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Abstract. An important cryptographic operation on elliptic curves is
hashing to a point on the curve. When the curve is not of prime order,
the point is multiplied by the cofactor so that the result has a prime
order. This is important to avoid small subgroup attacks for example.
A second important operation, in the composite-order case, is testing
whether a point belongs to the subgroup of prime order. A pairing is a
bilinear map e : G1×G2 → GT where G1 and G2 are distinct subgroups of
prime order r of an elliptic curve, and GT is a multiplicative subgroup of
the same prime order r of a finite field extension. Pairing-friendly curves
are rarely of prime order. We investigate cofactor clearing and subgroup
membership testing on these composite-order curves. First, we general-
ize a result on faster cofactor clearing for BLS curves to other pairing-
friendly families of a polynomial form from the taxonomy of Freeman,
Scott and Teske. Second, we investigate subgroup membership testing
for G1 and G2. We fix a proof argument for the G2 case that appeared
in a preprint by Scott in late 2021 and has recently been implemented in
different cryptographic libraries. We then generalize the result to both
G1 and G2 and apply it to different pairing-friendly families of curves.
This gives a simple and shared framework to prove membership tests for
both cryptographic subgroups.

1 Introduction

A pairing is a bilinear map from two groups G1,G2 into a target group GT

and is available on dedicated pairing-friendly elliptic curves. G1 corresponds to
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a subgroup of prime order r of the elliptic curve over a prime field Fq, G2 is a
distinct subgroup of points of order r, usually over some extension Fqk , and GT

is the target group in a finite field Fqk , where k is the embedding degree.
The choices of pairing-friendly curves of prime order over Fq are limited

to the MNT curves (Miyaji, Nakabayashi, Takano) of embedding degree 3, 4,
or 6, Freeman curves of embedding degree 10, and Barreto–Naehrig curves of
embedding degree 12. Because of the new NFS variant of Kim and Barbulescu,
Gaudry, and Kleinjung (TNFS), the discrete logarithm problem in extension
fields GF(qk) is not as hard as expected, and key sizes and pairing-friendly
curve recommendations are now updated. In this new list of pairing-friendly
curves, BN curves are no longer the best choice in any circumstances. The widely
deployed curve is now the BLS12-381 curve: a Barreto–Lynn–Scott curve of
embedding degree 12, with a subgroup of 255-bit prime order, defined over a
381-bit prime field. The parameters of this curve have a polynomial form, and
in particular, the cofactor has a square term: c1(x) = (x − 1)2/3 were x is the
seed −(263 + 262 + 260 + 257 + 248 + 216).

One important cryptographic operation is to hash from a (random) string
to a point on the elliptic curve. This operation has two steps: first mapping a
string to a point P (x, y) on the curve, then multiplying the point by the cofactor
so that it falls into the cryptographic subgroup. For the first step, there is the
efficient Elligator function for curves with j-invariant not 0 nor 1728 and having
a point of order 4. For other curves including BLS curves of j-invariant 0, Wahby
and Boneh propose an efficient map in [14]. Because the BLS12-381 curve is not
of prime order, the point is multiplied by the cofactor c1 to ensure the hash
function to map into the cryptographic subgroup of 255-bit prime order. Wahby
and Boneh wrote in [14] that it is sufficient to multiply by (x − 1), instead of
the cofactor (x − 1)2/3. They observed that for any prime factor ` of (x − 1),
the BLS12-381 curve has no point of order `2. Finally in [8] the authors show
that for all BLS curves, the curve cofactor contains the square form (x− 1)2/3
and it is enough to multiply by (x− 1) to clear this factor, instead of (x− 1)2/3,
thanks to a theorem of Schoof [11].

Other pairing-friendly curves are investigated to replace the BN curves, and
at CANS’2020, Clarisse, Duquesne and Sanders revisited Brezing-Weng curves
and showed that curves of embedding degree 13 and 19 are competitive for fast
operations on the curve (in the first group G1). Again, a fast multiplication by
the curve cofactor is important to provide a fast hashing to the curve.

Another important operation is to test whether a given point belongs to the
right subgroup of order r, i.e. G1 or G2. This is a crucial operation to avoid
small subgroups attacks. In late 2021, Scott in the preprint [12] investigated
subgroup membership testing in G1,G2 and GT for BLS12 curves and discussed
the generalization of the results to other BLS curves. Given a point on a curve
E(Fq) or on a degree-d twisted curve E′ defined over an extension of degree
k/d, the question is whether the point is of prime order r. This test can be
done much faster if an efficient endomorphism is available, which is usually the
case for pairing-friendly curves. Budrato and Pintore showed that computing a
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general formula of the eigenvalue modulo the cofactor is not always well-defined
at all primes [6].

Contributions. In this paper, we first apply El Housni and Guillevic technique [8]
for cofactor clearing to other pairing-friendly constructions listed in the taxon-
omy paper of Freeman, Scott and Teske [9]. We show that it applies to many
polynomial families: all curves of the constructions numbered 6.2 to 6.7, except
for the cases k ≡ 2, 3 mod 6 of Construction 6.6 that generalizes the BLS curves.
We provide a SageMath verification script at

https://gitlab.inria.fr/zk-curves/cofactor

Next, we fix a proof argument in the paper [12] for G2 membership test and
generalize the result. This gives a simple and shared framework to prove both
G1 and G2 membership tests.

Organization of the paper. Section 2 provides preliminaries on pairing-friendly
curves and associated subgroups and endomorphisms. In Section 3, we investigate
the cofactor clearing technique for different polynomial constructions in [9]. In
Section 4, we revisit some previously known results on subgroup membership
and propose a simple criterion for these tests. We conclude in Section 5.

2 Preliminaries

Let E be an elliptic curve y2 = x3 + ax+ b defined over a field Fq, where q is a
prime or a prime power. Let πq be the Frobenius endomorphism:

πq : E(Fq)→ E(Fq)

(x, y) 7→ (xq, yq) (andO 7→ O) .

Its minimal polynomial is X2 − tX + q where t is called the trace. Let r be
a prime divisor of the curve order #E(Fq) = q + 1 − t = c1r . The r-torsion
subgroup of E is denoted E[r] := {P ∈ E(Fq), [r]P = O} and has two subgroups
of order r (eigenspaces of πq in E[r]) that are useful for pairing applications. We
define the two groups G1 = E[r] ∩ ker(πq − [1]), and G2 = E[r] ∩ ker(πq − [q]).
The group G2 is defined over Fqk , where the embedding degree k is the smallest
integer k ∈ N∗ such that r | qk − 1. A pairing e is a bilinear map G1×G2 → GT

where GT is the target group of r-th roots of unity in Fqk .
It is also important to recall some results with respect to the complex mul-

tiplication (CM) discriminant −D. When D = 3 (resp. D = 4), the curve has
CM by Q(

√
−3) (resp. Q(

√
−1)) so that twists of degrees 3 and 6 exist (resp.

