
Blind accumulators for e-voting

Sergey Agievich

Research Institute for Applied Problems of Mathematics and Informatics

Belarusian State University

agievich@{bsu.by,gmail.com}

Abstract

We present a novel cryptographic primitive, blind accumulator, aimed at constructing

e-voting systems. Blind accumulators collect private keys of eligible voters in a decentral-

ized manner not getting information about the keys. Once the accumulation is complete,

a voter processes the resulting accumulator deriving a public key that refers to the pri-

vate key previously added by this voter. Public keys are derived deterministically and

can therefore stand as fixed voter pseudonyms. The voter can prove that the derived key

refers to some accumulated private key without revealing neither that key nor the voter

itself. The voter uses the accumulated private key to sign a ballot. The corresponding

public key is used to verify the signature. Since the public key is fixed, it is easy to

achieve verifiability, to protect against multiple submissions of ballots by the same voter

or, conversely, to allow multiple submissions but count only the last one. We suggest a

syntax of blind accumulators and security requirements for them. We embed blind ac-

cumulators in the Pseudonymous Key Generation (PKG) protocol which details the use

of accumulators in practical settings close to e-voting. We propose an implementation

of the blind accumulator scheme whose main computations resemble the Diffie–Hellman

protocol. We justify the security of the proposed implementation.

Keywords: e-voting, cryptographic accumulator, zero-knowledge proof, Diffie–Hellman protocol,

square decisional Diffie–Hellman problem.

1 Preliminaries

In our country, state elections are held at polling stations, each serving from 20 to 3000 voters

and is managed by a local electoral commission. Arriving at a station, a voter is authenticated

by one of the commission members. At the same time as authentication, the affiliation of

the voter to this station is checked. If successful, the voter receives a ballot signed by several

commission members. There is a private (curtained) zone in which the voter fills out the ballot

and folds it to hide the choice from persons at the polling station. The voter leaves the private

zone, throws the ballot into a ballot box, and exits the polling station. At the end of the voting,

the commission members open the box, unfold the ballots, process them, sum up the votes and

publish the result.

The described voting scenario is typical, it is used in many other countries. Interestingly,

the scenario follows fairly closely the process for papal selection known as the conclave, from

the Latin cum clavis that literally means “with key” and implies “locked room”. The Latin

basis of the term “conclave”, in our opinion, correctly indicates the key aspect of the scenario

1

agievich@{bsu.by,gmail.com}

which is its hermeticity. All events are held in an isolated area under the control of the electoral

commission. Only the private zone, which by analogy with “conclave” is naturally to call the

enclave, falls out of control. Note that the boundary of the enclave is still controlled, the enclave

remains part of the conclave.

The “conclave” functionality provides the following properties of the voting system (polling

station).

1. Consistency: at any time during the voting, a voting system is in a correct state.

2. Eligibility: only eligible voters vote.

The “enclave” functionality provides one more property.

3. Privacy: individual votes remain secret.

The desirable features of voting systems do not end there. For example, the following

property is also important.

4. Verifiability: voters should be able to verify if their votes are correctly accounted for.

The property can be supported by allowing voters to mark the ballots on their choice and

requiring the electoral commission to publish scans of the processed ballots. A mark can be a

special symbol in the voting field (our country’s electoral code allows any symbol). The symbol

acts as a pseudonym that belongs to some eligible voter and only this voter knows to whom it

belongs.

In this paper, the concept of pseudonym is important. Having a fixed pseudonym that is

unambiguously associated with one of the voters of the polling station and at the same time

unknown with whom specifically, it is possible to achieve not only verifiability but also other

properties. For example, we may protect against multiple submissions of ballots by the same

voter (with the same pseudonym) or, conversely, may allow multiple submissions but count

only the last one.

Above, we started talking about electronic voting or e-voting. There are obvious analogies

between the elements of conventional voting at polling stations and cryptographic schemes and

protocols used in e-voting. So, for example, the enclave is associated with the voter’s private

key and signing a ballot with this key. Or the folding and unfolding of a ballot are, obviously,

encryption with a public key of the electoral commission and subsequent decryption with the

corresponding private key (it can be preliminarily split into parts distributed among commission

members). Moreover, many cryptographic primitives have emerged in response to challenges

encountered when developing e-voting systems.

The transition to e-voting is a part of the general trend to improve the convenience and

availability of public services. But that is not all. There have been and remain expectations that

e-voting increases the transparency of voting and confidence in its results. In the voting scenario

described at the beginning, this confidence is based solely on trust in electoral commissions

which in many cases is seriously undermined. The question arises as to whether it is possible

to organize voting so that the following additional property holds.

5. Decentralization: there is no electoral commission, voters jointly control the voting pro-

cess.

2

Next, we propose a novel cryptographic primitive called blind accumulator that helps con-

struct e-voting systems satisfying properties 1 –5. A blind accumulator acts as a digital conclave

that collects private keys from digital enclaves of voters doing this in a decentralized manner

and not getting information about the keys.

