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Abstract. We show how to backdoor the McEliece cryptosystem such
that a backdoored public key is indistinguishable from a usual public
key, but allows to efficiently retrieve the underlying secret key. For good
cryptographic reasons, McEliece uses a small random seed δ that gen-
erates via some pseudo random generator (PRG) the randomness that
determines the secret key.
Our backdoor mechanism works by encoding an encryption of δ into
the public key. Retrieving δ then allows to efficiently recover the (back-
doored) secret key. Interestingly, McEliece can be used itself to encrypt δ,
thereby protecting our backdoor mechanism with strong post-quantum
security guarantees.
Our backdoor mechanism also works for the current Classic McEliece
NIST standard proposal, and therefore opens the door for widespread
maliciously backdoored implementations.
Fortunately, there is a simple fix to guard (Classic) McEliece against
backdoors. While it is not strictly necessary to store δ after key gener-
ation, we show that δ allows identifying maliciously backdoored keys.
Thus, our results provide a strong advice to implementers to store δ in-
side the secret key (as the proposal recommends), and use δ to guard
against backdoor mechanisms.

1 Introduction

Strong cryptography provides confidentiality to everyone. While this is in general
a highly desirable goal, it is a large obstacle for adversarial parties. Thus, there
exist strong interests to circumvent cryptographic mechanisms by e.g. installing
backdoors in cryptographic protocols. In a nutshell, a backdoored cryptographic
scheme is a scheme that provides strong cryptographic properties, unless one
possesses a backdoor that allows for easy recovery of the scheme’s secret key.

The process of establishing backdoors in cryptographic schemes is espe-
cially promising during a standardization process. As an example, the Snowden
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revelations showed that the Dual EC DRBG standard was maliciously back-
doored [BLN16].

Since we are now close to standardizing new cryptographic schemes for the
era of quantum computers, it is of crucial importance to understand whether
the current candidate schemes allow for backdoor mechanisms. In this work, we
address one of the most prominent candidates, the McEliece cryptosystem, for
which we show how to install backdoors, as well as how to detect them.

Previous work. Backdoors were introduced into modern cryptography in the
foundational works of Simmons on subliminal channels [Sim83,Sim85]. The no-
tion of backdoors was more formally captured by Young and Yung [YY96,YY97],
also denoted kleptography. In this work, we will use their SETUP (Secretly Em-
bedded Trapdoor with Universal Protection) formalism that is an abstraction
for transforming a cryptographic scheme into a backdoored scheme.

A SETUP mechanism encodes information into the public key during the
key generation process of a public key cryptosystem, allowing A to later retrieve
the underlying secret key. RSA instantiations of such SETUP mechanisms were
given by Crépeau and Slakmon [CS03] who for example encoded half of the bits
of the RSA prime p into the public RSA modulus N .

For post-quantum secure cryptosystems, very little is known about successful
SETUP mechanisms. The work of Kwant, Lange and Thissen [KLT17] describes
a backdoor mechanism at the cost of increasing the probability of decryption
failures, which might be used to leak information about the secret key. The work
of Yang, Xie and Pan [YXP20] however shows that [KLT17] does not fulfill
the SETUP notion since the backdoors can be detected efficiently. Moreover,
Yang, Xie and Pan [YXP20] introduce SETUP mechanisms for RLWE-based
schemes that encode non-quantum secure ECC encryptions of plaintexts into
the ciphertexts.

For code-based cryptosystems and especially McEliece, to the best of our
knowledge no SETUP backdoor mechanism is known. Loidreau and Sendri-
er [LS01] propose to use weak Goppa polynomials inside McEliece. This however
does not fulfill the SETUP notion, because one can immediately identify from
the secret keys that the resulting scheme has been backdoored.

For preventing backdoors from a theoretical viewpoint, Bellare, Paterson
and Rogaway [BPR14] introduced the watchdog model. However, applying the
watchdog model to McEliece does not result in a practical encryption scheme.

Our Contribution. We propose the first SETUP mechanism for McEliece. For
didactic reasons, we first address a usual Vanilla Niederreiter version of McEliece,
that uses the parity check matrix of a code C as secret key. The randomness for
generating C comes from the output of a PRG applied to some secret seed δ.

The public key is a randomized and permuted basis of C. A malicious adver-
sary A may now backdoor the key generation process of a user u by encoding
an encryption of δ (under A’s public key pkA) into u’s public key pku using
a different permutation of C. We show that the resulting backdoored keys are



indistinguishable from ordinary McEliece under some mild assumption. This in-
distinguishability even holds when our SETUP mechanism, pkA, and the secret
code C are known. Thus, there is no way to check for user u whether her se-
cret/public key pair has been backdoored. In the terminology of Young and Yung
we therefore provide a strong SETUP.

However, if user u knows in addition the secret seed δ, then she can identify
backdoored keys. The reason is that the randomness for transforming the secret
key sku into the public key pku usually also comes from the PRG output on δ.
Thus, δ already fully determines the public key from the secret key. This makes
it impossible for A to embed backdoors. Moreover, u may rerun the secret/public
key generation from the verifiable randomness provided by δ to check for the
validity of its non-backdoored key pair.

Thus, if the seed δ is included into u’s secret key sku, then our backdoor
mechanism is detectable from sku. In the terminology of Young and Yung we
therefore provide a weak SETUP for McEliece when δ is part of the secret key.

