
Efficient Algorithms for Large Prime
Characteristic Fields and Their Application to

Bilinear Pairings and Supersingular
Isogeny-Based Protocols

Patrick Longa

Microsoft Research, USA
plonga@microsoft.com

Abstract. We propose a novel approach that generalizes interleaved
modular multiplication algorithms to the computation of sums of prod-
ucts over large prime fields. This operation has widespread use and is at
the core of many cryptographic applications. The method reformulates
the widely used lazy reduction technique, crucially avoiding the need for
storage and computation of “double-precision” operations. Moreover, it
can be easily adapted to the different methods that exist to compute
modular multiplication, producing algorithms that are significantly more
efficient and memory-friendly. We showcase the performance of the pro-
posed approach in the computation of multiplication over an extension
field Fpk , and demonstrate its impact in two popular cryptographic set-
tings: bilinear pairings and supersingular isogeny-based protocols. For
the former, we obtain a 1.37× speedup in the computation of a full
optimal ate pairing over the popular BLS12-381 curve on an x64 Intel
processor; and for the latter, we show a speedup of up to 1.30× in the
computation of the SIKE protocol on the same Intel platform.

Keywords: Sum of products · prime fields · extension fields · bilinear
pairings · BLS12-381 · supersingular isogeny-based cryptography · SIKE
· efficient computation.

1 Introduction

Take two sets of integers (a0, a1, . . . , at−1) and (b0, b1, . . . , bt−1) all defined over a
certain finite field Fp with large prime characteristic p. The sum of their products,

namely, the computation c =
∑t−1

i=0 ±ai·bi mod p is a fundamental operation that
is at the core of various types of arithmetic over Fp, from matrix multiplication
and multiplication over polynomial rings to elliptic curve arithmetic. Of special
interest is that this operation has wide use in the form of multiplication over
extension fields Fpk , which is at the heart of several cryptographic schemes such
as elliptic curves defined over extension fields [36], bilinear pairings on ordinary
curves [64] and supersingular isogeny-based schemes [49].

In this work, we propose a new approach that computes a sum of prod-
ucts over Fp by interleaving intermediate products with the modular reduction

2 P. Longa

step, in similar fashion to classical interleaved modular multiplication algorithms
(§1). Crucially, it departs from algorithms using the well-known lazy reduction
technique [72,68], eliminating the excessive growth of intermediate values and
the need of computing “double-precision” arithmetic. The method can be easily
adapted to existing algorithmic variants that fit different application profiles,
for software and hardware platforms. We show that some of these variants are
especially efficient for software implementation, exhibiting strong synergy with
computer architectures that leverage the simplicity of schoolbook-like multipli-
cation. The final result is a streamlined implementation with very constrained
memory use.

The targets. To showcase the potential of the new method, we apply it in the
context of two popular cryptographic settings: bilinear pairings (concretely, op-
timal ate pairings over the BLS12-381 curve), and supersingular isogeny-based
protocols (concretely, the supersingular isogeny key encapsulation (SIKE) pro-
tocol [5]). On one hand, bilinear pairings are at the core of a myriad of elegant
cryptographic schemes such as identity-based cryptosystems [19,27,24,28] and
non-interactive zero-knowledge proof systems [47,46]. More recently, pairings
have attracted great interest because of their novel use in blockchain technology
like Zcash [6] and Ethereum 2.0 [26]. Unfortunately, recent advances in the com-
putation of discrete logarithms over extension fields, as those used in pairing-
based cryptography [10,52], have forced an increase in parameter sizes [62,9].
This, for example, motivated the design of BLS12-381, a new pairing-friendly
curve that is conjectured to provide 128 bits of security and is widely used in
blockchain protocols [23] (see [67] for details on a standardization effort in the
IETF CFRG). The larger parameter sizes, added to the fact that pairing oper-
ations were already computationally expensive, increase the need of developing
new methods that improve performance.

Likewise, SIKE belongs to an emerging family of quantum-safe, public-key
cryptographic schemes that started off with the well-known supersingular isogeny
Diffie-Hellman (SIDH) key exchange protocol by Jao and De Feo [49]. This fam-
ily of schemes, whose hardness is based on the difficulty to compute isogenies
between supersingular elliptic curves, also includes novel protocols such as B-
SIDH [33], SQISign [42], Séta [41] and others. Among all these schemes, SIKE
is the one that has garnered the most attention, since it is currently an alter-
nate candidate in the ongoing NIST process dedicated to select and standardize
the next-generation of post-quantum cryptographic algorithms [65]. Similar to
the case of pairings, the cryptographic community has made significant progress
in improving the performance of these isogeny-based protocols. However, these
schemes remain relatively expensive and, hence, their optimization continues to
be highly needed.

It is important to note that other operations beside multiplication over exten-
sion fields are possible targets for the new method (e.g., elliptic curve arithmetic
operations with the form AB + CD over a finite field of large prime charac-
teristic). However, since we expect a larger gain in the case of arithmetic over

Efficient Algorithms for Large Prime Characteristic Fields 3

extension fields, we use it for illustration purposes in the context of the cryp-
tographic scenarios mentioned above. Also, although wider in generality, the
method is analyzed in the context of Montgomery multiplication [63], which is
the most widely used approach for modular multiplication.

Computing sums of products and the case of multiplication over Fpk .
There are two main approaches to optimize multiplication over Fpk . On one
hand, algebraic transformations are used to reduce the required number of un-
derlying field multiplications. A well-known example of this case is Karatsuba
multiplication [51].

The second approach consists in minimizing the number of modular reduc-
tions using the so-called lazy reduction technique. Lazy reduction, which goes
back to at least [72], is an extensively used optimization that has been applied
in a wide variety of scenarios [56,4,68,30,59]. The basic principle is very simple:
products are computed and left unreduced. A modular reduction is only applied
at the very end of the computation, right after the summation of the intermedi-
ate, “double-precision” values. This elimination of reductions is highly effective,
especially for primes for which the reduction routine is roughly as expensive as
the integer multiplication part. If we assume the use of Montgomery multipli-
cation for computing the summation of t n-digit products, the cost is reduced
from t(2n2 + n) multiplies to only n2(t+ 1) + n.

In the context of cryptographic pairings, Scott [68] was the first to apply lazy
reduction to Karatsuba multiplication in the computation of multiplication over
Fp2 . Later, the technique was extended to the full towering and curve arithmetic
by Aranha et al. [3] (see also [60]). Given an extension field Fpk = Fp[x]/(xk−ω)
with ω ∈ Fp, a multiplication in Fpk exploiting lazy reduction can be performed
with only k reductions modulo p, in contrast to the k2 reductions that would be
required with a conventional multiplication.

Many works have exploited the technique, especially in the context of multi-
plication over Fp2 , without too much change in the basic approach [18,3,70,37,20,21,7].
In fact, despite the availability of efficient interleaved modular multiplication al-
gorithms [39], the combination of lazy reduction with these faster algorithms
has been long seen as an impossibility. As consequence, lazy reduction has been
strictly limited to use non-interleaved modular multiplications.

The main drawback of this traditional approach using lazy reduction is that
it forces the storage and computation with intermediate results of double pre-
cision. Beside this adding pressure on the memory usage, the optimization of
double-precision arithmetic might require specialized routines that increase the
complexity of implementations significantly [3,2].

In contrast, the proposed method limits the growth of intermediate results
and gets rid of double-precision arithmetic. The simplest variants use schoolbook
internally, eliminating further the additional storage demanded by Karatsuba.
For small and medium-sized primes, the significant reduction in memory friction
pays off in terms of speed, even in the cases where the use of multiplications is
higher, as we show in §4 and §5.

4 P. Longa

Open-source software. We have implemented and integrated our algorithms
in version 3.5 of the state-of-the-art supersingular isogeny library SIDH. This is
available at

https://github.com/microsoft/PQCrypto-SIDH

We also plan to open source our optimized pairing implementation that was
integrated to the state-of-the-art pairing library RELIC [2].

Outline. We start by giving some preliminary background on algorithmic as-
pects of Montgomery multiplication and extension field arithmetic in §2. Then,
we describe the details of our method in §3, together with an exhaustive classi-
fication of its different algorithmic variants. This section also includes a prelimi-
nary cost analysis. In §4 and §5, we present our two case studies targeting SIKE
and optimal ate pairings over BLS12-384, respectively. In both cases, we describe
suitable algorithmic variants and their efficient implementation and benchmark-
ing using the SIDH and RELIC libraries. Finally, we discuss the impact of this
work and potential future developments in §6.

2 Preliminaries

2.1 Montgomery multiplication

A well-known and widely-used method to implement modular multiplication
is due to Montgomery [63]. This method introduces a significant speedup in
the computation of modular reduction by replacing expensive long divisions by
simple divisions with powers of two.

To carry out a Montgomery multiplication, field elements are represented in
the so-called Montgomery domain. Let R = 2N and p′ = −p−1 mod R, where
N = n ·w, n = dl/we, l = dlog2 pe and w is the computer wordsize. For two field
elements a and b, their Montgomery representation is given by ã = aR mod p and
b̃ = bR mod p, respectively. If it holds that ãb̃ < pR, the Montgomery residue
c = ãb̃R−1 mod p = abR mod p is then computed as

c = (ãb̃+ (ãb̃p′ mod 2N) · p)/2N . (1)

The final result a · b can then be easily obtained by dividing by the value R.
If one assumes that conversions to/from the Montgomery domain are amortized
by executing a long series of modular multiplications, the cost of a Montgomery
reduction (i.e., without the integer multiplication part) is given by (n2+n) w-bit
multiplications.

Interleaved and non-interleaved modular multiplication There are two
general approaches for implementing modular multiplication, which are deter-
mined by how the integer multiplication and reduction parts are “glued” to-
gether. In an interleaved or non-separated modular multiplication, both pieces

https://github.com/microsoft/PQCrypto-SIDH

Efficient Algorithms for Large Prime Characteristic Fields 5

are computed in an intertwined fashion, while the non-interleaved or separated
version computes the full integer multiplication first and then proceeds to carry
out the reduction part separately. In applications dealing with sums of products
over large prime fields (e.g., for multiplying over extension fields like in pairings
or supersingular isogeny-based protocols), the use of non-interleaved modular
multiplication has become the de facto approach, as it enables a straightfor-
ward application of lazy reduction and other advanced implementation tech-
niques [72,56,4,68,18,3,70,37,20,21].

