
Formal Verification of Saber’s Public-Key
Encryption Scheme in EasyCrypt

Andreas Hülsing1, Matthias Meijers1, and Pierre-Yves Strub2

1 Eindhoven University of Technology, The Netherlands
2 Meta, France

fv-saber-pke@mmeijers.com

Abstract In this work, we consider the formal verification of the public-
key encryption scheme of Saber, one of the selected few post-quantum
cipher suites currently considered for potential standardization. We for-
mally verify this public-key encryption scheme’s IND-CPA security and
δ-correctness properties, i.e., the properties required to transform the
public-key encryption scheme into an IND-CCA2 secure and δ-correct
key encapsulation mechanism, in EasyCrypt. To this end, we initially de-
vise hand-written proofs for these properties that are significantly more
detailed and meticulous than the presently existing proofs. Subsequently,
these hand-written proofs serve as a guideline for the formal verification.
The results of this endeavor comprise hand-written and computer-verified
proofs which demonstrate that Saber’s public-key encryption scheme in-
deed satisfies the desired security and correctness properties.

Keywords: Formal Verification · Saber · EasyCrypt

1 Introduction

In 1994, Shor showed how to efficiently solve the integer factorization and discrete
logarithm problems on a sufficiently powerful quantum computer [Sho94]. Con-
sequently, since contemporary public-key cryptography is predominantly based
on the hardness of these problems, the advent of such quantum computers would
enable adversaries to compromise the security provided by this type of cryptogra-
phy [Yan13]. Although it is not entirely clear when the first sufficiently powerful
quantum computer will be operational, the progress made hitherto, the currently
remaining challenges, and the amount of interest in this topic suggest that this
might well transpire in the near future [GH19,Mos18]. As such, a timely re-
placement of the contemporary public-key cryptography by quantum-resistant
alternatives is imperative.

At the time of writing, the National Institute of Standards and Technol-
ogy (NIST) is hosting a competition with the purpose of standardizing post-
quantum alternatives to the current public-key cryptography; this competition

A.H. and M.M. are funded by an NWO VIDI grant (Project No. VI.Vidi.193.066).
Date: 2022-05-10

is in its final stage, leaving only a selected few of the best candidates. One of
these candidates is Saber, a suite of post-quantum cryptographic constructions
for public-key encryption and key establishment [DKRV18]. In particular, Saber
comprises an IND-CCA2 secure key encapsulation mechanism (KEM) which is
the suite’s principal scheme of interest due to NIST announcing that they will ex-
clusively standardize KEMs as stand-alone constructions for key encipherment.
The Saber KEM is obtained by applying a variant of the Fujisaki-Okamoto (FO)
transform on an IND-CPA secure public-key encryption (PKE) scheme. Given
that the FO transform has already been analyzed previously [Unr20], this work
directs its attention to Saber’s PKE scheme, analyzing the claimed security and
correctness properties of this PKE scheme necessary to transform it into a secure
and (sufficiently) correct KEM.

Historically, (the specifications of) cryptographic constructions have been
demonstrated to possess their desired properties through hand-written proofs.
However, the innovation and development in the field of cryptography have led to
a significant increase in the complexity of these constructions and their proofs.
As a result, devising these constructions and carrying out the corresponding
hand-written proofs has become substantially more challenging. Numerous ex-
amples of proofs exist that, although extensively scrutinized and universally
considered correct, turned out to be faulty. Furthermore, in some of these cases,
the corresponding cryptographic construction was additionally found to be inse-
cure [KM19]. These instances exemplify the intricacy of contriving and verifying
cryptographic constructions and their proofs. In addition, even if (the specifica-
tion of) a cryptographic construction and its proof are entirely correct, imple-
mentation flaws may invalidate any of the construction’s properties and guaran-
tees. Once again, ample examples exist of this phenomenon, signifying the com-
plexity of constructing and verifying cryptographic implementations [LCWZ14].

The complexity issues associated with devising cryptographic constructions,
proofs, and implementations partially induced the inception of the scientific
field of computer-aided cryptography. As its name suggests, this field endeavors
to devise computer-assisted methods for constructing and verifying cryptogra-
phy [BBB+21]. The purpose of these computer-assisted methods is to reduce
the complexity of the manual labor required in the construction and verification
process while consistently enforcing a high level of rigor. This increases the con-
fidence in the cryptographic specifications and implementations that are devised
and analyzed in this manner.

Over the years, the research conducted in the field of computer-aided cryp-
tography has produced copious tools and frameworks aimed at the construc-
tion and verification of cryptography in a multitude of different ways and con-
texts [BBB+21]. Based on the context in which Saber’s PKE scheme and the
considered proofs manifest themselves, the tool of choice for this work is Easy-
Crypt. Namely, EasyCrypt adopts the code-based approach to provable secu-
rity, modeling common security-related concepts, such as security notions and
hardness assumptions, as well-defined probabilistic programs [BDG+14,BR06].
Additionally, the tool’s higher-order ambient logic, standard library, and other

2

built-in mechanisms allow for extensive and (partially) automated mathemati-
cal reasoning. Altogether, these features facilitate a natural formalization and
manageable verification of the considered proofs for the desired security and
correctness properties of Saber’s PKE scheme.

Our Contribution. This work considers the formal verification of the desired
security and correctness properties of Saber’s PKE scheme in EasyCrypt. More
precisely, for security, this concerns the IND-CPA property and, for correctness,
this concerns the δ-correctness property defined in [HHK17]. In addition to dis-
cussing the EasyCrypt-related material, we also present the hand-written proofs
devised specifically for this formal verification endeavor; indeed, compared to
the currently existing hand-written proofs, these are significantly more detailed
and, hence, less ambiguous.

The purpose of this work is to establish a higher level of confidence in the
security and correctness of Saber’s PKE scheme and, by extension, the KEM
obtained from applying the relevant variant of the FO transform discussed
in [HHK17]. Certainly, in accordance with the above-mentioned properties that
we consider for Saber’s PKE scheme, this relevant variant of the FO transform
is FO/⊥, i.e., the variant that transforms an IND-CPA secure and δ-correct PKE
scheme into an IND-CCA2 secure and δ-correct KEM3. Naturally, this ultimately
serves the purpose of assisting the cryptographic community in making a well-
informed decision regarding the standardization of post-quantum cryptography.
Thus far, no other formal verification efforts regarding Saber’s schemes have
been carried out (or, at least, no such endeavors are publicly known).

Full-Fledged Formal Verification of Saber-Based KEM. Albeit the work
presented in this paper has merit on its own, a natural addition would be to
formally verify the relevant variant of the FO transform and, thus, obtain a
complete formal verification of (the specification of) a secure and (sufficiently)
correct KEM based on Saber’s PKE. Actually, the formal verification of this
transformation has already been performed in previous independent work by Un-
ruh [Unr20]. While certainly contributory and valuable, Unruh’s work employs
the qRHL tool; indeed, this unfortunately implies that combining his work with
this work requires manual reasoning about the compatibility of results obtained
through different tools with vastly different syntaxes and semantics. Naturally,
such reasoning might be error-prone and, therefore, not ideal. As such, a more
robust alternative for extending this work would be to perform the formal ver-
ification of the FO transform in EasyCrypt, enabling the direct verification of
the compatibility of the results within EasyCrypt. However, this goes beyond
the scope of this work.

Overview. The remainder of this paper is structured as follows. First, Section 2
introduces the notation utilized throughout this paper and restates the speci-
fication of Saber’s PKE scheme. Second, Section 3 discusses the hand-written

3Although the original paper of Saber states that Saber’s KEM is constructed
through this variant, the specification of Saber’s KEM shows that, technically, a subtly
different transform has been used [DKRV18,DHK+21].

3

proof and formal verification of the security property of Saber’s PKE scheme.
Finally, Section 4 is analogous to Section 3 but, instead of the security property,
considers the correctness property of Saber’s PKE scheme.

2 Preliminaries

Notation. First, for any natural number 0 < q, we denote the ring of integers
modulo q by Zq; correspondingly, Zq[X] represents the polynomial ring with
coefficients in Zq. Additionally, we define Rq to be Zq[X]/(Xn+1), where n = 2ϵn

for some ϵn ∈ N. As a final extension, we let Rm×n
q stand for the Rq-module of

m× n-dimensional matrices over Rq.
Second, for any natural numbers 0 < p and 0 < q, we define a “modular scal-

ing and flooring” function ⌊·⌋q→p : Zq → Zp, based on the closely related function
defined in [BPR12]. Furthermore, we straightforwardly define coefficient-wise
and entry-wise extensions of this function to polynomials and vectors/matrices,
respectively. Given any x ∈ Zq, the modular scaling and flooring function (for
some valid p and q) computes the image corresponding to x as follows.

⌊x⌋q→p = ⌊p
q
· x⌋ mod p

Although not explicitly stated, p
q · x is computed over the field of real numbers;

to this end, the function uses the obvious interpretations of p, q, and x as real
numbers. Notice that when p and q are both powers of two, the modular scaling
and flooring operator is equivalent to a regular bit-shift (to the left if p > q and
to the right if p < q).

Third, for any natural numbers 0 < p and 0 < q, we define a “modular scaling
and rounding” function ⌊·⌉q→p : Zq → Zp that is identical to the modular scaling
and flooring function (for the same p and q), except that it uses rounding instead
of flooring. Moreover, this operator is extended similarly to the modular scaling
and flooring operator.

Fourth, analogously to the above modular scaling functions, we extend the
modular reduction function coefficient-wise and entry-wise to polynomials and
vectors/matrices, respectively.

Fifth, we denote the uniform distribution by U and the centered binomial
distribution by βµ. Furthermore, for distribution χ ∈ {U , βµ} and Rq-module
Rm×n

q (as defined above), we use χ(Rm×n
q) to signify the distribution over ma-

trices from Rm×n
q that arises when (each coefficient of) every entry is distributed

according to χ.
Finally, we typeset regular (i.e., non-vector and non-matrix) elements with

lowercase, italic letters; vectors with lowercase, boldface letters; and matrices
with uppercase, boldface letters. Additionally, sampling from a distribution χ
and storing the result in x is written as x←$ χ. Lastly, in bit strings, we denote
(sub)strings of n consecutive 0 or (n consecutive) 1 bits by 0n or 1n, respectively.
Saber’s PKE. In this work, we adopt the specification of Saber’s PKE scheme
that is provided in the original paper [DKRV18]. For intelligibility purposes,

4

Algorithm 1 Saber’s Key Generation Algorithm
1: procedure Saber.KeyGen()
2: seedA ←$ U({0, 1}256)
3: A← gen(seedA)
4: s←$ βµ(Rl×1

q)
5: b← ⌊A · s + h⌋q→p

6: return pk := (seedA, b), sk := s

Algorithm 2 Saber’s Encryption Algorithm
1: procedure Saber.Enc(pk := (seedA, b), m)
2: A← gen(seedA)
3: s′ ←$ βµ(Rl×1

q)
4: b′ ← ⌊AT · s′ + h⌋q→p

5: v′ ← bT · (s′ mod p) + (h1 mod p)
6: cm ← ⌊v′ + ⌊m⌋2→p⌋p→2·t
7: return c := (cm, b′)

Algorithm 3 Saber’s Decryption Algorithm
1: procedure Saber.Dec(sk := s, c := (cm, b′))
2: v ← b′T · (s mod p) + (h1 mod p)
3: m′ ← ⌊v − ⌊cm⌋2·t→p + (h2 mod p)⌋p→2
4: return m′

Algorithm 1, Algorithm 2, and Algorithm 3 respectively restate the specifications
of the scheme’s key generation, encryption4, and decryption algorithms utilizing
the above-introduced notation. In these specifications, identifiers gen, l, t, p, q,
h1, h2, and h refer to the same function, parameters, and constants as in the
original specifications. Particularly, recall that t = 2ϵt , p = 2ϵp , and q = 2ϵq

for some ϵt, ϵp, ϵq ∈ N such that 0 < ϵt + 1 < ϵp < ϵq; furthermore, h1 =∑n−1
i=0

q
2·p · X

i and h2 =
∑n−1

i=0 (p
4 −

p
4·t) · Xi, both elements of Rq, while h is

defined as the vector with all entries equal to h1. Crucially, as a consequence
of these definitions, we have that for all x ∈ Zq, ⌊x⌉q→p = ⌊x + h1⌋q→p; by
extension, ⌊v⌉q→p = ⌊v + h⌋q→p for all v ∈ Rl×1

q .
Throughout the remainder, Saber’s PKE scheme will be referred to by the

identifier Saber.PKE; the scheme’s algorithms will be denoted by their respective
procedure identifiers provided in the specifications.

