
Asymptotically Faster Multi-Key Homomorphic Encryption from
Homomorphic Gadget Decomposition⋆

Taechan Kim1, Hyesun Kawk2, Dongwon Lee2, Jinyeong Seo2, and Yongsoo Song2

Samsung Research
tckim1458@samsung.com
Seoul National University

{hskwak, dongwonlee95, jinyeong.seo, y.song}@snu.ac.kr

Abstract. Homomorphic Encryption (HE) is a cryptosytem that allows us to perform an arbitrary
computation on encrypted data. The standard HE, however, has a disadvantage in that the author-
ity is concentrated in the secret key owner since computations can only be performed on ciphertexts
encrypted under the same secret key. To resolve this issue, research is underway on Multi-Key Ho-
momorphic Encryption (MKHE), which is a variant of HE supporting computations on ciphertexts
possibly encrypted under different keys. Despite its ability to provide privacy for multiple parties,
existing MKHE schemes suffer from poor performance due to the cost of multiplication which grows
at least quadratically with the number of keys involved.
In this paper, we revisit the work of Chen et al. (ACM CCS 2019) on MKHE schemes from CKKS
and BFV and significantly improve their performance. Specifically, we redesign the multi-key mul-
tiplication algorithm and achieve an asymptotically optimal complexity that grows linearly with
the number of keys. Our construction relies on a new notion of gadget decomposition, which we
call homomorphic gadget decomposition, where arithmetic operations can be performed over the
decomposed vectors with guarantee of its functionality. Finally, we implement our MKHE schemes
and demonstrate their benchmarks. For example, our multi-key CKKS multiplication takes only
0.5, 1.0, and 1.9 seconds compared to 1.6, 5.9, and 23.0 seconds of the previous work when 8, 16,
and 32 keys are involved, respectively.

Keywords: Multi-Key Homomorphic Encryption, Ring Learning with Errors

1 Introduction

Homomorphic encryption (HE) is a cryptosystem that enables computation on encrypted data without
decrypting them first. It has been a long-standing open problem to construct a fully HE (which supports
arbitrary computations) until Gentry’s breakthrough [19]. Since then, there have been made significant
progresses on HE construction such as BFV [5, 17], GSW [21], BGV [6], TFHE [15], and CKKS [14]. HE
inherently supports an on-the-fly secure computation, i.e., no need for data owners to be online during
the computation since the whole evaluation process can be done by a public server. Such characteristic
is especially well-suited for the cases such as cloud-based environments.

Recently, there has been a growing demand for secure multi-party computation (MPC) protocols where
participants collaboratively evaluate a circuit on their private inputs without revealing anything other
than the result, with a wide range of applications such as federated learning [24]. However, the single-key
HE is less amenable to this multi-party setting. For instance, when there are multiple data sources, the
standard HE causes an authority concentration issue. If one considers directly applying standard single-
key HE, data should be encrypted under the same encryption key. In this case, the person who has the
corresponding secret key gains access to all data and thus the privacy of data owners may be exposed.

In the last decade, there have been several attempts to extend the functionality of HE to solve the
aforementioned issues. Threshold HE [3, 4, 29, 32, 28] and Multi-Key HE (MKHE) [27, 16, 31, 33, 9, 10]
are two representative methods that overcome the limitation of single-key HE by delegating decryption
⋆ This work was supported by SAMSUNG Research, Samsung Electronics Co., Ltd.



2 T. Kim et al.

authority to multiple parties so that no single party has access to the secret key. These primitives can be
naturally extended to build secure multi-party computation (MPC) protocols that retain the advantages
of HE, so NIST’s recent call for multi-party threshold schemes [8] includes these primitives as promising
candidates to be standardized.

In Threshold HE, a set of parties jointly generate a common public key while the corresponding secret
key is shared among the participants. Threshold HE schemes have comparable performance as single-key
HE and tend to be more efficient than MKHEs, but have a major limitation to have a static key access
structure. In other words, all participants should be determined and fixed at the setup phase. In this paper,
we focus on MKHE which enjoys considerable advantages in terms of interaction and flexibility. To be
precise, an MKHE scheme allows each participant to generate its secret and public key pair without any
knowledge of other parties. It supports advanced functionality of operating ciphertexts under different
keys so that all computations can be done by a public cloud without building a common public key.
Moreover, recent MKHE schemes are fully dynamic, i.e., the computational task does not have to be
pre-determined but an arbitrary circuit can be evaluated over any ciphertexts on the fly, and new users
(ciphertexts) can be introduced into the computation anytime. Therefore, one can build a secure MPC
protocol on top of MKHE which inherits this dynamic nature [31].

While MKHE enables flexible and dynamic setup, it is technically challenging, compared to other HE
variants, to design an efficient MKHE scheme due to the strong requirement on the functionality. Since
López-Alt et al. [27] presented the first MKHE scheme based on NTRU, there have been several studies [16,
31, 33, 7, 9, 12, 10] that convert the existing single-key HE schemes into multi-key versions, but the poor
performance of MKHE still remains a major bottleneck. Earlier schemes were relatively impractical,
but recent researches [9, 10] demonstrated viable instantiations with implementation results which are
currently the best-performing MKHE schemes in terms of both asymptotic and concrete complexity.

This paper extends the previous work of Chen, Dai, Kim and Song (CDKS) [10] by presenting a
multi-key variant of the RLWE-based BFV scheme that supports homomorphic operations in a SIMD
manner. In CDKS, a multi-key ciphertext is a tuple (c0, c1, . . . , cn) where n is the number of associated
keys and ci’s are elements of the base polynomial ring. It can be decrypted by the secret keys s1, . . . , sn
of n key owners, such that c0 + c1 · s1 + · · ·+ cn · sn is a randomized encoding of the plaintext.

The most expensive operation is homomorphic multiplication, which consists of two steps: tensor prod-
uct and subsequent relinearization. Given encryptions (ci)0≤i≤n and (c′i)0≤j≤n of m and m′, respectively,
it first computes their product (ci,j := ci · c′j)0≤i,j≤n, which can be viewed as a valid encryption of mm′

that is decryptable by si · sj . Then, the relinearization procedure is followed, which converts (ci,j)0≤i,j≤n

back to the standard form with linear decryption structure.
For the relinearization procedure, CDKS uses a well-known technique in the construction of HE

schemes called gadget decomposition [18], which is used to reduce the noise growth from homomorphic
operations. Briefly speaking, gadget decomposition is a mapping h that transforms an ring element a
modulo Q into a small-sized vector h(a), such that ⟨h(a),g⟩ = a (mod Q) holds for some fixed vector g.
By applying gadget decomposition technique on each ci,j , it obtains a standard-form ciphertext removing
quadratic structures. Therefore, the total complexity of relinearization grows quadratically with n since
these procedures should be repeated on ci,j for all 1 ≤ i, j ≤ n.

1.1 Our Contributions

In this paper, we propose new multi-key BFV and CKKS homomorphic multiplication algorithms with
linear complexity by modifying the previous construction by CDKS [10]. To achieve linear complexity
with respect to the number of associated keys, we need to reduce the number of gadget decompositions
and ring multiplications, which induce quadratic complexity.

First, to avoid the expensive computation of h(ci,j), we introduce a new notion called homomorphic
gadget decomposition. We say that a gadget decomposition is homomorphic if it supports computation over
decomposed vectors. In other words, we can perform arithmetic operations over the gadget decompositions
h(a), h(b) of any elements a, b, such that h(a) + h(b) and h(a) ◦ h(b) satisfy ⟨h(a) + h(b),g⟩ = a + b
(mod Q) and ⟨h(a) ◦ h(b),g⟩ = ab (mod Q), where ◦ denotes the component-wise product of vectors.
Hence, h(a)+h(b) and h(a)◦h(b) can be considered valid decompositions of a+b and ab, respectively. As



Asymptotically Faster Multi-Key Homomorphic Encryption from Homomorphic Gadget Decomposition 3

a result, instead of repeating n2 gadget decompositions for all pairs (i, j), we separately compute h(ci)
and h(c′j) for 1 ≤ i, j ≤ n and combine them to represent a valid decomposition of ci · c′j .

However, there still remain quadratic ring multiplication operations due to the tensor product proce-
dure. To achieve linear complexity in ring multiplications, we depart from the conventional multiplication
strategy based on tensor product and relinearization. In particular, we merge the two steps and refactor
the whole multiplication algorithm so that it utilizes the homomorphic property of gadget decomposition.
As a result, we reduce the overall complexity of n-key homomorphic multiplication from O(n2) down to
O(n), which we believe is asymptotically optimal.

While our idea can be directly applied to designing an efficient multi-key CKKS scheme, there still re-
mains an issue for BFV. As the tensor product and relinearization procedures are performed over different
algebraic spaces in BFV, such inconsistency inhibits applying homomorphic gadget decomposition. We
resolve this issue by tweaking the public key structure so that the entire computation can be performed
in the same ring. Additionally, we present another implementation-friendly variant of our multi-key BFV
scheme that requires no multi-precision arithmetic.

Finally, we implement our MKHE schemes 1 and provide benchmark results to demonstrate its con-
crete performance in terms of complexity and noise growth. Our experiments show that our scheme rapidly
outperforms the prior work as the number of keys increases. For example, our construction achieves about
12 and 7 times speed-up in 32-key CKKS and BFV multiplications, respectively, compared to CDKS while
preserving the same level of noise growth.

1.2 Related Works

As mentioned above, there are several directions to extend the functionality of HE to multi-party settings.
One such approach is Threshold HE [3, 4, 29, 32, 28], which distributes the authority and provides t-out-
of-n access structure. In Threshold HEs, it is usually required to run a multi-round protocol to generate
a shared public key that is used for encryption and evaluation.

MKHE is yet another scheme for multi-party scenarios, specifically designed to enable computation on
ciphertexts that are encrypted under different keys. Early studies on MKHE [16, 31, 33] are mostly based
on GSW [21], but they require huge space and time complexity. Brakerski and Perlman [7] designed an
MKHE scheme from LWE with quasi-linear expansion rate, but its concrete performance was not clearly
understood. A follow-up study was conducted by Chen, Chillotti and Song [9] who presented a multi-
key variant of TFHE and demonstrated the first implementation result. On the other hand, there has
been another line of work [12, 10] constructing multi-key variants of batch HE schemes such as BGV,
BFV and CKKS. One common problem of the previous MKHE constructions is that they rely on the
CRS assumption. Recently, Ananth et al. [2] constructed the first MKHE scheme in the plain model by
combining the oblivious transfer protocol, MKHE with trusted setup, and MKHE in the plain model with
interactive decryption.

2 Background

2.1 Notation

Let N be a power of two and Q be an integer. We denote by R = Z[X]/(XN + 1) the ring of integers
of the (2N)-th cyclotomic field and RQ = ZQ[X]/(XN + 1) the residue ring of R modulo Q. We use
Z ∩ (−Q/2, Q/2] as a representative of ZQ, and denote by [a]Q the reduction of a modulo Q. For a
polynomial a in R or RQ, we define ∥a∥∞ as the ℓ∞-norm of its coefficient vector.

Throughout this paper, we write x← D to represent that x is sampled from the distribution D. We
denote by U(S) the uniform distribution over a finite set S. For σ > 0, we denote by Dσ a distribution
over R sampling N coefficients independently from the discrete Gaussian distribution of variance σ2, and
Bσ an (overwhelming probability) upper bound of Dσ with respect to the infinite norm.

1 The source code is available at https://github.com/SNUCP/MKHE-KKLSS.



4 T. Kim et al.

2.2 Ring Learning with Errors

Let χ be a distribution over R and σ > 0 a real. The ring learning with errors (RLWE) assumption
with respect to the parameter (N,Q, χ, σ) is that given polynomially many samples of either (a, b) or
(a, as + e), where a, b ← RQ, s ← χ, e ← Dσ, it is computationally hard to distinguish which is the
case. The security of lattice-based HE schemes, such as BFV [5, 17] and CKKS [14], rely on the RLWE
assumption.

