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Abstract. We present the first algorithm that combines privacy-preserving
technologies and state-of-the-art explainable AI to enable privacy-friendly
explanations of black-box AI models. We provide a secure algorithm for
contrastive explanations of black-box machine learning models that se-
curely trains and uses local foil trees. Our work shows that the quality
of these explanations can be upheld whilst ensuring the privacy of both
the training data, and the model itself.
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1 Introduction

The field of explainable AI focuses on improving the interpretability of machine
learning model behaviour. In recent years, exciting developments took place in
this area, such as the emergence of the LIME [15] and SHAP [13] algorithms,
which have become popular. These algorithms take a data point and its classifica-
tion according to a trained machine learning model, and provide an explanation
for the classification by analyzing the importance of each feature for that spe-
cific classification. This is interesting for a researcher, but a layman using the AI
system is unlikely to understand the reasoning of the machine learning model.

Instead, Van der Waa et al. [20] created an algorithm called local foil trees
that explains why someone was classified as class A instead of another class B, by
providing a set of decisions rules that need to apply for that point to be classified
as class B. This provides an increased understanding of the AI system [19], which
can for instance be used to infer what can be done to change the classification.
This is particularly relevant to decision support systems, where the AI system
should provide advice to the user. An example could be that the AI system
advises a user to have lower blood pressure and higher body weight, in order to
go from high risk of a certain illness to a lower risk.

Our work focuses on creating a secure algorithm that provides the same
functionality as the local foil tree algorithm in a setting where the black-box
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Fig. 1. Overview of steps and interactions in the local foil tree algorithm.

machine learning model needs to remain secret to protect the confidentiality
of the machine learning model and the training data. Before we explain why
this assumption is realistic, we provide a rough overview of the algorithm and
interactions in the local foil tree algorithm.

As shown in Figure 1, the user first submits her data to the machine learning
model to retrieve a classification. The user then wants to know why she was
classified as class A and not as class B. To create an explanation for this, the
explanation provider trains a decision tree and uses the machine learning model
as a black-box subroutine within that process. This decision tree is then used to
generate an explanation.

In practice, we often see that it can be very valuable to train machine learning
models on personal data, for example in the medical domain to prevent diseases
[21], or to detect possible money laundering [16]. Due to the sensitive nature of
personal data, however, it is challenging for organisations to share and combine
data. Legal frameworks like the General Data Protection Regulation3 (GDPR)
and the Health Insurance Portability and Accountability Act4 (HIPAA) further
restrict the usage and exchange of personal data.

In order to avoid violating privacy when we want to use personal data as
training data for a machine learning algorithm, it is possible to apply crypto-
graphic techniques to securely train the machine learning model, which results
in a hidden model [21,12,22]. This ensures that the privacy of the personal data
is preserved while it is used to train the model. In order to enable explainable
AI with the hidden model, we could simply reveal the model and apply, e.g.,
the original local foil tree algorithm. However, there are various reasons why
it could be undesirable to reveal the trained model. Firstly, if one or more or-
ganisations involved have a commercial interest in the machine learning model,
the model could be used in ways that were not originally intended. Keeping the
model secret then ensures control of model usage. Secondly, sensitive data is

3 https://gdpr-info.eu
4 https://www.govinfo.gov/content/pkg,/PLAW-104publ191/pdf/PLAW-
104publ191.pdf
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used to train the machine learning model and recent research has shown that it
is feasible to reconstruct training data from a trained model [9,23,25]. The whole
reason to securely train the model is to avoid leaking sensitive data, but if the
machine learning model is known, it is still possible that sensitive data is leaked
when such reconstruction attacks are used. In these cases, we should therefore
assume that the model stays hidden to protect the confidentiality of the machine
learning model and the training data.

This poses a new challenge for black-box explainable AI. In step 2 of Fig-
ure 1 the classification A can be revealed to the user without problems, but it
is unclear how steps 4 and 5 from Figure 1 would work when the model is hid-
den. There is a variety of cryptographic techniques that can be used to securely
train models. When multiple organisations are involved, common techniques are
secret sharing [5] and homomorphic encryption [14]. In this work, we address
the aforementioned challenge and provide an algorithm that can produce con-
trastive explanations when the model is either secret shared, or homomorphi-
cally encrypted. Practically, this means that the explanation provider, as shown
in Figure 1, does not have the model locally, but that it is owned by a different
party or even co-owned by multiple parties. The arrows in the figure then imply
that communication needs to happen with the parties that (jointly) own the
model.

An additional challenge comes from the fact that explainable AI works best
when rule-based explanations, as provided through the local foil tree algorithm,
are accompanied by an example-based explanation, such as a data point that is
similar to the user, but is classified as class B instead of A [19]. The use of a data
point (having class B) from the sensitive training data would violate privacy in
the worst way possible. As we will discuss in section 3, we address this challenge
using synthetic data.

