
Simple Three-Round Multiparty Schnorr Signing
with Full Simulatability

Yehuda Lindell

Coinbase, USA

Abstract. In a multiparty signing protocol, also known as a threshold signature
scheme, the private signing key is shared amongst a set of parties and only a quorum
of those parties can generate a signature. Research on multiparty signing has been
growing in popularity recently due to its application to cryptocurrencies. Most
work has focused on reducing the number of rounds to two, and as a result: (a)
are not fully simulatable in the sense of MPC real/ideal security definitions, and/or
(b) are not secure under concurrent composition, and/or (c) utilize non-standard
assumptions of different types in their proofs of security. In this paper, we describe
a simple three-round multiparty protocol for Schnorr signatures that is secure for
any number of corrupted parties; i.e., in the setting of a dishonest majority. The
protocol is fully simulatable, secure under concurrent composition, and proven secure
in the standard model or random-oracle model (depending on the instantiations
of the commitment and zero-knowledge primitives). The protocol realizes an ideal
Schnorr signing functionality with perfect security in the ideal commitment and
zero-knowledge hybrid model (and thus the only assumptions needed are for realizing
these functionalities).
In our presentation, we do not assume that all parties begin with the message to
be signed, the identities of the participating parties and a unique common session
identifier, since this is often not the case in practice. Rather, the parties achieve
consensus on these parameters as the protocol progresses.

1 Introduction
Mutliparty signing, or threshold signature schemes, enable a quorum of parties to sign
on a message, while preventing any subset of parties that does not form a quorum from
doing so. This can be used to digitally emulate processes like multiple signers on a
cheque or to protect a signing key from being stolen or misused by ensuring that multiple
machines (and possibly humans) approve a transaction before it is signed. Threshold
cryptography (for signing and encryption) were studied in the late 1980s and 1990s
(cf. [7, 13, 16, 17, 23, 39, 40, 35, 33, 36, 3]), but has recently gained a lot of interest in
both academia and industry – primarily for ECDSA and Schnorr signatures – due to its
application to the protection of cryptocurrencies [32, 22, 28, 37, 1]. In this setting, signing
keys protect large sums of money, and the motivation to misuse a key is very high.

Threshold Schnorr signatures. Schnorr signatures [38] have been around for over three
decades, and are in wide use in the form of EdDSA and in the cryptocurrency space. There
have been many threshold signature schemes designed for Schnorr signatures. However,
to the best of our knowledge, these schemes are all either for the honest majority setting
(e.g. [23, 42]), are proven secure via a reduction to the discrete log problem in the random-
oracle model (e.g., [35, 1, 3]), or use non-standard assumptions like the one-more discrete

E-mail: yehuda.lindell@gmail.com (Yehuda Lindell)

https://orcid.org/0000-0002-8176-690X
https://yehudalindell.com
mailto:yehuda.lindell@gmail.com

2 Simple Three-Round Multiparty Schnorr Signing with Full Simulatability

log assumption and/or idealized generic group model assumptions (e.g., [28, 1, 37, 14]).
When reducing to the discrete log problem directly, these proofs of security rely on variants
of the forking lemma. This impacts the tightness of the reduction, as well as the ability to
achieve concurrent security. Although it is possible to prove concurrent security, this is
very tricky and error prone, as was shown in [18, 4].

Full simulation. In the standard MPC paradigm, protocols are proven secure by showing
that they securely realize a certain “ideal functionality” [8, 9, 25]. In the context of
threshold signatures, this can be formalized by defining an ideal functionality that simply
generates a standard Schnorr signature on a message m after receiving an approval to
sign on the message from a quorum of parties. Such an approach is actually agnostic to
the question of whether or not Schnorr signatures themselves are secure. This has the
advantage of not requiring the forking lemma, rewinding and so on in order to prove the
protocol secure. In addition, the assumptions and model needed to prove the protocol
secure need not be the same as for the signature scheme itself (e.g., the protocol may
or may not rely on a random oracle). This may sound strange: if Schnorr signatures
are proven secure in the random-oracle model, then what value is there in proving a
threshold-signing protocol secure in the standard model? The answer is that after over
three decades in existence one can reasonably just assume that Schnorr signatures are
secure as an assumption in itself (similarly to what we do for ECDSA since we have no
reasonable proof). In this light, it is of value to construct a secure threshold signature
scheme for Schnorr that reduces to the assumption that Schnorr signatures are secure and
nothing else.

We argue that there are significant advantages to this approach. First, it significantly
reduces the assumptions required.1 Second, simulation can be achieved without rewinding,
providing tight security and concurrent composition. Third, as we see here, the proof of
security is far more straightforward and thus less error prone.