Once the accumulation is complete, a voter processes the resulting accumulator deriving a

public key that refers to the private key previously added by this voter. Public keys are derived

deterministically and can therefore stand as fixed voter pseudonyms. The voter can prove that

the derived key refers to some accumulated private key without revealing neither that key nor

the voter itself. The voter uses the accumulated private key to sign a ballot. The corresponding

public key is used to verify the signature. Since the public key is hard to associate with the

voter, the ballot does not even need to be encrypted to preserve privacy. However, in some

cases (for example, when intermediate voting results cannot be announced during the voting

process), encryption should be provided. This is beyond the scope of the paper.

The syntax of blind accumulators and security requirements for them are stated in Section 2.

In Section 3, blind accumulators are embedded in the Pseudonymous Key Generation (PKG)

protocol. The protocol details the use of blind accumulators in practical settings close to e-

voting. The PKG protocol performs pseudonymization of public keys: an input public key

associated with a particular party of the protocol is turned into a public key associated with

some party. In Section 4, we propose an implementation of blind accumulators. The security

of this implementation is discussed in Section 5.

With n voters, the proposed implementation requires storing O(n2) elements of a cyclic

group of large prime order q and O(n) scalars modulo q as final and intermediate accumulators

and associated proofs. Validating the correctness of all proofs requires O(n2) scalar multipli-

cations in the cyclic group. The time and memory requirements are not burdensome with the

n ≤ 3000 threshold mentioned at the beginning. However, if the threshold is exceeded, other

implementations should be considered. One of the promising directions here is the division

of voters into small random groups that separately run PKG. Once the grouping-then-PKG

round is complete, voters use derived pseudonymous public keys in the second round, and then

in several more rounds achieving full pseudonymization.

2 Blind accumulators

2.1 Concept

Cryptographic accumulators introduced in [2, 5, 6] are special encodings of tuples of objects.

We write a = [S] to denote that an accumulator a encodes a tuple S. We assume that

the encoding S 7→ [S] is driven by public parameters and that it is deterministic given the

parameters. We interpret tuples as ordered multisets bringing standard set notations such as

the curly braces, the membership (∈) and union (∪) symbols. Accumulators are managed by

algorithms that translate operations involving S into operations over [S]. We support only two

operations: adding an object and membership verification. We avoid the usual requirement

that the encoding [S] has to be succinct.

Typically, an accumulator [S] as well as the underlying set S are public. In our case, this is

not true: [S] remains public but S consists of private keys known only to their owners. Infor-

mally speaking, the accumulator collects objects blindly. That is why we call such accumulators

blind.

3

A private key sk ∈ S added to the accumulator [S] relates to a public key pk which is derived

from [S] with sk. The derived key is accompanied by a proof that sk ∈ S. The important

point here is that the proof does not reveal sk.

Another important point is that blind accumulators are not managed by any trusted party

which is usually responsible for maintaining the consistency of accumulators during their up-

dates. Without a trusted party, the consistency is maintained in a decentralized manner by

validating transitions between [S] and [S ∪ {sk}]. Each transition is accompanied by a proof

of consistency generated by a party who adds sk to S.

2.2 Syntax

A blind accumulator scheme is a tuple of polynomial-time algorithms BAcc =

(Init,Add,PrvAdd,VfyAdd,Der,PrvDer,VfyDer) that are defined as follows.

1. The probabilistic algorithm Init : 1l 7→ a0 takes a security level l ∈ N (in the unary form)

and outputs an initial accumulator a0 = [∅].

(a) We assume that a0 implicitly refers to l and public parameters (such as a description

of an elliptic curve) and that these parameters implicitly define a set of private

keys SKeys and a set of public keys PKeys.

2. The deterministic algorithm Add : (a, sk) 7→ a′ takes an accumulator a = [S] and a private

key sk, and outputs an updated accumulator a′ = [S ∪ {sk}].

(a) We assume that every accumulator a that is input to Add is an output of either

Init or some previous call to Add. This ensures the consistency of a, i.e. that it is

constructed as

a← Add(. . . (Add(Add(a0, sk1), sk2), . . .), skn), a0 ← Init(1l), ski ∈ SKeys,

and therefore is an incrementally built encoding [S] of the multiset S =

{sk1, sk2, . . . , skn}.
(b) We assume that public parameters referenced in the initial accumulator a0 are passed

to all accumulators incrementally built from it.

(c) For simplicity and without loss of generality, we suppose that all accumulators below

relate to the same initial a0 and therefore belong to the same security level l and

use the same public parameters.

3. The probabilistic algorithm PrvAdd : (a, a′, sk) 7→ α takes accumulators a, a′ and a private

key sk, and generates a proof α that a′ = Add(a, sk).

4. The deterministic algorithm VfyAdd : (a, a′, α) 7→ b takes accumulators a, a′ and a proof α

that a′ = Add(a, sk) for some private key sk. The algorithm verifies the proof and outputs

either b = 1 for acceptance or b = 0 for rejection.

