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Abstract. We propose a novel approach that generalizes interleaved modular mul-
tiplication algorithms for the computation of sums of products over large prime
fields. This operation has widespread use and is at the core of many cryptographic
applications. The method reformulates the widely used lazy reduction technique, cru-
cially avoiding the need for storage and computation of “double-precision” operations.
Moreover, it can be easily adapted to the different methods that exist to compute
modular multiplication, producing algorithms that are significantly more efficient
and memory-friendly. We showcase the performance of the proposed approach in
the computation of multiplication over an extension field Fpk , and demonstrate its
impact with record-breaking implementations of bilinear pairings. Specifically, we
accomplish a full optimal ate pairing computation over the popular BLS12-381 curve,
designed for the 128-bit security level, in under half a millisecond on a 3.2GHz Intel
Coffee Lake processor, which is about 1.40× faster than the state-of-the-art. Similarly,
we perform the same computation over the BLS24-509 curve, targeting the 192-bit
security level, in ∼ 2.6 milliseconds, achieving a speedup of more than 1.30×. We
also report a significant impact on other applications, including protocols based on
supersingular isogenies.
Keywords: Sum of products · prime fields · extension fields · bilinear pairings ·
BLS12-381 · supersingular isogenies · efficient computation.

1 Introduction
Take two sets of integers (a0, a1, . . . , at−1) and (b0, b1, . . . , bt−1) all defined over a certain
finite field Fp with large prime characteristic p. The sum of their products, namely, the
computation c =

∑t−1
i=0 ±ai · bi mod p is a fundamental operation that is at the core of

various types of arithmetic over Fp, from matrix multiplication and multiplication over
polynomial rings to elliptic curve arithmetic. Of special interest is that this operation
has wide use in the form of multiplication over extension fields Fpk , which is at the heart
of several cryptographic schemes such as elliptic curves defined over extension fields [37],
bilinear pairings on ordinary curves [71] and supersingular isogeny-based schemes [55].

In this work, we propose a new approach that computes a sum of products over Fp

by interleaving intermediate products with the modular reduction step, in similar fashion
to classical interleaved modular multiplication algorithms (§2.1). Crucially, it departs
from algorithms using the well-known lazy reduction technique [74,78], eliminating the
excessive growth of intermediate values and the need of computing “double-precision”
arithmetic. The method can be easily adapted to existing algorithmic variants that fit
different application profiles, for software and hardware platforms. We show that some of
these variants are especially efficient for software implementation, exhibiting strong synergy
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with computer architectures that leverage the simplicity of schoolbook-like multiplication.
The resulting outcome is streamlined implementations that operate with significantly
reduced memory usage.

The target. To showcase the potential of the new method, we apply it in the context of
bilinear pairings, which are at the core of a myriad of elegant cryptographic schemes such
as identity-based cryptosystems [20,24,29,30] and non-interactive zero-knowledge proof
systems [52,53]. More recently, pairings have attracted great interest because of their novel
use in blockchain technology like Zcash [6] and Ethereum 2.0 [27]. Unfortunately, recent
advances in the computation of discrete logarithms over extension fields, as those used
in pairing-based cryptography [10,58], have forced an increase in parameter sizes [9,68].
This, for example, motivated the design of BLS12-381, a new pairing-friendly curve that
is conjectured to provide close to 128 bits of security and is widely used in blockchain
protocols [23] (see [73] for details on a standardization effort in the IETF CFRG). The
increased parameter sizes, coupled with the inherently computationally expensive nature
of pairing operations, underscore the need of devising innovative methods that improve
performance.

We note that the proposed approach extends beyond the efficient implementation of
multiplication over extension fields (e.g., it could also be used for elliptic curve arithmetic
operations with the form AB+CD over a finite field of large prime characteristic). However,
as we anticipate more substantial gains for arithmetic over extension fields, we use this
setting within the context of pairings for illustrative purposes. Other attractive applications
include post-quantum supersingular isogeny-based signature schemes such as SQISign [45]
and supersingular isogeny-based zero-knowledge proof schemes such as the protocol by
Basso et al. [17]1; see §5.1 for more details.

Despite its broader generality, the method is analyzed in the context of Montgomery
multiplication [69], as it is the most prevalent approach for modular multiplication.

Computing sums of products and the case of multiplication over Fpk . There are two
main approaches to optimize multiplication over Fpk . On one hand, algebraic transfor-
mations are used to reduce the required number of underlying field multiplications. A
well-known example of this case is Karatsuba multiplication [57].

The second approach consists in minimizing the number of modular reductions using
the so-called lazy reduction technique. Lazy reduction, which goes back to at least [78], is
an extensively used optimization that has been applied in a wide variety of scenarios [4,31,
62,65,74]. The basic principle is very simple: products are computed and left unreduced.
A modular reduction is only applied at the very end of the computation, right after the
summation of the intermediate, “double-precision” values. This elimination of reductions is
highly effective, especially for primes for which the reduction routine is roughly as expensive
as the integer multiplication part. If we assume the use of Montgomery multiplication for
computing the summation of t n-digit products (§2.2), the cost is reduced from t(2n2 + n)
multiplies to only n2(t + 1) + n.

In the context of cryptographic pairings, Scott [74] was the first to apply lazy reduction
to Karatsuba multiplication in the computation of multiplication over Fp2 . Later, the
technique was extended to the full towering and curve arithmetic by Aranha et al. [3] (see
also [66]). Given an extension field Fpk = Fp[x]/(xk − ω) with ω ∈ Fp, a multiplication
in Fpk exploiting lazy reduction can be performed with only k reductions modulo p, in
contrast to the k2 reductions that would be required with a conventional multiplication.

1Other very attractive applications where the method would have had a significant impact include
SIDH [55] and SIKE [5]; see Appendix B. Unfortunately, these protocols were very recently proven insecure
in a series of papers starting with [28].
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Many works have exploited the technique (especially in the context of multiplication
over Fp2) without changing the basic approach [3,7, 19,21,22,38,76]. In fact, despite the
availability of efficient interleaved modular multiplication algorithms [42], the combination
of lazy reduction with these faster algorithms has been long seen as an impossibility.
As consequence, lazy reduction has been strictly limited to use non-interleaved modular
multiplications.

The main drawback of this traditional approach using lazy reduction is that it forces the
storage and computation with intermediate results of double precision. In addition to the
increased pressure on memory usage, the optimization of double-precision arithmetic may
require specialized routines that significantly increase the implementation complexity [2,3].
In contrast, the proposed method limits the growth of intermediate results and gets rid
of double-precision arithmetic. The simplest variants use schoolbook internally, which
eliminates further the additional storage demanded by Karatsuba. For small and medium-
sized primes, the significant reduction in memory friction pays off in terms of speed, even
in the cases in which the use of multiplications is higher, as we show in §4.

Open-source software. We have implemented and integrated our algorithms to RELIC [2],
a cryptographic library containing state-of-the-art implementations of pairings. Our
implementations cover two pairing-friendly curves: BLS12-381 and BLS24-509, which are
intended to match the 128- and 192-bit security levels, respectively. Both are instantiated
with an optimal ate pairing. The software is available as open-source at:

https://github.com/primefieldsfp/faster_Fpx.

The software stack also includes the code that we wrote to evaluate the speed performance
and memory usage of the proposed method using the SIKE primes, as described in
Appendix B.

Outline. We start by giving some preliminary background on algorithmic aspects of
Montgomery multiplication and extension field arithmetic in §2. Then, we describe the
details of our method in §3, together with an exhaustive classification of its different
algorithmic variants. This section also includes a preliminary cost analysis. In §4, we
present our case study targeting pairings, describe various implementation choices for
different extension fields, and report efficient implementations of the BLS12-381 and
BLS24-509 pairing-friendly curves using the RELIC library. Finally, we discuss potential
future developments and the impact of this work, including the case of supersingular
isogeny-based protocols, in §5.

2 Preliminaries
2.1 Montgomery multiplication
A well-known and widely-used method to implement modular multiplication is due to
Montgomery [69]. This method introduces a significant speedup in the computation of
modular reduction by replacing expensive long divisions by simple divisions with powers
of two.

To carry out a Montgomery multiplication, field elements are represented in the so-
called Montgomery domain. Let R = 2N and p′ = −p−1 mod R, where N = n · w,
n = ⌈l/w⌉, l = ⌈log2 p⌉ and w is the computer wordsize. For two field elements a and b,
their Montgomery representation is given by ã = aR mod p and b̃ = bR mod p, respectively.
If it holds that ãb̃ < pR, the Montgomery residue c = ãb̃R−1 mod p = abR mod p is then
computed as

c = (ãb̃ + (ãb̃p′ mod 2N ) · p)/2N . (1)

https://github.com/primefieldsfp/faster_Fpx
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The final result a · b can then be easily obtained by dividing by the value R. If one
assumes that conversions to/from the Montgomery domain are amortized by executing a
long series of modular multiplications, the cost of a Montgomery reduction (i.e., without
the integer multiplication part) is given by (n2 + n) w-bit multiplications.

