithm 2 Simplified relinearization [24]

Input: ctmul = (ci,j)0≤i,j≤n ∈ R
(n+1)×(n+1)
Qℓ

, {pki = (bi,di,ui,vi)}1≤i≤n

Output: ct
∗
= (c∗i)0≤i≤n ∈ Rn+1

Qℓ

1: c∗0 ← c0,0
2: for 1 ≤ i ≤ n do
3: c∗i ← c0,i + ci,0 (mod Qℓ)
4: end for
5: for 1 ≤ j ≤ n do
6: c∗j ← c∗j +

∑
1≤i≤n ci,j ⊡ di (mod Qℓ)

7: end for
8: for 1 ≤ i ≤ n do
9: xi ←

∑
1≤j≤n ci,j ⊡ bj (mod Qℓ)

10: (c∗0, c
∗
i)← (c∗0, c

∗
i) + xi ⊡ (vi,ui) (mod Qℓ)

11: end for

tion process of CDKS. They simplified the double iterations in lines 5–9 of Alg. 1 by rewriting them using
the following single iterations, as described in as shown in Alg. 2.∑

1≤i≤n

ci,j ⊡ di =
∑

1≤i≤n

⟨h(ci,j),di⟩ for 1 ≤ j ≤ n, (3)

∑
1≤j≤n

ci,j ⊡ bj =
∑

1≤j≤n

⟨h(ci,j),bj⟩ for 1 ≤ i ≤ n. (4)

Despite the optimization, the relinearization process still requires O(n2) external products since the
term h(ci,j) in the summands is doubly indexed by both i and j. To further reduce the complexity, we
desire to separate out the summands into two parts so that each of them only contains the index either i
or j. Then one can rule out the summands indexed by i (or j, resp) from the summation running over j
(or i, resp). However, this idea does not work in general since h(ci,j) seems unlikely to be separated out
for general gadget decomposition.

This is where our homomorphic gadget decomposition comes into play. In our scheme, we choose a
gadget decomposition h with the homomorphic property defined in Definition 4. Observing that ci,j =
ci ·c′j , we replace the term h(ci,j) by h(ci)⊙h(c′j). Then the above equations can be re-written as follows:6

∑
1≤i≤n

〈
h(ci)⊙ h(c′j),di

〉
=

〈
h(c′j),

∑
1≤i≤n

h(ci)⊙ di

〉
= c′j ⊡

 ∑
1≤i≤n

h(ci)⊙ di

 ,

∑
1≤j≤n

〈
h(ci)⊙ h(c′j),bj

〉
=

〈
h(ci),

∑
1≤j≤n

h(c′j)⊙ bj

〉
= ci ⊡

 ∑
1≤j≤n

h(c′j)⊙ bj

 .

Based on these equations, we design a new multiplication algorithm. As desired, its complexity can
be reduced by precomputing

∑
1≤i≤n h(ci)⊙di and

∑
1≤j≤n h(c

′
j)⊙bj which depend only on either i or

j. We also stress that h(ci · c′j) ̸= h(ci) ⊙ h(c′j) in general, so the modified equations are different from
the original ones. Nevertheless, we will show that our algorithm still works correctly since the underlying
plaintext information is unchanged.

Now we present a new construction of multi-key CKKS from homomorphic gadget decomposition. Our
construction shares several algorithms with CDKS, but we mainly modify the setup and multiplication
algorithms as follows:

• MK-CKKS.Setup(1λ): Set the RLWE dimension N and the ciphertext modulus Q =
∏L

i=0 qi for some

integers qi. We write Qℓ =
∏ℓ

i=0 qi for 0 ≤ i ≤ L. Set the key distribution χ over R and the error

6 Note that ⟨x⊙ y, z⟩ =
∑

i x[i] · y[i] · z[i] = ⟨x,y ⊙ z⟩ for any vectors x, y, z.

10 H. Kwak et al.

Algorithm 3 New multi-key CKKS multiplication algorithm

Input: ct = (ci)0≤i≤n, ct
′
= (c′i)0≤i≤n, {pki = (bi,di,vi)}1≤i≤n

Output: ct
∗
= (c∗i)0≤i≤n ∈ Rn+1

Qℓ

1: c∗0 ← c0 · c′0 (mod Qℓ)
2: for 1 ≤ i ≤ n do
3: c∗i ← c0 · c′i + ci · c′0 (mod Qℓ)
4: end for
5: z←

∑
1≤i≤n h(ci)⊙ di (mod Qℓ)

6: w←
∑

1≤j≤n h(c
′
j)⊙ bj (mod Qℓ)

7: for 1 ≤ j ≤ n do
8: c∗j ← c∗j + c′j ⊡ z (mod Qℓ)
9: end for

10: for 1 ≤ i ≤ n do
11: (c∗0, c

∗
i)← (c∗0, c

∗
i) + (ci ⊡w)⊡ (vi,ui) (mod Qℓ)

12: end for

parameter σ. Sample a ← U(Rk
Q). Choose a homomorphic gadget decomposition h : RQ → Rk with a

gadget vector g ∈ Rk
Q. Output the public parameter pp = (N,Q, χ, σ,a, h,g).

• MK-CKKS.Mult({pki}1≤i≤n; ct, ct
′
): Given two ciphertexts ct = (ci)0≤i≤n, ct

′
= (c′i)0≤i≤n ∈ Rn+1

Qℓ
and

associated public keys {pki}1≤i≤n, execute Alg. 3 and return the output ciphertext ct
∗
.

As mentioned above, our multiplication algorithm does not follow the conventional approach where
the tensor product and relinearization are performed sequentially, rather it performs both operations in
a simultaneous manner.

Security. The construction of CDKS relies its security on the hardness of RLWE with parameter
(N,Q, χ, σ) since it uses the same encryption algorithm as CKKS. In addition, the cryptosystem remains
secure even if a public key pki is given to the adversary since pki is computationally indistinguishable
from the uniform distribution over Rk×4

Q under a circular security assumption (see [9] for detail). Our
scheme is also semantically secure under the same assumptions since our scheme shares the same key
generation and encryption algorithms as CDKS, and our modification on the multiplication algorithm is
irrelevant to the security proof.

