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Abstract. Private set union (PSU) protocol enables two parties, each holding a set, to com-
pute the union of their sets without revealing anything else to either party. So far, there are
two known approaches for constructing PSU protocols. The first mainly depends on additively
homomorphic encryption (AHE), which is generally inefficient since it needs to perform a non-
constant number of homomorphic computations on each item. The second is mainly based on
oblivious transfer and symmetric-key operations, which is recently proposed by Kolesnikov et
al. (ASIACRYPT 2019). It features good practical performance, which is several orders of mag-
nitude faster than the first one. However, neither of these two approaches is optimal in the sense
that their computation and communication complexity are not both O(n), where n is the size
of the set. Therefore, the problem of constructing the optimal PSU protocol remains open.
In this work, we resolve this open problem by proposing a generic framework of PSU from obliv-
ious transfer and a newly introduced protocol called multi-query reverse private membership
test (mq-RPMT). We present two generic constructions of mq-RPMT. The first is based on
symmetric-key encryption and general 2PC techniques. The second is based on re-randomizable
public-key encryption. Both constructions lead to PSU with linear computation and communi-
cation complexity.
We implement our two PSU protocols and compare them with the state-of-the-art PSU. Exper-
iments show that our PKE-based protocol has the lowest communication of all schemes, which
is 3.7 − 14.8× lower depending on set size. The running time of our PSU scheme is 1.2 − 12×
faster than that of state-of-the-art depending on network environments.

1 Introduction

Private set union (PSU) enables two parties, each holding a private set of elements, to compute the
union of the two sets while revealing nothing more than the union itself. PSU and its variants have
numerous applications, such as information security risk assessment [LV04], IP blacklist and vulner-
ability data aggregation [HLS+16], joint graph computation [BS05], distributed network monitoring
[KS05], building block for private DB supporting full join [KRTW19], private ID [GMR+21] etc.

Over the last decade, there has been a significant amount of work on private set operation, espe-
cially private set intersection (PSI) [FNP04, PSZ14, KKRT16, PRTY19, CM20, PRTY20]. We refer the
reader to [PSZ18] for an overview of different PSI paradigms. State-of-the-art semi-honest PSI proto-
cols in the two-party setting [KKRT16, PRTY19, CM20, RS21, GPR+21] all mainly rely on symmetric-
key operations, except for a few base OT operations in OT extension protocol [IKNP03, KK13]. Let
n denote the size of input set, the communication complexity of these OT-based PSI protocols has
been improved from initial nonlinear O(n log n) [PSZ14, PSSZ15, KKRT16] to linear complexity O(n)
[PRTY19, FNO19, GN19, CM20, RS21, GPR+21].

1.1 Motivation

In contrast to the affairs of PSI, the efficiency of the state-of-the-art PSU is less satisfactory. Roughly,
there are two known approaches for constructing PSU protocols. The first is mainly based on public-
key techniques. Existing constructions along this approach [KS05, Fri07, HN10, SM18] have to perform



a non-constant number of additively homomorphic encryption (AHE) operations on each set element,
rendering the overall protocols inefficient. The other is mainly based on symmetric-key techniques
in combination with OT [KRTW19, GMR+21, JSZ+22], which is several orders of magnitude faster
than AHE-based constructions. However, neither of the two approaches is optimal in the sense that
their computation and communication complexity are not both O(n), where n is the size of the set.
We note that [DC17] is the work closest to optimal bound, but its communication and computation
complexity additionally depend on the statistical security parameter λ. This leaves the following open
problem:

Can we construct PSU protocols with linear computation and communication complexity?

1.2 Our Contribution

In this paper, we answer this question affirmatively in the semi-honest setting. Our contribution can
be summarized as follows:

1. We revisit the state-of-the-art PSU protocol [KRTW19] (KRTW protocol for short hereafter) in
depth. Roughly, KRTW protocol is built upon two building blocks, namely oblivious transfer (OT)
and reverse private membership test (RPMT). We figure out the root causing KRTW protocol
non-optimal is that RPMT has linear communication complexity and super-linear computation
complexity, and it has to be carried out n times independently, where n is the size of sender’s
private set.

2. To achieve linear complexity, we propose a new framework for constructing PSU protocols. The
core building block is a newly introduced protocol called multi-query RPMT (mq-RPMT). We
identify and overcome several technical difficulties for building optimal mq-RPMT, and give two
realizations of mq-RPMT. Both the two concrete mq-RPMT protocols achieve linear communica-
tion and computation complexity.

3. We further abstract a new primitive called membership encryption (ME), which broadens the scope
of the candidate encryption scheme, unifies our two constructions, and halves the communication
complexity of our SKE-based construction on receiver side.

4. Combining OT and the above mq-RPMT, we eventually obtain SKE-based and PKE-based PSU
protocols with optimal complexity for the first time. Experiments show that our PKE-based proto-
col has the lowest communication of all schemes, which is 3.7−14.8× lower depending on set size.
The running time of our PSU scheme is 1.2 − 12× faster than that of state-of-the-art depending
on network environments. In addition to our scheme, we also use Silent OT [BCG+19, YWL+20]
to optimize the scheme of [GMR+21, JSZ+22], and provide different parameter selection of Ferret
OT [YWL+20].

Figure 1 depicts the technical overview of our new PSU framework. We elaborate the details in
the next subsection.
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Section 5
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Section 3.2
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Fig. 1: Technical overview of our new PSU framework. The new primitives and functionalities are marked with
rectangles.
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1.3 Overview of Our Techniques

We provide the high-level technical overview for our new framework of PSU protocol.

KRTW protocol revisit. Our starting point is the recent PSU protocol of Kolesnikov et al.
[KRTW19]. The core of KRTW protocol is a subprotocol called reverse private membership test
(RPMT), which can test whether a sender’s element y belongs to the receiver’s input set X, and let
the receiver obtain the result. After that, both parties execute OT protocol to let the receiver obtain
{y} ∪X. The computation cost of original RPMT [KRTW19] is O(n log2 n) and the communication
cost is O(n). For the purpose of computing the set union, the parties need to execute RPMT n times
independently, which results in O(n2) communication and O(n2 log2 n) computation. The complexity
can be further reduced to O(n log n) and O(n log n log log n) separately via hash to bin technology,
but it is still super-linear. The bottleneck of the KRTW protocol is exactly RPMT.
Zoom in on the original RPMT. The original RPMT protocol employs an oblivious PRF (OPRF)
functionality Foprf and a private equality test (PEQT) functionality Fpeqt. In OPRF, the sender
learns a random PRF key k and the receiver learns the PRF output Fk(y1), . . . , Fk(yn) on its inputs
y1, . . . , yn ∈ Y . In PEQT, the functionality receives two strings from the receiver and the sender
respectively and tells the receiver whether the two strings are equal. Their RPMT uses an indication
string s to indicate the membership of X.

More precisely, their RPMT protocol executes as follows with sender S’s input y and receiver
R’s input X = {x1, . . . , xn}: S and R execute the OPRF protocol first. The receiver R receives a
PRF key k. The sender S inputs y, and receives q∗ = Fk(y). Next, R chooses a random indication
string s. Then, R computes and sends the interpolation polynomial P which passes through points
{(xi, s ⊕ Fk(xi))}i∈[n] to the sender. After receiving P , S computes s∗ := q∗ ⊕ P (y). Now, S and R
invoke the Fpeqt-functionality with input s∗ and s separately. Finally, R receives output from Fpeqt.

If y ∈ X, i.e., there exists an xi such that y = xi, then we have s∗ = q∗⊕P (y) = Fk(xi)⊕P (xi) = s.
If y /∈ X, then q∗ = Fk(y) is pseudorandom, which implies that s∗ = q∗⊕P (y) ̸= s with overwhelming
probability.

To identify the root of the inefficiency of the original RPMT protocol, we first try to interpret it at
an abstract level. Our first key observation is that the polynomial actually plays the role of oblivious
key-value store (OKVS). Our second key observation is that the usage of OPRF is three-fold. Firstly,
R uses an OPRF to derive n pseudorandom one-time pads, then encrypts the same indication string
into n ciphertexts under these one-time pads. Secondly, S utilizes OPRF to decrypt a ciphertext
obliviously. Finally, OPRF provides OKVS with randomness to ensure the correctness of the protocol.

Based on the above new interpretation, we are ready to describe our new mq-RPMT protocol in
an incremental way over the original RPMT protocol.
Enhanced oblivious key-value store. One reason that accounts for the super-linear complexity of
the original RPMT protocol is that the polynomial related operations are costly. More precisely, the
complexity of polynomial interpolation is O(n log2 n), and the amortized complexity of polynomial
evaluation is O(log2 n). According to our first observation, polynomial essentially plays the role of
OKVS. This greatly increases the space of the concrete mapping schemes that can be used. A drop-in
replacement of polynomial with more efficient OKVS candidates can reduce the computation com-
plexity immediately. However, as we observed before, an additional randomness property should be
satisfied now, since we do not use OPRF to provide randomness anymore. To achieve this goal, we
enhance OKVS in two aspects: efficiency and security. (See Section 2.5 for the details.)
Oblivious decryption-then-matching. Another reason that accounts for the super-linear complex-
ity is that the original RPMT protocol is one-time in nature. To see this, note that in the original
RPMT protocol S learns the purported indication string. This design lets S learn more information
than needed, and is exactly the reason that hinders multi-query. For example, if there are two distinct
elements belonging to R’s set, then S will obtain the same indication string. This will let S know that
the two elements belong to the intersection, which violates security.

Based on the above discussion, the rough idea of making RPMT support multi-query is to encode
the ciphertext of indication string in OKVS instead of the indication string itself. In this way, S will
obtain some ciphertexts (i.e. the value of OKVS(y)), andR has the corresponding key. We need to letR
decrypt these ciphertexts, and match the results with the indication string. A naive attempt is to have
S directly send the ciphertexts to R, and in the sequel, R tries to decrypt and match. However, this
rough idea is problematic since it is insecure even against a semi-honest receiver. Consider R records
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the correspondence between xi and OKVS(xi). In this way, R is able to learn S’s private input y by
simple look-up when y ∈ X, rather than merely the fact that y ∈ X. We overcome this difficulty in two
steps. The first step is to re-factor the functionality of OPRF to encryption and oblivious decryption
functionality. Let R encrypt the indication string locally. Then R computes the corresponding OKVS
and sends it to S. To ensure the overall protocol still constitutes an RPMT protocol, the second step
is to merge the oblivious decryption functionality and PEQT into a new functionality, namely, vector
oblivious decryption-then-matching (VODM) functionality. In this functionality, the sender inputs a
vector of ciphertexts and the receiver inputs a key and a plaintext. The functionality decrypts these
ciphertexts with the key and matches the results with the plaintext input by the receiver. If it matches,
the receiver outputs 1, and outputs 0 otherwise.

Putting all the pieces together, we can build mq-RPMT protocol from OKVS, encryption, and
VODM functionality in a modular way. (See Section 3 for the technical details).
Two generic constructions of mq-RPMT. Our first generic construction chooses probabilistic
SKE as the encryption scheme, and resorts to general 2PC to implement the VODM functionality.
See Section 4.1 for details. Our second generic construction chooses re-randomizable PKE as the
encryption scheme and uses re-randomization technique to implement VODM functionality, without
resorting to generic 2PC.

Our idea is to let S re-randomize all the ciphertexts and then send the results to R. In this way,
R fulfills the decryption-then-matching functionality in an oblivious manner for all yi ∈ X. We note
that this method will leak some information of y /∈ X, however, as observed by KRTW, this leakage
does not cause any harm to the PSU, since the PSU protocol releases that value anyway.

Looking ahead, one may doubt our PKE-based scheme is inefficient. We note that our PKE-
based scheme can still be very efficient because we use PKE techniques in an entirely different way
compared to prior PKE-based protocol [KS05, Fri07, DC17]. We only need to perform the encryption,
rerandomization, and decryption operations per item, while they need to carry out many ciphertext
homomorphism operations per item. See Section 4.2 for details.
Optimization with membership encryption. In the above framework, the underlying encryption
schemes must be probabilistic to make the security proof go through. As a consequence, this incurs
considerable overhead on communication costs due to ciphertext expansion. Observe that the VODM
functionality reveals only one-bit information for every ciphertext. A second thought indicates that
a full-fledged encryption scheme might be overkill for our construction of mq-RPMT protocol, and
a new type of encryption scheme suffices. We propose the new encryption scheme as membership
encryption (ME).

We sketch the definition of ME in the symmetric key setting as below. Let X be a string set.
The encryption algorithm takes a key k and an element xi ∈ X as inputs, outputs a ciphertext c.
The decryption algorithm takes a key k and a ciphertext c as inputs, outputs a bit to indicate if
the encrypted element belongs to X. For the correctness, we require that for any xi ∈ X and any
c← Enc(k, xi), we have Dec(k, c) = 1. The security requirement is multi-element pseudorandomness,
namely, {Enc(k, xi)}xi∈X are computationally indistinguishable to Cn, i.e. the uniform distribution
over ciphertext space. The consistency requirement is that a random ciphertext decrypts to “0” with
overwhelming probability.

Membership encryption distills the right functionality we need for an encryption scheme in mq-
RPMT protocol. It not only encompasses the constructions from randomized SKE and PKE in a
unified manner, but also admits new construction from deterministic SKE, which enjoys compact
ciphertext. As we elaborate in Section 4.3, this new construction helps to halve the communication
complexity on the receiver side.

1.4 Related Work

We survey existing PSU protocols with security against semi-honest adversaries. Hereafter, unless
otherwise declared, we calculate the efficiency by assuming a balanced setting, namely the sets of
both sender and receiver are of size n.