Interleaved and non-interleaved modular multiplication There are two general ap-
proaches for implementing modular multiplication, which are determined by how the
integer multiplication and reduction parts are “glued” together. In an interleaved or non-
separated modular multiplication, both pieces are computed in an intertwined fashion, while
the non-interleaved or separated version computes the full integer multiplication first and
then proceeds to carry out the reduction part separately. In applications dealing with sums
of products over large prime fields (e.g., for multiplying over extension fields like in pairings
or supersingular isogeny-based protocols), the use of non-interleaved modular multiplica-
tion has become the de facto approach, as it enables a straightforward application of lazy
reduction and other advanced implementation techniques [3, 4, 19,21,22,38,62,74,76,78].

Radix-r Montgomery multiplication. Straight implementations of Eq. (1) demand the
use of a high number of registers since the full inputs are processed in a single pass using
the full modulus. Let r be a certain radix, typically a power of two, in which operands and
the modulus are represented (e.g., an operand a is represented as (at−1, . . . , a1, a0)r). A
more implementation-friendly approach proposed by Dussé and Kaliski Jr. [42] processes
the computation one digit at a time reducing with r at each iteration, in what is called
the radix-r Montgomery reduction. An interleaved computation of a radix-r Montgomery
multiplication of two Montgomery elements ã and b̃ then proceeds by fixing p′ = −p−1 mod
r (assuming that the modulus is a prime p of bitlength l), initializing c to 0, and computing
t = ⌈l/ log2 r⌉ iterations doing

c =
(
c + ãib̃ + ((c + ãib̃)p′ mod r) · p

)
/r, (2)

for i = 0, . . . , t− 1.
In this work, we adopt a generalization of the original radix-r Montgomery multiplication

by setting r = 2Bw, where B ∈ Z and 0 < B ≤ n and, as before, n = ⌈l/w⌉, l = ⌈log2 p⌉
and w is the computer wordsize2. In this case, Eq. (2) runs for ⌈n/B⌉ iterations. This
generalization lifts the restriction that the bitlength of the radix r should match the
computer wordsize w of a given platform, as originally assumed in [42]. Note that the
original radix-r Montgomery multiplication corresponds to the case B = 1.

As we will show in §3, the flexibility introduced by B in the definition of the radix
allows for a comprehensive generalization that captures many implementation variants of
Montgomery multiplication exploiting either the “operand-scanning” form (a.k.a. school-
book method), the “product-scanning” form (a.k.a. Comba method [33]), the Karatsuba
technique [57], and their different combinations. To the best of our knowledge, several of
the arising variants are novel.

2.2 Sums of products over large prime fields
Let (a0, a1, . . . , at−1) and (b0, b1, . . . , bt−1) be two sets of elements all belonging to a certain
field Fp of large prime characteristic p. We define a “sum of products” as a computation
with the form

c =
t−1∑
i=0
±ai · bi mod p

2This generalization is similar to the description by Bos and Friedberger [21, §3.2], but without limiting
to a special-form prime.
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This operation can be found at the core of many cryptologic computations, the
most notable of which is perhaps multiplication over extension fields with large prime
characteristic. Hence, we use this operation to illustrate the impact of the proposed
algorithms (see §3).

Let’s recall the simplest scenario for a multiplication of two elements a, b ∈ Fpk modulo
an irreducible polynomial with the form f = xk − ω, where ω is a primitive element in F∗

p

and k|(p− 1). The polynomial multiplication is then given by

c(x) = a(x)b(x) =
( k−1∑

i=0
aix

i
)( k−1∑

i=0
bix

i
)

≡ ck−1xk−1 +
k−2∑
i=0

(ci + ωci+k)xk (mod f(x)),

where

cj =
j∑

i=0
aibj−i mod p.

It is a widespread practice to optimize the implementation for computing each cj using
an “accumulation and reduction” strategy, most commonly known as lazy reduction. This
technique effectively reduces the number of modular reductions to only one (or k, for the
full polynomial multiplication). Note that, as in most practical scenarios, we assume that
ω has small coefficients that make a multiplication by it relatively cheap.

As mentioned before, this use of lazy reduction has some drawbacks, the most critical
of which being the need of extra storage and computing with intermediate results of double
precision. As we show in §4 (see also Appendix B), this issue makes implementations
slower and less memory-friendly for small and medium-sized primes.

The rise of fast multiplication over Fp2 . The most basic “sum of products” operation
underlying several cryptographic schemes is multiplication over a quadratic extension field
Fp2 . Modern examples of these schemes include bilinear pairings on ordinary elliptic curves
over prime fields and supersingular isogeny-based protocols.

For illustrative purposes, let’s use the common construction fixing Fp2 = Fp(i) for
i2 − β = 0, where β is a small integer in absolute value. Two main approaches are known
to realize the multiplication in this case.

Take two elements a = (a0 +a1i) and b = (b0 +b1i) ∈ Fp2 . The first method to compute
the multiplication a · b in Fp2 is the straightforward schoolbook method which computes it
as

a · b = (a0b0 + a1b1β) + (a0b1 + a1b0)i

The second approach is Karatsuba multiplication, which computes the same operation
as

a · b = (a0b0 + a1b1β) +
(
(a0 + a1)(b0 + b1)− a0b0 − a1b1

)
i

If we assume that β = −1 as in most efficient instantiations, the operation count
for multiplication using schoolbook is of four modular multiplications and two modular
additions/subtractions, while the one for Karatsuba is of three modular multiplications
and five modular additions/subtractions.

Efficient implementation of the arithmetic over Fp2 attracted lots of interest from the
cryptographic community around the mid-2000’s, contributing to a remarkable effort aimed
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at reducing the high cost of computing cryptographic pairings. In 2007, Scott [74] was the
first to apply lazy reduction to Karatsuba multiplication in the context of pairings, changing
the cost of one Fp2 multiplication to three integer multiplications, two modular reductions,
two additions and three double-precision additions/subtractions. This approach was later
perfectioned by Beuchat et al. [19] and Aranha et al. [3] with the use of some aggressive
optimization techniques such as the avoidance of modular corrections and carry-handling
elimination, all in the context of the computation of optimal ate pairings [77] over a 254-bit
Barreto–Naehrig (BN) curve [15].

The algorithm for multiplication in Fp2 combining all these optimizations for the
optimal case with β = −1 is shown in Algorithm 1. Integer operations without modular
correction or reduction are represented as ×, + or −. The only operation that requires a
modular correction is the subtraction in line 8 that is represented as ⊖. Double-precision
operands are represented in uppercase, while single-precision operands are in lowercase.

Algorithm 1 Multiplication in Fp2 using Karatsuba and lazy reduction
Input: a = (a0 + a1i) and b = (b0 + b1i) ∈ Fp2

Output: c = a · b = (c0 + c1i) ∈ Fp2

1: T0 ← a0 × b0
2: T1 ← a1 × b1
3: t0 ← a0 + a1
4: t1 ← b0 + b1
5: T2 ← t0 × t1
6: T3 ← T0 + T1

7: T2 ← T2 − T3
8: T0 ← T0 ⊖ T1
9: c0 ← T2 mod p

10: c1 ← T0 mod p
11: return C = (c0 + c1i)

The case of higher-degree field extensions. For pairings, high-degree extension field
arithmetic represents the main building block and, therefore, its efficient implementation
becomes crucial. To this end, it has been recommended to implement it as a tower of
extensions built with suitable irreducible polynomials [60], following a similar development
for optimal extension fields [8]. For example, Pereira et al. [50] recommended to set pe ≡ 1
(mod 6) and represent Fp6e as a tower extension of Fpe in one of three ways:

• Fp6e = Fpe [u]/(u6 − ξ),

• Fp6e = Fp2e [v]/(v3 − ξ) with Fp2e = Fpe [s]/(s2 − ξ),

• Fp6e = Fp3e [w]/(w2 − ξ) with Fp3e = Fpe [t]/(t3 − ξ),

where ξ ∈ Fpe is a non-square and a non-cube.
The use of a tower field allows to write modularized implementations, in which each

layer can be easily optimized using algebraic transformations like Karatsuba to reduce the
number of modular multiplications.

In 2011, Aranha et al. [3] pushed the performance limits further by extending the
use of lazy reduction to the full tower scheme, in order to minimize the use of modular
reductions. Concretely, they showed that this optimization, when applied above the
Fp2 arithmetic up to the Fp12 layer, results in an 11%-17% speedup on a variety of x64
processors. Nevertheless, this extended lazy reduction technique comes at a price. It
requires additional specialized routines to perform the double-precision arithmetic, which
increase the complexity and memory footprint of the implementation.

In §4, we discuss how one can improve performance and memory use for prime sizes of
practical relevance with a new approach that we present next.
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3 The Proposed Method
We describe the proposed method in the context of Montgomery multiplication, which is
arguably one of the most relevant scenarios. See §5 for a discussion on other potential
applications.

