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Abstract

Pairing-based cryptographic protocols are typically vulnerable to small-
subgroup attacks in the absence of protective measures. To thwart
them, one of feasible measures is to execute subgroup membership
testings, which are generally considered expensive. Recently, Scott
proposed an efficient method of subgroup membership testings for
G1, G2 and GT on the BLS family. In this paper, we generalize
this method proposed by Scott and show that the new technique
is applicable to a large class of pairing-friendly curves. In addition,
we also confirm that the new method leads to a significant speedup
for membership testings on many popular pairing-friendly curves.

Keywords: Small-subgroup attacks, Group membership testings,
Pairing-friendly curves.

1 Introduction

Ever since the identity-based encryption was proposed by Boneh and
Franklin [1], pairings have found various interesting applications in the area of
public key cryptography [2–4]. Given an ordinary curve E defined over a prime
field Fp, a pairing on E is a bilinear map of the form e : G1×G2 → GT , where
G1, G2 and GT are three cyclic subgroups with large prime order r. In the
asymmetric case, the input groups G1 and G2 are distinct subgroups of E(Fpk),
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while GT is a subgroup of F∗pk . The integer k is referred to as the embedding
degree of E with respect to r. The security of pairing-based protocols rely on
the difficulty of solving Discrete Logarithm Problems (DLP) in the above three
subgroups [5–7]. However, since the running environment of a cryptographic
protocol is possibly untrustworthy, powerful attackers may force the system to
offer a point with small order. It leads to potential risks of secret key expo-
sures under small-subgroup attacks [8, 9]. Specially, we assume a pairing-based
protocol is designed for using the group G (G ∈ {G1,G2}) to perform group
operation, where G is contained in a large group G with order h · r. If h has a
non-trival small prime factor n and P is an element with order n in the group
G, attacks may force the protocol to use P for the public parameter. Since
solving the DLP in 〈P 〉 is easy, a signer performs group operation in 〈P 〉 would
leak partial information of his secret key. In the worst cases, the cofactor h
could provide enough small primes such that attacks can recover the full infor-
mation of the secret key by using the Pohlig-Hellman algorithm [10]. It should
be noted that small-subgroup attacks can be also mounted on GT [11, 12].
One of methods to minimize the chances of such attacks is to increase the size
of parameters such that the cofactor h has no prime factor smaller than r [9].
If so, we call G is subgroup secure. However, according to the construction
of pairing-friendly curves, it is hard for G1 to reach subgroup secure in most
cases. In order to completely eliminate the hidden dangers, clearing cofactors
and subgroup membership testings are the two feasible approaches until now.

1.1 Clearing cofactors

Clearing cofactors aim to multiply input elements by the cofactor h to force it
into the target subgroup. In the case of G1, the cofactor h is small on many
popular pairing-friendly curves. Thus the cofactor can be cleared at a cheap
cost. Recently, fast cofactor multiplication for G1 was proposed in [13], which
may further reduce the computational cost. In the case of G2, the cofactor h
is typically large. In this situation, the cofactor multiplication can be acceler-
ated using the techniques from [14, 15]. Even though this method can defense
small-subgroup attacks, it also cause another problems. As pointed in [16],
implementors must determine which points to execute “clearing cofactors” on.
Moreover, cofactor multiplication also changed system parameters. This would
lead to additional troubles for implementors [17].

1.2 Subgroup membership testing

The negative effects of clearing cofactors can be avoided by performing sub-
group membership testings. The essence of this method is to raise a candidate
element to the power of r and compare the result with the identity ele-
ment. Since r is a large prime, this operation is quite costly and consequently
affect the performance of pairing-based cryptographic protocols. Recently,
novel methods of subgroup membership testings for G1, G2 and GT on



Article Title 3

the Barreto-Lynn-Scott (BLS) family were proposed by Scott [17], achiev-
ing the same effect as scalar multiplication/exponentiation by r, but more
efficient. Housni et al. [13] showed these methods were also suitable for the
Barreto-Naehrig (BN) family.

1.3 Our contributions

Motivated by the work of Scott [17], we propose more general membership
testing methods. We show that the new techniques are suitable for a large
class of ordinary pairing-friendly curves. To be precise, we summarize our
contributions as follows.

• The previous method of the G2 membership testing [17] works under the
condition that gcd(h1, h2) = 1, where h1 and h2 are cofactors of G1 and
G2, respectively. In this paper, we propose a new G2 membership testing
method that do not rely on the above condition. Moreover, we show that
the time complexity of the proposed method would be in O(log r/ϕ(k)) on
many pairing-friendly curves. It is particularly interesting to see that the
time complexity can be further reduced to O

(
log r/(2ϕ(k))

)
on some certain

curves.
• Fast methods of G1 and GT membership testings are also proposed. The

time complexity of these methods would be in O(log r/2) and O(log r/ϕ(k)),
respectively. It should be noted that the method of the G1 membership
testing is only suitable for ordinary curves with j-invariant 0 or 1728.