Kissner and Song [KS05] proposed the first PSU protocol based on polynomial representations and
additively homomorphic encryption (AHE). The polynomial representation of a set is to represent a
set by a polynomial f , in which each set item is the root of the polynomial. The main observation
of them is that when the set of two parties is represented by polynomials f and g, the root of fg is
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exactly the union items. The communication and computation complexity of the protocol are both
quadratic to the set size n, and the efficiency is very low. Later, Frikken [Fri07] found that it is
enough to represent only receiver’s set in polynomial f . Then the receiver sends the AHE of f to
the sender. The sender computes and sends back the ciphertexts of (f(y), yf(y)) for all y ∈ Y . In
this way, the receiver could decrypted these ciphertexts and obtained the element outside of his set,
since the intersection elements decrypted to 0. Davidson and Cid [DC17] proposed a similar PSU
protocol like Frikken, the main difference is that they use Bloom Filter (BF) instead of polynomial
to represent the set. Both their protocols are expensive due to the frequent uses of AHE. Kolesnikov
et al. [KRTW19] proposed the first PSU protocol mainly based on symmetric key techniques, which
makes several orders of magnitude improvement of PSU. Recently, Garimella et al. [GMR+21] and
Jia et al. [JSZ+22] both use the oblivious switching network (OSN) subprotocol [MS13] to construct
PSU, which futher improve 2−4× over [KRTW19]. However, all these symmetric key based PSU have
the superlinear complexity.

Other PSU protocols focus on multi-party settings [KS05, HKK+11, BA12, SCK12], malicious
settings [Fri07, HN10, SCK12] and computation with untrusted third party’s help [Bf12, CPPT14,
SM18]. All of the above constructions rely heavily on expensive AHE or zero-knowledge proof, which
are out of the scope of our consideration.

Table 1 provides an asymptotic comparison of our design with the previous PSU works; we elaborate
our protocol design in Section 4 and 5.

Protocol Communication Computation

[KS05] O(κ3n2) O(n2) pub

[Fri07] O(κn) O(n log logn) pub

[DC17] O(κλn) O(λn) pub

[KRTW19] O(κn logn) O(n logn log log n) sym

[GMR+21] O(κn logn) O(n logn) sym

[JSZ+22] O(κn logn) O(n logn) sym

Our SKE-based O((κ+ t)n) O(tn) sym

Our PKE-based O(κn) O(n) pub

Table 1: Asymptotic communication and computation costs of two-party PSU protocols in the semi-honest
setting.
Pub: public-key operations; sym: symmetric cryptographic operations. n is the size of the parties’ input sets.
κ and λ are computational and statistical security parameter respectively (typically κ = 128 and λ=40). t is
the number of AND gates in an SKE decryption circuit. We ignore the pub-key cost of κ base OTs.

2 Preliminaries

2.1 Notation

We denote the parties as receiver R and sender S, and their respective input sets as X and Y with
|X| = nx and |Y | = ny. In the balanced setting, we often just assume that n = nx = ny. We use κ and
λ to denote the computational and statistical security parameters, respectively. We use [n] to denote
the set {1, 2, . . . , n}. For a bit string v we let vi denote the ith bit. We use F2σ to denote finite field
composed of all σ-long bit strings. We say that a function f is negligible in κ if it vanishes faster than
the inverse of any polynomial in κ, and write it as f(κ) = negl(κ). We use the abbreviation PPT to

denote probabilistic polynomial-time. By a
R←− A, we denote that a is randomly selected from the set

A, a ← A(x) denotes that a is the output of the randomized algorithm A on input x, and a := b
denotes that a is assigned by b.

2.2 Security Model

This work, similar to most protocols for private set operation, operates in the semi-honest model,
where adversaries may try to learn as much information as possible from a given protocol execution
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but are not able to deviate from the protocol steps. This is in contrast to malicious adversaries which
are able to deviate arbitrarily from the protocol. PSU protocols for the malicious setting exist, e.g.,
[KS05, Fri07, HN10, BA12, SCK12], but they are less efficient than protocols for the semi-honest
setting.
Semi-honest security. We use the standard security definition for two-party computation [Gol04]
in this work.

Definition 1. Let viewΠ
S (X,Y ) and viewΠ

R(X,Y ) be the views of S and R in the protocol, and let
output(X,Y ) be the output of both parties in protocol. A protocol Π is said to securely compute func-
tionality f in the semi-honest model if for every PPT adversary A there exists a PPT simulator SimS
and SimR such that for all inputs X and Y ,

{viewΠ
S (X,Y ), output(X,Y )} ≈c {SimS(X, f(X,Y )), f(X,Y )}

{viewΠ
R(X,Y ), output(X,Y )} ≈c {SimR(Y, f(X,Y )), f(X,Y )}

2.3 Encryption Schemes

Our construction requires some encryption schemes. We use the standard definition of symmetric-
key encryption (SKE) and re-randomizable public-key encryption (ReRand-PKE) schemes. For our
purpose, we require a case-tailored security notion called single-message multi-ciphertext pseudoran-
domness. Due to the space limit, we give these definitions in Appendix A.

2.4 Oblivious Transfer

Oblivious transfer (OT) [Rab05] is an important cryptographic primitive used in various multiparty
computation protocols.

We define the functionality of 1-out-of-2 OT in Figure 2.

Parameters: Sender S, Receiver R, message length κ
Functionality:

– Wait for input b ∈ {0, 1} from the receiver R.
– Wait for input (x0, x1) from the sender S.
– Give xb to the receiver R.

Fig. 2: 1-out-of-2 Oblivious Transfer Functionality Fot

2.5 Oblivious Key-Value Stores

A key-value store [PRTY20, GPR+21] is simply a data structure that maps a set of keys to corre-
sponding values. The definition is as follows:

Definition 2 (Key-Value Store). A key-value store is parameterized by a set K of keys, a set V of
values, and a set of function H, and consists of two algorithms:

– EncodeH({(x1, y1), . . . , (xn, yn)}): on input key-value pairs {(xi, yi)}i∈[n] ⊆ K × V, outputs an
object D (or, with statistically small probability, an error ⊥).

– DecodeH(D,x) : on input D and a key x, outputs a value y ∈ V.

Correctness. For all A ⊆ K × V with distinct keys:

(x, y) ∈ A and ⊥̸= D ← EncodeH(A) =⇒ DecodeH(D,x) = y
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Obliviousness. For all distinct {x0
1, . . . , x

0
n} and all distinct {x1

1, . . . , x
1
n}, if EncodeH does not output

⊥ for {x0
1, . . . , x

0
n} or {x1

1, . . . , x
1
n}, then the distribution of {D|yi ← V, i ∈ [n],EncodeH((x0

1, y1), . . . , (x
0
n, yn))}

is computationally indistinguishable to {D|yi ← V, i ∈ [n],EncodeH((x1
1, y1), . . . , (x

1
n, yn))}.

A key-value store is an oblivious key-value store (OKVS) if it satisfies the obliviousness property.
Intuitively, obliviousness means that when value is randomly selected, the distribution of D is

independent from key’s set. In addition, our application requires OKVS to meet the Randomness
property defined below to argue the correctness of our scheme.
Randomness. For anyA = {(x1, y1), . . . , (xn, yn)} and x∗ /∈ {x1, . . . , xn}, the output of DecodeH(D,x∗)
is statistically indistinguishable to that of uniform distribution over V, where D ← EncodeH(A).

The efficiency of an OKVS scheme can be measured by following three parameters:

– Rate: Let ratio n/m be the rate of key-value store, where m is the size of object D. Note that
the optimal rate is 1.

– Encoding complexity: The computational cost of the EncodeH algorithm, as a function of the
number n of key-value pairs.

– Decoding complexity: The computational cost of the DecodeH algorithm.

We investigated the existing schemes and found that the main candidates for OKVS are: Poly-
nomial, Garbled Bloom Filter (GBF) [DCW13] and Garbled Cuckoo Table (GCT) [PRTY20, RS21,
GPR+21] etc. We give the general introduction and detailed comparisons of above OKVS in Appendix
B.1.

Before instantiation, 3H-GCT recently proposed by Garimella et al. [GPR+21] could be a good
candidate, which has linear encoding complexity O(n) and a rate of 0.81. However, we find that the
original 3H-GCT did not meet the Randomness we defined before because it was set to 0 in some
positions of D. To solve this problem, a natural idea is to set random values in these positions like
[RS21] does. We call this modified 3H-GCT as 3H-GCT++. We give the formal description of 3H-
GCT++ and the proof that our 3H-GCT++ satisfies obliviousness and randomness in Appendix
B.2.

2.6 Private Set Union

PSU is a special case of secure two-party computation. The ideal functionality for PSU is given in
Figure 3.

Parameters: Sender S, Receiver R, set sizes ny and nx.
Functionality:

– Wait for input X = {x1, . . . , xnx} ⊂ {0, 1}∗ from the receiver R.
– Wait for input Y = {y1, . . . , yny} ⊂ {0, 1}∗ from the sender S.
– Give output X ∪ Y to the receiver R.

Fig. 3: Private Set Union Functionality Fpsu

3 Multi-Query Reverse Private Membership Test

3.1 Definition

We propose mq-RPMT and give the formal definition of mq-RPMT functionality in Figure 4. For
generality we set |Y | = ny and |X| = nx in our definition.

We define the vector oblivious decryption-then-matching Fvodm corresponding to encryption scheme
E in Figure 5, as a component of mq-RPMT.

7



Parameters: Sender S, Receiver R, set sizes ny and nx

Functionality:

– Wait for input Y = {y1, . . . , yny} ⊂ {0, 1}∗ from the sender S.
– Wait for input X = {x1, . . . , xnx} ⊂ {0, 1}∗ from the receiver R.
– Set bi = 1 if and only if yi ∈ X and bi = 0 otherwise for i ∈ [ny]. Give output b ∈ {0, 1}ny to the

receiver R.

Fig. 4: Multi-Query Reverse Private Membership Test Functionality Fmq-rpmt

Parameters: Sender S, Receiver R, set sizes n, an encryption scheme E = (Setup,KeyGen,Enc,Dec).
Functionality:

– Wait for input k and s from the receiver R.
– Wait for input {s∗1, . . . , s∗n} ⊂ {0, 1}∗ from the sender S.
– For i ∈ [n]:

Compute s′i = Dec(k, s∗i ). If s
′
i = s, let bi = 1, otherwise bi = 0.

– Give output b ∈ {0, 1}n to the receiver R.

Fig. 5: Vector Oblivious Decryption-then-Matching Functionality Fvodm

3.2 Framework of Multi-Query RPMT

Now we describe our framework of mq-RPMT protocol. As we said in Section 1.3, the cryptographic
primitives we use are a single-message multi-ciphertext pseudorandomness encryption scheme E =
(Setup,KeyGen,Enc,Dec), an OKVS scheme (EncodeH ,DecodeH) and the Fvodm functionality.

Let Y = {y1, . . . , yny} and X = {x1, . . . , xnx} be the input of mq-RPMT sender S and receiver
R. First, the receiver R picks an indication string s5. Then R chooses a random key k used in
encryption scheme E to encrypt s for nx times, and obtains (s1, . . . , snx). Next, R computes an
OKVS D := EncodeH((x1, s1), . . . , (xnx , snx)) and sends D to S. After receiving D, S computes
s∗i = DecodeH(D, yi) for i ∈ [ny]. Now S and R invoke the VODM functionality Fvodm. S acts as
sender with input S = {s∗1, . . . , s∗ny

} and R acts as receiver with input (k, s). As a result, S receives
nothing and R receives b ∈ {0, 1}ny , satisfying bi = 1 if and only if s∗i decrypts to s. Now, we give our
framework of mq-RPMT protocol in Figure 6.

Correctness. For all i ∈ [ny], if yi ∈ X, there is an xj ∈ X, j ∈ [nx] s.t. yi = xj . In this case,
s∗i = DecodeH(D,h(xj)) = sj . Since sj = Enc(k, s), we have Dec(k, sj) = s, which means bi = 1. In
the case yi /∈ X, if hash functions collide, that is, h(yi) = h(x) for some yi /∈ X, the correctness will
be violated. By setting σ = λ + log nxny, a union bound shows probability of collision is negligible
2−λ. When no collision occurs, from the randomness of OKVS, s∗i = DecodeH(D,h(yi)) is a random
ciphertext, resulting in s∗i is not the encryption of s with overwhelming probability. The union bound
guarantees that for all yi /∈ X, the probability that there exists an s∗i s.t. Dec(k, s∗i ) = s is negligible.

We now prove the security properties of our mq-RPMT.

Theorem 1. Assume the encryption scheme E satisfies single-message multi-ciphertext pseudoran-
domness. The protocol in Figure 6 securely computes Fmq-rpmt against semi-honest adversaries in the
Fvodm-hybrid model.

Proof. Due to space limitation, we only sketch here the simulators for the two cases of corrupt S and
corrupt R, the full proof (via hybrid arguments) is deferred to Appendix C.

Corrupt sender: To simulate OKVS in Step 3, the simulator computes a random OKVS D by selecting
nx random key-value pairs. Then, the simulator sets s∗i := DecodeH(D,h(yi)) and invokes underlying
VODM simulator with inputs (s∗1, . . . , s

∗
ny
).

5 In fact, our indication string s could be any fixed value, e.g. s = 0, while s in KRTW must be selected
randomly.
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Parameters:

– Two parties: sender S and receiver R.
– A single-message multi-ciphertext pseudorandomness encryption scheme
E = (Setup,KeyGen,Enc, Dec).

– Ideal Fvodm primitives specified in Figure 5.
– An OKVS scheme (EncodeH ,DecodeH).
– A collision-resistant hash function h(x) : {0, 1}∗ → {0, 1}σ.

Input of S: Y = {y1, . . . , yny} ⊂ {0, 1}∗
Input of R: X = {x1, . . . , xnx} ⊂ {0, 1}∗
Protocol:

1. R selects a random indication string s ∈ F2σ . R also runs pp← Setup(1κ) and KeyGen(pp) to obtain
a key k (public or symmetric key depend on concrete scheme). Then, R runs Enc(k, s) for nx times
to obtain (s1, . . . , snx).