In summary, we present a privacy-preserving solution to explain an AI sys-
tem, consisting of:

– A cryptographic protocol to securely train a binary decision tree when the
target variable is hidden;

– An algorithm to securely generate synthetic data based on numeric sensitive
data;

– A cryptographic protocol to extract a rule-based explanation from a hidden
foil tree, and construct an example data point for it.

The target audience for this work is twofold. One the one hand, our work is
relevant for data scientists who want to provide explainable, data-driven insights
using sensitive (decentralized) data. It gives access to new sources of data without
violating privacy when explainability is essential. On the other hand, our work
provides a new tool for cryptographers to improve the interpretability of securely
trained machine learning models which have applications in the medical and
financial domain.

In the remainder of this introduction, we discuss related work and briefly
introduce secure multi-party computation. In the sections following after, we
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explain the local foil tree algorithm [20] and present a secure solution. There-
after, we discuss the complexity of the proposed solution and share experimental
results. Finally, we provide closing remarks in the conclusion.

1.1 Related work

Our solution is based on the local foil tree algorithm by Van der Waa et al. [20],
for which we design a privacy-preserving solution based on MPC. There is re-
lated work in the area of securely training decision trees, but these results are
never applied to challenges in explainable AI. As we will elaborate on further
in section 3, we have a special setting where the feature values of the synthetic
data to train the decision tree are not encrypted, but the classifications of these
data points are encrypted. As far as we know, no training algorithm for such a
setting has been proposed yet.

We mention the work of de Hoogh et al. [7], who present a secure variant of the
well-known ID3 algorithm (with discrete variables). Their training data points
remain hidden, whereas in our case, that is not necessary. Furthermore, as the
number of children of an ID3 decision node reflects the number of categories of
the chosen feature, the tree decision is not completely hidden. They implement
their solution using Shamir sharing with VIFF, which is a predecessor of the
MPyC [17] framework that we use.

A more recent paper on secure decision trees is by Abspoel et al. [1], who
implement C4.5 and CART in the MP-SPDZ framework. We also consider CART
since this leads to a binary tree, which does not reveal information on (the
number of categories of) the feature chosen in a decision node. Abspoel et al.
use both discrete and continuous variables, similar to our setting. However, since
Abspoel et al. work with encrypted feature values, they need a lot of secure
comparisons to determine the splitting thresholds.

In a similar approach, Adams et al. [2] scale the continuous features to a small
domain to avoid the costly secure comparisons, at the expense of a potential drop
in accuracy.

Only one article was found on privacy-preserving explainable AI. The work of
[11] presents a new class of machine learning models that are interpretable and
privacy-friendly with respect to the training data. Our work does not introduce
new models, but provides an algorithm to improve the interpretability of existing
complex models that have been securely trained on sensitive data.

1.2 Secure multi-party computation

We use secure multi-party computation (MPC) to protect secret data, such as
the ML classification model, and its training data. MPC is a cryptographic tool
to extract information from the joint data of multiple parties, without needing to
share their private data with other parties. Introduced by Yao in 1982 [24], the
field has developed fast, and various platforms are available now for arbitrary
secure computations on secret data, such as addition, subtraction, multiplication
and comparison. We use the MPyC platform [17] that uses Shamir secret sharing
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A Fact (class); classification of the user as indicated by the black-box.
B Foil (class); target class for contrastive explanation to the user.
B Decision tree or, equivalently, foil tree.
Gs Gini index for split s ∈ {1, . . . , ς}.
G̃s = Ns/Ds Adjusted Gini index for split s ∈ {1, . . . , ς}.
kA, kB Index of classes A and B, respectively.
K Number of classes.
n Number of available synthetic data points in a particular node.
N Number of synthetic data points |X |.
P Number of features per data point.
ς Number of splits |S|.
Ss = (ps, ts) Feature index ps ∈ {1, . . . ,m} and threshold ts of split Ss, 1 ≤ s ≤ ς.
xi,xU Vector (xi,1, . . . , xi,P ) of feature values of synthetic data point i. With

subscript U , it refers to the data point of the user.
X Set of all synthetic data points xi, i = 1, . . . , N .
yi Indicator vector (yi,1, . . . , yi,K) of the class of data point i as indicated

by the black-box.
ξi Bit that indicates whether data point i is available (1) or unavailable

(0) in the current node.

Table 1. Notation as used throughout the document. Some symbols are seen in the
context of a certain point (node) within the decision tree, in which case they can be
sub- or superscripted with l or r to denote the same variable in the left or right child
node that originates from the current node.

in the semi-honest model, where all parties are curious, but are assumed to follow
the rules of the protocol.

Like many MPC platforms, MPyC follows the share-compute-reveal paradigm.
Each party first uploads its inputs, by generating non-revealing shares for the
other parties. When the inputs have been uploaded as secrets, the parties can
then perform joint computations without learning the inputs. Finally, the even-
tually computed output is revealed to the entitled parties.

1.3 Notation

Due to the inherent complexity of both explainable AI and cryptographic pro-
tocols, we require many symbols in our presentation. These symbols are all
introduced in the body of this paper; however, for the reader’s convenience we
also summarize the most important symbols in Table 1.