• Finally, we implement the proposed algorithms over different pairing-friendly
curves on a 64-bit computing platform within the RELIC cryptographic
library [18]. In particular, compared to the previous leading work, we
obtained approximately 105.1% and 87.3% speedup for G2 and GT mem-
bership testings on the BN-P446 curve, respectively.

Outlines of this paper. The remainder of this paper is organized as follows.
Section 2 provides a brief necessary background on pairing subgroups, endo-
morphisms of elliptic curves and small-subgroup attacks on pairing-friendly
curves. Section 3 describes efficient membership testing method of G2 mem-
bership testing. After that, membership testing methods of G1 and GT are
discussed in Section 4. Two examples of applications of our methods are given
in Section 5. In Section 6, we present efficiency comparisons between our meth-
ods and the previous work in the literature. The conclusion is given in Section
7.

2 Background

In this section, we first recall elementary definitions of pairing subgroups G1,
G2 and GT . After that, we briefly introduce efficiently computable endomor-
phisms on ordinary elliptic curves. Finally, we discuss small-subgroup attacks
on several popular pairing-friendly curves.
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2.1 Pairing subgroups

Let E be an ordinary elliptic curve defined over a prime field Fp and OE
denote the identity point of E. Let r be a large prime with r ‖ #E(Fp). The
embedding degree k of E with respect to r is the smallest positive integer such
that r | Φk(p), where Φk(·) is the k-th cyclotomic polynomial. When k > 1, the
group E[r] is contained in E(Fpk) [19]. The p-power Frobenius endomorphism
π : (x, y)→ (xp, yp) on E satisfies the characteristic equation

π2 − t · π + p = 0, (1)

where the trace t = p+1−#E(Fp). Define G1 = E[r]∩Ker(π−[1]) = E(Fp)[r],
G2 = E[r] ∩ Ker(π − [p]) and GT ⊆ F∗pk to be the subgroup of r-th roots of

unity. Denote by d the order of the automorphism group of E. If d | k, then E
admits a twist E′ over Fpe , where e = k/d. Write φ as the twisting isomorphism
from E′ to E. Then E′(Fpe)[r] is the preimage of G2 under the map φ [20].
Therefore, it is convenient to represent G2 as E′(Fpe)[r]. The definitions of G1,
G2 and GT give rise to the following naive method of subgroup membership
testings:

(1)P ∈ G1 ⇔ P ∈ E(Fp) and [r]P = OE ;

(2)Q ∈ G2 = E′(Fpe)[r]⇔ Q ∈ E′(Fpe) and [r]Q = OE′ ;
(3)α ∈ GT ⇔ αr = 1.

Following Enge and Milan [21], we call E as a curve with the lack of twists
if the G2 subgroup can be only represented E[r] ∩ Ker(π − [p]). Considering
E[r]∩Ker(π− [p]) = E[r]∩Ker(Φk(π)) under the condition that r - Φk(1) [22],
membership testing for G2 on such type of curves can be accomplished by
checking that

Q ∈ E(Fpk), [r]Q = OE and Φk(π)(Q) = OE .

In total, membership testing for each subgroup requires at least one scalar
multiplication/exponentiation by r. Since r is a large prime, the naive method
is extremely slow in practice.

2.2 Endomorphisms of ordinary elliptic curves

Consider an ordinary curve E1 over Fp with j-invariant 0. Then curve is defined
by the equation y2 = x3 + b for some b ∈ Fp and p ≡ 1 mod 3 [23, Proposi-
tion 4.33]. Consequently, there is an endomorphism τ : (x, y) → (ω · x, y) on
E1, where ω is a primitive cube root of unity in Fp. This endomorphism corre-
sponds to a scalar multiplication by λ1 (resp. λ2) in G1 and (resp. G2), where
λ1 and λ2 are two distinct roots of the equation λ2+λ+1 ≡ 0 mod r. Likewise,
given an ordinary curve E2 over Fp with j-invariant 1728, the curve is defined
by the equation y2 = x3 + ax for some a ∈ Fp and p ≡ 1 mod 4. There is the
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endomorphism τ : (x, y)→ (−x, i·y) on E2, where i is a primitive fourth root of
unity in Fp. This efficiently computable endomorphism is equivalent to a scalar
multiplications by λ1 (resp. λ2) in G1 (resp. G2), where λ1 and λ2 are two
distinct roots of the equation λ2 + 1 ≡ 0 mod r. Using the Gallant-Lambert-
Vanstone (GLV) method [24], these efficiently computable endomorphisms
allow fast elliptic curve scalar multiplication. Throughout the paper, we call
such efficiently computable endomorphisms as GLV endomorphisms.