2. R computes an OKVS
D := EncodeH((h(x1), s1), . . . , (h(xnx), snx)).

3. R sends D to S.
4. S computes s∗i := DecodeH(D,h(yi)) for i ∈ [ny].
5. S and R invoke the VODM functionality Fvodm. S acts as sender with input S = {s∗1, . . . , s∗ny

} and
R acts as receiver with input k, s. As a result, S receives nothing and R receives b ∈ {0, 1}ny .

Fig. 6: General Construction of mq-RPMT Protocol Πmq-rpmt

Briefly, this simulation is indistinguishable for the following reasons: the single-message multi-
ciphertext pseudorandomness of the encryption ensures that value (ciphertext) is indistinguishable
from random, and then by the obliviousness of OKVS, D is distributed uniformly.

Corrupt receiver: The simulator for a corrupt R first obtains b from the ideal mq-RPMT functionality.
The only message that needs to be simulated is the VODM functionality in Step 5. The simulator just
executes Step 1 honestly and invokes the underlying VODM simulator with inputs (k, s, b).

4 Generic Constructions of Multi-Query RPMT

In this section, we give two generic constructions of mq-RPMT protocol. In the first construction, we
use SKE as the encryption scheme and generic 2PC to implement VODM. The advantage is that this
scheme only uses OT and symmetric operations. In the second construction, we use PKE and a re-
randomization method to implement the encryption scheme and a leaky version of VODM respectively,
which leads to a leaky version of mq-RPMT. However, as observed by KRTW, this leaky version can
still be used to construct a secure PSU. Both schemes achieve linear computation and communication
complexity.

4.1 Construction from SKE and 2PC

As we noted before, a single-message multi-ciphertext pseudorandom SKE and 2PC are sufficient for
constructing mq-RPMT. The correctness and security can be directly derived from the general con-
struction in Section 3.2. It is straightforward to show that PRF-based SKE satisfies the single-message
multi-ciphertext pseudorandomness property. We give proof in the Appendix D for completeness.

We use the general 2PC as the implementation of VODM. Formally,

Theorem 2. Taking the PRF-based SKE as the encryption scheme in Figure 6. Assuming that the
2PC implementing VODM is semi-honest secure, then the protocol in Figure 6 securely computes
Fmq-rpmt against semi-honest adversaries.

This theorem immediately follows from Lemma 1 and Theorem 1.
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4.2 Construction from Re-randomizable PKE

Now we consider a specialized way to construct Fvodm. Our main idea is that since the receiver cannot
know the randomness used in each ciphertext, as long as the encryption scheme satisfies the property
of rerandomization, the sender can re-randomize all ciphertexts and send the new ciphertexts to the
receiver so that the receiver can not obtain additional information by comparing randomness. Note
that another problem arises here. The property of re-randomization can only guarantee that for y ∈ X,
the receiver is not allowed to learn which one is the sender’s element. For y /∈ X, the ciphertext s∗i
obtained by the sender is related to y, so the plaintext obtained by the receiver is also related to y,
which will reveal the information of y. However, as observed by KRTW, in the case of y /∈ X, we
want (in the overall PSU protocol) the receiver to learn y anyway. Fully secure mq-RPMT is actually
overkill for PSU, a relaxed version suffices. We define the leaky VODM functionality in Figure 7.

Parameters: Sender S, Receiver R, set sizes n, an encryption scheme E = (Setup,KeyGen,Enc,Dec).
Functionality:

– Wait for input k and s from the receiver R.
– Wait for input {s∗1, . . . , s∗n} ⊂ {0, 1}∗ from the sender S.
– For i ∈ [n]:

Compute s′i = Dec(k, s∗i ), if s
′
i = s, let bi = 1 otherwise bi = 0.

– Give output b ∈ {0, 1}n and {s′i|bi = 0} to the receiver R.

Fig. 7: Leaky VODM Functionality Flvodm

Since the SKE scheme is hard to re-randomize, we consider the use of public-key encryption (PKE)
which is easier to re-randomize. We describe our PKE-based leaky VODM protocol in Figure 8.

Parameters:

– Two parties: sender S and receiver R.
– A re-randomizable PKE scheme

(Setup,KeyGen,Enc,Dec,ReRand).

Input of S: (pk, S∗ = {s∗1, . . . , s∗n})
Input of R: ((pk, sk), s)
Protocol:

1. S selects random r′1, . . . , r
′
n and computes s̄i := ReRand(pk, s∗i ; r

′
i) for i ∈ [n].

2. S sends s̄1, . . . , s̄n to R.
3. R sets bi = 1 if and only if Dec(sk, s̄i) = s for i ∈ [n].

Fig. 8: PKE-based Leaky VODM Protocol Πlvodm

We now state and prove the security of the above leaky VODM protocol.

Theorem 3. Assume the security of the ReRand-PKE scheme. The protocol in Figure 8 securely
computes Flvodm against semi-honest adversaries.

Proof. Because the sender does not receive messages in the protocol, we just need to simulate the
view of the receiver. We exhibit simulator SimR for simulating corrupt R.

Corrupt receiver: SimR(pk, sk, s, b, {s′i|bi = 0}) simulates the view of corrupt semi-honest receiver.
Note that the only messages that need to be simulated by the simulator are ciphertexts {s̄i}i∈[n].

SimR computes s̄i := Enc(pk, s; ri) if bi = 1 and s̄i := Enc(pk, s′i; ri) if bi = 0 for i ∈ [n]. SimR
appends {s̄i}i∈[n] to the view.
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The indistinguishability of ReRand-PKE scheme guarantees the view output by SimR is indistin-
guishable from the real one.

Note that the mq-RPMT constructed with the above leaky VODM is also a leaky version. We
don’t give a specific description of this leaky mq-RPMT. Instead, we use leaky VODM to construct
PSU protocol directly and prove its security in Appendix E.

4.3 Unification with Membership Encryption

We have presented two generic constructions of mq-RPMT protocols from probabilistic SKE and
probabilistic PKE respectively. It is intriguing to study if there is a unified way to encompass the two
different constructions.

We retrospect the high level idea underlying our mq-RPMT protocol. If privacy is not a concern,
reverse membership test can be simply done by having the receiver first create a membership relation
R for his set Y , namely R(y) = 1 iff y ∈ Y , then having the sender send his elements to the receiver in
clear. To make the reverse membership test private, the receiver can “encrypt” his membership relation
and send the “encoding” of resulting ciphertexts to the sender. After receiving the “encoding”, the
sender is able to retrieve the membership encryptions corresponding to his elements. In the sequel, the
receiver can fulfill the reverse private membership test by decrypting the ciphertexts in an oblivious
manner.

Based on the above discussion, we realize that the right encryption scheme needed in our mq-
RPMT protocol is an abstract new notion called membership encryption (ME). Roughly speaking,
ME for set X encrypts an element x into a ciphertext, which decrypts to “1” if x ∈ X. We formalize
the syntax and security notion of ME in the private-key setting as below.

Definition 3 (Membership Encryption). Membership encryption for set X consists of four poly-
nomial time algorithms satisfying the following properties.

– Setup(1κ): on input a security parameter κ, outputs public parameters pp, which include the ci-
phertext space C.

– KeyGen(pp,X): on input public parameters pp and X ⊆ {0, 1}∗, outputs a key k.
– Enc(k, x): on input a key k and an element x ∈ X, outputs a ciphertext c ∈ C. For uttermost

generality, the behavior of Enc on x /∈ X is unspecified. Looking ahead, such treatment suffices for
the construction of mq-RPMT protocol.

– Dec(k, c): on input a key k and a ciphertext c ∈ C, outputs “1” indicating c is an encryption of
an element x in X and “0” if not.

Correctness. For any x ∈ X, ∀k ← KeyGen(pp,X), Dec(k, c = Enc(k, x)) = 1.
Consistency. For any x /∈ X, Pr[Dec(k, c) = 0] = 1−ϵ(κ), where pp← Setup(1κ), k ← KeyGen(pp,X),

c
R←− C. Here, ϵ is the consistency error, which must be negligible in κ.

Multi-element pseudorandomness. For any n distinct elements x1, . . . , xn ∈ X, {Enc(k, xi)}i∈[n] ≈c

UCn .

The ME notion naturally extends to the public-key setting by letting the KeyGen algorithm generate
a keypair (pk, sk), in which pk is used to encrypt and sk is used to decrypt. We omit the details for
its straightforwardness.

We then study the generic construction of ME. Note that the essence of ME is to encrypt element’s
membership relation, rather than the element itself. The membership relation can be created by
establishing a mapping H from elements to the set under test. Basically, there are two extreme cases
of mapping. The first is to select a single indication string s as the characteristic of the set, then
map all elements to s, i.e., H : xi → s, which we refer to as lossy mapping. The second is to select n
indication strings si as the characteristic of the set, then map elements to distinct indication strings,
i.e., H : xi → si, which we refer to as injective mapping. With the above understanding in head, we
present various constructions of ME by mixing encryption schemes and membership mapping.

ME from probabilistic SKE and lossy mapping. The construction is as below.

– Setup(1κ): runs SKE.Setup(1κ) to generate pp.
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– KeyGen(pp,X): runs SKE.KeyGen(pp) to sample kske, picks a random element s ∈ M , where M
is the message space of SKE, sets H be a mapping that maps all elements in X to s, outputs
k = (kske,H)

– Enc(k, x): parses k = (kske,H), outputs c← SKE.Enc(kske,H(x)).
– Dec(k, c): parses k = (kske,H), outputs “1” iff SKE.Dec(kske, c) = s.

ME from probabilistic PKE and lossy mapping. The construction is as below.

– Setup(1κ): runs PKE.Setup(1κ) to generate pp.
– KeyGen(pp,X): runs PKE.KeyGen(pp) to generate (pkpke, skske), picks a random element s ∈ M ,

where M is the message space of PKE, sets H be a mapping that maps all elements in X to s,
outputs pk = pkpke and sk = (skpke,H)

– Enc(pk, x): parses pk = pkpke, outputs c← PKE.Enc(pkpke,H(x)).
– Dec(sk, c): parses sk = (skpke,H), outputs ‘1’ iff PKE.Dec(skpke, c) = s.

Theorem 4. If SKE (resp. PKE) satisfies single-message multi-ciphertext pseudorandomness, then
the above ME construction satisfies multi-element pseudorandomness with consistency error 1/|M |.

The above ME constructions are exactly the backbones of our generic constructions of mq-RPMT
protocol presented in Section 4.1 and 4.2. Since ME requires multi-element pseudorandomness, the use
of lossy mapping inherently stipulates that the accompanying encryption schemes are probabilistic.
Therefore, in this case the ciphertext expansion is unavoidable. For example, in PRF-based probabilis-
tic SKE, the length of ciphertext is twice that of plaintext. In the design of our mq-RPMT protocol,
the value in OKVS is exactly ciphertext. As a consequence, ciphertext expansion incurs overhead to
the size of OKVS and thus also the communication cost on the receiver side. For this reason, reducing
the ciphertext expansion factor will immediately improve the performance of the overall mq-RPMT
protocol.

An important observation is that if we switch to injective mapping, then ME can be built from
deterministic encryption schemes satisfying multi-message multi-ciphertext pseudorandomness. The
constructions are similar as above except the decryption algorithm outputs ‘1’ iff the decryption
result falls into the prior-fixed indication string set S = {si}i∈[n]. In instantiation, we take H : xi → i
as the membership mapping, which renders efficient membership decryption by testing whether the
decryption is less than n.

Formally, we have the following theorem:

Theorem 5. If SKE (resp. PKE) satisfies multi-message multi-ciphertext pseudorandomness, then
the ME construction satisfies multi-element pseudorandomness with consistency error n/|M |.

If we instantiate the ME from the PRP-based deterministic SKE and injective mapping, the
ciphertext expansion factor is optimal. Therefore, a drop-in replacement to the ME from PRF-based
probabilistic SKE and lossy mapping will reduce the size of OKVS in the mq-RPMT protocol by half.

Due to space constraints, we put the description that how to construct mq-RPMT using the
language of ME in the Appendix F.

5 Our PSU Protocol

In this section, we describe our PSU construction achieving linear complexity and prove its semi-honest
security.

5.1 Generic Construction of PSU Protocols

With mq-RPMT and OT, we can simply combine them to construct a PSU protocol. We give the
formal description in Figure 9.

We now state and prove the security properties of the above PSU protocol.

Theorem 6. The protocol in Figure 9 securely computes Fpsu against semi-honest adversaries in the
(Fmq-rpmt,Fot)-hybrid model.
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Parameters:

– Two parties: sender S and receiver R.
– Ideal Fmq-rpmt and Fot primitives specified in Figure 4, and Figure 2, respectively.

Input of S: Y = {y1, . . . , yny} ⊂ {0, 1}∗
Input of R: X = {x1, . . . , xnx} ⊂ {0, 1}∗
Protocol:

1. S and R invoke the mq-RPMT functionality Fmq-rpmt first. The sender S acts as the sender in mq-
RPMT with input Y and receives nothing. The receiver R acts as the receiver in mq-RPMT with
input X and receives b ∈ {0, 1}ny .

2. R initialize set Z := {}.
3. For i ∈ [ny]:

(a) S and R invoke the OT functionality Fot.
(b) S acts as sender with input (yi,⊥).
(c) R acts as receiver with input bi.
(d) R receives zi from OT and sets Z = Z ∪ {zi}.

4. R outputs X ∪ Z.

Fig. 9: Private Set Union Protocol Πpsu

Proof. We exhibit simulators SimR and SimS for simulating corrupt R and S respectively, and argue
the indistinguishability of the produced transcript from the real execution.

Corrupt Sender: SimS(Y = {y1, . . . , yny}) simulates the view of corrupt semi-honest sender. It executes
as follows:

1. SimS invokes mq-RPMT simulator SimS
mq-rpmt(Y ) and appends the output to the view.

2. For i ∈ [ny], SimS invokes OT simulator SimS
ot(yi,⊥) and appends the output to the view.

Now we argue that the view output by SimS is indistinguishable from the real one. This is obtained
by the underlying simulators’ indistinguishability directly.