(a) We require that if a′ ← Add(a, sk) and α ← PrvAdd(a, a′, sk), then

VfyAdd(a, a′, α) = 1.

4

5. The deterministic algorithm Der : (a, sk) 7→ pk |⊥ takes an accumulator a and a private

key sk, and either derives a public key pk or outputs the error symbol ⊥.

(a) We require that for a consistent a = [S], Der(a, sk) =⊥ if and only if sk /∈ S.

(b) We require that if a private key sk is chosen uniformly at random from SKeys, sk ∈ S
and a = [S], then pk ← Der(a, sk) has a fixed distribution D over PKeys regardless

of the structure of S.

6. The probabilistic algorithm PrvDer : (a, pk, sk) 7→ δ takes an accumulator a, a private

key sk and a public key pk, and generates a proof δ that pk = Der(a, sk).

7. The deterministic algorithm VfyDer : (a, pk, δ) 7→ b takes an accumulator a, a public

key pk and a proof δ that pk = Der(a, sk) for some private key sk. The algorithm verifies

the proof and outputs either b = 1 for acceptance or b = 0 for rejection.

(a) We require that if pk ← Der(a, sk) and δ ← PrvDer(a, pk, sk), then

VfyDer(a, pk, δ) = 1.

2.3 Consistency

Since the input sk of Add is secret and not revealed, a dishonest party involved in accumulator

management can submit a counterfeit a′ as the output of Add and thereby violate the consis-

tency of accumulators. That is why we strengthen Add with PrvAdd and VfyAdd. We impose

the following security requirement on the algorithms.

Definition 1. A scheme BAcc provides consistency if (i) implies (ii), where

(i) there exists a probabilistic polynomial-time algorithm A that takes a pair of accumulators

(a, a′) of security level l and outputs a proof α such that P {VfyAdd(a, a′, α) = 1} is non-

negligible in l;

(ii) there exists a probabilistic polynomial-time algorithm E that takes a pair of accumulators

(a, a′) of security level l, uses A as an oracle and outputs a private key sk such that

P {Add(a, sk) = a′} is non-negligible in l. The algorithm E is allowed to manage the

runtime environment of A without having access to its internals.

The consistency means that an algorithm A that claims to generate a correct proof α not

using a private key sk actually almost certainly uses it, as E shows. So, a transition from a

to a′ that is confirmed by VfyAdd is almost certainly driven by a valid private key and a′ is

consistent provided that a is consistent.

Our notion of consistency relates to the (special) soundness in zero-knowledge proofs (ZKP,

starting from [11]). There E is called a knowledge extractor [3].

Managing the runtime environment of a hypothetical adversary is commonplace in ZKP. The

environment becomes convenient for E and sometimes even idealized but remains realistic. The

algorithm E is usually allowed to replace hash functions with random oracles (see Section 5),

to program these oracles, to feed A with random tapes, to rewind A, that is, to run A several

times repeating a random tape.

5

2.4 Soundness

To protect against an adversary who claims that a counterfeit pk is derived from an accumula-

tor a using Der and therefore refers to some private key sk previously added to a, such a claim

has to be accompanied by a proof δ generated using PrvDer and verified using VfyDer. We

impose the following security requirement that literally corresponds to the (special) soundness

in ZKP.

Definition 2. A scheme BAcc provides soundness if (i) implies (ii), where

(i) there exists a probabilistic polynomial-time algorithm A that takes a consistent accu-

mulator a of security level l and a public key pk, and outputs a proof δ such that

P {VfyDer(a, pk, δ) = 1} is non-negligible in l;

(ii) there exists a probabilistic polynomial-time algorithm E that takes a consistent accumu-

lator a of security level l and a public key pk, uses A as an oracle, and outputs a private

key sk such that P {Der(a, sk) = pk} is non-negligible in l. The algorithm E is allowed

to manage the runtime environment of A without having access to its internals.

The soundness means that if an algorithm A is able to generate a correct proof δ that a

derived public key pk refers to some private key sk from an accumulator, then this algorithm

almost certainly uses this sk and, therefore, is run by an eligible party who previously added

sk to the accumulator.

2.5 Blindness

To protect against an adversary who extracts from proofs α and δ generated by PrvAdd and

PrvDer an information about sk, we impose the following security requirement.

Definition 3. A scheme BAcc provides blindness if

(i) there exists a probabilistic polynomial-time algorithm S1 that takes consistent accumula-

tors a and a′ = Add(a, sk), and generates a proof α′ that is statistically indistinguishable

from α = PrvAdd(a, a′, sk) and is accepted by VfyAdd;

(ii) there exists a probabilistic polynomial-time algorithm S2 that takes a consistent accumu-

lator a and a public key pk = Der(a, sk), and generates a proof δ′ that is statistically

indistinguishable from δ = PrvDer(a, pk, sk) and is accepted by VfyDer.