Radix-r Montgomery multiplication. Straight implementations of Eq. (1)
demand the use of a high number of registers since the full inputs are processed
in a single pass using the full modulus. Let r be a certain radix, typically a power
of two, in which operands and the modulus are represented (e.g., an operand a
is represented as (at−1, . . . , a1, a0)r). A more implementation-friendly approach
proposed by Dussé and Kaliski Jr. [39] processes the computation one digit at a
time reducing with r at each iteration, in what is called the radix-r Montgomery
reduction. An interleaved computation of a radix-r Montgomery multiplication
of two Montgomery elements ã and b̃ then proceeds by fixing p′ = −p−1 mod r
(assuming that the modulus is a prime p of bitlength l), initializing c to 0, and
computing t = dl/ log2 re iterations doing

c =
(
c+ ãib̃+ ((c+ ãib̃)p

′ mod r) · p
)
/r, (2)

for i = 0, . . . , t− 1.

In this work, we adopt a generalization of the original radix-r Montgomery
multiplication by setting r = 2Bw, where B ∈ Z and 0 < B ≤ n and, as be-
fore, n = dl/we, l = dlog2 pe and w is the computer wordsize1. In this case,
Eq. (2) runs for dn/Be iterations. This generalization lifts the restriction that
the bitlength of the radix r should match the computer wordsize w of a given
platform, as originally assumed in [39]. Note that the original radix-r Mont-
gomery multiplication corresponds to the case B = 1.

As we will show in §3, the flexibility introduced by B in the definition of
the radix allows for a comprehensive generalization that captures many imple-
mentation variants of Montgomery multiplication exploiting either the “operand-
scanning” form (a.k.a. schoolbook method), the “product-scanning” form (a.k.a.
Comba method [31]), the Karatsuba technique [51], and their different combi-
nations. To the best of our knowledge, several of the arising variants are novel.

2.2 Sums of products over large prime fields

Let (a0, a1, . . . , at−1) and (b0, b1, . . . , bt−1) be two sets of elements all belonging
to a certain field Fp of large prime characteristic p. We define a “sum of products”

1 This generalization is similar to the description by Bos and Friedberger [20, Section
3.2], but without limiting to a special-form prime.

6 P. Longa

as a computation with the form

c =

t−1∑
i=0

±ai · bi mod p

This operation can be found at the core of many cryptologic computations,
the most notable of which is perhaps multiplication over extension fields with
large prime characteristic. Hence, we use this operation to illustrate the impact
of the proposed algorithms (see §3).

Let’s recall the simplest scenario for a multiplication of two elements a, b ∈
Fpk modulo an irreducible polynomial with the form f = xk − ω, where ω is
a primitive element in F∗p and k|(p − 1). The polynomial multiplication is then
given by

c(x) = a(x)b(x) =
(k−1∑

i=0

aix
i
)(k−1∑

i=0

bix
i
)

≡ ck−1xk−1 +

k−2∑
i=0

(ci + ωci+k)xk (mod f(x)),

where

cj =

j∑
i=0

aibj−i mod p.

It is a widespread practice to optimize the implementation for computing
each cj using an “accumulation and reduction” strategy, most commonly known
as lazy reduction. This technique effectively reduces the number of modular
reductions to only one (or k, for the full polynomial multiplication). Note that,
as in most practical scenarios, we assume that ω has small coefficients that make
a multiplication by it relatively cheap.

As mentioned before, this use of lazy reduction has some drawbacks, the
most critical of which being the need of extra storage and computing with inter-
mediate results of double precision. As we show in §4 and §5, this issue makes
implementations slower and less memory-friendly for small and medium-sized
primes.

The rise of fast multiplication over Fp2 . The most basic “sum of prod-
ucts” operation underlying several cryptographic schemes is multiplication over
a quadratic extension field Fp2 . Modern examples of these schemes include bi-
linear pairings on ordinary elliptic curves over prime fields and supersingular
isogeny-based protocols.

For illustrative purposes, let’s use the common construction fixing Fp2 =
Fp(i) for i2 − β = 0, where β is a small integer in absolute value. Two main
approaches are known to realize the multiplication in this case.

Efficient Algorithms for Large Prime Characteristic Fields 7

Take two elements a = (a0+a1i) and b = (b0+b1i) ∈ Fp2 . The first method to
compute the multiplication a ·b in Fp2 is the straightforward schoolbook method
which computes it as

a · b = (a0b0 + a1b1β) + (a0b1 + a1b0)i

The second approach is Karatsuba multiplication, which computes the same
operation as

a · b = (a0b0 + a1b1β) +
(
(a0 + a1)(b0 + b1)− a0b0 − a1b1

)
i

If we assume that β = −1 as in most efficient instantiations, the operation
count for multiplication using schoolbook is of four modular multiplications and
two modular additions/subtractions, while the one for Karatsuba is of three
modular multiplications and five modular additions/subtractions.

Efficient implementation of the arithmetic over Fp2 attracted lots of interest
from the cryptographic community around mid-2000’s, contributing to a remark-
able effort aimed at reducing the high cost of computing cryptographic pairings.
In 2007, Scott [68] was the first to apply lazy reduction to Karatsuba multipli-
cation in the context of pairings, changing the cost of one Fp2 multiplication to
three integer multiplications, two modular reductions, two additions and three
double-precision additions/subtractions. This approach was later perfectioned by
Beuchat et al. [18] and Aranha et al. [3] with the use of some aggressive optimiza-
tion techniques such as the avoidance of modular corrections and carry-handling
elimination, all in the context of the computation of optimal ate pairings [71]
over a 254-bit Barreto-Naehrig (BN) curve [15].

The algorithm for multiplication in Fp2 combining all these optimizations
for the optimal case with β = −1 is shown in Algorithm 1. Integer operations
without modular correction or reduction are represented as ×,+ or −. The only
operation that requires a modular correction is the subtraction in line 4 that is
represented as 	. Double-precision operands are represented in uppercase, while
single-precision operands are in lowercase.

Algorithm 1 Multiplication in Fp2 using Karatsuba and lazy reduction

Input: a = (a0 + a1i) and b = (b0 + b1i) ∈ Fp2

Output: c = a · b = (c0 + c1i) ∈ Fp2

1: T0 ← a0 × b0
2: T1 ← a1 × b1
3: t0 ← a0 + a1

4: t1 ← b0 + b1
5: T2 ← t0 × t1
6: T3 ← T0 + T1

7: T2 ← T2 − T3

8: T0 ← T0 	 T1

9: c0 ← T2 mod p
10: c1 ← T0 mod p
11: return C = (c0 + c1i)

8 P. Longa

The case of higher-degree field extensions. For pairings, high-degree ex-
tension field arithmetic represents the main building block and, therefore, its
efficient implementation becomes crucial. To this end, it has been recommended
to implement it as a tower of extensions built with suitable irreducible polyno-
mials [54], following a similar development for optimal extension fields [8]. For
example, the following tower scheme to represent Fp12 is widely used in many
implementations [18,44,3,1]:

– Fp2 = Fp[i]/(i2 − β), with β a non-square.
– Fp4 = Fp2 [s]/(s2 − ξ), with ξ a non-square.
– Fp6 = Fp2 [v]/(v3 − ξ), with ξ a non-cube.
– Fp12 = Fp4 [t]/(t3 − s) or Fp6 [w]/(w2 − v) or Fp2 [w]/(ω6 − ξ), with ξ a non-

square and non-cube.

The use of a tower field allows to write modularized implementations, in
which each layer can be easily optimized using algebraic transformations like
Karatsuba to reduce the number of modular multiplications.

In 2011, Aranha et al. [3] pushed the performance limits further by extend-
ing the use of lazy reduction to the full tower scheme, in order to minimize
the use of modular reductions. Concretely, they showed that this optimization,
when applied above the Fp2 arithmetic up to the Fp12 layer, injects an 11%-
17% speedup on a variety of x64 processors. Nevertheless, this extended lazy
reduction technique comes at a price. It requires additional specialized routines
to perform the double-precision arithmetic, which increase the complexity and
memory footprint of the implementation.

In §5, we discuss how one can improve performance and memory use for
prime sizes of practical relevance with a new approach that we present next.

3 The Proposed Method

We describe the proposed method in the context of Montgomery multiplication,
which is arguably one of the most relevant scenarios. See §6 for a discussion on
other potential applications.

Let (a0, a1, . . . , at−1) and (b0, b1, . . . , bt−1) be two sets of integers with ai, bi ∈
[0, p) for i = 0, . . . , (t − 1) and 0 ≤

∑t−1
i=0 aibi < pR, where R = 2nw, n =

dl/we, l = dlog2 pe, and w is the computer wordsize. From now on, we make the
assumption that inputs ai and bi are already in the Montgomery domain.

From a general perspective, the new approach essentially consists in per-
forming a merged computation of the operation c =

∑t−1
i=0 ±ai · bi mod p using

interleaved radix-r Montgomery multiplication2, that is, initializing c = 0 and
executing dl/ log2 re = dn/Be iterations doing

c =
(
c+

t−1∑
i=0

ai,jbi +
(
(c+

t−1∑
i=0

ai,jbi)p
′ mod r

)
· p
)/
r, (3)

2 As explained before, the non-interleaved or separated case is used with the standard
lazy reduction technique.

Efficient Algorithms for Large Prime Characteristic Fields 9

for j = 0, . . . , dn/Be − 1, where p′ = −p−1 mod r, and each integer ai is repre-
sented in radix-r representation as (ai,dn/Be−1, . . . , ai,1, ai,0)r. As stated in §2.1,
the radix r is adopted in the generalized form r = 2Bw, where B ∈ Z and
0 < B ≤ n. In the following, we call each digit in this radix representation a
“B-digit”.

We remark that Eq. (3) is presented in a general form for simplicity purposes.
Next, we provide a more detailed description that covers the wide diversity of
variants that can be derived from the approach.

At a high-level, we can classify the different variants by the method that is
used to implement the top layer in the computation of the multiplications in
Eq. (3). Thus, we can distinguish operand-scanning (or schoolbook), product-
scanning (or Comba), and Karatsuba variants. In the remainder, we mostly focus
on the first case which brings very fast computations to the software platform
class that we target in this work. We comment that product-scanning and Karat-
suba variants, such as those described in Appendix A, might be useful in other
scenarios, e.g., for hardware implementations (see discussion in §6).

Remark 1. The result of a Montgomery reduction is upper bounded by 2p when
its input is in the range [0, pR). Hence, a conditional subtraction is needed to
bring the result to [0, p). However, this operation can be avoided if we per-
form arithmetic over a redundant representation (e.g., over Z2p). For example,
if operands are kept in the range [0, 2p) such that the result of a multiplication
is guaranteed to be c = a · b < 4p2 ≤ pR (i.e., it should hold that R ≥ 4p), then
the result of the Montgomery reduction is still going to be bounded by 2p but
we will no longer require the modular correction. A simple correction is going to
be required at the very end of the computations to bring the final result to the
canonical range [0, p). In the following, all the algorithms assume the use of this
redundant representation to avoid the final conditional subtraction.