4). When E has d-th order twists for some d | k, then G2 is isomorphic to
E′[r](Fqk/d) for some twist E′. Otherwise, in the general case, E admits a single
twist (up to isomorphism) and it is of degree 2. We denote c2 the G2 cofactor,
i.e #E′(Fqk/d) = c2r .
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When D = 3, the curve has a j-invariant 0 and is of the form y2 = x3 + b
(a = 0). In this case, an efficient endomorphism φ exist on G1. Given β a cube
root of unity in Fq,

φ : E(Fq)[r]→ E(Fq)[r]

(x, y) 7→ (βx, y) (andO 7→ O) .

φ has a minimal polynomial X2 + X + 1 and an eigenvalue λ satisfying λ2 +
λ + 1 ≡ 0 mod r. When D = 1, the curve has j-invariant 1728 and is of the
form y2 = x3+ax (b = 0). In this case an efficient endomorphism σ exist on G1.
Given i ∈ Fq such that i2 = −1,

σ : E(Fq)[r]→ E(Fq)[r]

(x, y) 7→ (−x, iy) (andO 7→ O) .

On G2, an efficient endomorphism is ψ the “untwist-Frobenius-twist“ intro-
duced in [10]. ψ has a minimal polynomial X2 − tX + q and is defined by

ψ : E′[r](Fqk/d)→ E′[r](Fqk/d)

(x, y) 7→ ξ−1 ◦ πq ◦ ξ(x, y) (andO 7→ O) .

where ξ is the twisting isomorphism from E′ to E. When D = 3, there are
actually two sextic twists, one with q + 1 − (−3f + t)/2 points on it, the other
with q + 1 − (3f + t)/2, where f =

√
(4q − t2)/3. Only one of these is the

“right“ twist, i.e. has an order divisible by r. Let ν be a quadratic and cubic
non-residue in Fqk/d and X6 − ν an irreducible polynomial, the “right“ twist is
either y2 = x3 + b/ν (D-type twist) or y2 = x3 + bν (M-type twist). For the
D-type, ξ : E′ → E : (x, y) 7→ (ν1/3x, ν1/2y) and ψ becomes

ψ : (x, y) 7→ (ν(q−1)/3xq, ν(q−1)/2yq) (andO 7→ O) .

For the M-type, ξ : E′ → E : (x, y) 7→ (ν2/3x/ν, ν1/2y/ν) and ψ becomes

ψ : (x, y) 7→ (ν(−q+1)/3xq, ν(−q+1)/2yq) (andO 7→ O) .

For other d-twisting ξ formulae, see [13].
Most of pairing-friendly curves fall into polynomial families, i.e. the curves

parameters are expressed as polynomials q(x), r(x) and t(x). These polynomials
are then evaluated in a “seed“ u to derive a given curve (cf. Sec. 3).

3 Polynomial families of pairing-friendly curves, and
faster co-factor clearing

3.1 Faster co-factor clearing

We recall the result on cofactor clearing from [8]. Let EndFq
(E) denote the ring

of Fq-endomorphisms of E, let O denotes a complex quadratic order of the ring
of integers of a complex quadratic number field, and O(∆) denotes the complex
quadratic order of discriminant ∆.
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Theorem 1 ([11, Proposition 3.7]). Let E be an elliptic curve over Fq and
n ∈ Z≥1 with q - n. Let πq denote the Frobenius endomorphism of E of trace t.
Then,

E[n] ⊂ E(Fq) ⇐⇒


n2 | #E(Fq),

n | q − 1 and
πq ∈ Z or O

(
t2−4q
n2

)
⊂ EndFq

(E).

We will apply this theorem to the polynomial families of the taxonomy paper
of Freeman, Scott and Teske [9]. The families are designed for specific discrim-
inants D = 1 for constructions 6.2, 6.3 and 6.4, D = 3 for construction 6.6
and some of the KSS families, D = 2 for construction 6.7. First we identify a
common cofactor within the family which has a square factor, then we compute
its gcd with q(x) − 1 and y(x). We summarize our results in the following ta-
bles and provide a SageMath verification script at https://gitlab.inria.fr/
zk-curves/cofactor.

3.2 Construction 6.6

The family of pairing-friendly BLS curves appeared in [2]. A BLS curve can
have an embedding degree k multiple of 3 but not 18. Common examples are
k = 9, 12, 15, 24, 27, 48. A generalization was given in [9] and named Construction
6.6. Let k be a positive integer with k ≤ 1000 and 18 - k. Construction 6.6
is given in Table 1. Then (t, r, q) parameterizes a complete family of pairing-
friendly curves with embedding degree k and discriminant 3. Next, in Table 2,
we compute the cofactor polynomial c1(x) for Construction 6.6 family. We recall
that y(x) satisfies the Complex Multiplication equation 4q(x) = t(x)2+Dy(x)2.
To prove the results of Table 2, we will need some basic polynomial results that

Table 1. Construction 6.6 from [9, §6], formulas for k = 9, 15 mod 18 from ePrint.

k r(x) t(x) y(x) q(x) x mod 3

1 mod 6 Φ6k(x) −xk+1 + x+ 1 (−xk+1 + 2xk − x− 1)/3 (x+ 1)2(x2k − xk + 1)/3− x2k+1 2

2 mod 6 Φ3k(x) xk/2+1 − x+ 1 (xk/2+1 + 2xk/2 + x− 1)/3 (x− 1)2(xk − xk/2 + 1)/3 + xk+1 1

3 mod 18 Φ2k(x) xk/3+1 + 1 (−xk/3+1 + 2xk/3 + 2x− 1)/3 (x2 − x+ 1)2(x2k/3 − xk/3 + 1)/3 + xk/3+1 2

9, 15 mod 18 Φ2k(x) −xk/3+1 + x+ 1 (−xk/3+1 + 2xk/3 − x− 1)/3 (x+ 1)2(x2k/3 − xk/3 + 1)/3− x2k/3+1 2

4 mod 6 Φ3k(x) x3 + 1 (x3 − 1)(2xk/2 − 1)/3 (x3 − 1)2(xk − xk/2 + 1)/3 + x3 1

5 mod 6 Φ6k(x) xk+1 + 1 (−xk+1 + 2xk + 2x− 1)/3 (x2 − x+ 1)(x2k − xk + 1)/3 + xk+1 2