Correctness. We focus on the correctness of our new multiplication algorithm. We first remark that a
public key pki = (bi,di,ui,vi) satisfies the properties bi ≈ −si ·a (mod Q), di ≈ −ri ·a+si ·g (mod Q),
and vi + si · ui ≈ −ri · g (mod Q). Therefore,

sj · di ≈ −risj · a+ sisj · g ≈ ri · bj + sisj · g (mod Q). (5)

Now suppose that ct and ct
′
are multi-key ciphertexts under a secret key (1, sk) = (1, s1, . . . , sn)

such that
〈
ct, (1, sk)

〉
= µ (mod Qℓ) and

〈
ct

′
, (1, sk)

〉
= µ′ (mod Qℓ) and let ct

∗
= (c∗i)0≤i≤n ←

MK-CKKS.Mult({pki}1≤i≤n; ct, ct
′
). Our goal is to show

〈
ct

∗
, (1, sk)

〉
≈ µµ′ (mod Qℓ).

First of all, we have〈
ct

∗
, (1, sk)

〉
= c∗0 +

∑
1≤i≤n

c∗i · si

= c0 · c′0 +
∑

1≤i≤n

(c0 · c′i + ci · c′0) · si

+
∑

1≤j≤n

(c′j ⊡ z) · sj +
∑

1≤i≤n

(ci ⊡w)⊡ (vi + si · ui) (mod Qℓ).

Asymptotically Faster Multi-Key Homomorphic Encryption from Homomorphic Gadget Decomposition 11

from Alg. 3. In addition, thanks to the homomorphic property of gadget decomposition and (5), the third
and fourth terms can be written as

∑
1≤j≤n

(c′j ⊡ z) · sj =
∑

1≤j≤n

c′j ⊡
∑

1≤i≤n

(h(ci)⊙ di)

 · sj
=

∑
1≤i,j≤n

〈
h(c′j), h(ci)⊙ di

〉
· sj =

∑
1≤i,j≤n

〈
h(ci)⊙ h(c′j),di

〉
· sj

≈
∑

1≤i,j≤n

ri ·
〈
h(ci)⊙ h(c′j),bj

〉
+

∑
1≤i,j≤n

cic
′
j · sisj (mod Qℓ) (6)

and ∑
1≤i≤n

(ci ⊡w)⊡ (vi + si · ui) ≈ −
∑

1≤i≤n

ri · (ci ⊡w)

=−
∑

1≤i≤n

ri ·

ci ⊡
∑

1≤j≤n

(h(c′j)⊙ bj)

 = −
∑

1≤i,j≤n

ri ·
〈
h(ci), h(c

′
j)⊙ bj

〉
=−

∑
1≤i,j≤n

ri ·
〈
h(ci)⊙ h(c′j),bj

〉
(mod Qℓ). (7)

Putting it all together, we obtain
〈
ct

∗
, (1, sk)

〉
≈ c0c

′
0+

∑
1≤i≤n(c0c

′
i+cic

′
0) ·si+

∑
1≤i,j≤n cic

′
j ·sisj =〈

ct, (1, sk)
〉
·
〈
ct

′
, (1, sk)

〉
(mod Qℓ) which completes the correctness proof of our multiplication algorithm.

Noise growth and complexity. We first provide a worst-case bound of the multiplication noise of
our scheme. We refer the reader to Appendix B.1 for a tighter average-case analysis based on the noise
variance.

As shown above, ct
∗ ← MK-CKKS.Mult({pki}1≤i≤n; ct, ct

′
) satisfies that〈

ct
∗
, (1, sk)

〉
=

〈
ct, (1, sk)

〉
·
〈
ct

′
, (1, sk)

〉
+ e1 + e2 (mod Qℓ)

where e1 and e2 are the errors introduced from approximate equalities in (6) and (7), respectively. To be
precise, these error terms can be written as

e1 =
∑

1≤i,j≤n

〈
h(ci)⊙ h(c′j), sj · e1,i − ri · e0,j

〉
,

e2 =
∑

1≤i≤n

(ci ⊡w)⊡ e2,i

which are bounded by ∥e1∥∞ ≤ 2kn2N3 ·B2
hBσ and ∥e2∥∞ ≤ knN ·BhBσ. As a result, we get a worst-case

bound 2kn2N3 ·B2
hBσ + knN ·BhBσ ≈ 2kn2N3 ·B2

hBσ of the multiplication noise.

On the other hand, our multiplication algorithm requires O(n) external products. More specifically,
the required number of gadget decompositions (including NTT operations) is 3n which is reduced by a
factor of O(n) compared to O(n2) complexity of CDKS relinearization.

The major drawback of our construction is its multiplication noise, whose upper bound is about
N ·Bh times larger than the previous method. This extra factor is introduced from the additional gadget
decomposition and polynomial product of h(ci) ⊙ h(c′j) replacing h(ci,j). However, this issue can be
addressed easily by the special modulus method. Roughly speaking, we cancel out the extra factor from
homomorphic gadget decomposition by taking a special modulus but the maximal level L of cryptosystem
can be reduced by one (see Appendix A for details).

In conclusion, our scheme achieves an asymptotically better computation cost while its disadvantage
with respect to the noise growth can be easily minimized by a well-known technique.

12 H. Kwak et al.

5 A Faster Multi-Key Variant of BFV

In this section, we design a new multi-key variant of BFV scheme with better performance. The multi-key
CKKS and BFV schemes by CDKS are technically very similar since they share the same relinearization
algorithm. However, our multi-key CKKS multiplication algorithm is not compatible with BFV due to
the scaling factor involved with message encoding. We use a similar approach based on homomorphic
gadget decomposition, but present new ideas to resolve the issues from BFV-style multiplication.

5.1 Overview of Multi-Key BFV by CDKS

We provide a description of the multi-key BFV scheme by CDKS as follows. As noted above, the same
key generation algorithm as in multi-key CKKS is used to perform the relinearization procedure.

• MK-BFV.Setup(1λ): Set the RLWE dimension N , the plaintext modulus t, the ciphertext modulus Q,

the key distribution χ over R, and the error parameter σ. Sample a← U(Rk
q) and choose a gadget decom-

position h : RQ → Rk with a gadget vector g ∈ Rk
Q. Output the parameter set pp = (N, t,Q, χ, σ,a, h,g).

We also denote ∆ = ⌊Q/t⌉.

