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Abstract. In this article, we prove a generic lower bound on the num-
ber of O-orientable supersingular curves over Fp2 , i.e curves that admit
an embedding of the quadratic order O inside their endomorphism ring.
Prior to this work, the only known effective lower-bound is restricted to
small discriminants. Our main result targets the case of fundamental dis-
criminants and we derive a generic bound using the expansion properties
of the supersingular isogeny graphs.
Our work is motivated by isogeny-based cryptography and the increasing
number of protocols based on O-oriented curves. In particular, our lower
bound provides a complexity estimate for the brute-force attack against
the new O-uber isogeny problem introduced by De Feo, Delpech de Saint
Guilhem, Fouotsa, Kutas, Leroux, Petit, Silva and Wesolowski in their
recent article on the SETA encryption scheme.

1 Introduction

The link between quadratic imaginary orders and elliptic curves have always been
of great importance to elliptic curve cryptography, and isogeny-based cryptog-
raphy is no exception. This connection dates back to the very beginning of the
field with the CRS scheme, discovered independently by Couveignes [Cou06] and
Rostovtsev and Stolbunov [RS06]. Their original idea is based on isogenies be-
tween ordinary curves over finite fields, i.e elliptic curves whose endomorphism
ring is isomorphic to a quadratic imaginary order. However, for both security and
efficiency reasons, ordinary curves were soon replaced by supersingular curves,
i.e curves whose endomorphism ring is isomorphic to a maximal order inside a
quaternion algebra. With the CGL hash function [CLG09] and the SIDH key
exchange [JDF11] leading the charge, it seemed like the quadratic orders were
destined to slowly disappear from the picture. However, they claimed back a
share of the spotlight with CSIDH [CLM+18], a revival of CRS in the setting
of supersingular curves with the quadratic order obtained by restricting to en-
domorphisms defined over Fp. In fact, quadratic orders were never really gone
as quaternion orders actually contain an infinity of them. Isogeny experts only
needed time to understand their place in the rapidly evolving picture of isogeny-
based cryptography. In parallel to numerous schemes built upon CSIDH and



its variants ([BKV19,ADFMP20] among others), several papers appeared try-
ing to study the link between isogenies of supersingular curves and quadratic
imaginary orders outside of the CSIDH framework. We can mention the OS-
IDH protocol by Colò and Kohel [CK19] for quadratic orders of smooth dis-
criminant which introduced the terminology of orientations that we use in this
paper and the work of Love and Boneh [LB20] on quadratic orders of small dis-
criminant. More recently, Chenu and Smith [CS21] studied the case where the
discriminant is a small integer times p. De Quehen et al. have highlighted in
[QKL+21] the possibility to use the embedding of a specific quadratic order as a
backdoor to break unbalanced variants of SIDH. The SETA encryption scheme
[DFFDdSG+21] is built on the same principle. The set of SETA public keys is
simply the set of O-orientable curves for some quadratic order O and secret keys
are concrete O-orientations. Additionally, the authors of SETA have introduced
the “uber-isogeny assumption” as an attempt to provide a common framework
for various security assumptions in isogeny-based cryptography. The formula-
tion of the O-Uber Isogeny Problem (O-UIP) is explicitly parametrized by a
quadratic imaginary order O and it was shown in [DFFDdSG+21] how different
variants of the O-UIP were related to the security of several isogeny-based proto-
cols (including SIDH). Later [Wes21,ACL+22] have studied various algorithmic
problems related to O-orientations and the O-UIP. Note that the recent attacks
[CD22,MM22,Rob22] against SIDH do not apply to the O-UIP even if those at-
tacks break SETA. It is because the attacks target the encryption mechanism of
SETA but do not allow an attacker to perform a key recovery. Thus, the O-UIP
remains an interesting subject of study.

Given the rich history that we have summarized above, it is important to
study in more detail the link between quadratic orders and isogenies of supersin-
gular curves. We denote by EO(p) the set of O-orientable supersingular elliptic
curves over Fp2 . In this work, we study the cardinal #EO(p) of this set. The
complexity of the brute force algorithm to solve the O-UIP is linear in #EO(p).
Aiming at the cryptographic applications, we look for an effective bound in the
cases where the discriminant of O is polynomial in p and both have cryptographic
size.

Related works. The number of orientable supersingular curve is related to the
number of optimal embeddings of quadratic orders inside maximal orders of the
quaternion algebra ramified at p and ∞ and is also linked with the number
of representations of integers by ternary quadratic forms. Both quantities have
been studied in the literature but not with the same goal. As far as we know,
prior to our work, an effective bound is only known for a restricted range of
discriminants and is due to Kaneko [Kan89]. In [Voi21, Chapter 30], several
formulas are given involving sums of these numbers (such as the Eichler class
number formula) from which it seems hard to derive a bound. There are also
asymptotic results on number of representations by ternary quadratic forms (see
for instance [IK21, Chapter 20]) but they rather target the case where d grows to
infinity while p is fixed. Our work also shares some similarities with the trend of
work started by Gross and Zagier [ZG85] on singular moduli and later enriched
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by Dorman, and Lauter and Viray [Dor87,LV15]. Their results cannot be directly
applied to our case because they target simultaneous embeddings of quadratic
orders of distinct discriminants while we are going to focus on simultaneous
embeddings of quadratic orders with the same discriminant. Nonetheless, some
of the techniques developed in these works have inspired part of our analysis.

Contributions. Our main result is Proposition 11, a lower bound on #EO(p) when
O is a maximal quadratic order. The proof is based on the study of KO(p), the
number of quaternion orders obtained from pairs of distinct O-orientations. With
Proposition 14 in Appendix A, we cover the case of non-maximal orders and a
lower bound on #EO(p) can be derived for any quadratic order by combining
Propositions 11 and 14.

Asymptotically, our bound becomes trivial when the discriminant grows while
the characteristic p stays fix. However, in the case where the discriminant is
polynomial in p, our bound proves to be quite tight as we illustrate by using it to
verify that the parameters proposed in [DFFDdSG+21] for the SETA encryption
scheme reach the claimed level of security.

Acknowledgements. We are very grateful to John Voight for some crucial com-
ments regarding the results in Section 3.2 and Proposition 9 in particular. We
would also like to thank Luca De Feo and some anonymous reviewers for useful
comments on an earlier version of this work.

The remainder of this paper is organized as follows: Section 2 introduces the
necessary notations and mathematical notions. Section 3 is where we present our
main result, we treat the case of fundamental discriminants in Section 3.2. We
address the case of non-trivial conductor in Appendix A. Finally, in Section 4,
we apply our results to a concrete example corresponding to the parameters of
SETA.

2 Mathematical background

Notations. Throughout this document, we place ourselves in Bp,∞, the definite
quaternion algebra ramified at p and ∞ for some prime p > 3. We consider su-
persingular elliptic curves over Fp2 and write Np for the number of isomorphism
classes of such curves over the algebraic closure of Fp.