0 mod 6 Φk(x) x+ 1 (x− 1)(2xk/6 − 1)/3) (x− 1)2(xk/3 − xk/6 + 1)/3 + x 1

we prove in Lemmas 1, 2, 3, and 4.
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Lemma 1. Over the field of rationals Q, Φd(x) denotes the d-th cyclotomic
polynomial, and for all the distinct divisors d of n including 1 and n,

xn − 1 =
∏
d|n

Φd(x) . (1)

Lemma 2. For any odd k ≥ 1 not multiple of 3 (k ≡ 1, 5 mod 6), we have

x2 − x+ 1 | x2k − xk + 1 . (2)

Proof (of Lemma 2). By Lemma 1, x6k−1 is a multiple of Φ1 = x−1, Φ2 = x+1,
Φ3 = x2 + x+ 1 and Φ6 = x2 − x+ 1. Since

x6k − 1 = (x3k − 1)(x3k + 1) = (xk − 1)(x2k + xk + 1)(xk + 1)(x2k − xk + 1)

and Φ1Φ3 | x3k− 1 but Φ6 - x3k− 1 because k is odd, nor xk +1 because k is not
multiple of 3, then Φ6 = x2 − x+ 1 should divide the other term x2k − xk + 1.

Lemma 3. For any odd k ≥ 1 such that (k ≡ 1 mod 6), we have

x2 − x+ 1 | xk+1 − x+ 1 and x2 − x+ 1 | xk+1 − 2xk + x+ 1 . (3)

Proof (of Lemma 3). Let ω, ω ∈ C be the two primitive 6-th roots of unity that
are the two roots of x2−x+1. Since k ≡ 1 mod 6 and ω6 = ω6 = 1, then ωk = ω,
ωk = ω, ωk+1 = ω2 and ωk+1 = ω2. Then ωk+1 − ω + 1 = ω2 − ω + 1 = 0 and
ωk+1−ω+1 = ω2−ω+1 = 0. Hence ω, ω are roots of xk+1−x+1 and x2−x+1
divides xk+1 − x+ 1. Similarly, ωk+1 − 2ωk + ω + 1 = ω2 − 2ω + ω + 1 = 0 and
the same holds for ω. We conclude that x2 − x+ 1 divides xk+1 − 2xk + x+ 1.

Lemma 4. For any odd k ≥ 1 such that (k ≡ 5 mod 6), we have

x2 − x+ 1 | xk+1 − 2xk − 2x+ 1 . (4)

Proof (of Lemma 4). Let ω, ω ∈ C be the two primitive 6-th roots of unity that
are the two roots of x2 − x + 1. Similarly as in the proof of Lemma 3, since
k ≡ 5 mod 6 and ω3 = −1, ω6 = 1, then ωk+1 = 1, ωk = ω5 = −ω2. Then
ωk+1− 2ωk− 2ω+1 = 1− 2(−ω2)− 2ω+1 = 2ω2− 2ω+2 = 0. The same holds
for ω, and we conclude that x2 − x+ 1 divides xk+1 − 2xk − 2x+ 1.

Table 2. Cofactors of Construction 6.6 families

k q(x) + 1− t(x) c0(x) gcd(c0(x), q(x)− 1) gcd(c0(x), y(x))
1 mod 6 (x2k − xk + 1)(x2 − x+ 1)/3 (x2 − x+ 1)2/3 x2 − x+ 1 (x2 − x+ 1)/3

2 mod 6 (xk − xk/2 + 1)(x2 + x+ 1)/3 (x2 + x+ 1)/3 1 1

3 mod 18 (x2k/3 − xk/3 + 1)(x2 − x+ 1)2/3 (x2 − x+ 1)2/3 1 1

9 mod 18 (x2k/3 − xk/3 + 1)(x2 − x+ 1)/3 (x2 − x+ 1)/3 1 1

15 mod 18 (x2k/3 − xk/3 + 1)(x2 − x+ 1)/3 (x2 − x+ 1)2/3 1 1

4 mod 6 (xk − xk/2 + 1)(x3 − 1)2/3 (x3 − 1)2/3 x3 − 1 (x3 − 1)/3

5 mod 6 (x2k − xk + 1)(x2 − x+ 1)/3 (x2 − x+ 1)2/3 x2 − x+ 1 (x2 − x+ 1)/3

0 mod 6 (xk/3 − xk/6 + 1)(x− 1)2/3 (x− 1)2/3 x− 1 (x− 1)/3

6



Proof (of Table 2). For k = 1 mod 6, one computes

q(x) + 1− t(x) =(x+ 1)2(x2k − xk + 1)/3− x2k+1 + 1− (−xk+1 + x+ 1)

=(x+ 1)2(x2k − xk + 1)/3− x(x2k − xk + 1)

=(x2k − xk + 1)(x2 − x+ 1)/3 .

By Lemma 2, (x2 − x + 1) divides x2k − xk + 1 since k ≡ 1 mod 6. Note that
for x ≡ 2 mod 3, x2 − x + 1 ≡ 0 mod 3. Hence the cofactor is a multiple of
c0(x) = (x2 − x+ 1)2/3. Next, one computes

q(x)− 1 = (x+ 1)2︸ ︷︷ ︸
=(x2−x+1)+3x

(x2k − xk + 1)/3− x2k+1 − 1

=(x2 − x+ 1)(x2k − xk + 1)/3 + x(x2k − xk + 1)− x2k+1 − 1

=(x2 − x+ 1)(x2k − xk + 1)/3− (xk+1 − x+ 1)

and by Lemma 3, x2 − x+ 1 divides xk+1 − x+ 1. We computed the derivative
of q(x) − 1 and checked that none of ω, ω is a zero of the derivative. Finally,
x2−x+1 divides q(x)− 1 with multiplicity one. To conclude, Lemma 3 ensures
that (x2 − x+ 1) divides y(x), and we checked that the derivative of y(x) does
not vanish at a primitive sixth root of unity, hence x2 − x+ 1 divides y(x) with
multiplicity one.

For k = 2 mod 6, one computes

q(x) + 1− t(x) =(x− 1)2(xk − xk/2 + 1)/3 + xk+1 + 1− (xk/2+1 − x+ 1)

=(x2 − 2x+ 1)(xk − xk/2 + 1)/3 + x(xk − (xk/2 + 1)

=(xk − xk/2 + 1)(x2 + x+ 1)/3

Note that k is even. Lemma 2 will apply for k′ = k/2 to be odd, that is k ≡
2 mod 12. Nevertheless the cofactor c0(x) will not be a square. We checked that
none of the primitive cubic and sextic roots of unity are roots of q(x) − 1 nor
y(x), hence the gcd of c0(x) and q(x)− 1, resp. y(x), is 1.