3 Security

In this section, we cover Saber.PKE’s security property by discussing the essen-
tial parts of the hand-written proof and the corresponding formal verification

4Note that the message m ∈ {0, 1}n is implicitly encoded as an element of R2 by
dedicating a separate coefficient to each bit.

5

in EasyCrypt. Due to space considerations, some less informative material is
omitted from this section and provided in the appendix instead. At the relevant
places, we explicitly mention which material this concerns.

Notion and Assumptions. Prior to discussing the actual hand-written proof,
we introduce the relevant security notion and hardness assumptions. Here, we
do not yet present any formalizations in EasyCrypt; instead, we postpone this
to the relevant places in the discussion concerning the formal verification.

Foremost, we reiterate that Saber.PKE attempts to achieve the IND-CPA
security notion based on the assumed computational hardness of the MLWR
problem; the specifications of the corresponding games are respectively provided
in Figure 1 and Figure 2.

GameIND-CPA
A,Saber.PKE

1 : u←$ U({0, 1})
2 : (pk, sk)← Saber.KeyGen()
3 : (m0, m1)← A.P(pk)
4 : c← Saber.Enc(pk, mu)
5 : u′ ← A.D(c)
6 : return (u′ = u)

GameMLWR
A,m,l,µ,q,p(u)

1 : A←$ U(Rm×l
q)

2 : s←$ βµ(Rl×1
q)

3 : b0 ← ⌊A · s⌉q→p

4 : b1 ←$ U(Rm×1
p)

5 : return A(A, bu)

Figure 1. The IND-CPA Game for Saber.PKE Figure 2. The MLWR Game

Then, the advantage of an adversary A = (P, D) against GameIND-CPA
A,Saber.PKE is

defined as follows.

AdvIND-CPA
Saber.PKE(A) =

∣∣∣∣Pr
[
GameIND-CPA

A,Saber.PKE = 1
]
− 1

2

∣∣∣∣
Moreover, the advantage of an adversary A against GameMLWR

A,m,l,µ,q,p(u) is defined
as given below.

AdvMLWR
m,l,µ,q,p(A) =

∣∣∣Pr
[
GameMLWR

A,m,l,µ,q,p(1) = 1
]
− Pr

[
GameMLWR

A,m,l,µ,q,p(0) = 1
]∣∣∣

Rather than directly employing the MLWR game, our proof utilizes two vari-
ant games, GMLWR and XMLWR, that are at least as hard as the MLWR game
when gen is a random oracle. This makes for a more general security theorem,
valid for all instantiations of gen; additionally, this enables us to separately ana-
lyze the utilized hardness assumptions in the random oracle model while staging
the security proof in the standard model. The specifications of the GMLWR and
XMLWR games are respectively given in Figure 3 and Figure 4; the advantages
of adversaries against these games are defined analogously to the advantage of
adversaries against the MLWR game.

6

GameGMLWR
A,l,µ,q,p(u)

1 : seedA ←$ U({0, 1}256)
2 : A← gen(seedA)
3 : s←$ βµ(Rl×1

q)
4 : b0 ← ⌊A · s⌉q→p

5 : b1 ←$ U(Rl×1
p)

6 : return A(seedA, bu)

GameXMLWR
A,l,µ,q,p(u)

1 : seedA ←$ U({0, 1}256)
2 : A← gen(seedA)
3 : s←$ βµ(Rl×1

q)
4 : b0 ← ⌊AT · s⌉q→p

5 : b1 ←$ U(Rl×1
p)

6 : a←$ U(R1×l
q)

7 : d0 ← ⌊a · s⌉q→p

8 : d1 ←$ U(Rp)
9 : return A(seedA, bu, a, du)

Figure 3. The GMLWR Game Figure 4. The XMLWR Game

Considering GameGMLWR
A,l,µ,q,p(u) and GameXMLWR

A,l,µ,q,p(u), we can rather easily ob-
serve that if gen is a random oracle, these (instances of) games are at least
as hard as GameMLWR

A,l,l,µ,q,p(u) and GameMLWR
A,l,l+1,µ,q,p(u), respectively. Naturally,

these observations can be formalized in random oracle model proofs. In fact,
we constructed these proofs, subsequently carrying out their formal verification
in EasyCrypt. Since they are relatively simple, we omit these proofs and their
formal verification in this discussion; instead, we provide them in Appendix A.
Nevertheless, here we do note that these random oracle model proofs exclu-
sively employ history-free reductions, ensuring the validity of these proofs in the
quantum setting [BDF+11]. Unfortunately, at the time of performing the formal
verification, EasyCrypt did not provide the features necessary to formally verify
the soundness of this argument5.

Hand-Written Proof. Utilizing the above-introduced security notion and hard-
ness assumptions, we devise a code-based, game-playing proof of Saber.PKE’s
security in the standard model. The security theorem we aim to prove is the
following.

Security Theorem. Let q
p ≤

p
2t . Then, for any adversary A, there exist ad-

versaries B0 and B1, each with approximately the same running time as A, such
that

AdvIND-CPA
Saber.PKE(A) ≤ AdvGMLWR

l,µ,q,p (B0) + AdvXMLWR
l,µ,q,p (B1)

Conceptually, the proof of the above theorem is similar to the security proof
concerning Saber’s key exchange scheme given in the original paper [DKRV18];
in particular, between the proofs, the structures of the game sequences are quite
alike, and the justifications of the steps within the proofs are primarily based

5However, since then, these features have been implemented and integrated into
EasyCrypt, making the formal verification of the validity of the random oracle model
proofs in the quantum setting a potential objective for future work [BBF+21].

7

on the same reasoning. Nevertheless, as aforementioned, the security proof pre-
sented in this work is significantly more detailed and meticulous. While con-
structing such a proof has merit on its own, the primary rationale for this is
that it facilitates the subsequent formal verification in EasyCrypt. Namely, the
formal verification enforces a high level of rigorousness and granularity on the
proof; already having a detailed hand-written proof as a reference eases this
process substantially. Naturally, knowing this hand-written proof similarly helps
comprehend the material of the corresponding formal verification. For this rea-
son, we cover the hand-written proof that we devised before advancing to the
discussion on the formal verification.

The ensuing proof consists of a sequence of five games, depicted in Figure 5;
for each game, the statements that differ from the preceding game are high-
lighted with a gray background. In this sequence, the first game arises from
replacing the procedure identifiers in GameIND-CPA

A,Saber.PKE by the corresponding
specification; the remainder of the games are slight variations of this initial
game. As such, for Gamei

A (0 ≤ i ≤ 4), the advantage of A is defined analo-
gously to AdvIND-CPA

Saber.PKE(A); we denote this advantage by Advi(A). We now bound
the difference in advantages between any two consecutive games from the game
sequence.

Step 1: Game0
A - Game1

A. In the first step, we alter the way in which b is
obtained. Specifically, rather than computing b by ⌊A · s + h⌋q→p, as Game0

A
does, Game1

A samples b uniformly at random from its domain. As a side effect of
this change, Game1

A does not utilize s anymore; for this reason, s is completely
removed from Game1

A.
Considering the difference between Game0

A and Game1
A, we can see that the

pair (seedA, b) in Game0
A is constructed identically to the pair (seedA, b0) in

GameGMLWR
A,l,µ,q,p(u); contrarily, in Game1

A, the pair (seedA, b) is constructed iden-
tically to the pair (seedA, b1) in GameGMLWR

A,l,µ,q,p(u). Consequently, an adversary A
that is able to distinguish between these two games can be used to construct an
adversary BA

0 against the corresponding instance of the GMLWR game. Figure 6
provides such a reduction adversary.

Based on the reduction adversary given in Figure 6, we can deduce that
for any given adversary A against Game0

A and Game1
A, there exists an adver-

sary BA
0 against the corresponding instance of the GMLWR game such that∣∣Pr

[
Game0

A = 1
]
− Pr

[
Game1

A = 1
]∣∣ = AdvGMLWR

l,µ,q,p (BA
0). Indeed, this is a con-

sequence of the fact that, from the perspective of A, BA
0 (seedA, bu) perfectly

simulates Game0
A when u = 0 and Game1

A when u = 1.

Step 2: Game1
A - Game2

A. For the second step, we introduce a modification that
results in an adversary against Game2

A always acquiring at least as much in-
formation as an adversary against Game1

A. Consequently, given an adversary
A against Game1

A, we can construct an adversary RA against Game2
RA such

that Adv1(A) = Adv2(RA). Specifically, this can be accomplished by straightfor-
wardly letting RA disregard any additional information it receives relative to the

8

Game0
A

1 : u←$ U({0, 1})
2 : seedA ←$ U({0, 1}256)
3 : A← gen(seedA)
4 : s←$ βµ(Rl×1

q)
5 : b← ⌊A · s + h⌋q→p

6 : (m0, m1)← A.P((seedA, b))
7 : s′ ←$ βµ(Rl×1

q)
8 : b′ ← ⌊AT · s′ + h⌋q→p

9 : v′ ← bT · (s′ mod p) + (h1 mod p)
10 : ĉ← ⌊v′ + ⌊mu⌋2→p⌋p→2·t

11 : u′ ← A.D((ĉ, b′))
12 : return (u′ = u)

Game1
A

1 : u←$ U({0, 1})
2 : seedA ←$ U({0, 1}256)
3 : A← gen(seedA)
4 : Skip
5 : b←$ U(Rl×1

p)
6 : (m0, m1)← A.P((seedA, b))
7 : s′ ←$ βµ(Rl×1

q)
8 : b′ ← ⌊AT · s′ + h⌋q→p

9 : v′ ← bT · (s′ mod p) + (h1 mod p)
10 : ĉ← ⌊v′ + ⌊mu⌋2→p⌋p→2·t

11 : u′ ← A.D((ĉ, b′))
12 : return (u′ = u)

Game2
A

1 : u←$ U({0, 1})
2 : seedA ←$ U({0, 1}256)
3 : A← gen(seedA)
4 : Skip
5 : b←$ U(Rl×1

p)
6 : (m0, m1)← A.P((seedA, b))
7 : s′ ←$ βµ(Rl×1

q)
8 : b′ ← ⌊AT · s′ + h⌋q→p

9 : v′ ← bT · (s′ mod p) + (h1 mod p)
10 : ĉ← ⌊v′ + ⌊mu⌋2→p⌋p→p2/q

11 : u′ ← A.D((ĉ, b′))
12 : return (u′ = u)

Game3
A

1 : u←$ U({0, 1})
2 : seedA ←$ U({0, 1}256)
3 : A← gen(seedA)
4 : Skip
5 : b←$ U(Rl×1

q)
6 : (m0, m1)← A.P((seedA, b))
7 : s′ ←$ βµ(Rl×1

q)
8 : b′ ← ⌊AT · s′ + h⌋q→p

9 : v′ ← ⌊bT · s′ + h1⌋q→p

10 : ĉ← v′ + (⌊mu⌋2→p2/q mod p)
11 : u′ ← A.D((ĉ, b′))
12 : return (u′ = u)

Game4
A

1 : u←$ U({0, 1})
2 : seedA ←$ U({0, 1}256)
3 : A← gen(seedA)
4 : Skip
5 : b←$ U(Rl×1

q)
6 : (m0, m1)← A.P((seedA, b))
7 : Skip
8 : b′ ←$ U(Rl×1

p)
9 : v′ ←$ U(Rp)

10 : ĉ← v′ + (⌊mu⌋2→p2/q mod p)
11 : u′ ← A.D((ĉ, b′))
12 : return (u′ = u)

Figure 5. Game Sequence of Saber.PKE’s Security Proof

9

BA
0 (seedA, bu)

1 : w ←$ U({0, 1})
2 : A← gen(seedA)
3 : (m0, m1)← A.P((seedA, bu))
4 : s′ ←$ βµ(Rl×1

q)
5 : b′ ← ⌊AT · s′ + h⌋q→p

6 : v′ ← bT
u · (s′ mod p) + (h1 mod p)

7 : ĉ← ⌊v′ + ⌊mw⌋2→p⌋p→2·t

8 : w′ ← A.D((ĉ, b′));
9 : return (w′ = w);

Figure 6. Reduction Adversary BA
0 Against GameGMLWR

BA
0 ,l,µ,q,p

(u)

information provided to an adversary against the first game. Figure 7 presents
this reduction adversary.