We fix an imaginary quadratic field K of discriminant −d and ring of integers
OK. For any O ⊂ OK, we write f(O) the conductor of O, i.e the only integer
such that O = Z + f(O)OK (when it is clear from the context we will simply
write f). The class group of O is Cl(O) and the class number is h(O). As
a convention, we use O∗ for quaternion orders in Bp,∞ and O∗ for quadratic
imaginary orders. We write P for the set of all primes. For any d ∈ N, we define
Pd = {` | ` ∈ P and ` divides d}.
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2.1 Quaternion orders

For a, b ∈ Z? we denote by H(a, b) = Q + iQ + jQ + kQ the quaternion algebra
over Q with basis 1, i, j, k such that i2 = a, j2 = b and k = ij = −ji. The
unique quaternion algebra (up to isomorphism) ramified exactly at p and ∞,
is always isomorphic to H(−q,−p) where q is a small integer relatively to p
(q = O(log(p)2). For instance, when p ≡ 3 mod 4, we can always take q = 1.
Every quaternion algebra has a canonical involution that sends an element α =
a1 + a2i + a3j + a4k to its conjugate α = a1 − a2i − a3j − a4k. We define the
reduced trace and the reduced norm by tr(α) = α+ α and n(α) = αα.

Quaternion orders of Bp,∞ are lattices of rank 4 inside Bp,∞ that are also
rings. It can be shown that quaternion orders are integral, i.e that norm and
trace of all the elements are in Z. Given a basis α1, α2, α3, α4 of O, the reduced
discriminant (or simply discriminant) of O is disc(O) =

√
det(αiαj)i,j∈[1,4]. For

any O ⊂ Bp,∞, we have p|disc(O). The discriminant of a suborder O′ ⊂ O
satisfies disc(O)|disc(O′).

Maximal orders are the orders that admit no proper superorders and, in par-
ticular, their discriminant is equal to p. Eichler orders are equal to intersection
of two maximal orders (not necessarily distinct). Every quaternion order ad-
mits the unique decomposition Z + f(O)Gor(O) where f(O) ∈ N is the Brandt
Invariant and Gor(O) is the Gorenstein closure. We can define Gorenstein or-
ders as orders whose Brandt Invariant is 1. As the name suggests, Gor(O) is
always Gorenstein. An order is Bass when all its superorders are Gorenstein.
Equivalently, Bass orders of Bp,∞ are the orders containing a maximal order
of a quadratic imaginary field (this was originally the definition of basic orders
but the two notions were proven equivalent by Chari, Smertnig and Voight in
[CSV21]).

We have a chain of proper implication between all those notions

maximal ⇒ Eichler ⇒ Bass ⇒ Gorenstein.

We refer the reader to the book of John Voight for more background on quater-
nion algebras and quaternion orders [Voi21].

In this article, we will make use of embedding numbers of Bass orders, i.e
the number of distinct maximal orders containing a given order. This problem
was studied by Eichler and Brzezinski [BE92,Brz83] and was more recently used
in [EHL+20] to estimate the complexity of an algorithm to compute the endo-
morphism ring of a supersingular curve. For the rest of this section, we fix a
Bass order O of discriminant D. Following [BE92], we denote by e(O) the em-
bedding number of O. It turns out that e(O) can be computed efficiently using
the local-to-global principle with the formula e(O) =

∏
`∈P e`(O) where e`(O)

is the analog of e(O) over the `-adics: e`(O) is the number of maximal orders
in Bp,∞ ⊗Q` containing O` = O⊗ Z`. An easy preliminary observation is that,
e`(O) = 1 when ` is coprime with D. Thus, we can rewrite the above formula as
e(O) =

∏
`∈Pd e`(O). The value of e`(O) is in fact closely related to the Eichler

symbol (O/`), a notion introduced by Eichler in [Eic36]. Let us write k for the
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residue field of Q` and J for the Jacobson radical of O`. Then, we define the
Eichler symbol as follows:

(O
`

)
=


1 if O`/J ∼= k × k,
0 if O`/J ∼= k,

−1 if O`/J is a quadratic extension of k.

(1)

The Eichler symbol is a very useful tool to understand the structure of an order
O by the local-global principle. For instance, the order O` is Eichler if and only if
(O/`) = 1. The Eichler symbol can be seen as a generalization of the Kronecker
symbol, as becomes explicit with the reinterpretation presented in Proposition 1.
For any quaternion element α, we write ∆(α) = disc(Z[α]) = tr(α)2 − 4n(α).

Proposition 1. [Voi21]
(
O
`

)
= ε if and only if

(
∆(α)
`

)
takes all the values in

{0, ε} when α ranges over all the elements of O.

Then, it was shown by Eichler in [Eic36] (see [Brz83] for an account in English
of this result) how the value of the Eichler symbol is linked to e`(O). We write
v`(n) for the `-adic valuation of a integer n.

Proposition 2. Let O be a Bass order in Bp,∞ of discriminant D and ` ∈ PD:

e`(O) =


v`(D) + 1 if (O/`) = 1,

2 if (O/`) = 0 and ` 6= p,

1 if (O/`) = −1 or ((O/`) = 0 and ` = p) .

Remark 1. Note that ep(O) is always equal to 1. This follows from Proposition 2
and the fact that (O/p) cannot be 1.

2.2 Quadratic orders and oriented supersingular elliptic curves

In this section, we recall the basic definition and properties about orientations of
elliptic curves, inspired by Colò and Kohel in [CK19]. The notion of orientation
in Definition 1 below corresponds to the one of primitive orientations with a
p-orientation in [CK19] and it is equivalent under the Deuring correspondence
to optimal embeddings of quadratic orders inside maximal orders of Bp,∞ (see
[LB20]). The same notion is referred to as normalized optimal embeddings in
[Bel08].

Definition 1. Let K be a quadratic imaginary field. For any elliptic curve E, a
K-orientation is a ring homomorphism ι : K ↪→ End(E) ⊗ Q. A K-orientation
induces an O-orientation if ι(O) = End(E) ∩ ι(K). In that case, the pair (E, ι)
is called a O-oriented curve and E is an O-orientable curve.

When E/Fp2 is supersingular, Deuring showed that End(E) is a maximal
order of Bp,∞ [Deu41] and so we have End(E) ⊗ Q ∼= Bp,∞. We denote by
SO(p) the set of O-oriented supersingular curves over Fp2 up to isomorphism
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and Galois conjugacy. Note that this does not exactly match the definition used
in [Onu21,Wes21] where orientations are not considered up to Galois conjugacy.
We took this convention because we can state precise results when working up
to Galois conjugacy (the Frobenius, which is the only non-trivial element in the
Galois group of Fp2 , creates somewhat artificial duplicates of a given orientation).
The following proposition was shown by Onuki [Onu21, Proposition 3.2] and
gives a concrete criterion to determine when SO(p) is not empty.

Proposition 3. The set SO(p) is not empty if and only if p does not split in K
and does not divide the conductor of O.

The value of #SO(p) can be easily computed from p,O. For instance, when
p is inert in O, a consequence of [Onu21, Proposition 3.3, Theorem 3.4] is that
#SO(p) = h(O). When p ramified in O, the situation might be more complicated.
In general we have that #SO(p) ∈ {h(O), h(O)/2} by [ACL+22, Proposition 3.3].

In any case, the class group Cl(O) acts on O-orientations through an opera-
tion that we write a ? (E, ι) = (Ea, ιa).

Definition 2. EO(p) is the set of O-orientable curves (under isomorphism and
Galois conjugacy).

By definition of EO(p), we have the obvious inequality #EO(p) ≤ min(#SO(p), Np).

The recent article [DFFDdSG+21] introduced a new isogeny-based problem:
the O-Uber Isogeny Problem (O-UIP). We describe below as Problem 1, the O-
UBER variant introduced by Wesolowski in [Wes21]. We assume for Problem 1
that O and p satisfy the constraint in Proposition 3.