As a main result, we then show that our SETUP backdoor mechanism easily
transfers from our Vanilla McEliece scheme to Classic McEliece [MDT+20], the
3rd round NIST standardization candidate. This might at first sight come as a
surprise, since our SETUP uses the permutation to embed the backdoor, while
Classic McEliece does not permute the entries of C. However, we observe that
Classic McEliece inherently includes a permutation that defines the Goppa code,
which can be used analogously for our SETUP.

Last but not least, we show that a backdoor implementerAmay use McEliece
itself for encrypting δ, thereby securing our backdoor even in the presence of
quantum computers.

Implementor’s Advice. Our results show that inclusion of the secret δ efficiently
protects against strong SETUP backdoor mechanisms, though not against weak
SETUPs. Thus, our results strongly suggest including δ into the secret key to
check for the absence of a SETUP mechanism. We would like to stress that
storing δ is not necessary for McEliece functionality. The original purpose of δ is
to provide a small piece of randomness, from which one can efficiently derive the
(quite large) McEliece secret/public key pairs. To this end, standards usually
recommend to store δ. Our work shows another strong benefit of storing δ, since
δ serves as a short proof for the correct, non-backdoored, deterministic derivation
of the secret/public key pair.

Open Problems. Since we describe the first SETUP backdoor mechanism for
code-based cryptography, one might wonder whether our SETUP transfers with-
out much effort to other code-based schemes like BIKE or HQC. However,
BIKE/HQC both use cyclic codes, whose structure seems to prevent a direct
application of our method. It remains an open problem to derive weak/strong
SETUP mechanisms in the cyclic setting.

Paper Organization. In Section 2 we give an introduction to McEliece and the
SETUP backdoor mechanism of Young and Yung [YY97], Section 3 provides the



strong SETUP mechanism for Vanilla McEliece (without storing δ), as well as
the backdoor identification when δ is provided in the secret key. In Section 4
we provide the necessary modifications to our SETUP for Classic McEliece.
Eventually, in Section 5 we show how to use McEliece to hide the encryption
of δ in a user’s public key. Appendix A contains a simpler but (instructively)
flawed backdoor construction.

2 Background

2.1 McEliece and Binary Goppa Codes

McEliece uses a binary linear [n, k]-code C, i.e., C ⊂ Fn
2 is a subspace of dimen-

sion k. C may be described by a generator matrix G ∈ Fk×n
2 , or equivalently by

a so-called parity check matrix H ∈ F(n−k)×n
2 whose kernel is C.

Due to efficiency reasons, all modern instantiations of McEliece use a parity
check matrix, usually called the Niederreiter version of McEliece. While our
SETUP backdoor mechanism for Vanilla McEliece from Section 3 works for any
code, our SETUP mechanism from Section 4 also uses properties of the binary
Goppa codes that are used in the Classic McEliece scheme [MDT+20].

Thus, let us briefly recall the parity check matrix of a binary Goppa code. Let
F2m be a binary field. Choose α1, . . . , αn distinct from F2m , and an irreducible
Goppa polynomial g ∈ F2m [x] of degree t. This defines a linear length-n code C
with minimal distance at least 2t + 1 and parity check matrix

H =


1 1 · · · 1

α1 α2 · · · αn

...
. . .

αt−1
1 αt−1

2 · · · αt−1
n




g(α1) 0 · · · 0
0 g(α2) · · · 0
...

. . .

0 0 · · · g(αn)


−1

=


1

g(α1)
1

g(α2) · · ·
1

g(αn)
α1

g(α1)
α2

g(α2) · · ·
αn

g(αn)
...

. . .
αt−1

1
g(α1)

αt−1
2

g(α2) · · ·
αt−1

n

g(αn)

 .

Notice that H ∈ Ft×n
2m . If we write the elements of H in an F2-basis, then we

end up with an (mt × n)-matrix, i.e., C is a k = n −mt dimensional subspace
of Fn

2 .

2.2 SETUP Mechanism

SETUP (Secretly Embedded Trapdoor with Universal Protection) mechanisms
were introduced by Young and Yung [YY96,YY97]. A SETUP mechanism trans-
forms a cryptosystem Π into a backdoored cryptosystem Π ′ for a malicious
backdoor holder A with asymmetric key pair (skA, pkA). This transformation
fulfills the following properties.



1. The input to functions in Π ′ agrees with the specification of inputs to Π.
This property ensures the compatibility of Π and Π ′.

2. Π ′ is still efficient and uses EncpkA (and possibly other functions as well).
3. DecskA is not part of Π ′ and is only known to A.

This prevents the use of symmetric schemes and guarantees A exclusive
access to the backdoor, assuming that A’s used asymmetric scheme is secure.

4. The output of algorithms in Π ′ is compatible with the specification of outputs
of algorithms in Π. At the same time, it contains information efficiently
derivable by A only.
The output of Π ′ needs to be compatible to Π in the sense that e.g. a ci-
phertext created with an encryption function from Π ′ must be decryptable
by the corresponding decryption function in Π. While maintaining this com-
patibility, output of Π ′ additionally needs to contain information that only
the adversary can derive efficiently.

Moreover, SETUP mechanisms can be grouped into categories of different
strength. We focus only on the weak and strong SETUP from [YY97].