2.3 Multi-Key Homomorphic Encryption

A multi-key homomorphic encryption (MKHE) is an encryption scheme that allows for computation on
encrypted data that may be encrypted under different secret keys. This is in contrast to plain homomor-
phic encryption (HE) schemes, which require data to be encrypted under the same secret key to perform
homomorphic operations. Therefore, MKHE schemes can be considered as a generalization of HE that
overcome this limitation and allow for more flexible computation on encrypted data.

An MKHE scheme consists of five probabilistic polynomial-time (PPT) algorithms: Setup, KeyGen, Enc, Eval,
and Dec.

– Setup: pp ← MKHE.Setup(1λ). Given the security parameter λ, it returns the public parameter set
pp.

– Key Generation: (sk, pk)← MKHE.KeyGen(pp). Output a secret key sk and a public key pk.
– Encryption: ct← MKHE.Enc(µ; pk). Output a MKHE ciphertext which encrypts a plaintext µ under

pk. The output ciphertext’s reference set is {pk}.
– Evaluation: ct← MKHE.Eval(C, ct1, . . . , ctk; {pki}i∈I). Given a circuit C and ciphertexts ct1, . . . , ctk

where the union of each ciphertexts’ reference set is {pki}i∈I for some index set I, it returns a
ciphertext ct with a reference set {pki}i∈I .

– Decryption: µ← MKHE.Dec(ct; {ski}i∈I). Given a ciphertext ct with a reference set {pki}i∈I and the
corresponding secret keys ski for each pki, it outputs a plaintext µ.

Each MKHE ciphertext implicitly maintains a set of references to the public keys associated with
it. At the very beginning, a fresh ciphertext is associated with a single key that is used to generate it.
As computations proceed with other ciphertexts encrypted under different keys, the reference set grows.
Finally, when decrypting a ciphertext, all of its associated keys are required.

It is also possible for key owners to jointly decrypt a ciphertext without revealing their secret keys
via a distributed decryption protocol. In this protocol, each key owner broadcasts a partial decryption of
the ciphertext using its own secret, and then each key owners can recover the message by merging the
partial decryptions of all key owners. More details about distributed decryption are described in [31, 10].

The correctness and semantic security of MKHE are defined as follows.

Definition 1 (Correctness). Given MKHE ciphertexts ct1, . . . , ctk that encrypt µ1, . . . , µk, respec-
tively, let {pki}i∈I be the union of their reference sets, and ct ← MKHE.Eval(C, ct1, . . . , ctk; {pki}i∈I).
Then, MKHE.Dec(ct; {ski}i∈I) = C(µ1, . . . , µk) with an overwhelming probability.

In the case of approximate HE such as CKKS [14], the correctness condition is weakened and substituted
with an approximate equality: MKHE.Dec(ct; {ski}i∈I) ≈ C(µ1, . . . , µk).

Definition 2 (Security). An MKHE scheme is called secure if it is semantically secure. More precisely,
for a security parameter λ, pp ← MKHE.Setup(1λ), and (sk, pk) ← MKHE.KeyGen(pp), the distributions of
MKHE.Enc(pk, µ0) and MKHE.Enc(pk, µ1) are computationally indistinguishable for any messages µ0 and µ1.

2.4 Gadget Decomposition

A gadget decomposition technique is frequently used in the construction of lattice-based HE schemes [14,
5, 17, 15] for reducing the noise growth of homomorphic operations. Informally, it is used to represent a
ciphertext component as a linear combination of some fixed elements with small coefficients. Below, we
review some basic terminology related to gadget decomposition.



Asymptotically Faster Multi-Key Homomorphic Encryption from Homomorphic Gadget Decomposition 5

Definition 3 (Gadget Decomposition). Let Q and k be positive integers. A function h : RQ → Rk

is called a gadget decomposition if there exists a fixed vector g = (g0, g1, . . . , gk−1) ∈ Rk
Q and a bound

Bh > 0 such that ⟨h(a),g⟩ = a (mod Q) and ∥h(a)∥∞ ≤ Bh for all a ∈ RQ.

The fixed vector g in the above is called the gadget vector and Bh a bound of h. Let us denote by
g : Rk → RQ the inner product function g(u) = ⟨u,g⟩ (mod Q). We remark that h is a right inverse
of g, i.e., g(h(a)) = a for all a ∈ RQ. This is why the gadget decomposition is often denoted by g−1 in
the literature, although it is an abuse of notation. The bound Bh > 0 is usually much smaller than the
modulus Q, so a gadget decomposition can be viewed as a mapping to a short vector in the inverse image
g−1(a) = {u ∈ Rk : ⟨u,g⟩ = a (mod Q)} of the input a ∈ RQ.

Definition 4 (Gadget Encryption). For an RLWE secret s ∈ R and a message µ ∈ R, we call
U = (u0,u1) ∈ Rk×2

Q a gadget encryption of µ under s if u0 + s · u1 ≈ µ · g (mod Q).

Definition 5 (External Product). Let a ∈ RQ and u ∈ Rk
Q. The external product of a and u is denoted

and defined by a⊡u = ⟨h(a),u⟩ (mod Q). We also write a⊡U = (a⊡u0, a⊡u1) for U = (u0,u1) ∈ Rk×2
Q .

Using the gadget decomposition technique, one can homomorphically multiply arbitrary ring elements
without introducing huge noise. To be precise, let U = (u0,u1) ∈ Rk×2

Q be a gadget encryption of µ ∈ R

under s, i.e., u0 + s · u1 = µ · g + e (mod Q) for some small e ∈ Rk. Then, the external product
(c0, c1)← a⊡U satisfies

c0 + s · c1 = ⟨h(a),u0 + s · u1⟩
= ⟨h(a), µ · g + e⟩ = a · µ+ e (mod Q) (1)

for the error e = ⟨h(a), e⟩ ∈ R. Since e is small, (c0, c1) can be considered as noisy encryption of a · µ as
desired.

3 Overview of Prior Work

This section provides an overview of the most relevant research by Chen, Kim, Dai, and Song [10], which
designs multi-key variants of CKKS and BFV. These MKHE schemes by Chen et al. (which we will call
CDKS) are based on the common random string (CRS) model, where all key owners have access to the
same random polynomials generated during the setup phase. Technically, a fresh ciphertext of CDKS
has the same form as usual (single-key) HEs, but the ciphertext structure changes when we perform
homomorphic computation on ciphertexts under different keys. More generally, an n-key ciphertext is the
form of ct = (c0, c1, . . . , cn) ∈ Rn+1

Q whose decryption is defined as c0 +
∑n

i=1 ci · si where s1, . . . , sn are
associated secret keys.

Homomorphic operations of CDKS are defined in a similar way to the single-key HE schemes. Suppose
that ct = (ci)0≤i≤n and ct′ = (c′i)0≤i≤n are two multi-key ciphertexts under secrets s1, . . . , sn. Then, their
homomorphic addition is defined as ctadd = ct + ct′ (mod Q). For homomorphic multiplication, it first
computes the tensor product ctmul = (ci,j = ci · c′j)0≤i,j≤n, which satisfies that c0,0 +

∑
1≤i,j≤n ci,j ·

sisj = (c0 + c1s1 + · · ·+ cnsn)(c
′
0 + c′1s1 + · · ·+ c′nsn) (mod Q). Then, it is transformed into a standard

MKHE ciphertext ct∗ = (c∗0, . . . , c
∗
n) encrypting the same plaintext as ctmul. This procedure is called

relinearization since the quadratic decryption structure of ctmul is converted back to the linear form.
Lastly, when performing homomorphic operations on MKHE ciphertexts encrypted under different

keys, it is required to synchronize their key structure by padding zeros or permuting some ciphertext
components. For simplicity, we assume that this pre-processing is implicit (even if it is not described
formally) so that input ciphertexts have the same key structure.

3.1 CDKS Relinearization

As we mentioned above, the homomorphic multiplication in CDKS requires relinearization procedure. In
Alg. 1, we present the relinearization algorithm by CDKS. The relinearization algorithm takes a tensored



6 T. Kim et al.

Algorithm 1 Relinearization of CDKS

Input: A MKHE ciphertext ctmul = (ci,j)0≤i,j≤n ∈ R
(n+1)×(n+1)
Qℓ

, and its associated public keys {pki =
(bi,di,ui,vi)}1≤i≤n

Output: ct∗ = (c∗i )0≤i≤n ∈ Rn+1
Qℓ

1: c∗0 ← c0,0
2: for 1 ≤ i ≤ n do
3: c∗i ← c0,i + ci,0 (mod Qℓ)
4: end for
5: for 1 ≤ i, j ≤ n do
6: c∗j ← c∗j + ci,j ⊡ di (mod Qℓ)
7: c′i,j ← ci,j ⊡ bj (mod Qℓ)
8: (c∗0, c

∗
i )← (c∗0, c

∗
i ) + c′i,j ⊡ (vi,ui) (mod Qℓ)

9: end for

ciphertext (ci,j)0≤i,j≤n and public keys (bi,di,ui,vi)1≤i≤n as inputs where the components of public
keys satisfy the relations bi ≈ −si · a (mod Q), di ≈ ri · a + si · g (mod Q), and vi ≈ −si · ui − ri · g
(mod Q) for a CRS a ∈ Rk

Q, a gadget vector g ∈ Rk
Q, and a secret key si ∈ R. In Line 5–9 of Alg. 1, each

entry ci,j is relinearized using di,ui,vi and bj for 1 ≤ i, j ≤ n. To be precise, it computes ci,j ⊡ di and
c′i,j ⊡ (vi,ui) for c′i,j = ci,j ⊡ bj , and arranges them so that

(ci,j ⊡ di) · sj + c′i,j ⊡ (vi + si · ui)

≈(ci,j ⊡ di) · sj − ri · c′i,j = ci,j ⊡ (sj · di − ri · bj)

≈ci,j ⊡ (ri · a+ di) · sj ≈ ci,j · sisj (mod Qℓ).

Therefore, the output ciphertext ct∗ = (c∗0, c
∗
1, . . . , c

∗
n) of Alg. 1 satisfies that c∗0 + c∗1s1 + · · · + c∗nsn ≈∑

0≤i,j≤n ci,j · sisj (mod Qℓ) as desired.
We now briefly analyze the performance of the CDKS relinearization algorithm in terms of com-

putational complexity and noise size. For the computational complexity, we count the number of ring
multiplications and gadget decompositions. In Lines 5–7, the algorithm performs external products with
ci,j and public key components di and bj . This step takes 2kn2 multiplications over RQℓ

and n2 gadget
decompositions over RQℓ

, since the decomposed value h(ci,j) is reusable. Similarly, Line 7 also takes 2kn2

multiplications over RQℓ
and n2 gadget decompositions as it computes external products between c′i,j

and public key components vi and ui. Hence, Alg. 1 takes 4kn2 multiplications and 2n2 gadget decom-
positions over RQℓ

in total. It is worth noting that there is an optimization technique proposed in [10]
where ci,j is replaced by cic

′
j + c′icj . Then, it suffices to perform computation for 1 ≤ i ≤ j ≤ n, which

reduces the computational cost of relinearization almost by half.
For the noise analysis, we remark that the relinearization of ci,j introduces an error ei,j = c′i,j ⊡e2,i+

ci,j ⊡ (sj · e1,i − ri · e0,j) which is bounded by∥ei,j∥∞ ≤ kN · BhBσ + 2kN2 · BhBσ ≈ 2kN2 · BhBσ.
Therefore, the total relinearization noise has an upper bound∥∥∥∥∥∥

∑
1≤i,j≤n

ei,j

∥∥∥∥∥∥
∞

⪅ 2kn2N2 ·BhBσ. (2)

In the following, we present multi-key variants of CKKS and BFV built upon the CDKS relinearization
algorithm.