3.1 Operand-scanning method

For this method, the computation flow at the top layer follows the operand-
scanning or schoolbook form. That is, for each multiplication, a B-digit from
the radix-r representation of a given multiplier is first multiplied with the full
value of the multiplicand before proceeding to the next computation. For the
remainder, we refer to this operation as B-digit × row multiplication.

We distinguish two main approaches, depending on whether the inner mul-
tiplications ai,jbi from Eq. (3) are interleaved with the multiplications with the
prime p or not. We adopt the naming convention from [55] and call the ap-
proaches finely integrated if we do the former case (i.e., with interleaved inner
multiplications), and coarsely integrated, otherwise.

Coarsely integrated variants. The merged “sum of products” algorithm us-
ing a coarsely integrated strategy is displayed in Algorithm 2. The construction
of the algorithm easily follows from Eq. (3) when n mod B = 0. We still need to

10 P. Longa

manage the cases in which n mod B 6= 0 (i.e., the digit-size of the most signifi-
cant B-digit is strictly smaller than that of a B-digit). This is done in lines 6–9,
where the computations are adjusted to the right digit size.

As can be seen, the B-digit × row multiplications corresponding to ai,jbi
(line 3) are interleaved with those for the multiplications with p′ and p (lines 4
and 5) at each iteration of the for-loop.

There are multiple ways in which the inner multiply-and-accumulate opera-
tions

∑
ai,j · bi and u+ q ·p can be realized. We classify these variants according

to the chosen value B as follows:

– Case with B = 1: one is setting r = 2w and all the inner computations
essentially become straight digit × row multiplications. This is the analogous
version of “Improvement 2” from [39], called coarsely integrated operand
scanning (CIOS) in [55].

– Case with B > 1, B 6= n: the inner computations work on “blocks” of digits
and, hence, each B-digit × B-digit multiplication can be implemented in
either schoolbook, Comba or Karatsuba style (or any combination of these
in a multi-level fashion for sufficiently large primes).

– Case with B = n: this is essentially the original lazy reduction technique.

Algorithm 2 Merged sums of products using radix-r interleaved Montgomery
multiplication in coarsely integrated form.

Input: integers (a0, a1, . . . , at−1) and (b0, b1, . . . , bt−1) s.t. ai, bi ∈ [0, 2p) for i =
0, . . . , (t − 1) and 0 ≤

∑t−1
i=0 aibi < pR, where R = 2nw, n = dl/we, l = dlog2 pe,

and w is the computer wordsize; the radix r = 2Bw s.t. B ∈ Z and 0 < B ≤ n, and
the Montgomery constant p′ = −p−1 mod r. Integers are represented in radix r, e.g.,
ai = (ai,dn/Be−1, . . . , ai,1, ai,0)r.

Output: the Montgomery residue c =
∑t−1

i=0 aibi ·R−1 mod p s.t. c ∈ [0, 2p).

1: u← 0
2: for j = 0 to bn/Bc − 1 do
3: u← u +

∑t−1
i=0 ai,j · bi

4: q ← u · p′ mod 2Bw

5: u← (u + q · p)/2Bw

6: if n mod B 6= 0 then
7: u← u +

∑t−1
i=0 ai,dn/Be−1 · bi

8: q ← u · p′ mod 2(n mod B)w

9: u← (u + q · p)/2(n mod B)w

10: return c← u

Finely integrated variants. The merged “sum of products” algorithm using
a finely integrated strategy is displayed in Algorithm 3. In this case, note that

Efficient Algorithms for Large Prime Characteristic Fields 11

multiplications are performed B-digit by B-digit, interleaving those correspond-
ing to ai,kbi,j (lines 3 and 7) with those for the multiplications with pk (lines 5
and 8). Note that we manage the case with n mod B 6= 0 as described before.

Similar to the coarsely integrated form, there are multiple ways in which the
inner multiply-and-accumulate operations can be realized. Again, we classify
these variants according to the value B as follows:

– Case with B = 1: one is setting r = 2w and all the inner computations be-
come simple digit × digit multiplications, where those corresponding to input
operands are interleaved with those with the prime. This is the analogous
version of the finely integrated operand scanning (FIOS) method from [55].

– Case with B > 1, B 6= n: the inner computations work on “blocks” of digits
and, hence, each B-digit × B-digit multiplication can be implemented in
either schoolbook, Comba or Karatsuba style (or any combination of these
in a multi-level fashion for sufficiently large primes).

– Case with B = n: this is essentially the original lazy reduction technique.

Algorithm 3 Merged sums of products using radix-r interleaved Montgomery
multiplication in finely integrated form.

Input: integers (a0, a1, . . . , at−1) and (b0, b1, . . . , bt−1) s.t. ai, bi ∈ [0, 2p) for i =
0, . . . , (t − 1) and 0 ≤

∑t−1
i=0 aibi < pR, where R = 2nw, n = dl/we, l = dlog2 pe,

and w is the computer wordsize; the radix r = 2Bw s.t. B ∈ Z and 0 < B ≤ n, and
the Montgomery constant p′ = −p−1 mod r. Integers are represented in radix r, e.g.,
ai = (ai,dn/Be−1, . . . , ai,1, ai,0)r.

Output: the Montgomery residue c =
∑t−1

i=0 aibi ·R−1 mod p s.t. c ∈ [0, 2p).

1: u← 0
2: for j = 0 to bn/Bc − 1 do
3: u← u +

∑t−1
i=0 ai,0 · bi,j

4: q ← u · p′ mod 2Bw

5: u← (u + q · p0)/2Bw

6: for k = 1 to dn/Be − 1 do
7: u← u + 2(k−1)Bw ·

∑t−1
i=0 ai,k · bi,j

8: u← u + 2(k−1)Bw · q · pk
9: if n mod B 6= 0 then

10: u← u +
∑t−1

i=0 ai,0 · bi,dn/Be−1

11: q ← u · p′ mod 2(n mod B)w

12: u← (u + q · p0)/2(n mod B)w

13: for k = 1 to dn/Be − 1 do
14: u← u + 2(kB−n mod B)w ·

∑t−1
i=0 ai,k · bi,dn/Be−1

15: u← u + 2(kB−n mod B)w · q · pk
16: return c← u

Selecting a variant. Picking a specific variant depends on both the modu-
lus size (see next subsection) and the targeted platform. Generally speaking,

12 P. Longa

the coarsely integrated variant (Algorithm 2) should be the preferred option in
most software platforms in which schoolbook works well and the availability of
general purpose registers (GPRs) is sufficient to support a full B-digit × row
multiplication with minimal interaction with the memory. On the other hand,
the inner for-loop of the finely integrated variant (Algorithm 3) consists of a
bunch of multiplications that are independent from each other and, hence, can
be executed in parallel on, e.g., an FPGA. See §6 for an extended discussion on
other uses for the algorithms.

Regarding the selection of the value B, setting B > 1 might make it easier
to alleviate memory use for relative large primes, especially in the case of Al-
gorithm 3. For small and medium size primes3, it appears that setting B = 1
hits the right balance between the size of intermediate results and the number
of GPRs available on x64 platforms.

Finally, for the internal multiplications we mentioned that it is possible to
use either schoolbook, Comba, Karatsuba, or any combination of these in a
multi-layer implementation. To be efficient, Karatsuba would require a B-digit
with large digit-size. And between schoolbook and Comba, the former is typically
preferable when a given platform supports efficient carry-saving instructions such
as mulx or versatile multiply-and-add (MULADD) instructions (see §6).

3.2 Cost analysis

Except for the variants that could use Karatsuba at the lower levels of their
computations (which would only be the case for relatively large primes), the
complexity of the proposed algorithms is quadratic in terms of multiplication
instructions. For t products, it is easy to see that they require n2(t+ 1) +n digit
multiplications, which is precisely the complexity of standard lazy reduction
when the products are done in schoolbook or Comba-style. This means that
lazy reduction in conjunction with a subquadratic multiplication like Karatsuba-
schoolbook or Karatsuba-Comba (KCM) [45] is theoretically cheaper in terms
of multiplications.

Nevertheless, the new method can achieve a superior performance in practice
for small and medium-size primes since it enables streamlined implementations
with much less friction with memory. Moreover, the schoolbook variants can
reach exceptional speed by exploiting their synergy with carry-preserving in-
structions.

To see this, let’s run a comparative analysis with one of the most promis-
ing variants for software platforms, namely, a merged sum of products using
radix-r interleaved Montgomery multiplication in coarsely integrated form (Al-
gorithm 2). We assume B = 1 in the case of an Fp2 multiplication, and set an x64
processor as the target. We compare against state-of-the-art implementations of
multiplication over Fp2 , which essentially use variants of Algorithm 1 [2,38].

3 We use a loose definition here: a prime should be well above 500 bits long to be
considered “large”, but this varies with the computer wordsize (the smaller the
wordsize the lower the threshold to consider that a prime is large).

Efficient Algorithms for Large Prime Characteristic Fields 13

First, if we perform a theoretical analysis in line with, e.g., [55], which counts
the number of instructions executing a multiplication (mul), addition/subtraction
(add), memory load (read) and memory store (write), the cost of one Fp2 mul-
tiplication using Algorithm 1 is approximately given by

cost = costline 1 + costline 2 + . . . + costline 10

= 2×
(
3n

2
/4 muls + (3n

2
+ 4n + 2) adds + (3n

2
/2 + 15n/2 + 1) reads + (3n

2
/4 + 11n/2

+ 1) writes
)
+ 2×

(
n adds + 2n reads + n writes

)
+

(
3n

2
/4 muls + (3n

2
+ 4n + 2) adds

+ (3n
2
/2 + 15n/2 + 1) reads + (3n

2
/4 + 11n/2 + 1) writes

)
+ 2×

(
2n adds + 4n reads + 2n writes

)
+

(
3n adds + 2n reads + 5n writes

)
+ 2×

(
(n

2
+ n) muls + 4n

2
adds + (2n

2
+ 2n) reads + n

2
writes

)
= (17n

2
/4 + 2n) muls + (17n

2
+ 21n + 6) adds + (17n

2
/2 + 83n/3 + 3) reads + (17n

2
/4

+ 49n/2 + 3) writes, (4)

where the multiplications (lines 1, 2 and 5, Alg. 1) are assumed to be computed
using Karatsuba at the top level and schoolbook underneath, and the reductions
(lines 9 and 10, Alg. 1) are assumed to be computed with radix-r interleaved
Montgomery multiplication in operand scanning form (schoolbook).

Now, if we do a similar cost analysis for Algorithm 2, the cost for the sum of
t products is given by

cost = (tn
2
+ n

2
+ n) muls + (4tn

2
+ 4n

2
+ 2tn) adds + (2tn

2
+ 2n

2
+ 2tn + 2n) reads

+ (tn
2
+ n

2
+ 2tn) writes.