Another well known efficiently computable endomorphism is ψ = φ−1◦π◦φ
on E′ [25], which satisfies the characteristic equation

ψ2 − t · ψ + p = 0. (2)

It is clear that ψi = φ−1 ◦ πi ◦ φ for all i ∈ Z+. This means that the order of
ψ is precisely k restricted in E′(Fpk). Note that

π ◦ φ(Q) = [p]φ(Q) (3)

for all Q ∈ G2 = E′(Fpe)[r]. Acting the map φ−1 on both sides of Eq.(3), it
yields that

ψ(Q) = φ−1 ◦ π ◦ φ(Q) = φ−1 ◦ [p]φ(Q) = [p]Q = [t− 1]Q. (4)

Galbraith and Scott [25] observed that this endomorphism was exploited to
speed up scalar multiplication in G2. Furthermore, it also leads to a high
dimensional GLV method on a large class of elliptic curves [26]. Fast imple-
mentation of this method on ordinary curves with j-invariant 0 was studied
in [27].

2.3 Small-subgroup attacks on pairing-friendly curves

The pairing subgroups G1, G2 and GT are typically contained in larger groups
G1, G2 and GT , respectively. Following Barreto et al. [9], the groups G1, G2 and
GT are defined as follows:

G1 ⊆ G1 = E(Fp), G2 ⊆ G2 = E′(Fpe), GT ⊆ GT = GΦk(p),

where GΦk(p) is the cyclotomic subgroups in F∗pk . If E is a curve with the lack
of twists, we define G2 as

G2 ⊆ G2 = Ker
(
Φk(π)

)
.

Explicit formula for computing #Ker
(
Φk(π)

)
is given in [22, Proposition 2].

On this basis, the associated cofactors h1, h2 and hT are defined as follows:

h1 = #G1/r, h2 = #G2/r, hT = #GT /r.



6 Article Title

Table 1 Subgroup security of pairing-friendly curves at the 128-bit security level. The
symbol cm denotes a composite number of size m bits. The BW family is derived from
Construction 6.6 in [31].

k family log p log r seed z h1 h2 hT
12 BN 446 446 2110 + 236 + 1[32] 1 13c610 c1336

12 BLS 461 308 −277 + 250 + 233[32] c153 c25 ·c442 c39 ·c1495

16 KSS 330 257 −234+227−233+220−211+1[32] c75 c93 ·c1052 34·c2379

18 KSS 348 256 244 + 222 − 29 + 2[32] c93 c78 ·c710 c131 ·c1595
13 BW 310 267 −2224[33] c43 c83 ·c3368 c126 ·c3368
19 BW 286 259 −145[33] c28 c50 ·c4861 c41 ·c5101

Note that group membership testings for Gi are easy, where i ∈ {1, 2, T}.
Thus, according to the principle of small-subgroup attacks, a curve E could be
subgroup secure if the relevant cofactors h1, h2 and hT contain no prime fac-
tors smaller than r. In Table I, we list several popular pairing-friendly curves
at the 128-bit security level under the attacks of Number Field Sieve and
its variants [28, 29]. These curves can be parameterized by polynomials p(z),
r(z) and t(z) given a seed z. The small factors of h2 and hT can be obtained
using the ECM function in Magma [30]. It can be seen from Table 1 that
small-subgroup attacks can be easily mounted on cryptographic protocols con-
structed on these curves. Note that we are unable to obtain a small factor of
the cofactor hT (c1336) of BN-P446. But it is not recommended for skipping
the GT membership testing on the curve as the cofactor is composite.

3 G2 Membership Testing

For efficiency, most of pairing-based protocols are instantiated with pairing-
friendly curves admitting a twist. Recently, a few curves with the lack of
twists also find their own applications on the cryptographic protocols that the
implementation efficiency of one party mainly relies on fast computation in
G1. For example, Clarisse et al. [34] found that the BW13-P310 and BW19-
P286 curves are suitable for several cryptographic schemes, such as Enhanced
Privacy ID [35] and Direct Anonymous Attestation [36]. In this section, we
investigate the problem of G2 membership testing on both types of curves.

3.1 Pairing-friendly curves admitting a twist

For a curve E admitting a twist E′ over Fpe , Scott [17] proved that

Q ∈ G2 = E′(Fpe)[r]⇔ Q ∈ E′(Fpe) and ψ(Q) = [t− 1]Q

under the condition that gcd(h1, h2) = 1. The computational cost is of approx-
imately one scalar multiplication by t − 1. Apparently, this method is more
efficient than the naive one. When we check a candidate element of G2 using
the above technique, it should be careful to select the formulas of elliptic curves
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multiplications. For example, the technique of fast elliptic curves multiplication
proposed in [25] can not be applied as it only works for elements in G2.