• MK-BFV.KeyGen(i): A party i generates secret and public keys as follows:

– Sample si ← χ and set the secret key as ski = si.

– Sample e0,i ← Dk
σ and let bi = −si · a+ e0,i (mod Q).

– Sample ri ← χ and e1,i ← Dk
σ. Let di = −ri · a+ si · g + e1,i (mod Q).

– Sample ui ← U(Rk
Q) and e2,i ← Dk

σ. Let vi = −si · ui − ri · g + e2,i (mod Q).

– Set the public key as pki = (bi,di,ui,vi). We also denote the encryption key as eki = (bi[0],a[0]).

• MK-BFV.Enc(ek;m): Sample w ← χ and e0, e1 ← Dσ. Given a message m ∈ Rt, output the ciphertext
ct = w · ek+ (∆ ·m+ e0, e1) (mod Q).

• MK-BFV.Dec({ski}1≤i≤k; ct): Given a ciphertext ct = (c0, c1, . . . , ck) ∈ Rn+1
Q and associated secret keys

{ski}1≤i≤n, return m =
⌊
(t/Q) · (c0 +

∑
1≤j≤k cj · sj)

⌉
(mod t).

• MK-BFV.Add(ct, ct′): Given two ciphertexts ct, ct
′ ∈ Rn+1

Q , output ctadd = ct+ ct
′
(mod Q).

• MK-BFV.Mult({pki}1≤i≤n; ct, ct
′
): Given two ciphertexts ct = (ci)0≤i≤n, ct

′
= (c′i)0≤i≤n ∈ Rn+1

Q and

associated public keys {pki}1≤i≤n, compute ctmul = (ci,j)0≤i,j≤n (mod Q) where ci,j =
⌊
(t/Q) · cic′j

⌉
(mod Q). Output the ciphertext Relin({pki}1≤i≤n; ctmul) where Relin(·) is the relinearization procedure
described in Alg. 1.

We remark that ctmul is obtained from the tensor product of two input ciphertexts by scaling it with
a factor of (t/Q). In particular, the same relinearization algorithm is used for two multi-key schemes by
CDKS.

This multi-key BFV scheme is IND-CPA secure under the same RLWE and circular security assump-
tions as multi-key CKKS in the previous section. In addition, we can show the correctness of multiplication
algorithm from

∑
0≤i,j≤n

ci,j · sisj ≈ (t/Q) ·

 ∑
0≤i≤n

ci · si

 ∑
0≤j≤n

c′j · sj

 ≈ ∆ ·mm′ (mod Q).

whenever ct = (ci)0≤i≤n, ct
′
= (c′i)0≤i≤n are multi-key BFV ciphertexts such that

∑
0≤i≤n ci · si ≈ ∆ ·m

(mod Q) and
∑

0≤i≤n c
′
i · si ≈ ∆ ·m′ (mod Q).

Asymptotically Faster Multi-Key Homomorphic Encryption from Homomorphic Gadget Decomposition 13

5.2 Accelerating Multi-Key BFV Multiplication Using Homomorphic Gadget
Decomposition

Recall that our multi-key CKKS multiplication algorithm (Section 4.2) achieves a linear complexity by
merging two-step procedure consisting of tensor product and subsequent relinearization via homomorphic
gadget decomposition. To be precise, we exploited the following homomorphic property〈

h(ci)⊙ h(c′j),g
〉
= ci · c′j (mod Q)

This approach, however, is not directly applicable to multi-key BFV since it involves an unnatural product
beyond the base ring. In multi-key BFV, an entry ci,j for the relinearzation algorithm is not a mere product
of two elements, instead, it is ci,j =

⌊
(t/Q) · cic′j

⌉
(mod Q) where the product of ci and c′j is performed

in R, not RQ. As a result, our multi-key CKKS multiplication algorithm is not compatible with BFV
since one cannot apply the homomorphic property on ci,j as it involves arithmetic operations in R.

To resolve the issue, we first note that ci,j can be computed properly if we raise the modulus up to

Q̃ := Q2 and perform the multiplication in RQ̃. In addition, if h̃ : RQ̃ → Rk̃ is a homomorphic gadget

decomposition with a gadget vector g̃ ∈ Rk̃
Q̃
, then it holds that〈

h̃(ci)⊙ h̃(cj), t · g̃
〉
= t · cic′j ≈ Q · ci,j (mod Q̃) (8)

where ci and c′j in the equation are regarded as elements of RQ̃ via the embedding RQ ↪→ RQ̃. If we scale
the above by (1/Q), we can obtain ci,j .

Hence, we can use a similar idea as in the previous section to design a new multi-key BFV scheme from
homomorphic gadget decomposition that switches the ciphertext modulus from Q to Q̃ and vice versa
during multiplication. Unfortunately, this approach may cause security and performance degradation
issues since public keys also should be generated over RQ̃.

To cope with such issues, we apply the modulus switching technique to stay in the base ring RQ. To

be precise, instead of simply switching the modulus to Q̃, we rescale (8) by a factor of Q and obtain〈
h̃(ci)⊙ h̃(cj), ⌊(t/Q) · g̃⌉

〉
≈ ci,j (mod Q). As a result, a public key can be generated over RQ which

addresses the security and efficiency issues.

Finally, we observe that a fixed gadget decomposition is used in the construction of multi-key CKKS,
but in fact there are two distinguished layers where we can apply different gadget techniques. This
separation is particularly useful in BFV since we can choose an appropriate modulus for each gadget
decomposition. In the following, we present a new multi-key BFV scheme based on these ideas and
provide security and performance analysis.

• MK-BFV.Setup(1λ): Set the RLWE dimension N , the plaintext modulus t, the ciphertext modulus Q,

the key distribution χ over R, and the error parameter σ. We write Q̃ = Q2. Sample a← U(Rk̃
Q). Choose

homomorphic gadget decompositions h : RQ → Rk and h̃ : RQ̃ → Rk̃ with gadget vectors g ∈ Rk
Q

and g̃ ∈ Rk̃
Q̃
, respectively. Output the public parameter pp = (N,Q, χ, σ,a, h,g, h̃, g̃). We also denote

∆ = ⌊Q/t⌉.

We denote the external product with respect to h̃ by ⊡̃ .

• MK-BFV.KeyGen(i): A party i generates secret and public keys as follows:

– Sample si ← χ and set the secret key as ski = si.