3.2 Multi-key CKKS

• MK-CKKS.Setup(1λ): Let the RLWE dimension be N , the ciphertext modulus be Q =
∏L

i=0 qi for some
integers qi, the key distribution be χ over R and the error parameter be σ > 0. Let h : RQ → Rk be a



Asymptotically Faster Multi-Key Homomorphic Encryption from Homomorphic Gadget Decomposition 7

gadget decomposition corresponding to a gadget vector g ∈ Rk
Q. Sample a CRS a← U(Rk

Q), and output
a public parameter pp = (N,Q, χ, σ,a, h,g).

We write Qℓ =
∏ℓ

i=0 qi for 0 ≤ ℓ ≤ L.

• MK-CKKS.KeyGen(pp): Return a secret key sk = s and a public key pk = (b,d,u,v) generated as follows:

– Sample s← χ.
– Sample e0 ← Dk

σ and let b = −s · a+ e0 (mod Q).
– Sample r ← χ and e1 ← Dk

σ. Let d = −r · a+ s · g + e1 (mod Q).
– Sample u← U(Rk

Q) and e2 ← Dk
σ. Let v = −s · u− r · g + e2 (mod Q).

We denote the encryption key as ek = (b[0],a[0]) ∈ R2
Q, which are the first components of b and a,

respectively. Additionally, we often use integer subscripts to identify keys from different key owners.

• MK-CKKS.Enc(µ; ek): Sample w ← χ and e0, e1 ← Dσ. Given a plaintext µ ∈ R, output the ciphertext
ct = w · ek+ (µ+ e0, e1) (mod Q).

• MK-CKKS.Dec(ct; {ski}1≤i≤n): Given a ciphertext ct = (c0, c1, . . . , cn) ∈ Rn+1
Qℓ

and its associated secret
keys ski = si, return µ = c0 +

∑
1≤i≤n ci · si (mod Qℓ).

• MK-CKKS.Add(ct, ct′): Given two ciphertexts ct, ct′ ∈ Rn+1
Qℓ

, output ctadd = ct+ ct′ (mod Qℓ).

• MK-CKKS.Mult(ct, ct′; {pki}1≤i≤n): Given two input ciphertexts ct = (ci)0≤i≤n, ct′ = (c′i)0≤i≤n ∈ Rn+1
Qℓ

and their associated public keys {pki}1≤i≤n, compute ctmul = (ci,j)0≤i,j≤n where ci,j = cic
′
j (mod Qℓ).

Run Alg. 1 with (ctmul, {pki}1≤i≤n), and output the result ciphertext ct∗.

• MK-CKKS.Rescale(ct): Given a ciphertext ct = (c0, c1, . . . , cn) ∈ Rn+1
Qℓ

, output ct′ = (c′0, c
′
1, . . . , c

′
n) ∈

Rn+1
Qℓ−1

where c′i =
⌊
q−1
ℓ · ci

⌉
(mod Qℓ−1) for 0 ≤ i ≤ n.

Similar to the original CKKS scheme, a tensored ciphertexts ctmul is obtained by tensor product of
two input ciphertexts so that it satisfies a quadratic equation

∑
0≤i≤j≤n ci,j · sisj = (c0 + c1s1 + · · · +

cnsn)(c
′
0 + c′1s1 + · · ·+ c′nsn) (mod Qℓ). Then, the relinearization procedure (Alg. 1) converts ctmul into

the ciphertext ct∗ in standard form, while almost preserving the underlying plaintext.

3.3 Multi-Key BFV

• MK-BFV.Setup(1λ): Let the RLWE dimension be N , the ciphertext modulus be Q =
∏L

i=0 qi for some
integers qi, the key distribution be χ over R and the error parameter be σ > 0. Let h : RQ → Rk be
a gadget decomposition corresponding to a gadget vector g ∈ Rk

Q. Let t ∈ Z be the plaintext modulus.
Sample a CRS a← U(Rk

Q), and output a public parameter pp = (N, t,Q, χ, σ,a, h,g).

• MK-BFV.KeyGen(pp): Return a secret key sk = s and a public key pk = (b,d,u,v) generated as follows:

– Sample s← χ.
– Sample e0 ← Dk

σ and let b = −s · a+ e0 (mod Q).
– Sample r ← χ and e1 ← Dk

σ. Let d = −r · a+ s · g + e1 (mod Q).
– Sample u← U(Rk

Q) and e2 ← Dk
σ. Let v = −s · u− r · g + e2 (mod Q).

• MK-BFV.Enc(m; ek): Sample w ← χ and e0, e1 ← Dσ. Given a message m ∈ Rt, output the ciphertext
ct = w · ek+ (⌊(Q/t) ·m⌉+ e0, e1) (mod Q).

• MK-BFV.Dec(ct; {ski}1≤i≤n): Given a ciphertext ct = (c0, c1, . . . , cn) ∈ Rn+1
Q and its associated secret

keys {ski}1≤i≤n, return the plaintext m =
⌊
(t/Q) · (c0 +

∑
1≤i≤n cj · sj)

⌉
(mod t).

• MK-BFV.Add(ct, ct′): Given two ciphertexts ct, ct′ ∈ Rn+1
Q , output ctadd = ct+ ct′ (mod Q).



8 T. Kim et al.

Algorithm 2 Simplified relinearization [26]
Input: A MKHE ciphertext ctmul = (ci,j)0≤i≤j≤n with each ci,j ∈ RQℓ

, and its associated public keys
{pki = (bi,di,ui,vi)}1≤i≤n

Output: ct∗ = (c∗i )0≤i≤n ∈ Rn+1
Qℓ

1: c∗0 ← c0,0
2: for 1 ≤ i ≤ n do
3: c∗i ← c0,i + ci,0 (mod Qℓ)
4: end for
5: for 1 ≤ j ≤ n do
6: c∗j ← c∗j +

∑
1≤i≤n ci,j ⊡ di (mod Qℓ)

7: end for
8: for 1 ≤ i ≤ n do
9: xi ←

∑
1≤j≤n ci,j ⊡ bj (mod Qℓ)

10: (c∗0, c
∗
i )← (c∗0, c

∗
i ) + xi ⊡ (vi,ui) (mod Qℓ)

11: end for

• MK-BFV.Mult(ct, ct′; {pki}1≤i≤n): Given two ciphertexts ct = (ci)0≤i≤n, ct′ = (c′i)0≤i≤n ∈ Rn+1
Q and their

associated public keys {pki}1≤i≤n, compute ctmul = (ci,j)0≤i,j≤n (mod Q) where ci,j =
⌊
(t/Q) · cic′j

⌉
(mod Q). Run Alg. 1 with (ctmul, {pki}1≤i≤n), and output the result ct∗.

For the multi-key BFV scheme, a tensored ciphertext ctmul is obtained by tensor product of two input
ciphertexts, scaled by (t/Q). We remark that if two input ciphertexts ct = (ci)0≤i≤n and ct′ = (c′i)0≤i≤n

satisfy c0 + c1s1 + · · ·+ cnsn ≈ (Q/t) · µ (mod Q) and c′0 + c′1s1 + · · ·+ c′nsn ≈ (Q/t) · µ′ (mod Q), then
ctmul = (ci,j)0≤i,j≤n satisfies

∑
0≤i,j≤n ci,j ·sisj ≈ (t/Q) · (c0+ c1s1+ · · ·+ cnsn)(c

′
0+ c′1s1+ · · ·+ c′nsn) ≈

(Q/t) · µµ′ (mod Q). The same relinearization procedure (Alg. 1) is followed to transform it into the
standard form.

3.4 Simplified Relinearization

Recently, Kwak et al. [26] proposed an improved relinearization procedure that reduces the number of
external products. They observed that for a fixed i, the external products c′i,j ⊡ (vi,ui) are used to
update the same components c∗0 and c∗i (Line 7 in Alg. 1), so it is possible to reduce the number of
external products by computing xi =

∑
1≤j≤n ci,j ⊡ bj and xi ⊡ (vi,ui) instead of (ci,j ⊡ bj)⊡ (vi,ui)

for all 1 ≤ i, j ≤ n. Their algorithm is described in Alg. 2. Nevertheless, the asymptotic complexity for
gadget decompositions and ring multiplications still remains at O(n2).

4 Homomorphic Gadget Decomposition

To linearize the computational complexity of homomorphic multiplication algorithms for the multi-key
CKKS and BFV schemes, we need to linearize the required number of gadget decompositions and ring
multiplications with respect to the number of associated keys.

In this section, we show how to linearize the complexity of gadget decompositions by introducing a
new concept, which we call the homomorphic gadget decomposition. Roughly speaking, we consider the
homomorphic property that enables us to generate a valid decomposition of ci,j from the decompositions
of ci and c′j . This property allows us to derive decompositions of (ci,j)1≤i,j≤n with decompositions of
(ci)1≤i≤n and (c′i)1≤i≤n, reducing the number of required gadget decompositions from O(n2) to O(n).

4.1 Definition

As discussed above, gadget decompositions induce quadratic complexity in multi-key homomorphic mul-
tiplication, but it seems unlikely that we can get h(ci,j) directly without computing ci,j = ci ·c′j first since



Asymptotically Faster Multi-Key Homomorphic Encryption from Homomorphic Gadget Decomposition 9

the gadget decomposition has no algebraic structure in general. Our key observation is that we do not
always have to compute the exact gadget decomposition but it suffices to find any valid decomposition
satisfying certain conditions. In other words, the correctness of external product (1) still holds even if we
replace h(a) by another vector in the inverse image g−1(a) with a reasonably small size.

In this context, we propose a new concept, called homomorphic gadget decomposition, where some op-
erations can be performed over the decomposed polynomials. Briefly speaking, if a gadget decomposition
h is homomorphic, then we can operate between h(a) and h(b) for any a, b ∈ RQ to obtain reasonably
short vectors which are not equal to but can substitute h(a+ b) and h(ab).

Definition 6. A homomorphic gadget decomposition h : RQ → Rk is a gadget decomposition which
satisfies that

⟨h(a) + h(b),g⟩ = a+ b (mod Q),

⟨h(a) ◦ h(b),g⟩ = ab (mod Q)

for all a, b ∈ RQ where ◦ denotes the component-wise product of two vectors.

If h : RQ → Rk is a homomorphic gadget decomposition, then h(a) + h(b) and h(a) ◦ h(b) are
elements of g−1(a+ b) and g−1(ab) which are bounded by ∥h(a) + h(b)∥∞ ≤ 2Bh and ∥h(a) ◦ h(b)∥∞ ≤
N · B2

h, respectively. The first additive condition is always true for any gadget decompositions, but
the multiplicative property is not in general. Fortunately, the most widely used gadget decomposition
technique in state-of-the-art HE libraries [11, 30] is homomorphic, which we will later introduce. We
also point out that a homomorphic gadget decomposition is not necessarily a ring homomorphism in a
mathematical manner, but we nevertheless call it ‘homomorphic’ to represent its property (similarly to
the terminology of HE).

4.2 Implications

We now briefly describe how homomorphic gadget decomposition can reduce the number of gadget de-
compositions required in the relinearization step of multi-key CKKS. In the simplified version of CDKS
relinearization (Alg. 2), a quadratic number of gadget decompositions is required due to the computation
of h(ci,j) in Line 6 and 9. This is where homomorphic gadget decomposition can be applied. Note that
ci,j = cic

′
j (mod Qℓ) holds in multiplication of multi-key CKKS ciphertexts. If h is a homomorphic gad-

get decomposition, the decomposition h(ci,j) can be substituted with h(ci)◦h(c′j) under this assumption.
Thus, if we precompute h(ci) and h(c′j) for 1 ≤ i, j ≤ n, we can reduce the number of gadget decompo-
sitions from O(n2) to O(n) since it only requires a component-wise product of h(ci) and h(c′j) to derive
h(ci) ◦ h(c′j).