The algorithms S1 and S2 are allowed to manage the runtime environment of BAcc without

having access to private keys processed using BAcc.

The idea behind the blindness is that if there exists a way to generate proofs not dis-

tinguishable from correct ones not using a private key, then these proofs indeed contain no

information about the key. The trick here is the control over the runtime environment. Such

control is commonplace in ZKP where a similar requirement is called HVZK (honest verifier

zero-knowledge).

6

2.6 Unlinkability

Consider the game G(1l, n,m) between probabilistic algorithms V and A. These algorithms

represent honest and dishonest parties involved in accumulator management. The inputs of the

game are a security level l, a total number of parties n and a number of honest parties m. We

require that 1 ≤ m ≤ n.

The rules of the game are defined below. Hereinafter we write r1, r2, . . .
L← R to denote

that r1, r2, . . . are chosen independently at random from a set R according to a probability

distribution L and denote by $ the uniform distribution.

1. V takes 1l, computes and publishes a← Init(1l).

2. A and V make n moves of the form a← Add(a, sk), where sk is a private key chosen by

a player who moves and known only to this player. A makes n−m moves for dishonest

parties, V makes m moves for honest parties, the sequence of moves is determined by A.

The players accompany their moves with proofs constructed using PrvAdd and accepted

by VfyAdd.

3. In their moves, A uses arbitrary private keys, V uses private keys sk1, sk2, . . . , skm
$←

SKeys.

4. V is allowed to manage the runtime environment of BAcc and A.

5. After completing n moves, A and V obtain an accumulator a = [S] such that

sk1, sk2, . . . , skm ∈ S.

6. V computes the tuple pk← (pk1, pk2, . . . , pkm) in which pki ← Der(a, ski).

7. V generates b
$← {0, 1}. If b = 0, then V additionally generates j

$← {1, 2, . . . ,m},
ρ

D← PKeys and replaces in pk the key pkj by ρ.

8. V passes pk (either original or corrected) to A.

9. A outputs a guess b̂ ∈ {0, 1} of the bit b.

In the game, A demonstrates and V validates the capabilities to distinguish a correct public

key of an honest party from a random key. The negligibility of distinguishing capabilities, which

is required in the following definition, means the hardness of associating public keys with their

owners or, in short, unlinkability.

Definition 4. A scheme BAcc provides unlinkability if for any probabilistic polynomial-time

algorithm A that plays the game G(1l, n,m) and outputs a guess b̂ of the bit b, it holds that

Adv(A) =
∣∣∣P {b̂ = 1 | b = 1

}
− P

{
b̂ = 1 | b = 0

}∣∣∣
is negligible in l uniformly in n.

This coalition of dishonest parties presented by A has a large attack potential being allowed

to update accumulators with arbitrary private keys at arbitrary times. The potential of the

verifier V which is allowed to manage the runtime environment is also large. Indeed, if BAcc

satisfies the consistency and blindness requirements, then

7

– V is able to determine private keys added by A;

– V is able to generate valid proofs of consistency even not knowing private keys ski.

We use these observations in Section 5 when justifying our implementation of BAcc.

3 Pseudonymous key generation

The BAcc scheme can be used for pseudonymous key generation, PKG for short. PKG directly

relates to e-voting supporting 5 declared properties: consistency, eligibility, privacy, verifiability,

decentralization.

PKG is a protocol in which n authorized parties (voters) P1, P2, . . . , Pn and moderator

participate. The parties confirm their authenticity by signing messages with private keys. The

corresponding public keys are registered in a trusted infrastructure. A signature of a message µ

generated by a party Pi is denoted by SigPi
(µ). The signature acts as a message dependent proof

of knowledge of a private key. We assume that the signature SigPi
(µ) along with authorization

permissions of Pi can be verified by any other party Pj and the moderator. Let verification

be performed through a publicly available trusted service VfySig that, for example, aggregates

conventional public key infrastructure services.

The moderator is responsible for initializing the protocol, for storing accumulators that are

updated by the parties during the protocol execution, for providing access to the accumulators,

for verifying proofs of consistency of the accumulators. These functions are partially duplicated

by the parties themselves, who independently verify the consistency. A virtual moderation

through consensus decisions of the parties is potentially possible.

The PKG protocol runs as follows:

1. The moderator computes a0 ← Init(1l), sets (a, π)← (a0,∅) and publishes the pair (a, π).

The second element of the pair (initially empty) is the list of proofs and related data.

2. A party P ∈ {P1, P2, . . . , Pn}:

(a) gets access to (a, π);

(b) verifies proofs in π using the algorithm VfyAdd and the service VfySig;

(c) generates a private key sk
$← SKeys and saves it;

(d) computes a′ ← Add(a, sk), α← PrvAdd(a, a′, sk), σ ← SigP (a, a′, α);

(e) sends the request to the moderator to replace a with a′ and append (a, α, σ) to π.