Sets are displayed in curly font, e.g. X , and vectors in bold font, e.g. xU .
The vector ej represents the j-th elementary vector of appropriate, context-
dependent length. The notation (x ≥ y) is used to denote the Boolean result
of the comparison x ≥ y. Any symbol between square brackets [·] represents a
secret-shared version of that symbol. Finally, a reference to line y of Protocol x
is formulated as line x.y.
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Fig. 2. A visualisation of the different steps in the local foil tree algorithm to explain
why data point xU was classified as (fact) class A and not as (foil) class B. The different
images depict classification retrieval and foil class selection, data preparation, decision
tree training and determining relevant nodes, and explanation extraction.

Protocol 1 Foil-tree based explanation

Input: Data point xU that is classified as class A; foil class B
Output: Explanation why xU was not classified as the foil class

1: Obtain a classification for the user ▷ cf. Section 3.1
2: Prepare the synthetic data points for the foil tree ▷ 3.2
3: Classify all synthetic data points through the black-box ▷ 3.3
4: Train a decision tree ▷ 3.4
5: Locate fact leaf (leaf node of xU ) ▷ 3.5
6: Determine the foil leaf (leaf node of class B closest to fact leaf) ▷ 3.6
7: Determine the decision node at which the root-leaf paths of the fact and foil leaf

split ▷ 3.7
8: Construct the explanation (and provide example data point). ▷ 3.7

2 Explainable AI with Local Foil Trees

In this section we present the local foil tree method of Van der Waa et al. [20]
and discuss the challenges that arise, when the black-box classifier does not
yield access to its training data, and provides classifications in secret-shared (or
encrypted) form to the explanation provider.

We assume that we have black-box access to a classification model. If a user-
supplied data point xU is classified as some class A, our goal is to construct an
explanation why xU was not classified as another class B. The explanation will
contain decision rules of the form that a certain feature of xU is less (or greater)
than a certain threshold value. An overview of the different steps is illustrated
in Figure 2 and formalized in Protocol 1. Note that we deviate from Van der
Waa et al. by providing an example data point in the final step. In each step of
the protocol, we also refer to the section of our work where we present secure
protocols for that step.

Both limitations that the model owner introduced help to better preserve the
privacy of the training data, and to secure the model itself, but also hinder us
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in generating an explanation. In particular, if we cannot have access to training
data, we need to generate synthetic data that can be used to train a decision tree.
Training a decision tree in itself is complicated by the fact that the classifications
are hidden, which most notably implies that during the recursive procedure we
need to securely keep track of the synthetic data samples that end up in each
branch of the tree.

Information can also be revealed through the structure of the decision tree;
in particular, it may disclose the splitting feature. For example, if a certain
categorical feature can assume six values and a decision node splits into six new
nodes, it is likely that this node represents that feature. For this reason we do
not use the commonly-used ID3 or its successor C4.5 for training the decision
tree. We instead generate a binary decision tree with the CART (Classification
and Regression Trees) algorithm [3]. The CART algorithm greedily picks the
best decision rule for a node. In case of classification trees, this materializes as
the rule with the lowest Gini index. The Gini index measures the impurity, i.e.
the probability of incorrectly classifying an observation, so the lowest Gini index
results in the best class purity.

The result of the training procedure is a decision tree whose decision rules and
leaf classification are secret-shared. As a consequence we need a secure protocol
for determining the position of a foil data point, and all nodes that are relevant
for the explanation. With help of the model owner(s), among all secret values in
the process, only these nodes, and the user classification are revealed.

Compared to secure protocols for training decision trees on hidden data
points with hidden classification, the fact that we use synthetic data also has
some benefits. First, since the (synthetic) data points are known, we can still
access their features directly, improving the efficiency of the protocol. Second,
since we already trained the decision tree on synthetic data, we can also sup-
plement our explanation with a synthetic data point, and thereby increase user
acceptance [19].

3 Secure solution

In this section we describe the secure version of the local foil tree algorithm,
which reveals negligible information about the sensitive training data and black-
box model. In the rest of this work, we will refer to training data when we
talk about the data used to train the black-box machine learning model and to
synthetic data when we refer to the synthetically generated data that we use to
train the foil tree.

The secure protocol generates N synthetic data points xi, i = 1, . . . , N , with
P features that each can be categorical, or continuous. To increase the efficiency
of the secure solution, we make use of one-hot or integer encoding to represent
categorical values. We assume that the class k ∈ {1, . . . ,K} of data point xi

is represented by a secret binary indicator vector [yi] = ([yi,1], . . . , [yi,K ]), such
that yi,k = 1, if data point xi is classified as class k by the black-box, and
yi,k = 0, otherwise.
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During the decision training, we maintain an indicator vector ξ of length N ,
such that ξi = 1, if and only if, the i-th synthetic data point is still present in
this branch.

3.1 Classify user data

We assume that the user is allowed to learn the black-box classification of her
own data point xU , so this step is trivial. Without loss of generality, we assume
that the user received classification A.