Corrupt Receiver: SimR(X = {x1, . . . , xnx}, X∪Y ) simulates the view of corrupt semi-honest receiver.
It executes as follows:

1. SimR defines the set Z := X∪Y \X, i.e. the set of elements that Y “brings to the union”. Next, it
uses ⊥ to pad Z to ny elements and permutates these elements randomly. Let Z = {z1, . . . , zny}.

2. SimR sets bi = 1 if and only if zi ∈ X for i ∈ [ny]. Then, it invokes mq-RPMT simulator

SimR
mq-rpmt(X, b) and appends the output to the view.

3. For i ∈ [ny], SimR invokes OT simulator SimR
ot(bi, zi) and appends the output to the view.

Now we argue that the view output by SimR is indistinguishable from the real one. In the simulation,
the way R obtains the elements in Z = X \ Y is identical to the real execution. By the underlying
simulators’ indistinguishability, the simulated view is computationally indistinguishable from the real.

5.2 Instantiation of PSU

For our SKE-based construction, we can use a PRP as we mentioned in Section 4.3 to instantiate SKE,
which can achieve an optimal ciphertext expansion factor. Since we need to perform the 2PC decryp-
tion computation, we use the LowMC [ARS+15] as our PRP instantiation to minimize the circuit size.
As for generic 2PC, there are two classical methods, e.g. garbled circuit [Yao86] or GMW [GMW87].
The former has a constant number of rounds, while the latter has a lower communication. Since the
communication has a greater impact on our scheme, we consider instantiating 2PC by GMW.

For our PKE-based construction, we use the well-known ECC ElGamal [Gam85] scheme as our
ReRand-PKE.
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5.3 Communication Cost

Now we analyze the communication cost of our two PSU constructions. For the SKE-based construc-
tion, we use our ME optimization in Section 4.3.

Let’s first analyze the size of decryption circuit in our SKE-based construction: the circuit needs
to compute decryption of every {s∗i }i∈[ny] and compare the result with nx. If Dec(k, s

∗
i ) < nx, it sets

bi = 1 and bi = 0 otherwise. The total number of decryption computations is ny. To compare whether
a σ long string is less than nx, we only need to compute whether the OR of its first σ− log nx bits are
1, which requires σ − log nx − 1 AND gates (since a ∨ b = ā ∧ b̄). The total number of AND gates is
ny(t+ σ − log nx) = O(tny), where t is the number of AND gates in a PRP decryption circuit.

Now we are ready to calculate the communication of PSU protocol. Note that the communication
of our protocol consists of OKVS, VODM protocol and OT protocol. We analyze their complexity
respectively. We use the symbol Φ to represent the communication complexity, and its subscripts
represent different components.

– OKVS in both constructions: as we showed in Section 2.5, we use 3H-GCT++ as our OKVS
scheme: Φokvs(nx) = (1.3nx + d + λ)|c| , where |c| is the size of ciphertext, |c| = λ + log nxny and
4κ for SKE-based and PKE-based scheme respectively.

– Oblivious decryption:
• In SKE-based construction: we use Φske

vod(ny, nx) to denote the communication of computing
oblivious decryption circuit. As we said in Section 5.2, we use GMW as our 2PC instantiation,
the communication consists of input sharing, multiplication gate computation and output re-
construction. In the input sharing phase, the communication is κ+nyσ bits, and in the output
reconstruction phase, it is ny bits. Using Beaver triple [Bea91], 4ny(t + σ − log nx) bits are
needed in multiplication phase. So we have Φske

vod(ny, nx) = κ+ nyσ + 4ny(t+ σ − log nx) + ny

• In PKE based construction: the communication of leaky VODM functionality, denoted by
Φpke
lvodm(ny, nx) = 4nyκ

– OT in both constructions: Φot(ny) = ny(κ+ σ).

Let Φske
psu(ny, nx) denote communication of SKE-based construction and let Φpke

psu (ny, nx) denote
communication of PKE-based construction. The overall communication cost of our PSU protocol is:

Φske
psu(ny, nx) = Φokvs(nx) + Φske

vod(ny, nx) + Φot(ny)

Φpke
psu (ny, nx) = Φokvs(nx) + Φpke

lvodm(ny, nx) + Φot(ny)

6 Implementation and Performance

Recall that we have presented two variants of our protocol. In this section, we will refer to them as:

– SKE-PSU: PSU protocol with SKE-based mq-RPMT, where SKE and VODM are instantiated
with PRP and GMW [GMW87] respectively.

– PKE-PSU: PSU protocol with PKE-based mq-RPMT, where ReRand-PKE is instantiated with
ECC ElGamal encryption scheme.

The OKVS instantiation of both schemes uses the 3H-GCT++ in Figure11. We focus on the case
where ny = nx = n, i.e., both parties have equal-size sets.

6.1 Theoretical Analysis of Communication

In Table 2, we show the theoretical communication complexity of our protocol compared with the
Frikken protocol [Fri07], the DC protocol [DC17], the KRTW protocol [KRTW19], the GMRSS pro-
tocol [GMR+21] and the JSZDG protocol [JSZ+22] (note that [JSZ+22] proposed two protocols, i.e.
JSZDG-R and JSZDG-S, which focus on balanced and unbanlanced setting, respectively) in the semi-
honest setting. Empirical measurements of such real-world costs are given later in Table 3.

For set sizes in the range 214 to 222, our PKE-PSU variant has the least communication of any of the
protocols we consider: up to an 8.8× improvement of Frikken, 125× improvement of DC, 10.9−13.6×
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Protocol Communication
n = ny = nx

214 218 222

Frikken [Fri07] N + 2nxN + 4nyN 12288n 12288n 12288n
DC [DC17] 2λnxN + 4nyN 172032n 172032n 172032n
KRTW [KRTW19] βu(2ρ+ λ+ (u+ 2)σ) + βu(κ+ σ) 14977n 16927n 18956n
GMRSS [GMR+21] 1.27nyρ+ 3nxσ + (1.27ny logny + ny)(κ+ σ) 5417n 6687n 7947n
JSZDG-R [JSZ+22] ρ(κ+ 2.18nx) + 4nyl2 + (1.09nx lognx + ny)(κ+ σ) 5757n 6931n 8105n
JSZDG-S [JSZ+22] ρ(κ+ 2.18ny) + 1.09ny(ul2 + σ) + 2.18ny logny(κ+ σ) 10640n 13140n 15658n

SKE-PSU (1.3nx + d+ λ)σ + κ+ nyσ + 4ny(t+ σ − lognx) + ny(κ+ σ) 3768n 3810n 3853n

PKE-PSU 4κ(1.3nx + d+ λ) + 4κny + ny(κ+ σ) 1373n 1381n 1389n

Table 2: Theoretical communication costs of PSU protocols (in bits), calculated using computational security
κ= 128 and statistical security λ= 40. Ignore costs of base OTs which are independent of input size. N is the
size of the public key in Pallier encryption scheme (2048 is used here). β and u are the number of bins and
maximum bin size respectively. ρ is the width of OT extension matrix (depends on n and protocol).

improvement of KRTW, 3.9−5.7× improvement of GMRSS, and 4.2−11.3× improvement of JSZDG.
It means that our scheme has great advantages in low bandwidth scenarios.

For our SKE-based protocol, as mentioned in Section 5.2, we use LowMC [ARS+15] to minimize
the number of AND gates. Though the communication of our SKE-PSU protocol is about 3× heigher
than PKE-PSU, it is still lower than all previous schemes.

6.2 Experimental Setup

We run our experiments on a single Intel Core i9-9900K with 3.3GHz and 128GB RAM. We simulate
the network connection using Linux tc command. To better meet the potential deployment require-
ments, we use Netty6 to maintain the communication channel. And we use Protocol Buffers7 for data
(de-)serialization. Refer to Appendix G.1 for details of Netty and Protocol Buffers.

6.3 Implementation Details

Existing PSU implementations are under different MPC frameworks and different experimental set-
tings. For example, the [KRTW19] implementation is under 128-bit element length while the [GMR+21]
implementation is under 64-bit element length. Also, the [KRTW19, JSZ+22] implementation supports
multi-thread execution, while the [GMR+21] implementation does not. Further, the [GMR+21] and
[JSZ+22] implementation heavily relies on 1-out-of-2 Oblivious Transfer (OT). Introducing recent
silent OT technique may further reduce its communication cost [BCG+19, YWL+20]. However, ex-
isting efficient silent OT implementation [YWL+20] is available in emp-toolkit [WMK16]. Combining
these implementations rely on relatively heavy source code modification works.

After carefully studying existing open-source codes, we fully re-implement state-of-the-art PSU
protocols [KRTW19, GMR+21, JSZ+22] and their underlying basic protocols using Java, including
base OT [NP01], OT extension [ALSZ13], silent OT [YWL+20], the specific OPRF variant [KKRT16],
and GCT data structures.

We choose Java as our primary programming language for the following reasons. First, recent
advances in MPC make this attractive data security technique from theory into practical usage. In-
troducing big data frameworks into MPC would further increase its efficiency and integrate MPC
with existing data pipelines [BKC+22]. Current widely adopted big data analytical engines, for ex-
ample, Hadoop and Spark, are built upon Java or JVM-based programming languages. We hope our
implementation can help developers from the big data community leverage and deploy MPC in a
more scaling manner. Second, one may think that Java is much slower than C/C++. It is shown
that although there is some performance gap, most basic operations in Java and C/C++ have similar
performances8.

6 https://netty.io/
7 https://developers.google.com/protocol-buffers
8 Our tests show that on Macbook Pro 2019, Java needs 0.095us for one AES operation, while C/C++ under
AES instruction needs 0.071us. This is because Java would automatically use AES instruction if it detects
that the current operating system supports it.
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For operations that have a huge efficiency gap between Java and C/C++, we use the Java Native
Interface (JNI) technique to invoke C/C++ libraries. The details can be found in Appendix G.2.

We note that our implementations support multi-thread executions for all the PSU schemes, includ-
ing [GMR+21], achieved by using Java ‘Stream.parallel()’. In our experiments, we limit the number of
threads during the protocol execution by setting the JVM parameter ‘java.util.concurrent.ForkJoinPool.
common.parallelism’, and submit all parallel executions into that common thread pool. In the single-
thread setting, we let all procedures run in the main thread instead of simply setting the number
of threads to be one under the multi-thread setting, thus avoiding additional costs for creating and
destroying sub-threads. Our performance reports show that we obtained improved performance results
for the [GMR+21] PSU scheme.

Although most operations in Java and C/C++ have similar performances, there are some opera-
tions in which Java operates much slower than C/C++. For example, our JSZDG performance results
(See Table 3) are about 3 times slower than the report shown in the original work [JSZ+22]. We
carefully analyze our implementation and find that the gap is from its underlying batch OPRF pro-
posed by Chase and Miao [CM20]. Briefly speaking, this batched OPRF needs to map each element
into a long pseudo-random byte array via a PRF and then convert that to be an integer array as
coordinates in the random encoding matrix. In C/C++, the transformation can be done by simply
changing the pointer type from uint8 t* to uint32 t* with almost no additional cost. However, such
an operation is not supported in Java due to the memory protection mechanism. One has to explicitly
convert byte[] to int[], involving dramatic costs. In addition, the type conversion operation cost is,
unfortunately, lower than JNI invoking. Introducing JNI in this operation leads to even more costs.
How to efficiently implement the batch OPRF proposed by Chase and Miao [CM20] in memory-safe
programming language as in C/C++ remains an open problem in the implementation. We emphasize
that designing a unified framework for all PSU protocols while compatible with widely adopted big
data analytical engines under C/C++ would further lead to better performance results. We hope that
our implementation can be a starting point. Our complete implementation will be freely available on
GitHub.

6.4 Experimental Details

The SKE-PSU protocol is instantiated with the LowMC encryption scheme [ARS+15] where the block
size and the key length are both 128 bits, and the number of Sboxes is m = 10 (i.e., the SboxLayer
is a 10-folded parallel application of the basic 3-bit Sbox on the first 30 bits of the state, and for the
remaining 88 bits, the SboxLayer is the identity). The concrete parameters in LowMC are from the
Mobile PSI implementations provided by Kales et al. [KRS+19]9. We use the improved inverse of the
SBoxLayer provided by Liu et al. [LIM21] and follow the SBoxLayer implementation idea by Kales
et al. [KRS+19] to implement the (non-2PC) decryption procedure. The underlying OKVSs for our
PSU protocols are instantiated with our 3H-GCT++ in Figure 11.

Since both [GMR+21] and [JSZ+22] protocols rely heavily on OSN [MS13] and involve a large
number of OT. We further introduce Silent OT [BCG+19, YWL+20] in the GMRSS and JSZDG
schemes. See details in Appendix G.3.

In SKE-PSU, we assume a commonly used setting where Boolean multiplication triples are pre-
computed offline and stored locally in a temporary file. This follows real scenarios where Boolean
multiplication triples are pre-generated by parties themselves or with the help of a Trusted-Third
Party under the Trusted Dealer model. For completeness, we give the costs of triple generation in
Appendix G.4.