Weak SETUP. The output of Π and Π ′ are polynomially indistinguishable,
except for A and the legitimate user u of the implementation. Thus, in a weak
SETUP, u may identify with the help of her secret key sku from Π ′ the existence
of a backdoor. All users, except u and A, that only know pku and pkA cannot
identify a backdoor in u’s key.

Strong SETUP. The output of Π and Π ′ are polynomially indistinguishable,
except for A. Thus, a user u cannot recognize any backdoors, even when she
knows the SETUP mechanism and pkA.

We will formalize the notions for weak and strong SETUP in Section 3, and
especially for proving Theorem 1.

3 Backdooring Vanilla McEliece

Recall that for didactic reasons we first define some generic McEliece system
in Niederreiter form, called Vanilla McEliece. Our Vanilla McEliece scheme has
the advantage that it does not rely on specifics of the underlying code, and as
opposed to Classic McEliece explicitly uses a permutation matrix P , in which
we embed our strong SETUP mechanism.

Let us start by defining Vanilla McEliece’s key generation algorithm.

3.1 Key Generation for Vanilla McEliece

In the key generation process of Vanilla McEliece, see also Figure 1, the secret
parity check matrix H ∈ F(n−k)×n

2 of a binary linear [n, k]-code C is scrambled by
a random invertible linear transformation S ∈ F(n−k)×(n−k)

2 and a random per-
mutation matrix P ∈ Fn×n

2 . The resulting public key is pk = SHP ∈ F(n−k)×n
2 ,



and the secret key is sk = (C, S, H, P ). It is important to stress that the ran-
domness for constructing C, S, H, P is chosen from the output of a PRG G(·)
applied to a short random seed δ, say of 256 bits. Thus a small seed δ completely
determines sk and allows compact storage of the secret key.

KGenV(1n)

1 : δ←$ {0, 1}s

2 : r := G(δ) // G is a PRG

3 : Generate C with parity check matrix H from r.
4 : Compute random S, P from r.
5 : return sk := (C, S, H, P ), pk := SHP

Fig. 1. Vanilla McEliece Key Generation

The invertible matrix S does not affect the code C. The matrix P permutes
the coordinates of C, resulting in a code equivalent to C. From a security per-
spective, the transformations S, P are supposed to completely hide the structure
of the underlying C. The security of McEliece is based on pk behaving like a ran-
dom parity check matrix, for which the syndrome decoding problem is hard.

3.2 Vanilla McEliece Strong SETUP

Our SETUP mechanism for Vanilla McEliece manipulates the key generation
in such a way that the keys are indistinguishable from legitimate keys, but
knowledge of a secret backdoor allows an adversary to recover the secret key from
the corresponding public key. This is achieved by encrypting the random seed
δ using a public-key encryption scheme ΠA of the adversary’s choice with her
public key pkA to obtain a ciphertext c←$ EncpkA(δ) ∈ Fℓ

2. Then c is embedded
in the random permutation P such that it can be recovered just from the public
key.

Encoding via permutation. Let us denote by P (n) ⊂ Fn×n
2 the set of n-dimension-

al permutation matrices, so |P (n)| = n!. We write a permutation π : {1, . . . , n} →
{1, . . . , n} as π = (p1, . . . , pn) with pi = π(i). Let ei be the i-th unit vector,
written in column form. Then we define the permutation matrix Pπ ∈ P (n)

corresponding to π as
Pπ =

(
eπ(1) . . . eπ(n)

)
.

We use an efficiently computable bijection from Kreher and Stinson [KS99] (Al-
gorithms 2.15 and 2.16, see also Figure 2),

fn : {0, 1, . . . , n!− 1} → P (n),

that maps numbers to permutation matrices, and vice versa.



fn(a)

1 : πn := 1
2 : for j = 1..n− 1 do

3 : d :=
(
a mod (j + 1)!

)
/j!

4 : a := a− d · j!
5 : πn−j := d + 1
6 : for i = n− j + 1..n do
7 : if πi > d then
8 : πi := πi + 1
9 : fi

10 : endfor
11 : endfor
12 : return P(π1,...,πn)

f−1
n (P )

1 : Let π = (π1, . . . , πn) with P = Pπ.
2 : a := 0
3 : for j = 1..n do
4 : a := a + (πj − 1)(n− j)!
5 : for i = j + 1..n

6 : if πi > πj then
7 : πi := πi − 1
8 : fi
9 : endfor

10 : endfor
11 : return a

Fig. 2. Algorithms for computing fn and its inverse f−1
n

We use fn to encode c←$ EncpkA(δ) ∈ Fℓ
2 as a permutation. Notice that the

algorithms from Figure 2 efficiently compute fn and f−1
n both in time O

(
n2)

.

Idea of our Vanilla McEliece Backdoor. Our backdoored key generation K̃GenV
is described in Figure 3.

K̃GenV(1n, pkA)

1 : δ←$ {0, 1}s

2 : r := G(δ)
3 : Generate C with parity check matrix H from r.
4 : Compute random S from r.
5 : Find permutation P ′ with Col1(SHP ′) <lex · · · <lex Coln(SHP ′).
6 : repeat // Rejection sampling of a ∈ {0, 1, . . . , n! − 1}

7 : c←$ EncpkA (δ) ∈ Fℓ
2

8 : s←$ {0, 1}⌈log2 n!⌉−ℓ

9 : c′ := c∥s and a :=
∑⌈log2 n!⌉

i=1 c′
i2i−1

10 : until a < n!
11 : P := fn(a) and P̃ := P ′P

12 : return s̃k := (C, S, H, P̃ ), p̃k := SHP̃

Fig. 3. Backdoored Vanilla McEliece Key Generation.