Let (a0, a1, . . . , at−1) and (b0, b1, . . . , bt−1) be two sets of integers with ai, bi ∈ [0, p) for
i = 0, . . . , (t− 1) and 0 ≤

∑t−1
i=0 aibi < pR, where R = 2nw, n = ⌈l/w⌉, l = ⌈log2 p⌉, and w

is the computer wordsize. From now on, we make the assumption that inputs ai and bi

are already in the Montgomery domain.
From a general perspective, the new approach essentially consists in performing a

merged computation of the operation c =
∑t−1

i=0 ±ai · bi mod p using interleaved radix-r
Montgomery multiplication3, that is, initializing c = 0 and executing ⌈l/ log2 r⌉ = ⌈n/B⌉
iterations doing

c =
(

c +
t−1∑
i=0

ai,jbi +
(
(c +

t−1∑
i=0

ai,jbi)p′ mod r
)
· p

)/
r, (3)

for j = 0, . . . , ⌈n/B⌉ − 1, where p′ = −p−1 mod r, and each integer ai is represented
in radix-r representation as (ai,⌈n/B⌉−1, . . . , ai,1, ai,0)r. As stated in §2.1, the radix r is
adopted in the generalized form r = 2Bw, where B ∈ Z and 0 < B ≤ n. In the following,
we call each digit in this radix representation a “B-digit”.

We remark that Eq. (3) is presented in a general form for simplicity purposes. Next,
we provide a more detailed description that covers the wide diversity of variants that can
be derived from the approach.

At a high-level, we can classify the different variants by the method that is used to
implement the top layer in the computation of the multiplications in Eq. (3). Thus, we
can distinguish operand-scanning (or schoolbook), product-scanning (or Comba), and
Karatsuba variants. In the remainder, we mostly focus on the first case which brings very
fast computations to the software platform class that we target in this work. We comment
that product-scanning and Karatsuba variants, such as those described in Appendix A,
might be useful in other scenarios, e.g., for hardware implementations (see discussion
in §5).
Remark 1. The result of a Montgomery reduction is upper bounded by 2p when its input
is in the range [0, pR). Hence, a conditional subtraction is needed to bring the result to
[0, p). However, this operation can be avoided if we perform arithmetic over a redundant
representation (e.g., over Z2p). For example, if operands are kept in the range [0, 2p)
such that the result of a multiplication is guaranteed to be c = a · b < 4p2 ≤ pR (i.e., it
should hold that R ≥ 4p), then the result of the Montgomery reduction is still going to be
bounded by 2p but we will no longer require the modular correction. A simple correction
is going to be required at the very end of the computations to bring the final result to the
canonical range [0, p). In the following, all the algorithms assume the use of this redundant
representation to avoid the final conditional subtraction.

3.1 Operand-scanning method
For this method, the computation flow at the top layer follows the operand-scanning or
schoolbook form. That is, for each multiplication, a B-digit from the radix-r representation
of a given multiplier is first multiplied with the full value of the multiplicand before
proceeding to the next computation. For the remainder, we refer to this operation as
B-digit × row multiplication.

3As explained before, the non-interleaved or separated case is used with the standard lazy reduction
technique.
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We distinguish two main approaches, depending on whether the inner multiplications
ai,jbi from Eq. (3) are interleaved with the multiplications with the prime p or not. We
adopt the naming convention from [61] and call the approaches finely integrated if we
do the former case (i.e., with interleaved inner multiplications), and coarsely integrated,
otherwise.

Coarsely integrated variants. The merged “sum of products” algorithm using a coarsely
integrated strategy is displayed in Algorithm 2. The construction of the algorithm easily
follows from Eq. (3) when n mod B = 0. We still need to manage the cases in which
n mod B ̸= 0 (i.e., the digit-size of the most significant B-digit is strictly smaller than
that of a B-digit). This is done in lines 6–9, where the computations are adjusted to the
right digit size.

As can be seen, the B-digit × row multiplications corresponding to ai,jbi (line 3) are
interleaved with those for the multiplications with p′ and p (lines 4 and 5) at each iteration
of the for-loop.

There are multiple ways in which the inner multiply-and-accumulate operations
∑

ai,j ·bi

and u + q · p can be realized. We classify these variants according to the chosen value B as
follows:

• Case with B = 1: one is setting r = 2w and all the inner computations essentially
become straight digit × row multiplications. This is the analogous version of
“Improvement 2” from [42], called coarsely integrated operand scanning (CIOS)
in [61].

• Case with B > 1, B ̸= n: the inner computations work on “blocks” of digits and,
hence, each B-digit × B-digit multiplication can be implemented in either schoolbook,
Comba or Karatsuba style (or any combination of these in a multi-level fashion for
sufficiently large primes).

• Case with B = n: this is essentially the original lazy reduction technique.

Algorithm 2 Merged sums of products using radix-r interleaved Montgomery multiplica-
tion in coarsely integrated form.
Input: integers (a0, a1, . . . , at−1) and (b0, b1, . . . , bt−1) s.t. ai, bi ∈ [0, 2p) for i = 0, . . . , (t−
1) and 0 ≤

∑t−1
i=0 aibi < pR, where R = 2nw, n = ⌈l/w⌉, l = ⌈log2 p⌉, and w is the computer

wordsize; the radix r = 2Bw s.t. B ∈ Z and 0 < B ≤ n, and the Montgomery constant
p′ = −p−1 mod r. Integers are represented in radix r, e.g., ai = (ai,⌈n/B⌉−1, . . . , ai,1, ai,0)r.
Output: the Montgomery residue c =

∑t−1
i=0 aibi ·R−1 mod p s.t. c ∈ [0, 2p).

1: u← 0
2: for j = 0 to ⌊n/B⌋ − 1 do
3: u← u +

∑t−1
i=0 ai,j · bi

4: q ← u · p′ mod 2Bw

5: u← (u + q · p)/2Bw

6: if n mod B ̸= 0 then
7: u← u +

∑t−1
i=0 ai,⌈n/B⌉−1 · bi

8: q ← u · p′ mod 2(n mod B)w

9: u← (u + q · p)/2(n mod B)w

10: return c← u
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Finely integrated variants. The merged “sum of products” algorithm using a finely
integrated strategy is displayed in Algorithm 3. In this case, note that multiplications are
performed B-digit by B-digit, interleaving those corresponding to ai,kbi,j (lines 3 and 7)
with those for the multiplications with pk (lines 5 and 8). Note that we manage the case
with n mod B ̸= 0 as described before.

Similar to the coarsely integrated form, there are multiple ways in which the inner
multiply-and-accumulate operations can be realized. Again, we classify these variants
according to the value B as follows:

• Case with B = 1: one is setting r = 2w and all the inner computations become
simple digit × digit multiplications, where those corresponding to input operands
are interleaved with those with the prime. This is the analogous version of the finely
integrated operand scanning (FIOS) method from [61].

• Case with B > 1, B ̸= n: the inner computations work on “blocks” of digits and,
hence, each B-digit × B-digit multiplication can be implemented in either schoolbook,
Comba or Karatsuba style (or any combination of these in a multi-level fashion for
sufficiently large primes).

• Case with B = n: this is essentially the original lazy reduction technique.

Algorithm 3 Merged sums of products using radix-r interleaved Montgomery multiplica-
tion in finely integrated form.
Input: integers (a0, a1, . . . , at−1) and (b0, b1, . . . , bt−1) s.t. ai, bi ∈ [0, 2p) for i = 0, . . . , (t−
1) and 0 ≤

∑t−1
i=0 aibi < pR, where R = 2nw, n = ⌈l/w⌉, l = ⌈log2 p⌉, and w is the computer

wordsize; the radix r = 2Bw s.t. B ∈ Z and 0 < B ≤ n, and the Montgomery constant
p′ = −p−1 mod r. Integers are represented in radix r, e.g., ai = (ai,⌈n/B⌉−1, . . . , ai,1, ai,0)r.
Output: the Montgomery residue c =

∑t−1
i=0 aibi ·R−1 mod p s.t. c ∈ [0, 2p).

1: u← 0
2: for j = 0 to ⌊n/B⌋ − 1 do
3: u← u +

∑t−1
i=0 ai,0 · bi,j

4: q ← u · p′ mod 2Bw

5: u← (u + q · p0)/2Bw

6: for k = 1 to ⌈n/B⌉ − 1 do
7: u← u + 2(k−1)Bw ·

∑t−1
i=0 ai,k · bi,j

8: u← u + 2(k−1)Bw · q · pk

9: if n mod B ̸= 0 then
10: u← u +

∑t−1
i=0 ai,0 · bi,⌈n/B⌉−1

11: q ← u · p′ mod 2(n mod B)w

12: u← (u + q · p0)/2(n mod B)w

13: for k = 1 to ⌈n/B⌉ − 1 do
14: u← u + 2(kB−n mod B)w ·

∑t−1
i=0 ai,k · bi,⌈n/B⌉−1

15: u← u + 2(kB−n mod B)w · q · pk

16: return c← u

Selecting a variant. Picking a specific variant depends on both the modulus size (see the
next subsection) and the targeted platform. Generally speaking, the coarsely integrated
variant (Algorithm 2) should be the preferred option in most software platforms in which
schoolbook works well and the availability of general purpose registers (GPRs) is sufficient
to support a full B-digit × row multiplication with minimal interaction with the memory.
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On the other hand, the inner for-loop of the finely integrated variant (Algorithm 3) consists
of a bunch of multiplications that are independent from each other and, hence, can be
executed in parallel on, e.g., an FPGA. See §5 for an extended discussion on other uses for
the algorithms.

Regarding the selection of the value B, setting B > 1 might make it easier to alleviate
memory use for relatively large primes, especially in the case of Algorithm 3. For small
and medium size primes4, it appears that setting B = 1 hits the right balance between the
size of intermediate results and the number of GPRs available on x64 platforms.