In this subsection, we propose a more general method with time complexity
O(log r/ϕ(k)) on many pairing-friendly curves. Moreover, the new method do
not rely on the condition that gcd(h1, h2) = 1 and thus has a wide applicability.

Theorem 1 Let E be an ordinary elliptic curve over Fp, t the trace of the Frobenius
endomorphism π, and r a large prime with r ‖ #E(Fp). Let φ : E′ → E be the
twisting isomorphism, where E′ is defined over Fpe . Define ψ = φ−1 ◦ π ◦ φ with

ψ2 − t · ψ + p = 0. Let η =
s∑
i=0

ci · pi be a multiple of r and f(ψ) =
s∑
i=0

ciψ
i. Let

b0 + b1ψ be the remainder of f(ψ) on division by ψ2 − tψ + p, i.e.,

b0 + b1ψ = f(ψ) mod (ψ2 − t · ψ + p). (5)

Assume

gcd
(
b20 + b0 · b1 · t+ b21 · p,#E′(Fpe)

)
= r. (6)

Given a non-identity point Q ∈ E′(Fpe), then Q ∈ G2 = E′(Fpe)[r] if and only if
f(ψ)(Q) = OE′ .

Proof If Q ∈ G2, then ψ(Q) = [p]Q (see Eq. (4)) and thus we conclude that

f(ψ)(Q) =

s∑
i=0

[ci]ψ
i(Q) =

s∑
i=0

[ci · pi]Q = [η]Q = OE′ .

Conversely, it follows from Eq. (2) that

ψ2(Q)− [t]ψ(Q) + [p]Q = OE′ . (7)

If f(ψ)(Q) = OE′ , Eqs. (5) and (7) imply that

[b1]ψ(Q) = −[b0]Q. (8)

Together with Eqs. (7) and (8), it yields that

[b20 + b0 · b1 · t+ b21 · p]Q

=[b21]ψ2(Q)− [b21 · t]ψ(Q) + [b21 · p]Q
=OE′ .

Since gcd
(
b20 + b0 · b1 · t + b21 · p,#E′(Fpe)

)
= r, we conclude that Q ∈ E′(Fpe)[r],

which completes the proof. �

We use C to denote the vector [c0, c1 · · · , cs], where ci is given in Theorem 1.
One may naturally ask whether there is a such vector C meeting the con-
straint (6). In fact, we can always select C as [r, 0, · · · , 0], which implies that
b0 = r and b1 = 0. Since G2 is the unique subgroup of E′(Fpe) of order r [20,
Section 5], we clearly have gcd

(
b20 +b0 ·b1 ·t+b21 ·p,#E′(Fpe)

)
= r. We observe

that this vector corresponds to the schoolbook method, which is inefficient in
practical applications.
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In order to reduce the computational cost of G2 membership testing, we
expect that the size of n = max{|c0|, · · · , |cs|} in bits is as small as possible. By
the definition of the embedding degree k, we know that r | Φk(p). It is natural
to take η = Φk(p), which means that n = 1 in many cases. Therefore, given a
candidate element Q which is claimed to be a member of G2, the verifier only
needs to check that Φk(ψ)(Q) = OE′ . Unfortunately, we verified this equality
actually holds for all points in E′(Fpe) on most of popular pairing-friendly
curves, such as the BN, BLS and KSS families. Hence, the verifier can not
distinguish between valid elements and invalid ones. Fuentes et al. [37, Section
6.5] pointed out that MNT [38] and Freeman [39] curves do not satisfy the
above equality in general. However, it seems still infeasible in this situation.
Indeed, our experimental results show that the values gcd

(
b20 + b0 · b1 · t +

b21 · p,#E′(Fpe)
)

are not equal to r on these two families of curves if we take
η = Φk(p).

In practice, we fortunately find that the vector C can be selected as the
same as the Miller iteration parameters of optimal pairings [40] on many pop-
ular pairing-friendly curves, which indicates that the bit length of n is about
log r/ϕ(k).

3.2 Pairing-friendly curves with the lack of twists

Let E be an ordinary curve with the lack of twists. Recall from Section 2.1 that

Q ∈ G2 = E[r] ∩Ker(π − [p])⇔ Q ∈ E(Fpk), Q ∈ E[r] and Q ∈ G2,

where G2 = Ker
(
Φk(π)

)
. Since checking Q ∈ G2 only requires a few point

additions and applications of the endomorphism π, the computational cost of
the testing is actually dominated by checking Q ∈ E[r]. It is interesting to
observe that Theorem 1 can be generalized to accomplish this checking by
substituting the endomorphism ψ by π. We summarize the observation in the
following corollary.