The parity check matrix H and the invertible matrix S are generated from
the random seed δ as in the non-backdoored key generation KGenV from Figure 1.

We assume w.l.o.g. that the columns of H are pairwise distinct, otherwise
the code C defined by H has minimal distance at most 2 and is not suitable
for McEliece. Therefore, SH also has pairwise distinct columns. Thus, we can
unambiguously sort the columns of SH in lexicographic order <lex. Let P ′ ∈ P (n)

be the permutation that realizes this sorting.
Using standard rejection sampling, we expand c←$ EncpkA(δ) ∈ Fℓ

2 to a
bit representation of a number a ∈ {0, 1, . . . , n!− 1}. If we assume that c is
uniformly distributed in Fℓ

2, then a is uniform in {0, 1, . . . , n!− 1} and hence
P = fn(a) is uniform in P (n). This implies that P̃ = P ′P is uniform in P (n).

Notice that K̃GenV requires

ℓ ≤ log2(n!), (1)

which is easily met for many encryptions Enc. See Section 5, where we realize
Enc with McEliece encryption itself.

Secret Key Recovery. Notice that our backdoored key generation algorithm
K̃GenV from Figure 3 generates public keys of the form p̃k := SHP̃ = SHP ′P ,
where SHP ′ has lexicographically sorted columns.

This enables anybody to efficiently compute P . We then derive a = f−1
n (P ),

from which we can recover c = EncpkA(δ). This enables the adversary A to re-
cover δ using DecskA . One then basically reruns K̃GenV to recover the backdoored
secret key s̃k. The details are given in Figure 4.

RecoverV(skA, p̃k)

1 : Find permutation P with Col1(p̃kP −1) <lex · · · <lex Coln(p̃kP −1).
2 : a := f−1

n (P ). Write a =
∑⌈log2 n!⌉

i=1 c′
i2i−1.

3 : c := c′
1 . . . c′

ℓ

4 : δ := DecskA (c)
5 : r := G(δ)
6 : Generate C with parity check H from r.
7 : Compute random S from r.
8 : Find permutation P ′ with Col1(SHP ′) <lex · · · <lex Coln(SHP ′).
9 : P̃ := P ′P

10 : return s̃k = (C, S, H, P̃ )

Fig. 4. Vanilla McEliece Secret Key Recovery



Proof of strong SETUP. Let us first check that our backdoor mechanism for
McEliece indeed satisfies the SETUP definition of [YY97] from Subsection 2.2.

1. The input to functions in backdoored McEliece agrees with the specification
of inputs to McEliece.
All domains remain unchanged.

2. Backdoored McEliece is still efficient and uses EncpkA (and possibly other
functions as well).
Our K̃GenV(1n) applies EncpkA , which we assume to be efficient. Since fn(a)
and P ′ are also efficiently computable, our modification remains efficient.

3. DecskA is not part of backdoored McEliece and is only known by A.
We solely use DecskA in RecoverV(skA, p̃k).

4. The output of algorithms in backdoored McEliece is compatible with the spec-
ification of outputs of algorithms in McEliece. At the same time, it contains
information efficiently derivable for A only.
The output of our backdoored McEliece scheme is fully compatible with
the original McEliece scheme, in particular the original decryption function
works on the backdoored key pairs (p̃k, s̃k). Moreover, our p̃k allows to recover
the full secret key s̃k using RecoverV(skA, p̃k).

It remains to show that our backdoor mechanism provides a strong SETUP
for Vanilla McEliece. As the schemes only differ with regard to their key gener-
ation, it suffices to show that secret and public keys (sk, pk) and (s̃k, p̃k) output
by their respective key generation algorithms are polynomially indistinguishable
for anyone who knows pkA — but not skA.

Recall that we used the randomness of c←$ EncpkA(δ) ∈ Fℓ
2 to derive a ran-

dom P . In the high-level idea, we showed that uniformly distributed c lead to
uniformly distributed P . Therefore, we want our ciphertexts c to be indistin-
guishable from random bit strings even given the adversary’s public key pkA.

This is captured more formally by the following definition.

Definition 1. Let Π = (KGen, Enc, Dec) be a public-key encryption scheme with
ciphertexts c ∈ Fℓ

2. For any algorithm AO with oracle access to O, define its
advantage AdvIND$−CPA

Π (A) to be∣∣∣Pr
[
AEncpk(·)(pk) = 1

∣∣∣(sk, pk)←$ KGen
]
− Pr

[
A$(·)(pk) = 1

∣∣∣(sk, pk)←$ KGen
]∣∣∣.

Here the oracle Encpk(·) on input m returns c←$ Encpk(m), and $(·) on any
input returns a uniformly random c←$ {0, 1}ℓ. Π provides indistinguishability
from random bits under a chosen plaintext attack, in short IND$-CPA, if for
any ppt adversary A with access to an oracle, AdvIND$−CPA

Π (A) is negligible.

It is not hard to see that IND$-CPA implies IND-CPA. The IND$-CPA
notion has been considered in [Rog04] in the context of symmetric encryption.
In Section 5 we show that a variant of the McEliece cryptosystem provides
IND$-CPA under reasonable assumptions.