– Sample e0,i ← Dk̃
σ and let bi = −si · a+ e0,i (mod Q).

– Sample ri ← χ and e1,i ← Dk̃
σ. Let di = −ri · a+ si · ⌊(t/Q) · g̃⌉+ e1,i (mod Q).

– Sample ui ← U(Rk
Q) and e2,i ← Dk

σ. Let vi = −si · ui − ri · g + e2,i (mod Q).

– Set the public key as pki = (bi,di,ui,vi). We also denote the encryption key as eki = (bi[0],a[0]).

14 H. Kwak et al.

Algorithm 4 New multi-key BFV multiplication algorithm

Input: ct = (ci)0≤i≤n, ct
′
= (c′i)0≤i≤n, {pki = (bi,di,ui,vi)}1≤i≤n

Output: ct
∗
= (c∗i)0≤i≤n ∈ Rn+1

Q

1: c∗0 ← ⌊(t/Q) · (c0c′0)⌉ (mod Q)
2: for 1 ≤ i ≤ n do
3: c∗i ← ⌊(t/Q) · (c0c′i + cic

′
0)⌉ (mod Q)

4: end for
5: z←

∑
1≤i≤n h̃(ci)⊙ di (mod Q)

6: w←
∑

1≤j≤n h̃(c
′
j)⊙ bj (mod Q)

7: for 1 ≤ j ≤ n do
8: c∗j ← c∗j + c′j ⊡̃ z (mod Q)
9: end for

10: for 1 ≤ i ≤ n do
11: (c∗0, c

∗
i)← (c∗0, c

∗
i) + (ci ⊡̃ w)⊡ (vi,ui) (mod Q)

12: end for

• MK-BFV.Mult({pki}1≤i≤n; ct, ct
′
): Given two ciphertexts ct = (ci)0≤i≤n, ct

′
= (c′i)0≤i≤n ∈ Rn+1

Q and

associated public keys {pki}1≤i≤n, run Alg. 4 and return the ciphertext ct
∗
= (c∗i)0≤i≤n ∈ Rn+1

Q .

As discussed above, we assume that the entries of input ciphertexts ct and ct
′
are embedded into RQ̃

so that they can be taken as input of the gadget decomposition h̃, even if it is not explicitly mentioned
in Alg. 4.

Security. Our multi-key BFV scheme has the usual BFV encryption algorithm, so it is semantically
secure under the RLWE assumption of parameter (N,χ,Q, σ). Similar to the case of multi-key CKKS,
it also requires a circular security assumption since (d,a) and (vi,ui) form a chain of encryptions of
si · ⌊(t/Q) · g̃⌉ and −ri · g under ri and si, respectively.

Correctness.We prove the correctness of our multiplication algorithm. Suppose ct
∗ ← MK-BFV.Mult({pki}1≤i≤n; ct, ct

′
)

for some multi-key ciphertexts ct and ct
′
. Our goal is to show that

〈
ct

∗
, (1, sk)

〉
≈ (t/Q)·

∑
0≤i,j≤n cic

′
j · sisj ≈

∆ ·mm′ (mod Q) whenever
〈
ct, (1, sk)

〉
≈ ∆ ·m and

〈
ct

′
, (1, sk)

〉
≈ ∆ ·m′. From Alg. 4, we have〈

ct
∗
, (1, sk)

〉
= c∗0 +

∑
1≤i≤n

c∗i · si

= ⌊(t/Q) · (c0c′0)⌉+
∑

1≤i≤n

⌊(t/Q) · (c0c′i + cic
′
0)⌉ · si

+
∑

1≤j≤n

(c′j ⊡̃ z) · sj +
∑

1≤i≤n

(ci ⊡̃ w)⊡ (vi + si · ui).

The last two terms satisfy that

∑
1≤j≤n

(c′j ⊡̃ z) · sj =
∑

1≤j≤n

c′j ⊡̃
∑

1≤i≤n

(h̃(ci)⊙ di)

 · sj
=

∑
1≤i,j≤n

〈
h̃(c′j), h̃(ci)⊙ di

〉
· sj =

∑
1≤i,j≤n

〈
h̃(ci)⊙ h̃(c′j),di

〉
· sj

≈
∑

1≤i,j≤n

〈
h̃(ci)⊙ h̃(c′j),−ri · a+ si · ⌊(t/Q) · g̃⌉

〉
· sj

≈
∑

1≤i,j≤n

ri ·
〈
h̃(ci)⊙ h̃(c′j),bj

〉
+ ci,j · sisj (mod Q), (9)

Asymptotically Faster Multi-Key Homomorphic Encryption from Homomorphic Gadget Decomposition 15

and

∑
1≤i≤n

(ci ⊡̃ w)⊡ (vi + si · ui) ≈ −
∑

1≤i≤n

ri · (ci ⊡̃ w)

=−
∑

1≤i≤n

ri ·

〈
h̃(ci),

∑
1≤j≤n

h̃(c′j)⊙ bj

〉
= −

∑
1≤i≤n

ri ·

〈
h̃(ci),

∑
1≤j≤n

h̃(c′j)⊙ bj

〉

=−
∑

1≤i,j≤n

ri ·
〈
h̃(ci)⊙ h̃(c′j),bj

〉
(mod Q) (10)

Therefore, we obtain〈
ct

∗
, (1, sk)

〉
≈(t/Q) · (c0c′0) +

∑
1≤i≤n

(t/Q)(c0c
′
i + cic

′
0) · si + (t/Q) ·

∑
1≤i,j≤n

cic
′
j · sisj

=(t/Q) ·
∑

0≤i,j≤n

cic
′
j · sisj ≈ ∆ ·mm′ (mod Q)

as desired.

Noise growth and complexity. In our noise analysis, we focus on the dominating noise terms from
external products and omit noises from rounding. The error terms from (9) and (10) can be written as

e1 =
∑

1≤i,j≤n

〈
h̃(ci)⊙ h̃(c′j), sj · e1,i − ri · e0,j

〉
e2 =

∑
1≤i≤n

(ci ⊡̃ w)⊡ e2,i.

Therefore, the total multiplication noise is bounded by ∥e1∥∞ + ∥e2∥∞ ≤ 2k̃n2N3 ·B2
h̃
Bσ + knN ·BhBσ.