Corollary 1 Let E be an elliptic curve over Fp with the lack of twists, and other
notations as in Theorem 1. Assume that b0, b1 ∈ Z with

gcd(b20 + b0 · b1 · t+ b21 · p,#G2) = r. (9)

Given a non-identity point Q of E(Fpk ), then Q ∈ G2 if and only if f(π)(Q) = OE
and Q ∈ G2.

Proof The necessity is obvious and we now prove the sufficiency. Similar to the proof
in Theorem 1, the condition f(π)(Q) = OE and Eq. (9) indicate that Q ∈ E[r].
Furthermore, since Q ∈ G2 and E[r] ∩ G2 = G2, we conclude that Q ∈ G2, which
completes the proof. �

Corollary 1 induces an efficient method of G2 membership testing on
pairing-friendly curves with the lack of twists. Likewise, the complexity of
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the method is about O(log r/ϕ(k)). In the following, we further optimize the
G2 testing efficiency on the class of curves with j-invariant 0 or 1728. The
new method works under a mild condition. Our general understanding of the
construction of this method comes mostly from the following theorem.

Theorem 2 Let E be an ordinary elliptic curve over Fp with the lack of twists, and
j-invariant 0 or 1728. Let r be a large prime with r ‖ #E(Fp), t the trace of the
Frobenius π on E, and k the embedding degree with respect to r. Let τ be a GLV
endomorphism on E with order d, and act as multiplication by an integer λ in G2.
Assume i,m, n ∈ Z satisfying the following conditions:{

d · i ·m− n · k = 1,

gcd(b2d·m − t · bd·m + p,#G2) = r,
(10)

where b = (t− 1)i ·λ−1 mod r. Given a non-identity point Q ∈ E(Fpk ), then Q ∈ G2

if and only if πi(Q) = [b]τ(Q) and Q ∈ G2.

Proof If Q ∈ G2, it is obvious that Q ∈ G2 as G2 ⊂ G2. Furthermore, since τ(Q) =
[λ]Q and π(Q) = [t− 1]Q we have

πi(Q) = [(t− 1)i mod r]Q = [b · λ]Q = [b]τ(Q).

Conversely, if πi(Q) = [b]τ(Q) we get

πd·i(Q) = [bd]τd(Q) = [bd]Q,

which implies that

π(Q) = π1+n·k(Q) = πd·m·i(Q) = [bd·m]Q. (11)

Furthermore, it follows from Eq. (1) that

π2(Q)− [t]π(Q) + [p]Q = OE . (12)

Putting Eqs. (11) and (12) together, it yields that

[b2d·m − t · bd·m + p]Q = OE . (13)

On the other hand, since Q ∈ G2, Eq. (13) indicates that the order of Q divides
gcd

(
b2d·m − t · bd·m + p,#G2

)
= r. Thus, we conclude that Q ∈ E[r] ∩ G2 = G2,

which completes the proof. �

In Theorem 2, the values m and n can be calculated by the extended
Euclidean algorithm once the value i is fixed. To minimize computational cost,
we expect that the bit length of b is as small as possible. Since t−1 is a primitive
k-th root of unity modulo r, the optimal parameter b can be obtained by
exhausting i ∈ {1, 2, · · · k−1} subjected to the constraint (10). We fortunately
find that Theorem 2 induces a fast G2 membership testing method on the
BW13-P310 and BW19-P286 curves. It is interesting to observe that the time
complexity is further reduced to O

(
log r/(2ϕ(k))

)
. We will give the details in

Section 5.
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4 G1 and GT Membership Testings

In this section, we investigate the problems of membership testings for G1 and
GT .

4.1 The G1 case

If E is a curve in the BN or BLS family, it is confirmed that [13, 17]

P ∈ G1 = E(Fp)[r]⇔ P ∈ E(Fp) and τ(P ) = [λ]P,

where λ is one of the roots of the equation x2 + x + 1 ≡ 0 mod r. The new
technique significantly reduce the computational cost compared to the naive
one. In this subsection, we generalize this method to all ordinary curves with
j-invariant 0 or 1728.

Theorem 3 Let E be an ordinary elliptic curve over Fp with j-invariant 0 or 1728,
and r a large prime with r ‖ #E(Fp). Let τ be a GLV endomorphism on E, and act
as multiplication by an integer λ in G1. Let a0, a1 ∈ Z with a0 + a1λ ≡ 0 mod r.
Assume {

gcd
(
a2

0 − a0 · a1 + a2
1,#E(Fp)

)
= r, if j(E) = 0,

gcd
(
a2

0 + a2
1,#E(Fp)

)
= r, if j(E) = 1728.

(14)

Given a non-identity point P of E(Fp), then P ∈ G1 if and only if [a0]P+[a1]τ(P ) =
OE .