Theorem 1. Assume that the adversary’s public-key encryption scheme EncpkA

is IND$-CPA and pkA is publicly known. Then original keys (sk, pk)←$ KGen(1n)
and backdoored keys (s̃k, p̃k)←$ K̃Gen(1n, pkA) are polynomially indistinguish-
able. Therefore, our algorithms K̃GenV(1n, pkA) and RecoverV(skA, p̃k) define
a strong SETUP mechanism for Vanilla McEliece.

Proof. For any ppt distinguisher D, we define D’s advantage AdvKeyDistinguish
K̃Gen,KGen

(D)
for distinguishing original from backdoored keys as∣∣∣Pr

[
D(s̃k, p̃k, pkA) = 1

∣∣∣ (s̃k, p̃k)←$ K̃GenV(1n, pkA)
]

−Pr[D(sk, pk, pkA) = 1 | (sk, pk)←$ KGenV(1n) ]
∣∣∣ .

Now consider the IND$-CPA game described in Definition 1 where the oracle
OIND$−CPA is either EncpkA(·) or $(·) and we have to decide which one. In Figure 5,
we use D to construct an adversary A

OIND$−CPA
D against the IND$-CPA game. Here,

the algorithm K̃GenV(1n,OIND$−CPA) is the same as K̃GenV(1n) from Figure 3,
with the only difference that c←$OIND$−CPA(δ) is sampled from the given oracle
on input δ in step 7.

A
OIND$−CPA
D (1n, pkA)

1 : (s̃k, p̃k),← K̃GenV(1n,OIND$−CPA), where we compute c←$OIND$−CPA(δ) ∈ Fℓ
2

2 : return b←$ D(s̃k, p̃k, pkA)

Fig. 5. Adversary against IND$-CPA game constructed from D

In case OIND$−CPA = EncpkA , we perfectly simulate K̃GenV(1n, pkA). Hence

Pr
[
A

Encpk(·)
D (1n, pkA) = 1

]
= Pr

[
D(s̃k, p̃k, pkA) = 1

∣∣∣(s̃k, p̃k)←$ K̃GenV(1n, pkA)
]

Now suppose OIND$−CPA = $(·). In this case, K̃GenV(1n,OIND$−CPA) computes a
uniformly distributed c and therefore also a uniform permutation. This differs
from the output distribution of KGenV only in the fact that KGenV generates P
from r = G(δ). Since G is a PRG, we obtain

∣∣∣Pr
[
A

$(·)
D (1n,pkA)=1

]
−Pr[D(sk,pk,pkA)=1 |(sk, pk)←$KGenV(1n) ]

∣∣∣≤negl(n).

Putting all this together and using that AdvIND$−CPA
ΠA

(
A

OIND$−CPA
D

)
≤ negl(n) by

assumption, we deduce that AdvKeyDistinguish
K̃Gen,KGen

(D) ≤ negl(n). ⊓⊔



3.3 From Strong to Weak SETUP

Recall that in the original McEliece key generation, we derive all randomness
from a random seed δ and hence a key pair (sk, pk) is solely determined by δ.
Thus, inclusion of δ into the secret key allows for a simple verification check of
the validity of a key pair, thereby preventing our strong SETUP mechanism.

Denote by K̃Gen
δ

V the same algorithm as K̃GenV with the only exception that
the random seed δ is also included in s̃k.

Theorem 2. Algorithms K̃Gen
δ

V (1n, pkA) and RecoverV(skA, p̃k) define a weak
SETUP mechanism for Vanilla McEliece.

Proof. Let (s̃k, p̃k),← K̃Gen
δ

V (1n, pkA) with s̃k = (C, S, H, P̃ , δ). Run K̃GenV with
randomness r := G(δ), let the output be sk = (C, S, H, P ). We conclude that s̃k
is backdoored if and only if P ̸= P̃ .

Thus, we can decide via our secret key s̃k, whether our scheme is backdoored.
Since K̃Gen

δ

V and K̃GenV differ only by the format of s̃k, by Theorem 1 our scheme
still provides a weak SETUP mechanism. ⊓⊔

Remark 1. Vanilla/Classic McEliece uses pseudorandomness from a PRG output
to construct its secret key. One might think that constructing the secret key from
true randomness only makes the scheme more secure. However, our results show
that the reproducibility feature of pseudorandomness provides an effective way
for detecting backdoors, a feature that cannot be realized by true randomness.

4 How to Backdoor Classic McEliece

In this section, we show that the strategy of embedding a backdoor in the secret
permutation P from Section 3 also transfers to Classic McEliece.

Changes from Vanilla to Classic McEliece. The Classic McEliece key generation
is outlined in Figure 6. As in Vanilla McEliece one also uses a seed δ to compute
the randomness r for the Goppa code C and its parity check matrix H. However
as opposed to Vanilla McEliece, Classic McEliece does not involve a random
invertible S, and further completely omits the use of a permutation matrix P .
Instead, let S be the deterministic Gaussian elimination matrix that sends H to
the unique reduced row-echelon form

SH =
[
In−k∥T

]
.

To this end, we assume that the first n−k columns of H define a full rank matrix.
The general case can also be handled in Classic McEliece, but the details are
irrelevant for the application of our backdoor SETUP mechanism. The reason for
choosing S as above is that the public key pk = T is a matrix in F(n−k)×k

2 , thus
saving n− k columns in comparison to Vanilla McEliece for efficiency reasons.