3.2 Generating synthetic data

Van der Waa et al. [20] mention that synthetic data could be used to train the
local foil trees, and suggest using normal distributions. In this section, we apply
that suggestion and provide a concrete algorithm for generating a local data set
around the data point for which an explanation is being generated.

We first take a step back and list what requirements the synthetic data should
adhere to:

1. The synthetic data should reveal negligible information about the features
of the training data.

2. The synthetic data should be local, in the sense that all data points are close
to xU , the data point to be explained.

3. The synthetic data should be realistic, such that they can be used in an
explanation and still make sense in that context.

State-of-the-art synthetic data generation algorithms, such as GAN [10] and
SMOTE [4] can generate very realistic data, but they need more than one data
point to work, so we cannot apply them to the single data point to be explained.
One could devise a secure algorithm for GAN or SMOTE and securely apply it
to the sensitive data, but this would affect the efficiency of our solution. In this
article, we pursue the simpler approach that was suggested by Van der Waa et
al.

Ideally, one would securely calculate some statistics of the sensitive training
data for the black-box model and reveal these statistics. Based on these statis-
tics, one could generate a synthetic data set by sampling from an appropriate
distribution. Our implementation securely computes the mean and variance of
every feature in the training data and samples synthetic data points from a trun-
cated normal distribution. The reason for truncating is two-fold: first, it allows
us to sample close to the user’s data point xU , and second, features may not as-
sume values on the entire real line. Using a truncated normal distribution allows
us to generate slightly more realistic data that is similar to xU . The details are
presented in Protocol 2.

To generate more realistic data, one could also incorporate correlation be-
tween features, or go even further and sample from distributions that better
represent the training data than a normal distribution.
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Protocol 2 Synthetic data generation.

Input: Encrypted black-box training set [X̃ ], integer N , target data point xU

Output: Synthetic data set X with cardinality N

1: for p = 1, . . . , P do ▷ Compute mean and variance of feature p
2: [µp]← 1/|X̃ |

∑
x̃U∈X̃ x̃p; [σ2

p]← 1/|X̃ |
∑

x̃U∈X̃ (x̃p − [µp])
2

3: end for
4: Reveal µ and σ2

5: X ← ∅
6: for i = 1, . . . , N do
7: for p = 1, . . . , P do
8: repeat Draw xi,p from N (µp, σ

2
p)

9: until xi,p ∈ [xp − 3σp, xp + 3σp]
10: end for
11: X ← X ∪ xi

12: end for
13: Return X

In our experiments, we noticed that an interval of [xp−3σp, xp+3σp] generally
yielded a synthetic data set that was still close to xU , but also provided a variety
of classifications for the data points. A smaller interval (for example of size 2σp)
often resulted in a data set for which the distribution of classifications was quite
unbalanced. The foil class might then not be present in the foil tree, breaking
the algorithm. Larger intervals would result in data points that are not local
anymore, and therefore yield a less accurate decision tree.

3.3 Classify synthetic data

All synthetic training data point xi can now be classified securely by the model
owner(s). This results in secret-shared classification vectors [yi]. The secure com-
putation depends on the model, and is beyond our scope.

3.4 Training a decision tree

In this section, we explain the secure CART algorithm that we use to train
a secure decision tree, which is formalized in Protocol 3. The inputs to this
algorithm are:

1. X : a set of synthetic data points.

2. S: a set of splits to use in the algorithm. Each split Ss ∈ S, s = 1, . . . , ς is
characterized by a pair (ps, ts) that indicates that the feature with index ps
is at least ts.

3. τ : the convergence fraction used in the stopping criterion.

4. [ξ]: a secret binary availability vector of size N . Here ξi equals 1, if the i-th
synthetic data point is available, and 0, otherwise.
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We start with an empty tree and all training data points are marked as
available. First, the stopping criterion uses the number of elements of the most
common class (line 3.8), and the total number of elements in the availability
vector (line 3.7). The stopping criterion from line 3.10 is securely computed by
1− (1− [(n ≤ τ ·N)] · (1− [(n = nk∗)]), and consequently revealed.

If the stopping condition is met, i.e., equal to one, a leaf node with the
secret-shared indicator vector of the most common class is generated. In order
to facilitate the efficient extraction of a foil data point as mentioned at the start
of section 3, we also store the availability vector ξ in this leaf node. How this
indicator vector is used to securely generate a foil data point is discussed in
section 3.8.

If the stopping criterion is not met, a decision node is created by computing
the best split (lines 3.13–19) using the adjusted Gini indices of each split in S.
We elaborate on computing the adjusted Gini index (lines 3.13–15) later on in
this section.

After determining the optimal split, an availability vector is constructed for
each child based on this split in lines 3.21–22. For the left child, this is done
using the availability vector [ξ], the indicator vector indicating the feature ps∗ of
the best split eps∗ and the threshold ts∗ of the best split as explained in protocol
4. The resulting availability vector [ξl] has a [1] in index i, if xi,ps∗ ≤ ts∗ . The
entry-wise difference with [ξ] then gives the availability vector for the right child.
The CART algorithm is then called recursively with the new availability vectors
to generate the children of the decision node.