Problem 1. (O-UBER) Given (E, ι) ∈ SO(p) and F ∈ EO(p), find a ∈ Cl(O),
such that F = Ea.

The brute force method to solve Problem 1 consists in trying all ideal classes
until a solution is found. The expected complexity of this algorithm is linear in
#EO(p) (and not #SO(p) since we look for any class connecting E and F and
not a specific class).

3 The number of O-orientable supersingular curves.

In this section, we pursue the main goal of this article: finding a generic lower
bound on the size of EO(p). Henceforth, we assume that the Legendre symbol
(disc(O)/p) 6= 1 and the conductor f(O) is coprime with p so we know by
Proposition 3 that #EO(p) > 0. We start with Section 3.1, where we introduce
useful results from the literature and show a first lower bound when disc(O) ≤ p.
In Section 3.2, we prove our main lower bound in the case where f(O) = 1. We
extend this result to the generic case using the expansion property of the isogeny
graphs in Appendix A.
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3.1 A first result for small discriminants

The main result of this Section is Proposition 5 that was first proven by Kaneko
in [Kan89]. This proposition allows us to derive interesting results on EO(p) with
Corollaries 1 and 2 (Corollary 1 being the only effective lower bound on #EO(p)
prior to this work). Proposition 5 is obtained by studying the quaternion order
generated by two integral elements in Bp,∞. The study of these objects will prove
to be very important for our results as well.

The quaternion order generated by two non-commuting elements. Let us take
α1, α2, two integral elements in Bp,∞. We want to look at the order O1,2 =
〈1, α1, α2, α1α2〉. When α1 and α2 are not commuting, O1,2 is a quaternion
order, i.e has rank 4 as a Z-module. In Proposition 4, we give the classical
formula to compute disc(O1,2). Proposition 5 is a consequence of this formula
and was proven in [Kan89].

Proposition 4. [Koh96, Chapter 7] Let Oi be quadratic orders equal to Z[αi]
for i = 1, 2 such that α1, α2 are not commuting. Let Di = disc(Oi), ti = tr(αi)
for i ∈ {1, 2} and s = tr(α1α2), then disc(O1,2) = (D1D2 − (t1t2 − 2s)2)/4.

Proposition 5. [Kan89, Theorem 2’] Let Oi be quadratic orders equal to Z[αi]
for i = 1, 2 such that α1, α2 are not commuting. If O1,O2 have respective dis-
criminant −f2i d (where d is a fundamental discriminant) and are contained in-
side the same quaternion maximal order O ⊂ Bp,∞, we have that p ≤ fifjd.

Remark 2. During the proof for Proposition 5 we showed that t1t2−2s ≡ ±f1f2d
mod p. This fact will be useful for what follows in Section 3.2.

Proposition 5 allows us to show interesting properties, including a lower
bound on the size of EO(p) (Corollary 1) and a bound on the minimal distance
between two O-oriented curves (Corollary 2).

Corollary 1. When |disc(O)| < p, #EO(p) = #SO(p).

Proof. If we assume that #EO(p) < #SO(p), then there must be a curve E
with two distinct O-orientations ι1, ι2. Under the Deuring correspondence, this
implies that there are two distinct quadratic orders O1,O2 isomorphic to O
contained inside the maximal order O ∼= End(E). By Proposition 5, p must be
smaller than d which contradicts our assumption.

Corollary 2. Let ` be a prime different from p. If ` is inert in O of discriminant
d, then the shortest chain of `-isogenies between two curves of EO(p) has degree
larger than p/d.

Proof. (sketch) Let us denote the two curves by E1, E2 and by O1,O2, their
respective endomorphism rings. Let us take ϕ : E1 → E2 the smallest chain of
`-isogenies connecting them. Let us write θi ∈ Oi such that O ∼= Z[θi]. Since ` is
inert in O, it can be shown that α1 = θ1 and α2 = ϕ̂ ◦ θ2 ◦ϕ are two elements in
O1 that are not commuting (otherwise, at least one of the isogenies composing
ϕ would be commuting with θ which is impossible since ` 6= p and is inert in
K). Since disc(Z[α1]) = −d and disc(Z[α2]) = −degϕ2d, we obtain the desired
bound by applying Proposition 5.
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3.2 The case of OK.

In this section, we focus on the case where O = OK for a quadratic imaginary
field K of discriminant −d. Our main result is Proposition 11.

To improve the reader’s understanding, we divide the proof of Proposition 11
into several lemmas and propositions. Next, we give a brief outline and some in-
sights into the generic principle. Our starting point is the observation (already
used to prove Corollary 1) that if #EO(p) < #SO(p), then there are some
curves admitting several O-orientations. Similarly to Proposition 5, our result
is obtained through the analysis of the quaternion orders obtained by combin-
ing together the different pairs of orientations. More concretely, we bound the
number of these quaternion orders in two very different ways. The first one is a
lower bound depending on #EO(p) and #SO(p) (Proposition 7) while the second
one is an upper-bound (Proposition 10) that involves an explicit quantity that
can be computed from d and p. The combination of these two bounds yields
Proposition 11.

Here are some notations that we will use throughout this section. For any
given E ∈ EO(p), we writeNE ≥ 1 for the number of distinct O-orientations of E.
We write ι1, . . . , ιNE for these NE orientations, they induce the existence of en-
domorphisms α1, . . . , αNE ∈ End(E) such that (ιi(O))1≤i≤NE = (Z[αi])1≤i≤NE .
Since O is the maximal order of K, we can assume that αi is either ι−1i (

√
−q) or

ι−1i ((1 +
√
−q)/2) where q is the squarefree integer such that K = Q(

√
−q). Let

I26=(NE) be the set of pairs of distinct unordered elements inside {1, . . . , NE}.
We define an equivalence relation ∼E on I26=(NE) as

(i, j) ∼E (l,m) iff 〈1, αi, αj , αiαj〉 = 〈1, αl, αm, αlαm〉.

Definition 3. The set of equivalence classes under ∼E is denoted by KE. We
write KE = #KE.

Intuitively, KE is the set of distinct quaternion orders obtained by combining
two embeddings of O inside End(E). By the results presented in Section 2.2, we
have #SO(p) =

∑
E∈EO(p)NE . The quantity we propose to study is

KO(p) =
∑

E∈EO(p)

KE (2)

The link between #EO(p) and KO(p). The number KE is obviously related to
NE for every curve E ∈ EO(p). Intuitively, we would like to say that every pair
αi, αj generates a different quaternion order Oi,j with 1 ≤ i < j ≤ NE (thus
proving that KE = NE(NE − 1)/2). However, even if this seems to be the case
with good probability, it is not true in full generality. The correct statement
is given in Proposition 6. Fortunately, Proposition 6 still allows us to derive
Corollary 3 that lower-bounds KE by CNE(NE−1) for some constant factor C,
which is enough for our purpose.
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Proposition 6. Let Z[α1], Z[α2],Z[α3] be three distinct embeddings of the quadratic
order of discriminant −d (with d > 10) inside a maximal quaternion order O.
If d 6≡ 3 mod 4 or d 6≡ 0, 1 mod p, then α3 6∈ O1,2 = 〈1, α1, α2, α1α2〉. When
d ≡ 0 mod p, either α3 6∈ O1,2 or the trace of α1α2 is equal to 4n(α1) and α3

is one of ±(tr(α1)/2 + α1 − α2). When d ≡ 3 mod 4 and d ≡ 1 mod p, either
α3 6∈ O1,2 or the trace of α1α2 is (d − 1)/2 and α3 is one of ((d − 1)/4 + α2 −
α1α2), ((d− 1)/4 +α1−α1α2), ((9− d)/4−α2 +α1α2), ((9− d)/4−α1 +α1α2).