For k = 3 mod 18, it is straightforward to get q(x) + 1 − t(x) = (x2 − x +
1)2(x2k/3 − xk/3 + 1)/3, the cofactor c0(x) = (x2 − x + 1)2/3 is a square as for
k = 1 mod 6. For k = 9, 15 mod 18, we compute

q(x) + 1− t(x) =(x+ 1)2(x2k/3 − xk/3 + 1)/3− x2k/3+1 + 1− (−xk/3+1 + x+ 1)

=(x2 + 2x+ 1)(x2k/3 − xk/3 + 1)/3− x(x2k/3 − xk/3 + 1)

=(x2 − x+ 1)(x2k/3 − xk/3 + 1)/3

For k = 9 mod 18, k/3 is a multiple of 3 and x2−x+1 does not divide (x2k/3−
xk/3 + 1), while for k = 15 mod 18, k/3 is co-prime to 6, and (x2k/3 − xk/3 + 1)
is a multiple of (x2 − x + 1) by Lemma 2. For k ≡ 3, 9, 15 mod 18, we checked
that neither q(x) − 1 nor y(x) have a common factor with c0(x), and no faster
co-factor clearing is available.

For k ≡ 4, 0 mod 6, the calculus is similar to the case k ≡ 1 mod 6, and for
k ≡ 5 mod 6, we use Lemma 4 to conclude about y(x).
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For the cases k ≡ 2 mod 6 and k ≡ 9 mod 18, c1(x) has no square factor
and thus the cofactor clearing is already optimised. For k ≡ 3, 15 mod 18, the
cofactor is a square but Theorem 1 does not apply. For all remaining cases,
c1(x) = n(x)2/3 for some polynomial factor n(x)/3 that satisfies Theorem 1.
Hence, it is sufficient to multiply by n(x) to clear the cofactor on Construction
6.6 curves. We summarize our results in Theorem 2.

Theorem 2. For k ≡ 1, 5 mod 6, the curve cofactor has a factor c0(x) = (x2 −
x + 1)2/3, whose structure is Z/(x2 − x + 1)/3Z × Z/(x2 − x + 1)Z, and it is
enough to multiply by n(x) = (x2 − x+ 1) to clear the co-factor c0(x).

For k ≡ 4 mod 6, the curve cofactor has a factor c0(x) = (x3 − 1)2/3, whose
structure is Z/(x3−1)/3Z×Z/(x3−1)Z, and it is enough to multiply by n(x) =
(x3 − 1) to clear the co-factor c0(x).

For k ≡ 0 mod 6, the curve cofactor has a factor c0(x) = (x − 1)2/3, whose
structure is Z/(x− 1)/3Z× Z/(x− 1)Z, and it is enough to multiply by n(x) =
(x− 1) to clear the co-factor c0(x).

Proof (of Th. 2). From Table 2, k = 1, 5 mod 6 has n(x) = (x2 − x + 1)/3,
k = 4 mod 6 has n(x) = (x3 − 1)/3, k = 0 mod 6 has n(x) = (x − 1)/3 where
n(x) satisfies the conditions of Th. 1. The n-torsion is Fq-rational, that is E[n] ⊂
E(Fq) and has structure Z/nZ×Z/nZ over Fq. Taking into account the co-factor
3, the structure of the subgroup of order c0(x) = 3n2(x) is Z/3nZ × Z/nZ and
multiplying by 3n(x) clears the cofactor.

Example. In [7], Clarisse, Duquesne and Sanders introduced two new pairing-
friendly curves with optimal G1, the curves BW13-P310 with seed u = −0x8b0
and BW19-P286 with seed v = −0x91. They fall in Construction 6.6 with k =
1 mod 6. Our faster co-factor clearing method applies.

For BW13-P310, the prime subgroup order is r = Φ6·13(u) = (u26 − u13 +
1)/(u2−u+1). The cofactor is (u2−u+1)2/3, where (u2−u+1) divides q(u)−1
and (u2−u+1)/3 divides y(u). It is enough to multiply by (u2−u+1) to clear
the cofactor.

For BW19-P286, the prime subgroup order is r = Φ6·19(v) = (v38 − v19 +
1)/(v2−v+1). The cofactor is (v2−v+1)2/3, where (v2−v+1) divides q(v)−1
and (v2− v+1)/3 divides y(v). It is enough to multiply by (v2− v+1) to clear
the cofactor.

3.3 Constructions 6.2, 6.3, 6.4, and 6.5 with D = 1

The constructions with numbers 6.2 to 6.5 have discriminant D = 1, we report
the polynomial forms of the parameters in Table 3. The cofactor c1(x) in q(x)+
1 − t(x) = r(x)c1(x) has always a factor c0(x) that we report in Table 4, with
special cases for k = 2 and k = 4. For q(x) to be an integer, x ≡ 1 mod 2 is
required, except for 6.5 where x is required to be even.
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Table 3. Constructions 6.2, 6.3, 6.4, and 6.5 from [9, §6]

k r(x) t(x) y(x) q(x)

6.2 1 mod 2 Φ4k(x) −x2 + 1 xk(x2 + 1) (x2k+4 + 2x2k+2 + x2k + x4 − 2x2 + 1)/4

6.3 2 mod 4 Φ2k(x) x2 + 1 xk/2(x2 − 1) (xk+4 − 2xk+2 + xk + x4 + 2x2 + 1)/4

6.4 4 mod 8 Φk(x) x+ 1 xk/4(x− 1) (xk/2+2 − 2xk/2+1 + xk/2 + x2 + 2x+ 1)/4
6.5 k = 10 Φ20(x) −x6 + x4 − x2 + 2 x3(x2 − 1) (x12 − x10 + x8 − 5x6 + 5x4 − 4x2 + 4)/4

Table 4. Cofactors of Constructions 6.2, 6.3, 6.4, and 6.5. Note that x ≡ 1 mod 2
except for 6.5 where x ≡ 0 mod 2.

k c0(x) gcd(c0(x), q(x)− 1) gcd(c0(x), y(x))
6.2 1 mod 2 (x2 + 1)3/4 x2 + 1 x2 + 1
6.3 k = 2 (x2 − 1)2/2 x2 − 1 x2 − 1
6.3 2 mod 4, k > 2 (x2 − 1)2(x2 + 1)/4 x2 − 1 x2 − 1
6.4 k = 4 (x− 1)2/2 x− 1 x− 1
6.4 4 mod 8, k > 4 (x− 1)2(x2 + 1)/4 x− 1 x− 1
6.5 k = 10 x4/4 x2 x3

Lemma 5. For any odd k ≥ 1 we have

x2 + 1 | x2k + 1 . (5)

Explicitly,

x2k + 1 = (x2 + 1)(1− x2 + x4 − . . .+ . . .− x2k−4 + x2k−2) . (6)

Proof. By Lemma 1, x4k−1 is a multiple of Φ1 = x−1, Φ2 = x+1 and Φ4 = x2+1.
Since x4k − 1 = (x2k − 1)(x2k + 1) and Φ1Φ2 | x2k − 1 but Φ4 - x2k − 1 because
k is odd, then Φ4 = x2 + 1 should divide the other term x2k + 1.