In protocol 3, we use two yet unexplained subroutines, namely max and find.
The max subroutine securely computes the maximum value in a list using secure
comparisons. Thereafter, the find subroutine finds the location of the maximum
computed by max in the list that was input to max, which is returned as a secret-
shared indicator vector indicating this location. The functions max and find

are already implemented in MPyC. However, since we always use the two in
junction, we implemented a slight variation that is presented in Appendix A.

Compute the Gini index for each possible split
We aim to find the split S∗ := Ss∗ = (ps∗ , ts∗) with highest class purity, which
is equivalent to the lowest Gini index Gs. As such, we first need to compute the
Gini index for all splits. The Gini index of a split is the weighted sum of the
Gini value of the two sets that are induced by the split,

Gs = gls ·
ns,l

n
+ grs ·

ns,r

n
. (1)

Here, n is again the number of available data points in the current node, ns,l is
the number of available data points in the left set that is induced by split Ss,
and gls is the Gini value of the left set that is induced by split Ss,

gls := 1−
K∑

k=1

(
ns,l
k

ns,l

)2

, (2)
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Protocol 3 cart

Secure CART training of a binary decision tree.

Input: Training set X , split set S, convergence parameter τ ∈ [0, 1], secret-shared
binary availability vector [ξ]
Output: Decision tree B

1: B ← ∅
2: N ← |X|
3: while B is not fully constructed do
4: for k = 1, . . . ,K do
5: [nk]←

∑N
i=1[yi,k] · [ξi] ▷ nr available data points per class

6: end for
7: [n]←

∑K
k=1[nk] ▷ nr available data points

8: [nk∗ ]← max(([n1], . . . , [nK ]))
9: [ek∗ ]← find([nk∗ ], ([n1], . . . , [nK ])) ▷ indicates most common class
10: if [(n ≤ τ ·N)] or [(n = nk∗)] then ▷ branch fully constructed
11: Extend B with leaf node with class indicator [ek∗ ]
12: else ▷ branch splits
13: for s = 1, . . . , ς do
14: [Gs]← adjusted gini(Ss)
15: end for
16: [Gs∗ ]← max([G])
17: [ek∗ ]← find([Gs∗ ], [G]) ▷ indicates best split
18: [ps∗ ]←

∑ς
s=1[es∗,s] · ps ▷ feature of optimal split

19: [ts∗ ]←
∑ς

s=1[es∗,s] · ts ▷ threshold of optimal split
20: b← decision node that corresponds with split ([ps∗ ], [ts∗ ])
21: ξl ← left child availability(X , [xi], [p∗ ], [ts∗ ])
22: [ξr]← [ξ]− [ξl]
23: Extend b to the left with result of cart(X ,S, τ, [ξl])
24: Extend b to the right with the result of cart(X ,S, τ, [ξr])
25: Extend B with b
26: end if
27: end while
28: Return B

where nl
k denote the number of available data points in the left node with class

k. The symbols ns,l, ns,l
k and grs are defined analogously for the right set. For

notation convenience, justified as the upcoming derivations concern a fixed index
s, we drop the superscripts s from the symbol n.

We now derive a more convenient expression for the Gini index. Substituting
expression (2) into (1) and rewriting yields

Gs =
nl + nr

n
−

nr
∑K

k=1(n
l
k)

2 + nl
∑K

k=1(n
r
k)

2

n · nl · nr
. (3)
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Protocol 4 left child availability

Indicate the data points that flow into the left child.

Input: Synthetic data set X , availability vector [ξ] for the current node, feature
indicator vector [eps ], threshold [ts]
Output: Availability vector [ξl] for the left child

1: for i=1,. . . ,N do
2: [xi,ps ]←

∑P
p=1[eps,p] · xi,p

3: [δi]← [(xi,ps ≤ ts)]
4: [ξli]← [ξi] · [δi]
5: end for
6: Return [ξl]

Protocol 5 adjusted gini

Compute the adjusted Gini index of a split.

Input: Synthetic data set X , vector of available transactions ξ, split
(ps, ts) = Ss ∈ S
Output: Encrypted numerator and denominator of adjusted Gini index
[G̃s] = [Ns]/[Ds]

1: for i=1,. . . ,N do
2: δi ← (xi,ps ≤ ts) ▷ 1 if data point meets split criterion, else 0
3: end for
4: [n]←

∑N
i=1[ξi], [nl]←

∑N
i=1 δi · [ξi], [nr]← [n]− [nl]

5: [nk]←
∑N

i=1[yi,k] · [ξi], [nl
k]←

∑N
i=1 δi · [yi,k] · [ξi], [nr

k]← [nk]− [nl
k]

6: Return [Ns]← [nr]
∑K

k=1([n
l
k])

2 + [nl]
∑K

k=1([n
r
k])

2 and [Ds]← [nl] · [nr]