Proof. Since all orders are isomorphic, we can assume that all αi have the same
trace and norm. Let us write t = tr(αi), n = n(αi) for any i = 1, 2, 3. The
proof is based on the following claim: any α3 ∈ O1,2 corresponds to a solution
x, y, z ∈ Z[1/2] with x− y, y − z ∈ Z to the quadratic equation:

q = q(x2 + y2) + sxy + z2(q2 − s2/4) (3)

for some integers s, q that we will define below. We exclude the trivial solutions
(1, 0, 0) and (0, 1, 0).

As a consequence, our proof can be divided in two parts: first, we prove the
correspondence between the solutions to Eq. (3) and the α3 ∈ O1,2, then we find
the solutions of Eq. (3) to identify all the possible α3.

Proof of the claim. If we assume that α3 ∈ O1,2, then there exists v, x, y, z ∈ Z
such that α3 = v + xα1 + yα2 + zα1α2. The trace of α3 implies the equation
t = 2v+ t(x+ y) + ztr(α1α2). Thus, we rewrite α3 = t/2 + x(α1− t/2) + y(α2−
t/2) + z(α1α2 − tr(α1α2)/2).

There are two different cases, depending on the value of d mod 4. If d ≡ 0
mod 4 then d = 4q for some square-free q ≡ 1 mod 4 and so we can assume
w.l.o.g. that t = 0 and αi = ωi with ω2

i = −q. Else d = q for some square-free
q ≡ 3 mod 4 and we can take t = 1, αi = (1 + ωi)/2 with ω2

i = −q.
In both cases, let us write s = tr(ω1ω2). If d ≡ 0 mod 4, then we obtain the

norm equation q = n(α3) = q(x2 + y2) + sxy + z2(q2 − s2/4). When d ≡ q ≡ 3
mod 4, we have α3 = (1+ω3)/2 = 1/2+xω1/2+yω2/2+(z/4)(1+ω1+ω2+ω1ω2−
(1 + s/2)). Then, we obtain ω3 = (x+ z/2)ω1 + (y + z/2)ω2 + z/2(ω1ω2 − s/2).
Writing x2 = x + z/2, y2 = y + z/2, z2 = z/2 and taking the norm, we obtain
the equation q = n(ω3) = q(x22 + y22) + sx2y2 + z22(q2 − s2/4).

In conclusion, we need to find the solutions x, y, z in Z[1/2] and x − y ∈
Z, y − z ∈ Z to the quadratic equation q = q(x2 + y2) + sxy + z2(q2 − s2/4)
different from the trivial solutions (1, 0, 0) and (0, 1, 0). The end of the proof is
dedicated to the enumeration of all possible solutions.

Finding the solutions of Eq. (3). Throughout this search, we will use heavily
the fact that |s| < 2q (which comes from disc(Z)[ω1ω2] = s2− 4q2 < 0). W.l.o.g.
we can assume that s ≥ 0. We can directly remove the case x = y = 0 as it is
clearly impossible to find a z such that q = z2(q2 − s2/4).

Our first step is to find the possible values of z. Let us rewrite our equation as
q = q(x2+y2)+sxy+z2(q−s/2)(q+s/2). With the bound (q−s/2)(q+s/2) ≥ q/2
we get that we must have z ∈ {0,±1/2,±1}. This implies that s ≡ 0 mod 2
(otherwise q(x2 +y2)+sxy+z2(q−s/2)(q+s/2) would not be an integer). With
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that additional information, we can actually show that q2 − s2/4 ≥ q. Thus, in
fact we must have z ∈ {0,±1/2}. We also have q ≥ q(x2 + y2) + sxy.

Now that we have greatly reduced the number of possible z, we can look at
the values x, y. We distinguish two cases, depending on the sign of x, y.

Let us assume that xy ≥ 0. Then, we have q ≥ q(x2 + y2) + sxy. Thus, we
must have x2 + y2 ≤ 1. Since we exclude (x, y) ∈ {(0, 0), (0, 1), (1, 0)}, the only
possibility respecting all our constraints is (x, y, z) = (1/2, 1/2,±1/2). Thus, we
obtain q = q/2 + s/4 + q2/4− s2/16 which leads to the equation q2− 2q+ s(1−
s/4) = 0. The discriminant of the polynomial X2 − 2X + s(1− s/4) is equal to
4 − 4s + s2 = (s − 2)2. The two possible solutions are s/2 and (4 − s)/2. The
first one is impossible by the bound s < 2q. Since s ≥ 0 we obtain (4− s)/2 < 2
and this is incompatible with the bound d > 10.

We have seen that we have no solutions to Eq. (3) when xy ≥ 0. Let us now
consider the case xy < 0. W.l.o.g. we can assume that x > 0 and y < 0. Then,
we have q ≤ q(x2 + y2) − s|xy|, but the bound s < 2q leads to the inequality
q(x2 + y2) − s|xy| > q(x2 + y2) − 2q|xy| = q(x + y)2. If we want to avoid a
contradiction between these two bounds, then we must have |x + y| < 1. Since
x− y ∈ Z, the only possibility is x = −y.

When x = −y, we can rewrite Eq. (3) as

q = (q − s/2)(2x2 + z2(q + s/2)). (4)

Let us study this new equation. Since we have only a few possibilities for z, we
can simply see what happens with Eq. (4) for each value of z. Since the equation
is in z2 there are two cases: z = 0 and z = ±1/2.

If z = 0, we get q = x2(2q − s) where x ∈ Z and so the only solution is
x = 1 and s = q since q is square-free. However, looking at the discriminant of
〈1, ω1, ω2, ω1ω2〉 with Proposition 4, we get that p must divide q as it divides the
discriminant of any maximal order in Bp,∞. In that case, we have the solution
(x, y, z) = ±(1,−1, 0).

If z = ±1/2, the requirement x − z ∈ Z implies that we can write x = x′/2
with x′ ≡ 1 mod 2. Putting all this in Eq. (4), we get q = (q − s/2)x′2/2 +
1/4(q − s/2)(q + s/2) (we recall that s′ := s/2 is in Z). It is clear that we must
have q ± s′ ≡ 0 mod 2 so let us write q ± s′ = 2q±. Our equation becomes
q = q−+ q+ = q−x

′2 + q+q− which implies that q+ ≡ 0 mod q−. Thus, we must
have q+ = kq− for some k ∈ Z and Eq. (4) becomes q = (k+1)q− = q−(x′2+kq−)
which can only be satisfied if x′ = 1 and q− = 1. In that case, the only possible
solution (up to signs) is (x, y, z) = (1/2,−1/2,±1/2) when s = 2q − 4.

In summary, we have showed that our equations have the non-trivial solutions
±(1,−1, 0) when d ≡ 0 mod p and s = q or ±(1/2,−1/2,±1/2) when d ≡ 3
mod 4 and s = 2q− 4 and none otherwise. We conclude the proof by computing
what are the corresponding values of α3, so we compute the concrete values
v, x, y, z ∈ Z such that α3 = v+xα1 +yα2 +zα1α2 (note that these values x, y, z
are not directly the solutions to Eq. (3) when d = 3 mod 4, see the proof of our
claim at the beginning of the proof).