Even with the aforementioned optimization technique, achieving linear computational complexity for
homomorphic multiplication in both CKKS and BFV schemes is still challenging. The main issue is
that, while homomorphic gadget decomposition can significantly reduce the number of required gadget
decompositions, the number of ring multiplications remains O(n2) in both schemes. This is because we
need to compute O(n2) ring multiplications for a tensored ciphertext (ci,j)0≤i,j≤n, as well as external
products ci,j⊡di and ci,j⊡bj for all 1 ≤ i, j ≤ n. Moreover, applying homomorphic gadget decomposition
to multi-key BFV multiplication is not straightforward as the components ci,j of a tensored ciphertext are
obtained by

⌊
(t/Q)cic

′
j

⌉
(mod Q), and thus the property of homomorphic gadget decomposition cannot

be directly applied to these components.
In the next section, we explain how we address these issues and redesign homomorphic multiplication

algorithm so that it achieves linear complexity with respect to the number of keys.

5 New Multi-Key Variants of CKKS and BFV

In this section, we present new multiplication algorithms for multi-key CKKS and BFV that achieve linear
complexity with respect to the number of associated keys via homomorphic gadget decomposition. As



10 T. Kim et al.

mentioned before, homomorphic gadget decomposition can reduce the number of gadget decompositions to
O(n) for the relinearization of tensored multi-key CKKS ciphertexts. However, several issues still remain.
First, the number of ring multiplications remains O(n2) due to the tensor-then-relinearize pipeline of the
previous multiplication algorithm, which requires computing a tensored ciphertext as a middle-product.
Additionally, it is unclear how to apply homomorphic gadget decomposition for tensored multi-key BFV
ciphertexts.

To address these issues, we first redesign the entire multiplication algorithm so that it fully utilizes the
homomorphic properties of homomorphic gadget decomposition. Specifically, we merge the two steps of
tensoring and relinearization and rearrange each operation using homomorphic properties to achieve O(n)
complexity for both gadget decompositions and ring multiplications. For multi-key BFV, we observe that
we can still utilize homomorphic gadget decompositions for tensored BFV ciphertexts if we modify the
public key structure. As a result, we can also achieve linear complexity for multi-key BFV multiplication.

5.1 Improved Multi-Key CKKS

We first describe how we modified the previous multiplication algorithm to achieve O(n) complexity for
the multi-key CKKS scheme using homomorphic gadget decomposition. Recall that each component of
a tensored ciphertext is obtained by ci,j = cic

′
j (mod Qℓ). Then, h(ci,j) is replaced by h(ci) ◦ h(c′j) if h

is a homomorphic gadget decomposition. As a result, we can replace the terms ci,j ⊡ di = ⟨h(ci,j),di⟩
and ci,j ⊡ bj = ⟨h(ci,j),bj⟩ with ⟨h(ci) ◦ h(cj),di⟩ and ⟨h(ci) ◦ h(cj),bj⟩, respectively. Since the order
of component-wise product can be switched without affecting the correctness of the inner product, we
can also replace them with ⟨h(ci) ◦ h(cj),di⟩ and ⟨h(ci) ◦ h(cj),bj⟩ along with ⟨h(cj), h(ci) ◦ di⟩ and
⟨h(ci), h(cj) ◦ bj⟩, respectively. Therefore, we can substitute

∑
1≤i≤n ci,j ⊡ di and

∑
1≤j≤n ci,j ⊡ bj in

Line 6 and 9 of Alg 2 as follows:

∑
1≤i≤n

〈
h(ci) ◦ h(c′j),di

〉
=

〈
h(c′j),

∑
1≤i≤n

h(ci) ◦ di

〉
= c′j ⊡

 ∑
1≤i≤n

h(ci) ◦ di

 (3)

∑
1≤j≤n

〈
h(ci) ◦ h(c′j),bj

〉
=

〈
h(ci),

∑
1≤j≤n

h(c′j) ◦ bj

〉
= ci ⊡

 ∑
1≤j≤n

h(c′j) ◦ bj

 (4)

Note that
∑

1≤i≤n h(ci)◦di is independent of the index j. Thus, once it is precomputed, we can reuse

it for computing the external products c′j ⊡
(∑

1≤i≤n h(ci) ◦ di

)
for different 1 ≤ j ≤ n. Similarly, we can

reuse the precomputed
∑

1≤j≤n h(c
′
j)◦bj for computing ci⊡

(∑
1≤j≤n h(c

′
j) ◦ bj

)
for different 1 ≤ i ≤ n.

This optimization not only reduces the number of gadget decompositions but also the number of ring
multiplications from O(n2) to O(n). A homomorphic multiplication algorithm based on this optimization
is presented in Alg. 3. We now provide a formal description of our multi-key CKKS construction based
on this optimization. We mainly modify the setup and multiplication algorithms while keeping the other
algorithms the same as before.

• MK-CKKS.Setup(1λ): Let the RLWE dimension be N , the ciphertext modulus be Q =
∏L

i=0 qi for some
integers qi, the key distribution be χ over R and the error parameter be σ > 0. Let h : RQ → Rk be a
homomorphic gadget decomposition corresponding to a gadget vector g ∈ Rk

Q. Sample a CRS a← U(Rk
Q),

and output a public parameter pp = (N,Q, χ, σ,a, h,g).

• MK-CKKS.KeyGen(pp): Return a secret key sk = s and a public key pk = (b,d,u,v) generated as follows:

– Sample s← χ.
– Sample e0 ← Dk

σ and let b = −s · a+ e0 (mod Q).
– Sample r ← χ and e1 ← Dk

σ. Let d = −r · a+ s · g + e1 (mod Q).
– Sample u← U(Rk

Q) and e2 ← Dk
σ. Let v = −s · u− r · g + e2 (mod Q).



Asymptotically Faster Multi-Key Homomorphic Encryption from Homomorphic Gadget Decomposition 11

Algorithm 3 New multi-key CKKS multiplication algorithm
Input: ct = (ci)0≤i≤n ∈ Rn+1

Qℓ
, ct′ = (c′i)0≤i≤n ∈ Rn+1

Qℓ
, {pki = (bi,di,ui,vi)}1≤i≤n

Output: ct∗ = (c∗i )0≤i≤n ∈ Rn+1
Qℓ

1: c∗0 ← c0 · c′0 (mod Qℓ)
2: for 1 ≤ i ≤ n do
3: c∗i ← c0 · c′i + ci · c′0 (mod Qℓ)
4: end for
5: z←

∑
1≤i≤n h(ci) ◦ di (mod Qℓ)

6: w←
∑

1≤j≤n h(c
′
j) ◦ bj (mod Qℓ)

7: for 1 ≤ j ≤ n do
8: c∗j ← c∗j + c′j ⊡ z (mod Qℓ)
9: end for

10: for 1 ≤ i ≤ n do
11: (c∗0, c

∗
i )← (c∗0, c

∗
i ) + (ci ⊡w)⊡ (vi,ui) (mod Qℓ)

12: end for

We denote the encryption key by ek = (b[0],a[0]) ∈ R2
Q.

• MK-CKKS.Enc(µ; ek): Sample w ← χ and e0, e1 ← Dσ. Given a plaintext µ ∈ R, output the ciphertext
ct = w · ek+ (µ+ e0, e1) (mod Q).

• MK-CKKS.Dec(ct; {ski}1≤i≤n): Given a ciphertext ct = (c0, c1, . . . , cn) ∈ Rn+1
Qℓ

and its associated secret
keys ski = si, return µ = c0 +

∑
1≤i≤n ci · si (mod Qℓ).

• MK-CKKS.Add(ct, ct′): Given two ciphertexts ct, ct′ ∈ Rn+1
Qℓ

, output ctadd = ct+ ct′ (mod Qℓ).

• MK-CKKS.Mult(ct, ct′; {pki}1≤i≤n): Given two ciphertexts ct = (ci)0≤i≤n, ct′ = (c′i)0≤i≤n ∈ Rn+1
Qℓ

and
their associated public keys {pki}1≤i≤n, execute Alg. 3 and return the output ciphertext ct∗.

• MK-CKKS.Rescale(ct): Given a ciphertext ct = (c0, c1, . . . , cn) ∈ Rn+1
Qℓ

, output ct′ = (c′0, c
′
1, . . . , c

′
n) ∈

Rn+1
Qℓ−1

where c′i =
⌊
q−1
ℓ · ci

⌉
(mod Qℓ−1) for 0 ≤ i ≤ n.

Note that our multiplication algorithm no longer follows the previous pipeline where the tensor product
and relinearization are performed sequentially; instead, it performs both operations simultaneously. Below,
we present an analysis of the security, correctness, and noise growth of our proposed scheme.

Security. The security proof is quite similar to that of CDKS since our scheme shares almost the same
key generation algorithm but just requires to take a gadget decomposition with homomorphic property.

First of all, the proposed cryptosystem is semantically secure under the RLWE assumption of pa-
rameter (N,Q, χ, σ) since (b,a) is an RLWE instance and the standard RLWE encryption is used in
our construction. However, this security proof relies on an implicit assumption that the proposed scheme
remains secure even if the public key is given to the adversary.

To complete the security proof, we claim that the distribution of a public key pki = (bi,di,ui,vi)
is indistinguishable from a uniform distribution over Rk×4

Q . It can be shown under the same RLWE
assumption of parameter (N,Q, χ, σ) since (vi,ui) and (di,a) are gadget encryptions of −ri and si under
secrets si and ri, respectively. We also make a circular security assumption (which is standard in HE
construction) since (di,a) and (vi,ui) form a chain of gadget encryptions related to secrets si and ri.

Correctness. We focus on the correctness of our new multiplication algorithm. Suppose that ct =
(c0, c1, . . . , cn) and ct′ = (c′0, c

′
1, . . . , c

′
n) are multi-key ciphertexts under a tuple of secrets (s1, . . . , sn).

Our goal is to show that the result of multiplication ct∗ = (c∗i )0≤i≤n ← MK-CKKS.Mult({pki}1≤i≤n; ct, ct
′)

satisfies c∗0 +
∑n

i=1 c
∗
i si ≈ (c0 +

∑n
i=1 cisi)(c

′
0 +

∑n
i=1 c

′
isi) (mod Qℓ).



12 T. Kim et al.

First of all, we have

c∗0+
∑

1≤i≤n

c∗i · si = c0 · c′0 +
∑

1≤i≤n

(c0 · c′i + ci · c′0) · si

+
∑

1≤j≤n

(c′j ⊡ z) · sj +
∑

1≤i≤n

(ci ⊡w)⊡ (vi + si · ui) (mod Qℓ).

from Alg. 3.
Using the facts that sj · di ≈ −risj · a+ sisj · g ≈ ri · bj + sisj · g (mod Q) and h is homomorphic,

the third term can be written as follows:∑
1≤j≤n

(c′j ⊡ z) · sj =
∑

1≤j≤n

c′j ⊡
∑

1≤i≤n

(h(ci) ◦ di)

 · sj
=

∑
1≤i,j≤n

〈
h(c′j), h(ci) ◦ di

〉
· sj =

∑
1≤i,j≤n

〈
h(ci) ◦ h(c′j),di

〉
· sj

≈
∑

1≤i,j≤n

ri ·
〈
h(ci) ◦ h(c′j),bj

〉
+

∑
1≤i,j≤n

cic
′
j · sisj (mod Qℓ). (5)

From vi + si · ui ≈ ri · g (mod Q), the fourth term is simplified as∑
1≤i≤n

(ci ⊡w)⊡ (vi + si · ui) ≈ −
∑

1≤i≤n

ri · (ci ⊡w)

=−
∑

1≤i≤n

ri ·

ci ⊡
∑

1≤j≤n

(h(c′j) ◦ bj)


=−

∑
1≤i,j≤n

ri ·
〈
h(ci), h(c

′
j) ◦ bj

〉
=−

∑
1≤i,j≤n

ri ·
〈
h(ci) ◦ h(c′j),bj

〉
(mod Qℓ). (6)

Putting it all together, we obtain c∗0+
∑

1≤i≤n c
∗
i ·si ≈ c0c

′
0+
∑

1≤i≤n(c0c
′
i+ cic

′
0) ·si+

∑
1≤i,j≤n cic

′
j ·

sisj = (c0 +
∑n

i=1 cisi)(c
′
0 +

∑n
i=1 c

′
isi) (mod Qℓ) which completes the correctness proof of our multipli-

cation algorithm.