In PKE-PSU, the ReRand-PKE is instantiated with the ECC ElGamal encryption scheme un-
der the curve SecP256K1. We found an interesting point in the implementation of PKE-PSU: In
elliptic-curve-based cryptography, point compression is a standard trick, which can roughly reduce
the representation of an EC point by half. The cost of this trick is that one has to perform point de-
compression in the future, which is typically considered to be cheap. Somewhat surprisingly, it turns
out that point decompression is very costly. According to existing implementations provided in MCL
and OpenSSL libraries, point decompression is as expensive as point exponentiation. Due to this fact,

9 https://github.com/contact-discovery/mobile_psi_cpp/blob/master/droidCrypto/lowmc/lowmc_

128_128_20.c
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Comm. (MB) Running time (s)

R S LAN 1Gbps 100Mbps 10Mbps

T = 1 T = 8 T = 1 T = 8 T = 1 T = 8 T = 1 T = 8
n Protocol

setup online setup online
total

setup online setup online setup online setup online setup online setup online setup online setup online

KRTW 0.02 4.17 0.01 29.63 33.8 0.07 3.5 0.03 1.07 0.49 16.13 0.37 14.06 0.83 27.36 0.72 24.66 0.81 55.9 0.73 55.32

GMRSS 0.02 5.89 0.02 7.96 13.85 0.1 1.01 0.04 0.42 0.66 1.96 0.46 1.28 1 3.53 0.91 2.97 1.06 14.44 0.93 13.97

JSZDG-R 0.01 4.65 0.01 5.63 10.28 0.07 1.81 0.02 0.52 0.27 2.65 0.23 1.34 0.49 4.19 0.41 2.66 0.45 12.08 0.37 10.63

SKE-PSU 0.01 3.16 0 3.36 6.52 0.03 0.65 0.02 0.29 0.12 6.76 0.11 6.48 0.21 12.66 0.19 12.09 0.2 15.62 0.19 15.59

PKE-PSU 0.01 1.16 0 1.59 2.75 4.6 2.37 4.58 1.07 4.78 2.63 4.75 1.34 4.92 3.02 4.9 1.77 4.99 4.43 4.91 3.79

214

PKE-PSU* 0.01 2.16 0 2.9 5.05 4.6 1.96 4.6 0.59 4.75 2.36 4.76 1 4.95 2.76 4.91 1.54 4.92 5.72 4.93 5.31

KRTW 0.02 17.64 0.01 122.05 139.69 0.07 12.57 0.03 3.76 0.46 26.27 0.39 20.96 0.82 40.09 0.73 36.3 0.81 163.48 0.75 161.63

GMRSS 0.02 25.95 0.02 34.11 60.06 0.11 4.79 0.04 1.95 0.64 6.61 0.48 4.25 1.11 12.67 0.92 9.78 1.04 60.75 0.94 57.5

JSZDG-R 0.01 20.75 0.01 24.74 45.49 0.07 7.5 0.02 2.25 0.3 9.29 0.2 4.45 0.44 13.78 0.4 8.58 0.47 49.41 0.42 44.58

SKE-PSU 0.01 12.61 0 13.41 26.03 0.04 2.66 0.02 1.15 0.13 8.66 0.11 7.32 0.2 15.84 0.19 14.39 0.2 31.79 0.19 30.98

PKE-PSU 0.01 4.62 0 6.37 10.99 4.62 9.75 4.59 4.39 4.82 10.21 4.76 5.22 4.9 10.94 4.91 5.83 5.01 16.38 4.92 13.61

216

PKE-PSU* 0.01 8.63 0 11.57 20.19 4.57 7.96 4.6 2.58 4.76 8.68 4.77 3.37 4.93 9.94 4.91 4.65 4.94 21.46 4.93 19.67

KRTW 0.02 69.29 0.01 562.76 632.05 0.08 63.02 0.03 17.67 0.52 85.56 0.39 45.31 0.76 111.14 0.71 113.83 0.84 660.33 0.74 664.93

GMRSS 0.02 113.7 0.02 145.11 258.81 0.13 20.74 0.03 9.8 0.58 28.62 0.55 16.63 1.09 49.68 0.93 38.82 1.03 251.84 0.97 243.63

JSZDG-R 0.01 92.67 0.01 107.89 200.56 0.07 41.15 0.03 10.71 0.25 43.17 0.21 16.84 0.42 64.06 0.4 33.8 0.53 221.27 0.39 191.2

SKE-PSU 0.01 50.34 0 53.51 103.85 0.04 10.78 0.02 4.88 0.12 17.83 0.1 12.32 0.2 28.38 0.18 22.54 0.21 98.96 0.19 95.72

PKE-PSU 0.01 18.5 0 25.45 43.95 4.6 41.5 4.59 19.82 4.79 42.37 4.75 20.97 4.92 44.8 4.91 23.38 4.92 66.68 4.9 54.39

218

PKE-PSU* 0.01 34.5 0 46.26 80.76 4.61 34.63 4.58 12.26 4.78 37.1 4.75 13.99 4.92 40.62 4.92 18.45 4.91 85.31 4.92 79.22

KRTW 0.02 300.14 0.01 2305.8 2605.95 0.11 245.37 0.04 67.97 0.52 281.96 0.38 120.35 0.82 363.95 0.74 361.12 0.84 2643.84 0.75 2638.05

GMRSS 0.02 493.2 0.02 615.9 1109.1 0.11 100.48 0.04 48.53 0.62 119.98 0.51 75.76 1.11 207.83 0.95 164.25 1.09 1074.33 0.95 1030.3

JSZDG-R 0.01 405.53 0.01 467.26 872.79 0.08 173.07 0.04 54.41 0.48 184.63 0.2 73.28 0.47 266.51 0.73 146.13 0.47 941.5 0.72 825.16

SKE-PSU 0.01 200.88 0 213.55 414.43 0.05 44.73 0.03 22.78 0.13 59.65 0.11 35.71 0.2 86.11 0.2 65.18 0.21 378.57 0.4 369.24

PKE-PSU 0.01 74 0 101.8 175.8 4.65 168.79 4.6 79.95 4.78 169.18 4.79 86.49 4.97 179.58 4.94 96.32 4.97 269.32 4.87 216.19

220

PKE-PSU* 0.01 138 0 185 323 4.64 144.24 4.58 50.56 4.75 146.41 4.74 60.5 4.9 161.26 5 76.33 4.99 345 4.9 313.37

Table 3: Communication cost (in MB) and running time (in seconds) comparing our protocols to KRTW
GMRSS, and JSZDG-R. The LAN network has 10 Gbps bandwidth and 0.2 ms RTT latency. Communication
cost of S/R indicates the outgoing communication from S/R to the other party. The best protocol within a
setting is marked in blue.

we prefer to use standard point representation for better efficiency when bandwidth is not of first
priority. In the implementation, we use PKE-PSU* to represent the version that does not perform
point compression.

The simulated network settings include typical LAN (10Gbps bandwidth and 0.02ms RTT latency)
and WAN (including 1Gbps with 40ms latency, 100Mbps and 10Mbps bandwidth with 80ms latency).
In our KRTW implementation, we follow the pipelining optimization shown in [KRTW19] with 28

pipelining size when the receiver sends polynomials to the sender. In our PKE-PSU, we also leverage
the pipelining optimization with the same 28 pipelining size when the sender sends ReRand outputs
to the receiver.

We divide all protocols into two phases: the one-time setup phase and the online phase. As the
name suggests, the one-time setup phase does necessary operations before actual protocol execution,
including key distribution, base OT execution, and the one-time setup phase for Ferret OT [YWL+20].
The online phase does subsequent protocol executions. Note that in our PKE-PSU, the receiver can
send the public key to the sender in the one-time setup phase, and all fixed-point precomputations re-
lated to the public key can also be done in that phase. We emphasize that fixed-point precomputations
only need to be performed once, regardless of the number of subsequent protocol executions.

Since the JSZDG-S scheme [JSZ+22] focus on unbalanced setting and its perfomance is about
2× worse than the JSZDG-R scheme, we only compare our schemes with JSZDG-R here. Detailed
comparisons for set sizes 214, 216, 218, 220 and controlled network configurations are shown in Table
3. To be more intuitive, we show the variation of the running time with the bandwidth in different
setting in Figure 10.

6.5 Performance Evaluation

Communication improvement. As shown in Table 3, our PKE-PSU protocol has the lowest com-
munication among all protocols, which is 12.3 − 14.8× lower than KRTW, 5.1 − 6.3× lower than
GMRSS and 3.7 − 5× lower than JSZDG-R. The communication of PKE-PSU∗ is about 2× higher
than that of PKE-PSU, which is due to the absence of point compression. The communication of

17



100 101 102 103 104

100

101

102

Network bandwidth (Mbps)

R
u
n
n
in
g
ti
m
e
(s
)

KRTW

GMRSS

JSZDG-R

,

100 101 102 103 104

100

101

102

Network bandwidth (Mbps)

SKE-PSU

PKE-PSU

PKE-PSU*

100 101 102 103 104

101

102

103

Network bandwidth (Mbps)

R
u
n
n
in
g
ti
m
e
(s
)

,

100 101 102 103 104

100

101

102

103

Network bandwidth (Mbps)

100 101 102 103 104

101

102

103

Network bandwidth (Mbps)

R
u
n
n
in
g
ti
m
e
(s
)

,

100 101 102 103 104

101

102

103

Network bandwidth (Mbps)

100 101 102 103 104

102

103

104

Network bandwidth (Mbps)

R
u
n
n
in
g
ti
m
e
(s
)

,

100 101 102 103 104

102

103

104

Network bandwidth (Mbps)

Fig. 10: Decline of running time (in seconds) on increasing network bandwidth for our protocols compared with
KRTW, GMRSS and JSZDG-R. Both x and y-axis are in log scale. The four figures on the left correspond to
T = 1 and the right correspond to T = 8. The corresponding set sizes from the first row to the last row are
n = 214, 216, 218, 220 respectively.

our SKE-PSU is about 2.5× higher than that of PKE-PSU. Nevertheless, all our schemes have lower
communication than that of KRTW, GMRSS and JSZDG-R schemes. Since the communication costs
of all our protocols are linear with the parties’ set sizes, while the communication costs of the other
protocols are not. The larger the parties’ set sizes are, the larger the communication cost ratios are.
Computation improvement. As shown in Table 3 and Figure 10, our SKE-PSU performs best when
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the set size and the bandwidth are large. For example, for n = 220 with T = 1 thread in LAN setting,
SKE-PSU requires 44.73 seconds, achieving a 5.5× improvement over KRTW, a 2.2× improvement
over GMRSS, and a factor of 3.9× improvement over JSZDG-R.

Our PKE-PSU and PKE-PSU∗ could be seen as a trade-off between communication and compu-
tation. Both schemes perform better in lower bandwidth. Our PKE-PSU scheme is the fastest one
under 10Mbps, which is due to its lowest communication, e.g., for n = 220, PKE-PSU requires 216.19
seconds with T = 8 threads, while KRTW requires 2638.05 seconds, a 12.2× improvement, GMRSS
requires 1030.3 seconds, a 4.8× improvement, and JSZDG-R requires 825.16 seconds, a 3.8× improve-
ment. Our PKE-PSU* performs better in medium bandwidth (100Mbps and 1Gbps). For example,
for n = 218 with T = 8 threads in 100Mbps, PKE-PSU* requires 18.45 seconds, while KRTW re-
quires 113.83 seconds, a 6.2× improvement, GMRSS requires 38.82 seconds, a 2.1× improvement,
and JSZDG-R requires 33.8 seconds, a 1.8× improvement. We also noticed that the performance of
PKE-PSU* improved significantly (about 3× speedup) in the case of multithreading because of its
heavy computation cost.
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Appendix

A Encryption Schemes

A.1 Symmetric-key Encryption

A symmetric-key encryption (SKE) scheme is a tuple of four algorithms:

– Setup(1κ): on input the security parameter κ outputs public parameters pp, which include the
description of the message and ciphertext space M,C.

– KeyGen(pp): on input public parameters pp, outputs a key k.
– Enc(k,m): on input a key k and a plaintext m ∈M , outputs a ciphertext c ∈ C.
– Dec(k, c): on input a key k and a ciphertext c ∈ C, outputs a message m ∈M or an error symbol
⊥.

Correctness. For any pp← Setup(1κ), any k ← KeyGen(pp), any m ∈M , and any c← Enc(k,m), it
holds that Dec(sk, c) = m.
Security. For our purpose, we require a case-tailored security notion called single-message multi-
ciphertext pseudorandomness. Formally, a SKE scheme is single-message multi-ciphertext pseudoran-
dom if for any PPT A = (A1,A2):

AdvA(1
κ) = Pr

β = β′ :

pp← Setup(1κ);
k ← KeyGen(pp);
(m, state)← A1(pp);

β
R←− {0, 1};

for i ∈ [n] : c∗i,0 ← Enc(k,m), c∗i,1
R←− C;

β′ ← A2(pp, state, {c∗i,β}i∈[n])

−
1

2

is negligible in κ.

Remark 1. The single-message multi-ciphertext pseudorandomness is a mild security notion that is
satisfied by most IND-CPA secure SKE schemes, for instance, the classical PRF-based SKE.

A.2 Re-randomizable PKE

A re-randomizable PKE (ReRand-PKE) scheme is a tuple of five algorithms:

– Setup(1κ): on input the security parameter κ outputs public parameters pp, which include the
description of the message and ciphertext space M,C.

– KeyGen(pp): on input public parameter pp, outputs a keypair (pk, sk).
– Enc(pk,m): on input a public key pk and a message m ∈M , outputs a ciphertext c ∈ C.
– Dec(sk, c): on input a secret key sk and a ciphertext c ∈ C, outputs a message m ∈M or an error

symbol ⊥.
– ReRand(pk, c): on input a public key pk and a ciphertext c ∈ C, outputs another ciphertext c′ ∈ C.

Correctness. For any pp← Setup(1κ), any (pk, sk)← KeyGen(pp), any m ∈M , any c← Enc(pk,m),
and any c′ ← ReRand(pk, c), it holds that Dec(sk, c) = Dec(sk, c′) = m.
Indistinguishability. For any pp ← Setup(1κ), any (pk, sk) ← KeyGen(pp), and any m ∈ M , the
distribution c0 ← Enc(pk,m) and the distribution c1 ← ReRand(pk, c0) are identical.
Security. For our purpose, we require a case-tailored security notion called single-message multi-
ciphertext pseudorandomness. Formally, a PKE scheme is single-message multi-ciphertext pseudoran-
dom if for any PPT A = (A1,A2):

AdvA(1
κ) = Pr

β = β′ :

pp← Setup(1κ);
(pk, sk)← KeyGen(pp);
(m, state)← A1(pp, pk);

β
R←− {0, 1};

for i ∈ [n] : c∗i,0 ← Enc(pk,m), c∗i,1
R←− C;

β′ ← A2(pp, state, {c∗i,β}i∈[n])

−
1

2

is negligible in κ.
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Remark 2. We remark that single-plaintext multi-ciphertext pseudorandomness is a very mild prop-
erty for PKE. This is because most natural IND-CPA secure PKE constructions satisfy single-message
single-ciphertext pseudorandomness, which further implies single-plaintext multi-ciphertexts pseudo-
randomness via a standard hybrid argument.