For the first solution, selecting the value v to verify the trace equation we
get that α3 = ±tr(α1) + α1 − α2. It is easily verified that tr(α1α2) = 4n(α1α2)
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when s = q. Otherwise, α3 = v + xα1 + yα2 + zα1α2 can only have a solution
when d ≡ q ≡ 3 mod 4 and tr(α1α2) = 1/2 + 1/4(tr(ω1ω2)) = (d − 1)/2.
By computing the discriminant of Z〈1, α1, α2, α1α2〉 with Proposition 4 when
tr(α1) = tr(α2) = 1 and tr(α1α2) = (q − 1)/2, we see that ∆ = d − 1 and so p
divides d − 1. This proves that d ≡ 1 mod p is also a necessary condition for
our equation to be satisfied.

The other possibilities for α3 can easily be found by taking (x + z/2, y +
z/2, z/2) = ±(1/2,−1/2,±1/2) and v be such that tr(α3) = 1.

Corollary 3. KE ≥ NE(NE−1)
12 .

Proof. From αl 6∈ Oi,j or αm 6∈ Oi,j ⇒ (i, j) 6∼E (l,m) for any i, j,m, l, we see
from Proposition 6 that the cardinality of any equivalence class in I26=(NE) must
be smaller than 6, as there at most four elements αi′ contained in Oi,j and we
must choose two among the possible i′ to get a full quaternion order. This bound
combined with #I26=(NE) = N(N − 1)/2 gives the result directly.

The bound obtained in Corollary 3 is the key ingredient to the inequality
between #EO(p), #SO(p) and KO(p) in Proposition 7.

Proposition 7. KO(p) ≥ 1
12 (#SO(p)2

#EO(p) −#SO(p))

Proof. We have #SO(p) =
∑
E∈EO(p)NE . Using Corollary 3, we get

∑
E∈EO(p)KE ≥

(1/12)
∑
E∈EO(p)(N

2
E−NE). Then, we can use the classical inequality

∑n
i=1 x

2
i ≥

(1/n)(
∑n
i=1 xi)

2 to get the result.

A generic upper-bound of KO(p). If (i, j) is a representative of a class k ∈ KE ,
we define tk as the value of tr(αiαj) and Ok as the quaternion order equal to the
image of 〈1, αi, αj , αiαj〉 under the isomorphism between Bp,∞ and End(E)⊗Q
(by definition of KE , tk and Ok are independent of a choice of i, j). The idea is
to look at the embedding number of the different orders Ok for k ∈ KE and E ∈
EO(p) in order to rewrite

∑
E∈EO(p)KE . With the notation from Section 2.1, we

write this number e(Ok) for a given class k and we compute it in Proposition 8.
Before proving this result, we need to understand a bit better the structure of
the orders Ok. This is the purpose of Lemma 1.

Lemma 1. Let E be a curve in EO(p) and k ∈ KE. The order Ok is a Bass
order.

Proof. One of the several equivalent definitions of Bass orders inside Bp,∞ is that
they contain a maximal order inside a commutative subalgebra of Bp,∞ [Voi21,
Section 24.5]. Since O is the maximal order of K, and the property follows from
the definition of Ok.

With the knowledge that the Ok are Bass orders, we can use Proposition 1
and Proposition 2 to compute e(Ok).

11



Proposition 8. Let Dk = disc(Ok)/p. The embedding number of Ok is

e(Ok) =
∏

`∈PDk ,(−d/`)=1

(v`(Dk) + 1)
∏

`∈PDk ,(−d/`)=0, 6̀=p

2.

Proof. If we show that when ` is a prime dividing Dk, (O/`) = (−d/`), then the
result follows from Proposition 2 and Lemma 1. First, note that when ` = p,
the local embedding number e`(O) is always equal to 1 (it is a consequence of
Propositions 1 and 2 and the fact that (−d/p) 6= 1). Then, it suffices to prove
the result for the cases where ` 6= p is either split or ramified in K. The two
results (−d/`) = 1⇒ (O/`) = 1 and (O/`) = 0⇒ (−d/`) = 0 are easily implied
by Proposition 1. To conclude, it suffices to show (O/`) = 0 ⇐ (−d/`) = 0,
as (O/`) = 1 ⇒ (−d/`) ∈ {0, 1}. For that, we will show that ` divides the
discriminant of every α ∈ Ok. We recall that there exists αi, αj with O ∼= Z[αi] ∼=
Z[αj ] and Ok = 〈1, αi, αj , αiαj〉. By assumption, the property is satisfied for
αi, αj . We recall the value of Dk = (d2 − (ε− 2tk)2)/4p where ε = tr(αi)tr(αj).
From ` | Dk and ` | d, we get that ` must divide 2tk − ε which implies that
` | ∆(αiαj). Then, using ` | d and `|(2tk − ε), we can conclude that `|∆(x +
yαi + zαj + wα1α2) for any x, y, z, w ∈ Z4.

The value of disc(Ok) is (d2 − (tr(αi)tr(αj) − 2tk)2)/4 by Proposition 4. It
can be shown that tr(αi)tr(αj) is a constant that is either 0 or 1 depending only
on the value of d mod 4. Henceforth, we write this constant εd. Inspired by the
formulation of Proposition 8, we define the functions

D : (t, d, p) 7→ (d2 − (εd − 2t)2)

4p

and

e : (t, d, p) 7→
∏

`∈PD(t,d,p),(d/`)=1

(v`(D(t, d, p)) + 1)
∏

`∈PD(t,d,p)(d/`)=0, 6̀=p

2.

Let us define TO(p) = {tk|k ∈ KE for E ∈ EO(p)}. For each t ∈ TO(p),
the values D(t, d, p) and e(t, d, p) are well-defined, when p is prime and d is a
fundamental discriminant coprime with p.

Proposition 9. Let O be the maximal quadratic order of discriminant −d.
Then,

1

12

∑
t∈TO(p)

e(t, d, p) ≤ KO(p) ≤
∑

t∈TO(p)

e(t, d, p)

Proof. By definition, we have that for every class k, there exists t ∈ TO(p)
with t = tk and e(Ok) = e(t, d, p). Thus, each class k corresponds to at least
one embedding of Ok inside a maximal order and so we must have KO(p) ≤∑
t∈TO(p) e(t, d, p).

The lower bound of KO(p) is more delicate to obtain. For that, we will need
to quantify the maximum number of embedding that corresponds to the same

12



class k. Let us take an element t ∈ TO(p). By definition of TO(p), there exists a
curve E ∈ EO(p) and a class k ∈ KE with tk = t. By definition of the embedding
number, there exist e(t, d, p) distinct maximal orders containing Ok. Each of
these maximal orders O′ corresponds to the isomorphism class (up to Galois
conjugacy) of supersingular curve E′ under the Deuring Correspondence. By
definition there also exists a class k′ ∈ KE′ such that Ok′ ∼= Ok.