3. The moderator verifies the request using VfyAdd and VfySig. The moderator additionally

checks that P ’s signature is not present in π and, therefore, P ’s requests were either not

sent or not accepted. If the checks are successful, then a is replaced with a′ and π is

appended with (a, α, σ). The updated pair (a, π) is published, proofs in π can be verified

by any party at any time.

4. The steps 2 and 3 are interpreted as registering P . Parties are registered in no particular

order. When processing a registration request from one party, the moderator suspends

requests from other parties. The registration closes at a pre-announced time. After that

the pair (a, π) no longer changes. The list π confirms the consistency of a and the fact

that only authorized (eligible) parties have been registered.

8

5. A registered party P ∈ {P1, P2, . . . , Pn} reads a, derives the key pk ← Der(a, sk) and

computes the proof δ ← PrvDer(a, pk, sk).

As a final result, P obtains the keys (sk, pk) and the proof δ that pk is correctly derived

from a. The proof can be verified using the algorithm VfyDer. The correctness of the

proof confirms the fact of registration of the party. The key pk acts as party’s fixed

pseudonym. The unlinkability property of blind accumulators makes it difficult to match

parties and pseudonyms.

The party P uses the resulting triple (sk, pk, δ) in cryptographic systems outside of PKG.

Each time the pseudonym pk is used, the party has to prove knowledge of sk or, in other words,

ownership of the pseudonym.

To prove knowledge of a private key, BAcc-friendly systems should be used. These systems

are compatible with the relationship between sk and pk established in PKG by the BAcc

algorithms. In the implementation of BAcc described in the next section, this relationship is

standard for cryptography in cyclic groups and, therefore, the well-known ElGamal [10] and

Schnorr [13] signatures are BAcc-friendly.

Constructing BAcc-friendly cryptographic systems is beyond the scope of this paper. We

only note that, apparently, the always working way to construct BAcc-friendly digital signatures

is to extend the interfaces of PrvDer and VfyDer with an additional input through which a

message to be signed or a message whose signature to be verified is passed.

If a BAcc-friendly digital signature is constructed, then P signs the data with sk and accom-

panies the signature with the pair (pk, δ). For example, a voter signs a ballot. The correctness

of the signature as well as the proof δ relative to (a, pk) means that the ballot is signed by one

of the eligible voters that took part in creating the accumulator a although it is not known

which exactly voter signed. The proofs in π accompanying a ensure the consistency of the

accumulator and the e-voting in general and non-volatility of pk supports verifiability. With

all this, the moderation, the only element of centralization in PKG, reduces to providing access

to the pair (a, π).

4 Implementation

We propose an implementation of the BAcc scheme whose main computations resemble the

Diffie–Hellman protocol and which is therefore called BAcc-DH.

In BAcc-DH, we use a cyclic group Gq of large prime order q. We write the group additively

and denote by G∗q the set of nonzero elements of Gq. We also use the ring Zq of residues of

integers modulo q and the set Z∗q of nonzero (invertible) residues.

The group Gq is constructed in the algorithm BAcc-DH.Init. An input security level l

determines the bit length of q. Once Gq is constructed, the set of private keys SKeys and the

set of public keys PKeys are defined as Z∗q and G∗q respectively.

The initial accumulator a0 and all subsequent accumulators are words in the alphabet G∗q.
The set of non-empty words in an alphabet Σ is denoted by Σ+. The notation (G∗q)+ is shortened

to G∗+q . For a word w, let |w| be its length, first(w) be the first symbol of w, last(w) be the

last symbol, and most(w) be the word w after dropping its last symbol.

Algorithm BAcc-DH.Init

Input: 1l (security level).

9

Output: a0 ∈ G∗+q (initial accumulator).

Steps:

1. Construct a group Gq of prime order q such that C12
l < q < C22

l, where C1, C2 are some

constants.

2. Choose G ∈ G∗q.
3. a0 ← G.

4. Return a0.

Since q is prime, the element G chosen at step 2 is a generator of Gq. The mapping Zq → Gq,

u 7→ V = uG is an (addition-preserving) homomorphism known as scalar multiplication. We

suppose that images of the homomorphism can be computed in time polynomial in l. We also

assume that the inversion of the homomorphism, that is, the discrete logarithm V 7→ u = logG V

is hard. More precisely, we suppose that computing logarithms takes time Ω(2l/2) on average.

In fact, we impose the strongest security requirements on Gq since discrete logarithm methods

are known that run in time O(
√
q) for any group of order q. We call Gq cryptographically strong.

Algorithm BAcc-DH.Add

Input: a ∈ G∗+q (accumulator), u ∈ Z∗q (private key).

Output: a′ ∈ G∗+q (updated accumulator).

Steps:

1. Parse a = G0G1 . . . Gn.

2. a′ ← G′0G
′
1 . . . G

′
nG0, where G′i = uGi.