RA.P((seedA, b))

1 : return A.P((seedA, b))

RA.D((ĉ, b′))

1 : ĉ′ ← ⌊ĉ⌋p2/q→2·t

2 : return A.D((ĉ′, b′))

Figure 7. Reduction Adversary RA Against Game2
RA

Naturally, for the desired equality of advantages to hold, the reduction ad-
versary should, from the perspective of A, perfectly simulate a run of Game1

A.
Since the only difference between the considered games concerns the computa-
tion of ĉ, this wholly depends on the indistinguishability of ĉ (from Game1

A)
and ĉ′ (from Game2

RA); the remainder is trivially identical. Therefore, consider
x = v′ + ⌊mu⌋2→p, where v′ and mu are as in Game1

A and Game2
A. Then, be-

cause ϵt + 1 < ϵp, the modular scaling and flooring operation performed on x
in Game1

A effectively carries out a right-bit shift of ϵp − (ϵt + 1) bits on each
coefficient of x. Consequently, denoting the binary representation of a coeffi-
cient of x by aϵp−1 . . . a0, the corresponding coefficient of the resulting ĉ equals
aϵp−1 . . . aϵp−ϵt−1. Similarly, because ϵp < ϵq (which implies 2 · ϵp − ϵq < ϵq),
Game2

RA essentially performs a right-bit shift of ϵp − (2 · ϵp − ϵq) = ϵq − ϵp bits.
Certainly, for each coefficient aϵp−1 . . . a0 of x, this gives a resulting coefficient
aϵp−1 . . . aϵq−ϵp

of ĉ. At this point, employing the assumption stated in the secu-
rity theorem, i.e., q

p ≤
p

2·t , we can see that the subsequent modular scaling and
flooring operation applied by RA on ĉ carries out an additional right-bit shift of

10

2 · ϵp− ϵq − ϵt− 1 bits; in terms of the original x, this operation transforms each
coefficient aϵp−1 . . . aϵq−ϵp

into aϵp−1 . . . aϵp−ϵt−1, identical to the corresponding
coefficient of ĉ in Game1

A. Thus, the ĉ′ of Game2
RA indeed is indistinguishable

from the ĉ of Game1
A; as such, the reduction adversary is correctly constructed

and gives the desired equality of advantages.

Step 3: Game2
A - Game3

A. In this step, similarly to the preceding step, we exclu-
sively introduce changes that provide an adversary against Game3

A with at least
as much information as an adversary against Game2

A. Therefore, given any ad-
versary A against Game2

A, we can construct an adversary RA against Game3
RA

such that Adv2(A) = Adv3(RA). Figure 8 provides such a reduction adversary.

RA.P((seedA, b))

1 : bp ← b mod p

2 : return A.P((seedA, bp))

RA.D((ĉ, b′))

1 : ĉ′ ← ĉ mod p2/q

2 : return A.D((ĉ′, b′));

Figure 8. Reduction Adversary RA Against Game3
RA

In order to substantiate that the reduction adversary in Figure 8 perfectly
simulates a run of Game2

A (from the perspective of A), we argue the following
points.

– Sampling b from U(Rl×1
q) and, subsequently, reducing it modulo p is well-

defined and equivalent to sampling b directly from U(Rl×1
p). That is, the bp

that RA provides to A in Game3
RA is indistinguishable from, i.e., identically

distributed to, the b that A receives in Game2
A.

– Utilizing the ĉ given in Game3
RA , the ĉ′ thatRA computes (and calls A with)

is indistinguishable from, i.e., identically distributed to, the ĉ provided to A
in Game2

A.

Certainly, since b and ĉ are the only artifacts provided to the adversary that dif-
fer between the considered games, the above two points are sufficient to demon-
strate that the reduction adversary gives rise to the desired equality of advan-
tages.

Regarding the first point, suppose b is sampled from U(Rl×1
q) as in Game3

RA .
Then, by definition, every coefficient of (each entry of) b is an element from Zq.
Since p | q, reduction modulo p is well-defined for each of these coefficients;
in turn, the extension of this modular reduction to the complete vector, i.e.,
b mod p, is well-defined as well. Furthermore, since precisely q

p elements from
Zq map to a specific x ∈ Zp when reduced modulo p, exactly qn·l

pn·l elements from
Rl×1

q map to a specific v ∈ Rl×1
p when reduced modulo p. Therefore, sampling b

from U(Rl×1
q) and, subsequently, reducing it modulo p is well-defined and results

in an element that is uniformly distributed over Rl×1
p .

11

Concerning the second point, consider the computation of bT · s′ + h1 in
Game3

RA . As a consequence of the previous point, reducing the result of this
computation modulo p provides an identical result to the analogous computation
in Game2

A; equivalently, the computation of bT · (s′ mod p) + (h1 mod p) (from
Game2

A) and bT ·s′ +h1 (from Game3
RA) are equal in the least significant ϵp bits.

Thus, if aϵq−1 . . . aϵp−1 . . . a0 denotes the binary representation of a coefficient
of the computation in Game3

RA , then aϵp−1 . . . a0 denotes its counterpart from
Game2

A. Certainly, from this follows that the corresponding coefficient of v′ in
Game3

RA is computed as ⌊aϵq−1 . . . aϵp−1 . . . a0⌋q→p = aϵq−1 . . . aϵp−1 . . . aϵq−ϵp .
Then, denoting a coefficient of mu by b0, we can derive that the corresponding
coefficients of ĉ between the games are identical in their 2 ·ϵp−ϵq least significant
bits as follows6.

Game2
A : ⌊aϵp−1 . . . a0 + ⌊b0⌋2→p⌋p→p2/q =
⌊aϵp−1 . . . a0 + b00ϵp−1⌋p→p2/q =
⌊(aϵp−1 + b0) . . . a0⌋p→p2/q =
(aϵp−1 + b0) . . . aϵq−ϵp

Game3
RA : aϵq−1 . . . aϵp−1 . . . aϵq−ϵp

+ (⌊b0⌋2→p2/q mod p) =
aϵq−1 . . . aϵp−1 . . . aϵq−ϵp

+ 0ϵq−ϵpb002·ϵp−ϵq−1 =
dϵq−1 . . . dϵp

(aϵp−1 + b0)aϵp−2 . . . aϵq−ϵp

Here, (aϵp−1 + b0) represents the (single) bit value resulting from the addition
of the aϵp−1 and b0 bits (modulo 2); furthermore, each di represents a bit that
might be influenced by potential carries. Finally, we see thatRA indeed correctly
computes (and calls A with) a ĉ′ that is indistinguishable from the ĉ of Game2

A
by reducing each coefficient of the ĉ provided in Game3

RA modulo p2

q = 22·ϵp−ϵq

and, hence, effectively discarding the ϵq − ϵp most significant bits.

Step 4: Game3
A - Game4

A. For the final step, we change the manner in which b′

and v′ are obtained. Namely, instead of computing these values by ⌊AT ·s′+h⌋q→p

and ⌊bT ·s′+h1⌋q→p, as is done in Game3
A, they are sampled uniformly at random

from their respective domains in Game4
A. As a consequence of this adjustment,

s′ becomes redundant and, for this reason, is removed from Game4
A.

In Game3
A, the tuple (seedA, b′, bT , v′) is constructed identically to the tu-

ple (seedA, b0, a, d0) in GameXMLWR
A,l,µ,q,p(u); contrarily, the tuple (seedA, b′, bT , v′)

in Game4
A is constructed in the same way as the tuple (seedA, b1, a, d1) in

GameXMLWR
A,l,µ,q,p(u). As such, any adversary A distinguishing between Game3

A and
Game4

A can be used to construct an adversary against the corresponding instance
of the XMLWR game. Figure 9 contains such a reduction adversary.

Employing the reduction in Figure 9, we can derive a result analogous to the
result of the first step. Specifically, for any adversary A distinguishing between

6Notice that in Game3
RA , the explicit modular reduction in v′+(⌊mu⌋2→p2/q mod p)

is merely used to accentuate the interpretation of ⌊mu⌋2→p2/q as an element of Rp;
that is, the modular reduction does not affect the actual value of mu.

12

BA
1 (seedA, bu, a, du)

1 : w ←$ U({0, 1});
2 : (m0, m1)← A.P((seedA, aT))
3 : ĉ← du + (⌊mw⌋2→p2/q mod p)
4 : w′ ← A.D((ĉ, bu))
5 : return (w = w′)

Figure 9. Reduction Adversary BA
1 Against GameXMLWR

BA
1 ,l,µ,q,p

(u)

Game3
A and Game4

A, there exists an adversary BA
1 against GameXMLWR

BA
1 ,l,µ,q,p(u) such

that
∣∣Pr

[
Game3

A = 1
]
− Pr

[
Game4

A = 1
]∣∣ = AdvXMLWR

l,µ,q,p (BA
1). Certainly, this is

due to the fact that, from the perspective of A, BA
1 (seedA, bu, a, du) perfectly

simulates Game3
A when u = 0 and Game4

A when u = 1.

Analysis of Game4
A. Examining Game4

A, we can observe that all artifacts given
to the adversary are uniformly distributed over their domain; particularly, ĉ is
uniformly distributed over Rp because the uniformity of v′ is maintained under
addition with (the scaled) mu. Certainly, in this game, v′ essentially constitutes
a generalization of the one-time pad to the (additive) group of Rp. As such, the
computed ciphertext is uniformly distributed and completely independent of all
other information. This implies that an adversary against Game4

A must randomly
guess the bit u; as a result, for any adversary A, we have Pr

[
Game4

A = 1
]

= 1
2 .

Final Result. Aggregating all results, we can derive the security theorem as
follows.

∀A∃A′,B0,B1 :

AdvIND-CPA
Saber.PKE(A) = Adv0(A) =

∣∣∣∣Pr
[
Game0

A = 1
]
− 1

2

∣∣∣∣ =∣∣Pr
[
Game0

A = 1
]
− Pr

[
Game4

A′ = 1
]∣∣ ≤∣∣Pr

[
Game0

A = 1
]
− Pr

[
Game1

A = 1
]∣∣ +

∣∣Pr
[
Game1

A = 1
]
− Pr

[
Game4

A′ = 1
]∣∣ =

AdvGMLWR
l,µ,q,p (B0) +

∣∣Pr
[
Game1

A = 1
]
− Pr

[
Game4

A′ = 1
]∣∣ =

AdvGMLWR
l,µ,q,p (B0) + AdvXMLWR

l,µ,q,p (B1)

In this derivation, the inequality arises from an application of the triangle in-
equality; the second-to-last equality follows from the result of the first step in
the proof; and the last equality holds due to the results of the second, third, and
fourth step, as well as the fact that Pr

[
Game4

A′ = 1
]

= 1
2 . At last, compressing

the above derivation gives the desired result.

∀A∃B0,B1 : AdvIND-CPA
Saber.PKE(A) ≤ AdvGMLWR

l,µ,q,p (B0) + AdvXMLWR
l,µ,q,p (B1)

13

As a final remark, although no formal analysis is provided, it is evident that
the running time for each of B0 and B1 is approximately equal to that of A. In
particular, excluding the calls toA’s abstract algorithms, all employed reductions
exclusively perform sequential operations that can straightforwardly be executed
efficiently.

Formal Verification. Following the hand-written security proof, we discuss
several representative parts of the corresponding formal verification in Easy-
Crypt. Specifically, we examine the formalization of (part of) the fundamen-
tal specification; furthermore, we consider the formalization specific to the ini-
tial two proof steps and the final result. Notably, we do not cover the con-
crete proofs of the results in EasyCrypt. This is mainly because the exposi-
tion of such technical endeavors would not be meaningful to the current dis-
cussion; moreover, this does not take away from the meaningfulness of the re-
sults presented here since, assuming the utilized tool is sound, validation of a
formal verification artifact merely requires validation of the formalized specifi-
cation and related claims (as long as the claims are successfully verifiable in the
tool). Nevertheless, all results have successfully been formally verified. The code
corresponding to this formal verification is provided in the repository belong-
ing to this work; this repository can be found at https://github.com/MM45/
Saber-Formal-Verification-EasyCrypt.