Now, since n = nl + nr is independent of the split, minimizing the Gini index
over all possible splits is equivalent to maximising the adjusted Gini index G̃s,

G̃s =
nr
∑K

k=1(n
l
k)

2 + nl
∑K

k=1(n
r
k)

2

nl · nr
=:

Ns

Ds
. (4)

We represent G̃s as a rational number to avoid an expensive secure (integer)
division. Both the numerator Ns and denominator Ds are non-zero, if the split
Ss separates the available data points, e.g., the split induces at least one available
data point in each set. Otherwise, either nl = 0 or nr = 0, and Ns = Ds = 0,
such that G̃s is not properly defined. In line 3.16 one could naively let max

evaluate (G̃1 < G̃2) by computing (N1D2 < N2D1). However, this may yield an
undesired outcome if one of the denominators equals zero. Appendix B presents
two possible modifications that handle this situation.

Protocol 5 shows how the adjusted Gini index can be computed securely. Ob-
serve that [n] and [nk] were already computed for the CART stopping criterion,
so they come for free. The computation [nl

k] can be implemented efficiently as a
secure inner product. The computations of n, nl, nr, and nr

k don’t require any
additional communication. Because the total number of possible spits N · P is
much larger than the number N of data points, it makes sense to precompute
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[yi,k] · [ξi] for each i and k, such that the computation of nl
k for each split requires

no additional communication.

Convergence
In theory, it is possible that, at some point during training, the CART algorithm
has not met the stopping criterion yet, and has no splits available that actually
separate the set of available data points. In this case the algorithm keeps adding
useless decision nodes and does not make any actual progress. To prevent ending
up in this situation, we can detect it by revealing (Ds∗ = 0), and take appropriate
action. Also, a maximum number of nodes, or a maximum depth, can be set.

3.5 Locate the fact leaf

Once the decision tree has been constructed, we need to find the leaf that contains
the fact xU . As the fact leaf will be revealed, the path from the root to the
fact leaf will be revealed as well. Therefore, we can traverse the decision tree
from the root downwards and reveal each node decision. The decision for data
point xU at a given node can be computed similarly to Protocol 4. First, the
feature value that is relevant for the current decision node is determined through
[xU,ps∗ ] =

∑P
i=1[eps∗ ,i] · [xi,p]. Second, the secure comparison [(xU,ps∗ ≤ ts∗)] is

performed and revealed. The result directly indicates the next decision node that
needs to be evaluated. This process is repeated until a leaf is encountered: the
fact leaf.

3.6 Locate the foil leaf

Since we know the fact leaf and the structure of the decision tree, we can create
an ordered list of all tree leaves, starting with the closest leaf and ending with the
farthermost leaf. We can traverse this list and find the first leaf that is classified
as class B, without revealing the classes, but only whether they equal B or not,
i.e. by revealing the Boolean [(ek∗,kB

= 1)] for every leaf. This does not require
any extra computations, as these vectors have already been computed and stored
during the training algorithm. We use the number of steps between nodes within
the decision tree as our distance metric, but as Van der Waa et al. [20] note,
there are more advanced options.

3.7 Construct the explanation

Once the fact leaf and the foil leaf have been determined, the lowest common
node can be found without any secure computations, since the structure of the
decision tree is known. We traverse the decision tree from this lowest common
node to the foil leaf and reveal the feature and threshold for each of the nodes on
that path (the nodes with a thick border and dotted background in Figure 2).
For each rule, we determine whether it applies to xU . For instance, if a rule says
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Protocol 6 retrieve foil

Retrieve foil data point

Input: Availability vector [ξ] of the foil leaf, class index kB
Output: Foil data point s

1: [ε]← [0] ▷ flips to [1] when a foil data point is found
2: for i = 1, . . . , n do
3: [δi]← (1− [ε]) · [ξi] · [yi,kB ]
4: [ε]← [ε] + [δi]
5: end for
6: for p = 1, . . . , P do
7: [sp]←

∑N
i=1[δi] · [xi,p]

8: end for
9: Reveal s to the user

that xU,i ≥ 3 and indeed xU satisfies this rule, then it is not relevant for the
explanation.

After this filter is applied, we combine the remaining rules where applicable.
For example, if one rule requires xU,i ≥ 3 and another rule requires xU,i ≥ 4, we
take the strictest rule, which in this case is xU,i ≥ 4.

3.8 Retrieving a foil data point

Finally, we wish to complement the explanation by presenting the user with
a synthetic data point that is similar to the user’s data point xU , but that is
(correctly) classified as a foil by the foil tree. We refer to such a data point as
a foil data point. Note that it is possible for samples in a foil leaf to have a
classification different from B, so care needs to be taken in determining the foil
sample.

As mentioned in section 3.4, we assume that for each leaf node we saved the
secret-shared availability vector ξ that indicates which data points are present
in the leaf node. In section 3.6, we determined the foil leaf, so we can retrieve
the corresponding binary availability vector ξfoil. Recall that the i-th entry in
this vector equals 1, if data point xi is present in the foil leaf, and 0 otherwise.
All foil data points xi∗ therefore satisfy ξi∗ = 1, and are classified as B by the
foil tree.