We will provide an upper bound on the number of these e(t, d, p) classes
that are equal. Up to composition with the relevant isomorphisms, we can as-
sume that all the orders Ok′ are actually equal (and not simply isomorphic).
Let us take O1 6= O2, maximal orders with Ok ⊂ Oi for i = 1, 2 and assume
that these two embeddings of Ok lead to the same class k′ and curve E′. We
must have O1 ∼= O2 ∼= End(E)′, so let us write σi : Oi → End(E) the cor-
responding isomorphisms. By definition of our equivalence relation, we must
have σ1(Ok) = σ2(Ok), which means that Ok is stable under the isomorphism
σ−11 ◦ σ2 : O2 → O1. This shows that our problem reduces to counting the num-
ber of isomorphisms that leave stable Ok but are not the identity. For that, it
suffices to count the number of possible images of the two elements αi, αj such
that k = (i, j). Proposition 6 tells us that there are at most two other elements
of same norm and trace as αi, αj . Thus, we have 3× 4 = 12 possible image pair
for αi, αj , and so we can conclude that each class k corresponds to at most 12
distinct embeddings of Ok inside distinct maximal orders. This proves the result.

With Proposition 9, we have all the necessary ingredients to prove our generic
upper-bound of KO(p). We introduce in Definition 4, a final notation to simplify
the formulation of Proposition 10.

Definition 4. The function τ : N → N is defined as τ(N) =
∏
`∈PN

(v`(N) + 1),

and it computes the number of divisors of N .

Proposition 10. KO(p) ≤
⌈
d+1
4p

⌉
max

0≤N≤d2/(4p)
τ(N).

Proof. It is clear from the definition of the functions τ,D, e that τ(D(d, t, p)) ≥
e(d, t, p). Since 0 ≤ D(t, d, p) ≤ d2/(4p) we get that∑

t∈TO(p)

e(t, d, p) ≤ #TO(p) max
0≤N≤d2/(4p)

τ(N).

Next, we prove that #TO ≤ d(d + 1)/4pe. If t ∈ TO, we must have that
D(d, t, p) = disc(Ok)/p ∈ N? for some class k. The condition on the discrim-
inant yields d2 − (εd − 2t)2 ≡ 0 mod 4p and d2 > (εd − 2t)2. When t > 0,
we have |2t| − εd > 0 and so get the bound (|d| + εd)/2 > |t|. There are two
possible values of t mod 4p and combining that with the 0 < |t| < (|d|+ εd)/2
we obtain at most b(d + 1)/(4p)c possible values. Adding t = 0, we obtain the
desired bound. The proof is concluded by Proposition 9.

We obtain a generic lower bound on #EO(p) in Proposition 11. It is a com-
bination of Proposition 7 and Proposition 10.
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Proposition 11. #EO(p) ≥ AB
A+B ≥

1
2 min(A,B) where A = #SO(p) and B =

#SO(p)2

3(4p+d+1)
p

max
0≤N≤d2/4p

τ(N) .

Before proving Proposition 11, we prove Lemma 2 that will be useful.

Lemma 2. For every 3 values x,A,B > 0 such that x ≥ λA or x ≥ (1 − λ)B
for every 0 < λ < 1. Then, x ≥ AB

A+B ≥
1
2 min(A,B).

Proof. We are going to start with the intermediary result that x ≥ λA or x ≥
(1− λ)B for every 0 < λ < 1 imply that x ≥ max0<λ<1 min(λA, (1− λ)B). The
function λ 7→ min(λA, (1−λ)B) is increasing on ]0, λm] and decreasing on [λm, 1[
for the value λm such that λmA = (1 − λm)B. Thus, we get λm = B/(A + B)
and max0<λ<1 min(λA, (1− λ)B) = λmA = AB/(A+B).

To conclude it is easy to verify that

AB

A+B
≥ 1

2
min(A,B).

Proof. (Proposition 11) We will apply Lemma 2 with x = #EO(p) and the values
A,B as in Proposition 11. Thus, we need to prove that either #EO(p) ≥ λA or
#EO(p) ≥ (1− λ)B for any 0 < λ < 1.

Note that when #EO(p) < λ#SO(p) for some λ ≤ 1, we must haveKO(p) > 0
because there is at least one curve with two distinct orientations. Thus, Propo-
sition 7 proves that

#EO(p) ≥ #SO(p)2 −#SO(p)#EO(p)

12KO(p)
.

For any λ ∈ [0, 1], if #EO(p) < λ#SO(p), we have that

#EO(p) > (1− λ)
#SO(p)2

12KO(p)
.

The proof is concluded by Proposition 10 and d(d+ 1)/4pe ≤ 1 + (d+ 1)/4p.

Remark 3. Our bound becomes less and less tight when the size of d grows in
comparison to p. Asymptotically, we have

lim
d→∞

#SO(p)2

3(4p+ d+ 1)

p

max
0≤N≤d2/4p

τ(N)
= 0

which is very far from the expected EO(p) = Np when d → ∞. However, when
the value of d is polynomial in p, classical analysis on the τ function detailed
below shows that our bound will never be trivial even as p grows to infinity. This
is typically the case needed for isogeny-based cryptography as illustrated by our
numerical application in Section 4 for a prime p ≈ 2400 and a discriminant d
satisfying p < d < p2.
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Remark 4. Note that we can derive a family of upper-bounds on the class number
h(O) from Proposition 11. Indeed, since we have the trivial bound p/12 + 1 ≥
Np ≥ #EO(p), in the cases where A > B (which will happen when d is much
bigger than p as explained in Remark 3), we obtain p/12 + 1 ≥ B/2. When we
replace #SO(p) by the correct value ch(O) (with c ∈ {1/2, 1}) in the formula
for B we can obtain

h(O)2 <
(p+ 12)(4p+ d+ 1)

2c2p
max

0≤N≤d2/4p
τ(N) (5)

Intuitively, the best bounds should be obtained when d ≈ p. The estimates we
provide on τ(N) below do not allow us to conclude that this would lead to an
improvement on the state of the art upper bounds on class numbers.

Remark 5. When p divides d, it might be possible to get better bounds. For
instance, when d/p is a prime smaller than p/4, a lower bound was proven in
[EHL+20, Theorem 3.9], using the fact that a curve in EO(p) must be d/p-
isogenous to its Galois conjugate Ep. Another possibility, is to exploit the fact
that when d ≡ 0 mod p, the element ω1ω2/p is integral (see the proof of Proposi-
tion 6 for the definition of ω1, ω2) and so we may be able to consider superorders
of the Ok (which might give a better bound since the discriminants are smaller).
While this idea seems promising, it does not appear trivial to obtain the analog
of Proposition 6 and this is why we left the study of this special case open for
future work.

Upper bound on the number of divisors function. The number of divisors function
τ is well-studied and generic upper-bounds can be found in the literature. Since
Wigert [Wig07], we know that τ(N) = O(Nε) for any ε > 0. In 1983, Nicolas
and Robin showed that

τ(N) ≤ 2η1
log(N)

log log(N) , for any N ≥ 3 (6)

where η1 = 1.53793986 . . .
More recently De Konick and Letendre [DKL18] proved several new upper-

bounds involving ω(N) the number of distinct prime factors of N . In particular
they showed that for any composite n ≥ 2

τ(N) ≤
(

1 + η3
log(N)

ω(N) log(ω(N))

)ω(N)

(7)

where η3 = 1, 1999953 . . .
When ω(N) ≥ 74 they even prove that

τ(N) ≤
(

1 +
log(N)

ω(N) log(ω(N))

)ω(N)

(8)

We will use this last bound in the numerical application we propose in Section 4.
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4 A numerical application to the parameters of SETA

In this section, we are going to use Proposition 11 to provide a lower bound
on the complexity of the brute-force algorithm to solve the O-UBER problem
where O is the quadratic order used in the SETA encryption scheme. This will
give a lower bound on the hardness of SETA key recovery (using brute-force)
and answer the interrogations left open in [DFFDdSG+21, Section 5.3] on the
concrete hardness of the uber isogeny problem. More precisely, with our new
result, we are able to prove, under a few reasonable assumptions, that there
exists a fitting choice of quadratic order O such that the best brute force key
recovery attack is hard enough for the claimed security level in [DFFDdSG+21].