Fundamental Specification. Foremost, we formalize the most rudimentary part of
the considered context: Saber’s parameters and the corresponding constraints.
These formalizations are presented in Listing 1.1 and Listing 1.2, respectively.

1 const eq , ep , et: int.
2 const en: int.
3
4 const q: int = 2^eq.
5 const p: int = 2^ep.
6 const t: int = 2^et.
7 const n: int = 2^en.
8 const l: int.

Listing 1.1. Saber’s Parameters

1 axiom zero_en : 0 <= en.
2 axiom one_et1 : 1 <= et + 1.
3 axiom et2_ep : et + 2 <= ep.
4 axiom ep1_eq : ep + 1 <= eq.
5 axiom one_l: 1 <= l.

Listing 1.2. Parameter Constraints

Naturally, each constant defined in the former listing represents the similarly-
named parameter of Saber; furthermore, the second, third, and fourth axioms in
the latter listing together formalize 1 ≤ ϵt +1∧ ϵt +2 ≤ ϵp∧ ϵp +1 ≤ ϵq, which is
equivalent to the previously mentioned constraint that Saber enforces on these
exponents, i.e., 0 < ϵt + 1 < ϵp < ϵq.

Subsequent to the parameters, we define the necessary types and operators7.
First, most of the types we define are used to denote the algebraic structures
employed in Saber; for example, we define Zq, Rq, Rq_vec, and Rq_mat to respec-
tively denote Zq, Rq, Rl×1

q , and Rl×l
q . The types for the remainder of the algebraic

7In EasyCrypt, an operator denotes a mathematical function.

14

https://github.com/MM45/Saber-Formal-Verification-EasyCrypt
https://github.com/MM45/Saber-Formal-Verification-EasyCrypt

structures follow a similar identifier format, e.g., Rp represents Rp. Naturally, for
each of these types, the appropriate structure is formalized and assigned. Second,
the formalizations of the functions predominantly consist of operators that carry
out modular reduction or modular scaling and flooring. Listing 1.3 contains the
definitions for a selected few of these operators.

1 op Zq2Zp (z : Zq) : Zp = Zp. inzmod (Zq.asint z).
2
3 op scaleZq2Zp (z : Zq) : Zp =
4 Zp. inzmod (shr (Zq.asint z) (eq - ep)).
5 op scaleZp2Zq (z : Zp) : Zq =
6 Zq. inzmod (shl (Zp.asint z) (eq - ep)).

Listing 1.3. Modular Reduction and Modular Scaling and Flooring

Here, the asint operator converts from the associated integer ring type, e.g.,
Zp or Zq, to the integers; the inzmod operator performs the opposite conver-
sion. In its conversion, inzmod implicitly reduces the provided argument modulo
the corresponding modulus. Moreover, shr and shl respectively compute a right
and left bit-shift of their first (integer) argument by a number of bits equal to
their second (integer) argument. Apart from the specific operators shown in this
listing, we define variants for each type combination involved in a modular re-
duction or modular scaling and flooring throughout; this includes the extensions
of these operators to (vectors of) polynomials. For intelligibility purposes, all
of these operators share the same self-explanatory identifier format. Lastly, a
single additional operator models the gen function. This operator is left rather
abstract, merely mapping a seed to an element of Rl×l

q without other properties
or requirements.

At this point, the only remaining fundamental artifacts to formalize are the
required distributions. For the uniform distributions, we utilize the built-in mech-
anisms of EasyCrypt to construct precise formalizations; for type X, these dis-
tributions are denoted by dX. Contrariwise, instead of βµ(Rl×1

q), we formalize
an arbitrary, generic distribution over Rl×1

q that is denoted by dsmallRq_vec.
Indeed, this generic distribution most definitely encompasses βµ(Rl×1

q). In con-
sequence of this more abstract approach, the formal verification gives slightly
stronger guarantees without requiring additional nontrivial assumptions; specif-
ically, with this approach, the formal verification shows that the security proof is
valid for any distribution (over Rl×1

q) in place of βµ(Rl×1
q), provided the MLWR

game is hard with this distribution. Moreover, this approach precludes the (some-
what tedious) effort of precisely formalizing βµ(Rl×1

q); this is also the reason we
do not formalize the µ parameter (see Listing 1.1).

Leveraging the above fundamentals, we can formalize the remainder of the
necessary higher-level artifacts such as the specification of Saber.PKE, the secu-
rity notion, the hardness assumptions, the game sequence, and the justifications
for the steps in the game-based proof. Although we do not explicitly present

15

every utilized artifact here, the ensuing discussion will cover several of them at
the relevant places.

Step 1: Game0
A - Game1

A. Before the formal verification of each step, and so
also preceding the formal verification of the first step, we formalize the adver-
sary class(es), games, and reduction adversary relevant to this step. Concerning
the former, Listing 1.4 depicts the formalizations of the classes of IND-CPA
adversaries and GMLWR adversaries, both utilized in the first step.

1 module type Adv_INDCPA = {
2 proc choose (pk : seed * Rp_vec) : R2 * R2
3 proc guess(c : R2t * Rp_vec) : bool
4 }.
5
6 module type Adv_GMLWR = {
7 proc guess(sd : seed , b : Rp_vec) : bool
8 }.

Listing 1.4. Classes of IND-CPA Adversaries and GMLWR Adversaries

A module type defines an abstract interface that modules may implement. Easy-
Crypt allows universal quantification over these types, enabling one to abstractly
reason about every potential instantiation; therefore, this mechanism is well-
suited to capture the concept of an adversary class8. Regarding the module
types presented above, Adv_INDCPA denotes the class of IND-CPA adversaries,
where choose and guess respectively represent A.P and A.D; Adv_GMLWR denotes
the class of GMLWR adversaries, where guess represents the only algorithm of
these adversaries. Naturally, the parameters and return values of these proce-
dures accordingly formalize the parameters and return values of the correspond-
ing algorithms.

Employing the formalization of the adversary classes, we formalize the nec-
essary games. First, Listing 1.5 provides the formalization of Game0

A. Here, as
well as in all ensuing listings, the (*...*) comment represents the (uninteresting)
omitted section of variable declarations.

1 module Game0(A : Adv_INDCPA) = {
2 proc main () : bool = {
3 (* ... *)
4 u <$ dbool;
5 sd <$ dseed;
6 _A <- gen sd;
7 s <$ dsmallRq_vec ;
8 b <- scaleRqv2Rpv (_A *^ s + h);
9

8Nevertheless, albeit customary in hand-written cryptographic proofs, EasyCrypt
currently does not provide the possibility to restrict the space or time complexity of
module types.

16

10 (m0 , m1) <@ A. choose ((sd , b));
11
12 s' <$ dsmallRq_vec ;
13 b' <- scaleRqv2Rpv ((trmx _A) *^ s' + h);
14 v' <- (dotp b (Rqv2Rpv s')) + (Rq2Rp h1);
15 chat <- scaleRp2R2t (v' + (scaleR22Rp (
16 if u then m1 else m0)));
17
18 u' <@ A.guess ((chat , b'));
19 return (u = u');
20 }
21 }.

Listing 1.5. Game0
A

As exemplified in this listing, we formalize games through parameterized mod-
ules; specifically, the parameter provided to such modules is another module that
formalizes the considered adversary. Moreover, the actual statements executed
by the game are encapsulated in a procedure; however, this is merely a syntac-
tical requirement of EasyCrypt. Statements in module procedures belong to one
of several categories: regular assignment statements (using <-), sample state-
ments (using <$), and procedure call statements (using <@). Then, noting that
*^, dotp, trmx, h1, and h respectively denote matrix-vector multiplication, dot
product, transpose, h1, and h, we can see that Game0(A).main() is a line-by-line
verbatim translation of Game0

A, where A formalizes A. Furthermore, from this
formalization of Game0

A, we can straightforwardly derive the formalization of
Game1

A; indeed, we merely remove line 7 and replace line 8 with the appropriate
sample statement.

The last game relevant to the first step is GameGMLWR
A,l,µ,q,p(u); the formalization

of this game is presented in Listing 1.6.

1 module GMLWR(A : Adv_GMLWR) = {
2 proc main(u : bool) : bool = {
3 (* ... *)
4 sd <$ dseed;
5 _A <- gen sd;
6 s <$ dsmallRq_vec ;
7
8 if (u) {
9 b <$ dRp_vec ;

10 } else {
11 b <- scaleroundRqv2Rpv (_A *^ s);
12 }
13 u' <@ A.guess(sd , b);
14 return u';
15 }
16 }.

17

Listing 1.6. GameGMLWR
A,l,µ,q,p(u)

In this listing, scaleroundRqv2Rpv formalizes the extension (to polynomial vec-
tors) of the modular scaling and rounding function employed in GameGMLWR

A,l,µ,q,p(u).
Taking this into account, we can see that GMLWR(A).main(u) is a correct formal-
ization of GameGMLWR

A,l,µ,q,p(u), where A and u respectively denote A and u9.
Penultimately, we formalize adversary BA

0 against GameGMLWR
BA

0 ,l,µ,q,p(u). Specif-
ically, we formalize this reduction adversary as a module B0(A : Adv_INDCPA)
of type Adv_GMLWR. Indeed, the Adv_GMLWR type enforces B0(A) to implement
guess(sd, b); in this case, this procedure precisely formalizes the BA

0 (seedA, bu)
presented in Figure 6. Due to the similarities between BA

0 and the initial two
games in the game sequence, B0(A).guess(sd, b) is nearly identical to the above-
discussed formalizations of Game0

A and Game1
A. For this reason, we refrain from

explicitly presenting the formalization of this reduction adversary here.
Lastly, we formalize the result of the security proof’s first step; in particular,

we do so by formulating an appropriate lemma. Listing 1.7 provides this lemma.

1 lemma Step_Distinguish_Game0_Game1_GMLWR &m :
2 `| Pr[Game0(A).main () @ &m : res] -
3 Pr[Game1(A).main () @ &m : res] |
4 =
5 `| Pr[GMLWR(B0(A)).main(true) @ &m : res] -
6 Pr[GMLWR(B0(A)).main(false) @ &m : res] |.

Listing 1.7. First Step in Game-Playing Security Proof

Here, A is an arbitrary module of type Adv_INDCPA; that is, A formalizes an arbi-
trary IND-CPA adversary. Furthermore, &m signifies an arbitrary memory that,
in this case, essentially formalizes the context in which the games and adversaries
are executed. Then, given that `|x|, Pr[E], and res respectively denote the ab-
solute value of x, probability of E, and return value of the considered procedure,
we can recognize the following correspondences.

Pr[Game0(A).main() @ &m : res] ∼= Pr
[
Game0

A = 1
]

Pr[Game1(A).main() @ &m : res] ∼= Pr
[
Game1

A = 1
]

Pr[GMLWR(B0(A)).main(true) @ &m : res] ∼= Pr
[
GameGMLWR

BA
0 ,l,µ,q,p(1) = 1

]
Pr[GMLWR(B0(A)).main(false) @ &m : res] ∼= Pr

[
GameGMLWR

BA
0 ,l,µ,q,p(0) = 1

]
This demonstrates that Step_Distinguish_Game0_Game1_GMLWR correctly formal-
izes the result of the initial step of the security proof.

9Remark that the parameters of GameGMLWR
A,l,µ,q,p(u) are formalized outside of the

GMLWR module, see Listing 1.1.

18

Step 2: Game1
A - Game2

A. For the formal verification of the second step, simi-
larly to before, we first formalize the required games and reduction adversary.
Concerning the games, since Game1

A has already been formalized in the pre-
ceding step, we only need to formalize Game2

A. The formalization of Game2
A

can straightforwardly be derived from the formalization of Game0
A presented in

Listing 1.5; more precisely, this can be achieved by removing line 7, changing
line 8 to the proper sampling statement, and appropriately modifying the com-
putation of chat in line 15. Regarding the reduction adversary, we construct a
module A2(A1 : Adv_INDCPA) of type Adv_INDCPA_2. This module type is identical
to Adv_INDCPA, except for the fact that the parameter of its guess procedure is
of type Rppq * Rp_vec instead of type R2t * Rp_vec; this models that the cipher-
text given to the adversary in Game2

A is an element of Rp2/q × Rl×1
p instead

of R2·t × Rl×1
p . In other words, while Adv_INDCPA formalizes the class of adver-

saries against GameIND-CPA
A,Saber.PKE, Game0

A, and Game1
A, Adv_INDCPA_2 formalizes

the class of adversaries against Game2
A

10. In accordance with its module type, A2
implements choose(pk) and guess(c), respectively formalizing RA.P((seedA, b))
and RA.D((ĉ, b′)) as specified in Figure 7. Indeed, A2(A1).choose(pk) merely re-
turns A1.choose(pk); A2(A1).guess(c) performs an appropriate modular scaling
and flooring operation on the first element of c before returning A1.guess(c'),
where c' denotes the adjusted c.