Noise Analysis. For the noise analysis, we provide a worst-case bound of the multiplication noise of our
scheme. We refer the reader to App. A.1 for a tighter average-case analysis based on the noise variance.
Note that an output ciphertext ct∗ satisfies

c∗0 +
∑

1≤i≤n

c∗i · si =

(
c0 +

n∑
i=1

cisi

)(
c′0 +

n∑
i=1

c′isi

)
+ e1 + e2 (mod Qℓ)

where e1 and e2 are the errors from approximate equalities in (5) and (6), respectively. To be precise,
these error terms can be written as

e1 =
∑

1≤i,j≤n

〈
h(ci) ◦ h(c′j), sj · e1,i − ri · e0,j

〉
,

e2 =
∑

1≤i≤n

(ci ⊡w)⊡ e2,i

which are bounded by ∥e1∥∞ ≤ 2kn2N3 ·B2
hBσ and ∥e2∥∞ ≤ knN ·BhBσ. As a result, we get a worst-case

bound 2kn2N3 ·B2
hBσ + knN ·BhBσ ≈ 2kn2N3 ·B2

hBσ of the multiplication noise.
We note that our new multiplication algorithm yields slightly larger noise whose bound is about N ·Bh

times larger than that of the previous method. This extra factor comes from the component-wise product
of gadget decompositions h(ci)◦h(c′j) that substitutes h(ci,j). However, this issue can be easily addressed
using the special modulus method (see App. B for details).



Asymptotically Faster Multi-Key Homomorphic Encryption from Homomorphic Gadget Decomposition 13

Algorithm 4 New multi-key BFV multiplication algorithm
Input: ct = (ci)0≤i≤n ∈ Rn+1

Q , ct′ = (c′i)0≤i≤n ∈ Rn+1
Q , {pki = (bi,di,ui,vi)}1≤i≤n

Output: ct∗ = (c∗i )0≤i≤n ∈ Rn+1
Q

1: c∗0 ← ⌊(t/Q) · (c0c′0)⌉ (mod Q)
2: for 1 ≤ i ≤ n do
3: c∗i ← ⌊(t/Q) · (c0c′i + cic

′
0)⌉ (mod Q)

4: end for
5: z←

∑
1≤i≤n h̃(ci) ◦ di (mod Q)

6: w←
∑

1≤j≤n h̃(c
′
j) ◦ bj (mod Q)

7: for 1 ≤ j ≤ n do
8: c∗j ← c∗j + c′j ⊡̃ z (mod Q)
9: end for

10: for 1 ≤ i ≤ n do
11: (c∗0, c

∗
i )← (c∗0, c

∗
i ) + (ci ⊡̃ w)⊡ (vi,ui) (mod Q)

12: end for

5.2 Improved Multi-Key BFV

Compared to the multi-key CKKS scheme, homomorphic gadget decomposition is not directly applicable
to the multi-key BFV case. This is due to the structure of tensored ciphertexts (ci,j)1≤i,j≤n, where
ci,j =

⌊
(t/Q) · cic′j

⌉
(mod Q), and the product of ci and c′j is performed in R instead of RQ. To cope

with this issue, we first instantiate R as RQ̃ where Q̃ := Q2. Then, we observe the following property for
a homomorphic gadget decomposition h̃ : RQ̃ → Rk̃ with a gadget vector g̃ ∈ Rk̃

Q̃

〈
h̃(ci) ◦ h̃(cj), t · g̃

〉
= t · cic′j ≈ Q · ci,j (mod Q̃)

=⇒
〈
h̃(ci) ◦ h̃(cj), ⌊(t/Q) · g̃⌉

〉
≈ ci,j (mod Q) (7)

where ci and c′j in the above equations are regarded as elements of RQ̃ via the natural embedding
RQ ↪→ RQ̃. Using the above property, we can rewrite the external products ci,j ⊡di and ci,j ⊡bj , which
are associated with ci,j , in a way that exploits homomorphic gadget decomposition, as presented in (3).
By doing so, we can achieve linear complexity for multi-key BFV multiplication. Below, we provide a
formal description of our new multi-key BFV scheme.

• MK-BFV.Setup(1λ): Let the RLWE dimension be N , the ciphertext modulus be Q =
∏L

i=0 qi for some
integers qi, the key distribution be χ over R and the error parameter be σ > 0. Let h : RQ → Rk be a
gadget decomposition corresponding to a gadget vector g ∈ Rk

Q, and let h̃ : RQ̃ → Rk̃ be a homomorphic
gadget decomposition corresponding to a gadget vector g̃ ∈ Rk̃

Q̃
. Let t ∈ Z be the plaintext modulus.

Sample a CRS a← U(Rk̃
Q), and output a public parameter pp = (N, t,Q, χ, σ,a, h,g, h̃, g̃).

We denote the external product with respect to the gadget decomposition h̃ by ⊡̃ .

• MK-BFV.KeyGen(pp): Return a secret key sk = s and a public key pk = (b,d,u,v) generated as follows:

– Sample s← χ.
– Sample e0 ← Dk̃

σ and let b = −s · a+ e0 (mod Q).
– Sample r ← χ and e1 ← Dk̃

σ. Let d = −r · a+ s · ⌊(t/Q) · g̃⌉+ e1 (mod Q).
– Sample u← U(Rk

Q) and e2 ← Dk
σ. Let v = −s · u− r · g + e2 (mod Q).

We denote the encryption key by ek = (b[0],a[0]) ∈ R2
Q.



14 T. Kim et al.

• MK-BFV.Enc(m; ek): Sample w ← χ and e0, e1 ← Dσ. Given a message m ∈ Rt, output the ciphertext
ct = w · ek+ (⌊(Q/t) ·m⌉+ e0, e1) (mod Q).

• MK-BFV.Dec(ct; {ski}1≤i≤n): Given a ciphertext ct = (c0, c1, . . . , cn) ∈ Rn+1
Q and its associated secret

keys {ski}1≤i≤n, return the plaintext m =
⌊
(t/Q) · (c0 +

∑
1≤i≤n cj · sj)

⌉
(mod t).

• MK-BFV.Add(ct, ct′): Given two ciphertexts ct, ct′ ∈ Rn+1
Q , output ctadd = ct+ ct′ (mod Q).

• MK-BFV.Mult(ct, ct′; {pki}1≤i≤n): Given two ciphertexts ct = (ci)0≤i≤n, ct′ = (c′i)0≤i≤n ∈ Rn+1
Q and

associated public keys {pki}1≤i≤n, run Alg. 4 and return the ciphertext ct∗ = (c∗i )0≤i≤n ∈ Rn+1
Q .

We assume that the entries of the input ciphertexts ct and ct′ are embedded into RQ̃ in Lines 5–6
of Alg. 4 so that they can be taken as input for the gadget decomposition h̃, even if it is not explicitly
mentioned. We also note that the public key structure is modified so that we can utilize the property
presented in (7). Below, we provide security, correctness, and noise analysis of the proposed scheme.

Security. Similar to the case of CKKS, our multi-key BFV scheme is IND-CPA secure under the RLWE
assumption of parameter (N,Q, χ, σ) since it uses the standard BFV encryption algorithm. It also requires
a circular security assumption since (d,a) and (vi,ui) form a chain of encryptions of si · ⌊(t/Q) · g̃⌉ and
−ri · g under ri and si, respectively.

Correctness. Suppose ct∗ ← MK-BFV.Mult(ct, ct′; {pki}1≤i≤n) for some multi-key ciphertexts ct and ct′.
Our goal is to show that

〈
ct∗, (1, sk)

〉
≈ (t/Q) ·

∑
0≤i,j≤n

cic
′
j · sisj ≈ (Q/t) ·mm′ (mod Q)

whenever
〈
ct, (1, sk)

〉
≈ (Q/t) ·m and

〈
ct′, (1, sk)

〉
≈ (Q/t) ·m′. From Alg. 4, we have

〈
ct∗, (1, sk)

〉
= c∗0 +

∑
1≤i≤n

c∗i · si

= ⌊(t/Q) · (c0c′0)⌉+
∑

1≤i≤n

⌊(t/Q) · (c0c′i + cic
′
0)⌉ · si

+
∑

1≤j≤n

(c′j ⊡̃ z) · sj +
∑

1≤i≤n

(ci ⊡̃ w)⊡ (vi + si · ui).

The last two terms satisfy that

∑
1≤j≤n

(c′j ⊡̃ z) · sj =
∑

1≤j≤n

c′j ⊡̃
∑

1≤i≤n

(h̃(ci) ◦ di)

 · sj
=

∑
1≤i,j≤n

〈
h̃(c′j), h̃(ci) ◦ di

〉
· sj =

∑
1≤i,j≤n

〈
h̃(ci) ◦ h̃(c′j),di

〉
· sj

≈
∑

1≤i,j≤n

〈
h̃(ci) ◦ h̃(c′j),−ri · a+ si · ⌊(t/Q) · g̃⌉

〉
· sj

≈
∑

1≤i,j≤n

ri ·
〈
h̃(ci) ◦ h̃(c′j),bj

〉
+ ci,j · sisj (mod Q), (8)

and



Asymptotically Faster Multi-Key Homomorphic Encryption from Homomorphic Gadget Decomposition 15

∑
1≤i≤n

(ci ⊡̃ w)⊡ (vi + si · ui) ≈ −
∑

1≤i≤n

ri · (ci ⊡̃ w)

=−
∑

1≤i≤n

ri ·

〈
h̃(ci),

∑
1≤j≤n

h̃(c′j) ◦ bj

〉

=−
∑

1≤i≤n

ri ·

〈
h̃(ci),

∑
1≤j≤n

h̃(c′j) ◦ bj

〉

=−
∑

1≤i,j≤n

ri ·
〈
h̃(ci) ◦ h̃(c′j),bj

〉
(mod Q) (9)

Therefore, we obtain〈
ct∗, (1, sk)

〉
≈(t/Q) · (c0c′0) +

∑
1≤i≤n

(t/Q)(c0c
′
i + cic

′
0) · si

+ (t/Q) ·
∑

1≤i,j≤n

cic
′
j · sisj ≈ (Q/t) ·mm′ (mod Q)

as desired.

Noise Analysis. For the noise analysis, we provide a worst-case bound for the multiplication noise. For
the average-case analysis, we refer the reader to App. A.2. Our focus is on the dominant noise terms that
result from external products, while disregarding noise from rounding. The error terms from equations
(8) and (9) can be expressed as follows:

e1 =
∑

1≤i,j≤n

〈
h̃(ci) ◦ h̃(c′j), sj · e1,i − ri · e0,j

〉
e2 =

∑
1≤i≤n

(ci ⊡̃ w)⊡ e2,i.

Therefore, the total multiplication noise is bounded by ∥e1∥∞ + ∥e2∥∞ ≤ 2k̃n2N3 ·B2
h̃
Bσ + knN ·BhBσ.

5.3 Complexity Analysis

We provide a complexity analysis of our schemes by counting the number of gadget decompositions
and ring multiplications in Alg. 3 and 4, as they dominate the overall performance of homomorphic
multiplication in both asymptotic and practical manners.