3. Return a′.

Further we add words and multiply them by scalars in a component-wise manner. For

example, the accumulator a′ constructed above satisfies the equation most(a′) = u a. In the

following algorithms, a proof of the validity of this equation is constructed and verified. To

construct the proof, we use the fact that the mapping u 7→ u a (where zero u is allowed) is

a hard invertible homomorphism and therefore a well developed technique from [12] can be

applied. The proof possesses the special soundness and HVZK properties that provide the

consistency and blindness of BAcc-DH.

When constructing and verifying the proof, a hash function H is used. The function pro-

cesses arbitrary input data (assuming they are pre-encoded into a binary word) and outputs a

residue h ∈ Zq.

Algorithm BAcc-DH.PrvAdd

Input: a, a′ ∈ G∗+q (accumulators), u ∈ Z∗q (private key).

Output: α ∈ G+
q × Zq (proof).

Steps:

1. If |a′| 6= |a|+ 1 or last(a′) 6= first(a), return (G, 0) (dummy proof).

2. k
$← Zq.

3. r← k a.

4. h← H(a, a′, r).

5. s← (k − hu) mod q.

6. α← (r, s).

7. Return α.

10

Algorithm BAcc-DH.VfyAdd

Input: a, a′ ∈ G∗+q (accumulators), α ∈ G+
q × Zq (proof).

Output: 1 (accept) or 0 (reject).

Steps:

1. Parse α = (r, s).

2. If |r| 6= |a| or |a′| 6= |a|+ 1 or last(a′) 6= first(a), return 0.

3. h← H(a, a′, r).

4. If r 6= s a + hmost(a′), return 0.

5. Return 1.

Adding n keys and constructing the corresponding proofs require n(n + 1) scalar multipli-

cations in Gq. Interestingly, the amount of computation increases with each new key added:

2i multiplications for the ith key. In the terms of the PKG protocol, each new registration is

computationally harder.

After adding the private keys u1, u2, . . . , un, the resulting accumulator is the word

G0G1 . . . Gn in which

G0 = UG, Gi =
U

ui
G, i = 1, 2, . . . , n.

Here U =
∏n

i=1 ui. Note that the size of the accumulator grows linearly with n, the accumulator

is not succinct.

The algorithm Der assigns to a private key ui a public key V = uiG0. By construction,

ui = logGi
G0 = logG0

V.

An owner of ui can prove the last equation by representing it as the knowledge of two equal

discrete logarithms, employing the homomorphism GiG0 7→ ui(G0V) and using the mentioned

technique from [12]. To hide i, the proof is concealed in the OR-composition

n∨
j=1

[
ui = logG0

V = logGj
G0

]
.

Such a composition is a well-known ZKP tool introduced in [8]. We use this tool in the

algorithms BAcc-DH.PrvDer and BAcc-DH.VfyDer.

Algorithm BAcc-DH.Der

Input: a ∈ G∗+q (accumulator), u ∈ Z∗q (private key).

Output: V ∈ G∗q (public key).

Steps:

1. Parse a = G0G1 . . . Gn.

2. Find i ∈ {1, 2, . . . , n} such that uGi = G0. If such i does not exist, return ⊥.

3. Return uG0.

Algorithm BAcc-DH.PrvDer

Input: a ∈ G∗+q (accumulator), u ∈ Z∗q (private key), V ∈ G∗q (public key).

11

Output: δ ∈ Z+
q × Z+

q (proof).

Steps:

1. Parse a = G0G1 . . . Gn.

2. Find i ∈ {1, 2, . . . , n} such that uGi = G0. If such i does not exist, return (0, 0).

3. For j = 1, 2, . . . , n, j 6= i:

(a) hj, sj
$← Zq;

(b) rj ← sj(GjG0) + hj(G0V).

4. ki
$← Zq.

5. ri ← ki(GiG0).

6. hi ←
(
H(a, r1r2 . . . rn, V)−

∑
j 6=i hj

)
mod q.

7. si ← (ki − uhi) mod q.

8. δ ← (h1h2 . . . hn, s1s2 . . . sn).

9. Return δ.

Algorithm BAcc-DH.VfyDer

Input: a ∈ G∗+q (accumulator), V ∈ G∗q (public key), δ ∈ Z+
q × Z+

q (proof).

Steps:

1. Parse δ = (h, s). If |h| 6= |s| or |a| 6= |h|+ 1, return 0.

2. Parse a = G0G1 . . . Gn, h = h1h2 . . . hn and s = s1s2 . . . sn.

3. For j = 1, 2, . . . , n:

(a) rj ← sj(GjG0) + hj(G0V).

4. If H(a, r1r2 . . . rn, V) 6≡ h1 + h2 + . . .+ hn (mod q), return 0.

5. Return 1.

It is easy to check that BAcc-DH meets the requirements for the BAcc syntax (see § 2.2).

In particular, the public key V = uG0 that corresponds to a random private key u
$← Z∗q is

uniformly distributed over G∗q independently of other accumulated private keys.