At first sight, it seems that the absence of P prevents the direct applicability
of our SETUP technique from Section 3. Moreover, the deterministic S does not
allow for backdoor manipulations either. However, we show in the following that
the definition of the Goppa code C already implicitly introduces a permutation
P , to which we apply a backdoor mechanism analogous to Section 3.

KGenC(1n)

1 : δ←$ {0, 1}s

2 : r := G(δ)
3 : Compute from r Goppa code C = (g(x), α1, . . . , αn) with distinct αi

and parity check matrix H.

4 : Use Gaussian elimination S to compute SH =
[
In−k∥T

]
.

5 : return sk := C, pk := T

Fig. 6. Original Classic McEliece Key Generation

Idea of Backdoored Key Generation. Recall from Subsection 2.1 that the parity
check matrix of a binary Goppa code is of the form

H =


1

g(α1)
1

g(α2) · · ·
1

g(αn)
α1

g(α1)
α2

g(α2) · · ·
αn

g(αn)
...

. . .
αt−1

1
g(α1)

αt−1
2

g(α2) · · ·
αt−1

n

g(αn)

 .

Here, the αi ∈ F2m are random, distinct field elements. Note that the i-th col-
umn hi of H depends on αi only. Thus, a random choice of the αi already induces
a random permutation of the columns. Moreover, we may use our SETUP mech-
anism from Section 3 that modifies the permutation to encode the encryption of
δ in the public key by modifying the order of the αi.

In our backdoored key generation algorithm from Figure 7 we permute only
the last k columns of the parity check matrix which constitute the (backdoored)
public key.

Classic McEliece Secret Key Recovery. In Figure 8, we detail the secret key
recovery.

The correctness of our RecoverC(skA, p̃k) follows analogously to the discus-
sion in Subsection 3.2.

Analogously to Theorem 1 and Theorem 2 we obtain a weak/strong SETUP
for Classic McEliece, depending on whether we include δ into sku or not.



K̃GenC(1n, pkA) respectively K̃Gen
δ

C (1n, pkA)

1 : δ←$ {0, 1}s

2 : r := G(δ)
3 : Compute from r Goppa code C = (g(x), α1, . . . , αn) with distinct αi

and parity check matrix H.

4 : Use Gaussian elimination S to compute SH =
[
In−k∥T

]
.

5 : Find permutation P ′ with Col1(T P ′) <lex · · · <lex Colk(T P ′).
6 : repeat // Rejection sampling of a ∈ {0, 1, . . . , k! − 1}

7 : c←$ EncpkA (δ) ∈ Fℓ
2

8 : s←$ {0, 1}⌈log2 k!⌉−ℓ

9 : c′ := c∥s and a :=
∑⌈log2 k!⌉

i=1 c′
i2i−1

10 : until a < k!
11 : Set P := fk(a)

12 : Set P̃ :=
(

In−k 0
0 P ′P

)
.

13 : Compute C̃ :=
(
g(x), (α1, . . . , αn) · P̃

)
.

14 : return s̃k :=

{
C̃ for K̃GenC(1n, pkA)

(δ, C̃) for K̃Gen
δ

C (1n, pkA)
, p̃k := T P ′P

Fig. 7. Backdoored Classic McEliece Key Generation

RecoverC(skA, p̃k)

1 : Find permutation P with Col1(p̃kP −1) <lex · · · <lex Colk(p̃kP −1).
2 : a := f−1

k (P ). Write a =
∑⌈log2 k!⌉

i=1 c′
i2i−1.

3 : c := c′
1 . . . c′

ℓ

4 : δ := DecskA (c)
5 : r := G(δ)
6 : Compute from r Goppa code C = (g(x), α1, . . . , αn) with distinct αi

and parity check matrix H.

7 : Use Gaussian elimination S to compute SH =
[
In−k∥T

]
.

8 : Find permutation P ′ with Col1(T P ′) <lex · · · <lex Colk(T P ′).

9 : Set P̃ :=
(

In−k 0
0 P ′P

)
.

10 : Compute C̃ :=
(
g(x), (α1, . . . , αn) · P̃

)
.

11 : return s̃k := C̃

Fig. 8. Classic McEliece Secret Key Recovery



Theorem 3. Assume that the adversary’s public-key encryption scheme EncpkA

is IND$-CPA and pkA is publicly known. Then original keys (sk,pk)←$KGenC(1n)
and backdoored keys (s̃k, p̃k)←$ K̃GenC(1n, pkA) are polynomially indistinguish-
able. Therefore, our algorithm K̃GenC (respectively K̃Gen

δ

C) in combination with
RecoverC defines a strong SETUP (respectively weak SETUP) mechanism for
Classic McEliece, when the PRG-seed δ is not part (respectively is part) of a
user’s secret key sku.

5 How to Use McEliece Encryption Against Classic
McEliece

We propose to use a variant of the McEliece cryptosystem for the adversary’s
encryption algorithm Enc. Our scheme can be used to backdoor Classic McEliece
for all parameter sets proposed in the NIST submission.