Proof We only give the proof for the case j(E) = 0 as the other case is analogous. If
P ∈ G1, then the order of P is r and τ(P ) = [λ]P . Since a0+a1 ·λ ≡ 0 mod r we have

[a0]P + [a1]τ(P ) = [a0 + a1 · λ]P = OE .

Conversely, since τ2 + τ + 1 = 0 we get

[a2
1]τ2(P ) + [a2

1]τ(P ) + [a2
1]P = OE . (15)

If [a0]P + [a1]τ(P ) = OE , we obtain from Eq. (15) that

[a2
0 − a0 · a1 + a2

1]P = OE .

Since gcd
(
a2

0−a0 ·a1 +a2
1,#E(Fp)

)
= r, we conclude that P ∈ G1, which completes

the proof. �

Analogous to G2 membership testing, there always exist a0 and a1 satisfy-
ing the constraint (14). Generally, the bit length of max{|a0|, |a1|} is of about
log r/2. Based on the analysis above, our method may be a better choice than
the method of clearing cofactor even in efficiency if the ratio between log h1

and log r is no less than 0.5. For example, on curves with embedding degrees
6 and 8 constructed by Guillevic et al. [41], the cofactors h1 are even larger
than r. In this situation our method is clearly a winner.
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4.2 The GT case

Scott [17] proposed an efficient GT membership testing method under the con-
dition that gcd(h1, hT ) = r, which is tailored to the BN and BLS families. In
particular, let α be a candidate element which is claimed to be a member of
GT . The verifier requires to check whether α ∈ GΦk(p) and αp+1 = αt. Since
Frobenius map can be computed efficiently, the computational cost is domi-
nated by one exponentiation by t. Inspired by the technique of G2 membership
testing on pairing-friendly curves admitting a twist, we propose an efficient
method for GT membership testing.

Proposition 4 Let η be a multiple of r and write η in the basis of p as η =
s∑
i=0

ci ·pi.

Assume α 6= 1 be an element of F∗pk and gcd
(
η,Φk(p)

)
= r. Then α ∈ GT if and

only if

αΦk(p) = 1 and αη = 1.

Proof Since r | Φk(p) and r | η, the necessity is straightforward. Conversely,

if αΦk(p) = 1 and αη = 1 then the order of α divides gcd
(
η,Φk(p)

)
. Since

gcd
(
η,Φk(p)

)
= r and α 6= 1, it is clear that the order of α is precisely r and thus

α ∈ GT , which completes the proof. �

As stated in Section III, there always exists a vector C = [c0, c1, · · · , cs]
such that gcd

(
η,Φk(p)

)
= r. Therefore, the overhead of the testing mainly

requires an exponentiation by n = max{c0, c1 · · · , cs}. Moreover, once the can-
didate element α is proved to be a member of GΦk(p), the fixed exponentiation
by n can be further optimized by techniques of fast cyclotomic squaring [42, 43]
in the case that the embedding degree k is divided by 6.

5 Applications

Sections 3 and 4 present efficient methods of G1, G2 and GT member-
ship testings. In this section, we investigate how to apply these techniques
to different pairing-friendly curves in detail. To this aim, we first provide
the Magma code to search target coefficient vectors that ensure the asso-
ciated computational costs are as small as possible. The code is available
in https://github.com/eccdaiy39/smt-magma/tree/main/vector. The related
datas are collected in Table 2. On this basis, we take the BN-P446, KSS16-P330
and BW13-P310 curves as examples to further illustrate the main mechanics
of the proposed techniques.

https://github.com/eccdaiy39/smt-magma/tree/main/vector
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Table 2 Parameters of the membership testings on a list of pairing-friendly curves at the
128-bit security level. For the BW13-P310 and BW19-P286 curves , the vectors C in the
column of G2 are denoted by [i,m, b], where the parameters i, m and b are defined in
Theorem 2. For the KSS16-P330 curve, the vectors C for G2 and GT membership testings
are presented in Section 5.2.

Curve [a0, a1] C(G2) C(GT )

BN-P446 − [z + 1, z, z,−2z] [z + 1, z, z,−2z]

BLS12-P461 [z2, 1] [z,−1, 0, 0] [z,−1, 0, 0]

KSS16-P330 [(31z4 + 625)/8750,−(17z4 + 625)/8750] − −
KSS18-P348 [(z/7)3,−18a0 − 1] [2z/7, 1, 0, z/7, 0, 0] [2z/7, 1, 0, z/7, 0, 0]

BW13-P310 [−(z7 + z)(z4 + z3 − z − 1), a0 · z − 1] [1, 9,−z] [z2,−z, 1, 0, . . . , 0]

BW19-P286 [(z −z10)(z6− z3+ 1)(z + 1), a0 · z − 1] [1, 13,−z] [z2,−z, 1, 0, · · · , 0]

5.1 BN-P446

The BN family is parameterized by
r(z) = 36z4 + 36z3 + 18z2 + 6z + 1,

t(z) = 6z2 + 1,

p(z) = 36z4 + 36z3 + 24z2 + 6z + 1.