Proof (of Table 4). All families of constructions 6.2 to 6.5 have j-invariant 1728,
an a point of order 2 (their order is even).

In Construction 6.2 one has k odd. One gets q(x)+1− t(x) = (x2+1)2(x2k+
1)/4, and by Lemma 5, x2 + 1 is a factor of x2k + 1, hence c0(x) = (x2 + 1)3/4
which is even, divides q(x) + 1− t(x). The factorization of q(x)− 1 is

q(x)− 1 =(x2k(x2 + 1)2 + (x2 − 1)2)/4− 1

=((x4 + 2x2 + 1)x2k + (x4 − 2x2 + 1)− 4)/4

=((x4 − 1)x2k + (2x2 + 2)x2k + (x4 − 1)− 2x2 − 2)/4

=((x4 − 1)(x2k + 1) + 2(x2 + 1)(x2k − 1))/4

=(x4 − 1)(x2k + 1 + 2a(x))/4 where

a(x) =(x2k − 1)/(x2 − 1) = 1 + x2 + x4 + . . .+ x2k−2 =

k−1∑
i=0

x2i
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and by Lemma 1, x2k − 1 is a multiple of x2 − 1 = Φ1Φ2, and (x4 − 1)/2 divides
q(x)− 1. More precisely, because x is odd, 4 | q(x)− 1, and

q(x)− 1 = 2 (x2 + 1)︸ ︷︷ ︸
even

(x2 − 1)/4︸ ︷︷ ︸
∈Z

(x2k + 1 + 2a(x))/2︸ ︷︷ ︸
∈Z

.

As a consequence, x2+1 divides q(x)−1. Finally, y(x) = xk(x2+1) is a multiple
of x2 + 1.

We isolate the case k = 2 in Construction 6.3, with parameters r(x) =
Φ4(x) = x2+1 (even), t(x) = x2+1, y(x) = x(x2−1), q(x) = (x6−x4+3x2+1)/4,
q(x) + 1 − t(x) = (x2 + 1)(x2 − 1)2/4. We set r(x) = (x2 + 1)/2 and c1(x) =
(x2 − 1)2/2, q(x) − 1 = (x2 − 1)(x4 + 3)/4 where (x4 + 3)/4 is an integer. For
larger k = 2 mod 4, one has

q(x) + 1− t(x) =(xk+4 − 2xk+2 + xk + x4 + 2x2 + 1)/4 + 1− (x2 + 1)

=(xk(x2 − 1)2 + (x2 + 1)2 − 4x2)/4

=(xk + 1)(x2 − 1)2/4

and since k is even, by Lemma 5, x2 + 1 divides xk + 1, hence c0(x) = (x2 +
1)(x2 − 1)2/4 divides the curve order. We compute q(x)− 1 and factor it:

q(x)− 1 =(xk(x2 − 1)2 + (x2 + 1)2)/4− 1

=(xk(x2 − 1)2 + (x2 − 1)2 + 4x2 − 4)/4

=(x2 − 1)(xk (x2 − 1)︸ ︷︷ ︸
mult. of 4

+ x2 − 1︸ ︷︷ ︸
mult. of 4

+4)/4

which proves that x2 − 1 divides q(x) − 1. Because y(x) = xk/2(x2 − 1), it is
obvious that x2 − 1 divides y(x).

With Construction 6.4, k = 4 mod 8. First k = 4 is a special case where
the curve order is q(x) + 1 − t(x) = (x − 1)2(x2 + 1)/4, the cofactor is c0(x) =
(x − 1)2/2, r(x) = (x2 + 1)/2, q(x) − 1 = (x2 − 1)(x2 − 2x + 3)/4 factors as
q(x)− 1 = (x− 1)(x+ 1)/2(x2 − 2x+ 3)/2, and y(x) = x(x− 1).

For larger k, we compute, with q(x) = (xk/2(x− 1)2 + (x+ 1)2)/4,

q(x) + 1− t(x) =(xk/2(x− 1)2 + (x+ 1)2)/4 + 1− (x+ 1)

=(xk/2(x− 1)2 + x2 + 2x+ 1− 4x)/4

=(xk/2(x− 1)2 + (x− 1)2)/4

=(x− 1)2(xk/2 + 1)/4

and because k ≡ 4 mod 8, k/2 is even and by Lemma 5, x2 +1 divides xk/2 +1,
hence c0(x) = (x − 1)2(x2 + 1)/4 divides the curve order. Now we compute
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q(x)− 1 and obtain the factorisation

q(x)− 1 =(xk/2(x− 1)2 + (x+ 1)2)/4− 1

=(xk/2(x− 1)2 + x2 − 2x+ 1 + 4x− 4)/4

=(xk/2(x− 1)2 + (x− 1)2 + 4(x− 1))/4

=(x− 1)(xk/2(x− 1) + (x− 1) + 4)/4

=(x− 1)((xk/2 + 1)(x− 1)︸ ︷︷ ︸
mult. of 4

+4)/4

hence x−1 divides q(x)−1. Finally y(x) = xk/4(x−1) and (x−1) divides y(x).
For construction 6.5, x is even this time, the curve order is q(x) + 1− t(x) =

x4/4(x8 − x6 + x4 − x2 + 1), y(x) = x3(x2 − 1), q(x)− 1 = x2(x10 − x8 + x6 −
5x4 + 5x2 − 4)/4 were the factor (x10 − x8 + x6 − 5x4 + 5x2 − 4)/4 is an integer
whenever x is even.

From Table 4 and Theorem 1, we obtain Theorem 3.

Theorem 3. For construction 6.2, the curve cofactor has a factor c0(x) = (x2+
1)3/4, whose structure is Z/(x2 + 1)/2Z × Z/(x2 + 1)2/2Z, and it is enough to
multiply by n(x) = (x2 + 1)2/2 to clear the co-factor c0(x).