Our results. In this paper, we construct a multiparty signing (and key generation)
protocol that securely realizes the ideal functionality that computes Schnorr signatures, in
the presence of a malicious static adversary corrupting any number of parties. Since we
consider the dishonest-majority setting, we do not achieve guaranteed output delivery or
fairness. Our protocol has three rounds of communication, supports quorum thresholds
(including AND/OR combinations of threshold sets), and is extremely simple and efficient.
We prove the security of our protocol under the standard real/ideal paradigm for MPC [8,
25]. In a hybrid model with an ideal zero-knowledge and commitment functionality, our
simulator does not rewind the adversary, and the simulation is perfect. Thus, if the
zero-knowledge and commitment functionalities used are UC-secure [9], then the entire
protocol is UC-secure as proven in [29]. This means that the protocol is secure under
composition, when run concurrently with arbitrary other secure and insecure protocols.

In many protocols in the literature, the parties are assumed to all know the message
being signed upon, a unique session identifier (where needed) and possibly also the
identity of the participating parties, before the protocol begins. However, in practice, this
information needs to be agreed upon by the parties, and even generated by them (as in
the case of a session identifier). Furthermore, parties are assumed to communicate via
private point-to-point channels, whereas in practice communication is often carried out by
a “central (untrusted) coordinator”. In the case of threshold cryptography, this is usually
the case since different subsets of parties carry out different operations, and it’s unlikely
that they have anything more than the public-keys of the other parties. Of course, one can
use these keys to encrypt and sign, and can even set up secure channels if needed. However,
this can add overhead to the protocol and is often not required. We therefore describe

1The most efficient instantiations of the protocol (specifically, for the commitments and zero-knowledge
proofs) will require a random oracle. However, its usage is limited to these primitives (making its use not
integral to the protocol) and non-random oracle instantiations can be used if desired.

Yehuda Lindell 3

our protocol in a very basic setup where the parties only have a public-key infrastructure,
and all communication is via an untrusted coordinator. This means that our three-round
protocol is truly three rounds without assuming any prior consensus on the message to be
signed, the participating parties, or a unique session identifier.
Protocol idea. Our protocol is very simple, and is indeed what one would expect for
Schnorr signatures (in fact, we were surprised not to find this protocol in the literature).
Recall that a Schnorr signature (over the group G of order q with generator G) is of the
form (e, s) where e = H(m∥Q∥R) for R = k · G, and s = k − e · d (mod q), where the
private key is d ∈ Zq and the public key is Q = d ·G. Our protocol works by the parties
first running a simulatable coin tossing by each choosing a random ki and committing to
Ri = ki ·G. Then, the parties decommit to reveal Ri and provide a zero-knowledge proof of
knowledge of the discrete log ki. Finally, each party computes R =

∑
Ri, e = H(m∥Q∥R),

and si = ki − e · di (mod q), where the di values are an additive sharing of the private key
d. The resulting Schnorr signature on m is (e, s) where s =

∑
si (mod q). The reason

that this is fully simulatable is that the coin tossing enables the simulator to “force” the
R value to be that defined by the signature (e, s) received from the ideal functionality
(by computing R = s ·G + e ·Q), and the zero-knowledge proofs enable the simulator to
extract all of the corrupted ki values and exactly compute the si value that each honest
party would send in a real protocol. In more detail, the simulator can know all of the
corrupted ki and di values, as well as all of the honest ki and di values except for one.
This means that it can exactly compute the si value that all but one honest party would
compute in the protocol. Then, given the real signature s from the ideal functionality, the
simulator can compute the final honest party’s sj value as s−

∑
i ̸=j si. This strategy is

slightly harder to implement when there are different parties in each execution (since the
“one” honest party can be different each time, and all honest parties’ values have to be
consistent across all executions), but the values can be obtained by applying Lagrange
interpolation appropriately.
On efficiency, optimizations and conservative design. As we have discussed,
the literature is full of Schnorr threshold signature protocols, and many of those are
more efficient than our protocol. These protocols sometimes have only two rounds of
communication, and do not use zero-knowledge proofs. We argue that although such
optimizations are important in some cases,2 they are not needed in many other cases. For
example, for consumer cryptocurrency wallets that run MPC between a user’s mobile and a
server, it makes no difference if a signature takes 10ms or 100ms. This is also true of most
custody use cases for cryptocurrency where the number of transactions a day is not counted
in the millions (and even if they are, extremely low latency isn’t required, and throughput
can easily be increased by adding machines). Likewise, if such protocols are used for code
signing (albeit unlikely today since RSA or ECDSA are typically used for that), then the
number of signatures generated is small. In such cases, two rounds versus three rounds
does not make any difference,3 and we have no need to overly optimize the number of
exponentiations (e.g., by not having a zero-knowledge proof). In these cases, especially
where the keys are extremely valuable (e.g., protecting large amounts of cryptocurrencies
or used to sign highly valuable code), we argue that a conservative approach makes the
most sense. It is interesting that for standard cryptographic operations like signing and
encryption, industry is extremely conservative, adopting new schemes only after many
years of careful evaluation. However, when it comes to threshold signing, many protocols