Similar to the case of CKKS, our new multiplication algorithm requires O(n) external products (or
gadget decompositions) compared to O(n2) of the relinearization algorithm by CDKS. By contrast, our
scheme has a larger multiplication noise but it has almost no adverse effect on the overall performance
of multi-key BFV.

6 Implementation

In this section, we discuss practical implementation issues of our MKHE schemes and provide experimen-
tal results. As discussed in Section 3.3, we take advantages of RNS representation via the isomorphism
between RQ and Rq0 × · · · ×RqL where Q =

∏L
i=0 qi is a product of pairwise coprime integers. Although

our multiplication algorithms achieve better performance from the homomorphic property of gadget de-
composition, there remains a minor issue with our multi-key BFV scheme due to the gadget decomposition
defined over RQ2 . To be precise, our scheme described in Section 5.2 is not fully RNS friendly since it
requires multi-precision arithmetic over the moduli q2i as RQ2 ∼= Rq20

× · · · ×Rq2L
.

We first modify our multi-key BFV scheme in Section 6.1 to enable a full-RNS implementation. Then,
we implement both multi-key BFV and CKKS schemes and provide their benchmarks in Section 6.2 to
show that our schemes achieve better concrete performance compared to the previous construction by
CDKS [9].

6.1 RNS-friendly variant of our multi-key BFV scheme

In the original BFV scheme or its multi-key variant by CDKS, the multiplication algorithm embeds the
entries of input ciphertexts from RQ into R and computes their scaled product

⌊
(t/Q) · cic′j

⌉
(mod Q)

for relinearization. This algorithm can be implemented RNS friendly since the product cic
′
j returns a valid

16 H. Kwak et al.

Algorithm 5 RNS-friendly multi-key BFV multiplication algorithm

Input: ct = (ci)0≤i≤n, ct
′
= (c′i)0≤i≤n, {pkj = (bj ,dj ,uj ,vj)}1≤j≤n

Output: ct
∗
= (c∗j)0≤j≤n ∈ Rn+1

Q

1: for 0 ≤ j ≤ n do

2: c′′j ←
⌊
Q′

Q c′j

⌉
(mod Q′)

3: end for
4: c∗0 ← ⌊(t/Q′) · (c0c′′0)⌉ (mod Q)
5: for 1 ≤ j ≤ n do
6: c∗j ←

⌊
(t/Q′) · (c0c′′j + cjc

′′
0)
⌉

(mod Q)
7: end for
8: z←

∑
1≤i≤n h̃(ci)⊙ di (mod Q)

9: w←
∑

1≤j≤n h̃(c
′′
j)⊙ bj (mod Q)

10: for 1 ≤ j ≤ n do
11: c∗j ← c∗j + c′′j ⊡̃ z (mod Q)
12: end for
13: for 1 ≤ i ≤ n do
14: (c∗0, c

∗
i)← (c∗0, c

∗
i) + (ci ⊡̃ w)⊡ (vi,ui) (mod Q)

15: end for

result over an arbitrary large modulus. For example, Halevi et al. [21] presented a full-RNS implementation
of BFV by performing the computation over RQQ′ where Q′ is another RNS-friendly modulus coprime
to Q.

While our multi-key BFV scheme is designed over RQ, it is nevertheless not RNS friendly since the
multiplication algorithm involves a gadget decomposition over the modulus Q2. Unfortunately, simply
replacing the modulus Q2 by QQ′ for some Q′ does not solve the issue since it causes another problem
about the scaling factor (Q/t) while performing external products, different from the previous schemes
which have a separate relinearization process.

Recently, Kim et al. [23] presented a BFV multiplication algorithm which switches a scale factor of
one ciphertext from (Q/t) to (Q′/t) so that the product of ciphertext entries can be computed in an
RNS-friendly manner. We use a similar technique to design a full-RNS variant of multi-key BFV. In
particular, we modify not only multiplication but also the key generation algorithm so that public keys
are generated over RQQ′ . A detailed description of our scheme is given below.

• MK-BFV.Setup(1λ): Set the RLWE dimension N , the plaintext modulus t, the ciphertext modulus Q,

the key distribution χ over R, and the error parameter σ. We write Q̃ = QQ′. Sample a ← U(Rk̃
Q).

Choose homomorphic gadget decompositions h : RQ → Rk and h̃ : RQ̃ → Rk̃ with gadget vectors g ∈ Rk
Q

and g̃ ∈ Rk̃
Q̃
, respectively. Output the public parameter pp = (N,Q,Q′, χ, σ,a, h,g, h̃, g̃). We also denote

∆ = ⌊Q/t⌉.

We denote the external product with respect to the gadget decomposition h̃ by ⊡̃ .

• MK-BFV.KeyGen(i): A party i generates secret and public keys as follows:

– Sample si ← χ and set the secret key as ski = si.

– Sample e0,i ← Dk̃
σ and let bi = −si · a+ e0,i (mod Q).

– Sample ri ← χ and e1,i ← Dk̃
σ. Let di = −ri · a+ si · ⌊(t/Q′) · g̃⌉+ e1,i (mod Q).

– Sample ui ← U(Rk
Q) and e2,i ← Dk

σ. Let vi = −si · ui − ri · g + e2,i (mod Q).
– Set the public key as pki = (bi,di,ui,vi). We also denote the encryption key as eki = (bi[0],a[0]).

• MK-BFV.Mult({pki}1≤i≤n; ct, ct
′
): Given two ciphertexts ct = (ci)0≤i≤n, ct

′
= (c′i)0≤i≤n ∈ Rn+1

Q and

public keys {pki}1≤i≤n, run Alg. 5 and return the ciphertext ct
∗
.

Asymptotically Faster Multi-Key Homomorphic Encryption from Homomorphic Gadget Decomposition 17

We scale an input ciphertext and compute ct
′′
=

⌊
(Q′/Q) · ct′

⌉
(mod Q′) in lines 1–3 of Alg. 5. Similar

to the previous version, we raise the modulus of ct and ct
′′
up to Q̃ using the embeddings RQ ↪→ RQ̃

and RQ′ ↪→ RQ̃, respectively, from line 4. All experimental results in the next section is based on our
implementation of this RNS-friendly variant.