The seed z is recommended as z = 2110 + 236 + 1 [33] to achieve the 128-bit
security level. Let E(Fp) and E′(Fp2) define the BN curve and its sextic twist,
respectively. Note that the G1 membership testing is not necessary as h1 = 1
on the curve. For both G2 and GT membership testings the coefficient vectors
are taken as [z+ 1, z, z,−2z]. Let Q be a point that purports to be an element
of G2. By Theorem 1, the point Q is valid if and only if{

Q ∈ E′(Fp2),

[z + 1]Q+ ψ([z]Q) + ψ2([z]Q) = ψ3([2z]Q).

In total, it approximately requires one scalar multiplication by z, three point
additions, one point doubling and three applications of the endomorphism ψ.

Likewise, by Proposition 1, a candidate element α ∈ GT if and only if{
a · αp4 = αp

2

,

αz+1 · (αz)p · (αz)p2 = (α2z)p
3

.

Thus, this membership testing requires one exponentiation by z, four field
multiplications, one field squaring and five applications of the endomorphism
π.

Remark 1 The previous leading works of G2 and GT membership testings on the BN
family were proposed in [11, 13]. To be precise, both of the two computational costs
are of approximately one multiplication/exponentiation by 6z2. Clearly, our method
is more efficient as compared to the previous one. See Section 6 for details.
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Remark 2 We fortunately find that the vector C = [z + 1, z, z,−2z] is suitable for
both G2 and GT membership testings on other curves in the family, such as BN-254,
BN-256 and BN-381. But it does not mean that the short vector is independent of
the seed z. Indeed, for such a vector the associated parameters b0 and b1 are given as

b0 = −216z7 − 216z6 − 144z5 − 36z4 − 6z3 + 2z,

b1 = −36z4 − 18z3 − 6z2 + 1.

Let h2 and h′2 denote #E′(Fp2)/r and (b20 + b0 · b1 · t+ b21 · p)/r, respectively. Then
we obtain that

h2 =36z4 + 30z3 + 30z2 + 6z + 1,

h′2 =1296z10 + 2592z9 + 3024z8 + 2160z7 + 1044z6

+ 252z5 − 60z4 − 66z3 − 14z2 + 2z + 1.

As shown in Theorem 1, the short vector is desired for G2 membership testing if and
only gcd(h2, h

′
2) = 1. However, the condition does not always hold. For example,

taking z = 564 we find that gcd(h2, h
′
2) = 3061.

5.2 KSS16-P330

The KSS16 family is parameterized by

r(z) =
z8 + 48z4 + 625

61250
,

t(z) =
2z5 + 41z + 35

35
,

p(z) =
z10+2z9+5z8+48z6+152z5+240z4+625z2+2398z+3125

980
.

Following the recommendation in [32] at the 128 bit security level, we take
z = −234 +227−223 +220−211 +1. In the following, we use E(Fp) and E′(Fp4)
to denote the KSS16 curve and its quartic twist, respectively.

5.2.1 the G1 case

For the G1 membership testing, the parameters a0 and a1 are given as{
a0 = (31z4 + 625)/8750,

a1 = −(17z4 + 625)/8750.

Let a′0 = 17a0 and a′1 = 17a1. Since −17a0 − 31a1 = 1 and gcd
(
a′20 +

a′21 ,#E(Fp)
)

= r, we substitute the values a0 and a1 by a′0 and a′1, respec-
tively. As a consequence, given a point Q that is claimed to be a member of
G1, the associated membership testing can be accomplished by checking that{

Q ∈ E(Fp),
τ([17a1]Q)− [31a1]Q = Q.
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Given the point R = [a1]Q, we then obtain [17]R and [31]R by performing the
following calculations:

R→ [2]R→ [4]R→ [8]R→ [16]R→ [17]R→ [32]R→ [31]R.

In conclusion, the G1 membership testing approximately requires one scalar
multiplication by a1, five point doublings, three point additions and one
application of the endomorphism τ .