And thus, the cost for a full Fp2 multiplication, consisting of two sums of
products with t = 2, is given by

cost = (6n
2
+ 2n) muls + (24n

2
+ 8n) adds + (12n

2
+ 12n) reads + (6n

2
+ 8n) writes. (5)

If we compare costs (4) and (5), standard lazy reduction appears to beat
the new method solidly for almost every operation type. However, this analysis
ignores key practical considerations, as we discuss below.

Let’s now perform a more practical analysis based on an actual implemen-
tation of the Fp2 multiplication using a 384-bit prime (primes of this size are
relevant in pairing and isogeny-based applications; see §4 and §5). For the imple-
mentations, we consider the use of carry-preserving instructions like mulx and
adx, which are supported by all modern Intel and AMD processors.

In this case, the cost when using the standard lazy reduction technique
(Alg. 1) reduces to

cost = (17n
2
/4 + 2n) muls + (17n

2
/2 + 55n/2− 9) adds + (17n

2
/4 + 40n) reads + (2n

2

+ 47n/2) writes. (6)

And the cost of the new method using Algorithm 2 reduces to

cost = (6n
2
+ 2n) muls + (12n

2
+ 6n) adds + (6n

2
+ 6n) reads + 2n writes. (7)

As can be seen, in practice the memory access costs are greatly reduced
thanks to the use of the general purpose registers (GPRs). Likewise, the use of

14 P. Longa

Fig. 1: Comparison of instruction counts between the proposed method (Algorithm 2,
B = 1) and the standard lazy reduction method (lazyr, Algorithm 1) for computing
a full multiplication over Fp2 . The counts cover all the instructions executing multipli-
cations, additions, subtractions and memory accesses. The theoretical counts closely
follow similar counts from [55,45], while the practical counts are based on actual im-
plementations over a 384-bit prime exploiting carry-preserving instructions (results for
other bitlengths are obtained by extrapolation).

carry-preserving instructions reduces the number of addition instructions signif-
icantly. While this happens across both algorithms, the improvement is much
more pronounced for the new method, especially in the case of memory writes.
This highlights the streamlined nature of the proposed approach, which permits
to eliminate many memory accesses.

The above can be clearly observed in Figure 1, which displays the total num-
ber of instructions (multiplications, additions/subtractions and memory reads
and writes) for different prime sizes, using the theoretical analysis and the analy-
sis based on practical implementations. For the practical cases, the results for the
different bitlengths were extrapolated from the 384-bit prime implementation.
We remark that this analysis is obviously imperfect but still reveals meaningful
information about the performance of the different approaches.

An important observation not visible in Figure 1 due to the extrapolation
is that, in practice, the number of GPRs is limited and starts to force more
memory accesses as the prime bitlength passes certain threshold. This reduces
the relative speedup of the new method for large primes, as the multiplication
elimination via Karatsuba becomes increasingly attractive. As we report in §4
for the application on SIKE, the speed superiority of our method over standard
lazy reduction starts to vanish around the 610-bit mark on an x64 platform.

Efficient Algorithms for Large Prime Characteristic Fields 15

4 Case Study: SIKE

With the advent of the supersingular isogeny Diffie-Hellman (SIDH) key ex-
change protocol by Jao and De Feo [49], a new family of public-key cryptographic
schemes based on the difficulty to compute isogenies between supersingular el-
liptic curves emerged. This family of schemes, conjectured to be secure against
quantum computer attacks, includes protocols such as SIKE [5], B-SIDH [33],
SQISign [42] and Séta [41]. A common feature of all of them is that computations
are performed on elliptic curves defined over Fp2 , which makes arithmetic over
this extension field the main building block of their implementations. This, in
turn, makes the schemes an attractive target for optimization using the proposed
algorithms.

We focus on the most representative scheme of this new family, namely, SIKE.
This protocol, which is the IND-CCA2 secure version of SIDH, has been recently
selected to the third round of NIST’s post-quantum cryptography standardiza-
tion process [65] as an alternate candidate. In the remainder, we focus on SIKE’s
underlying field arithmetic. For complete details about the protocol, the readers
are referred to [5].

SIKE, as well as SIDH, uses a special prime with the form p = 2e2 · 3e3 −
1, where 2e2 ≈ 3e3 for integers e2 and e3. This special form allows further
optimizations to the radix-r Montgomery reduction, as first exploited by Costello
et al. [37] in similar fashion to the techniques used for the so-called Montgomery-
friendly primes (e.g., see [22, §3.2]). Later, Bos and Friedberger [20] suggested
the use of a radix greater than the computer wordsize, with the generalization
r = 2Bw. Faz-Hernandez et al. [40] then showed that this idea indeed worked
well on certain x64 processors for which there is support for the carry-preserving
instructions mulx and adx4.

Similarly to previous optimizations, all the algorithms presented in §3 can be
adapted to exploit the special prime form in SIDH and SIKE. On one hand, we
eliminate all the multiplications by p′ by noting that p′ = −p−1 mod 2Bw ≡ 1
(this holds by requiring that 0 < B ≤ z, where z is the number of 0 w-bit digits
of the value p+ 1). Secondly, the multiplications with the prime p are replaced
by multiplications with the much smaller value p̂ = (p+1)/2zw. As shown below,
intermediate results are easily corrected without extra costs.

Algorithm 4 is the analogous version of Algorithm 2 using the optimizations
above. Taking Eq. (3) as starting point, the core computation in Algorithm 4 is
derived as follows

c = (u+ (up′ mod r) · p)/r = (u+ (u mod 2Bw) · p)/2Bw

= (2Bwbu/2Bwc+ u mod 2Bw · (p+ 1))/2Bw

= bu/2Bwc+ 2(z−B)wu mod 2bw · (p+ 1)/2zw

= bu/2Bwc+ 2(z−B)wq · p̂,
4 Carry-preserving instructions enhance the performance of schoolbook-like multipli-

cation which, in turn, achieves better performance on modern x64 processors when
using B > 1 in a radix-r Montgomery reduction.

16 P. Longa

where u accumulates the value
∑t−1

i=0 ai,j ·bi. As in the generic algorithms from §3,
we manage the case with n mod B 6= 0 by adjusting the computations for the
size-reduced digit at the most significant position (lines 6–9).

Adapting other algorithms to the SIKE primes, such as Algorithm 3 and the
variants in Appendix A, easily follows.

Algorithm 4 Merged sums of products using radix-r Montgomery reduction
in coarsely integrated form for a prime with the form p = 2e2 · 3e3 − 1.

Input: integers (a0, a1, . . . , at−1) and (b0, b1, . . . , bt−1) s.t. ai, bi ∈ [0, 2p) for i =
0, . . . , (t − 1) and 0 ≤

∑t−1
i=0 aibi < pR, where R = 2nw, p = 2e2 · 3e3 − 1, n = dl/we,

l = dlog2 pe, and w is the computer wordsize; z = be2/wc, p̂ = (p + 1)/2zw, and the
radix r = 2Bw s.t. B ∈ Z and 0 < B ≤ z. Integers are represented in radix r, e.g.,
ai = (ai,dn/Be−1, . . . , ai,1, ai,0)r.

Output: the Montgomery residue c =
∑t−1

i=0 aibi ·R−1 mod p s.t. c ∈ [0, 2p).

1: u← 0
2: for j = 0 to bn/Bc − 1 do
3: u← u +

∑t−1
i=0 ai,j · bi

4: q ← u mod 2Bw

5: u← bu/2Bwc+ 2(z−B)wq · p̂
6: if n mod B 6= 0 then
7: u← u +

∑t−1
i=0 ai,dn/Be−1 · bi

8: q ← u mod 2(n mod B)w

9: u← bu/2(n mod B)wc+ 2(z−n mod B)wq · p̂
10: return c← u

Cost analysis. As noted in §3, the proposed algorithms get a significant advan-
tage by eliminating double-precision operations and vastly reducing the number
of memory accesses. If we assume that Karatsuba is not employed in the lower
layers of Algorithm 4 (or the other variants), their costs in terms of multipli-
cations are given by n2 w-bit multiplications for the integer multiplication part
and n(n−be2/wc) w-bit multiplications for the Montgomery reduction part. The
cost of reduction can be brought down further for some special primes for which
the shifting technique by Bos and Friedberger [20] applies. Specifically, if it holds
that e2 mod w > dlog pe mod w, one can shift the value p̂ in order to increase
the number of 0 digits (i.e., z) and, thus, trade multiplications for shifting oper-
ations in the computation of q · p̂. Afterwards, the result can be easily corrected
with a shift in the opposite direction. In this case, the cost of the specialized
Montgomery reduction is of (n · dlog 3e3/we) w-bit multiplications. However, in
many cases the replacement of multiplications by other (traditionally assumed)
cheap instructions ends up increasing the cost of the full computation (if the
cost of a shift instruction is too close to that of a multiplication, any additional
overhead can negate the potential gains). We verified that, on the targeted x64
platform, the proposed method works better without the shifting optimization.

Efficient Algorithms for Large Prime Characteristic Fields 17

To evaluate the performance of the proposed approach, we implemented Al-
gorithm 4 with the Round 3 SIKE parameters p434, p503 and p610, which are
intended for the NIST security levels 1, 2 and 3, respectively [5]. We also evalu-
ate the SIKE prime p377 recently proposed by Longa et al. [61], which is shown
to match NIST’s level 1 using alternative cost models. We compare against the
performance of the state-of-the-art implementations of the same SIKE primes
from the SIDH library [38] and from [61]. These libraries implement the inte-
ger multiplication in two layers using Karatsuba (upper layer) and schoolbook
(lower layer). The reduction part is implemented using a non-interleaved radix-r
Montgomery reduction with B > 1, specialized to SIDH/SIKE primes as de-
scribed above (see [40, Alg. 6]). As is standard, these libraries use lazy reduction
for the multiplication over Fp2 , following Algorithm 1.

Table 1 presents the performance comparison (in terms of clock cycles) for the
Fp2 multiplication on an x64 processor, specifically, a 3.4GHz Intel Core i7-6700
(Skylake) processor. We remark that all the implementations in the comparison
are written in assembly language, and were compiled and tested on the same plat-
form using clang v6.0.1 with the command clang -O3. The table also includes a
detailed instruction count of all the implementations, including multiplications,
additions, subtractions and other instructions. The columns “read” and “write”
present counts of all the corresponding instructions that require a memory ac-
cess operation. We remark that the total instruction counts are provided as an
additional data point and should not be considered to follow actual performance
with high-precision. Especially in the case of the targeted platform, its super-
scalar, deeply pipelined microarchitecture makes extremely difficult to extract
performance data from a straight instruction count. Nevertheless, it can provide
relevant information for a first-order comparison of the different algorithms.