It is straightforward to verify that the DDH-based ElGamal PKE [Gam85] and Regev’s LWE-based
PKE [Reg05] are re-randomizable PKE schemes satisfying the above correctness, indistinguishability,
and single-plaintext multi-ciphertext pseudorandomness.

B Oblivious Key-Value Store Scheme

B.1 Instantiation of OKVSs

We recall some instantiations of OKVS and analyze their parameters.

Polynomial. Polynomial can be seen as a natural OKVS: to insert n key-value pairs {(xi, yi)}i∈[n],
one computes P as the polynomial which passes through points {(xi, yi)}i∈[n].

The advantage of polynomial is that its rate reaches optimal 1, which induces the lowest communi-
cation in the protocol. However, its encoding and decoding are less efficient. Using the optimization of
[PRTY19], the encoding and decoding complexity are respectively O(n log2 n) and O(log n). Another
disadvantage of polynomial is that it only satisfies correctness and obliviousness, not randomness
because polynomial generation is a deterministic algorithm.

Garbled Bloom Filter. Garbled Bloom Filter (GBF) was introduced in [DCW13] in the context of
PSI protocols. The values are taken from F2σ . A GBF is an m-long array D associated with k random
functions h1, . . . , hk : {0, 1}∗ → [m]. Let D[j] denote the jth component of array D. To insert a key-
value pair (x, y) in a GBF, one chooses random D[hi(x)] for i ∈ [k] conditioned on y = ⊕i∈[k]D[hi(x)].

In [DCW13], they showed that if the GBF has size m = O(λn) then the generation of GBF
succeeds with probability 1− 2−λ. Therefore, the rate of GBF is O(1/λ). The encoding complexity is
O(λn) and decoding requires λ XOR at most.

Garbled Cuckoo Table. Garbled Cuckoo Table (GCT) was introduced in [PRTY20] as an optimiza-
tion of GBF. The idea of GCT is similar to GBF, and the difference is that GCT uses only two hash
functions instead of λ. However, two hash functions will cause a non-negligible probability of failure.
To solve this problem, they introduce some additional positions and use a new random function to
map the key to these positions. They use cuckoo graph to analyze the probability of success, and
finally they achieve a better rate, which is about 0.42.

However, as Rindal and Schoppmann [RS21] pointed out, the original GCT scheme [PRTY20] does
not meet the obliviousness properties we defined before. The main reason is that the original GCT
needs to solve a linear equation to satisfy the key-value constraint. However, the free variable in the
equation is set to zero, which means keys are no longer randomly shared in some positions like GBF.
As a result, the GCT has some zeros depending on the key’s set. They made a little modification
to make GCT (they called XoPaXoS) meet this property. The main idea is to first assign random
values to the free variables, and then solve the remaining full rank equations. Recently, Garimella et
al. [GPR+21] improved original GCT to 3H-GCT, the rate is increased to 0.81 by using three hash
functions. However, the original 3H-GCT still assigns zero to the free variables in linear equation. We
use similar modifications to make 3H-GCT meet Obliviousness and Randomness, as we described in
Figure 11.

We summarize the parameters and properties of the above schemes in Table 4.

B.2 3H-GCT++ and Property Proof

We give the description of our 3H-GCT++ in Figure 11.

The correctness is obvious. Now we prove the Obliviousness and Randomness of our 3H-GCT++.

Theorem 7. 3H-GCT++ in Figure 11 satisfies the Obliviousness and Randomness.
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scheme rate encoding decoding obliviousness randomness

Polynomial 1 O(n log2 n) O(logn)
√

×
GBF [DCW13] O(1/λ) O(λn) O(λ)

√ √

2H-GCT [PRTY20] 0.42− o(1) O(λn) O(λ) × ×
XoPaXoS [RS21] 0.42− o(1) O(λn) O(λ)

√ √

3H-GCT [GPR+21] 0.81− o(1) O(λn) O(λ) × ×
3H-GCT++ in Figure 11 0.81− o(1) O(λn) O(λ)

√ √

Table 4: A comparison between the different OKVS schemes. n is the number of key-value pairs, λ is a
statistical security parameter (e.g.,λ = 40).

Parameters:

– Computational security parameter κ and statistical security parameter λ.
– Input length n.
– A finite group G.
– Random fuctions h1, h2, h3 : {0, 1}∗ → [m′] and r : {0, 1}∗ → {0, 1}d+λ.
– Parameters m′ = 1.3n and d = 0.5 logn, as shown in [GPR+21], where d upper bound the size of

2-core of a (m′, n)-Cuckoo graph.
– Output length m = m′ + d+ λ.

EncodeH({(x1, y1), . . . , (xn, yn)}):

1. Define l(x) ∈ {0, 1}m
′
to be all zeroes except 1s at positions h1(x), h2(x), h3(x). Here we assume the

weight of l(x) is 3. Let row(x) := l(x)||r(x),

M (0) =

 l(x1)
...
l(xn)

 ∈ {0, 1}n×m′
,M (1) =

 r(x1)
...
r(xn)

 ∈ {0, 1}n×(d+λ)

and let

M = M (0)||M (1) =

 row(x1)
...
row(xn)

 ∈ {0, 1}n×m.

2. Initialize empty vectors DL ∈ Gm′
and DR ∈ Gd+λ, let D = DL||DR.

3. Initialize stack P .
4. While there is a node j ∈ [m′] such that the set {xi /∈ P |j ∈ {h1(xi), h2(xi), h3(xi)}} is a singleton:

Let xi be the element of that singleton, and push xi onto P .
5. Let S = {xi|xi /∈ P}, and let R ⊂ [n] index the rows of M in S, i.e. R = {i|M (0)

i,h1(xi)
= M

(0)

i,h2(xi)
=

M
(0)

i,h3(xi)
= 1 ∧ xi ∈ S}. Let d̃ := |R| and abort if d̃ > d.

6. Let M̃ (1) ∈ {0, 1}d̃×(d+λ) be the submatrix of M (1) obtained by taking the row indexed by R. Abort if
M̃ (1) does not contain an invertible d̃×d̃ matrix. Otherwise let M̃∗ be one such matrix and C ⊂ [d+λ]
index the corresponding columns of M̃ (1).

7. Let C′ := {j|i ∈ R,M
(0)
i,j = 1} ∪ ([d + λ] \ C +m′) and for i ∈ C′ assign Di ← G. For i ∈ R, define

y′
i := yi − (MDT )i where Di is assumed to be zero if unssigned.

8. Using Gaussian elimination solve the system M̃∗(Dm′+C1
, . . . , Dm′+C

d̃
)T = (y′

R1
, . . . , y′

R
d̃
)T .

9. While P not empty:

(a) pop xi from P .
(b) DL is undefined in at least one of the positions h1(xi), h2(xi), h3(xi). Set the undefined position(s)

so that ⟨row(xi), D⟩ = yi.

10. Set any empty position in D with a random value from G.
11. Output D.

DecodeH(D,x):

1. Return ⟨row(x), D⟩.

Fig. 11: 3H-GCT++ algorithm

24



Proof. Obliviousness: As we described before, 3H-GCT++ is generated by additive secret sharing of
values at the random position mapped by hash function, and selecting random value at the point not
mapped. Since the value are uniform distribution, we have that {(D1, . . . , Dm)|Di ← G, i ∈ [m]} ≡
{(D1, . . . , Dm)|y ← G, Di ← G, i ∈ [m− 1], Dm := y −

∑
i∈[m−1] Di}, which implies Obliviousness.

Randomness: Let X = {x1, . . . , xn} denote the key’s set. For any x∗ /∈ X, let row(x∗) defined as
before. There are three cases:

Case 1: ∃xi ∈ X such that row(xi) = row(x∗). By the parameter of GCT scheme [PRTY20,
GPR+21], this probability is 2−λ.

Case 2: Let o(xi) ⊂ [m] be the set of positions that are 1s of row(xi), i ∈ [n] and let O :=
∪i∈[n]o(xi). In this case, o(x∗) ⊂ O, that is, all the 1 positions of row(x∗) have been mapped when
generating D. Now we can divide o(x∗) into several groups according to which key is mapped to that
location. If there is a location i mapped by both different keys, then the location i can be randomly
put into one of the groups. Since the different positions of a key mapped to corresponds to an additive
secret sharing of the corresponding value, the sum of each group should be a uniformly random element
in G. Therefore DecodeH(D,x∗) is a uniformly random string.

Case 3: ∃j ∈ [m] such that j ∈ o(x∗) ∧ j /∈ O, that is, there are some positions of row(x∗) were
not mapped when generating D. By the generation of GCT, those positions not mapped are assigned
with a random value. Therefore DecodeH(D,x∗) is a uniformly random string.

In summary, with probability 1− 2−λ, DecodeH(D,x∗) is a uniformly random string.

C Proof of Theorem 1

Below we give the details of the proof of Theorem 1.

Proof. We exhibit simulators SimR and SimS for simulating corrupt R and S respectively, and argue
the indistinguishability of the produced transcript from the real execution.

Corrupt sender: SimS(Y = {y1, . . . , yny}) simulates the view of corrupt semi-honest sender. It executes
as follows:

1. SimS selects nx random key-value pairs (xi, si)i∈[nx], where xi and si are random item and cipher-
text respectively. Then SimS computes OKVS D := EncodeH((h(x1), s1), . . . , (h(xnx), snx)) and
appends it to the view.

2. SimS computes s∗i = DecodeH(D,h(yi)) for i ∈ [ny]. Then, it invokes VODM simulator SimS
vodm(s

∗
1, . . . , s

∗
ny
)

and appends the output to the view.

Now we argue that the view output by SimS is indistinguishable from the real one. We formally prove
this by a standard hybrid argument method. We define four hybrid transcripts T0, T1, T2, T3 where T0

is real view of S, and T3 is the output of SimS .

– Hybrid0. The first hybrid is the real interaction described in Figure 6. Here, an honest R uses
input X, honestly interacts with the corrupt S. Let T0 denote the real view of S.

– Hybrid1. Let T1 be the same as T0, except that (s1, . . . , snx) are replaced by nx random ciphertexts.
This hybrid is computationally indistinguishable from T0 by the single-message multi-ciphertext
pseudorandomness of the encryption scheme.
Specifically, if there is a distinguisher D can distinguish T0 and T1 with non-negligible probability,
then we can construct a PPT adversary A to break the single-message multi-ciphertext pseudoran-
domness of encryption scheme. A works as follows: when A receives pp from challenger, A selects
a random s as challenge message. Then A receives ciphertexts {c∗i }i∈[nx] from challenger. Now A
executes as an honest receiver with the corrupt S except step 2. In this step, A computes OKVS as
D := EncodeH({h(xi), c

∗
i }i∈[nx]). Now A invokes D with the sender’s view in the above interaction

and outputs D’s output. Note that if {c∗i }i∈[nx] are the encryption of s, the view of corrupt sender
is exactly the real view, which corresponds to T0. If {c∗i }i∈[nx] are random ciphertexts, the view
corresponds to T1. Therefore, A can break the security of the encryption scheme with the same
advantages as D.

– Hybrid2. Let T2 be the same as T1, except that the inputs of the receiver R are replaced by nx

random items. Note that the selection of value in OKVS has been replaced with random ciphertexts
in T1. By the obliviousness property of OKVS, T1 and T2 are statistically indistinguishable.
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– Hybrid3. Let T3 be the same as T2, except that the VODM execution is replaced by simulator
SimS

vodm. The security of VODM functionality guarantees the view is indistinguishable from real
execution.

Corrupt receiver: SimR(X = {x1, . . . , xnx}, b) simulates the view of corrupt semi-honest receiver. It
executes as follows:

1. SimR selects a random s← {0, 1}σ and generates a random encryption key k as the semi-honest
receiver does in the real protocol. Then, it invokes VODM simulator SimR

vodm(k, s, b) and appends
the output to the view.

The view output by SimR is indistinguishable from the real one by the underlying simulators’ indis-
tinguishability.

D SKE-based Multi-Query RPMT

Now we show that PRF-based SKE satisfies the single-message multi-ciphertext pseudorandomness
property.

Let F := {fk : {0, 1}κ → {0, 1}κ}k∈K be a PRF family. The PRF-based SKE scheme is as follows:

– Setup(1κ): on input the security parameter κ outputs public parameters pp, which include the
description of the message and ciphertext space M = {0, 1}κ, C = {0, 1}2κ.

– KeyGen(pp): on input public parameter pp, outputs a key k
R←− K.

– Enc(k,m): on input a key k and a plaintext m ∈ M , chooses r
R←− {0, 1}κ, outputs a ciphertext

c = (r, fk(r)⊕m).
– Dec(k, c): on input a key k and a ciphertext c = (r, c2), outputs m = fk(r)⊕ c2.

Next, we prove the single-message multi-ciphertext pseudorandomness of the above PRF-based
SKE scheme.

Lemma 1. The PRF-based SKE satisfies the single-message multi-ciphertext pseudorandomness prop-
erty defined in Section A.1.