2For example, consider the application of using MPC for the signing operation in a TLS handshake on a
popular web server. In this case, reducing latency and increasing throughput without requiring additional
computing resources can be important.

3There are some use cases where disconnected machines run some of the MPC parties, and a person
has to physically deliver the MPC messages to those machines. In such cases, two versus three rounds
may be significant. Whether or not that warrants less conservative design and assumptions depends on
the risk appetite of the organization deploying them.

4 Simple Three-Round Multiparty Schnorr Signing with Full Simulatability

rely on non-standard assumptions, some of them new and unstudied, and sometimes even
heuristic arguments of security. This is not prudent for deployment in practice when so
much is at stake. The protocol in this paper is aimed at use cases where shaving a few
milliseconds off is not of significance, and being highly confident in the security of the
protocol takes priority.

The simulation versus game-based approach. As we have mentioned, the fact that
our protocol is UC-secure means that it is guaranteed to remain secure under concurrent
composition with arbitrary other protocols. Another very significant advantage of this
approach is that our protocol remains secure even if related keys are used (something
which cannot be claimed for game-based proofs, unless specifically taken into account).
This holds since the signing protocol is proven secure independently of the key generation
protocol. Thus, in the UC model, the environment can provide related keys to the
parties and the proof of security remains unchanged. Of course, the use of related keys
may result in Schnorr itself no longer being secure, but this is not due to the protocol.
Although seemingly strange, this is actually an extremely relevant issue since many (or
most) cryptocurrency wallets use key derivation techniques that result in related keys (e.g.,
the normal derivations in [43]). With our approach, it suffices to prove that the Schnorr
signature scheme remains secure with these derivation methods, and this automatically
implies that the threshold protocol remains secure as well.

A note on EdDSA. The EdDSA signing scheme [5] is a Schnorr variant where the
randomness used to generate the signature is derived deterministically from the key, using
a pseudorandom function. This design is intended to prevent biased and reused nonces
which are catastrophic in Schnorr (and ECDSA) signatures. Our protocol can be used for
EdDSA, but the result is not actually compliant with the standard since it is possible to
generate two different signatures on the same message since it is not deterministic. As
long as only one signature is generated, this is indistinguishable. However, if a higher-level
protocol relies on the signature being deterministic, then this is a problem. (Having said
that, if a higher-level protocol relies on it being deterministic, then a party can easily break
it by generating two different signatures, so higher-level protocols should not rely on this.)

Related work. As described, there has been considerable prior work on constructing
threshold signatures. Some of this dates back to the early 2000s (e.g., [35, 36]), while other
work is very recent (e.g. [28, 1, 37, 14]). However, to the best of our knowledge, no protocol
in the literature has been proven secure under the standard ideal/real model paradigm for
MPC, with a functionality just computing Schnorr signatures. Furthermore, most recent
work is based on non-standard assumptions, some of them interactive, non-falsifiable, or
utilizing generic and algebraic group models. This is the primary novelty of this paper.

Subsequent work. In subsequent work to this paper, [34] show that three-round Schnorr
is secure with simulation-based security, even without zero-knowledge proofs of knowledge
(which we require). However, their ideal functionality does not compute a Schnorr signature,
but rather an ideal signing functionality that hides the signature contents (and is secure
assuming the discrete log problem is hard). This provides a different security guarantee,
and it isn’t clear that security is maintained when keys are not generated randomly,
and in particular when BIP032 key derivation [43] or the like is used. To an extreme,
assume that a poor key generation method is used so that signatures can be forged with
some non-negligible probability. Then, our protocol will maintain this probability, and
security will be the same as for locally generated signatures. In contrast, it isn’t clear
that any security is achieved by the protocol in [34] in such a case. Another subsequent
work [12] also considers three-round Schnorr without zero-knowledge proofs. They also
study adaptive security, but work with game-based definitions, which are fundamentally
different as discussed above. In particular, security is not implied for related keys, poorly
generated keys, and so on.