Firstly, we observe that all our implementations achieve much better perfor-
mance, even though they require a higher number of multiplication instructions.
This is due to the significant reduction of other operations, especially of those
requiring read/write memory accesses. Another related aspect is that at certain
threshold the operand sizes become too large and the lack of enough general pur-
pose registers forces the use of many more memory access instructions. This can
be observed for the largest prime under analysis, i.e., p610, which precisely re-
turns the lowest speedup. In the rest of the cases, the speedup goes from ∼ 1.17×
up to 1.31×, with the speedup increasing as the size of the prime decreases. This
is consistent with the results from existing literature that show that Karatsuba
becomes more profitable as sizes grow (see §3). Nevertheless, we demonstrate
that, for the case of a quadratic extension field, schoolbook can still be much
faster for primes up to around 500 bits.

As a side note, we point out that the relative performance improvement
for p377 and p503 is slightly lower than expected because the implementations
from [38] and [61] benefit from the shifting technique on the targeted x64 plat-
form. As we noted before, the proposed method does not seem to benefit from
this technique when the cost of a shift instruction is too close to that of a mul-
tiplication.

18 P. Longa

Table 1: Instruction counts and performance comparison (in terms of clock cycles) be-
tween the proposed method (Algorithm 4, B = 1) and the state-of-the-art implementa-
tions of multiplication over Fp2 for the SIDH and SIKE protocols [38,5,61]. The target
platform is a 3.4GHz Intel Core i7-6700 (Skylake) processor. The comparison covers the
Round 3 SIKE primes p434, p503 and p610, and also the prime p377 proposed in [61].
The instruction counts cover all the instructions executing multiplications, additions,
subtractions and memory accesses. The column “others” includes any other additional
instructions such as logical and shift instructions.

Reference
Instruction count Speed

read write mul add others total % cc %

p377

[61] 360 146 117 438 190 1,251 - 352 -

This work 227 18 192 412 68 917 -26.7% 269 -23.6%

p434

[38] 492 196 179 589 164 1,620 - 440 -

This work 292 21 252 537 74 1,176 -27.4% 341 -22.5%

p503

[38] 568 225 208 677 236 1,914 - 514 -

This work 366 24 336 709 90 1,525 -20.3% 440 -14.4%

p610

[38] 903 368 345 1,019 182 2,817 - 762 -

This work 715 170 500 1,090 117 2,592 -8.0% 734 -3.7%

To assess the overall performance improvement of SIKE using the proposed
method, we integrated our implementations of the quadratic extension field
arithmetic to the SIDH library, version 3.4 [38]. This included both multipli-
cation and squaring over Fp2 . For the latter, we replaced the non-interleaved
Montgomery multiplication available in [38,61] by a faster interleaved version,
given that we were not constrained anymore by the old algorithmic selection that
exploited lazy reduction. All our implementations are written in constant time,
i.e., there are no secret memory accesses and no secret data branches. Therefore,
they offer protection against timing and cache attacks at the software level.

The results on a 3.4GHz Intel Core i7-6700 (Skylake) processor are summa-
rized in Table 2. Following standard practice, we disabled TurboBoost during
the tests. Compilation was carried out using clang v6.0.1 with the command
clang -O3.

As can be seen, we achieve speedups of 1.30×, 1.30×, 1.19× and 1.06× for
SIKEp377, SIKEp434, SIKEp503 and SIKEp610, respectively. As expected, the
biggest speedups correspond to the smaller parameter sets, with a significant
improvement still observed up to the ∼ 500-bit parameter, i.e., SIKEp503.

Efficient Algorithms for Large Prime Characteristic Fields 19

Table 2: Performance comparison (in terms of clock cycles) between the state-of-the-art
implementation of SIKE and its arithmetic over Fp2 [38,5] and the optimized imple-
mentation using the method proposed in this work (Algorithm 4, B = 1). Performance
(in cycles) is reported for multiplication and squaring over Fp2 and (in million of cy-
cles) for SIKE’s key generation (Gen), encapsulation (Enc) and decapsulation (Dec).
The target platform is a 3.4GHz Intel Core i7-6700 (Skylake) processor. The compar-
ison covers the Round 3 SIKE parameters sets 1 (SIKEp434), 2 (SIKEp503) and 3
(SIKEp610), and also the alternative level 1 parameter set SIKEp377 [61].

SIDH library v3.4 [38] This work

NIST log p
Speed (cc) Speed (× 106 cc) Speed (cc) Speed (× 106 cc)

sec level Fp2mul Fp2 sqr Gen Enc Dec Fp2mul Fp2 sqr Gen Enc Dec

1 † 377 352 258 3.9 7.3 7.2 269 187 3.0 5.6 5.6

1 434 440 322 5.9 9.7 10.3 341 232 4.6 7.4 7.9

2 503 514 382 8.2 13.5 14.4 440 300 6.9 11.4 12.1

3 610 762 570 14.9 27.3 27.4 734 484 14.0 25.7 25.8

† Alternative parameter set for NIST Level 1 based on the analysis by Longa et al. [61].

5 Case Study: optimal ate pairing over BLS12-381

Since the seminal papers by Sakai et al. [66] on identity-based non-interactive
authentication key agreement and by Joux [50] on tripartite one-round key agree-
ment, bilinear pairings have become a powerful tool in the design of a myriad of
novel cryptographic schemes such as identity-based cryptosystems [19,27,24,28]
and non-interactive zero-knowledge proof systems [47,46].

One critical drawback of pairings is their relatively expensive running time.
This motivated an extraordinary effort by the research community to improve
efficiency on several fronts, including the construction of pairing-friendly ellip-
tic curves [12,25,69,43], the development and improvement of the algorithms for
the Miller loop and final exponentiation [11,13,14,48,71], the optimization of the
explicit formulas for the curve arithmetic [34,35,3], and the design and optimiza-
tion of towering schemes of extension fields Fpk [54,17,3]. Readers are referred
to [1] for a modern take on the design and implementation of pairings.

Here, we focus on the optimization of the arithmetic over Fpk using the
algorithms proposed in this work. To illustrate the performance gains, we target
a modern and popular pairing-friendly curve, namely BLS12-381 [23], using an
optimal ate pairing instantiation [71]. BLS12-381, proposed by Bowe [23], is an
elliptic curve from the Barreto-Lynn-Scott (BLS) family [12] that targets the
128-bit security level and is undergoing a standardization effort in the IETF
CFRG [67]. Most notoriously, this curve is widely used in zero-knowledge proofs
and digital signatures in blockchain applications like Zcash [6] and Ethereum
2.0 [26]5.

5 In fact, the main motivation for the design of BLS12-381 was its use for Zcash’s
zk-SNARK proofs.

20 P. Longa

BLS12-381 is defined by the curve E(Fp) : y2 = x3 + 4, with embedding
degree k = 12. Relevant to our analysis is that, in practice, the arithmetic
implementation over Fpk is realized via the following towering scheme:

– Fp2 = Fp[i]/(i2 − β), where β = −1.
– Fp4 = Fp2 [s]/(s2 − ξ), where ξ = 1 + i.
– Fp6 = Fp2 [v]/(v3 − ξ).
– Fp12 = Fp4 [t]/(t3 − s) or Fp6 [w]/(w2 − v) or Fp2 [w]/(ω6 − ξ).

Given that for pairings, generic Montgomery multiplication (i.e., variants
that do not exploit any special form in the prime) is known to provide the best
performance in software, straight implementations of the variants discussed in §3
are relevant in this case. More specifically, variants that exploit the synergy be-
tween schoolbook algorithms and carry-preserving instructions, as we observed
in §4, are expected to outperform other approaches. Similar to the case of SIKE,
we observed that the implementation of multiplication over Fp2 can be efficiently
carried out using the interleaved radix-r Montgomery multiplication variant in
coarsely integrated form (Algorithm 2), with B = 1 to make full use of school-
book.

Without loss of generalization, we discuss next the implementation options
for the upper layers in the targeted tower field.

The case of multiplication over Fp6 . There are multiple choices to implement
multiplication over Fp6 . For example, it can be implemented on top of the Fp2

arithmetic layer using our method for the multiplication over Fp2 and Karatsuba
at the Fp6 level with or without lazy reduction. Or it could be implemented using
the proposed method by seeing Fp6 as a direct extension of Fp2 and expressing
the operations down to the base field, as discussed next.

Let Fp6 = Fp2 [v]/(v3 − ξ) as in the towering scheme above. And let a =
a0+a1v+a2v

2 be an element in Fp6 , where ai = (ai,0, ai,1) ∈ Fp2 for i = {0, 1, 2}.
Then, the multiplication c = (c0, c1, c2) = a · b in Fp6 is given by

c0,0 = a0,0b0,0 − a0,1b0,1 + a1,0b2,0 − a1,1b2,1 + a2,0b1,0 − a2,1b1,1 − a1,0b2,1 − a1,1b2,0 − a2,0b1,1

− a2,1b1,0.

= a0,0b0,0 − a0,1b0,1 + a1,0(b2,0 − b2,1)− a1,1(b2,0 + b2,1) + a2,0(b1,0 − b1,1)− a2,1(b1,0 + b1,1).

c0,1 = a0,0b0,1 + a0,1b0,0 + a1,0b2,1 + a1,1b2,0 + a2,0b1,1 + a2,1b1,0 + a1,0b2,0 − a1,1b2,1 + a2,0b1,0

− a2,1b1,1.

= a0,0b0,1 + a0,1b0,0 + a1,0(b2,0 + b2,1) + a1,1(b2,0 − b2,1) + a2,0(b1,0 + b1,1) + a2,1(b1,0 − b1,1).

c1,0 = a0,0b1,0 − a0,1b1,1 + a1,0b0,0 − a1,1b0,1 + a2,0b2,0 − a2,1b2,1 − a2,0b2,1 − a2,1b2,0.

= a0,0b1,0 − a0,1b1,1 + a1,0b0,0 − a1,1b0,1 + a2,0(b2,0 − b2,1)− a2,1(b2,0 + b2,1).

c1,1 = a0,0b1,1 + a0,1b1,0 + a1,0b0,1 + a1,1b0,0 + a2,0b2,1 + a2,1b2,0 + a2,0b2,0 − a2,1b2,1.

= a0,0b1,1 + a0,1b1,0 + a1,0b0,1 + a1,1b0,0 + a2,0(b2,0 + b2,1) + a2,1(b2,0 − b2,1).

c2,0 = a0,0b2,0 − a0,1b2,1 + a1,0b1,0 − a1,1b1,1 + a2,0b0,0 − a2,1b0,1.

c2,1 = a0,0b2,1 + a0,1b2,0 + a1,0b1,1 + a1,1b1,0 + a2,0b0,1 + a2,1b0,0.