5.2.2 the G2 and GT cases

We check that gcd(h1, h2) = gcd(h1, hT ) = 4. Thus the Scott method for G2

and GT membership testings is not suitable for the curve. Let u = (−z−25)/70.
For both G2 and GT membership testings, the coefficient vectors are taken as
[c0, c1, · · · , c7], where

c6 = u, c2 = c3 = 3c6 + 1, c1 = −3c2, c5 = 2c2 + c6 + 1,

c4 = −2c5 + c6 + 1, c0 = c7 = 2c6 − c1 + 1.
(16)

Let Q be a point whch is claimed to be a member of G2 on the curve. By
Theorem 1, the point Q is valid if and only if

Q ∈ E′(Fp4),

6∑
i=0

ψi([ci]Q) = −ψ([c7]Q),
(17)

which approximately requires 1 scalar multiplication by u, 3 point doublings,
14 point additions and 7 applications of the endomorphism ψ. Here we omit
the details of the GT membership testing as it is similar.

5.3 BW13-P310

The methods of the membership testing for G1 and GT have no difference
between pairing-friendly curves admitting a twist and with the lack of twists.
For brevity, we only discuss the membership testing for G2 on the BW13-
P310 curve. From Construction 6.6 in [31], a family of curves with k = 13 and
j-invariant 0 can be parameterized by:

r(z) = Φ78(z),

t(z) = −z14 + z + 1,

p(z) =
1

3
(z + 1)2(z26 − z13 + 1)− z27.

In order to reach the 128-bit security level, the seed z is recommended as
z = −2224 [33]. The curve is defined by the equation y2 = x3 − 17. By the
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form of the polynomial r(z), we can see that

z26 − z13 + 1 ≡ 0 mod r.

Thus, there exists a GLV endomorphisms τ with eigenvalue λ = z13 − 1
restricted in G2. Let notations i, m and b be defined as in Theorem 2. Tak-
ing i = 1, we have b = −z, m = 9 and gcd

(
b6·m − t · b3·m + p,#G2

)
= r,

where #G2 = #E(Fp13)/#E(Fp). By Theorem 2, the G2 membership testing
requires to check that 

Q ∈ E(Fp13),
π(Q) = [−z]τ(Q),
12∑
i=1

πi(Q) = −Q.

The point
12∑
i=1

πi(Q) can be calculated by using the following formulas:

R1 = π(Q) + π2(Q), R2 = π2(R1), R3 = R1 +R2,

R4 = π4(R3), R5 = π4(R4),

12∑
i=1

πi(Q) = R3 +R4 +R5.

Neglecting the cost of checking Q ∈ E(Fp13), it totally costs 1 scalar multipli-
cation by z, 4 point additions, 5 applications of the endomorphism π and 1
application of the endomorphism τ .

Remark 3 For the G2 membership testing on BW13-P310, the computational cost
largely comes from one scalar multiplication by the seed z. It is interesting to see
that log|z| ≈ log r/(2ϕ(k)).

6 Implementation Results

Magma implementation for subgroup membership testings on pairing-friendly
curves listed in Table 2 was provided in https://github.com/eccdaiy39/
smt-magma/tree/main/test. It can be seen as a reference even though per-
forms poorly. In order to accurately evaluate the performance of the new
subgroup membership testings, we also implemented the proposed techniques
on the BN-P446 and BW13-P310 curves within the RELIC cryptographic
library. The code is available at https://github.com/eccdaiy39/smt. We notice
that the previous leading works [11, 13] of the G2 and GT membership test-
ings on the BN-P446 curve was implemented in the RELIC. In Table 3, we
summarize the results of benchmarks on a 64-bit Intel Core i7-8550U@1.8GHz
processor running Ubuntu 18.04.1 LTS with TurboBoost and hyper-threading
features disabled. Timing results are obtained averaged over 10,000 executions.
As shown in Table 3, on the BN-P446 curve the new algorithm for the G2

membership testing is about 105.1% times faster than that from [13], while

https://github.com/eccdaiy39/smt-magma/tree/main/test
https://github.com/eccdaiy39/smt-magma/tree/main/test
https://github.com/eccdaiy39/smt
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Table 3 Comparison of subgroup membership testing implementations on the BN-P446
and BW13-P310 curves. Timings results are given in clock cycles (×103).

Curve Method G1 G2 GT

BN-P446 Previous work [11, 13] − 722 882
BN-P446 This work − 352 471
BW13-P310 This work 293 1220 225

the GT membership testing is about 87.3% times faster than that from [11].
Applying the new techniques, we also find that subgroup membership testings
on the BW13-P310 curve are efficient. As far as we know, this problem has
not yet considered in the literature.

7 Conclusion

The threat of small-subgroup attacks are non-negligible in pairing-based pro-
tocols. Subgroup membership testing is a useful measure to defense such
attacks. In this paper, we revisited this problem and described efficient meth-
ods of G1, G2 and GT membership testings, which were suitable for a large
class of ordinary pairing-friendly curves. Fast software implementation of sub-
group membership testings was presented to further confirm the performance
of the proposed algorithms. On the BN-P446 curve, our timing results are
significantly faster than the previous leading work.
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