Yehuda Lindell 5

Organization. In Section 2, we present preliminary definitions and notation. Then, in
Section 3 we show how an ideal commitment functionality can be UC-realized without a
unique session identifier. This is needed in order to achieve a three-round protocol without
assuming that the parties already hold a unique session identifier. Next, in Section 4, we
present and prove the protocol for the case that the parties are given ahead of time a
session identifier, the message to be signed and the set of participating parties. In Section 5
we extend the protocol to the case that the parties have only their shares of the private
key (and a PKI of public signing keys) at the onset of the protocol, in Section 6 we show
how identifiable abort is added, and in Section 7 we show how to achieve efficient UC
zero-knowledge. Finally, in Appendix A we show how distributed key generation can be
achieved using a similar methodology.

2 Preliminaries
We denote the computational security parameter by κ, and so all parties run in time that
is polynomial in κ.

The Schnorr signing algorithm. The Schnorr signing algorithm is defined as follows.
Let G be an Elliptic curve group of order q with base point (generator) G. The private key
is a random value d← Zq and the public key is Q = d ·G. The Schnorr signing operation
on a message m ∈ {0, 1}∗ is defined as follows:

1. Choose a random k ← Zq

2. Compute R = k ·G.

3. Compute e = H(m∥Q∥R); different Schnorr variants hash different values and in
different orders, but this is inconsequential.

4. Compute s = k− e · d (mod q); some Schnorr variants add rather than subtract here,
but this is also inconsequential.

5. Output (e, s)

In order to verify a signature given the public-key Q, compute R = s ·G + e ·Q and accept
if and only if e = H(m∥Q∥R).

The ideal multiparty zero knowledge functionality Fzk. We use the standard ideal
zero-knowledge functionality defined by ((x, w), λ) → (λ, (x, R(x, w))), where λ denotes
the empty string, with the only difference being that the proof is sent to all parties. For a
relation R, the functionality is denoted by FR

zk.

FIGURE 1 (The Zero-Knowledge Functionality FR
zk for Relation R).

Functionality Fzk works with parties P1, . . . , Pn, as follows:
• Upon receiving (prove, sid, S, x, w) with S ⊂ [n] from a party Pi (for i ∈ [n]): if

(x, w) /∈ R or sid has been previously used then ignore the message. Otherwise,
send (zkproof, pidi, sid, x) to party Pj for every j ∈ S, where pidi is Pi’s unique party
identifier.

Note that any zero-knowledge proof of knowledge securely realizes the Fzk function-
ality [27, Section 6.5.3]; non-interactive versions can be achieved in the random-oracle
model via the Fiat-Shamir paradigm with security under sequential composition. In order
to achieve this under concurrent composition, the rewinding of the random oracle causes
a problem. This can be solved (in general, and specifically for proving knowledge of the
discrete log) using the methods described in Section 7. We therefore assume Functionality 1
and UC-security in our presentation. We use this specifically for the discrete log relation

6 Simple Three-Round Multiparty Schnorr Signing with Full Simulatability

defined by Rdl = {((G, G, P), w) | P = w ·G}, where G is the description of a group with
generator G. In this case, we denote the functionality by Fdl

zk. In Appendix A, we also
refer to a batch discrete log proof, which is simply the proof of knowledge of many discrete
logs in parallel. This can be achieved at almost the same cost as a single discrete log proof
using the protocol of [24], but not for UC security (for which the method of Section 7 must
be used, and for which the batch proof is more costly).

Security with abort, the hybrid model and composition. We prove the security
of our protocol under simulation-based ideal/real model definitions that are standard
for MPC [8, 25, 9]. We consider a dishonest majority here, and therefore security with
abort. This is modeled in the ideal model by the adversary first receiving output, and then
instructing the trusted party computing the functionality who should receive output. Our
protocol is proven secure in a hybrid model with zero-knowledge and commitment ideal
functionalities. The soundness of working in this model is justified in [8, 25] (for stand-alone
security) and in [9] (for UC security under concurrent composition). Specifically, as long
as subprotocols that securely compute the functionalities are used (under the definition
of [8] or [9], respectively), it is guaranteed that the output of the honest and corrupted
parties when using real subprotocols is computationally indistinguishable to when calling
a trusted party that computes the ideal functionalities. We note that any protocol that is
perfectly secure (or computationally secure with input synchronization) and is proven via
a simulator that does not rewind is UC secure [29].