Proof. If there is a PPT adversary A = (A1,A2) can break the single-message multi-ciphertext pseu-
dorandomness of SKE scheme, then we can construct a PPT adversary B to break the security of PRF.
In particular, B runs Setup to obtain pp, then it invokes A1(pp) to obtain (m, state). Now, B selects

ri
R←− {0, 1}κ and queries the oracle with ri to obtain f(ri) for i ∈ [n]. Then, B sets ci = (ri, f(ri)⊕m)

and invokes A2(pp, state, {ci}i∈[n]) to obtain a bit β′. Finally, B outputs β′.
If f is PRF: {ci}i∈[n] are exactly the n times encryption of m, which correspond to β = 0.
If f is random function: f(r) is also a random string on {0, 1}κ, which means ci is a random

distribution in ciphertext space, corresponding to β = 1.Therefore, B distinguishes PRF with the
same probability as A in single-message multi-ciphertext pseudorandomness experiment.

E PSU Construction from Leaky VODM

We give the PSU protocol from leaky VODM in Figure 12.

Theorem 8. Assume the Re-Rand PKE scheme E = (Setup,KeyGen,Enc,Dec) satisfies single-message
multi-ciphertext pseudorandomness. The protocol in Figure 12 securely computes Fpsu against semi-
honest adversaries in the (Flvodm,Fot)-hybrid model.

Proof. We exhibit simulators SimR and SimS for simulating corrupt R and S respectively, and argue
the indistinguishability of the produced transcript from the real execution.

Corrupt Sender: SimS(Y = {y1, . . . , yny}) simulates the view of corrupt semi-honest sender. It executes
as follows:
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Parameters:

– Two parties: sender S and receiver R.
– A ReRand-PKE scheme

(Setup,KeyGen,Enc,Dec,ReRand).
– An OKVS scheme (EncodeH ,DecodeH).
– A collision-resistant hash function h(x) : {0, 1}∗ → {0, 1}σ.

Input of S: Y = {y1, . . . , yny} ⊂ {0, 1}∗
Input of R: X = {x1, . . . , xnx} ⊂ {0, 1}∗
Protocol:

1. R selects a random indication string s ∈ F2σ . R also generates a random key pair pp ←
Setup, (pk, sk) ← KeyGen(pp), a randomness set R = {r1, . . . , rnx} and computes si := Enc(pk, s; ri)
for i ∈ [nx].

2. R computes an OKVS D := EncodeH((h(x1), s1), . . . , (h(xnx), snx)).
3. R sends D and pk to S.
4. S computes s∗i := DecodeH(D,h(yi)) for i ∈ [ny].
5. S and R invoke the leaky VODM functionality Flvodm. The sender S acts as sender in leaky VODM

with input {s∗i }i∈[ny] and receives nothing. The receiver R acts as receiver in leaky VODM with input
(pk, sk, s) and receives b ∈ {0, 1}ny and {s′i|bi = 0}.

6. R initialize set Z := {}.
7. For i ∈ [ny]:

(a) S and R invoke the OT functionality Fot

(b) S acts as sender with input (yi,⊥).
(c) R acts as receiver with input bi.
(d) R obtains the OT output zi and sets Z = Z ∪ {zi}

8. R outputs X ∪ Z.

Fig. 12: PSU from leaky VODM Πpsu

1. SimS selects nx random key-value pairs (xi, si)i∈[nx], where xi and si are random item and ci-
phertext respectively. Then the simulator SimS generates pp ← Setup, (pk, sk) ← KeyGen(pp),
computes D = EncodeH((h(x1), s1), . . . , (h(xnx), snx)) and appends (pk,D) to the view.

2. SimS computes s∗i = DecodeH(D,h(yi)) for i ∈ [ny]. Then, it invokes leaky VODM simulator

SimS
lvodm(s

∗
1, . . . , s

∗
ny
) and appends the output to the view.

3. For i ∈ [ny], SimS invokes OT simulator SimS
ot(yi,⊥) and appends the output to the view.

Now we argue that the view output by SimS is indistinguishable from the real one. We formally prove
this by a standard hybrid argument method. We define four hybrid transcripts T0, T1, T2, T3 where T0

is real view of S, and T3 is the output of SimS .

– Hybrid0. The first hybrid is the real interaction described in Figure 12. Here, an honest R uses
input X, honestly interacts with the corrupt S. Let T0 denote the real view of S.

– Hybrid1. Let T1 be the same as T0, except that (s1, . . . , snx) are replaced by nx random ciphertexts.
This hybrid is computationally indistinguishable from T0 by the single-message multi-ciphertext
pseudorandomness of the encryption scheme.

Specifically, if there is a distinguisher D can distinguish T0 and T1 with non-negligible probability,
then we can construct a PPT adversary A to break the single-message multi-ciphertext pseudoran-
domness of encryption scheme. A works as follows: when A receives pp from challenger, A selects
a random s as challenge message. Then A receives ciphertexts {c∗i }i∈[nx] from challenger. Now A
executes as an honest receiver with the corrupt S except step 2. In this step, A computes OKVS as
D := EncodeH({h(xi), c

∗
i }i∈[nx]). Now A invokes D with the sender’s view in the above interaction

and outputs D’s output. Note that if {c∗i }i∈[nx] are the encryption of s, the view of corrupt sender
is exactly the real view, which corresponds to T0. If {c∗i }i∈[nx] are random ciphertexts, the view
corresponds to T1. Therefore, A can break the security of the encryption scheme with the same
advantages as D.
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– Hybrid2. Let T2 be the same as T1, except that the inputs of the receiver R are replaced by nx

random items. Note that the selection of value in OKVS has been replaced with random ciphertexts
in T1. By the obliviousness property of OKVS, T1 and T2 are statistically indistinguishable.

– Hybrid3. Let T3 be the same as T2, except that the leaky VODM and OT execution is replaced by
simulator SimS

lvodm and SimS
ot. The security of leaky VODM and OT functionality guarantee the

view is indistinguishable from real execution.

Corrupt Receiver: SimR(X = {x1, . . . , xnx}, X ∪Y ) simulates the view of corrupt receiver. It executes
as follows:

1. SimR executes first two steps as an honest receiver and obtains s, (pk, sk), D.
2. SimR define the set Z := X ∪Y \X, i.e. the set of elements that Y “brings to the union”. Next, it

uses ⊥ to pads Z to ny elements and permutates these elements randomly. Let Z = {z1, . . . , zny}.
3. SimR sets bi = 1 if and only if zi ∈ X for i ∈ [ny]. For zi /∈ X, SimR computes s′i :=

Dec(sk,DecodeH(D,h(zi))) Then, it invokes leaky vectro ODM simulator SimR
lvodm(s, b, {s′i|bi = 0})

and appends the output to the view.
4. For i ∈ [ny], SimR invokes OT simulator SimR

ot(bi, zi) and appends the output to the view.

Now we argue that the view output by SimR is indistinguishable from the real one. In the simulation,
the way R obtains the elements in Z = X \ Y is identical to the real execution. By the underlying
simulators’ indistinguishability, the simulated view is computationally indistinguishable from the real
one.

F Multi-Query RPMT Based on Membership Encryption

We describe how to construct mq-RPMT using the language of Membership Encryption (ME). As we
mentioned in Section 4.3, this will help us reduce the communication by half when sending OKVS.
We first define the vector oblivious decryption (VOD) functionality in Figure 13.

Parameters: Sender S, Receiver R, set sizes n, a ME scheme E = (Setup,KeyGen,Enc,Dec).
Functionality:

– Wait for input k from the receiver R.
– Wait for input {s∗1, . . . , s∗n} ⊂ {0, 1}∗ from the sender S.
– For i ∈ [n]:

Compute bi = Dec(k, s∗i ).
– Give output b ∈ {0, 1}n to the receiver R.

Fig. 13: Vector Oblivious Decryption Functionality Fvod

Now, we use the language of ME to describe how to construct mq-RPMT. The formal protocol is
described in Figure 14.

Correctness. For all i ∈ [ny], if yi ∈ X, there is an xj ∈ X, j ∈ [nx] s.t. yi = xj . In this case,
s∗i = DecodeH(D,h(xj)) = sj . Since sj = Enc(k, xj), we have Dec(k, sj) = 1. In the case yi /∈ X,
if hash functions collide, that is, h(yi) = h(x) for some yi /∈ X, the correctness will be violated.
By setting σ = λ+ log nxny, a union bound shows probability of collision is negligible 2−λ. When no
collision occurs, from the randomness of OKVS, s∗i = DecodeH(D,h(yi)) is a random ciphertext, result
in Dec(k, s∗i ) = 0 with overwhelming probability. The union bound guarantees that for all yi /∈ X, the
probability that there exists an s∗i s.t. Dec(k, s∗i ) = 1 is negligible.

We now state and prove the security properties of the above mq-RPMT protocol.

Theorem 9. Assume E = (Setup,KeyGen,Enc,Dec) is a membership encryption scheme as we defined
in section 4.3. The protocol in Figure 14 securely computes Fmq-rpmt against semi-honest adversaries
in the Fvod-hybrid model.
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Parameters:

– Two parties: sender S and receiver R.
– Ideal Fvod primitives specified in Figure 13.
– A ME scheme (Setup,KeyGen,Enc,Dec).
– An OKVS scheme (EncodeH ,DecodeH)
– A collision-resistant hash function h(x) : {0, 1}∗ → {0, 1}σ.

Input of S: Y = {y1, . . . , yny} ⊂ {0, 1}∗
Input of R: X = {x1, . . . , xnx} ⊂ {0, 1}∗
Protocol:

1. R uses a ME scheme to generate a random key: pp ← Setup(X, 1κ), k ← KeyGen(pp) and computes
si := Enc(k, xi) for i ∈ [nx].

2. R computes an OKVS D := EncodeH((h(x1), s1), . . . , (h(xnx), snx)).
3. R sends D to the sender S.
4. S computes s∗i := DecodeH(D,h(yi)) for i ∈ [ny].
5. S and R invoke the vector oblivious decryption functionality Fvod. S acts as sender with input

S = {s∗1, . . . , s∗ny
} and R acts as receiver with input k. As a result, S receives nothing and R receives

b ∈ {0, 1}ny .

Fig. 14: ME-based Multi-Query Reverse Private Membership Test Protocol Πmq-rpmt

Proof. We exhibit simulators SimR and SimS for simulating corrupt R and S respectively, and argue
the indistinguishability of the produced transcript from the real execution.

Corrupt sender: SimS(Y = {y1, . . . , yny}) simulates the view of corrupt semi-honest sender. It executes
as follows:

1. SimS selects nx random key-value pairs (xi, si)i∈[nx], where xi and si are random item and cipher-
text respectively. Then SimS computes OKVS D := EncodeH((h(x1), s1), . . . , (h(xnx), snx)) and
appends it to the view.

2. SimS computes s∗i = DecodeH(D,h(yi)) for i ∈ [ny]. Then, it invokes VOD simulator SimS
vod(s

∗
1, . . . , s

∗
ny
)

and appends the output to the view.

Now we argue that the view output by SimS is indistinguishable from the real one. We formally prove
this by a standard hybrid argument method. We define four hybrid transcripts T0, T1, T2, T3 where T0

is real view of S, and T3 is the output of SimS .

– Hybrid0. The first hybrid is the real interaction described in Figure 14. Here, an honest R uses
input X, honestly interacts with the corrupt S. Let T0 denote the real view of S.

– Hybrid1. Let T1 be the same as T0, except that (s1, . . . , snx) are replaced by nx random ciphertexts.
This hybrid is computationally indistinguishable from T0 by the multi-elements pseudorandomness
of the membership encryption scheme.
Specifically, if there is a distinguisher D can distinguish T0 and T1 with non-negligible probability,
then we can construct a PPT adversary A to break the multi-elements pseudorandomness of
membership encryption scheme. A works as follows: when A receives ciphertexts {c∗i }i∈[nx] from
challenger, A executes as an honest receiver with the corrupt S except step 2. In this step, A
computes OKVS as D := EncodeH({h(xi), c

∗
i }i∈[nx]). Now A invokes D with the sender’s view

in the above interaction and outputs D’s output. Note that if {c∗i }i∈[nx] are the encryption of
xi, the view of corrupt sender is exactly the real view, which corresponds to T0. If {c∗i }i∈[nx]

are random ciphertexts, the view corresponds to T1. Therefore, A can break the multi-elements
pseudorandomness of the membership encryption scheme with the same advantages as D.

– Hybrid2. Let T2 be the same as T1, except that the inputs of the receiver R are replaced by nx

random items. Note that the selection of value in OKVS has been replaced with random ciphertexts
in T1. By the obliviousness property of OKVS, T1 and T2 are statistically indistinguishable.

– Hybrid3. Let T3 be the same as T2, except that the VOD execution is replaced by simulator SimS
vod.

The security of VOD functionality guarantees the view is indistinguishable from real execution.
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Corrupt receiver: SimR(X = {x1, . . . , xnx}, b) simulates the view of corrupt semi-honest receiver. It
executes as follows:

1. SimR generates a random encryption key k as the semi-honest receiver does in the real protocol.
Then, it invokes VOD simulator SimR

vod(k, b) and appends the output to the view.

The view output by SimR is indistinguishable from the real one by the underlying simulators’ indis-
tinguishability.

G Implementation Detail

G.1 Detail for Netty and Protocol Buffers

Netty is an asynchronous event-driven network application framework for the rapid development of
maintainable high-performance protocols that are widely used for real applications. We design a unified
data package format. Each data package contains a 256-bit length header and the actual payload bytes.
The header is defined as follows:

– Task ID: 64-bit long.
– Protocol ID: 32-bit integer.
– Step ID: 32-bit integer.
– Extra Info: 64-bit long10.
– Sender ID: 32-bit integer.
– Receiver ID: 32-bit integer.
– Payload: List¡byte[]¿ supporting arbitrary size.