Finally, we mentioned before that for the internal multiplications it is possible to
use either schoolbook, Comba, Karatsuba, or any combination of these in a multi-layer
implementation. To be efficient, Karatsuba would require a B-digit consisting of a
sufficiently large number of limbs. And between schoolbook and Comba, the former is
typically preferable when a given platform supports efficient carry-saving instructions such
as mulx or versatile multiply-and-add (MULADD) instructions (see §5).

Primes of special form. The algorithms described in this section have been presented
generically assuming primes with no special form, as typically found in, e.g., pairing
computations (§4). However, they can be easily adapted to settings using primes with
some special shape. In particular, a relevant scenario is when p+1 ≡ 0 (mod 2zw) for some
integer z ≥ 1. As an example of this case, see the adaptation of Algorithm 2 to the case of
the SIKE primes in Appendix B. It is straightforward to apply a similar optimization to
primes such as the SQISign prime p3923 [46], as discussed in §5.1.

We note that, in part, the proposed method gains in efficiency by eliminating modular
reductions. Therefore, it is naturally expected that primes that support a very fast
reduction (e.g., Mersenne or pseudo-Mersenne primes) do not gain a significant advantage
with the approach.

3.2 Cost analysis
Except for the variants that could use Karatsuba at the lower levels of their computations
(which would only be the case for relatively large primes), the complexity of the proposed
algorithms is quadratic in terms of multiplication instructions. For t products, it is easy to
see that they require n2(t + 1) + n digit multiplications, which is precisely the complexity
of standard lazy reduction when the products are done in schoolbook or Comba-style.
This means that lazy reduction in conjunction with a subquadratic multiplication like
Karatsuba-schoolbook or Karatsuba-Comba (KCM) [51] is theoretically cheaper in terms
of multiplications.

Nevertheless, we argue that the new method can achieve a superior performance in
practice for small and medium-size primes since it enables streamlined implementations
with much less friction with memory. That is, the computation is carried out over a
reduced number of registers, greatly minimizing the memory accesses. In software, the
schoolbook variants are particularly efficient due to the availability of carry-preserving
instructions, which precisely contribute further to reduce memory use.

To see this, let’s run a comparative analysis with one of the most promising variants
for software platforms, namely, a merged sum of products using radix-r interleaved
Montgomery multiplication in coarsely integrated form (Algorithm 2). For the remainder
of this section, we focus on the case of primes with no special shape, as assumed in the
description of the algorithms from the previous section. We assume B = 1 in the case
of an Fp2 multiplication, and set an x64 processor as the target. We compare against

4We use a loose definition here: a prime should be well above 500 bits long to be considered “large”,
but this varies with the computer wordsize (the smaller the wordsize the lower the threshold to consider
that a prime is large).
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state-of-the-art implementations of multiplication over Fp2 , which essentially use variants
of Algorithm 1 [2,39].

First, if we perform a theoretical analysis in line with, e.g., [61], which counts the number
of instructions executing a multiplication (mul), addition/subtraction (add), memory load
(read) and memory store (write), the cost of one Fp2 multiplication using Algorithm 1 is
approximately given by

cost = costline 1 + costline 2 + . . . + costline 10

= 2 ×
(

3n
2
/4 muls + (3n

2 + 4n + 2) adds + (3n
2
/2 + 15n/2 + 1) reads + (3n

2
/4 + 11n/2

+ 1) writes
)

+ 2 ×
(

n adds + 2n reads + n writes
)

+
(

3n
2
/4 muls + (3n

2 + 4n + 2) adds

+ (3n
2
/2 + 15n/2 + 1) reads + (3n

2
/4 + 11n/2 + 1) writes

)
+ 2 ×

(
2n adds + 4n reads + 2n writes

)
+

(
3n adds + 2n reads + 5n writes

)
+ 2 ×

(
(n

2 + n) muls + 4n
2 adds + (2n

2 + 2n) reads + n
2 writes

)
= (17n

2
/4 + 2n) muls + (17n

2 + 21n + 6) adds + (17n
2
/2 + 83n/3 + 3) reads + (17n

2
/4

+ 49n/2 + 3) writes, (4)

where the multiplications (lines 1, 2 and 5, Alg. 1) are assumed to be computed using
Karatsuba at the top level and schoolbook underneath, and the reductions (lines 9 and 10,
Alg. 1) are assumed to be computed with radix-r interleaved Montgomery multiplication
in operand scanning form (schoolbook).

Now, if we do a similar cost analysis for Algorithm 2, the cost for the sum of t products
is given by

cost = (tn
2 + n

2 + n) muls + (4tn
2 + 4n

2 + 2tn) adds + (2tn
2 + 2n

2 + 2tn + 2n) reads

+ (tn
2 + n

2 + 2tn) writes.

And thus, the cost for a full Fp2 multiplication, consisting of two sums of products
with t = 2, is given by

cost = (6n
2 + 2n) muls + (24n

2 + 8n) adds + (12n
2 + 12n) reads + (6n

2 + 8n) writes. (5)

If we compare costs (4) and (5), standard lazy reduction appears to beat the new
method solidly for almost every operation type. However, this analysis ignores key practical
considerations, as we discuss below.

Let’s now perform a more practical analysis based on actual implementations of the
Fp2 multiplication for primes up to 512 bits long on an x64 platform. In order to provide a
generic cost formula (but without loss of precision), the costs given below are approximations
of the actual operation counts. We consider the use of carry-preserving instructions like
mulx and adx, which are supported by all modern Intel and AMD processors.

In this case, the cost when using the standard lazy reduction technique (Alg. 1) is
approximately given by

cost = (17n
2
/4 + 2n) muls + (17n

2
/2 + 55n/2 − 9) adds + (17n

2
/4 + 40n) reads + (2n

2

+ 47n/2) writes. (6)

And the cost of the new method using Algorithm 2 is approximately given by

cost = (6n
2 + 2n) muls + (12n

2 + 6n) adds + (6n
2 + 6n) reads + 2n writes. (7)

As can be seen, in practice the memory access costs are greatly reduced thanks to
the use of the general purpose registers (GPRs). Likewise, the use of carry-preserving
instructions reduces the number of addition instructions significantly. While this happens
across both algorithms, the improvement is much more pronounced for the new method,
especially in the case of memory writes. This highlights the streamlined nature of the
proposed approach, which permits to eliminate many memory accesses.



12 Efficient Algorithms for Large Prime Characteristic Fields

Figure 1: Comparison of instruction counts between the proposed method (Algorithm 2, B = 1)
and the standard lazy reduction method (lazyr, Algorithm 1) for computing a full multiplication
over Fp2 . The counts cover all the instructions executing multiplications, additions, subtractions
and memory accesses. The theoretical counts closely follow similar counts from [51,61] and use
the cost formulas (4) and (5). The practical counts, which use the cost formulas (6) and (7), are
precise approximations of the actual implementation costs on an x64 platform with mulx/adx
support for primes with different digit sizes n up to 512 bits (results for larger primes are still
obtained by using the same formulas, so the measurement errors are larger in these cases, as
discussed in the text).

The above analysis for primes up to 512 bits can be clearly observed in Figure 1, which
displays the total number of instructions (multiplications, additions/subtractions and
memory reads and writes) for different prime sizes, using the theoretical analysis and the
analysis based on practical implementations. We remark that the costs for primes greater
than 512 bits are still estimated using formulas (6) and (7). However, in practice we expect
the method to become less advantageous as the prime size increases. We have verified that
for larger primes the number of GPRs becomes insufficient and the implementations start
to demand more storage and an increasing number of memory accesses. If we consider that
from the 15 GPRs available on an x64 platform 3 are used for the input/output interface,
and 3 or 4 are used to hold auxiliary values, then only 8 or 9 registers are available to hold
the actual operands for the computations. Hence, it makes sense that for primes up to 512
bits, i.e., with n ≤ 8, the proposed method achieves optimality to perform a full B-digit ×
row multiplication (B = 1) without register spillage. This observation, conflated with the
better performance of Karatsuba at larger prime sizes, makes the new method to reduce
its speed advantage as the prime bitlength increases beyond 512 bits.

Experimentally, we have verified this analysis with the SIKE primes (see Appendix B).
Concretely, the speed superiority of our method over standard lazy reduction starts to
vanish around the 610-bit mark on an x64 platform. It is important to note, however, that
the memory savings remain stable and can even slightly increase with the prime bitlength.
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4 Case Study: bilinear pairings
Since the seminal papers by Sakai et al. [72] on identity-based non-interactive authentication
key agreement and by Joux [56] on tripartite one-round key agreement, bilinear pairings
have become a powerful tool in the design of a myriad of novel cryptographic schemes such
as identity-based cryptosystems [20,24,29,30] and non-interactive zero-knowledge proof
systems [52,53].

One critical drawback of pairings is their relatively expensive running time. This
motivated an extraordinary effort by the research community to improve efficiency on
several fronts, including the construction of pairing-friendly elliptic curves [12, 25, 49,
75], the development and improvement of the algorithms for the Miller loop and final
exponentiation [11,13,14,54,77], the optimization of the explicit formulas for the curve
arithmetic [3, 35, 36], and the design and optimization of towering schemes of extension
fields Fpk [3, 18, 60]. Readers are referred to [1] for a modern take on the design and
implementation of pairings.