IND$-CPA McEliece Encryption. As adversary A’s Enc we use the Randomized
Niederreiter Cryptosystem from [NIKM08]. Randomized Niederreiter public keys
are scrambled (n − k) × n parity check matrices of some binary Goppa codes
with minimal distance at least 2t+1, just as in our Vanilla McEliece scheme. Let
n1, n2 with n1 +n2 = n and define ti = ⌊nit

n ⌋ for i = 1, 2. We take messages from
MRN = {m ∈ Fn2

2 | wt (m) = t2}, and pad them by a randomly chosen bitstring
from PRN = {r ∈ Fn1

2 | wt (r) = t1}. The padded message e = (m||r) ∈ Fn
2 is an

error vector of weight at most t, for which we compute the so-called syndrome
e · pkT .

The key generation and encryption algorithm are detailed in Figure 9.

KGenRN(1n)

1 : Generate random Goppa code C

with parity check matrix H ∈ F(n−k)×n
2

2 : Generate random invertible S ∈ F(n−k)×(n−k)
2

and permutation matrix P ∈ Fn×n
2

3 : return sk := (C, S, H, P ), pk := SHP

EncRN(1n, pk, m)

1 : r←$PRN

2 : e := m∥r
3 : return c := e · pkT

Fig. 9. Randomized Niederreiter key generation and encryption for messages m ∈MRN

Clearly, in order to achieve IND-CPA security, the syndrome decoding prob-
lem for the code with (n − k) × n1 parity check matrix that encodes the ran-
domness r needs to be hard. Note that this code has dimension at least k1 :=
n1 − (n − k). Proposition 2 of [NIKM08] shows that under the standard as-
sumptions that public keys pk are indistinguishable from random matrices, and



that syndrome decoding of random linear [n1, k1, t1]-codes is hard, Randomized
Niederreiter provides IND-CPA.

Actually, the authors of [NIKM08] prove an even stronger property, called
admissibility (see Definition 5 in [NIKM08]). It is easily seen that admissibility
does not only imply IND-CPA, but even IND$-CPA from Definition 1. Thus, ac-
cording to Theorems 1 and 3, Randomized Niederreiter yields a strong SETUP
mechanism if δ is not part of the secret, and a weak SETUP mechanism other-
wise.

Application to Classic McEliece. For our concrete instantiation of Randomized
Niederreiter, we propose to use the Goppa codes from the highest category 5 of
the Classic McEliece submission, for which n = 8192, k = 6528 and t = 128.
We need to pick n2 large enough such that |MRN| =

(
n2
t2

)
≥ 2256 so that we

are able to encrypt all possible 256-bit strings δ using some suitable encoding
{0, 1}256 → MRN. It is easily checked that the choice n2 = 2250 and hence
t2 = ⌊n2t

n ⌋ = 35 suffices. The ciphertext size is ℓ = n− k = 1664. Table 1 shows
that this is significantly smaller than log2(k!) for all Classic McEliece parameter
sets of given code dimension k, thus satisfying our necessary condition from
Equation 1.

Table 1. Parameters for Classic McEliece and the number of bits ⌈log2(k!)⌉ for encod-
ing a random permutation P

Target instance Category n k ⌈log2(k!)⌉

kem/mceliece348864 1 3488 2720 27117
kem/mceliece460896 3 4608 3360 34520

kem/mceliece6688128 5 6688 5024 54528
kem/mceliece6960119 5 6960 5413 59332
kem/mceliece8192128 5 8192 6528 73316
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A Appendix: A Simpler (but Flawed) SETUP Mechanism

We consider the Vanilla McEliece key generation and describe a simpler attempt
at constructing a backdoor. This construction does not even yield a weak SETUP
because the backdoor can be efficiently detected by just considering the public
keys. The distinguisher may be interesting in its own right and is also described
below.



A.1 A Flawed SETUP

A description of the original and our simpler (but flawed) backdoored key gen-
eration K̃Gen

F
V can be found in Figure 10.

The matrices S and H are generated exactly as in the non-backdoored
scheme. The key difference is that instead of applying a random permutation
P , we choose a permutation P̃ that permutes the columns of pk such that pk’s
first row contains the ciphertext c ∈ Fℓ

2. This is done by choosing the permu-
tation matrix as the combination of a purely random P and a permutation P ′

that sends the bits of c to the desired coordinates.

KGenV(1n)

1 : δ←$ {0, 1}s

2 : r := G(δ)
3 : Generate C with parity check matrix H from r.
4 : Compute random S, P from r.
5 : return sk := (C, S, H, P ), pk := (SHP )

K̃Gen
F
V(1n, pkA)

1 : δ←$ {0, 1}s

2 : c←$ EncpkA (δ) ∈ Fℓ
2

3 : r := G(δ)
4 : Generate C with parity check matrix H from r.
5 : Compute random S, P from r.
6 : Find P ′ with Row1(SHP P ′) ∈ {c} × Fn−ℓ

2 .
7 : P̃ := P P ′

8 : return s̃k := (C, S, H, P̃ ), p̃k := SHP̃

Fig. 10. Original and Backdoored Vanilla McEliece Key Generation

Notice that K̃Gen
F
V works provided that

1. c ∈ Fℓ
2 can be encoded in the first row v = Row1(SHP ) of the public key,

and
2. P ′ is efficiently computable.

We briefly sketch why these statements hold. Regarding the first statement,
notice that c ∈ Fℓ

2 can be encoded in the first row of the public key if the
Hamming weight of v lies in the interval [ℓ, n − ℓ]. A simple Chernoff bound
shows that under reasonable assumptions (such as ℓ ≤ 1

4 n), the probability that
this holds is exponentially close to 1.