Protocol Buffers is Google’s language-neutral, platform-neutral, extensible mechanism for serializing
structured data and are fully compatible with Netty. Note that Protocol Buffers introduce lengths of
each byte array in Payload Bytes in its serialization. Therefore, the actual communication costs are
higher than the theoretical communication costs. The results reported in our setting would reflect the
actual costs when deploying protocols in real situations. The detailed protocol buffer definition is as
follows:

1 ‘ ‘ ‘ protobuf
2 syntax = ” proto3 ” ;
3 message DataPacketProto {
4 // the package conta ins head and
5 // payload , s e p a r a t e l y de f ined by
6 //DataPacketSpecProto and PacketProto .
7 HeaderProto headerProto = 1 ;
8 PayloadProto payloadProto = 2 ;
9 // head d e f i n i t i o n

10 message HeaderProto {
11 // ta s k ID
12 i n t64 taskId = 1 ;
13 // p ro t o co l ID
14 i n t32 ptoId = 2 ;
15 // s t ep ID
16 i n t32 s t ep Id = 3 ;
17 // ex t ra in format ion
18 i n t64 ex t r a In f o = 4 ;
19 // sender ID
20 i n t32 sender Id = 5 ;
21 // r e c e i v e r ID
22 i n t32 r e c e i v e r I d = 6 ;
23 }

10 Extra information for each step. For example, the current number of AND operations in SKE-2PC LowMC.
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24 // payload d e f i n i t i o n
25 message PacketProto {
26 // repea ted means the pay load
27 // conta ins an array o f by t e [ ]
28 repeated bytes payloadBytes = 1 ;
29 }
30 }
31 ’ ’ ’

G.2 JNI Technique

As mentioned in Section 6.2, we use the Java Native Interface (JNI) technique to invoke C/C++
libraries for speeding up performances. These include:

– Bit matrix transpose (used in OT extension and SKE-PSU). We follow the ideas provided by Mis-
chasan11 and adjust the implementation given in EMP-toolkit12 to implement bit matrix transpose
operations. The bit matrix is represented in the big-endian byte ordering, thus compatible with
Java.

– Polynomial operations (used in KRTW and GMRSS). We tried the pure-Java Rings polynomial
implementation13 but found that its efficiency is not acceptable. We instead use the NTL library14

with GMP library and GF2X library15 for speeding up the performance. We adjust the polynomial
representation to make the results returned from NTL compatible with Rings.

– ECC operations (used in base OT and PKE-PSU). We compared the ECC operation performances
via different libraries, including the pure-Java Bouncy Castle16, the C/C++ Relic17, and the
C/C++ MCL18. We found that (at least in our experiment platform) MCL library performs
best, especially for the fixed-point multiplication operation. However, the ECC addition operation
in Bouncy Castle is faster than MCL in our platforms. Therefore, we adjust the ECC point
representation returned from MCL to make it compatible with the ECC point representation in
Bouncy Castle to directly use Bouncy Castle to do the addition operations in Java.

– Switching Network programming (used in GMRSS and JSZDG). We used the code base open-
sourced by Garimella et al. [GMR+21]19 as a starting point. We replaced the switching node
representation from ‘int’ to ‘int8 t’ to reduce the memory cost.

G.3 Performance of GMRSS and JSZDG Using Silent OT

We denote GMRSS, JSZDG-R and JSZDG-S schemes with Silent OT by GMRSS*, JSZDG-R*
and JSZDG-S*, respectively. The challenge is that current Silent OT implementations only provide
Learning-Parity-with-Noise (LPN) parameters for large COT output sizes but not for small COT
output sizes. For example, the Ferret OT [YWL+20] only provides LPN parameters that can output
10 million COTs. We follow a similar strategy introduced in [YWL+20] to find LPN parameters to
output 214, 216, 218, 220, 222 COTs in the regular-index setting, while all known attacks (e.g., Gaussian
elimination, low-weight parity-check and information set decoding) requires at least 2128 arithmetic
operations. The parameters are shown in Table 5. We refer readers to see [YWL+20] for details on
setting these parameters in Ferret OT.

We report the performance of these schemes in Table 6. Taking n = 220 and T = 1 as an example,
we show the variation of the running time with the bandwidth of three schemes and their silent OT

11 https://mischasan.wordpress.com/2011/10/03/the-full-sse2-bit-matrix-transpose-routine/
12 https://github.com/emp-toolkit/emp-tool/blob/master/emp-tool/utils/block.h
13 (https://rings.readthedocs.io/
14 https://libntl.org/
15 https://gitlab.inria.fr/gf2x/gf2x
16 (https://www.bouncycastle.org/java.html
17 https://github.com/relic-toolkit/relic
18 https://github.com/herumi/mcl
19 https://github.com/osu-crypto/PSI-analytics/blob/master/psi_analytics_eurocrypt19/common/

benes.cpp
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# of COTs One-time Setup Iteration
k0 n0 t0 k n t

214 1152 8792 581 1408 25167 1475
216 2304 12832 409 4352 78354 1411
218 2432 27451 872 15232 289584 1526
220 4864 71040 1131 55680 1119616 1536
222 12160 237343 1508 218880 4431616 1536
224 43776 882063 1533 860160 17658880 1536

Table 5: Extended Parameters in Ferret OT [YWL+20]

version in Figure 15. As shown in Table 6, we find that the communication of silent OT version is
about 60% of the original schemes, while the running time is slower in the high bandwidth setting.
This is due to the characteristics of silent OT, that is, the computational complexity is higher, but the
communication is lower than the IKNP OT extension. As shown in Figure 15, two lines meet between
10Mbps and 100Mbps in all three schemes. Therefore, we could consider substituting the IKNP OT
extension with silent OT in these schemes as a trade-off between communication and computation.

n Protocol

Comm. (MB) Running time (s)

R S
total

LAN 1Gbps 100Mbps 10Mbps

setup online setup online
T = 1 T = 8 T = 1 T = 8 T = 1 T = 8 T = 1 T = 8

setup online setup online setup online setup online setup online setup online setup online setup online

214

GMRSS 0.02 5.89 0.02 7.96 13.85 0.1 1.01 0.04 0.42 0.66 1.96 0.46 1.28 1 3.53 0.91 2.97 1.06 14.44 0.93 13.97

GMRSS* 0.24 1.82 0.22 8.11 9.93 0.18 1.47 0.09 0.77 1.14 2.36 0.99 1.73 2.11 3.86 1.73 3.19 2.49 11.64 2.03 11.17

JSZDG R 0.01 4.65 0.01 5.63 10.28 0.07 1.81 0.02 0.52 0.27 2.65 0.23 1.34 0.49 4.19 0.41 2.66 0.45 12.08 0.37 10.63

JSZDG R* 0.19 0.98 0.21 5.78 6.75 0.15 1.96 0.07 0.76 0.85 3.38 0.72 1.51 1.3 4.39 1.22 2.83 1.67 9.64 1.5 8.1

JSZDG S 0.01 9.41 0.01 10.64 20.04 0.07 2.17 0.03 0.69 0.37 3.5 0.31 1.85 0.64 5.53 0.55 4.15 0.62 21.7 0.57 20.27

JSZDG S* 0.26 5.88 00.26 7.11 12.99 0.16 2.7 0.08 1.19 0.91 3.71 0.84 2.19 1.7 5.6 1.4 4.08 1.94 15.82 1.79 14.85

216

GMRSS 0.02 25.95 0.02 34.11 60.06 0.11 4.79 0.04 1.95 0.64 6.61 0.48 4.25 1.11 12.67 0.92 9.78 1.04 60.75 0.94 57.5

GMRSS* 0.38 6.66 0.37 33.45 40.11 0.25 5.93 0.13 3.06 1.36 8.56 1.02 5.24 2.11 12.07 1.79 9.39 2.57 45.6 2.38 42.34

JSZDG R 0.01 20.75 0.01 24.74 45.49 0.07 7.5 0.02 2.25 0.3 9.29 0.2 4.45 0.44 13.78 0.4 8.58 0.47 49.41 0.42 44.58

JSZDG R* 0.33 3.18 0.34 24.29 27.47 0.23 9.74 0.12 3.64 0.93 11.54 0.68 5.58 1.4 14.69 1.31 8.48 1.97 37.21 1.82 30.8

JSZDG S 0.01 42.02 0.01 47.43 89.45 0.07 9.4 0.02 3.49 0.39 12.03 0.33 6.72 0.63 20.45 0.57 14.65 0.66 92.22 0.53 86.25

JSZDG S* 0.53 24.72 0.53 30.12 54.84 0.44 13.19 0.18 6.24 1.02 15.04 0.96 8.57 1.83 21.63 1.58 14.11 2.44 66.34 2.64 60.4

218

GMRSS 0.02 113.7 0.02 145.11 258.81 0.13 20.74 0.03 9.8 0.58 28.62 0.55 16.63 1.09 49.68 0.93 38.82 1.03 251.84 0.97 243.63

GMRSS* 0.72 26.04 0.6 140.99 167.03 0.53 30.33 0.38 15.55 1.61 38.04 1.33 21.73 2.55 50.81 2.44 36.67 3.66 184.55 3 172.48

JSZDG R 0.01 92.67 0.01 107.89 200.56 0.07 41.15 0.03 10.71 0.25 43.17 0.21 16.84 0.42 64.06 0.4 33.8 0.53 221.27 0.39 191.2

JSZDG R* 0.72 13.04 0.56 104.56 117.59 0.49 58.53 0.34 18.6 1.21 62.7 1.19 23.36 1.91 73.96 1.81 33.14 2.83 169.16 2.52 130.23

JSZDG S 0.01 185.73 0.01 212.56 398.29 0.08 47.88 0.03 17.2 0.44 56.28 0.31 28.3 0.63 90.87 0.56 63.01 0.59 417.5 0.58 379.63

JSZDG S* 1.02 106.34 1.01 133.17 239.5 1 77.03 0.62 31.07 1.97 73.65 1.86 38 3.03 104.8 2.34 60.38 4.04 293.68 3.69 258.33

220

GMRSS 0.02 493.2 0.02 615.9 1109.1 0.11 100.48 0.04 48.53 0.62 119.98 0.51 75.76 1.11 207.83 0.95 164.25 1.09 1074.33 0.95 1030.3

GMRSS* 1.19 103.22 0.77 598.21 701.43 1.23 144.79 0.72 71.89 2.19 162.16 1.85 92.65 3.07 212.15 2.76 149.52 4.6 779.92 4.1 718.97

JSZDG R 0.01 405.53 0.01 467.26 872.79 0.08 173.07 0.04 54.41 0.48 184.63 0.2 73.28 0.47 266.51 0.73 146.13 0.47 941.5 0.72 825.16

JSZDG R* 1.14 51.3 0.68 452.75 504.05 0.89 273.25 0.82 85.62 1.64 281.78 1.73 97.24 2.27 325.41 2.22 139.31 3.75 737.4 3.54 550.06

JSZDG S 0.01 813.5 0.01 929.78 1743.29 0.08 217.9 0.05 89.18 0.33 249.1 0.28 129.09 0.66 393.02 0.56 269.69 0.67 1820.49 0.56 1653.72

JSZDG S* 1.41 460.14 1.4 576.42 1036.56 1.68 369.11 1.35 145.83 2.98 330.48 2.21 167.1 3.4 474.78 3.37 255.16 5.52 1276.32 4.98 1111.8

Table 6: Communication cost (in MB) and running time (in seconds) comparing GMRSS, JSZDG protocols
and their silent OT version. The LAN network has 10 Gbps bandwidth and 0.2 ms RTT latency. The 100Mbps
and 10Mbps network have 80ms RTT latency, while the 1Gbps network has 40ms RTT. Communication cost
of S/R indicates the outgoing communication from S/R to the other party.

G.4 The Costs of Triple Generation of SKE-PSU

Here we report the costs of triple generation in our SKE-PSU. We use Ferret OT [YWL+20] and the
techniques introduced in [ALSZ13]. Note that when the set size is relatively large, the total number
of needed Boolean triples can be larger than 224, requiring more than 224 OTs, while the maximum
number of OTs supported for our Ferret OT parameter is 224. Our strategy is to generate Boolean
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Fig. 15: Decline of running time (in seconds) on increasing network bandwidth for GMRSS, JSZDG-R and
JSZDG-S compared with their silent OT version. Both x and y-axis are in log scale. The set size n = 220 and
the number of threads T = 1.

triples (OTs) on-the-fly if the total number of needed Boolean triples is beyond 224. In this way, the
computation and communication costs of Boolean triple generation are included in Tables 7.

As showed in Table 7, the communication cost in the triple generation stage is small. And thus
the running time under different bandwidth is almost the same. When increases from T = 1 to 8, the
running time of triple generation improves about 1.8×.

n

Comm. (MB) Running time (s)

R S total
LAN 1Gbps 100Mbps 10Mbps

T = 1 T = 8 T = 1 T = 8 T = 1 T = 8 T = 1 T = 8

214 3.16 3.16 6.32 51.51 29.4 53.8 31.01 56.05 32.21 60.06 32.22

216 5.1 5.1 10.2 163.73 93.81 167.17 95.9 169.78 98.92 175.54 108.09

218 11 11 22 574.85 320 581.07 330.29 583.54 329.78 600.64 353.61

220 34.21 34.21 68.42 2214.98 1210.69 2230.5 1233.36 2236.57 1262.55 2274.38 1302.01

Table 7: Communication cost (in MB) and running time (in seconds) of triple generation stage in SKE-PSU.
The LAN network has 10 Gbps bandwidth and 0.2 ms RTT latency. The 100Mbps and 10Mbps network
have 80ms RTT latency, while the 1Gbps network has 40ms RTT. Communication cost of S/R indicates the
outgoing communication from S/R to the other party.

33


	Optimal Private Set Union from Multi-Query Reverse Private Membership Test
	Encryption Schemes
	Symmetric-key Encryption
	Re-randomizable PKE

	Oblivious Key-Value Store Scheme
	Instantiation of OKVSs
	3H-GCT++ and Property Proof

	Proof of Theorem 1
	SKE-based Multi-Query RPMT
	PSU Construction from Leaky VODM
	Multi-Query RPMT Based on Membership Encryption
	Implementation Detail
	Detail for Netty and Protocol Buffers
	JNI Technique
	Performance of GMRSS and JSZDG Using Silent OT
	The Costs of Triple Generation of SKE-PSU