The SETA parameters. The set of SETA keys is EO(p) where O = Z[
√
−n]

where n is a solution of the quadratic equation z2 + nD2 = N2 with −n being
a quadratic non-residue modulo all the prime divisors of D and p, where D,N
and p are the three main parameters of SETA.

the authors of the SETA paper [DFFDdSG+21] provided an implementation
of their protocol with given values for p,D,N . The characteristic p is a 400 bits
primes equal to 2 · 842606702112 − 1, and the two other parameters are:

D = 4312 · 8471911,

N = 321 · 5 · 7 · 13 · 17 · 19 · 23 · 73 · 25712 · 313 · 1009 · 2857 · 3733 · 5519 · 6961

· 53113 · 499957 · 763369 · 2101657 · 2616791 · 7045009 · 11959093

· 17499277 · 20157451 · 33475999 · 39617833 · 45932333.

The concrete value of n was not given in [DFFDdSG+21] but several solutions
can be found quite easily. Below, we computed one such solution where n is easy
to factor so that we could compute the conductor. For instance, we found the
value:

n = 113 · 337 · 43913 · 6952212991459355471346665735527500066018525790897249

2522431413808553767205401453148081325894556965991428307754649539266

03334287506802602337066783077022530457.

Since, n is square free and equal to 1 mod 4, the order O = Z[
√
−n] is the

ring of integers of K = Q(
√
−n). Since p is inert in O, we have #SO(p) = h(O).

Under GRH, Littlewood [Lit28] proved the inequality

h(O) > (
π

12eγ
+ o(1))

√
4n

log log(4n)

where γ is the Euler-Mascheroni constant with eγ/π ≈ 0.56693. To derive the
concrete lower-bound in Corollary 4 from Proposition 11, we apply the classical
lower bound on h(O) stated above and the upper-bound in Eq. (6) on the size
of τ .
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Corollary 4. Let the values p, n be as above and O = Z[
√
−n]. Assuming GRH,

the size of EO(p) is bigger than 2269.

Proof. Proposition 11 tells us that #EO(p) is bigger than (1/2) min(A,B) where:

A = h(O) and B =
h(O)2

3(4p+ 4n+ 1)

p

max
0≤N≤4n2/p

τ(N)
.

Assuming that our n is big enough for it to hold, we are going to use A =

h(O) > π
24eγ

√
4n

log log(4n) > 2270. To get a lower bound on B, it remains to get

an upper bound on max0≤N≤4n2/p τ(N). We can compute this bound manually
using Eq. (8). Indeed, it can be easily verified that ω(4n2/p) ≥ 98 ≥ 74 and so
we can compute (

1 +
log(4n2/p)

k log(k)

)k
for all 1 ≤ k ≤ 98.

As expected, the maximum is obtained for k = 98 and we have that

max
0≤N≤4n2/p

τ(N) < 2105.

Thus, using the bound on h(O), we get that B > 2279. So, under GRH and the
assumption that n is big enough so that our simplification of the Littlewood
bound hold, we get that

#EZ[√−n](p) > 2269.

5 Conclusion and open problems.

We have given a new generic lower bound on the size of EO(p) and proven
that our bound was useful in practice by applying it to a concrete example
taken from isogeny-based cryptography. While our bound seems satisfying for
the example we took, its behavior is a bit counter-intuitive as it tends to 0 when
the discriminant of O tends to infinity and p is fixed. It is an interesting question
to see if this asymptotic behavior is intrinsic to our method or if we could derive
a better bound. We have also observed that studying the case where p divides
the discriminant of O could lead to interesting improvements. Finally, it could
be interesting to see if we could adapt our analysis to the case of embeddings of
quadratic orders of distinct discriminants inside the same quaternion order and
see how the resulting bound would compare with the results from the singular
moduli literature (the ones from [LV15] for instance).
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A The case of non-maximal orders

In this section, we provide an upper-bound on #EO(p) when O is not maximal.
Most of the ideas exposed below are not fundamentally new, and have been
considered for instance by Lubotzky, Phillips and Sarnak [LPS86], but we expose
them here for completeness as simple statements matching our needs are rather
hard to extract.

For the rest of this section, let us take O = Z + fO0 where f > 1 is co-
prime with p and O0 is a maximal quadratic order. The fundamental property
underlying our result in Proposition 14 is summarized in Proposition 12. This is
a consequence of [LB20, Lemma 5.4, Corollary 5.5] showed by Love and Boneh
(they talk about optimal embeddings inside maximal orders rather than orien-
tations of elliptic curves in their paper but the two notions are the same under
the Deuring Correspondence) and the standard characterization of horizontal,
ascending and descending isogenies (see [CK19,Onu21] for instance).

Proposition 12. Let O be a quadratic order of conductor f and discriminant
d such that EO(p) is not empty. Let ` 6= p be a prime number. For every curve
E ∈ EO(p), among the `+ 1 curves `-isogenous to E, there are `− (d/`) curves
contained in EZ+`O. If ` is coprime with f , the 1 + (d/`) remaining curves are
in EO(p) and if ` | f , then the final curve is contained in EO′(p) where O′ is the
quadratic order of discriminant d/`2 such that O = Z + `O′.

Note that by `-isogenous we mean connected by an `-isogeny (that must be
cyclic since ` is prime). From Proposition 12, we see that we can tie the generic
case to the case of fundamental discriminant using the expanding properties of
the isogeny graphs. For simplicity, we assume henceforth that f = `e for some
prime ` and e ∈ N and O0 is any maximal quadratic order. By Proposition 12,
each coprime factor of the conductor can be treated independently. The exact
bound in Proposition 14 depends on whether ` is split, ramified or inert in K
but the three cases can be treated in a similar manner. As a warm-up, we start
with Proposition 13, to give a lower bound on the number of curves that are
f -isogenous to a curve in an arbitrary subset E0 of the isomorphism classes of
supersingular curves over Fp2 .

For any prime ` coprime with p, the graph of cyclic `-isogenies on isomor-
phism classes of supersingular curves is Ramanujan with degree of regularity
equal to `+ 1. For `e-isogenies, we obtain an almost-Ramanujan graph with de-
gree of regularity equal to λ1(`e) = `e(1+1/`). We write A(`e) for the adjacency
matri of the graph of cyclic `e-isogenies on supersingular curves. The matrices
A(`r) for r ∈ N are related to the Brandt matrices B(`r) for r ∈ N under the
relation A(`r) = B(`r) − B(`r−2) and B(`) = A(`) and B(1) = A(1) = I. The
Brandt matrices B(m) correspond to the action of the Hecke operator Tm on the
space of modular forms of weight 2 on Γ0(N) when m and N are coprime. The
graph associated to the B(`r) are

∑r
i=0 `

i-regular. The matrices A(`r) and B(`r)
are real symmetric positive and have Np ordered real eigenvalues. The biggest
eigenvalue is always equal to the degree of regularity k of the associated graph
and the corresponding eigenspace is generated by the vector (1/

√
Np)1≤i≤Np of
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norm 1. The expansion of the graph can be measured by the size of the second
eigenvalue. The graph is said to be Ramanujan when this value is smaller than
2
√
k − 1. A consequence of the Riemann hypothesis for function fields, proven

by Deligne (see [Kat76] for instance) is that the second eigenvector of B(`r) is
smaller than (r + 1)

√
`r. When r = 1, this proves that the graph of `-isogenies

is Ramanujan. For r > 1, the bound is not good enough to prove the same
thing. This is why the other graphs are to be almost-Ramanujan. We will use
A(`r) = B(`r) − B(`r−2) to deduce results on the expansion of the graph of `e

isogenies.