6.2 Experimental results

We implement our multi-key CKKS and BFV schemes and provide some benchmark results. Our imple-
mentation is based on the Lattigo library v2.3.0 [15] written in Go. All experiments were performed with
a single thread on a server machine with Intel(R) Xeon(R) Platinum 8268 @ 2.90GHz CPU and 192GB
RAM running Ubuntu 20.04.3 LTS.

Ours CDKS
logN #qi #pi ⌈logQP ⌉ logN #qi #pi ⌈logQP ⌉
14 6 2 439 14 7 1 439
15 14 2 880 15 15 1 880

Table 1. Parameter sets. #qi and #pi indicate the number of primes used for ciphertext modulus Q =
∏

i qi and
special modulus P =

∏
i pi, respectively.

In our implementation, the key distribution χ samples each coefficients from {0,±1}) with probability
0.25 for each of −1 and 1 and with probability 0.5 for 0. The error parameter is σ = 3.2. We also use an
RNS-friendly homomorphic gadget decomposition h(a) = ([a]q0 , [a]q1 , . . . , [a]qL) together with the special
modulus method to control the noise growth. Since our multiplication algorithm introduces an extra noise
factor from homomorphic gadget decomposition, we keep two primes to form a special modulus compared
to one of CDKS implementation. As a result, our implementation has a smaller ciphertext modulus Q
for the same RLWE dimension N .

We choose two 60-bit primes for the special modulus and others for the ciphertext modulus are 52–55
bits prime numbers. Table 6.2 presents two parameter sets used in our implementation, both of which
achieve at least 128-bit security level against the best known attack for RLWE.

N n
Ours CDKS

CKKS BFV CKKS BFV

14

2 0.17 s 0.31 s 0.17 s 0.26 s

4 0.34 s 0.59 s 0.52 s 0.72 s

8 0.67 s 1.16 s 1.85 s 2.35 s

16 1.30 s 2.30 s 6.94 s* 8.47 s*

32 2.59 s 4.59 s 26.93 s* 32.11 s*

64 5.18 s 9.16 s 106.06 s* 125.03 s*

15

2 1.53 s 2.82 s 1.36 s 1.72 s

4 3.10 s 6.02 s 4.29 s 5.03 s

8 5.95 s 10.91 s 15.16 s 17.45 s

16 11.76 s 21.62 s 57.01 s* 65.52 s*

32 23.53 s 44.93 s 221.12 s* 254.54 s*

64 48.84 s 88.30 s 871.01 s* 1,004.10 s*

Table 2. Performance of multiplication algorithms of CDKS and our MKHE schemes (*: estimated results).

18 H. Kwak et al.

In Table 2, we give execution times of our multiplication algorithms for n = 2, 4, . . . , 64 parties.7 As
expected from the complexity analysis, the running time grows linearly with n which rapidly outperforms
the performance of CDKS with quadratic complexity as n increases as shown in Fig. 1.

0 5 10 15 20 25 30
0

5

10

15

20

25

30

Number of parties

T
im

e
(s
)

Multi-key CKKS (Ours)

Multi-key BFV (Ours)

Multi-key CKKS (CDKS)

Multi-key BFV (CDKS)

Fig. 1. Performance of multiplication algorithms when logN = 14

References

1. Ananth, P., Jain, A., Jin, Z., Malavolta, G.: Multi-key fully-homomorphic encryption in the plain model. In:
Theory of Cryptography Conference. pp. 28–57. Springer (2020)

2. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation
with low communication, computation and interaction via threshold fhe. In: Annual International Conference
on the Theory and Applications of Cryptographic Techniques. pp. 483–501. Springer (2012)

3. Bajard, J.C., Eynard, J., Hasan, M.A., Zucca, V.: A full rns variant of fv like somewhat homomorphic
encryption schemes. In: International Conference on Selected Areas in Cryptography. pp. 423–442. Springer
(2016)

4. Boneh, D., Gennaro, R., Goldfeder, S., Jain, A., Kim, S., Rasmussen, P.M., Sahai, A.: Threshold cryptosystems
from threshold fully homomorphic encryption. In: Annual International Cryptology Conference. pp. 565–596.
Springer (2018)

5. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical gapsvp. In: Annual
Cryptology Conference. pp. 868–886. Springer (2012)

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping.
ACM Transactions on Computation Theory (TOCT) 6(3), 1–36 (2014)

7. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short ciphertexts. In: Annual
Cryptology Conference. pp. 190–213. Springer (2016)

8. Chen, H., Chillotti, I., Song, Y.: Multi-key homomorphic encryption from TFHE. In: International Conference
on the Theory and Application of Cryptology and Information Security. pp. 446–472. Springer (2019)

7 We also present benchmarks of Chen et al. [9] as reference, but the previous experimental results were generated
on a different machine with Intel Xeon E-2176M @ 4.00 GHz. We also estimate the running time of CDKS
based on the complexity analysis for n ≥ 16.

Asymptotically Faster Multi-Key Homomorphic Encryption from Homomorphic Gadget Decomposition 19

9. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic encryption with packed ciphertexts
with application to oblivious neural network inference. In: Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. pp. 395–412 (2019)

10. Chen, L., Zhang, Z., Wang, X.: Batched multi-hop multi-key FHE from Ring-LWE with compact ciphertext
extension. In: Theory of Cryptography Conference. pp. 597–627. Springer (2017)

11. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full rns variant of approximate homomorphic encryption.
In: International Conference on Selected Areas in Cryptography. pp. 347–368. Springer (2018)

12. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers.
In: International Conference on the Theory and Application of Cryptology and Information Security. pp.
409–437. Springer (2017)

13. Chillotti, I., Gama, N., Georgieva, M., Izabachene, M.: Faster fully homomorphic encryption: Bootstrapping in
less than 0.1 seconds. In: international conference on the theory and application of cryptology and information
security. pp. 3–33. Springer (2016)

14. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled fhe from learning with errors. In: Annual
Cryptology Conference. pp. 630–656. Springer (2015)

15. EPFL-LDS: Lattigo v2.3.0. Online: https://github.com/ldsec/lattigo (Oct 2021)
16. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive (2012)
17. Genise, N., Micciancio, D., Polyakov, Y.: Building an efficient lattice gadget toolkit: Subgaussian sampling

and more. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques.
pp. 655–684. Springer (2019)

18. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st Annual ACM
Symposium on Theory of Computing. pp. 169–178. ACM (2009)

19. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the aes circuit. In: Annual Cryptology Con-
ference. pp. 850–867. Springer (2012)

20. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based. In: Annual Cryptology Conference. pp. 75–92. Springer (2013)

21. Halevi, S., Polyakov, Y., Shoup, V.: An improved rns variant of the bfv homomorphic encryption scheme. In:
Cryptographers’ Track at the RSA Conference. pp. 83–105. Springer (2019)

22. Han, K., Ki, D.: Better bootstrapping for approximate homomorphic encryption. In: Cryptographers’ Track
at the RSA Conference. pp. 364–390. Springer (2020)

23. Kim, A., Polyakov, Y., Zucca, V.: Revisiting homomorphic encryption schemes for finite fields. In: Inter-
national Conference on the Theory and Application of Cryptology and Information Security. pp. 608–639.
Springer (2021)

24. Kwak, H., Lee, D., Song, Y., Wagh, S.: A unified framework of homomorphic encryption for multiple parties
with non-interactive setup. Cryptology ePrint Archive, Report 2021/1412 (2021), https://ia.cr/2021/1412

25. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey
fully homomorphic encryption. In: Proceedings of the forty-fourth annual ACM symposium on Theory of
computing. pp. 1219–1234. ACM (2012)

26. Mouchet, C., Troncoso-Pastoriza, J., Bossuat, J.P., Hubaux, J.P.: Multiparty homomorphic encryption from
ring-learning-with-errors. Proceedings on Privacy Enhancing Technologies 2021(4), 291–311 (2021)

27. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques. pp. 735–763. Springer (2016)

28. Park, J.: Homomorphic encryption for multiple users with less communications. IEEE Access 9, 135915–
135926 (2021)

29. Peikert, C., Shiehian, S.: Multi-key fhe from lwe, revisited. In: Theory of Cryptography Conference. pp.
217–238. Springer (2016)

20 H. Kwak et al.

A Special Modulus Variant

In this section, we describe the special modulus technique and apply it to our MKHE schemes. We
introduce a new constant P , called a special modulus, and redefine the gadget encryption and external
product as follows.

Definition 5. Let s be an RLWE secret. We call U = (u0,u1) ∈ Rk×2
QP a gadget encryption of µ ∈ R

under s if u0 + s · u1 ≈ Pµ · g (mod QP).

Definition 6. Let h : RQ → Rk be a gadget decomposition. For a ∈ RQ and u ∈ Rk
QP , the external

product of a and u is denoted and defined as follows.

a⊡ u :=
⌊
P−1 · ⟨h(a),u⟩

⌉
(mod Q)

From the definitions, it is satisfied that a⊡ Pg = a (mod Q) for all a ∈ RQ. If U = (u0,u1) ∈ Rk×2
Q

is a gadget encryption of µ ∈ R under s so that u0 + s ·u1 = µ ·Pg+ e (mod Q) for some small e ∈ Rk,
then the external product a⊡U = (c0, c1) of a polynomial a and U holds that

c0 + s · c1 =
⌊
P−1 · ⟨h(a),u0⟩

⌉
+ s ·

⌊
P−1 · ⟨h(a),u1⟩

⌉
= P−1 ⟨h(a), µ · Pg + e⟩+ erd

= a · µ+ e (mod Q)

for the rounding noise erd and e = P−1 · ⟨h(a), e⟩+ erd, which is bounded by ∥e∥∞ ≤ P−1kN ·Bh∥e∥∞+
1
2 (N + 1).

Note that the noise of external product is approximately reduced by a factor of P compared to the
original external product. Therefore, we can choose a special modulus P properly to control the noise
growth.

A.1 Multi-Key CKKS

• MK-CKKS.Setup(1λ): Set the RLWE dimension N , the ciphertext modulus Q =
∏L

i=0 qi for integers qi,

and the sepcial modulus P . We write Qℓ =
∏ℓ

i=0 qi for 0 ≤ i ≤ L. Set the key distribution χ over R and
the error parameter σ. Sample a← U(Rk

QP). Choose a gadget decomposition h : RQ → Rk with a gadget

vector g ∈ Rk
Q. Output the public parameter pp = (N,Q,P, χ, σ,a, h,g).

• MK-CKKS.KeyGen(i): A party i generates secret and public keys as follows:

– Sample si ← χ and set the secret key as ski = si.

– Sample e0,i ← Dk
σ and let bi = −si · a+ e0,i (mod QP).

– Sample ri ← χ and e1,i ← Dk
σ. Let di = −ri · a+ si · Pg + e1,i (mod QP).

– Sample ui ← U(Rk
QP) and e2,i ← Dk

σ. Let vi = −si · ui − ri · Pg + e2,i (mod QP).

– Set the public key as pki = (bi,di,ui,vi). We also denote the encryption key as eki = (bi[0],a[0]).

• MK-CKKS.Enc(ek;µ): Sample w ← χ and e0, e1 ← Dσ. Given a plaintext µ ∈ R, output the ciphertext

ct =
⌊
P−1 · (w · ek+ (e0, e1))

⌉
+ (µ, 0) (mod Q).

• MK-CKKS.Mult({pki}1≤i≤n; ct, ct
′
): Given two ciphertexts ct = (ci)0≤i≤n, ct

′
= (c′i)0≤i≤n ∈ Rn+1

Qℓ
and

associated public keys {pki}1≤i≤n, execute Alg. 6 and return the output.