For construction 6.3, the curve cofactor has a factor c0(x) = (x2 − 1)2(x2 +
1)/4, whose structure is Z/(x2−1)/2Z×Z/((x2−1)(x2+1)/2Z, and it is enough
to multiply by n(x) = (x2 − 1)(x2 + 1)/2 to clear the co-factor c0(x).

For construction 6.4, the curve cofactor has a factor c0(x) = (x − 1)2(x2 +
1)/4, whose structure is Z/(x− 1)/2Z×Z/(x− 1)(x2 + 1)/2Z, and it is enough
to multiply by n(x) = (x− 1)(x2 + 1)/2 to clear the co-factor c0(x).

For construction 6.5, the curve order has cofactor c0(x) = x4/4, whose struc-
ture is Z/x2/2Z×Z/x2/2Z, and it is enough to multiply by n(x) = x2/2 to clear
the cofactor.

3.4 Construction 6.7 with D = 2

Construction 6.7 in [9] has discriminant D = 2. We report the polynomial forms
of the parameters in Table 5. The cofactor c1(x) in q(x) + 1− t(x) = r(x)c1(x)
has always a factor c0(x) that we report in Table 6. For q(x) to be an integer,
x ≡ 1 mod 2 is required, and x ≡ 1 mod 4 for k ≡ 0 mod 24.

Table 5. Construction 6.7 from [9, §6].

6.7, k = 0 mod 3, ` = lcm(8, k)

r(x) = Φ`(x)

t(x) = x`/k + 1

y(x) = (1− x`/k)(x5`/24 + x`/8 − x`/24)/2
q(x) = (2(x`/k + 1)2 + (1− x`/k)2(x5`/24 + x`/8 − x`/24)2)/8
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Table 6. Cofactor of Construction 6.7. Note that x ≡ 1 mod 2, except for k ≡ 0 mod
24, where x ≡ 1 mod 4.

k c0(x) gcd(c0(x), q(x)− 1) gcd(c0(x), y(x))
6.7 0 mod 3 (x`/k − 1)2/8 (x`/k − 1)/2 (x`/k − 1)/2

Proof (of Table 6). We compute

q(x) + 1− t(x) =(2(x`/k + 1)2 + (1− x`/k)2(x5`/24 + x`/8 − x`/24)2)/8 + 1− (x`/k + 1)

=(2(x`/k + 1)2 − 8x`/k + (1− x`/k)2(x`/24(x4`/24 + x2`/24 − 1))2)/8

=(2(x`/k − 1)2 + (x`/k − 1)2x`/12(x`/6 + x`/12 − 1)2)/8

=(x`/k − 1)2(x`/12(x`/6 + x`/12 − 1)2 + 2)/8

and for q(x)− 1 we obtain

q(x)− 1 =(2(x`/k + 1)2 − 8 + (x`/k − 1)2(x`/12(x`/6 + x`/12 − 1)2))/8

q(x)− 1 =(2(x`/k − 1)2 + 8x`/k − 8 + (x`/k − 1)2(x`/12(x`/6 + x`/12 − 1)2))/8

q(x)− 1 =(x`/k − 1)(8 + (x`/k − 1)(2 + x`/12(x`/6 + x`/12 − 1)2)/8

It is straightforward to see that (x`/k − 1)/2 divides y(x).

From Table 6 and Theorem 1, we obtain Theorem 4.

Theorem 4. For construction 6.7, let ` = lcm(k, 8). The curve cofactor has a
factor c0(x) = (x`/k−1)2/8, whose structure is Z/(x`/k−1)/4Z×Z/(x`/k−1)/2Z,
and it is enough to multiply by n(x) = (x`/k − 1)/2 to clear the co-factor c0(x).

3.5 Other constructions

We also investigated the KSS curves named Constructions 6.11, 6.12, 6.13, 6.14,
6.15 in [9], and the KSS-54 curve of 2018, but none of the cofactors is a square,
and the gcd of the cofactor and q(x) − 1, resp. y(x), is equal to 1. Hence our
faster co-factor clearing does not apply.

4 Subgroup membership testing

For completeness, we first state the previously known membership tests for G1

[12,5] and GT [12,8,1] for BLS curves. Next, we show that the proof argument
for the G2 test in [12] is incomplete and provide a fix and a generalization.

For the sequel, we recall that the curves of interest have a j-invariant 0 and
are equipped with efficient endomorphisms φ on G1 and ψ on G2 (see Sec. 2).
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4.1 G1 and GT membership

Given a point P ∈ E(Fq), Scott [12, §6] proves by contradiction that for BLS12
curves it is sufficient to verify that φ(P ) = −u2P where −u2 is the eigenvalue
λ of φ. A similar test was already proposed in a preprint by Bowe [5, §3.2] for
the BLS12-381: ((u2 − 1)/3)(2φ′(P )− P − φ′2(P ))− φ′2(P ) = O (where φ′ here
is φ2). This boils down to exactly φ(P ) = −u2P using φ2(P ) + φ(P ) + P = O
and λ2 + λ + 1 ≡ 0 mod r (u4 ≡ u2 − 1 mod r). However, the proof uses a
tautological reasoning, as reproached by Scott [12, footnote p. 6], because it
replaces λP by φ(P ) where P is a point yet to be proven of order r.

For w ∈ GT membership test, Scott [12] hinted that it is sufficient on BLS12
curves to verify that wq4−q2+1 = 1 (cyclotomic subgroup test) and that wq = wu.
This was based on a personal communication with the authors of [8] who proved
the proposition for any pairing- friendly curve. They also implemented this test
for some BLS12 and BLS24 curves in [4] prior to Scott’s pre-print. The same
test also appears in [1] without a proof.