Here, we focus on the optimization of the arithmetic over Fpk using the proposed
algorithms. Of practical interest are extension fields of degrees 2, 4, 6, 8, 12, 24 and 48,
which are commonly used to construct the tower fields in many of the popular pairings used
in practice and considered for standardization [73], such as BLS12-381, BN446, BLS12-446,
BN462, BLS24-509, BLS48-581 and others; see [73, Table 1] for a summary of pairing-
friendly curves adopted in practice. From this set, we study the pairings with embedding
degrees 12 and 24, which cover the majority of the most popular options considered for
the 128- and 192-bit security levels. Accordingly, we analyze next the implementation of
multiplication over Fp2 , Fp4 , Fp6 , Fp8 and Fp12 , which are core operations in the pairing
computation, and consider the following widely widespread towering scheme [1,3, 19,50]:

• Fp2 = Fp[i]/(i2 − β), with β a non-square.

• Fp4 = Fp2 [s]/(s2 − ξ), where ξ = α + i is a non-square.

• Fp6 = Fp2 [v]/(v3 − ξ), where ξ = α + i is a non-cube.

• Fp12 = Fp4 [t]/(t3 − s) or Fp6 [w]/(w2 − v) or Fp2 [w]/(ω6 − ξ), where ξ = α + i is a
non-square, non-cube.

It is important to remark that, in practice, α and β are chosen such that they have
very small absolute values (typically, absolute value 1 or 2), which help improve efficiency
of the extension field arithmetic.

The case of multiplication over Fp2 . Given that for pairings, generic Montgomery
multiplication (i.e., variants that do not exploit any special form in the prime) is known to
provide the best performance in software, straight implementations of the variants discussed
in §3 are relevant in this case. More specifically, variants that exploit the synergy between
schoolbook algorithms and carry-preserving instructions are expected to outperform other
approaches. Thus, we observed that the implementation of multiplication over Fp2 can be
efficiently carried out using the interleaved radix-r Montgomery multiplication variant in
coarsely integrated form (Algorithm 2), with B = 1 to make full use of schoolbook.

The case of multiplication over Fp4 . There are multiple choices to implement multipli-
cation over Fp4 . For example, it can be implemented on top of the Fp2 arithmetic layer
using our method for the multiplication over Fp2 and Karatsuba at the Fp4 level with or
without lazy reduction. Or it could be implemented using the proposed method by seeing
Fp4 as a direct extension of Fp2 and expressing the operations down to the base field, as
discussed next.
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Let Fp4 = Fp2 [s]/(s2 − ξ) with ξ = α + i as in the towering scheme above. And let
a = a0 + a1s be an element in Fp4 , where ai = (ai,0, ai,1) ∈ Fp2 for i = {0, 1}. Then, the
multiplication c = (c0, c1) = a · b in Fp4 can be done as follows

c0,0 = a0,0b0,0 − a0,1b0,1 + αa1,0b1,0 − αa1,1b1,1 − a1,0b1,1 − a1,1b1,0

= a0,0b0,0 − a0,1b0,1 + a1,0(αb1,0 − b1,1)− a1,1(b1,0 + αb1,1).
c0,1 = a0,0b0,1 + a0,1b0,0 + αa1,0b1,1 + αa1,1b1,0 + a1,0b1,0 − a1,1b1,1

= a0,0b0,1 + a0,1b0,0 + a1,0(b1,0 + αb1,1) + a1,1(αb1,0 − b1,1).
c1,0 = a0,0b1,0 − a0,1b1,1 + a1,0b0,0 − a1,1b0,1.

c1,1 = a0,0b1,1 + a0,1b1,0 + a1,0b0,1 + a1,1b0,0.

(8)

After regrouping common coefficients and assuming that the two values (αb1,0 − b1,1) and
(b1,0 + αb1,1) are pre-calculated, one can apply either Algorithm 2 or Algorithm 3 with a
cost of 4× 4 = 16 multiplications in the base field.

Note that, in contrast to a generic sum of products, the polynomial multiplication
modulo f offers opportunities to eliminate some multiplications using Karatsuba. For
example, in the term c0,1 one could compute a0,0b0,1 + a0,1b0,0 as (a0,0 + a0,1)(b0,0 +
b0,1)− a0,0b0,0 − a0,1b0,1 with only one base field multiplication, using intermediate values
from c0,0. However, these replacements should be applied with care, since they break
the algorithm’s flow (recall that inner multiplications are interleaved with reduction
computations) and increase memory usage, potentially neglecting any savings obtained
by eliminating multiplications. Ultimately, the benefit of combining Karatsuba with the
proposed algorithms might depend on the target platform (see Appendix A for details on
another Karatsuba variant).

The case of multiplication over Fp6 . Similar to the case over Fp4 , there are multiple
choices to implement multiplication over Fp6 . For example, it can be implemented on top
of the Fp2 arithmetic layer using our method for the multiplication over Fp2 and Karatsuba
at the Fp6 level with or without lazy reduction. Or it could be implemented using the
proposed method by seeing Fp6 as a direct extension of Fp2 and expressing the operations
down to the base field, as discussed next.

Let Fp6 = Fp2 [v]/(v3 − ξ) with ξ = α + i as in the towering scheme above. And let
a = a0 + a1v + a2v2 be an element in Fp6 , where ai = (ai,0, ai,1) ∈ Fp2 for i = {0, 1, 2}.
Then, the multiplication c = (c0, c1, c2) = a · b in Fp6 can be done as follows

c0,0 = a0,0b0,0 − a0,1b0,1 + αa1,0b2,0 − αa1,1b2,1 + αa2,0b1,0 − αa2,1b1,1 − a1,0b2,1 − a1,1b2,0

− a2,0b1,1 − a2,1b1,0.

= a0,0b0,0 − a0,1b0,1 + a1,0(αb2,0 − b2,1) − a1,1(b2,0 + αb2,1) + a2,0(αb1,0 − b1,1) − a2,1(b1,0 + αb1,1).

c0,1 = a0,0b0,1 + a0,1b0,0 + αa1,0b2,1 + αa1,1b2,0 + αa2,0b1,1 + αa2,1b1,0 + a1,0b2,0 − a1,1b2,1

+ a2,0b1,0 − a2,1b1,1.

= a0,0b0,1 + a0,1b0,0 + a1,0(b2,0 + αb2,1) + a1,1(αb2,0 − b2,1) + a2,0(b1,0 + αb1,1) + a2,1(αb1,0 − b1,1).

c1,0 = a0,0b1,0 − a0,1b1,1 + a1,0b0,0 − a1,1b0,1 + αa2,0b2,0 − αa2,1b2,1 − a2,0b2,1 − a2,1b2,0.

= a0,0b1,0 − a0,1b1,1 + a1,0b0,0 − a1,1b0,1 + a2,0(αb2,0 − b2,1) − a2,1(αb2,1 + b2,0).

c1,1 = a0,0b1,1 + a0,1b1,0 + a1,0b0,1 + a1,1b0,0 + αa2,0b2,1 + αa2,1b2,0 + a2,0b2,0 − a2,1b2,1.

= a0,0b1,1 + a0,1b1,0 + a1,0b0,1 + a1,1b0,0 + a2,0(αb2,1 + b2,0) + a2,1(αb2,0 − b2,1).

c2,0 = a0,0b2,0 − a0,1b2,1 + a1,0b1,0 − a1,1b1,1 + a2,0b0,0 − a2,1b0,1.

c2,1 = a0,0b2,1 + a0,1b2,0 + a1,0b1,1 + a1,1b1,0 + a2,0b0,1 + a2,1b0,0.

(9)

After regrouping common coefficients and assuming that the four values (b1,0 +
αb1,1), (αb1,0 − b1,1), (b2,0 + αb2,1) and (αb2,0 − b2,1) are pre-calculated, one can apply
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either Algorithm 2 or Algorithm 3 with a cost of 6× 6 = 36 multiplications in the base
field.

Note that similar comments to the case over Fp4 apply to the possibility of exploiting
Karatsuba.

The case of multiplication over Fp12 . Similarly in this case, we can leverage the
multiplications over Fp2 or over Fp6 discussed above, in combination with Karatsuba
with or without lazy reduction at the Fp12 layer. But we can also do the computation
by writing the full polynomial multiplication down to the base field level. Recall that
Fp12 = Fp2 [w]/(ω6 − ξ), where ξ = α + i. It is straightforward to determine that, in
this case, we need to compute twelve terms each consisting of a sum of twelve products
(assuming the pre-calculation of ten values, similarly to multiplication over Fp6). Similar
comments apply to the possibility of exploiting Karatsuba to products in adjacent terms.

The case of multiplication over Fp24 and beyond. The same methodology applies to
higher extension degrees. But as we observe in the experimental results, the speedup of the
method decreases with the extension degree, as reducing multiplications with Karatsuba
becomes increasingly more profitable than reducing memory accesses and other small opera-
tions. However, one can expect an improvement even for extension degrees as high as 24 and
48 by combining the use of the proposed technique for the lower layers (say, for degrees 2, 4,
6 and 8) while using standard Karatsuba, with or without lazy reduction, for the top layers.

Although it has not been discussed here, the approach can be easily extended to
squaring and other similar operations (e.g., sparse multiplication) over extension fields.

4.1 Performance results
In order to cover different field sizes and towering schemes, we carry out the evaluation
on two pairing-friendly curves, namely, BLS12-381 and BLS24-509, using an optimal ate
pairing instantiation [77].