Asymptotically Faster Multi-Key Homomorphic Encryption from Homomorphic Gadget Decomposition 21

Algorithm 6 Multi-key CKKS multiplication algorithm with special modulus

Input: ct = (ci)0≤i≤n, ct
′
= (c′i)0≤i≤n, {pkj = (bj ,dj ,vj)}1≤j≤n

Output: ct∗ = (c∗j)0≤j≤n ∈ Rn+1
Qℓ

1: c∗0 ← c0 · c′0 (mod Qℓ)
2: for 1 ≤ i ≤ n do
3: c∗i ← c0 · c′i + ci · c′0 (mod Qℓ)
4: end for
5: z←

∑
1≤i≤n h(ci)⊙ di (mod QℓP)

6: w←
∑

1≤j≤n h(c
′
j)⊙ bj (mod QℓP)

7: for 1 ≤ j ≤ n do
8: c∗j ← c∗j + c′j ⊡ z (mod Qℓ)
9: end for

10: for 1 ≤ i ≤ n do
11: (c∗0, c

∗
i)← (c∗0, c

∗
i) + (ci ⊡w)⊡ (vi,ui) (mod Qℓ)

12: end for

A.2 Multi-Key BFV

• MK-BFV.Setup(1λ): Set the RLWE dimension N , the plaintext modulus t, the ciphertext modulus

Q, the key distribution χ over R, and the error parameter σ. We write Q̃ = QQ′ and the special

modulus P . Sample a ← U(Rk̃
QP). Choose homomorphic gadget decompositions h : RQ → Rk and

h̃ : RQ̃ → Rk̃ with gadget vectors g ∈ Rk
Q and g̃ ∈ Rk̃

Q̃
, respectively. Output the public parameter

pp = (N,Q,Q′, P, χ, σ,a, h,g, h̃, g̃). We also denote ∆ = ⌊Q/t⌉.

• MK-BFV.KeyGen(i): A party i generates secret and public keys as follows:

– Sample si ← χ and set the secret key as ski = si.

– Sample e0,i ← Dk̃
σ and let bi = −si · a+ e0,i (mod QP).

– Sample ri ← χ and e1,i ← Dk̃
σ. Let di = −ri · a+ si · ⌊(t/Q′) · P g̃⌉+ e1,i (mod QP).

– Sample ui ← U(Rk
QP) and e2,i ← Dk

σ. Let vi = −si · ui − ri · Pg + e2,i (mod QP).

– Set the public key as pki = (bi,di,ui,vi). We also denote the encryption key as eki = (bi[0],a[0]).

• MK-BFV.Enc(ek;m): Sample w ← χ and e0, e1 ← Dσ. Given a message m ∈ Rt, output the ciphertext

ct =
⌊
P−1 · (w · ek+ (e0, e1))

⌉
+ (µ, 0) (mod Q).

• MK-BFV.Mult({pki}1≤i≤n; ct, ct
′
): For two input ciphertexts ct = (ci)0≤i≤n, ct

′
= (c′i)0≤i≤n ∈ Rn+1

Q and

public keys{pki}1≤i≤n, execute Algorithm 7 and then, return the output ct
∗
.

B Average-Case Noise Analysis

We analyze an average-case noise growth of our novel multi-key CKKS/BFV multiplication algorithms.
In this section, we make a heuristic assumption that each ciphertext component behaves as if it is a
uniform random variable over RQ. We denote the variance of coefficients for a polynomial a =

∑
i ai ·Xi

over the ring R by Var(a) = Var(ai). Then, the variance of the product of two independent polynomials
c = a · b with degree N is evaluated as Var(c) = N ·Var(a) ·Var(b). More generally, we define the variance
of a vector a ∈ Rk of independent random variables as Var(a) = 1

k

∑
0≤i<k Var(a[i]).

Let Vh = Var(h(a)) for a uniform random polynomial a ∈ RQ and a gadget decomposition h. In the
prime decomposition h : RQ →

∏
0≤i≤L Rqi , a 7→ ([a]qi)0≤i≤L, we have Vh ≈ 1

12

∑
0≤i≤L q2i .

22 H. Kwak et al.

Algorithm 7 Multi-key BFV multiplication algorithm with special modulus

Input: ct = (ci)0≤i≤n, ct
′
= (c′i)0≤i≤n, {pkj = (bj ,dj ,uj ,vj)}1≤j≤n

Output: ct
∗
= (c∗j)0≤j≤n ∈ Rn+1

Q

1: for 0 ≤ j ≤ n do

2: c′′j ←
⌊
Q′

Q c′j

⌉
(mod Q′)

3: end for
4: c∗0 ← ⌊(t/Q′) · (c0c′′0)⌉ (mod Q)
5: for 1 ≤ j ≤ n do
6: c∗j ←

⌊
(t/Q′) · c0c′′j

⌉
+ ⌊(t/Q′) · cjc′′0⌉ (mod Q)

7: end for
8: z←

∑
1≤i≤n h̃(ci)⊙ di (mod QP)

9: w←
∑

1≤j≤n h̃(c
′′
j)⊙ bj (mod QP)

10: for 1 ≤ j ≤ n do
11: c∗j ← c∗j + c′′j ⊡̃ z (mod Q)
12: end for
13: for 1 ≤ i ≤ n do
14: (c∗0, c

∗
i)← (c∗0, c

∗
i) + (ci ⊡̃ w)⊡ (vi,ui) (mod Q)

15: end for

B.1 Multi-key CKKS

We showed in Section 4.2 that the output ciphertext ct
∗
of our multi-key CKKS multiplication algorithm

satisfies that 〈
ct

∗
, (1, sk)

〉
=

〈
ct, (1, sk)

〉
·
〈
ct

′
, (1, sk)

〉
+ e1 + e2

where

e1 =
∑

1≤i,j≤n

〈
h(ci)⊙ h(c′j), sj · e1,i − ri · e0,j

〉
,

e2 =
∑

1≤i≤n

(ci ⊡w)⊡ e2,i.

We can show that Var(e1) = n2kN3σ2V 2
h , Var(e2) = nkNσ2Vh and Var(e1+ e2) = Var(e1)+Var(e2) since

e1,i, e0,j , e2,i are zero-mean and the covariance between any two of terms is zero. Hence, the variance of
the total noise is approximately n2kN3σ2V 2

h .

B.2 Multi-key BFV

In our multi-key BFV multiplication algorithm ct
∗ ← MK-BFV.Mult({pki}1≤i≤n; ct, ct

′
) in Section 5.2, we

focus on the noise term e1 + e2 where

e1 =
∑

1≤i,j≤n

〈
h̃(ci)⊙ h̃(c′j), sj · e1,i − ri · e0,j

〉
,

e2 =
∑

1≤i≤n

(ci ⊡̃ w)⊡ e2,i.

Then we have Var(e1) = n2k̃N3σ2V 2
h̃
, Var(e2) = nkNσ2Vh, and the variance of the multiplication error

e1 + e2 is Var(e1 + e2) = n2k̃N3σ2V 2
h̃
+ nkNσ2Vh.