Having constructed the necessary formalizations, we can express the lemma
that formalizes the result of the security proof’s second step; this lemma is
presented in Listing 1.8.

1 lemma Step_Game1_Game2 &m :
2 `| Pr[Game1(A).main () @ &m : res] - 1%r / 2%r |
3 =
4 `| Pr[Game2(A2(A)).main () @ &m : res] - 1%r / 2%r |.

Listing 1.8. Second Step in Game-Playing Security Proof

In this lemma, as in Step_Distinguish_Game0_Game1_GMLWR, A denotes an arbitrary
module of type Adv_INDCPA, i.e., the formalization of an arbitrary IND-CPA ad-
versary. Then, given the previously explained interpretation of the employed
statements and the fact that 1%r / 2%r denotes 1

2 , we can see that Step_Game1_
Game2 accurately formalizes the result of the second step of the security proof.

Step 3, Step 4, and Analysis of Game4
A. Based on the preceding discussion,

the formal verification process for the remaining two steps of the security proof
can straightforwardly be extrapolated. Namely, the formal verification of the
third step, reducing from Game3

A to Game2
A, follows an analogous procedure

to the second step; the formal verification of the fourth step, reducing from
GameXMLWR

A,l,µ,q,p(u) to distinguishing between Game3
A and Game4

A, has a similar
structure to the first step.

10Analogously, there is a separate module type that formalizes the class of adversaries
against Game3

A and Game4
A.

19

Regarding the formal verification of the 1
2 winning probability of any ad-

versary against Game4
A, we foremost formally verify the equivalence between

Game4
A and a contrived auxiliary game; this auxiliary game is identical to

Game4
A, except that it samples every artifact from the appropriate uniform dis-

tribution and delays the sampling of u to the final statement (preceding the
return statement). Due to its construction, contrary to Game4

A, the auxiliary
game facilitates the formal verification of the invariable 1

2 winning probability.
Afterward, the fact that any adversary against Game4

A has a 1
2 winning prob-

ability directly follows from the equivalence between Game4
A and the auxiliary

game.

Final Result (Security Theorem). Finally, we consider the security theorem. Sim-
ilarly to the security proof’s steps, this theorem is formalized by formulating a
suitable lemma; this lemma is provided in Listing 1.9.

1 lemma Saber_INDCPA_Security_Theorem &m :
2 exists (BG <: Adv_GMLWR) (BX <: Adv_XMLWR),
3 `| Pr[CPA(Saber_PKE_Scheme , A).main () @ &m : res] -
4 1%r / 2%r |
5 <=
6 `| Pr[GMLWR(BG).main(true) @ &m : res] -
7 Pr[GMLWR(BG).main(false) @ &m : res] |
8 +
9 `| Pr[XMLWR(BX).main(true) @ &m : res] -

10 Pr[XMLWR(BX).main(false) @ &m : res] |.

Listing 1.9. Security Theorem

Once again, A denotes an arbitrary module of type Adv_INDCPA. Furthermore,
CPA and XMLWR are modules respectively comprising the formalizations of the
IND-CPA and XMLWR games. In contrast to the modules considered hitherto,
the CPA module is provided by EasyCrypt’s standard library and defined with
respect to a generic PKE scheme. For this reason, the CPA module needs to
be instantiated with the desired concrete PKE scheme via its first parameter;
naturally, in this case we use the module that formalizes Saber.PKE, Saber_PKE_
Scheme, as the concrete PKE scheme. Lastly, exists (BG <: Adv_GMLWR) (BX <:
Adv_XMLWR) constitutes an existential quantifier over a module of type Adv_GMLWR
and a module of type Adv_XMLWR. Combining this with the foregoing material, we
can see that Saber_INDCPA_Security_Theorem exactly formalizes the security theo-
rem, as desired. This completes the formal verification of Saber.PKE’s IND-CPA
security property.

4 Correctness

Proceeding from the discussion on Saber.PKE’s security property, we now con-
sider the scheme’s correctness property. In particular, we do so by discussing

20

Algorithm 4 Alternative Specification of Saber’s Encryption Algorithm
1: procedure Saber.EncA(pk := (seedA, b), m)
2: A← gen(seedA)
3: s′ ←$ βµ(Rl×1

q)
4: b′ ← ⌊AT · s′ + h⌋q→p

5: bq ← ⌊b⌋p→q

6: v′ ← bT
q · s′ + q

p
· h1

7: cm ← ⌊v′ + ⌊m⌋2→q⌋q→2·t
8: return c := (cm, b′)

Algorithm 5 Alternative Specification of Saber’s Decryption Algorithm
1: procedure Saber.DecA(sk := s, c := (cm, b′))
2: b′

q ← ⌊b′⌋p→q

3: v ← b′T
q · s + q

p
· h1

4: m′ ← ⌊v − ⌊cm⌋2·t→q + q
p
· h2⌋q→2

5: return m′

the most important parts of the devised hand-written proof and corresponding
formal verification, akin to the foregoing discussion on the security property.

Alternative Specification and Correctness Notion. Before advancing to
the actual hand-written proof of Saber.PKE’s correctness property, we establish
an alternative, yet equivalent, specification of Saber.PKE11; additionally, we
introduce the relevant notion of correctness.

Foremost, to refer to the alternative specification of Saber.PKE, we use
Saber.PKEA; furthermore, the key generation, encryption, and decryption algo-
rithms of Saber.PKEA are respectively denoted by Saber.KeyGenA, Saber.EncA,
and Saber.DecA. For the latter two algorithms, Algorithm 4 and Algorithm 5
provide the corresponding specifications; the specification of Saber.KeyGenA is
identical to that of Saber.KeyGen and, therefore, not explicitly presented here.

As shown in Algorithm 4 and Algorithm 5, Saber.EncA and Saber.DecA en-
sure that all of their operations exclusively involve elements from Rq (or Rl×1

q).
This is accomplished by carrying out the appropriate modular scaling and floor-
ing operations on elements that do not originate from these structures. For in-
stance, Saber.EncA performs ⌊b⌋p→q and ⌊m⌋2→q; similarly, Saber.DecA per-
forms ⌊b′⌋p→q and ⌊cm⌋2·t→q

12. Furthermore, to guarantee their equivalence to
the original specifications despite these differences, Saber.EncA and Saber.DecA
consistently multiply h1 and h2 by q

p ∈ Rq. These alternative encryption and
decryption algorithms can intuitively be seen to be equivalent to their original
counterparts by noting that Saber.EncA and Saber.DecA essentially perform the
same operations as Saber.Enc and Saber.Dec, except that certain elements con-

11This alternative specification is based on the alternative specification of Saber’s
key exchange scheme presented in [D’A21].

12Recall that 0 < ϵt + 1 < ϵp < ϵq and, hence, 2 ≤ 2 · t < p < q; as a consequence,
⌊·⌋2→q, ⌊·⌋2·t→q, and ⌊·⌋p→q effectively constitute left bit-shifts.

21

sidered in these operations contain additional appended zero bits. The primary
rationale behind adopting this alternative specification for the correctness anal-
ysis is that it provides a convenient way to describe the errors induced by some
of the modular scaling and flooring operations as elements from Rq (or Rl×1

q);
this especially simplifies the corresponding formal verification by minimizing the
number of different types considered throughout.

Regarding the correctness notion, as aforementioned, we employ the defi-
nition provided in [HHK17]. For convenience, we restate this definition for a
generic PKE scheme here13; specifically, using the game presented in Figure 10,
we say PKE is δ-correct if for all A, the following holds.

Pr
[
GameFOCOR

A,PKE = 1
]
≥ 1− δ

In the concrete cases of Saber.PKE and Saber.PKEA, δ ̸= 0 due to the er-
rors caused by several of the modular scaling and flooring operations; more-
over, from the equivalence between Saber.PKE and Saber.PKEA, it follows that
Pr

[
GameFOCOR

A,Saber.PKEA = 1
]

is equal to Pr
[
GameFOCOR

A,Saber.PKE = 1
]

for any A.

GameFOCOR
A,PKE

1 : (pk, sk)← KeyGen()
2 : m← A(pk, sk)
3 : c← Enc(pk, m)
4 : m′ ← Dec(sk, c)
5 : return (m′ = m)

PProgδCOR

1 : A← U(Rl×l
q)

2 : s←$ U(Rl×1
q)

3 : s′ ←$ U(Rl×1
q)

4 : return ccrng(err_expression(A, s, s′))

Figure 10. Correctness Game Figure 11. Probabilistic Program For Correctness
Based on Error Expression

Hand-Written Proof. As alluded to above, Saber.PKEA and, by equivalence,
Saber.PKE are not perfectly correct; that is, Pr

[
GameFOCOR

A,Saber.PKEA = 1
]

< 1.
Concerning the specification of GameFOCOR

A,Saber.PKEA, we can see that this game es-
sentially verifies whether m′ equals m after the sequential execution of (pk, sk)←
Saber.KeyGenA(), c← Saber.EncA(pk, m), and m′ ← Saber.DecA(sk, c). As such,
given some m ∈ M, we can derive the expression that determines whether
m′ = m by considering the specifications of Saber.PKEA’s algorithms. Before
the derivation of this expression, we define several error terms; these error terms
capture the errors introduced by the modular scaling and flooring operations.

13Actually, the definition we present and use is slightly different from, yet trivially
equivalent to, the definition provided in [HHK17]. Namely, the definition we utilize
considers the success probability instead of the failure probability; this is the only
difference with the definition from [HHK17].

22

Ultimately, as the remainder will show, the expression derived for the verifica-
tion of m′ = m, henceforth referred to as “error expression”, exclusively depends
on these error terms14. In turn, because these error terms, when fully expanded,
only depend on randomly sampled artifacts (and constants) from the algorithms
of Saber.PKEA, one can exhaustively compute the distribution of the error ex-
pression and, hence, the probability that this expression lies within a certain
range. In fact, the authors of Saber have constructed a script that performs this
exact computation, (indirectly) claiming that this is equivalent to computing
the correctness of Saber.PKE (independent of the message) [D’A21,DKRV18].
Therefore, the ensuing proof aims to show that this probability computation
indeed computes the δ such that Pr

[
GameFOCOR

A,PKE = 1
]

= 1− δ holds for any A.
The first error term we define relates to A · s and bq; particularly, this error

term, errbq , represents the error of bq relative to A · s, as defined below.

errbq
= bq −A · s = ⌊⌊A · s + h⌋q→p⌋p→q −A · s

The second error term is similar to the previous one, except that it relates to
AT · s′ and b′

q instead of A · s and bq. The definition of this error term is given
below.

errb′
q

= b′
q −AT · s′ = ⌊⌊AT · s′ + h⌋q→p⌋p→q −AT · s′

The final error term captures the error related to v′ + ⌊m⌋2→q and ⌊cm⌋2·t→q;
this error term is defined below.

errcmq
= ⌊cm⌋2·t→q − (v′ + ⌊m⌋2→q) + q

4 · t
= ⌊⌊v′ + ⌊m⌋2→q⌋q→2·t⌋2·t→q − (v′ + ⌊m⌋2→q) + q

4 · t
In contrast to the other error terms, errcmq

adds a constant that is not present
in the related modular scaling and flooring operations. This constant, i.e., q

4·t ∈
Rq, ensures that the coefficients of errcmq

are centered around zero; indeed, the
coefficients of errbq

and errb′
q

are already centered around zero as is.
Utilizing the above-introduced error terms, we presently derive the error ex-

pression. To this end, considering the sequential execution of Saber.PKEA’s
algorithms, we first rewrite v−⌊cm⌋2·t→q + q

p ·h2 as follows. At times, to prevent
cluttering, we replace ⌊m⌋2→q + q

4·t + q
p · h2 by horizontal dots.

v − ⌊cm⌋2·t→q + q

p
· h2 =

v − (errcmq + v′ + ⌊m⌋2→q −
q

4 · t) + q

p
· h2 =

b′T
q · s− bT

q · s′ − errcmq
− ⌊m⌋2→q + q

4 · t + q

p
· h2 =

(s′T ·A + errT
b′

q
) · s− (sT ·AT + errT

bq
) · s′ − errcmq − . . . =

14Similarly to the specification of Saber.PKEA, the definitions of these error terms
are inspired by the error terms provided in [D’A21].