A protocol for retrieving a foil data point is presented in Protocol 6. It
conceptually works as follows. First, it constructs a indicator vector for the
position of the foil data point. This vector is constructed in an element-wise
fashion with a helper variable ε that indicates whether we already found a foil
data point earlier. Second, the secure indicator vector is used to construct the
foil data point s, which is then revealed to the user.

It is important that the foil data point is only revealed to the user, and not
to the computing parties, since the foil data point can leak information on the
classifications of the synthetic data points according to the secret-shared model,
which are the values we are trying to protect. In practice this means that all
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computing parties send their shares of the feature values in vector s to the user,
who can then combine them to obtain the revealed values.

4 Security

We use the MPyC platform [17], which is known to be passively secure. The
computing parties jointly form the Explanation Provider (see Figure 1) that
securely computes an explanation, which is revealed to the user, who is typically
not one of the computing parties. The machine learning model is out of scope,
we simply assume secret classifications of synthetic data points are available as
secret sharings of the Explanation Provider.

During the protocol, the Explanation Provider will learn the data point xU of
the user, its class A, and the foil class B, together with the average and variance
of each feature, used to generate synthetic data set X . Furthermore, the (binary)
structure of the decision tree, including the fact leaf, foil leaf, and therefore also
the lowest common node, will be revealed. Other than this, no training data or
model information will be known to the Explanation Provider.

The explanation, consisting of feature index and threshold for each node on
the path from lowest common node to fact or foil leaf, and the foil data point s,
is revealed only to the user.

5 Complexity

For the generation of the binary decision tree, the number ς ≈ N · P of all
possible splits will be large, and determine the runtime. For each node, we need
to compute the Gini index for all ς possibilities, and compute the maximum. If
we can compute secure inner products at the cost of one secure multiplication, as
in MPyC, the node complexity will be linear in ς and K, and more or less equal
to the costs of ς secure comparisons per node. A secure comparison is roughly
linear in the number of input bits, which in our case is O(log2(NK)).

However, we can always precompute [yi,k] · [ξi] for all i ∈ {1, . . . , N}, and
k ∈ {1, . . . ,K}, such that the node complexity is linear in N and K. The ς
secure comparisons per node can not be avoided though.

The number of nodes of the decision tree will vary between 1 (no split) and
2N−1
τ ·N (full binary tree). Therefore, the total computational (and communication)
complexity will be O(N2 · K). Although the aim is to obtain a tree of depth
log2 N , the depth d of the tree will vary between 1 (no split) and N−1

τ ·N (only
extremely unbalanced splits). At each tree level we can find the best splits in
parallel, such that the number of communication rounds will be limited to O(N ·
log2 ς) (assuming a constant round secure comparison).

Given the decision tree, completing the explanation is less complex, and costs
at most d secure comparisons.
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N Tree Training Explanation Data Point Accuracy

avg min max avg min max avg min max

50 20.396 19.594 21.158 0.033 0.027 0.041 0.157 0.112 0.219 0.96

100 94.455 93.133 95.234 0.061 0.058 0.062 0.277 0.269 0.361 0.89

150 130.575 129.681 131.327 0.050 0.038 0.052 0.404 0.387 0.425 0.91

Table 2. Performance results (timing in seconds) of our algorithms in MPyC.

6 Experiments

We implemented our secure foil tree algorithm in the MPyC framework [17]. This
framework functions as a compiler to easily implement protocols that use Shamir
secret sharing. It has efficient protocols for scalar-vector multiplications and
inner products. In our experiments, we ran MPyC with three parties, and used
secure fixed point numbers with a 64-bit integer part and 32-bit fractional part.
For the secret-shared black-box model, we secret-shared a neural network with
three hidden layers of size 10 each. We used the iris data set [8] as our training
data for the neural network (using integer encoding for the target variable) and
generated three synthetic data sets based on the iris data set of sizes 50, 100 and
150 respectively.

Table 2 shows the results of our performance tests. We report the timing in
seconds of our secure foil tree training algorithm under ‘Tree Training’, for the
explanation construction under ‘Explanation’, and for the extraction of the data
point under ‘Data Point’. For each of these, we report the average timing, the
minimum and the maximum that we observed. The column ‘Accuracy’ denotes
the accuracy of the foil tree with respect to the neural network. This accuracy
is computed as the number of samples from the synthetic data set for which the
classifications according to the neural network and the foil tree are equal, divided
by the total number of samples (N). We do not provide any performance results
on the training algorithm or classification algorithm of the secret-shared black-
box model (in this case, the neural network), as the performance of the model
highly depends on which model is used, and our solution is model-agnostic.

We see that the accuracy does not necessarily increase when we use more
samples. A synthetic data set size of 50 seems to suffice for the iris data set, and
shows performance numbers of less than half a minute for the entire algorithm.