(8)

After regrouping common coefficients and assuming that the four values
(b1,0 + b1,1), (b1,0 − b1,1), (b2,0 + b2,1) and (b2,0 − b2,1) are pre-calculated, one

Efficient Algorithms for Large Prime Characteristic Fields 21

can apply either Algorithm 2 or 3 with a cost of 6 × 6 = 36 multiplications in
the base field.

Note that, in contrast to a generic sum of products, the polynomial multi-
plication modulo f offers opportunities to eliminate some multiplications using
Karatsuba. For example, in the term c0,1 one could compute a0,0b0,1 + a0,1b0,0
as (a0,0 + a0,1)(b0,0 + b0,1) − a0,0b0,0 − a0,1b0,1 with only one base field mul-
tiplication, using intermediate values from c0,0. However, these replacements
should be applied with care, since they break the algorithm flow (recall that
inner multiplications are interleaved with reduction computations) and increase
memory usage, potentially neglecting any savings obtained by eliminating mul-
tiplications. Ultimately, the benefit of combining Karatsuba with the proposed
algorithms might depend on the target platform (see Appendix A for details on
another Karatsuba variant).

The case of multiplication over Fp12 . Similarly in this case, we can leverage
the multiplications over Fp2 or over Fp6 discussed above, in combination with
Karatsuba with or without lazy reduction at the Fp12 layer. But we can also
do the computation by writing the full polynomial multiplication down to the
base field level. Recall that Fp12 = Fp2 [w]/(ω6 − ξ), where ξ = 1 + i. It is
straightforward to determine that, in this case, we need to compute twelve terms
each consisting of a sum of twelve products (assuming the pre-calculation of ten
values, similarly to multiplication over Fp6). Similar comments apply to the
possibility of exploiting Karatsuba to products in adjacent terms.

Performance results. To evaluate the proposed algorithms, we have integrated
our implementations to the RELIC cryptographic library, version 0.5.0 [2]. This
library contains, to our knowledge, some of the most efficient open-source im-
plementations of pairings. In particular, it applies the generalized lazy reduction
to the full extension field and elliptic curve arithmetic, as proposed in [3].

In our experiments, we use a 3.4GHz Intel Core i7-6700 (Skylake) processor
with TurboBoost disabled to follow standard practice. Compilation was carried
out using clang v6.0.1 with the command clang -O3.

Table 3 compares RELIC’s implementation of the extension field multipli-
cations for BLS12-381 against the various options that we discussed for our
algorithms. We use the following notation to specify a given strategy: first, we
indicate up to which layer an algorithm is applied, followed by the approach taken
for the upper layers (if any). For the latter, we have two options: for the up-
per layers, one can use either straight Karatsuba (called “Karat”) or Karatsuba
with lazy reduction (called “Karat + lazyr”). For example, if the table indicates
“Alg. 2 over Fp6 . Karat + lazyr over Fp12”, it means that we use Algorithm 2
to implement multiplication up to the Fp6 layer, with the upper layer over Fp12

implemented with a formula that exploits Karatsuba with lazy reduction. In all
the cases, we set B = 1 for Algorithm 2, which gives optimal performance on the
targeted x64 platform. As noted before, this schoolbook-like algorithmic variant
implementing an interleaved modular multiplication in coarsely integrated form

22 P. Longa

fully exploits the availability of carry-preserving instructions. We comment that,
at least on the targeted processor, the algorithm should achieve similar perfor-
mance for small values of B, as long as an increase in the radix size does not
put additional pressure on the register usage. For example, in our experiments,
we obtained similar results for B = 1 and B = 2.

Table 3 reveals that the full use of the new method solidly beats the state-
of-the-art implementations up to the Fp6 layer. For the Fp12 multiplication, the
optimal performance is achieved by using the implementation over Fp6 and im-
plementing the upper layer over Fp12 using Karatsuba. This is due to a similar
effect observed in §3 and §4: at certain threshold Karatsuba starts to outperform
schoolbook algorithms when multiplications get eliminated at a sufficiently faster
rate. Interestingly enough, we do not require the use of lazy reduction because
a basic implementation based on Karatsuba already achieves optimal perfor-
mance. This is the consequence of minimizing the cost of reduction through the
proposed approach, and this greatly reduces the complexity of the implementa-
tion. As in §4, we also obtain a significant gain in the computation of a squaring
over Fp2 . This is the result of replacing the non-interleaved Montgomery multi-
plication available in [2] by a faster interleaved version, given that we were not
limited anymore to the old algorithmic selection that exploited lazy reduction.

Finally, Table 3 also reports the cycle count for the full pairing computation
using an optimal ate instantiation. We observe that the new BLS12-381 imple-
mentation is much simpler and compact and still achieves a 1.37× speedup over
the state-of-the-art on the targeted x64 processor6.

6 Impact to Other Scenarios and Future Work

The simple but effective approach that we have proposed in this work changes
the paradigm which the implementation of extension field arithmetic has long
relied upon. This immediately impacts the software implementation of cryp-
tographic schemes such as those based on bilinear pairings and supersingular
isogenies, as we showed in this work with speed record breaking implementa-
tions for both scenarios. However, we also expect the approach to influence the
development of efficient techniques and implementations for other software plat-
forms, constrained devices and hardware architectures. We discuss below a few
possibilities for some representative platforms.

Software platforms. As we saw in §4 and §5, software imposes some limita-
tions in the number of registers that are available, and this ultimately dictates the
memory costs. A streamlined, schoolbook-like algorithm like Algorithm 2 that
minimizes memory friction and reduces the use of certain operations such as addi-
tions (e.g., when there is support for carry-preserving instructions) achieves high

6 Some fun trivia: the reported BLS12-384 implementation runs a 128-bit secure pair-
ing in (close to) half a millisecond, which is precisely the speed record mark hit by a
BN254 pairing almost 11 years ago [3] before new attacks emerged and pushed field
sizes up.

Efficient Algorithms for Large Prime Characteristic Fields 23

Table 3: Performance comparison (in terms of clock cycles) between the state-of-the-
art implementation of an optimal ate pairing over BLS12-381 and its extension field
arithmetic [2] and the optimized implementation using the method proposed in this
work. The target platform is a 3.4GHz Intel Core i7-6700 (Skylake) processor.

Reference Strategy Speed (cc) Improv.

Fp2 mul

RELIC [2] Separated mul/rdc. Karat + lazyr 559 -
This work Alg. 2 over Fp2 357 -36%

Fp2 sqr

RELIC [2] Separated mul/rdc 451 -
This work Interleaved mul/rdc 273 -40%

Fp6 mul

RELIC [2] Separated mul/rdc. Karat + lazyr 3,375 -
This work Alg. 2 over Fp2 . Karat over Fp6 2,695 -20%

This work Alg. 2 over Fp2 . Karat + lazyr over Fp6 2,961 -13%

This work Alg. 2 over Fp6 2,344 -31%

Fp12 mul

RELIC [2] Separated mul/rdc. Karat + lazyr 10,083 -
This work Alg. 2 over Fp2 . Karat over Fp6 and Fp12 7,845 -22%

This work Alg. 2 over Fp2 . Karat + lazyr over Fp6 and Fp12 8,800 -13%

This work Alg. 2 over Fp6 . Karat over Fp12 7,841 -22%

This work Alg. 2 over Fp6 . Karat + lazyr over Fp12 8,114 -20%

This work Alg. 2 over Fp12 8,315 -18%

Pairing

RELIC [2] Separated mul/rdc. Karat + lazyr 3,135,300 -
This work Alg. 2 over Fp6 . Karat over Fp12 2,287,600 -27%

performance on modern x64 platforms. Alternative methods based on Karatsuba
are expected to become attractive at relatively large prime sizes, when the re-
duction in multiplications compensates for the bumpier algorithmic flow with
higher number of memory accesses and additions.

We expect a similar (if not better) situation with vectorized implementations
using the recent AVX-512 vector instructions available in some Intel processors.
For example, the optional extension “Integer Fused Multiply and Add” (IFMA)
includes MULADD instructions that perform up to eight 52-bit multiplications
followed by accumulations with 64-bit values [32]. For example, this high level of
parallelism can be efficiently exploited using the rich arithmetic of SIKE, as re-
cently demonstrated by Cheng et al. [29]. Future work could involve studying the
performance of the proposed method using the operand and product-scanning
forms, in combination with different vectorization strategies.

Similar comments apply to implementations using the ARM NEON vector
engine [57]. In this case, there is access to powerful, high-throughput MULADD
instructions that perform up to two 32-bit multiplications followed by accumula-
tions with 64-bit values. Thus, these instructions would favor an algorithmic vari-
ant of Eq. (3) in product-scanning form. In the case of multiplication over Fp2 ,

24 P. Longa

for example, the 2-way NEON execution naturally adapts to perform the two-
term computation (i.e., the operations c0 = a0b0 + a1b1β and c1 = a0b1 + a1b0)
in parallel.

For the case of scalar implementations on 64-bit ARMv8 processors, the rela-
tively high cost of multiplication instructions might make the case for Karatsuba
with lazy reduction. However, memory accesses are also expensive, which would
favor a more streamlined execution as in the proposed algorithms. This requires
actual experimentation to determine which algorithm would be optimal.

Constrained platforms. A popular platform in this category is ARM Cortex-
M4. For this case, one can exploit the powerful, one-cycle MULADD instructions
available in the DSP extension. These instructions can perform a 32-bit multi-
plication plus 64-bit accumulation, or a 32-bit multiplication plus two 32-bit
accumulations. The low cost of multiplication, added to the potential of elimi-
nating the overhead from addition instructions in a schoolbook-like computation
(e.g., see [58, §3.4]), makes our approach using Algorithm 2 a perfect fit.

Hardware platforms. On hardware platforms like FPGAs, there are two im-
portant metrics to consider when choosing and designing an algorithm: flexibility
to parallelize independent tasks, and the area-time (AT) cost. With this taken
into account, our finely-integrated variant (i.e., Algorithm 3) provides an opti-
mal level of parallelization at the algorithmic level without adding excessive area
overhead. Note that Karatsuba and lazy reduction are not ideal in many cases
because they introduce overheads and storage requirements that might hurt one
or both of the hardware metrics mentioned above. Karatsuba permits to subdi-
vide computations in multiple, smaller multiplies that can be done in parallel,
but the extra circuitry can neglect a good AT trade-off on pipelined architec-
tures. In contrast, using hardware adaptations of Algorithm 3 would naturally
enable a parallel computation of up to (t+1) products (note that all the products
in lines 7 and 8 in the inner for-loop are independent from each other).

For applications that can deal with the extra overhead and look for a reduc-
tion in the number of multiplications, we discuss two Karatsuba variants with
subquadratic complexity in Appendix A.