4.2 G2 membership

Following [12, Section 4], let E(Fq) be an elliptic curve of j-invariant 0 and em-
bedding degree k = 12. Let E′ be the sextic twist of E defined over Fqk/d = Fq2 ,
and ψ the “untwist-Frobenius-twist“ endomorphism with the minimal polynomial

χ(X) = X2 − tX + q (7)

Let Q ∈ E′(Fq2). We have gcd(q + 1 − t,#E′(Fq2)) = r. To check if Q is in
E′(Fq2)[r], it is therefore sufficient to verify that

[q + 1− t]Q = O

Since [q] = −ψ2 + [t] ◦ ψ from Eq. (7), the test to perform becomes

ψ ◦ ([t]Q− ψ(Q)) +Q− [t]Q = 0 . (8)

It is an efficient test since ψ is fast to evaluate and [t]Q can be computed once
and cheaper than [r]Q. For BLS12 curves t = u + 1 and the test to perform
becomes in [12, Section 4] the quadratic equation

ψ(uQ) + ψ(Q)− ψ2(Q) = uQ

So far, the only used fact is χ(ψ) = 0, which is true everywhere. So the reasoning
is correct and we have

ψ(uQ) + ψ(Q)− ψ2(Q) = uQ =⇒ Q ∈ E′(Fq2)[r]

However the preprint [12, Section 4] goes further and writes that the quadratic
equation has only two solutions, ψ(Q) = Q and ψ(Q) = uQ. Since ψ does not
act trivially on E′(Fq2) the conclusion is

ψ(Q) = uQ =⇒ Q ∈ E′(Fq2)[r] (9)

13



The issue The previous property is, by luck, true as we will show later (Sec. 4.3).
However, the overall reasoning is flawed, because it circles back to the fact that
ψ acts as the multiplication by u on G2, while we are trying to prove that Q is
in G2. This is the same kind of tautological reasoning reproached in the footnote
of Scott’s preprint [12]. This reasoning implicitly supposes ψ acts as the mul-
tiplication by u only on E′(Fq2)[r], and therefore that this action characterizes
E′(Fq2)[r]. However, E′(Fq2)[r] might not be the only subgroup of E′(Fq2) on
which ψ has the eigenvalue u. Indeed, if a prime number ` divides the cofactor
c2 and χ(u) = 0 mod `, it is possible that, on E′(Fq2)[`], ψ acts as the multipli-
cation by u, for instance if E′(Fq2)[`] contains the eigenspace associated to u. So
the implication (9) is true, provided that no such prime exists.

The solution The implication (9) becomes true if we know that there is no other
subgroup of E′(Fq2) on which ψ acts as the multiplication by u. To make sure of
this, it is enough to check that χ(u) 6= 0 mod `i for all primes `i dividing c2. If
that is the case, we know that ψ acts as the multiplication by u only on E′(Fq2)[r].
Using the Chinese Remainder Theorem it gives the following criterion:

Proposition 1 If ψ acts as the multiplication by u on E′(Fq2)[r] and gcd(χ(u), c2) =
1 then

ψ(Q) = [u]Q =⇒ Q ∈ E′(Fq2)[r] .

Note that checking the gcd of the polynomials χ(λ(X)) and c2(X) is not
sufficient and one needs to check the gcd of the integers, that are evaluations of
the polynomials at u. In fact, gcd(χ(λ(X)), c2(X)) = 1 in Q[X] only means that
there is a relation Aχ(λ) +Bc2 = 1 where A,B ∈ Q[X]. The seeds u are chosen
so that χ(λ(u)), c2(u) are integers, but it might not be the case for A(u) and
B(u). If d is the common denominator of the coefficients of A and B, we can
only say that for a given seed u, gcd(χ(u), c2(u)) | d. Therefore, we have to take
care of the “exceptional seeds” u such that gcd(χ(u), c2(u)) is a proper divisor
of d.

4.3 A generalisation of G1 and G2 membership tests

Proposition 1 can be generalized to both G1 and G2 groups for any polynomial-
based family of elliptic curves (e.g. BLS, BN, KSS). Let Ẽ(Fq̃) be a family
of elliptic curves (i.e. it can be E(Fq) or E′(Fqk/d) for instance). Let G be a
cryptographic group of Ẽ of order r equipped with an efficient endomorphism
φ̃. It has a minimal polynomial χ̃ and an eigenvalue λ̃. Let c be the cofactor of
G. Proposition 1 becomes then

Proposition 2 If φ̃ acts as the multiplication by λ̃ on Ẽ(Fq̃)[r] and gcd(χ̃(λ̃), c) =
1 then

φ̃(Q) = [λ̃]Q =⇒ Q ∈ Ẽ(Fq̃)[r] .
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Examples

Example 1 (BN[3]). Let E(Fq(x)) define the BN pairing-friendly family. It is
parameterized by

q(x) = 36x4 + 36x3 + 24x2 + 6x+ 1

r(x) = 36x4 + 36x3 + 18x2 + 6x+ 1

t(x) = 6x2 + 1

and E(Fq(x)) has a prime order so c1 = 1. The cofactor on the sextic twist
E′(Fq2) is c = c2

c2(x) = q(x)− 1 + t(x)

= 36x4 + 36x3 + 30x2 + 6x+ 1 .

On G = G2 = E′(Fq2)[r], φ̃ = ψ (the “untwist-Frobenius-twist”) has a minimal
polynomial χ̃ = χ and an eigenvalue λ̃ = λ

χ = X2 − tX + q

λ = 6X2 .

We have gcd(c2, χ(λ)) = gcd(c2(X), χ(6X2)) = 1, and running the extended
Euclidean algorithm we find a relation Ac2 + Bχ(λ) = 1 where A,B ∈ Q[X].
The common denominator of the coefficients of A and B is d = 2. We now look
at the congruence relations the seed u should satisfy so that χ(λ(u)) and c2(u)
are both divisible by 2: those will be the exceptional seeds, under which the
implication (9) could be false. Since c2 is always odd there is no exceptional
seeds and we obtain:

Proposition 3 For the BN family, if Q ∈ E′(Fq2),

ψ(Q) = [6u2]Q =⇒ Q ∈ E′(Fq2)[r] .

Example 2 (BLS12[2]). The BLS12 parameters are:

q(x) = (x− 1)2/3 · r(x) + x

r(x) = x4 − x2 + 1

t(x) = x+ 1 .

On G = G1 = E(Fp)[r], the endomorphism φ̃ = φ has minimal polynomial χ̃ = χ

and eigenvalue λ̃ = λ as follows:

χ = X2 +X + 1

λ = −X2 .

We have c = c1 = (X − 1)2/3. Running the extended Euclidean algorithm on
c1 and χ(λ), we find a relation Ac1 + Bχ(λ) = 1 in Q[X]. In fact, here A and
B are in Z[X], so there are no exceptional cases: for any acceptable seed u,
gcd(c1(u), χ(λ(u))) = 1, so we retrieve the result from Scott’s paper [12]:
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Proposition 4 For the BLS12 family, if Q ∈ E(Fp),

φ(Q) = [−u2]Q =⇒ Q ∈ E(Fp)[r] .

On G = G2 = E′(Fq2)[r], φ̃ = ψ (the “untwist-Frobenius-twist”) has a mini-
mal polynomial χ̃ = χ and an eigenvalue λ̃, where

χ = X2 − tX + q

λ = X .