Regarding the second statement, we can compute P ′ in an insertion-sort
fashion: Iterating through the first ℓ entries of the first row of SHP from left to
right, if an entry differs from the corresponding one in c, we swap this column
with the first column to the right with the same entry in the first row.

A.2 The distinguisher

In order for the described backdoored keys to be indistinguishable from non-
backdoored ones, it is clearly necessary that the ciphertexts of the adversary’s
encryption scheme look like random bitstrings. So let us assume that the ad-
versary’s scheme provides indistinguishability from random bits under a chosen
plaintext attack (see Definition 1). Under this condition, does the described
backdoored scheme provide a SETUP mechanism? Perhaps surprisingly, it turns
out that it does not even provide a weak SETUP. To see this, for a public key
pk sampled from KGen or K̃Gen

F
V, we consider the random variables

X := wt (v1 . . . vℓ) , Y := wt (v) ,

where v = v1 . . . vn := Row1(pk), and we make the following observation:

Lemma 1. If (sk, pk)←$ K̃Gen
F
V, then X | Y = w ∼ Binom(ℓ, 1

2 ).
If (sk, pk)←$ KGenV, then X | Y = w ∼ Hypergeom(n, w, ℓ).

Proof. First suppose (sk, pk)←$ K̃Gen
F
V. Then the first ℓ entries of Row1(pk) are

given by an encryption c←$ EncpkA(δ) of a random seed δ. Since EncpkA provides
random ciphertexts, c is uniformly distributed among all ℓ-bit strings (or at
least computationally indistinguishable from it). Hence X = wt (c) is binomially
distributed as required, independent of the Hamming weight of Row1(pk).

Now suppose (sk, pk)←$ KGenV where sk = (C, S, H, P ). Observe that pk is
obtained from SH by randomly permuting its columns. This means that the
first ℓ entries of Row1(pk) are obtained by randomly sampling without replace-
ment from the entries in the first row of SH. Hence X | wt (Row1(SH)) =
w ∼ Hypergeom(n, w, ℓ). As permuting the columns of SH does not change the
Hamming weight of its first row, we have wt (Row1(pk)) = wt (Row1(SH)). This
implies the claim. ⊓⊔

Hence the conditional distributions of X | Y = w differ noticeably in the
backdoored and non-backdoored case. A maximum-likelihood distinguisher can
thus be used to distinguish backdoored from non-backdoored keys with non-
negligible advantage.

This observation can be used to construct a distinguisher. Our distinguisher
D described in Figure 11 is inspired by Lemma 1 and requires only the public
key and the ciphertext length of the adversary’s encryption scheme. It is basi-
cally a maximum-likelihood distinguisher that, given a public key pk, considers
the Hamming weight of the first ℓ bits of its first row. Depending on whether
this ℓ-bit string has a higher probability of occurrence assuming Binom(ℓ, 1

2 ) or



D(pk, ℓ)

1 : n := number of columns of pk
2 : r := Row1(pk)
3 : c := r1 . . . rℓ

4 : if pBinom
ℓ, 1

2
(wt (c)) < pHypergeom

n,wt(r),ℓ (wt (c)) then

5 : return NON-BACKDOORED
6 : else
7 : return BACKDOORED
8 : fi

Fig. 11. Distinguishing backdoored and non-backdoored public keys. pBinom
ℓ, 1

2
and

pHypergeom
n,w,ℓ denote the probability mass functions of the binomial respectively hyper-

geometric distribution.

Hypergeom(n, wt (Row1(pk)) , ℓ) as the underlying distribution, the distinguisher
outputs that the public key is backdoored or, respectively, non-backdoored.

Lemma 1 implies that the distinguishing advantage of D is given by the
statistical distance3 between the distributions Hypergeom(n, wt (Row1(pk)) , ℓ)
and Binom(ℓ, 1

2 ). Notice that it depends on wt (Row1(pk)). It is minimal for
wt (Row1(pk)) = n

2 , however even in this case it is far from negligible for reason-
able n and ℓ occurring for practical McEliece parameter sets. For example, ap-
plying the Randomized Niederreiter scheme described in Section 5 to the highest
Classic McEliece Category 5 parameter set (see Table 1), even in the favourable
case that half the entries in the first row of the public key equal one respec-
tively zero, the distinguishing advantage is about 0.071. It thus clearly does
not even provide a weak SETUP because we can distinguish backdoored and
non-backdoored keys from just the public keys.

Intuitively speaking, the problem with this attempt at a backdoor construc-
tion is the following: In the non-backdoored scheme, the distribution of the first
ℓ bits of the first row of pk is in fact dependent on the Hamming weight of the
entire row. For example, if there happen to be in total more ones than zeros in
the first row of pk or equivalently of the associated SH, then applying a ran-
dom permutation to the columns of SH also results in a bias towards more ones
than zeros in the first ℓ bits. This is in contrast with the backdoored scheme for
which the first ℓ bits of the first row of the resulting pk are always uniformly
distributed: For they are completely determined by the ciphertext c which is
indistinguishable from a random bitstring by assumption.

3 The statistical distance between two discrete distributions with probability
mass functions p and q defined over the same set X is given by d(p, q) =
1
2

∑
x∈X |p(x)− q(x)|.


	How to Backdoor (Classic) McEliece and  How to Guard Against Backdoors