23

s′T ·A · s + errT
b′

q
· s− sT ·AT · s′ − errT

bq
· s′ − errcmq

− . . . =

errT
b′

q
· s− errT

bq
· s′ − errcmq

− . . . =

− ⌊m⌋2→q + errT
b′

q
· s− errT

bq
· s′ − errcmq

+ q

4 =

⌊m⌋2→q + q

4 + errT
b′

q
· s− errT

bq
· s′ − errcmq

In this derivation, most equalities follow from trivial substitutions, reorderings,
simplifications, and basic operator properties; however, confirming the validity
of the fifth and final equality might require some more thought. Specifically, the
fifth equality holds due to the fact that s′T ·A · s and sT ·AT · s′ are equal and,
as such, cancel each other out. Observing that both of these terms are elements
of Rq, i.e., no vectors15, this can be deduced as shown below.

s′T ·A · s = ((s′T ·A · s)T)T = (sT ·AT · s′)T = sT ·AT · s′

The final equality of the preceding derivation is valid because ⌊m⌋2→q is equal
to −⌊m⌋2→q. Particularly, since each coefficient of m equals either 0 or 1, each
coefficient of its scaled counterpart ⌊m⌋2→q has value 0 · q

2 = 0 or 1 · q
2 = q

2 ;
consequently, each coefficient of −⌊m⌋2→q equals −0 = 0 or − q

2 . Naturally, in
Rq, these corresponding coefficients of ⌊m⌋2→q and −⌊m⌋2→q are equivalent.

Additionally considering the modular scaling and flooring operation that
Saber.DecA applies to v − ⌊cm⌋2·t→q + q

p · h2, we can utilize the above-derived
expression to determine the final value Saber.DecA assigns to m′.

m′ = ⌊v − ⌊cm⌋2·t→q + q

p
· h2⌋q→2

= ⌊⌊m⌋2→q + q

4 + errT
b′

q
· s− errT

bq
· s′ − errcmq⌋q→2

= m + ⌊q4 + errT
b′

q
· s− errT

bq
· s′ − errcmq⌋q→2

Here, the last equality can be seen to hold by considering that m is an element
of R2, q

4 + errT
b′

q
· s − errT

bq
· s′ − errcmq

is an element of Rq, and ⌊·⌋2→q and
⌊·⌋q→2 respectively perform left and right bit-shifts of ϵq − 1 bits. Namely, this
implies that both sides of the last equality add the (single) bit of each coefficient
of m to the most significant bit of the corresponding coefficient of q

4 + errT
b′

q
·

s− errT
bq
· s′ − errcmq

.
At this point, it is rather trivial to derive that m′ = m if and only if ⌊ q

4 +
errT

b′
q
· s− errT

bq
· s′− errcmq

⌋q→2 = 0. In turn, the latter is veracious if and only
if each coefficient of q

4 + errT
b′

q
· s− errT

bq
· s′ − errcmq

lies in the (discrete) range
[0, q

2). Finally, subtracting the q
4 constant, we obtain the desired result: m′ = m

if and only if each coefficient of errT
b′

q
· s−errT

bq
· s′− errcmq lies in the (discrete)

range [− q
4 , q

4). Indeed, errT
b′

q
· s− errT

bq
· s′− errcmq constitutes the desired error

expression.
15Remark that this implies the transpose reduces to the identity function.

24

As a last endeavor preceding the conclusion of this proof, we show that the
error term errcmq

is independent of the message m. As a result, since the other
error terms do not contain m, it follows that the complete error expression is
independent of the message as well. To this end, consider the part of the error
term that includes m, i.e., ⌊⌊v′ + ⌊m⌋2→q⌋q→2·t⌋2·t→q − (v′ + ⌊m⌋2→q). Akin
to before, interpreting the modular scaling and flooring operations as bit-shifts
allows to deduce that ⌊⌊v′ +⌊m⌋2→q⌋q→2·t⌋2·t→q is identical to v′ +⌊m⌋2→q in its
ϵq−ϵt−1 most significant bits, but exclusively contains zero bits otherwise. Since
⌊m⌋2→q can only affect the value of the most significant (ϵq-th) bit of v′+⌊m⌋2→q,
it follows that ⌊⌊v′ + ⌊m⌋2→q⌋q→2·t⌋2·t→q is equal to ⌊m⌋2→q + ⌊⌊v′⌋q→2·t⌋q→2·t.
Consequently, we can rewrite errcmq

as shown below, demonstrating the error
term’s independence of m.

errcmq
= ⌊⌊v′ + ⌊m⌋2→q⌋q→2·t⌋2·t→q − (v′ + ⌊m⌋2→q) + q

4 · t
= ⌊m⌋2→q + ⌊⌊v′⌋q→2·t⌋2·t→q − v′ − ⌊m⌋2→q + q

4 · t
= ⌊⌊v′⌋q→2·t⌋2·t→q − v′ + q

4 · t
Finally, utilizing the obtained results, we can infer that for any A, computing

Pr
[
GameFOCOR

A,Saber.PKEA = 1
]

is equivalent to computing the probability that all
coefficients of the corresponding error expression lie in the discrete range [− q

4 , q
4).

Furthermore, because this error expression is independent of the message, this
probability does not depend on the particular m. In fact, completely unfolding
the error expression, we can see that excluding any constants, it solely depends
on A, s, and s′ produced as in Saber.KeyGenA, Saber.KeyGenA, and Saber.EncA,
respectively. As such, assuming gen’s output distribution is uniformly random,
we can formalize the probability computation based on the error expression
as the probabilistic program defined in Figure 11; this precisely denotes the
probability computation performed by the aforementioned script constructed
by Saber’s authors16 [D’A21]. Here, err_expression(A, s, s′) represents the error
expression errT

b′
q
·s−errT

bq
·s′−errcmq , accordingly using the provided arguments

as the values for A, s, and s′; moreover, for x ∈ Rq, ccrng(x) denotes the
predicate that evaluates to true if and only if each of x’s coefficients lies in
[− q

4 , q
4).

Using PProgδCOR and the equivalence between Saber.PKE and Saber.PKEA,
we can derive the following concluding sequence of equalities, assuming the uni-
formity of gen’s output distribution; certainly, these equalities hold for any ad-
versary A.

Pr
[
GameFOCOR

A,Saber.PKE = 1
]

= Pr
[
GameFOCOR

A,Saber.PKEA = 1
]

= Pr
[
PProgδCOR = 1

]
Formal Verification. Having discussed the hand-written correctness proof of

16This suggests that the script merely approximates the actual correctness value.
Nevertheless, if gen is adequately instantiated, i.e., its output distribution (closely)
resembles the uniform distribution, this approximation is (almost) accurate.

25

Saber.PKE, we imminently cover the essential parts of the corresponding formal
verification in EasyCrypt. More precisely, in the ensuing, we address the for-
malization of the error expression, GameFOCOR

A,PKE , and PProgδCOR; furthermore,
we consider the formal verification of the relevant program equivalences and the
final desired equality of probabilities. As with the discussion on the formal veri-
fication of Saber.PKE’s security property (and for the same reasons), we do not
go over the concrete proofs of the results in EasyCrypt; however, all results have
successfully been formally verified. Again, the code corresponding to this formal
verification is provided in the repository belonging to this work.

Starting off, we formalize GameFOCOR
A,PKE , i.e., the correctness game regarding a

generic PKE scheme. Similarly to the formalization of the games in the security
proof, the formalization of this correctness game requires the formalization of
the considered adversary class; the latter is given in Listing 1.10.

1 module type Adv_Cor = {
2 proc choose (pk : seed * Rp_vec , sk : Rq_vec) : R2
3 }.

Listing 1.10. Class of FOCOR Adversaries

The interpretation of Adv_Cor and choose is trivially extrapolated from the dis-
cussion surrounding Listing 1.4.

Employing the above formalization of the considered adversary class, the
formalization of GameFOCOR

A,PKE is provided in Listing 1.11.

1 module Cor_Game (S : Scheme , A : Adv_Cor) = {
2 proc main () : bool = {
3 (* ... *)
4 (pk , sk) <@ S.kg();
5 m <@ A. choose (pk , sk);
6 c <@ S.enc(pk , m);
7 m' <@ S.dec(sk , c);
8 return (m' = Some m);
9 }

10 }.

Listing 1.11. GameFOCOR
A,PKE

Modeling the fact that GameFOCOR
A,PKE is defined with respect to a generic PKE

scheme, Cor_Game takes an additional parameter of the built-in (module) type
Scheme. This module type is designed for the formalization of PKE schemes; as
such, it defines the kg, enc, and dec procedures, respectively representing the key
generation, encryption, and decryption algorithms of PKE schemes. Taking this
into account, we can see that the definition of Cor_Game is a verbatim translation
of GameFOCOR

A,PKE to EasyCrypt17.
17The Some in the return statement is a technical consequence of the fact that certain

PKE schemes may explicitly indicate decryption failure; nevertheless, this is irrelevant

26

Leveraging Cor_Game, we formalize the equivalence between GameFOCOR
A,Saber.PKE

and GameFOCOR
A,Saber.PKEA as shown in Listing 1.12. Here, as the identifiers sug-

gest, Saber_PKE_Scheme formalizes Saber.PKE and Saber_PKE_Scheme_Alt formal-
izes Saber.PKEA. Furthermore, A constitutes an arbitrary module of type Adv_
Cor; that is, A formalizes an arbitrary adversary from the class of adversaries
against the correctness game. As such, Cor_Game(Saber_PKE_Scheme, A).main for-
malizes GameFOCOR

A,Saber.PKE and Cor_Game(Saber_PKE_Scheme_Alt, A).main formal-
izes GameFOCOR

A,Saber.PKEA, both for an arbitrary A.

1 lemma Equivalence_Cor_Game_Orig_Alt :
2 equiv[Cor_Game (Saber_PKE_Scheme , A).main ~
3 Cor_Game (Saber_PKE_Scheme_Alt , A).main
4 : ={glob A} ==> ={res }].

Listing 1.12. Equivalence Between GameFOCOR
A,Saber.PKE and GameFOCOR

A,Saber.PKEA

Substantiating that Equivalence_Cor_Game_Orig_Alt accurately formalizes the
desired equivalence, we elaborate on the interpretation of this lemma. Fore-
most, an equiv statement consists of two primary parts, both contained within
the square brackets, separated by a colon: the part preceding the colon spec-
ifies the collated procedures (separated by ~); the part succeeding the colon
specifies the pre- and postconditions under which the equivalence holds (sepa-
rated by ==>). So, in the equiv statement above, Cor_Game(Saber_PKE_Scheme,
A).main is collated with Cor_Game(Saber_PKE_Scheme_Alt, A).main. Moreover, =
{glob A} and ={res} respectively constitute the pre- and postconditions under
which the equivalence should hold. More precisely, the precondition, ={glob
A}, states that in the execution of both considered programs, the initial per-
spectives of A should be identical; the postcondition, ={res}, denotes that for
all possible output values, the probability that one of the programs returns
this value equals the probability that the other program outputs this (same)
value. Thus, essentially, Equivalence_Cor_Game_Orig_Alt formalizes that for all
A against GameFOCOR

A,Saber.PKE and GameFOCOR
A,Saber.PKEA, the probability of the for-

mer game outputting a certain value equals the probability of the latter game
outputting that same value. This is sufficient for this formal verification.

Following, in order to formalize the equivalence between GameFOCOR
A,Saber.PKEA

and PProgδCOR (for all A), we must first formalize PProgδCOR; in turn, this
requires the formalization of, in particular, the error terms and error expression.
Recall that the error terms are defined as follows, using the previously derived
definition of errcmq

that does not include m.
errbq

= ⌊⌊A · s + h⌋q→p⌋p→q −A · s
errb′

q
= ⌊⌊AT · s′ + h⌋q→p⌋p→q −AT · s′

errcmq = ⌊⌊v′⌋q→2·t⌋2·t→q − v′ + q

4 · t
to the current discussion and, thus, can be ignored. Alternatively stated, we can regard
the return statement as being return (m' = m)

27

Then, illustrating the manner in which these error terms are formalized, we
examine the formalization of errbq

; this formalization is provided in Listing 1.13.