7 Conclusion

We presented the first cryptographic protocol that is able to explain black-box
AI models that are trained by sensitive data, in a privacy-preserving way. The
explanation is constructed by means of local foil trees. After generating synthetic
data close to a fact data point, a binary tree is securely computed to find the
so-called fact and foil leaves. Using both fact and foil leaf, an explanation of the
AI model is constructed that explains to the user why they were classified as
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the fact class, and not as the foil class. We additionally provide a synthetic data
point from the foil leaf to strengthen the explanation.

Our solution hides the classification model and its training data, in order
to provide explanations towards users without leaking commercially or privacy
sensitive data. We implemented our solution with MPyC on the iris data set with
different sizes of synthetic data sets. With 50 samples, we achieved an accuracy
of 0.96 within half a minute.
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A Indicator vector of maximum

Given a list of hidden elements [z] = ([z1], . . . , [zL]) and a relation < that induces
a total ordering on its elements, we need to find the maximum [zmax] and the
indicator vector of the maximum. One way to do this is to securely deduce
[zmax] and then apply a independent protocol for finding the position of [zmax]
and returning the result as an indicator vector. This is supported out-of-the-box
in several frameworks.

Instead, we suggest to store some artefacts of the first protocol and leverage
them in the second protocol. This is achieved through Protocols 7 and 8. First,
max([z], 1, L) performs a binary search to compute the maximum through L− 1
secure comparisons, which comparison results are stored in the [γs], 1 ≤ s < L,
followed by indicator([1], 1, L) to compute the indicators [δs], 1 ≤ s ≤ L of the
maximum.

This approach with logarithmic round complexity is similar to Protocol 5.1
of de Hoogh [6], and due to Toft [18]. Since the both recursive calls in line 7.5 can
be performed in parallel, the number of iterations is reduced from L to log2 L.

B Comparing adjusted Gini indices

Given two splits S1 and S2, we wish to compare their adjusted Gini indices
[G̃1] = [Ñ1]/[D̃1] and [G̃2] = [Ñ2]/[D̃2]. In particular, we wish to compute
[(G̃1 < G̃2)] with the interpretation that an index with zero-valued denominator
is always smaller than the index. If both denominators are zero, the result does
not matter.
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Protocol 7 max

Computes the maximum

Input: Vector [z], indices sl and sr
Output: Maximum [max{zs | sl ≤ s ≤ sr}], storing comparison results [γs],
sl ≤ s < sr

1: if sl = sr then
2: [zmax]← [zsl ]
3: else
4: s̄← (sl + sr)÷ 2 ▷ split at s̄, sl ≤ s̄ < sr
5: [zl]← max([z], sl, s̄); [zr]← max([z], s̄+ 1, sr)
6: [γs̄]← [(zl < zr)] ▷ Is zr the largest?
7: [zmax]← [zl] + [γs̄] · ([zr]− [zl])
8: end if
9: Return [zmax]

Protocol 8 indicator

Secure maximum indicator vector
Input: Indicator [δ], indices sl and sr, and comparison results [γ]
Output: Indicators {[δs] | sl ≤ s ≤ sr} of the overall maximum
Invariant: δ = (sl ≤ argmax{zs | 1 ≤ s ≤ L} ≤ sr)

1: if sl = sr then
2: Return [δ]
3: else
4: s̄← (sl + sr)÷ 2 ▷ split at s̄, sl ≤ s̄ < sr
5: [ϵ]← [δ] · [γs̄]
6: [δl]← indicator([δ]− [ϵ], sl, s̄); [δr]← indicator([ϵ], s̄+ 1, sr)
7: Return the elements of [δl] and [δr]
8: end if

To avoid complications when either denominator is zero, we change the
straightforward integer comparison N1 ·D2 < N2 ·D1 to

N1 · (N1 ·D2 −D1 ·N2) < 1−D1. (5)

To see why this is correct, recall that Ns and Ds are both integer, and Ds = 0,
if and only if, Ns = 0. Additionally, it follows from Equation (4) that

Ns ≥ nr
K∑

k=1

nl
k + nl

K∑
k=1

nr
k = 2Ds. (6)

Therefore, the following statements hold:

– If D1, D2 > 0, then N1, N2 > 0 and (5) evaluates to the result of N1 ·D2 −
D1 · N2 < 1−D1

N1
∈ (−1/2, 0]. Since all variables on the left-hand side are

integers, this is equivalent to N1 ·D2 −D1 ·N2 < 0.
– If D1 > 0, D2 = 0, then N2 = 0 and (5) evaluates to the result of 0 < 1−D1,

which is False.
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– If D1 = 0, then N1 = 0 and (5) evaluates to the result of 0 < 1, which is
True.

An alternative approach is to compute N1 · (D2 + 1) < N2 · (D1 + 1). The-
oretically this comparison might5 not indicate the worst adjusted Gini index if
the indices have very small difference, but a significant efficiency boost can be
expected as the secure comparison input can be represented in fewer bits.

5 We did not prove this, the opposite could be proven if some convenient properties
are derived from Equation (4).
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