A private key u added to the accumulator a = G0G1 . . . Gn and the corresponding public

key V = uG0 can be used in the ElGamal and Schnorr signatures. The Schnorr signature

algorithms are similar to the algorithms BAcc-DH.PrvAdd and BAcc-DH.VfyAdd exploiting the

same scheme. The signature of a message µ is a pair (h, s) ∈ Zq × Zq that is generated as

follows:

k
$← Zq, r ← kG0, h← H(r, µ), s← (k − hu) mod q.

The verification equation: H(sG0 + hV, µ) = h.

5 Security

In this section, we justify the security of BAcc-DH. We examine 4 security requirements stated

in Section 2 each time switching to the context of the corresponding security definition.

The security definitions allow runtime environments to be managed. We use this to replace

the hash function H with a random oracle (see [4]) and permit this oracle to be programmed.

The random oracle responds to a fresh input µ with a random output h
$← Zq and repeats a

previous output when an input is repeated. Programming the oracle consists in assigning a

12

given random output h to a given input µ. Collisions can potentially occur when programming:

the input µ may already be associated with an output h′ 6= h. Fortunately, we avoid collisions.

Consistency. Let E control a random tape of the algorithm A and be able to restart

(rewind) the algorithm with the tape repeating. This is possible since E is allowed to manage

the runtime environment of A. Let A return a proof (r, s) with s = (k−hu) mod q on the first

run. On the second run, the random tape is repeated and, therefore, the word r as well as the

input (a, a′, r) to the oracle H are also repeated. The output h′ of H, chosen at random, differs

from the first output h with probability (q− 1)/q. Consequently, after q/(q− 1) = 1 +O(1/2l)

restarts on average E gets h′ 6= h and s′ = (k − h′u) mod q. After that E determines

u = (s− s′)(h′ − h)−1 mod q.

We repeat here the standard arguments for Σ-protocols [7, 9].

Soundness. It is justified similarly to the consistency.

Blindness. The algorithm S1 generates h, s
$← Zq, constructs r ← s a + hmost(a′) and

programs H, that is, assigns the output h to the input (a, a′, r). The algorithm S1 returns

a pair (r, s) as a proof α. This proof is accepted by BAcc-DH.VfyAdd and is statistically

indistinguishable from the standard proof generated by BAcc-DH.PrvAdd provided that H is a

random oracle.

The algorithm S2 is constructed similarly.

Unlinkability. Let us show that the algorithm V that participates in the game G(1l, n,m)

can be transformed into an algorithm that solves the SDDH (Square Decisional Diffie–Hellman)

problem. This problem is proposed in [1] as a special case of the well-known DDH (Decisional

Diffie–Hellman) problem.

The SDDH problem is specified with respect to a cyclic group Gq with a generator G

and consists in deciding for a given triple (G, uG, vG), u, v ∈ Z∗q, if v ≡ u2 (mod q). The

algorithm B that solves this problem guesses if this is indeed the case and outputs either 1

(true) or 0 (false). The distinguishing capabilities of B are characterized by the advantage

Adv(B) =
∣∣∣P {B(G, uG, u2G) = 1: u

$← Z∗q
}
− P

{
B(G, uG, vG) = 1: u, v

$← Z∗q
}∣∣∣ .

The probabilities here are over a random tape of B and over a random choice of u and v.

Further we assume that G and the implicit accompanying description of Gq are valid outputs

of BAcc-DH.Init.

Let us show how B can solve SDDH by playing G(1l, n,m) for the role of V. Taking an

instance (G, uG, vG) of SDDH, B acts as follows.

1. Publishes a = G as the initial accumulator (output of BAcc-DH.Init).

2. Generates j
$← {1, 2, . . . ,m}.

3. Processes BAcc-DH.Add and BAcc-DH.PrvAdd calls made by A and determines used pri-

vate keys. To do this, B restarts A several times and extracts private keys from the pro-

vided proofs acting as the algorithm E that justifies the consistency. It takes m+O(m/2l)

restarts on average to determine all the keys.

4. Makes its own calls to BAcc-DH.Add (the order of calls is determined by A) numbered

1, . . . , j − 1, j + 1, . . . ,m using keys u1, . . . , uj−1, uj+1, . . . , um
$← Z∗q generated by itself.

The calls are accompanied by proofs constructed using BAcc-DH.PrvAdd.

13

5. Makes the jth call to BAcc-DH.Add in a non-standard way embedding the private key u

hidden in the input (G, uG, vG). To do this, performs transitions Gi 7→ uGi, using the

knowledge of di = logGGi and determining uGi as di(uG). The discrete logarithms di are

indeed known to B, since they are products of its own private keys and A’s private keys

extracted from the proofs.

6. Accompanies the jth call to BAcc-DH.Add with a proof of consistency indistinguishable

from the real one and obtained by programming the oracle H. Here B acts as the

algorithm S1 that justifies the blindness. Note that the inputs of H when constructing

proofs of consistency at different steps of accumulator management are certainly different

since the length of the accumulators as words increases. Therefore, there are no collisions

when programming.