We first analyze the multi-key CKKS multiplication algorithm (Alg. 3). In Line 3, the algorithm
performs 2n ring multiplications. In Lines 5 and 6, it performs 2kn ring multiplications and 2n gadget
decompositions. In Line 8, only kn ring multiplications are performed since h(c′j) can be reused from Line
6. Finally, in Line 11, it performs 3kn ring multiplications and n gadget decompositions since h(ci) can
be reused from Line 5. In total, Alg. 3 requires 3n gadget decompositions over RQℓ

and (6k+ 2)n ≈ 6kn
multiplications over RQℓ

.
Next, we analyze the complexity of multi-key BFV multiplication (Alg. 4). In Line 3, the algorithm

performs 2n ring multiplications over RQ̃. In Lines 5 and 6, it performs 2k̃n ring multiplications over RQ

and 2n gadget decompositions over RQ̃. In Line 8, only k̃n ring multiplications over RQ are performed
since h̃(c′j) can be reused from Line 6. Finally, in Line 11, it performs (2k+ k̃)n ring multiplications over
RQ and n gadget decompositions over RQ since h̃(ci) can be reused from Line 5. In total, Alg. 4 requires
n gadget decompositions over RQ, 2n gadget decompositions over RQ̃, 2n multiplications over RQ̃ and
(2k + 4k̃)n multiplications over RQ.



16 T. Kim et al.

Scheme Ring multiplication
Gadget decomposition

h h̃

CDKS [10]
CKKS 2kn2 n2 -
BFV 2kn2 n2 -

Ours
CKKS 6kn 3n -
BFV (2k + 4k̃)n n 2n

Table 1. Complexity estimation of CDKS and our multi-key homomorphic multiplications in terms of polynomial
multiplication (over RQℓ or RQ) and gadget decomposition (h or h̃). n denotes the number of associated keys and
k and k̃ denotes the dimension of the gadget decompositions h and h̃, respectively.

We summarize the results in Table 1 along with the complexity of the previous multiplication al-
gorithm by CDKS. For CDKS, we applied the aforementioned optimization technique proposed in [10]
that reduces the overall computational cost by almost half. For the multi-CKKS scheme, the number of
ring multiplications is reduced from 2kn2 to 6kn, and the number of gadget decompositions is reduced
from n2 to 3n. Thus, it achieves linear complexity with respect to the number of associated keys. For the
multi-key BFV scheme, our algorithm introduces a new gadget decomposition h̃ of dimension k̃. Since h̃ is
determined by RQ̃ and is independent of the number of associated keys, our multi-key BFV multiplication
algorithm also achieves linear complexity with respect to the number of associated keys.

6 Implementation

We provide a proof-of-concept implementation of our MKHE schemes and demonstrate their concrete
performance. Our implementation is based on Lattigo [30] which is one of the state-of-the-art HE libraries
written in the Go language. The source code is available at https://github.com/SNUCP/MKHE-KKLSS.

In Sec. 6.1 and 6.2, we explain in details about ring operations and gadget decompositions. Specifically,
we show a concrete instantiation of homomorphic gadget decomposition which meets our requirements.
Then, we present several optimization techniques in Sec. 6.3 and 6.4 to solve the issues regarding noise
growth and implementation efficiency. Finally, we propose secure parameter sets in Sec. 6.5 and provide
experimental results in Sec. 6.6.

6.1 RNS and NTT

We briefly review some techniques for efficient implementation of polynomial arithmetic. First, the Residue
Number System (RNS) is widely used to represent a polynomial with a large modulus as a tuple of
polynomials with small coefficients. Specifically, if the ciphertext modulus Q is a product of pairwise
coprime integers q0, q1, . . . , qℓ−1, then we get an isomorphism from RQ to Rq0 × · · · × Rqℓ−1

defined
by a 7→ ([a]q0 , . . . , [a]qℓ−1

) from the Chinese Remainder Theorem. We call ([a]q0 , . . . , [a]qℓ−1
) the RNS

representation of a ∈ RQ. Its major advantage is that arithmetic operations over RQ can be instantiated
using Rqi without inefficient high-precision arithmetic.

Moreover, to accelerate polynomial multiplications in Rqi ’s, we use the discrete Fourier transforma-
tion over Zqi , also known as Number Theoretic Transform (NTT). If qi = 1 (mod 2N), there exists
a (2N)-th root of unity ρi ∈ Zqi . Then, we obtain a ring isomorphism from Rqi to ZN

qi defined by
a 7→ (a(ρi), a(ρ

3
i ), . . . , a(ρ

2N−1
i )). This isomorphism is called the NTT conversion modulo qi. We also

note that the NTT conversion (or its inverse) can be computed in O(N logN) arithmetic operations over
Zqi .

As a result, an element a = a0+a1X+· · ·+aN−1X
N−1 of Rqi can be either represented as its coefficient

vector (a0, a1, . . . , aN−1) or in the NTT form (a(ρi), a(ρ
3
i ), . . . , a(ρ

2N−1
i )). In our implementation, we use

the NTT representation by default since it enables fast polynomial multiplication which is simply written
as component-wise product over ZN

qi .



Asymptotically Faster Multi-Key Homomorphic Encryption from Homomorphic Gadget Decomposition 17

6.2 Homomorphic Gadget Decomposition

There have been several studies (e.g. [13, 22, 23]) to design and implement HE schemes in a full-RNS
manner without high-precision arithmetic. Below we describe an RNS-friendly gadget decomposition
method commonly used by most HE libraries [11, 30] today.

Let 0 = j0 < j1 < · · · < jk = ℓ be a partition of {0, 1, . . . , ℓ}, and Di =
∏

ji≤j<ji+1
qj for 0 ≤ i < k.

Then, Di’s are pairwise coprime integers with
∏

0≤i<k Di = Q, and the RNS-based gadget decomposition
is defined as follows:

h : RQ → Rk, h(a) = ([a]D0
, . . . , [a]Dk−1

).

We can show that h is a gadget decomposition with a bound ∥h(a)∥∞ ≤ 1
2 maxi Di, corresponding to the

gadget vector g = (g0, . . . , gk−1) ∈ Rk
Q satisfying gi = 1 (mod Di) and gi = 0 (mod Di′) for i′ ̸= i from

the Chinese Remainder Theorem.
If a ring element is stored in the NTT form, we first transform it into the coefficient form via inverse

NTT before computing its gadget decomposition. Moreover, we need to perform further NTT conversion
on each component [a]Di

to convert it back to the NTT form. Therefore, the RNS-based gadget decom-
position is in fact the most expensive operation in HE implementation since it implicitly involves about
k NTT conversions over RQ. We refer the reader to [13, 22, 23] for more details.

Interestingly, the RNS-based gadget decomposition satisfies the homomorphic property that

⟨h(a) ◦ h(b),g⟩ =
∑

0≤i<k

[a]Di
[b]Di

· gi = ab (mod Q)

since [a]Di · [b]Di = ab (mod Di) for all a, b ∈ RQ. Hence, our implementation also uses the same RNS-
based gadget decomposition since it meets our requirements as a concrete instantiation of homomorphic
gadget decomposition. To the best of our knowledge, this decomposition method is originally introduced
to support efficient implementation of HE schemes. However, we have a new definition of the homomorphic
gadget decomposition and this is the first work which takes advantage of its homomorphic property.

6.3 Special Modulus Method

The special modulus method [20] is a well-known optimization technique in HE to reduce the noise growth
from homomorphic operations. In this variant, public keys are generated in RQP for an integer P called
the special modulus. In the relinearization procedure, the external product operation is mostly executed
over RQP between the decomposed ring elements and public key, then the result is scaled down by P
to recover the ciphertext modulus Q. Roughly speaking, this technique reduces the error bound by a
factor of about P , which provides a fine trade-off between maximal ciphertext level and noise growth.
For further details, we refer to App. B.

Recall that our construction has a larger multiplication error which grows quadratically with the
bound of gadget decomposition, compared to linear growth of CDKS. Hence, we choose a larger special
modulus to offset this disadvantage and obtain the same level of noise growth. Instead, our maximal
ciphertext level is reduced by one to preserve the same security level as before.

6.4 Optimization of Multi-key BFV

Our multi-key BFV scheme described in Sec. 5.2 requires a gadget decomposition over RQ̃ for Q̃ = Q2.
However, the gadget decomposition over RQ̃ is not RNS-friendly since Q2 = q20 . . . q

2
ℓ−1 does not factorize

into distinct primes. Thus, it requires performing multi-precision arithmetic over the moduli q2i ’s to
compute operations over RQ2 , which contradicts the main purpose of RNS-based implementation.

To overcome this issue, we develop an optimization technique inspired by Kim et al. [25]. We introduce
a new modulus Q′, which is a product of distinct primes q′0, . . . , q′ℓ−1 such that Q′ ≈ Q, then substitute the
modulus Q2 with QQ′. In multi-key homomorphic multiplication, we add a pre-processing of switching
the modulus of an input ciphertext from Q to Q′ so that the tensor product can be performed in RQQ′

instead of RQ2 . With this optimization method, we can implement our multi-key BFV scheme in an RNS-
friendly manner using homomorphic gadget decomposition over RQQ′ . A full description of the modified
multi-key BFV is given in App. B.



18 T. Kim et al.

logN
Ours CDKS [10]

#qi #pi ⌈logQP ⌉ #qi #pi ⌈logQP ⌉
14 6 2 439 7 1 439
15 14 2 880 15 1 880

Table 2. Parameter sets. #qi and #pi indicate the number of primes used for ciphertext modulus Q =
∏

i qi and
special modulus P =

∏
i pi, respectively.

6.5 Parameter Setting

We describe how we set the parameters for the key distributions, RNS moduli chain, and homomorphic
gadget decomposition in our implementation. We basically follow the parameter sets in [10] for a fair
comparison. For the key distributions, we set the secret key distribution χ to sample each coefficient from
0,±1 with a probability of 0.25 for each of −1 and 1, and with a probability of 0.5 for 0. We also use the
error distribution Dσ with σ = 3.2.

Regarding homomorphic gadget decomposition, we simply use h(a) = ([a]q0 , . . . , [a]qℓ−1) for RQℓ
where

each digit Di is a wordsize prime. In the case of multi-key BFV, we use another gadget decomposition
h̃(a) = ([a]q0 , . . . , [a]qL−1

, [a]q′0 , . . . , [a]q′L−1
) with a larger modulus Q̃ = QQ′. We note that h̃ takes about

twice the computational costs of h since it needs to perform 2L NTT operations over RQ, whereas h
takes L NTT operations over RQ.

Table 2 presents two parameter sets used in our implementation, achieving at least 128-bit security
level according to [1]. For the moduli chain for RNS representation, we set each prime factor qi for the
ciphertext modulus Q to be 52–55 bits in size. In addition, 60-bit primes are used to form a special
modulus P . As noted in Sec. 6.3, we assign two primes to the special modulus P (compared to a single
prime in CDKS) to obtain a comparable noise bound. As a result, our scheme supports at most 6 or 14
levels when logN = 14 or 15, respectively, compared to 7 or 15 of CDKS.

6.6 Benchmark Results

We provide benchmark results for our implementation of new multi-key CKKS and BFV multiplication
algorithms. All experiments were performed with a single thread on a server machine with Intel(R)
Xeon(R) Platinum 8268 @ 2.90GHz CPU and 192GB RAM running Ubuntu 20.04.3 LTS.

logN n
Ours CDKS [10]

CKKS BFV CKKS BFV

14

2 0.12 s 0.21 s 0.14 s 0.21 s
4 0.23 s 0.42 s 0.45 s 0.58 s
8 0.46 s 0.79 s 1.57 s 1.98 s
16 0.95 s 1.52 s 5.91 s 7.31 s
32 1.87 s 2.99 s 22.97 s 27.87 s

15

2 1.12 s 1.79 s 1.14 s 1.67 s
4 2.02 s 3.52 s 3.65 s 4.35 s
8 3.91 s 6.87 s 12.96 s 15.14 s
16 7.81 s 13.18 s 48.21 s 55.37 s
32 15.43 s 27.21 s 184.72 s 198.74 s

Table 3. Performance of multiplication algorithms of CDKS and our MKHE schemes. N and n denote the RLWE
dimension and the number of associated keys, respectively.