BLS12-381, proposed by Bowe [23], is an elliptic curve from the Barreto-Lynn-Scott
(BLS) family [12] that targets the 128-bit security level and is undergoing a standardization
effort in the IETF CFRG [73]. Most notoriously, this curve is widely used in zero-knowledge
proofs and digital signatures in blockchain applications like Zcash [6] and Ethereum 2.0 [27]5.
BLS12-381 is defined by the curve E(Fp) : y2 = x3 + 4, with embedding degree k = 12.
Relevant to our analysis is that, in practice, the arithmetic implementation over Fp12 is
realized via the towering representation: Fp2 = Fp[i]/(i2 + 1), Fp6 = Fp2 [v]/(v3 − ξ), and
Fp12 = Fp6 [w]/(w2 − v) or Fp2 [w]/(ω6 − ξ), where ξ = 1 + i.

BLS24-509, proposed by Costello et al. [40], is also an elliptic curve from the BLS family
that targets the 192-bit security level. BLS24-509 is defined by the curve E(Fp) : y2 = x3+b,
with embedding degree k = 24. The arithmetic implementation over Fp24 is realized via the
towering representation: Fp2 = Fp[i]/(i2 + 1), Fp4 = Fp2 [s]/(s2− ξ), Fp8 = Fp4 [w]/(w2− s)
or Fp2 [w]/(w4 − ξ), and Fp24 = Fp8 [t]/(t3 − w) or Fp2 [t]/(t12 − ξ), where ξ = 1 + i.

To evaluate the proposed algorithms, we have integrated our implementations to the
RELIC cryptographic library, version 0.6.0 [2]. This library contains, to our knowledge,
some of the most efficient open-source implementations of pairings. In particular, it applies
the generalized lazy reduction to the full extension field and elliptic curve arithmetic, as
proposed in [3].

In our experiments, we use a 3.4GHz Intel Core i7-6700 (Skylake) processor with
TurboBoost disabled to follow standard practice. Compilation was carried out using clang

5In fact, the main motivation for the design of BLS12-381 was its use for Zcash’s zk-SNARK proofs.
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v11.0.1 with the command clang -O3. Memory stack usage was obtained using valgrind6

and massif-cherrypick7.
Table 1 compares RELIC’s implementation of the extension field multiplications for

BLS12-381 against the various options that we discussed for our algorithms. Likewise,
Table 2 includes the analogous results for BLS24-509. We use the following notation
to specify a given strategy: first, we indicate up to which layer an algorithm is applied,
followed by the approach taken for the upper layers (if any). For the latter, we have
two options: for the upper layers, one can use either straight Karatsuba (called “Karat”)
or Karatsuba with lazy reduction (called “Karat + lazyr”). For example, if the table
indicates “Alg. 2 over Fp6 . Karat + lazyr over Fp12”, it means that we use Algorithm 2 to
implement multiplication up to the Fp6 layer, with the upper layer over Fp12 implemented
with a formula that exploits Karatsuba with lazy reduction. In all the cases, we set
B = 1 for Algorithm 2, which gives optimal performance on the targeted x64 platform. As
noted before, this schoolbook-like algorithmic variant implementing an interleaved modular
multiplication in coarsely integrated form fully exploits the availability of carry-preserving
instructions. We comment that, at least on the targeted processor, the algorithm should
achieve similar performance for small values of B, as long as an increase in the radix size
does not put additional pressure on the register usage. For example, in our experiments,
we obtained similar results for B = 1 and B = 2.

In terms of speed, Tables 1 and 2 reveal that the full use of the new method solidly
beats the state-of-the-art implementations up to the Fp6 layer in the case of BLS12-381.
For the Fp12 multiplication, the fastest mark is achieved by using the implementation over
Fp6 and implementing the upper layer over Fp12 using Karatsuba. This is due to the fact
that at certain threshold Karatsuba starts to outperform schoolbook algorithms when
multiplications get eliminated at a sufficiently faster rate. Interestingly enough, we do
not require the use of lazy reduction because a basic implementation based on Karatsuba
already achieves optimal performance. This is the consequence of minimizing the cost of
reduction through the proposed approach, and this greatly reduces the complexity of the
implementation. Note that we also obtain a significant gain in the computation of squaring
over Fp2 . This is the result of replacing the non-interleaved Montgomery multiplication
available in [2] by a faster interleaved version, given that we were not limited anymore to
the old algorithmic selection that exploited lazy reduction.

In the case of BLS24-509, we experimented with a full use of the technique up to
the Fp4 level. For the Fp8 and Fp24 multiplications, we use the straight implementation
of the method over Fp4 and implemented the upper layers over Fp8 and over Fp24 using
Karatsuba. In the latter case, the use of lazy reduction results in a slight improvement.

Another relevant point is that the experimental results confirm an important and
consistent improvement in speed up to (at least) the 500-bit base field size. This can be
clearly observed when comparing the speedups for the Fp2 multiplication and squaring in
the 381- and 509-bit fields. Similarly, note the increasing speedup in the multiplication
over Fpk as k decreases for all the values of k considered in Tables 1 and 2 (this is clearly
observed in the cases of full use of the method using Algorithm 2).

Additionally, we also carried out an analysis of memory usage for BLS12-381. Notably,
we observe that the proposed method reduces significantly the use of memory, achieving
savings in the range 43%-78% for different extension field operations and with increasing
savings for higher extension degrees; see Table 1. The remarkable reduction in memory
consumption is mainly due to the elimination of double-precision operations and the
streamlined nature of our algorithms. Looking at the different options for Fp6 and Fp12

multiplication, one can see that those that avoid lazy reduction and implement the full
arithmetic using Algorithm 2 minimize the use of memory. For example, the use of

6https://valgrind.org/
7https://github.com/lnishan/massif-cherrypick

https://valgrind.org/
https://github.com/lnishan/massif-cherrypick
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Algorithm 2 over Fp12 brings the most memory-friendly option for multiplication over Fp12 ,
at the expense of a slight reduction in speed. We expect that similar results extend to
other extension degrees.

Finally, Table 1 also reports the cycle counts for the full pairing computation using an
optimal ate instantiation: on a 3.4GHz Intel Core i7-6700 Skylake machine the computation
of our fastest implementation option for BLS12-381 is performed in ∼ 674 µsec. As an
additional data point, the same computation on a 3.2GHz Intel Core i7-8700 Coffee Lake
machine is carried out in ∼ 491 µsec.8 (compare to the 688 µsec. obtained by running the
implementation from RELIC on the same platform). We remark that our implementation
is much simpler and more memory-friendly, and still achieves a speedup of up to 1.40×
over the state-of-the-art on an x64 processor. In addition, the table also includes another
implementation option in which the full Fp12 multiplication uses Algorithm 2. This
implementation saves up to 49% in memory usage in the pairing computation while almost
achieving top speed performance.

In the case of BLS24-509, Table 2 also shows a significant improvement in the running
time of the full pairing. On the Skylake platform, the computation is completed in ∼ 3.5
msec., which is 1.30× faster than the state-of-the-art implementation from RELIC. On the
Coffee Lake platform, the computation is completed in ∼ 2.6 msec., which is 1.31× faster
than the ∼ 3.4 msec. that is obtained with RELIC. As expected, when compared with the
results for BLS12-381, the relatively smaller speedup obtained for BLS24-509 reflects well
the use of a higher-degree tower field. Analysis for larger field sizes and higher extension
degrees is left for future work.

5 Impact to Other Scenarios and Future Work
The simple but effective approach that we have proposed in this work changes the paradigm
which the implementation of extension field arithmetic has long relied upon. This im-
mediately impacts the software implementation of cryptographic schemes such as those
based on bilinear pairings and supersingular isogenies. Moreover, we also expect the
approach to influence the development of efficient techniques and implementations for
other software platforms, constrained devices and hardware architectures, not only because
of the potential speed gains but also (and maybe more critically) because of the significant
savings in memory usage.

Next, we describe a few possibilities for some representative platforms, and end the
section with a discussion on the impact for supersingular isogeny-based schemes.

Software platforms. In platforms with a limited number of registers there is a risk of high
memory access costs. Hence, a streamlined, schoolbook-like algorithm like Algorithm 2
that minimizes memory friction and reduces the use of certain operations such as additions
(e.g., when there is support for carry-preserving instructions) achieves high performance on
modern x64 platforms. Alternative methods based on Karatsuba are expected to become
attractive at relatively large prime sizes, when the reduction in multiplications compensates
for the bumpier algorithmic flow with higher number of memory accesses and additions.

We expect a similar (if not better) situation with vectorized implementations using
the recent AVX-512 vector instructions available in some Intel processors. For example,
the optional extension “Integer Fused Multiply and Add” (IFMA) includes MULADD
instructions that perform up to eight 52-bit multiplications followed by accumulations with
64-bit values [34]. Future work could involve studying the performance of the proposed

8Some fun trivia: the reported BLS12-384 implementation runs a 128-bit secure pairing in under half a
millisecond, which is just slightly faster than the speed record mark hit by the BN254 pairing almost 11
years ago [3], before new attacks emerged and pushed field sizes up.
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Table 1: Comparison of the speed performance (in terms of clock cycles) and memory stack usage
(in terms of bytes) between the state-of-the-art implementation of an optimal ate pairing over
BLS12-381 and its extension field arithmetic [2] and the optimized implementation using the
method proposed in this work. The target platform is a 3.4GHz Intel Core i7-6700 (Skylake)
processor.