1 op error_bq (_A : Rq_mat) (s : Rq_vec) : Rq_vec =
2 (scaleRpv2Rqv (scaleRqv2Rpv (_A *^ s + h))) -
3 (_A *^ s).

Listing 1.13. errbq

As this listing demonstrates, we formalize the error terms as parameterized op-
erators. The parameters of these operators are intended to be instantiated with
the appropriate artifacts generated by (the formalization of) PProgδCOR; if this
is the case, the operators accurately formalize the error terms. For instance,
the parameters _A and s of error_bq are expected to be instantiated with (the
formalizations of) A and s, respectively. If the parameters are instantiated as
such, we can see that (scaleRpv2Rqv (scaleRqv2Rpv (_A *^ s + h))) - (_A *^
s) precisely formalizes ⌊⌊A · s + h⌋q→p⌋p→q − A · s; hence, with appropriate

parameter instantiations, error_bq accurately formalizes errbq
.

Next, we reiterate that, based on the error terms, the error expression is
defined as given below.

errT
b′

q
· s− errT

bq
· s′ − errcmq

Utilizing the above-discussed formalizations of errT
bq

, errT
b′

q
, and errcmq

, for-
malizing the error expression is relatively easy. Nevertheless, for completeness,
Listing 1.14 provides the resulting formalization.

1 op error_expression (_A : Rq_mat) (s s': Rq_vec) =
2 dotp (error_bq ' _A s') s - dotp (error_bq _A s) s' -
3 error_cmq _A s s'

Listing 1.14. Error Expression

Employing error_expression, we can construct the formalization of PProgδCOR;
this formalization is presented in Listing 1.15.

1 module Delta_Cor_PProg = {
2 proc main () : bool = {
3 (* ... *)
4 _A <$ dRq_mat ;
5 s <$ dsmallRq_vec ;
6 s' <$ dsmallRq_vec ;
7 return ccrng (error_expression _A s s');
8 }
9 }.

Listing 1.15. PProgδCOR

28

As expected, since PProgδCOR merely comprises three sampling operations and
a return statement, the definition of Delta_Cor_PProg is rather straightforward.
Specifically, the only novelty in this definition concerns the ccrng operator in the
return statement. As its identifier suggests, this operator merely formalizes the
ccrng predicate. That is, ccrng takes an argument of type Rq and evaluates to
true if and only if all of the argument’s coefficients lie between − q

4 (including)
and q

4 (excluding).
Harnessing the formalizations of GameFOCOR

A,Saber.PKEA and PProgδCOR, we can
formalize the equivalence between these games; Listing 1.16 provides the formal-
ization of this equivalence.

1 lemma Equivalence_CorGame_DeltaCorPProg :
2 equiv[Cor_Game (Saber_PKE_Scheme_Alt , A).main ~
3 Delta_Cor_PProg .main : true ==> ={res }].

Listing 1.16. Equivalence Between GameFOCOR
A,Saber.PKEA and PProgδCOR

As in preceding correctness-related listings, A constitutes an arbitrary module
of type Adv_Cor, formalizing an arbitrary A against GameFOCOR

A,Saber.PKEA. Fur-
thermore, the interpretation of Equivalence_CorGame_DeltaCorPProg is similar
to the interpretation of the equivalence lemma provided in Listing 1.12. More
precisely, Equivalence_CorGame_DeltaCorPProg formalizes that for all A against
GameFOCOR

A,Saber.PKEA, the probability that GameFOCOR
A,Saber.PKEA outputs a specific

value is equal to the probability that PProgδCOR outputs that same value; this
holds for all possible output values.

Finally, albeit trivially veracious at this point, we formally verify the fact
that for any A against GameFOCOR

A,Saber.PKE, Pr
[
GameFOCOR

A,Saber.PKE = 1
]

is equal to

Pr
[
PProgδCOR = 1

]
. Listing 1.17 contains the formalization of this statement.

Given that, once again, A is an arbitrary module of type Adv_Cor, the interpre-
tation of the lemma in this listing should be evident from previous listings and
corresponding discussions.

1 lemma Eq_Prob_CorGameOrig_DeltaCorPProg &m :
2 Pr[Cor_Game (Saber_PKE_Scheme , A).main () @ &m : res]
3 =
4 Pr[Delta_Cor_PProg .main () @ &m : res].

Listing 1.17. Pr
[
GameFOCOR

A,Saber.PKE = 1
]

= Pr
[
PProgδCOR = 1

]
Naturally, the veracity of this lemma immediately follows from the previously
verified equivalences presented in Listing 1.12 and Listing 1.16 (and their transi-
tivity). This completes the formal verification of Saber.PKE’s correctness prop-
erty. Combining this with the preceding security-related results, we have formally
verified that Saber.PKE possesses the properties necessary to transform it into

29

a IND-CCA2 secure and (sufficiently) correct KEM via the relevant variant of
the FO transform.

References
BBB+21. Manuel Barbosa, Gilles Barthe, Karthik Bhargavan, Bruno Blanchet, Cas

Cremers, Kevin Liao, and Bryan Parno. SoK: Computer-aided cryptogra-
phy. In 2021 IEEE Symposium on Security and Privacy (SP), pages 777–
795. IEEE Computer Society, may 2021.

BBF+21. Manuel Barbosa, Gilles Barthe, Xiong Fan, Benjamin Grégoire, Shih-Han
Hung, Jonathan Katz, Pierre-Yves Strub, Xiaodi Wu, and Li Zhou. Easypqc:
Verifying post-quantum cryptography. Cryptology ePrint Archive, Report
2021/1253, 2021.

BDF+11. Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian
Schaffner, and Mark Zhandry. Random oracles in a quantum world. In
Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology – ASI-
ACRYPT 2011, volume 7073 of Lecture Notes in Computer Science, pages
41–69, Seoul, South Korea, December 4–8, 2011. Springer, Heidelberg, Ger-
many.

BDG+14. Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz,
Benedikt Schmidt, and Pierre-Yves Strub. Easycrypt: A tutorial. In Alessan-
dro Aldini, Javier Lopez, and Fabio Martinelli, editors, Foundations of Secu-
rity Analysis and Design VII: FOSAD 2012/2013 Tutorial Lectures, pages
146–166, Cham, 2014. Springer International Publishing.

BPR12. Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom func-
tions and lattices. In David Pointcheval and Thomas Johansson, editors,
Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture Notes
in Computer Science, pages 719–737, Cambridge, UK, April 15–19, 2012.
Springer, Heidelberg, Germany.

BR06. Mihir Bellare and Phillip Rogaway. The security of triple encryption and
a framework for code-based game-playing proofs. In Serge Vaudenay, edi-
tor, Advances in Cryptology – EUROCRYPT 2006, volume 4004 of Lecture
Notes in Computer Science, pages 409–426, St. Petersburg, Russia, May 28 –
June 1, 2006. Springer, Heidelberg, Germany.

D’A21. Jan-Pieter D’Anvers. Design and Security Analysis of Lattice-Based Post-
Quantum Encryption. Ph.D. Dissertation, KU Leuven Arenberg Doctoral
School, May 2021.

DHK+21. Julien Duman, Kathrin Hövelmanns, Eike Kiltz, Vadim Lyubashevsky, and
Gregor Seiler. Faster kyber and saber via a generic fujisaki-okamoto trans-
form for multi-user security in the qrom. 2021.

DKRV18. Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and Frederik
Vercauteren. Saber: Module-LWR based key exchange, CPA-secure encryp-
tion and CCA-secure KEM. In Antoine Joux, Abderrahmane Nitaj, and
Tajjeeddine Rachidi, editors, AFRICACRYPT 18: 10th International Con-
ference on Cryptology in Africa, volume 10831 of Lecture Notes in Computer
Science, pages 282–305, Marrakesh, Morocco, May 7–9, 2018. Springer, Hei-
delberg, Germany.

GH19. Emily Grumbling and Mark Horowitz. Quantum Computing: Progress and
Prospects. National Academies of Sciences, Engineering, and Medicine. The
National Academies Press, 1st edition, April 2019.

30

HHK17. Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular analysis
of the Fujisaki-Okamoto transformation. In Yael Kalai and Leonid Reyzin,
editors, TCC 2017: 15th Theory of Cryptography Conference, Part I, volume
10677 of Lecture Notes in Computer Science, pages 341–371, Baltimore, MD,
USA, November 12–15, 2017. Springer, Heidelberg, Germany.

KM19. Neal Koblitz and Alfred J. Menezes. Critical perspectives on provable se-
curity: Fifteen years of “another look” papers. Advances in Mathematics of
Communications, 13(4):517–558, 2019.

LCWZ14. David Lazar, Haogang Chen, Xi Wang, and Nickolai Zeldovich. Why does
cryptographic software fail? a case study and open problems. In Proceedings
of 5th Asia-Pacific Workshop on Systems, APSys ’14, pages 1–7. Association
for Computing Machinery, June 2014.

Mos18. Michele Mosca. Cybersecurity in an era with quantum computers: Will we
be ready? IEEE Security & Privacy, 16:38–41, September 2018.

Sho94. P.W. Shor. Algorithms for quantum computation: discrete logarithms and
factoring. In Proceedings 35th Annual Symposium on Foundations of Com-
puter Science, pages 124–134, 1994.

Unr20. Dominique Unruh. Post-quantum verification of fujisaki-okamoto. In Shiho
Moriai and Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT
2020, pages 321–352. Springer International Publishing, December 2020.

Yan13. Song Y. Yan. Quantum Attacks on Public-Key Cryptosystems. Springer,
Boston, MA, 1st edition, April 2013.

31

Appendix

A Random Oracle Model Proofs

In the ensuing, we substantiate the hardness of the GMLWR and XMLWR games
by means of random oracle model proofs. In essence, these proofs show that if
gen is a random oracle and the MLWR game is hard, then the GMLWR and
XMLWR games are hard. More precisely, assuming gen is a random oracle, we
show that any instance of the MLWR game efficiently reduces to corresponding
instances of the GMLWR and XMLWR games. Akin to the discussions in the
paper’s main body, we start by presenting the hand-written proof and discuss
the corresponding formal verification afterward.

Hand-Written Proof. Foremost, to prevent confusion, we introduce separate
identifiers and definitions for the GMLWR and XMLWR games in the random
oracle model; in these definitions, to distinguish between the standard gen and
its idealized counterpart, we denote the latter by Gen. Figure 12 provides the
exact identifiers and definitions.

GameROMGMLWR
A,l,µ,q,p(u)

1 : seedA ←$ U({0, 1}256)
2 : A← Gen(seedA)
3 : s←$ βµ(Rl×1

q)
4 : b0 ← ⌊A · s⌉q→p

5 : b1 ←$ U(Rl×1
p)

6 : return AGen(seedA, bu)

GameROMXMLWR
A,l,µ,q,p(u)

1 : seedA ←$ U({0, 1}256)
2 : A← Gen(seedA)
3 : s←$ βµ(Rl×1

q)
4 : b0 ← ⌊AT · s⌉q→p

5 : b1 ←$ U(Rl×1
p)

6 : a←$ U(R1×l
q)

7 : d0 ← ⌊a · s⌉q→p

8 : d1 ←$ U(Rp)
9 : return AGen(seedA, bu, a, du)

Figure 12. The GMLWR and XMLWR Games in the Random Oracle Model

Evidently, as desired, GameROMGMLWR
A,l,µ,q,p(u) and GameROMXMLWR

A,l,µ,q,p(u) are al-
most identical to their standard model analogs, merely substituting Gen for gen
(and explicitly providing A access to Gen).

Concerning the reduction from MLWR to GMLWR, consider an adversary
A against GameROMGMLWR

A,l,µ,q,p(u). Given this adversary, we can straightforwardly
construct an adversary RA against GameMLWR

RA,l,l,µ,q,p(u) with an advantage that is

32

equal to the advantage of A against GameROMGMLWR
A,l,µ,q,p(u). Namely, comparing

these two games, we see that they are nearly identical; indeed, the sole differ-
ences between these games concern the manner in which A is obtained and the
information passed to the adversary. However, since Gen is a random oracle, the
A in GameROMGMLWR

A,l,µ,q,p(u) is uniformly distributed over Rl×l
q , similarly to its

counterpart in GameMLWR
A,l,l,µ,q,p(u). Consequently, the way in which A is acquired

is equivalent between these two games. Following, the only actual difference be-
tween the games is that while GameMLWR

A,l,l,µ,q,p(u) directly gives A to its adversary,
GameROMGMLWR

A,l,µ,q,p(u) provides the seed with which Gen is queried to obtain A.
Combining these observations, we can construct the above-mentioned adversary
RA against GameMLWR

RA,l,l,µ,q,p(u) as follows.