The G2 cofactor is c = c2

c2(x) = (x8 − 4x7 + 5x6 − 4x4 + 6x3 − 4x2 − 4x+ 13)/9 .

We have gcd(c2, χ(λ)) = 1 and running the extended Euclidean algorithm we
find a relation Ac2 +Bχ(λ) = 1 where A,B ∈ Q[X]. The common denominator
of the coefficients of A and B is 3 · 181. We look at what congruence properties
the seed u should have so that χ(λ(u)) and c2(u) are both divisible by 181 or 3
to rule out the exceptional cases (as before, with those seeds, the implication (9)
could be false). We find that there is no seed u such that 3 | c2(u). Furthermore,
the seeds u such that 181 | χ(λ(u)) and 181 | c2(u) are such that u ≡ 7 mod 181
and in that case, 181 | r(u). Therefore there are no exceptional cases as long as
r is prime, and we obtain:

Proposition 5 For the BLS12 family, if r = r(u) is prime and Q ∈ E′(Fq2),

ψ(Q) = [u]Q =⇒ Q ∈ E′(Fq2)[r] .

Example 3 (BLS24[2]). The BLS24 family is parameterized by

q(x) = (x− 1)2/3 · r(x) + x

r(x) = x8 − x4 + 1

t(x) = x+ 1 .

On G = G1 = E(Fp)[r], the endomorphism φ̃ = φ has minimal polynomial χ̃ = χ

and eigenvalue λ̃ = λ, where

χ = X2 +X + 1

λ = −X4 .

We have c = c1 = (X − 1)2/3. Running the extended Euclidean algorithm on c1
and χ(λ), we find a relation Ac1 +Bχ(λ) = 1 in Q[X]. As for BLS12, A and B
are in Z[X], so there are no exceptional cases, and we have

Proposition 6 For the BLS24 family, if Q ∈ E(Fp),

φ(Q) = [−u4]Q =⇒ Q ∈ E(Fp)[r] .
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On G = G2 = E′(Fq4)[r], φ̃ = ψ, the “untwist-Frobenius-twist” has a minimal
polynomial χ̃ = χ and an eigenvalue λ̃ = λ, where

χ = X2 − tX + q

λ = X .

The cofactor on the sextic twist E′(Fq4) is c = c2

c2(x) =(x32 − 8x31 + 28x30 − 56x29 + 67x28 − 32x27 − 56x26 + 160x25 − 203x24 + 132x23

+ 12x22 − 132x21 + 170x20 − 124x19 + 44x18 − 4x17 + 2x16 + 20x15 − 46x14 + 20x13

+ 5x12 + 24x11 − 42x10 + 48x9 − 101x8 + 100x7 + 70x6 − 128x5 + 70x4 − 56x3

− 44x2 + 40x+ 100)/81 .

We have gcd(c2, χ(λ)) = 1. Running the extended Euclidean algorithm on c2
and χ(λ), we find a relation Ac2 + Bχ(λ) = 1 where the common denominator
of the coefficients of A and B is 35×1038721. As before, we find that there is no
seed u such that 3 | c2(u). Moreover, the seeds u such that 1038721 | c2(u) and
1038721 | χ(λ) are such that u = 162316 mod 1038721. In this case 1038721 |
r(u) and hence there are no exceptional cases. We obtain:

Proposition 7 For the BLS24 family, if r = r(u) is prime and Q ∈ E′(Fq4),
then

ψ(Q) = [u]Q =⇒ Q ∈ E′(Fq4)[r] .

Example 4 (BLS48[2]). The BLS48 family is parametrised by

q(x) = (x− 1)2/3 · r(x) + x

r(x) = x16 − x8 + 1

t(x) = x+ 1 .

On G = G1 = E(Fp)[r], the endomorphism φ̃ = φ has minimal polynomial χ̃ = χ

and eigenvalue λ̃ = λ, where

χ = X2 +X + 1

λ = −X8 .

We have c = c1 = (X − 1)2/3. Running the extended Euclidean algorithm on
c1 and χ(λ), we find a relation Ac1 + Bχ(λ) = 1 in Q[X]. As for BLS12 and
BLS24, A and B are in Z[X], so there are no exceptional cases, and we have

Proposition 8 For the BLS48 family, if Q ∈ E(Fp),

φ(Q) = [−u8]Q =⇒ Q ∈ E(Fp)[r] .

On G = G2 = E′(Fq8)[r], φ̃ = ψ, the “untwist-Frobenius-twist” has a minimal
polynomial χ̃ = χ and an eigenvalue λ̃ = λ, where

χ = X2 − tX + q

λ = X .
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The cofactor on the sextic twist E′(Fq8) is c = c2 = (p8(x) + 1 − (3y8(x) +
t8(x))/2)/r(x)

c2(x) = (x128 − 16x127 + 120x126 − 560x125 + · · ·+ 6481)/6561 .

We have gcd(c2, χ(λ)) = 1. Running the extended Euclidean algorithm on c2
and χ(λ), we find a relation Ac2 + Bχ(λ) = 1 where the common denominator
of the coefficients of A and B is 1153 × 4726299241057. We now look at the
congruence relations the seed u should satisfy so that χ(λ(u)) and c2(u) are
both divisible either by 1153 or 4726299241057: Those will be the exceptional
seeds, under which the implication (9) could be false. We note Upi the set of
values of u mod pi such that χ(λ)(x) = 0 mod pi and similarly Vpi

the set of
values of u mod pi such that c2(u) = 0 mod pi.

pi = 1153 : U1153 ∩ V1153 = {1135}
pi = 4726299241057 : U4726299241057 ∩ V4726299241057 = {2085225345771}

For the exceptional seeds u ≡ 1135 mod 1153 and u ≡ 2085225345771 mod
4726299241057, we need to check that gcd(χ(λ)(u), c2(u)) = 1 over the integer
instances (i.e. for the concrete values of x). However, in both cases r is not a
prime. So we have

Proposition 9 For the BLS48 family, if r = r(u) is prime and Q ∈ E′(Fq8),

ψ(Q) = [u]Q =⇒ Q ∈ E′(Fq8)[r] .

5 Conclusion

Cofactor clearing and subgroup membership tests are two important operations
in many pairing-based protocols. In this work, we generalized and proved a
technique for cofactor clearing to many pairing-friendly constructions. We gave
a simple criterion to prove both G1 and G2 membership tests after fixing an in-
complete proof of a G2 test that was recently widely deployed in cryptographic
libraries. These operations are now provably fast for different pairing-friendly
curves which consequently speeds up many cryptographic protocols. This also
gives more flexibility to find curves with nice properties at the expense of com-
posite cofactors.
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