Reference Strategy Speed Memory

cc % bytes %

Fp2 mul

RELIC [2] Separated mul/rdc. Karat + lazyr 566 - 1,920 -
This work Alg. 2 over Fp2 355 -37% 1,104 -43%

Fp2 sqr

RELIC [2] Separated mul/rdc 451 - 1,824 -
This work Interleaved mul/rdc 268 -41% 976 -46%

Fp6 mul

RELIC [2] Separated mul/rdc. Karat + lazyr 3,376 - 6,320 -
This work Alg. 2 over Fp2 . Karat over Fp6 2,695 -20% 2,416 -62%
This work Alg. 2 over Fp2 . Karat + lazyr over Fp6 2,961 -12% 6,320 -0%
This work Alg. 2 over Fp6 2,342 -31% 2,104 -67%

Fp12 mul

RELIC [2] Separated mul/rdc. Karat + lazyr 10,061 - 16,040 -
This work Alg. 2 over Fp2 . Karat + lazyr over Fp6 and Fp12 8,800 -13% 16,040 -0%
This work Alg. 2 over Fp6 . Karat over Fp12 7,858 -22% 3,928 -76%
This work Alg. 2 over Fp6 . Karat + lazyr over Fp12 8,114 -19% 13,784 -14%
This work Alg. 2 over Fp12 8,315 -17% 3,544 -78%

Pairing

RELIC [2] Separated mul/rdc. Karat + lazyr 3.15 × 106 - 23,198 -
This work Alg. 2 over Fp6 . Karat over Fp12 2.29 × 106 -27% 12,752 -45%
This work Alg. 2 over Fp12 2.30 × 106 -27% 11,792 -49%

method using the operand and product-scanning forms, in combination with different
vectorization strategies.

Similar comments apply to implementations using the ARM NEON vector engine [63].
In this case, there is access to powerful, high-throughput MULADD instructions that
perform up to two 32-bit multiplications followed by accumulations with 64-bit values. Thus,
these instructions would favor an algorithmic variant of Eq. (3) in product-scanning form.
In the case of multiplication over Fp2 , for example, the 2-way NEON execution naturally
adapts to perform the two-term computation (i.e., the operations c0 = a0b0 + a1b1β and
c1 = a0b1 + a1b0) in parallel.

For the case of scalar implementations on 64-bit ARMv8 processors, the relatively
high cost of multiplication instructions might make the case for standard Karatsuba with
lazy reduction. However, memory accesses are also expensive, which would favor a more
streamlined execution as in the proposed algorithms. This requires actual experimentation
to determine which algorithm would be optimal.

Constrained platforms. For this class of devices, the potential reduction in memory
use is particularly relevant. A popular platform in this computing category is ARM
Cortex-M4. For this case, one can exploit the powerful, one-cycle MULADD instructions
available in the DSP extension. These instructions can perform a 32-bit multiplication
plus 64-bit accumulation, or a 32-bit multiplication plus two 32-bit accumulations. The
low cost of multiplication, added to the potential of eliminating the overhead from addition
instructions in a schoolbook-like computation (e.g., see [64, §3.4]), makes our approach
using Algorithm 2 a perfect fit.
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Table 2: Comparison of the speed performance (in terms of clock cycles) between the state-of-the-
art implementation of an optimal ate pairing over BLS24-509 and its extension field arithmetic [2]
and the optimized implementation using the method proposed in this work. The target platform
is a 3.4GHz Intel Core i7-6700 (Skylake) processor.

Reference Strategy Speed

cc %

Fp2 mul

RELIC [2] Separated mul/rdc. Karat + lazyr 900 -
This work Alg. 2 over Fp2 554 -38%

Fp2 sqr

RELIC [2] Separated mul/rdc 725 -
This work Interleaved mul/rdc 415 -43%

Fp4 mul

RELIC [2] Separated mul/rdc. Karat + lazyr 2,765 -
This work Alg. 2 over Fp2 . Karat over Fp4 2,002 -28%
This work Alg. 2 over Fp2 . Karat + lazyr over Fp4 2,390 -14%
This work Alg. 2 over Fp4 1,885 -32%

Fp8 mul

RELIC [2] Separated mul/rdc. Karat + lazyr 8,228 -
This work Alg. 2 over Fp2 . Karat + lazyr over Fp4 and Fp8 7,081 -14%
This work Alg. 2 over Fp4 . Karat over Fp8 6,373 -23%

Fp24 mul

RELIC [2] Separated mul/rdc. Karat + lazyr 48,319 -
This work Alg. 2 over Fp4 . Karat over Fp8 , Karat + lazyr over Fp24 41,424 -14%

Pairing

RELIC [2] Separated mul/rdc. Karat + lazyr 15.67 × 106 -
This work Alg. 2 over Fp4 . Karat + lazyr over Fp24 12.06 × 106 -23%

Hardware platforms. On hardware platforms like FPGAs, there are two important metrics
to consider when choosing and designing an algorithm: flexibility to parallelize independent
tasks, and the area-time (AT) cost. With this taken into account, our finely-integrated
variant (i.e., Algorithm 3) provides an optimal level of parallelization at the algorithmic
level without adding excessive area overhead. Note that Karatsuba and lazy reduction are
not ideal in many cases because they introduce overheads and storage requirements that
might hurt one or both of the hardware metrics mentioned above. Karatsuba permits to
subdivide computations in multiple, smaller multiplies that can be done in parallel, but
the extra circuitry can neglect a good AT trade-off on pipelined architectures. In contrast,
using hardware adaptations of Algorithm 3 would naturally enable a parallel computation
of up to (t + 1) products (note that all the products in lines 7 and 8 in the inner for-loop
are independent from each other).

Additional variants. In Appendix A, we discuss two Karatsuba variants with subquadratic
complexity. These could be advantageous for applications that can afford the extra overhead
and can benefit from a reduction in the number of multiplications.

We also comment that other reduction algorithms in the literature could exploit the
method advantageously. For example, this is the case of Barrett reduction [16] and its
interleaved version [59, §2.1], which can be extended to support merged sum of products
with a unified modular reduction, as done in this work.

5.1 Other applications: supersingular isogeny-based protocols
As mentioned in §1, another notable application of the proposed technique is in the
implementation of supersingular isogeny-based protocols. Recently, a series of attacks
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starting with [28] rendered insecure the insignia protocols of this family, i.e., SIDH
and SIKE. Since then, some works have proposed countermeasures to circumvent the
attacks [47, 48, 70]. For example, in a recent work, Fouotsa, Moriya and Petit [48] propose
two SIDH variants using masking. Unfortunately, the lengths of the underlying base fields
of the proposed parameters are rather large and run in the thousands of bits. In this
scenario, the proposed technique is expected to have a small impact (if any).

A more promising application includes the compact signature scheme SQISign [45],
whose prime bitlengths belong to the ideal range of a few hundred bits. Recently, in joint
work with De Feo, Leroux and Wesolowski, we adapted the proposed algorithms to a new,
faster variant of SQISign [46]. Concretely, we used Algorithm 2 for p6983, corresponding
to a 256-bit prime of generic form, and adapted Algorithm 5 to the 254-bit prime p3923,
for which p + 1 ≡ 0 (mod 264). In the former case, we obtained a speedup of ∼ 1.45× for
the combined cost of signing and verification, while for the latter we obtained a speedup
of ∼ 1.68×. The difference in the speedups highlights the advantage of suitably chosen
primes such as p3923 that feature a special shape and have some room at the computer
word boundaries. Future work includes the use of the algorithms for the implementation
of the arithmetic over the primes for the 192- and 256-bit security levels proposed in [26].
We also comment that the recently proposed variant FastSQISignHD [41] is expected to
greatly benefit from using algorithmic variants such as Algorithm 5 that are specially
tailored for primes with the form 2x · 3y − 1, as in SIDH and SIKE.

Another interesting line of work in which our method is expected to have a significant
impact corresponds to isogeny-based zero-knowledge protocols [17,32,44]. For example,
to illustrate the impact in a recent zero-knowledge proof of isogeny knowledge [17], we
modified the implementation by Basso et al. based on a 434-bit prime and observed a 23%
speedup in the generation phase, and a 29% speedup in both the prove and verify stages.
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A Other algorithmic variants
In this section, we discuss two variants using Karatsuba that could be amenable for certain
applications looking to reduce the number of multiplies.

The first one was already mentioned in §4 and applies to polynomial multiplication
in general: for certain sums of two products, it is possible to use products from adjacent
terms to convert them to a Karatsuba multiplication and save a multiplication (see the
subsection “The case of multiplication over Fp4”). Since the proposed algorithms interleave
integer multiplications and reduction products, some care has to be taken into account to
avoid excessive use of storage.