1. Upon being called by GameMLWR
RA,l,l,µ,q,p(u), RA stores the given parameters

A and bu.
2. Afterward, RA samples a seed uniformly at random from U({0, 1}256); that

is, RA performs seedA ←$ U({0, 1}256).
3. Then, RA calls A(seedA, bu) and proceeds to monitor all random oracle

queries. If A queries the random oracle on seedA, RA blocks the query and
returns A; otherwise, RA allows the random oracle to answer the query.

4. Lastly, RA directly returns the value retrieved from A(seedA, bu).

Naturally, fixing the response for a single random oracle query with a uniformly
distributed value, as is done by RA, does not alter the distribution of the ran-
dom oracle query results. As a result, RA perfectly simulates a run of A’s
game, i.e., GameROMGMLWR

A,l,µ,q,p(u), using the values provided by its own game,
i.e., GameMLWR

RA,l,l,µ,q,p(u). Hence, the reduction adversary successfully employs A
to obtain an advantage against GameMLWR

RA,l,l,µ,q,p(u) that is equal to the advantage
of A against GameROMGMLWR

A,l,µ,q,p(u).
For the reduction from MLWR to XMLWR, consider an adversary A against

GameROMXMLWR
A,l,µ,q,p(u). Based on this adversary, we construct an adversary RA

against GameMLWR
RA,l+1,l,µ,q,p(u). In this construction, we utilize the following two

observations. First, the i-th entry of the result of a matrix-vector multiplica-
tion is equal to the inner product of the matrix’s i-th row with the multiplica-
tion’s operand vector. Second, extracting a row from a uniformly distributed
matrix produces a matrix and a vector that (both) are also uniformly dis-
tributed. Employing these observations, we can construct adversary RA against
GameMLWR

RA,l+1,l,µ,q,p(u) as follows.

1. Upon being called by GameMLWR
RA,l+1,l,µ,q,p(u), RA respectively extracts the

last row and entry from the given parameters A and bu; subsequently, it
stores the four resulting artifacts. For convenience, we accordingly refer to
the matrix and vector produced by the row extraction as A′ and b′

u; similarly,
we denote the vector and polynomial resulting from the entry extraction by,
respectively, a and du.

2. Afterward, RA samples a seed uniformly at random from U({0, 1}256); that
is, RA performs seedA′ ←$ U({0, 1}256).

33

3. Then, RA calls A(seedA′ , b′
u, a, du) and continues to monitor all random

oracle queries. In case A queries the random oracle on seedA′ , RA blocks the
query and returns A′T ; otherwise, RA allows the random oracle to answer
the query.

4. Lastly, RA directly returns the value retrieved from A(seedA′ , b′
u, a, du).

Here, when A queries the random oracle on seedA′ , RA returns A′T instead
of A′ in order to compensate for the deviating computations of bu between
the MLWR and XMLWR games. Namely, since A is an adversary against the
XMLWR game, it expects the reduction’s b′

u to be computed with the trans-
pose of the matrix obtained by querying Gen on seedA′ . As such, since this b′

u

is actually computed with A′, RA must return A′T to match A’s expectations.
Combining this with the previously discussed observations, we see that RA per-
fectly simulates a run of A’s and, as such, successfully employs A to obtain an
advantage against GameMLWR

RA,l,l,µ,q,p(u) that is equal to the advantage of A against
GameROMXMLWR

A,l,µ,q,p(u).

Formal Verification. Next, we cover the formal verification of the random
oracle model proofs. To this end, since both proofs are quite alike, we exclusively
consider the formal verification of the proof regarding the reduction from MLWR
to GMLWR; the formal verification of the other proof proceeds analogously. As
with the discussions in the main body of the paper (and for the same reasons),
we do not go over the concrete proofs of the results in EasyCrypt; nevertheless,
the code corresponding to the formal verification of (both of) the random oracle
model proofs can be found in the repository belonging to this work.

Due to the ubiquity of the random oracle model in cryptography, EasyCrypt
supplies a multitude of theories related to this concept. One of these theories pro-
vides the definitions and properties associated with the concept of programmable
random oracles. Listing 1.18 provides the relevant part of the module type uti-
lized to formalize such random oracles in EasyCrypt.

1 module type PRO = {
2 proc init ()
3 proc get(x : in_t) : out_t
4 proc set(x : in_t , y : out_t)
5 (* ... *)
6 }.

Listing 1.18. Module Type for Programmable Random Oracles

Here, in_t and out_t types are abstract placeholders for the oracle’s input and
output types, respectively. In the current context, since the employed oracle re-
places the gen function, in_t is instantiated with seed and out_t is instantiated
with Rq_mat. Furthermore, the intended purpose of each provided procedure is
quite evident from its signature. Specifically, init() performs the necessary ini-
tialization of the oracle, get(x) returns the image of x, and set(x, y) sets the

34

image of x to y. As such, get embodies the querying of the random oracle, while
set represents the manipulation of the oracle query results.

As discussed earlier, given an adversary A against GameROMGMLWR
A,l,µ,q,p, we

construct an adversary RA against GameMLWR
RA,l,l,µ,q,p. Hence, for the formal ver-

ification, we foremost require a formalization of these (classes of) adversaries
and games. The classes of adversaries are formalized through the module types
defined in Listing 1.19.

1 module type Adv_MLWR = {
2 proc guess(_A : Rq_mat , b : Rp_vec) : bool
3 }.
4
5 module type Adv_GMLWR_RO (Gen : PRO) = {
6 proc guess(sd : seed , b : Rp_vec) : bool { Gen.get }
7 }.

Listing 1.19. Module Types for Adversaries Against GameMLWR
A,l,l,µ,q,p and

GameROMGMLWR
A,l,µ,q,p

As their names suggest, from top to bottom, these module types respectively
denote the classes of adversaries against GameMLWR

A,l,l,µ,q,p and GameROMGMLWR
A,l,µ,q,p.

Concerning the latter, the explicit random oracle access is modeled through a
module parameter of the above-mentioned PRO type. Nevertheless, since these
adversaries are only allowed to query the random oracle, they exclusively gain
access to the random oracle’s get procedure. Indeed, this is conveyed to Easy-
Crypt by the { Gen.get } in the definition of the corresponding guess procedure.

Following, we formalize GameMLWR
A,l,l,µ,q,p and GameROMGMLWR

A,l,µ,q,p by means of
parameterized modules. More precisely, the formalization of GameMLWR

A,l,l,µ,q,p, MLWR,
is defined with respect to a parameter of type Adv_MLWR; analogously, the formal-
ization of GameROMGMLWR

A,l,µ,q,p, GMLWR_RO, is defined with respect to a parameter of
type Adv_GMLWR_RO. Apart from its parameter type, this latter formalization solely
deviates from GMLWR in the way it obtains _A; specifically, while GMLWR evaluates
gen sd, GMLWR_RO queries the random oracle on sd. Certainly, this is consistent
with the differences between GameROMGMLWR

A,l,µ,q,p and GameGMLWR
A,l,µ,q,p. Due to its

vast similarity with GMLWR, GMLWR_RO is not explicitly presented here. Contrar-
ily, albeit a nearly verbatim translation of GameMLWR

A,l,l,µ,q,p, MLWR is specified in
Listing 1.20 for reasons of completeness.

1 module MLWR(A : Adv_MLWR) = {
2 proc main(u : bool) : bool = {
3 (* ... *)
4 _A <$ dRq_mat ;
5 s <$ dsmallRq_vec ;
6
7 if (u) {
8 b <$ dRp_vec ;
9 } else {

35

10 b <- scaleroundRqv2Rpv (_A *^ s);
11 }
12 u' <@ A.guess(_A , b);
13 return u';
14 }
15 }.

Listing 1.20. GameMLWR
A,l,l,µ,q,p

Then, utilizing the above-introduced module types, Listing 1.21 presents the
formalization of the reduction adversary RA against GameMLWR

RA,l,l,µ,q,p, where A
is any adversary against GameROMGMLWR

A,l,µ,q,p.

1 module AGM(AG : Adv_GMLWR_RO) : Adv_MLWR = {
2 module AG = AG(Gen)
3
4 proc guess(_A : Rq_mat , b : Rp_vec) : bool = {
5 (* ... *)
6 Gen.init ();
7
8 sd <$ dseed;
9

10 Gen.set(sd , _A);
11
12 u' <@ AG.guess(sd , b);
13 return u';
14 }
15 }.

Listing 1.21. Reduction Adversary RA Against GameMLWR
RA,l,l,µ,q,p

In this listing, Gen constitutes a concrete implementation of the required ran-
dom oracle18; more precisely, Gen is a module of type PRO, where the in_t and
out_t types are accordingly instantiated with the seed and Rq_mat types. Using
this random oracle, we instantiate the given adversary through the statement
module AG = AG(Gen). Indeed, this instantiation provides adversary AG access to
Gen; nevertheless, due to the restriction specified in the Adv_GMLWR_RO module
type, AG is only capable of accessing the get procedure of Gen. Employing this
instantiated adversary against GMLWR_RO, (the formalization of) the reduction ad-
versary, i.e., AGM, operates as follows. First, AGM initializes the random oracle by
means of a call to Gen.init(); intuitively, this can be interpreted as the random
oracle defining a uniformly random mapping from its input to its output do-
main. Afterward, AGM samples a value of type seed uniformly at random, storing
the result in sd. Subsequently, AGM adjusts the mapping defined by the random
oracle; specifically, it ensures that the random oracle maps sd to _A, the matrix
received from the MLWR game. Penultimately, AGM calls AG.guess(sd, b) in an ef-

18This implementation is provided in EasyCrypt’s standard library.

36

fort to solve the GMLWR problem instance corresponding to sd and b. Certainly,
since the random oracle maps sd to _A, this GMLWR problem instance exactly
matches the MLWR problem instance that AGM attempts to solve. Moreover,
because the random oracle’s output distribution remains uniformly random, AG
cannot distinguish between the reduction and the corresponding run of its own
game, GMLWR_RO. Ultimately,AGM directly returns the value obtained from the call
to AG.guess(sd, b). Finally, we formalize the desired result, i.e., the equality of
advantages for A against GameROMGMLWR

A,l,µ,q,p and RA against GameMLWR
RA,l,l,µ,q,p.

Specifically, we do so through the lemma given in Listing 1.22.

1 lemma Equal_Advantage_GMLWR_RO_MLWR &m :
2 `| Pr[GMLWR_RO (A).main(true) @ &m : res] -
3 Pr[GMLWR_RO (A).main(false) @ &m : res] |
4 =
5 `| Pr[MLWR(AGM(A)).main(true) @ &m : res] -
6 Pr[MLWR(AGM(A)).main(false) @ &m : res] |.

Listing 1.22. Equality of Advantages for A Against GameROMGMLWR
A,l,µ,q,p and RA

Against GameMLWR
RA,l,l,µ,q,p

Here, A denotes an arbitrary module of type Adv_GMLWR_RO; that is, A formalizes
an arbitrary adversary against GameROMGMLWR

A,l,µ,q,p. As such, extrapolating from
the discussion surrounding Listing 1.7, we can recognize the following correspon-
dences.

Pr[GMLWR_RO(A).main(true) @ &m : res] ∼= Pr
[
GameROMGMLWR

A,l,µ,q,p(1) = 1
]

Pr[GMLWR_RO(A).main(false) @ &m : res] ∼= Pr
[
GameROMGMLWR

A,l,µ,q,p(0) = 1
]

Pr[MLWR(AGM(A)).main(true) @ &m : res] ∼= Pr
[
GameMLWR

RA,l,l,µ,q,p(1) = 1
]

Pr[MLWR(AGM(A)).main(false) @ &m : res] ∼= Pr
[
GameMLWR

RA,l,l,µ,q,p(0) = 1
]

This shows that Equal_Advantage_GMLWR_RO_MLWR accurately formalizes the de-
sired equality of advantages.

37

	Formal Verification of Saber's Public-Key Encryption Scheme in EasyCrypt