7. Processes the final accumulator a = G0G1 . . . Gn and generates public keys. The symbol

G0 has the form G0 = duG, where d is the product of all private keys except u and this

product is known to B.

The public keys Vi, i 6= j, are constructed using BAcc-DH.Der as uiG0. The public key

Vj is constructed as d(vG). This is the correct public key with v ≡ u2 (mod q) and a

random public key with a random v. Let b be the indicator of the correctness of Vj. The

bit b is unknown to B and is not used by it (unlike V).

8. Passes A the public keys (V1, V2, . . . , Vm), waits the guess b̂ and outputs it as its own

guess to SDDH(G, uG, vG).

The algorithm B requires m+ O(m/2l) restarts of A on average and additional time poly-

nomial in l. Thus, if A is polynomial, then B is expected polynomial. At the same time,

Adv(B) = |P {B = 1 | b = 1} − P {B = 1 | b = 0} |

=
∣∣∣P {b̂ = 1 | b = 1

}
− P

{
b̂ = 1 | b = 0

}∣∣∣ = Adv(A).

This means that if SDDH is hard, i.e. Adv(A) is negligible, then Adv(B) is also negligible

and the unlinkability is ensured.

It remains to say that the hardness of SDDH in a cryptographically strong cyclic group Gq

is a reasonable assumption reflecting the similar assumption for DDH.

Acknowledgments: The author thanks Vlad Semenov and Valery Shchehlik for their

helpful comments on the preliminary version of this paper.

References

[1] F. Bao, R. H. Deng, and H. Zhu. Variations of Diffie-Hellman problem. In: Information

and Communications Security. ICICS 2003. Ed. by S. Qing, D. Gollmann, and J. Zhou.

Vol. 435. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2003, pp. 301–

312.

[2] N. Baric and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes

without trees. In: Advances in Cryptology — EUROCRYPT ’97. Ed. by W. Fumy.

Vol. 1233. Lecture Notes in Computer Science. Konstanz, Germany: Springer-Verlag,

1997, pp. 480–494.

14

[3] M. Bellare and O. Goldreich. On defining proofs of knowledge. In: Advances in Cryptol-

ogy — CRYPTO ’92. Ed. by E.F. Brickell. Vol. 740. Lecture Notes in Computer Science.

Berlin, Heidelberg: Springer-Verlag, 1992, pp. 390–420.

[4] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing

efficient protocols. In: Proceedings of the 1st ACM Conference on Computer and Com-

munications Security. New York, NY, USA: Association for Computing Machinery, 1993,

pp. 62–73. url: https://doi.org/10.1145/168588.168596.

[5] J. Benaloh and M. de Mare. Efficient broadcast time-stamping. Technical Report 1 TR-

MCS-91-1. Tech. rep. 1991.

[6] J. Camenisch and A. Lysyanskaya. Dynamic accumulators and application to efficient

revocation of anonymous credentials. In: Advances in Cryptology — CRYPTO 2002. Ed.

by M. Yung. Vol. 2442. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer-

Verlag, 2002, pp. 61–76.

[7] R. Cramer. Modular Design of Secure yet Practical Cryptographic Protocols. PhD thesis.

Amsterdam: Universiteit van Amsterdam, 1997.

[8] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and simplified

design of witness hiding protocols. In: Advances in Cryptology – CRYPTO ’94. Ed. by

Y.G. Desmedt. Vol. 839. Lecture Notes in Computer Science. Springer, 1994, pp. 174–187.

[9] I. Damgard. On Σ-protocols. University of Aarhus, 2002. url: https://cs.au.dk/

~ivan/Sigma.pdf.

[10] T. ElGamal. A public-key cryptosystem and a signature scheme based on discrete loga-

rithms. IEEE Trans. Inf. Theor. 31 (4) (1985), pp. 469–472.

[11] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof

systems. SIAM J. Comput. 18 (1) (1989), pp. 186–208.

[12] U. Maurer. Unifying zero-knowledge proofs of knowledge. In: Progress in Cryptology.

Ed. by B. Preneel. Vol. 5580. Lecture Notes in Computer Science. Berlin, Heidelberg:

Springer, 2009, pp. 272–286. url: https://doi.org/10.1007/978-3-642-02384-2_17.

[13] C.P. Schnorr. Efficient identification and signatures for smart cards. In: Advances in

Cryptology. Ed. by G. Brassard. Vol. 435. Lecture Notes in Computer Science. Berlin,

Heidelberg: Springer, 1990, pp. 239–252. url: https://doi.org/10.1007/0-387-

34805-0_22.

15

https://doi.org/10.1145/168588.168596
https://cs.au.dk/~ivan/Sigma.pdf
https://cs.au.dk/~ivan/Sigma.pdf
https://doi.org/10.1007/978-3-642-02384-2_17
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/0-387-34805-0_22

	Preliminaries
	Blind accumulators
	Concept
	Syntax
	Consistency
	Soundness
	Blindness
	Unlinkability

	Pseudonymous key generation
	Implementation
	Security