Below, we propose another option that interleaves Karatsuba multiplication with the
radix-r Montgomery reduction. The new algorithm is shown in Algorithm 4 using 2-way
Karatsuba.

https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-pairing-friendly-curves-10
https://datatracker.ietf.org/doc/html/draft-irtf-cfrg-pairing-friendly-curves-10
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Let’s focus on the simple case with t = 1, i.e., a standard modular multiplication
a · b mod p (the sum-of-products case easily follows). The basic idea of the algorithm is
to first split operands in two halves (for a 2-way Karatsuba) using the generalized radix
r = 2Bw = 2⌈n/2⌉, such that operands are represented as (a1, a0)2⌈n/2⌉ . Then, from Eq. (2)
and proceeding in product-scanning form, we have that:

u =
(

a0b0 + q0p0
)

/r, with q0 = a0b0p
′ mod r

=
(

u + a1b0 + a0b1 + q0p1 + q1p0
)

/r, with q1 = (u + a1b0 + a0b1 + q0p1)p
′ mod r

= u + a1b1 + q1p1.

Finally, we simply replace the intermediate computation (a1b0 + a0b1) by (a0 + a1)(b0 +
b1) − a0b0 − a1b1. For B odd we proceed as other cases in this work and adjust the
operations to the right digit size (lines 7 and 8 in Alg. 4).

We comment that other variants are possible and easily follow, such as for example
an interleaved, 3-way Karatsuba-Montgomery multiplication that can be derived in a
similar way with a splitting of operands in three parts. It is also possible to derive a
SIKE-friendly version. In this case, one can conveniently set the radix to r = 2e2 for a
prime p = 2e2 · 3e3 − 1 and eliminate the multiplications by p′.

Algorithm 4 Merged sums of products using Karatsuba in a radix-r interleaved Mont-
gomery multiplication.
Input: integers (a0, a1, . . . , at−1) and (b0, b1, . . . , bt−1) s.t. ai, bi ∈ [0, 2p) for i = 0, . . . , (t−
1) and 0 ≤

∑t−1
i=0 aibi < pR, where R = 2nw, n = ⌈l/w⌉, l = ⌈log2 p⌉, and w is the

computer wordsize; the radix r = 2Bw s.t. B = ⌈n/2⌉, and the Montgomery constant
p′ = −p−1 mod r. Integers are represented in radix r, e.g., ai = (ai,1, ai,0)r.
Output: the Montgomery residue c =

∑t−1
i=0 aibi ·R−1 mod p s.t. c ∈ [0, 2p).

1: u0 ←
∑t−1

i=0 ai,0 · bi,0
2: q0 ← u0 · p′ mod 2Bw

3: u← (u0 + q0 · p0)/2Bw

4: u1 ←
∑t−1

i=0 ai,1 · bi,1
5: u0 ←

( ∑t−1
i=0(ai,0 + ai,1) · (bi,0 + bi,1)

)
− u0 − u1

6: u← u + u0 + q0 · p1
7: q1 ← u · p′ mod 2(B−n mod 2)w

8: u← (u + q1 · p0)/2(B−n mod 2)w

9: u← u + 2(n mod 2)w · (u1 + q1 · p1)
10: return c← u

B Effect of the prime size: analysis with the SIKE primes
In this section, we evaluate the improvements in speed performance and memory usage
that can be obtained with the proposed technique for different prime sizes. For this, we
use the SIKE primes [5], which cover a range of sizes of relevance for several cryptographic
applications.

SIKE primes have the special form p = 2e2 · 3e3 − 1, where 2e2 ≈ 3e3 for integers e2 and
e3. For the analysis, we use Algorithm 5, which we derived from Algorithm 2 by adapting
it to the special prime shape.

Cost analysis. To evaluate the performance of the proposed approach, we implemented
Algorithm 5 with the Round 3 SIKE parameters p434, p503 and p610 (the number in
the parameter name denotes the bitlength of the corresponding prime [5]). We also
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Algorithm 5 Merged sums of products using radix-r Montgomery reduction in coarsely
integrated form for a prime with the form p = 2e2 · 3e3 − 1.
Input: integers (a0, a1, . . . , at−1) and (b0, b1, . . . , bt−1) s.t. ai, bi ∈ [0, 2p) for i = 0, . . . , (t−
1) and 0 ≤

∑t−1
i=0 aibi < pR, where R = 2nw, p = 2e2 · 3e3 − 1, n = ⌈l/w⌉, l = ⌈log2 p⌉, and

w is the computer wordsize; z = ⌊e2/w⌋, p̂ = (p+1)/2zw, and the radix r = 2Bw s.t. B ∈ Z
and 0 < B ≤ z. Integers are represented in radix r, e.g., ai = (ai,⌈n/B⌉−1, . . . , ai,1, ai,0)r.
Output: the Montgomery residue c =

∑t−1
i=0 aibi ·R−1 mod p s.t. c ∈ [0, 2p).

1: u← 0
2: for j = 0 to ⌊n/B⌋ − 1 do
3: u← u +

∑t−1
i=0 ai,j · bi

4: q ← u mod 2Bw

5: u← ⌊u/2Bw⌋+ 2(z−B)wq · p̂
6: if n mod B ̸= 0 then
7: u← u +

∑t−1
i=0 ai,⌈n/B⌉−1 · bi

8: q ← u mod 2(n mod B)w

9: u← ⌊u/2(n mod B)w⌋+ 2(z−n mod B)wq · p̂
10: return c← u

evaluate the SIKE prime p377 proposed by Longa et al. [67]. We compare against the
performance of the state-of-the-art implementations of the same SIKE primes from the
SIDH library v3.4 [39] and from [67]. These libraries implement the integer multiplication
in two layers using Karatsuba (upper layer) and schoolbook (lower layer). The reduction
part is implemented using a non-interleaved radix-r Montgomery reduction with B > 1,
specialized to SIDH/SIKE primes (see [43, Alg. 6]). As is standard, these libraries use
lazy reduction for the multiplication over Fp2 , following Algorithm 1.

Table 3 presents the performance comparison (in terms of clock cycles) for the Fp2

multiplication on an x64 processor, specifically, a 3.4GHz Intel Core i7-6700 (Skylake)
processor. All the implementations in the comparison are written in assembly language,
and were compiled and tested on the same platform using clang v6.0.1 with the command
clang -O3. The table also includes a detailed instruction count of all the implementations,
including multiplications, additions, subtractions and other instructions. The columns
“read” and “write” present counts of all the corresponding instructions that require a
memory access operation. We remark that the total instruction counts are provided as
an additional data point only and should not be considered to follow actual performance
with high-precision. Especially in the case of the targeted platform, its superscalar, deeply
pipelined microarchitecture makes extremely difficult to extract performance data from a
straight instruction count. Nevertheless, it can provide relevant information for a first-order
comparison of the different algorithms.

Firstly, we observe that the proposed method achieves much better speed performance
in all the cases, even though it requires a higher number of multiplication instructions.
This is due to the significant reduction of other operations, especially of those requiring
read/write memory accesses. Another relevant aspect is that at certain threshold the
operand sizes become too large and the lack of enough general purpose registers forces
the use of many more memory access instructions. This can be observed for the largest
prime under analysis, i.e., p610, which precisely returns the lowest speedup. In the rest of
the cases, the speedup goes from ∼ 1.17× up to 1.31×, with the speedup increasing as
the size of the prime decreases. This is consistent with the results from existing literature
that show that Karatsuba becomes more profitable as sizes grow (see §3). Nevertheless,
we demonstrate that, for the case of a quadratic extension field, schoolbook can still be
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Table 3: Comparison of instruction counts, speed performance (in terms of clock cycles) and
memory stack usage (in terms of bytes) between the proposed method (Algorithm 5, B = 1)
and the state-of-the-art implementations of multiplication over Fp2 for the SIDH and SIKE
protocols [5, 39, 67]. The target platform is a 3.4GHz Intel Core i7-6700 (Skylake) processor. The
comparison covers the Round 3 SIKE primes p434, p503 and p610, and also the prime p377
proposed in [67]. The instruction counts cover all the instructions executing multiplications,
additions, subtractions and memory accesses. The column “others” includes any other additional
instructions such as logical and shift instructions.

Reference Instruction count Speed Memory

read write mul add others total % cc % bytes %

p377

[67] 360 146 117 438 190 1,251 - 352 - 1,096 -
This work 227 18 192 412 68 917 -26.7% 269 -23.6% 712 -35.0%

p434

[39] 492 196 179 589 164 1,620 - 440 - 1,224 -
This work 292 21 252 537 74 1,176 -27.4% 341 -22.5% 784 -35.9%

p503

[39] 568 225 208 677 236 1,914 - 514 - 1,320 -
This work 366 24 336 709 90 1,525 -20.3% 440 -14.4% 832 -37.0%

p610

[39] 903 368 345 1,019 182 2,817 - 762 - 1,536 -
This work 715 170 500 1,090 117 2,592 -8.0% 734 -3.7% 952 -38.0%

much faster for primes up to around 500 bits9.
Table 3 also summarizes the stack memory usage corresponding to each parameter

set. The figures were obtained using valgrind and massif-cherrypick, as in §4. As can
be seen, our approach achieves a significant reduction in memory consumption that is
well above 35%. This is obtained consistently across the different parameter sets, with
even a slight increase in the savings as the prime size goes up. This is consistent with the
memory analysis in §4, although for pairings the savings are even greater for higher degree
extension fields when the use of the towering-based approach is minimized.

9In the case of generic primes, as used for pairings, we observed a consistent speedup up to the 500-bit
mark; see §4.1.
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