In Table 3, we provide execution times of our multiplication algorithms and CDKS [10] for the number
of associate keys n = 2, 4, . . . , 32 and RLWE dimension N = 214, 215. Since the source code of CDKS



Asymptotically Faster Multi-Key Homomorphic Encryption from Homomorphic Gadget Decomposition 19

0 5 10 15 20 25 30
0

10

20

30

Number of parties

T
im

e
(s

ec
)

MK-CKKS (Ours)
MK-BFV (Ours)
MK-CKKS (CDKS)
MK-BFV (CDKS)

0 5 10 15 20 25 30
0

50

100

150

200

Number of parties

T
im

e
(s

ec
)

MK-CKKS (Ours)
MK-BFV (Ours)
MK-CKKS (CDKS)
MK-BFV (CDKS)

Fig. 1. Complexity of multiplication algorithms for logN = 14 (left) or 15 (right).

is not publicly available, we implement both schemes using the same library for fair comparison. As
expected from the complexity analysis, the time complexity grows linearly with n, which rapidly out-
performs CDKS with quadratic complexity, as demonstrated in Fig. 1. To be precise, the execution time
of homomorphic multiplication highly depends on the number of gadget decompositions, since gadget
decomposition includes expensive NTT operations, which are the main bottleneck of the multiplication
procedure. For the multi-key CKKS, we can expect about n/3 times speed-up since our method reduces
the number of required gadget decompositions from n2 to 3n according to Table 1. Meanwhile, for the
multi-key BFV, we can expect about n/5 times speed-up since h̃ takes about twice the cost compared to
h. We verify that our theoretic analysis aligns with benchmark results: for example, our method achieves
about 11.9 and 7.3 times speed-up in multi-key CKKS and BFV, respectively, compared to the previous
work when n = 32 and N = 215.

To compare the noise growth in our method with the previous method, we compute the difference
between the decryption result of the multiplied ciphertext and the plaintext multiplication. We performed
the experiment with the parameter set in Table 2, and the results are summarized in Table 4. As shown
by experiments, our method has almost the same noise growth as the previous work in the recommended
parameter sets.



20 T. Kim et al.

logN n
Ours CDKS [10]

CKKS BFV CKKS BFV

14
2 5.84 43.74 5.84 42.01
4 6.33 44.54 6.32 43.12
8 6.83 45.53 6.81 45.65

15
2 6.33 45.23 6.33 44.83
4 6.82 45.96 6.81 45.69
8 7.31 46.81 7.32 46.72

Table 4. Noise growth of CDKS and our multiplication algorithms (in bits). N and n denote the RLWE dimension
and the number of associated keys, respectively.

References

1. Albrecht, M., Chase, M., Chen, H., Ding, J., Goldwasser, S., Gorbunov, S., Halevi, S., Hoffstein, J., Laine, K.,
Lauter, K., Lokam, S., Micciancio, D., Moody, D., Morrison, T., Sahai, A., Vaikuntanathan, V.: Homomorphic
encryption security standard. Tech. rep., HomomorphicEncryption.org, Toronto, Canada (November 2018)

2. Ananth, P., Jain, A., Jin, Z., Malavolta, G.: Multi-key fully-homomorphic encryption in the plain model. In:
Theory of Cryptography Conference. pp. 28–57. Springer (2020)

3. Asharov, G., Jain, A., López-Alt, A., Tromer, E., Vaikuntanathan, V., Wichs, D.: Multiparty computation
with low communication, computation and interaction via threshold fhe. In: Annual International Conference
on the Theory and Applications of Cryptographic Techniques. pp. 483–501. Springer (2012)

4. Boneh, D., Gennaro, R., Goldfeder, S., Jain, A., Kim, S., Rasmussen, P.M., Sahai, A.: Threshold cryptosystems
from threshold fully homomorphic encryption. In: Annual International Cryptology Conference. pp. 565–596.
Springer (2018)

5. Brakerski, Z.: Fully homomorphic encryption without modulus switching from classical gapsvp. In: Annual
Cryptology Conference. pp. 868–886. Springer (2012)

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (leveled) fully homomorphic encryption without bootstrapping.
ACM Transactions on Computation Theory (TOCT) 6(3), 1–36 (2014)

7. Brakerski, Z., Perlman, R.: Lattice-based fully dynamic multi-key FHE with short ciphertexts. In: Annual
Cryptology Conference. pp. 190–213. Springer (2016)

8. Brandao, L., Peralta, R.: Nist first call for multi-party threshold schemes (2023)
9. Chen, H., Chillotti, I., Song, Y.: Multi-key homomorphic encryption from TFHE. In: International Conference

on the Theory and Application of Cryptology and Information Security. pp. 446–472. Springer (2019)
10. Chen, H., Dai, W., Kim, M., Song, Y.: Efficient multi-key homomorphic encryption with packed ciphertexts

with application to oblivious neural network inference. In: Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security. pp. 395–412 (2019)

11. Chen, H., Laine, K., Player, R.: Simple encrypted arithmetic library-seal v2.1. In: Financial Cryptography
and Data Security: FC 2017 International Workshops, WAHC, BITCOIN, VOTING, WTSC, and TA, Sliema,
Malta, April 7, 2017, Revised Selected Papers 21. pp. 3–18. Springer (2017)

12. Chen, L., Zhang, Z., Wang, X.: Batched multi-hop multi-key FHE from Ring-LWE with compact ciphertext
extension. In: Theory of Cryptography Conference. pp. 597–627. Springer (2017)

13. Cheon, J.H., Han, K., Kim, A., Kim, M., Song, Y.: A full rns variant of approximate homomorphic encryption.
In: International Conference on Selected Areas in Cryptography. pp. 347–368. Springer (2018)

14. Cheon, J.H., Kim, A., Kim, M., Song, Y.: Homomorphic encryption for arithmetic of approximate numbers.
In: International Conference on the Theory and Application of Cryptology and Information Security. pp.
409–437. Springer (2017)

15. Chillotti, I., Gama, N., Georgieva, M., Izabachene, M.: Faster fully homomorphic encryption: Bootstrapping in
less than 0.1 seconds. In: international conference on the theory and application of cryptology and information
security. pp. 3–33. Springer (2016)

16. Clear, M., McGoldrick, C.: Multi-identity and multi-key leveled fhe from learning with errors. In: Annual
Cryptology Conference. pp. 630–656. Springer (2015)

17. Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. Cryptology ePrint Archive (2012)
18. Genise, N., Micciancio, D., Polyakov, Y.: Building an efficient lattice gadget toolkit: Subgaussian sampling

and more. In: Annual International Conference on the Theory and Applications of Cryptographic Techniques.
pp. 655–684. Springer (2019)



Asymptotically Faster Multi-Key Homomorphic Encryption from Homomorphic Gadget Decomposition 21

19. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the 41st Annual ACM
Symposium on Theory of Computing. pp. 169–178. ACM (2009)

20. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the aes circuit. In: Annual Cryptology Con-
ference. pp. 850–867. Springer (2012)

21. Gentry, C., Sahai, A., Waters, B.: Homomorphic encryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based. In: Annual Cryptology Conference. pp. 75–92. Springer (2013)

22. Halevi, S., Polyakov, Y., Shoup, V.: An improved rns variant of the bfv homomorphic encryption scheme. In:
Cryptographers’ Track at the RSA Conference. pp. 83–105. Springer (2019)

23. Han, K., Ki, D.: Better bootstrapping for approximate homomorphic encryption. In: Cryptographers’ Track
at the RSA Conference. pp. 364–390. Springer (2020)

24. Kairouz, P., McMahan, H.B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A.N., Bonawitz, K., Charles, Z.,
Cormode, G., Cummings, R., et al.: Advances and open problems in federated learning. Foundations and
Trends® in Machine Learning 14(1–2), 1–210 (2021)

25. Kim, A., Polyakov, Y., Zucca, V.: Revisiting homomorphic encryption schemes for finite fields. In: Inter-
national Conference on the Theory and Application of Cryptology and Information Security. pp. 608–639.
Springer (2021)

26. Kwak, H., Lee, D., Song, Y., Wagh, S.: A unified framework of homomorphic encryption for multiple parties
with non-interactive setup. Cryptology ePrint Archive, Report 2021/1412 (2021), https://ia.cr/2021/1412

27. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation on the cloud via multikey
fully homomorphic encryption. In: Proceedings of the forty-fourth annual ACM symposium on Theory of
computing. pp. 1219–1234. ACM (2012)

28. Mouchet, C., Bertrand, E., Hubaux, J.P.: An efficient threshold access-structure for rlwe-based multiparty
homomorphic encryption. Journal of Cryptology 36(2), 10 (2023)

29. Mouchet, C., Troncoso-Pastoriza, J., Bossuat, J.P., Hubaux, J.P.: Multiparty homomorphic encryption from
ring-learning-with-errors. Proceedings on Privacy Enhancing Technologies 2021(4), 291–311 (2021)

30. Mouchet, C.V., Bossuat, J.P., Troncoso-Pastoriza, J.R., Hubaux, J.P.: Lattigo: A multiparty homomorphic
encryption library in go. In: Proceedings of the 8th Workshop on Encrypted Computing and Applied Homo-
morphic Cryptography. pp. 64–70. No. CONF (2020)

31. Mukherjee, P., Wichs, D.: Two round multiparty computation via multi-key FHE. In: Annual International
Conference on the Theory and Applications of Cryptographic Techniques. pp. 735–763. Springer (2016)

32. Park, J.: Homomorphic encryption for multiple users with less communications. IEEE Access 9, 135915–
135926 (2021)

33. Peikert, C., Shiehian, S.: Multi-key fhe from lwe, revisited. In: Theory of Cryptography Conference. pp.
217–238. Springer (2016)

A Average-Case Noise Analysis

We conduct average-case noise analysis to estimate the noise growth of our multi-key multiplication
algorithms. In this section, all polynomials will be treated as if they are random variables over the ring
of integers R or its residue ring RQ for some integer Q. In our analysis, all coefficients of each error
polynomial e ∈ R are zero-mean and independent, and have the same variance. Hence, we simply denote
by Var(e) the common variance of its coefficients. Then, if a, b are independent polynomial samples in R,
we have Var(ab) = N ·Var(a) ·Var(b). Finally, we suppose that ciphertext entries are uniformly distributed
over RQ.

For the homomorphic gadget decomposition h, we denote Vh as an upper bound for the variances
of the components of h(c) for a uniformly random element c. For example, Vh = 1

12D
2
max when h(a) =

([a]D0 , . . . , [a]Dk−1
) is an RNS-based gadget decomposition with basis D0, . . . , Dk−1 and Dmax = max0≤i<k Di.

Finally, we set the variance of the key distribution and error distribution to 1/2 and σ2 as presented in
the parameter setting (Sec. 6.5). The final error bound can be obtained from the standard deviation of
an error polynomial by multiplying a certain constant to achieve a desired probability (e.g. 6

√
Var(e)).

A.1 Multi-key CKKS

We showed in Sec. 5 that the output ciphertext ct∗ of our multi-key CKKS multiplication algorithm
satisfies that 〈

ct∗, (1, sk)
〉
=
〈
ct, (1, sk)

〉
·
〈
ct′, (1, sk)

〉
+ e1 + e2



22 T. Kim et al.

where

e1 =
∑

1≤i,j≤n

〈
h(ci) ◦ h(c′j), sj · e1,i − ri · e0,j

〉
,

e2 =
∑

1≤i≤n

(ci ⊡w)⊡ e2,i.