Other applications. At the core, the proposed method gains in efficiency by
eliminating modular reductions. Therefore, it is natural to conclude that primes
that support a very fast reduction (e.g., Mersenne or pseudo-Mersenne primes)
would not gain a significant advantage.

Finally, we comment that other reduction algorithms in the literature could
exploit the method advantageously. For example, this is the case of Barrett
reduction [16] and its interleaved version [53, §2.1], which can be extended to
support merged sum of products with a unified modular reduction, as done in
this work.

Efficient Algorithms for Large Prime Characteristic Fields 25

References

1. D. F. Aranha, P. S. L. M. Barreto, P. Longa, and J. E. Ricardini. The realm of the
pairings. In Selected Areas in Cryptography – SAC 2013, volume 8282 of Lecture
Notes in Computer Science, pages 3–25. Springer, 2013.

2. D. F. Aranha, C. P. L. Gouvêa, T. Markmann, R. S. Wahby, and K. Liao. RELIC
is an Efficient LIbrary for Cryptography. https://github.com/relic-toolkit/

relic.
3. D. F. Aranha, K. Karabina, P. Longa, C. H. Gebotys, and J. López. Faster explicit

formulas for computing pairings over ordinary curves. In Advances in Cryptology
– EUROCRYPT 2011, volume 6632 of Lecture Notes in Computer Science, pages
48–68. Springer, 2011.

4. R. M. Avanzi. Aspects of hyperelliptic curves over large prime fields in software
implementations. In Cryptographic Hardware and Embedded Systems – CHES 2004,
volume 3156 of Lecture Notes in Computer Science, pages 148–162. Springer, 2004.

5. R. Azarderakhsh, M. Campagna, C. Costello, L. De Feo, B. Hess, A. Hutchinson,
A. Jalali, K. Karabina, D. Jao, B. Koziel, B. LaMacchia, P. Longa, M. Naehrig,
G. Pereira, J. Renes, V. Soukharev, and D. Urbanik. Supersingular Isogeny Key
Encapsulation (SIKE), 2017–2022. Specification available at https://sike.org.

6. E. B.-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Zerocash: Decentralized anonymous payments from Bitcoin. In IEEE Symposium
on Security and Privacy – SP 2014, pages 459–474. IEEE Computer Society, 2014.

7. J.-C. Bajard and S. Duquesne. Montgomery-friendly primes and applications to
cryptography. J. Cryptogr. Eng., 11(4):399–415, 2021.

8. S. Baktir and B. Sunar. Optimal tower fields. IEEE Trans. Computers,
53(10):1231–1243, 2004.

9. R. Barbulescu and S. Duquesne. Updating key size estimations for pairings. J.
Cryptol., 32(4):1298–1336, 2019.

10. R. Barbulescu, P. Gaudry, and T. Kleinjung. The tower number field sieve. In
Advances in Cryptology – ASIACRYPT 2015, volume 9453 of Lecture Notes in
Computer Science, pages 31–55. Springer, 2015.

11. P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. Efficient algorithms for
pairing-based cryptosystems. In Advances in Cryptology – CRYPTO 2002, volume
2442 of Lecture Notes in Computer Science, pages 354–368. Springer, 2002.

12. P. S. L. M. Barreto, B. Lynn, and M. Scott. Constructing elliptic curves with
prescribed embedding degrees. In Security in Communication Networks – SCN
2002, volume 2576 of Lecture Notes in Computer Science, pages 257–267. Springer,
2002.

13. P. S. L. M. Barreto, B. Lynn, and M. Scott. On the selection of pairing-friendly
groups. In Selected Areas in Cryptography – SAC 2003, volume 3006 of Lecture
Notes in Computer Science, pages 17–25. Springer, 2003.

14. P. S. L. M. Barreto, B. Lynn, and M. Scott. Efficient implementation of pairing-
based cryptosystems. J. Cryptol., 17(4):321–334, 2004.

15. P. S. L. M. Barreto and M. Naehrig. Pairing-friendly elliptic curves of prime order.
In Selected Areas in Cryptography – SAC 2006, volume 3897 of Lecture Notes in
Computer Science, pages 319–331. Springer, 2006.

16. P. Barrett. Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor. In Advances in Cryptology –
CRYPTO ’86, volume 263 of Lecture Notes in Computer Science, pages 311–323.
Springer, 1986.

https://github.com/relic-toolkit/relic
https://github.com/relic-toolkit/relic
https://sike.org

26 P. Longa

17. N. Benger and M. Scott. Constructing tower extensions of finite fields for im-
plementation of pairing-based cryptography. In International Workshop on the
Arithmetic of Finite Fields – WAIFI 2010, volume 6087 of Lecture Notes in Com-
puter Science, pages 180–195. Springer, 2010.

18. J.-L. Beuchat, J. E. González-Dı́az, S. M., E. Okamoto, F. Rodŕıguez-Henŕıquez,
and T. Teruya. High-speed software implementation of the optimal ate pairing over
Barreto-Naehrig curves. In Pairing-Based Cryptography – Pairing 2010, volume
6487 of Lecture Notes in Computer Science, pages 21–39. Springer, 2010.

19. D. Boneh and M.K. Franklin. Identity-based encryption from the Weil pairing.
In Advances in Cryptology – CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 213–229. Springer, 2001.

20. J. W. Bos and S. Friedberger. Fast arithmetic modulo 2x py ± 1. In IEEE Sym-
posium on Computer Arithmetic – ARITH 2017, pages 148–155. IEEE Computer
Society, 2017.

21. J. W. Bos and S. Friedberger. Faster modular arithmetic for isogeny-based crypto
on embedded devices. J. Cryptogr. Eng., 10(2):97–109, 2020.

22. J. W. Bos and P. L. Montgomery. Montgomery arithmetic from a software per-
spective. Chapter 2 of Topics in Computational Number Theory Inspired by Peter
L. Montgomery, pages 10–39, 2017.

23. S. Bowe. BLS12-381: New zk-SNARK elliptic curve construction, 2017. https:

//electriccoin.co/blog/new-snark-curve/.
24. X. Boyen and B. Waters. Anonymous hierarchical identity-based encryption (with-

out random oracles). In Advances in Cryptology – CRYPTO 2006, volume 4117 of
Lecture Notes in Computer Science, pages 290–307. Springer, 2006.

25. F. Brezing and A. Weng. Elliptic curves suitable for pairing based cryptography.
Des. Codes Cryptogr., 37(1):133–141, 2005.

26. J. Buck. Ethereum upgrade Byzantium is live, verifies first
ZK-Snark proof, 2017. https://cointelegraph.com/news/

ethereum-upgrade-byzantium-is-live-verifies-first-zk-snark-proof.
27. J. C. Cha and J. H. Cheon. An identity-based signature from gap Diffie-Hellman

groups. In Public Key Cryptography – PKC 2003, volume 2567 of Lecture Notes
in Computer Science, pages 18–30. Springer, 2003.

28. L. Chen, Z. Cheng, and N. P. Smart. Identity-based key agreement protocols from
pairings. International Journal of Information Security, 6(4):213–241, 2007.

29. H. Cheng, G. Fotiadis, J. Großschädl, and P. Y. A. Ryan. Highly vectorized SIKE
for AVX-512. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2022(2):41–68, 2022.

30. R. C. C. Cheung, S. Duquesne, J. Fan, N. Guillermin, I. Verbauwhede, and G. Xi-
aoxu Yao. FPGA implementation of pairings using residue number system and
lazy reduction. In Cryptographic Hardware and Embedded Systems – CHES 2011,
volume 6917 of Lecture Notes in Computer Science, pages 421–441. Springer, 2011.

31. P. G. Comba. Exponentiation cryptosystems on the IBM PC. IBM Systems Jour-
nal, 29(4):526–538, 1990.

32. Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s
Manual. https://www.intel.com/content/www/us/en/developer/articles/

technical/intel-sdm.html, 2021.
33. C. Costello. B-SIDH: Supersingular isogeny Diffie-Hellman using twisted torsion.

In Advances in Cryptology – ASIACRYPT 2020, volume 12492 of Lecture Notes in
Computer Science, pages 440–463. Springer, 2020.

34. C. Costello, H. Hisil, C. Boyd, J. M. González Nieto, and K. Koon-Ho Wong. Faster
pairings on special Weierstrass curves. In Pairing-Based Cryptography – Pairing

https://electriccoin.co/blog/new-snark-curve/
https://electriccoin.co/blog/new-snark-curve/
https://cointelegraph.com/news/ethereum-upgrade-byzantium-is-live-verifies-first-zk-snark-proof
https://cointelegraph.com/news/ethereum-upgrade-byzantium-is-live-verifies-first-zk-snark-proof
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html

Efficient Algorithms for Large Prime Characteristic Fields 27

2009, volume 5671 of Lecture Notes in Computer Science, pages 89–101. Springer,
2009.

35. C. Costello, T. Lange, and M. Naehrig. Faster pairing computations on curves
with high-degree twists. In Public Key Cryptography – PKC 2010, volume 6056 of
Lecture Notes in Computer Science, pages 224–242. Springer, 2010.

36. C. Costello and P. Longa. FourQ: Four-dimensional decompositions on a Q-curve
over the Mersenne prime. In Advances in Cryptology – ASIACRYPT 2015, volume
9452 of Lecture Notes in Computer Science, pages 214–235. Springer, 2015.

37. C. Costello, P. Longa, and M. Naehrig. Efficient algorithms for supersingular
isogeny Diffie-Hellman. In Advances in Cryptology – CRYPTO 2016, volume 9814
of LNCS, pages 572–601. Springer, 2016.

38. C. Costello, P. Longa, and M. Naehrig. SIDH Library. https://github.com/

Microsoft/PQCrypto-SIDH, 2016–2022.

39. S. R. Dussé and B. S. Kaliski Jr. A cryptographic library for the Motorola
DSP56000. In Advances in Cryptology – EUROCRYPT’90, volume 473 of Lec-
ture Notes in Computer Science, pages 230–244. Springer, 1991.

40. Armando Faz-Hernández, Julio López Hernandez, Eduardo Ochoa-Jiménez, and
Francisco Rodŕıguez-Henŕıquez. A faster software implementation of the super-
singular isogeny Diffie-Hellman key exchange protocol. IEEE Trans. Computers,
67(11):1622–1636, 2018.

41. L. De Feo, C. Delpech de Saint Guilhem, T. Boris Fouotsa, P. Kutas, A. Leroux,
C. Petit, J. Silva, and B. Wesolowski. Séta: Supersingular encryption from torsion
attacks. In Advances in Cryptology – ASIACRYPT 2021, volume 13093 of Lecture
Notes in Computer Science, pages 249–278. Springer, 2021.