Proposition 13. Let e ∈ N and ` ∈ P different from p and let E0 be a non-
empty subset of isomorphism classes of supersingular elliptic curves. Let us write
C0 = #E0 and write E`e for the set of isomorphism classes of curves `e-isogenous
to a curve of E0. We have the bound

#E`e ≥
NP

1 + (NP /C0 − 1) (e+1)2`e+(e−1)2`e−2

λ1(`e)2

Proof. Assume that we have an ordering E1, . . . , ENp of all supersingular elliptic
curves (up to isomorphism). Let us write X = (xi)1≤i≤Np ∈ RNp , the vector such
that xi = 1 if Ei ∈ E0 and 0 otherwise. If we write Y = A(`e)X, then #E`e is
equal to the number of non-zero entries of Y . A very classical bound tells us that

#E`e ≥
‖Y ‖21
‖Y ‖22

.

We see easily that ‖Y ‖1 = λ1(`e)C0. To upper-bound ‖Y ‖22, we are going to
use the Ramanujan property. Let us write f1, . . . , fNp the orthonormal basis of

eigenvectors of A(`e). We already explained that f1 = (1/
√
Np)1≤i≤Np . We can

write X = z1f1 + X ′ where X ′ is orthogonal to f1. The coefficient z1 is equal
to 〈X, f1〉 = C0/

√
Np. We have ‖A(`e)X‖22 = λ1(`e)2z21 + ‖A(`e)X ′‖2. We have

the equality A(`e) = B(`e)−B(`e−2). The vector X ′ lies in a space of dimension
Np − 1 where all the eigenvalues of B(`r) have absolute value smaller than

(r+ 1)
√
`r for every r ≥ 1. We have ‖A(`e)X ′‖22 ≤ ‖B(`e)X ′‖22 + ‖B(`e−2)X ′‖22

by the triangular inequality. Thus, ‖A(`e)X‖22 ≤ λ1(f)2z21 + ((e + 1)2`e + (e −
1)2`e−2)‖X ′‖22. We can easily compute that ‖X ′‖22 = ‖X‖22−z21 . Thus we obtain
‖Y ‖22 ≤ λ1(`e)2C2

0/Np+((e+1)2`e+(e−1)2`e−2)(C0−C2
0/Np). Thus, we obtain

#E`e ≥
λ1(`e)2C2

0

λ1(`e)2C2
0

Np
+ ((e+ 1)2`e + (e− 1)2`e−2)(C0 − C2

0/Np)

#E`e ≥
NP

1 + (NP /C0 − 1) (e+1)2`e+(e−1)2`e−2

λ1(`e)2

.

Proposition 14. Let O = Z + `eO0 for some ` ∈ N coprime with p and a
maximal quadratic order O0. Let us write C0 = #EO0

.
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If ` is inert in K:

#EO(p) ≥ NP

1 + (NP /C0 − 1) (e+1)2`e+(e−1)2`e−2

(`e+`e−1)2

,

else if ` is ramified:

#EO(p) ≥ NP

1 + (NP /C0 − 1) ((e+1)2`e+e2`e−1)
`2e

,

else, ` is split and:

#EO(p) ≥ NP

1 + (NP /C0 − 1)
∑e
j=0(2

b(1+j)/2c−2b(1+j−2)/2c)2(e−j+1)2`e−j+1

(`e−`e−1)2

.

Proof. The case ` inert is a simple combination of Proposition 12 and Proposi-
tion 13 since the set EZ+`O(p) is exactly the set of curves `-isogenous to curves
in EO(p). When ` is ramified or split, the situation is slightly more complicated.
In fact, in both cases, the result is obtained by rewriting the reasoning used
in the proof of Proposition 13. Indeed, we are going to show that #EZ+`eO0

is
equal to the number of non-zero entries of a vector Y computed as MX where
X is defined as in the proof of Proposition 13 and M is a linear combination
of the A(`i) for i ∈ [0, e]. For Proposition 13 (and ` inert) we can simply take
M = A(`e). When ` is not inert, we need to remove some of the `e isogenies and
this is why we have a more complicated expression for M .
For what remains, let us assume that the labelling of the NP -isomorphism classes
of supersingular curves is such that E1, . . . , EC0

are the C0 curves contained in
E ∈ EO0

(p). Xi is the vector of NNp such that (Xi)j = 1 if j = i and 0 otherwise

and X =
∑C0

i=1Xi.
When ` is ramified, Proposition 12 implies that there exists a permutation σ
of [1, C0] such that Ei and Eσ(i) are `-isogenous and σ2 is the identity. To get
the curves of EO(p), we need to exclude all the `e-isogenies that can be writ-
ten as φ ◦ ϕi where ϕi is the `-isogeny between Ei and Eσ(i). A(`e)Xi gives all
the curves that are `e-isogenous to Ei. To remove the ones that are obtained
through the wrong isogenies we can subtract by A(`e−1)Xσ(i) but with that
we have also subtracted the curves that are `e−2-isogenous to Ei. So we need
to compensate by adding A(`e−2)Xi and iterating this reasoning, we end up
with the

∑e
j=0(−1)jA(`e−j)Xσj(i). Thus, we get M =

∑e
j=0(−1)jA(`e−j) af-

ter summing this formula for all i ∈ [1, C0]. The lower bound on the number
of zeroes of Y = MX is given by ‖Y ‖21/‖Y ‖22. A simple counting gives that
‖Y ‖21 = (

∑e
j=0(−1)jλ1(`ei))2 = `2e. To lower bound ‖Y ‖22, we see that M has

the same eigenvector f1 (see the notations of the proof of Proposition 13) for
the eigenvalue `2e. Thus, we can decompose X = z1f1 +X ′ with z1 = C0/

√
Np.

Once again we replace each A(`r) by B(`r) − B(`r−2) and B(`) = A(`) and
B(1) = A(1). Interestingly, a lot of terms cancel out in M and we end with
B(`e)−B(`e−1). As in the proof of Proposition 13, we conclude with the bound
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on the eigenvalues of the B(`r) and the triangular inequality. This is how we get
‖MX ′‖22 ≤ ((e+ 1)2`e + e2`e−1)‖X ′‖22. The proof is concluded in a similar way
to Proposition 13.
When ` is split, we have by Proposition 12 that there exists two permutations
σl, σr such that Ei is `-isogenous to Eσl(i) and Eσr(i) and σl ◦ σr = σr ◦ σl is the
identity. A similar reasoning proves that we can take

M =

e∑
j=0

(−1)j2b(1+j)/2cA(`e−j).

Once again, we use our relation between A and B matrices to get a sum on
the B(`e−j). We have `e(1 − 1/`) =

∑e
j=0(−1)j2b(1+j)/2cλ1(`e−j) and the final

result follows from the same ideas as before.
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