We make a heuristic assumption that each summand of e1 and e2 are independent. Then, it holds
that Var(e1 + e2) = Var(e1) + Var(e2) holds, and

Var(e1) ≤ kn2N3σ2V 2
h , Var(e2) ≤ knNσ2Vh

Hence, the variance of the total noise is bounded by

Var(e1 + e2) ≤ kn2N3σ2V 2
h + knNσ2Vh.

A.2 Multi-key BFV

The multiplication result ct∗ ← MK-BFV.Mult({pki}1≤i≤n; ct, ct
′) of our multi-key BFV introduced in

Sec. 5.2, we focus on the noise term e1 + e2 where

e1 =
∑

1≤i,j≤n

〈
h̃(ci) ◦ h̃(c′j), sj · e1,i − ri · e0,j

〉
,

e2 =
∑

1≤i≤n

(ci ⊡̃ w)⊡ e2,i.

Under the same heuristic assumptions as the above, the variance of total noise is bounded by

Var(e1 + e2) ≤ k̃n2N3σ2V 2
h̃
+ knNσ2Vh.

A.3 Noise from Rescaling

For the multi-key CKKS scheme, noise from the rescaling operation often acts as a dominant factor. To
be precise, let ct = (ci)0≤i≤n ∈ Rn+1

Qℓ
be a multi-key CKKS ciphertext such that c0 +

∑n
i=1 ci · si = µ

(mod Qℓ). Then, the rescaled ciphertext ct′ = (c′i)0≤i≤n ← MK-CKKS.Rescale(ct) satisfies that:

c′0 +

n∑
i=1

c′isi =
⌊
q−1
ℓ · c0

⌉
+

n∑
i=1

⌊
q−1
ℓ · ci

⌉
· si

= qℓ
−1

(
c0 +

n∑
i=1

ci · si

)
+ ers

= qℓ
−1 · µ+ ers (mod Qℓ−1).

where ers =
(⌊
q−1
ℓ · c0

⌉
− q−1

ℓ · c0
)
+
∑n

i=1

(⌊
q−1
ℓ · ci

⌉
− q−1

ℓ · ci
)
· si denotes the rescaling error. Hence,

assuming that the rounding errors follow the uniform distribution over [−1/2, 1/2), we obtain the following
error bounds:

∥ers∥∞ ≤
nN + 1

2
,

Var(ers) =
nN + 2

24
.



Asymptotically Faster Multi-Key Homomorphic Encryption from Homomorphic Gadget Decomposition 23

B Special Modulus Variants

In this section, we describe the special modulus method [20] and apply it to our MKHE schemes. We
introduce a new constant P , called a special modulus, and redefine the gadget encryption and external
product as follows. We also present the optimized version of multi-key BFV, which we discussed in
Sec. 6.4.

Definition 7. Let s be an RLWE secret. We call U = (u0,u1) ∈ Rk×2
QP a gadget encryption of µ ∈ R

under s if u0 + s · u1 ≈ Pµ · g (mod QP ).

Definition 8. Let h : RQ → Rk be a gadget decomposition. For a ∈ RQ and u ∈ Rk
QP , the external

product of a and u is denoted and defined as follows.

a⊡ u :=
⌊
P−1 · ⟨h(a),u⟩

⌉
(mod Q)

From the above definitions, it is satisfied that a ⊡ (Pµ · g) = a · µ (mod Q) for all a ∈ RQ and any
µ ∈ R. If U = (u0,u1) ∈ Rk×2

Q is a gadget encryption of µ ∈ R under s so that u0 + s · u1 = Pµ · g + e

(mod QP ) for some small e ∈ Rk, then the external product a ⊡U = (c0, c1) of a polynomial a and U
holds that

c0 + c1 · s =
⌊
P−1 · ⟨h(a),u0⟩

⌉
+
⌊
P−1 · ⟨h(a),u1⟩

⌉
· s

= P−1 ⟨h(a), Pµ · g + e⟩+ erd

= a · µ+ e (mod Q)

for the rounding noise erd and e = P−1 · ⟨h(a), e⟩+ erd, which is bounded by ∥e∥∞ ≤ P−1kN ·Bh∥e∥∞+
1
2 (N + 1). For the average case, we have Var(e) ≤ P−2kσ2NVh + 1

24 (N + 2), assuming each component
of e is sampled from the error distribution, and each rounding error follows the uniform distribution over
[−1/2, 1/2).

Note that the noise of external product is approximately reduced by a factor of P compared to the
original external product. Therefore, we can choose a special modulus P properly to control the noise
growth.

B.1 Multi-Key CKKS

• MK-CKKS.Setup(1λ): Let the RLWE dimension be N , the ciphertext modulus be Q =
∏L

i=0 qi for some
integers qi, the key distribution be χ over R, the error parameter be σ > 0, and the special modulus P .
Let h : RQ → Rk be a homomorphic gadget decomposition corresponding to a gadget vector g ∈ Rk

Q.
Sample a CRS a← U(Rk

QP ), and output a public parameter pp = (N,Q,P, χ, σ,a, h,g).

• MK-CKKS.KeyGen(pp): Return a secret key sk = s and a public key pk = (b,d,u,v) generated as follows:

– Sample s← χ.
– Sample e0 ← Dk

σ and let b = −s · a+ e0 (mod QP ).
– Sample r ← χ and e1 ← Dk

σ. Let d = −r · a+ Ps · g + e1 (mod QP ).
– Sample u← U(Rk

QP ) and e2 ← Dk
σ. Let v = −s · u− Pr · g + e2 (mod QP ).

We denote the encryption key by ek = (b[0],a[0]) ∈ R2
QP .

• MK-CKKS.Enc(µ; ek): Sample w ← χ and e0, e1 ← Dσ. Given a plaintext µ ∈ R, output the ciphertext
ct =

⌊
P−1 · (w · ek+ (e0, e1))

⌉
+ (µ, 0) (mod Q).

• MK-CKKS.Mult(ct, ct′; {pki}1≤i≤n): Given two ciphertexts ct = (ci)0≤i≤n, ct′ = (c′i)0≤i≤n ∈ Rn+1
Qℓ

and
their associated public keys {pki}1≤i≤n, execute Alg. 5 and return the output ciphertext ct∗.

In the case of special modulus variants, the worst-case and average-case upper bounds for noise change
as follows.



24 T. Kim et al.

∥e1 + e2∥∞ ≤
1

P
(2kn2N3 ·B2

hBσ + knN ·BhBσ) +
n(N + 1)

2

Var(e1 + e2) ≤
1

P 2
(kn2N3σ2V 2

h + knNσ2Vh) +
n(N + 2)

24

Algorithm 5 Multi-key CKKS multiplication algorithm with special modulus
Input: ct = (ci)0≤i≤n ∈ Rn+1

Qℓ
, ct′ = (c′i)0≤i≤n ∈ Rn+1

Qℓ
, {pki = (bi,di,ui,vi)}1≤i≤n

Output: ct∗ = (c∗j )0≤j≤n ∈ Rn+1
Qℓ

1: c∗0 ← c0c
′
0 (mod Qℓ)

2: for 1 ≤ i ≤ n do
3: c∗i ← c0c

′
i + cic

′
0 (mod Qℓ)

4: end for
5: z←

∑
1≤i≤n h(ci) ◦ di (mod QℓP )

6: w←
∑

1≤j≤n h(c
′
j) ◦ bj (mod QℓP )

7: for 1 ≤ j ≤ n do
8: c∗j ← c∗j + c′j ⊡ z (mod Qℓ)
9: end for

10: for 1 ≤ i ≤ n do
11: (c∗0, c

∗
i )← (c∗0, c

∗
i ) + (ci ⊡w)⊡ (vi,ui) (mod Qℓ)

12: end for

B.2 Multi-Key BFV

• MK-BFV.Setup(1λ): Let the RLWE dimension be N , the ciphertext modulus be Q =
∏L

i=0 qi for some
integers qi, the key distribution be χ over R, the error parameter be σ > 0, the special modulus P and
Q̃ = QQ′. Let h : RQ → Rk be a gadget decomposition corresponding to a gadget vector g ∈ Rk

Q, and
let h̃ : RQ̃ → Rk̃ be a homomorphic gadget decomposition corresponding to a gadget vector g̃ ∈ Rk̃

Q̃
.

Let t ∈ Z be the plaintext modulus. Sample a CRS a ← U(Rk̃
QP ), and output a public parameter

pp = (N, t,Q,Q′, P, χ, σ,a, h,g, h̃, g̃).

We denote the external product with respect to the gadget decomposition h̃ by ⊡̃ .

• MK-BFV.KeyGen(pp): Return a secret key sk = s and a public key pk = (b,d,u,v) generated as follows:

– Sample s← χ.
– Sample e0 ← Dk̃

σ and let b = −s · a+ e0 (mod Q).
– Sample r ← χ and e1 ← Dk̃

σ. Let d = −r · a+ Ps · ⌊(t/Q) · g̃⌉+ e1 (mod QP ).
– Sample u← U(Rk

QP ) and e2 ← Dk
σ. Let v = −s · u− Pr · g + e2 (mod QP ).

• MK-BFV.Enc(m; ek): Sample w ← χ and e0, e1 ← Dσ. Given a message m ∈ Rt, output the ciphertext
ct =

⌊
P−1 · (w · ek+ (e0, e1))

⌉
+ (⌊(Q/t) ·m⌉ , 0) (mod Q).

We denote the encryption key by ek = (b[0],a[0]) ∈ R2
QP .

• MK-BFV.Mult(ct, ct′; {pki}1≤i≤n): Given two ciphertexts ct = (ci)0≤i≤n, ct′ = (c′i)0≤i≤n ∈ Rn+1
Q and

associated public keys {pki}1≤i≤n, run Alg. 6 and return the ciphertext ct∗ = (c∗i )0≤i≤n ∈ Rn+1
Q .

In the case of special modulus variants, the worst-case and average-case upper bounds for noise change
as follows.



Asymptotically Faster Multi-Key Homomorphic Encryption from Homomorphic Gadget Decomposition 25

∥e1 + e2∥∞ ≤
1

P
(2k̃n2N3 ·B2

h̃
Bσ + knN ·BhBσ) +

n(N + 1)

2

Var(e1 + e2) ≤
1

P 2
(k̃n2N3σ2V 2

h̃
+ knNσ2Vh) +

n(N + 2)

24

Algorithm 6 Multi-key BFV multiplication algorithm with special modulus
Input: ct = (ci)0≤i≤n ∈ Rn+1

Q , ct′ = (c′i)0≤i≤n ∈ Rn+1
Q , {pki = (bi,di,ui,vi)}1≤i≤n

Output: ct∗ = (c∗j )0≤j≤n ∈ Rn+1
Q

1: for 0 ≤ j ≤ n do
2: c′′j ←

⌊
(Q′/Q) · c′j

⌉
(mod Q′)

3: end for
4: c∗0 ← ⌊(t/Q′) · c0c′′0⌉ (mod Q)
5: for 1 ≤ j ≤ n do
6: c∗j ←

⌊
(t/Q′) · c0c′′j

⌉
+ ⌊(t/Q′) · cjc′′0⌉ (mod Q)

7: end for
8: z←

∑
1≤i≤n h̃(ci) ◦ di (mod QP )

9: w←
∑

1≤j≤n h̃(c
′′
j ) ◦ bj (mod QP )

10: for 1 ≤ j ≤ n do
11: c∗j ← c∗j + c′′j ⊡̃ z (mod Q)
12: end for
13: for 1 ≤ i ≤ n do
14: (c∗0, c

∗
i )← (c∗0, c

∗
i ) + (ci ⊡̃ w)⊡ (vi,ui) (mod Q)

15: end for