42. L. De Feo, D. Kohel, A. Leroux, C. Petit, and B. Wesolowski. SQISign: Compact
post-quantum signatures from quaternions and isogenies. In Advances in Cryp-
tology – ASIACRYPT 2020, volume 12491 of Lecture Notes in Computer Science,
pages 64–93. Springer, 2020.

43. D. Freeman. Constructing pairing-friendly elliptic curves with embedding degree
10. In Algorithmic Number Theory – ANTS-VII, volume 4076 of Lecture Notes in
Computer Science, pages 452–465. Springer, 2006.

44. C. C. F. Pereira Geovandro, M. A. Simpĺıcio Jr., M. Naehrig, and P. S. L. M.
Barreto. A family of implementation-friendly BN elliptic curves. J. Syst. Softw.,
84(8):1319–1326, 2011.

45. J. Großschädl, R. M. Avanzi, E. Savas, and S. Tillich. Energy-efficient software
implementation of long integer modular arithmetic. In Cryptographic Hardware
and Embedded Systems – CHES 2005, volume 3659 of Lecture Notes in Computer
Science, pages 75–90. Springer, 2005.

46. J. Groth. Short pairing-based non-interactive zero-knowledge arguments. In Ad-
vances in Cryptology – ASIACRYPT 2010, volume 6477 of Lecture Notes in Com-
puter Science, pages 321–340. Springer, 2010.

47. J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups.
In Advances in Cryptology – EUROCRYPT 2008, volume 4965 of Lecture Notes in
Computer Science, pages 415–432. Springer, 2008.

48. F. Hess, N. Smart, and F. Vercauteren. The eta pairing revisited. IEEE Transac-
tions on Information Theory, 52(10):4595–4602, 2006.

49. D. Jao and L. De Feo. Towards quantum-resistant cryptosystems from supersin-
gular elliptic curve isogenies. In Post-Quantum Cryptography – PQCrypto 2011,
volume 7071 of LNCS. Springer, 2011.

https://github.com/Microsoft/PQCrypto-SIDH
https://github.com/Microsoft/PQCrypto-SIDH

28 P. Longa

50. A. Joux. A one-round protocol for tripartite Diffie-Hellman. In Algorithm Num-
ber Theory Symposium – ANTS IV, volume 1838 of Lecture Notes in Computer
Science, pages 385–394. Springer, 2000.

51. A. Karatsuba and Y. Ofman. Multiplication of Many-Digital Numbers by Auto-
matic Computers. Doklady Akad. Nauk SSSR, (145):293–294, 1962. Translation
in Physics-Doklady 7, 595-596, 1963.

52. T. Kim and R. Barbulescu. Extended tower number field sieve: A new complexity
for the medium prime case. In Advances in Cryptology – CRYPTO 2016, volume
9814 of Lecture Notes in Computer Science, pages 543–571. Springer, 2016.

53. M. Knezevic, F. Vercauteren, and I. Verbauwhede. Faster interleaved modular
multiplication based on Barrett and Montgomery reduction methods. IEEE Trans.
Computers, 59(12):1715–1721, 2010.

54. N. Koblitz and A. Menezes. Pairing-based cryptography at high security levels.
In International Conference on Cryptography and Coding, volume 3796 of Lecture
Notes in Computer Science, pages 13–36. Springer, 2005.

55. Ç. K. Koç, T. Acar, and B. S. Kaliski Jr. Analyzing and comparing Montgomery
multiplication algorithms. Micro, IEEE, 16(3):26–33, 1996.

56. C. H. Lim and H. S. Hwang. Fast implementation of elliptic curve arithmetic in
GF(pn). In Workshop on Practice and Theory in Public Key Cryptography – PKC
2000, volume 1751 of Lecture Notes in Computer Science, pages 405–421. Springer,
2000.

57. ARM Limited. NEON programmer’s guide, v1.0. https://developer.arm.com/

documentation/den0018/a/?lang=en, 2013.
58. Z. Liu, P. Longa, G. C. C. F. Pereira, O. Reparaz, and H. Seo. FourQ on embedded

devices with strong countermeasures against side-channel attacks. IEEE Trans.
Dependable Secur. Comput., 17(3):536–549, 2020.

59. Z. Liu, H. Seo, A. Castiglione, K.-K. R. Choo, and H. Kim. Memory-efficient
implementation of elliptic curve cryptography for the Internet-of-Things. IEEE
Trans. Dependable Secur. Comput., 16(3):521–529, 2019.

60. P. Longa. High-speed elliptic curve and pairing-based cryptography. PhD thesis,
University of Waterloo, 2011.

61. P. Longa, W. Wang, and J. Szefer. The cost to break SIKE: A comparative
hardware-based analysis with AES and SHA-3. In Advances in Cryptology –
CRYPTO 2021, volume 12827 of Lecture Notes in Computer Science, pages 402–
431. Springer, 2021.

62. A. Menezes, P. Sarkar, and S. Singh. Challenges with assessing the impact of
NFS advances on the security of pairing-based cryptography. In Paradigms in
Cryptology – Mycrypt 2016, volume 10311 of Lecture Notes in Computer Science,
pages 83–108. Springer, 2016.

63. P. L. Montgomery. Modular multiplication without trial division. Mathematics of
Computation, 44(170):pp. 519–521, 1985.

64. N. El Mrabet and M. Joye. Guide to pairing-based cryptography. Chapman &
Hall/CRC Cryptography and Network Security Series (CRC Press, 2017).

65. National Institute of Standards and Technology (NIST). Post-quantum
cryptography standardization, 2017–2022. https://csrc.nist.gov/projects/

post-quantum-cryptography/post-quantum-cryptography-standardization.
66. R. Sakai, K. Ohgishi, and M. Kasahara. Cryptosystems based on pairing. In

Symposium on Cryptography and Information Security – SCIS 2000, Japan, 2000.
67. Y. Sakemi, T. Kobayashi, T. Saito, and R. Wahby. Pairing-

Friendly Curves, 2021. https://datatracker.ietf.org/doc/html/

draft-irtf-cfrg-pairing-friendly-curves-10.

https://developer.arm.com/documentation/den0018/a/?lang=en
https://developer.arm.com/documentation/den0018/a/?lang=en
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-pairing-friendly-curves-10
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-pairing-friendly-curves-10

Efficient Algorithms for Large Prime Characteristic Fields 29

68. M. Scott. Implementing cryptographic pairings. In Pairing-Based Cryptography –
Pairing 2007, volume 4575 of Lecture Notes in Computer Science, pages 177–196.
Springer, 2007.

69. M. Scott and P. S. L. M. Barreto. Generating more MNT elliptic curves. Des.
Codes Cryptogr., 38(2):209–217, 2006.

70. T. Unterluggauer and E. Wenger. Efficient pairings and ECC for embedded sys-
tems. In Cryptographic Hardware and Embedded Systems – CHES 2014, volume
8731 of Lecture Notes in Computer Science, pages 298–315. Springer, 2014.

71. F. Vercauteren. Optimal pairings. IEEE Transactions on Information Theory,
56(1):455–461, 2010.

72. D. Weber and T. F. Denny. The solution of McCurley’s discrete log challenge. In
Advances in Cryptology – (CRYPTO ’98), volume 1462 of LNCS, pages 458–471.
Springer, 1998.

A Other algorithmic variants

Karatsuba variants. In this section, we discuss two variants using Karatsuba
that could be amenable for certain applications looking to reduce the number of
multiplies.

The first one was already mentioned in §5 and applies to polynomial multipli-
cation in general: for certain sums of two products, it is possible to use products
from adjacent terms to convert them to a Karatsuba multiplication and save a
multiplication (see “The case of multiplication over Fp6” subsection). Since the
proposed algorithms interleave integer multiplications and reduction products,
some care has to be taken into account to avoid excessive use of storage.

Below, we propose another option that interleaves Karatsuba multiplication
with the radix-r Montgomery reduction. The new algorithm is shown in Algo-
rithm 5 using 2-way Karatsuba.

Let’s focus on the simple case with t = 1, i.e., a standard modular multipli-
cation a ·b mod p (the sum-of-products case easily follows). The basic idea of the
algorithm is to first split operands in two halves (for a 2-way Karatsuba) using
the generalized radix r = 2Bw = 2dn/2e, such that operands are represented as
(a1, a0)2dn/2e . Then, from Eq. (2) and proceeding in product-scanning form, we
have that:

u =
(
a0b0 + q0p0

)
/r, with q0 = a0b0p

′
mod r

=
(
u + a1b0 + a0b1 + q0p1 + q1p0

)
/r, with q1 = (u + a1b0 + a0b1 + q0p1)p

′
mod r

= u + a1b1 + q1p1.

Finally, we simply replace the intermediate computation (a1b0 + a0b1) by
(a0 + a1)(b0 + b1) − a0b0 − a1b1. For B odd we proceed as other cases in this
work and adjust the operations to the right digit size (lines 7 and 8 in Alg. 5).

We comment that other variants are possible and easily follow, such as for
example an interleaved, 3-way Karatsuba-Montgomery multiplication that can
be derived in a similar way with a splitting of operands in three parts. It is also
possible to derive a SIKE-friendly version. In this case, one can conveniently set
the radix to r = 2e2 for a prime p = 2e2 ·3e3−1 and eliminate the multiplications
by p′.

30 P. Longa

Algorithm 5 Merged sums of products using Karatsuba in a radix-r interleaved
Montgomery multiplication.

Input: integers (a0, a1, . . . , at−1) and (b0, b1, . . . , bt−1) s.t. ai, bi ∈ [0, 2p) for i =
0, . . . , (t − 1) and 0 ≤

∑t−1
i=0 aibi < pR, where R = 2nw, n = dl/we, l = dlog2 pe, and

w is the computer wordsize; the radix r = 2Bw s.t. B = dn/2e, and the Montgomery
constant p′ = −p−1 mod r. Integers are represented in radix r, e.g., ai = (ai,1, ai,0)r.
Output: the Montgomery residue c =

∑t−1
i=0 aibi ·R−1 mod p s.t. c ∈ [0, 2p).

1: u0 ←
∑t−1

i=0 ai,0 · bi,0
2: q0 ← u0 · p′ mod 2Bw

3: u← (u0 + q0 · p0)/2Bw

4: u1 ←
∑t−1

i=0 ai,1 · bi,1
5: u0 ←

(∑t−1
i=0(ai,0 + ai,1) · (bi,0 + bi,1)

)
− u0 − u1

6: u← u + u0 + q0 · p1
7: q1 ← u · p′ mod 2(B−n mod 2)w

8: u← (u + q1 · p0)/2(B−n mod 2)w

9: u← u + 2(n mod 2)w · (u1 + q1 · p1)
10: return c← u

	Efficient Algorithms for Large Prime Characteristic Fields and Their Application to Bilinear Pairings and Supersingular Isogeny-Based Protocols