The communication model and PKI. The standard real model for communication
in MPC is that of point-to-point authenticated (or even private) channels between all
parties. This can be achieved in any model of communication (as long as we don’t assume
guaranteed delivery of messages) by signing (and encrypting if privacy is needed) each
message sent from each party. In the case of broadcast (with abort) over point-to-point
authenticated communication channels, it is possible to use a simple echo-broadcast, as
shown in [26]. Having said the above, in some cases, it is possible to achieve simpler
and more efficient communication patterns than these generic transformations. In many
real-world settings where there is a threshold of participants, all messages are sent via a
central coordinator. This is due to the fact that the effort required in agreeing on the
participating parties and then setting up direct secure channels is larger than just sending
all messages via such a coordinator machine. Since communication via a coordinator
machine is more complex than assuming broadcast and pairwise point-to-point channels,
and since we view this as a likely real-world deployment model, we adopt this as the model
of communication in our protocol description. We therefore also include an explicit PKI
for signing all messages (our protocol does not require private channels, and thus signing
is enough). As we will see, we also achieve implicit broadcast in the protocol by running a
signed echo-broadcast on the messages sent, where needed.

We remark that since we consider security with abort (which is inherent to the dishonest
majority setting), the communication can be completely asynchronous as parties can simply
wait to receive all of the current-round messages before sending their next-round message.
(This isn’t always the case in protocols where not all parties communicate in each round;
however, in our protocols, all parties communicate in all rounds.)

3 Multiparty Commitments Without SIDs
We use commitments in the “coin tossing” phase of signing in order to choose the nonce for
the signature, and in distributed key generation to generate a random key. As discussed,
we prove our protocol secure assuming access to an ideal commitment functionality. For
this purpose, we can use any UC-secure commitment scheme (e.g., [30, 6, 21]). In the
random-oracle model, the basic UC-secure commitment can be trivially realized with static

Yehuda Lindell 7

security by simply defining Com(sid, x) = Hro(sid∥x∥r) where r ← {0, 1}κ is random (and
κ is a computational security parameter of a fixed and known length, and sid is a unique
session identifier of known length).

In our protocol for Schnorr signing, the parties need to commit in the first round.
However, in a setting with no prior setup, the parties need to generate the sid. This takes
at least one round, and so the protocol will be four and not three rounds.4 In order to
overcome this, we show that in the random-oracle model, it is possible to securely compute
the ideal commitment functionality with UC security without a session identifier. In general,
session identifiers are used to prevent copying from one session to another and from other
parties. However, copying from other parties can easily be prevented by including party
identifiers, and copying from previous executions is actually not necessarily a problem.
In order to see why an sid isn’t needed, note that when the committing party’s identifier
is included in the commitment, a corrupted party can only “copy” a commitment by
(a) taking the content from a previous already opened commitment from a different honest
or corrupted party, or (b) using a commitment that it itself sent in parallel or concurrently.
However, an adversary can do these anyway in the perfect Fmcom-hybrid model (i.e., with
an ideal multiparty commitment functionality). Regarding (a): once a commitment has
been opened, any party can commit to that value with Fmcom. Regarding (b): a party can
commit to the same value concurrently using Fmcom with different sid’s and this will have
the same effect as achieved here. We therefore conclude that a multiparty commitment
functionality Fmcom can be securely realized in the standard way, with the exception that
the commitment does not need to include an sid (as long as the committing party’s pid
is included, to prevent unopened commitments from being copied). In particular, if a
corrupted Pi sends a commitment value that has not been seen before, then it is dealt with
in the usual way by the simulator for Fmcom (either extracting successfully or concluding
that the adversary will not be able to provide a valid decommitment).

Having said the above, there is a technical challenge in the ideal-model simulation
to match commitments to decommitments with no identifier (in the real protocol this
isn’t a problem since the commitment value can be recomputed from the decommitment
and matched). If party Pi sends two commitments to Pj , then how does the simulator
distinguish which decommitment is associated with which commitment? If the committing
party is corrupted, then the simulator can actually do that without any problem since it
received the commitment value from the adversary and so can compare. However, if the
committing party is honest, then the simulator is unable to differentiate since all it received
from the ideal functionality is a blank receipt message. In order to solve this, we have
each party Pi input a random/unique sidi that they chose themselves when committing.
When the committing party is honest, this identifier will be unique and so will enable the
simulator to connect commitments to decommitments. Of course, when the committing
party is corrupted, nothing stops them reusing an identifier, but as we have discussed, this
doesn’t affect security. Furthermore, if a corrupted party uses the same identifier for two
different commitment values, in the real protocol we differentiate these by the commitment
values themselves.

In our protocol, we also wish to ensure that all honest parties receive the same com-
mitment from the committer. As such, it is actually a broadcast commitment functionality.
This is achieved by running an echo-broadcast on the commitment. That is, the committer
sends its commitment to all parties, and all parties then send what they received to all
others. If a party sees the same commitment value from all, then it knows that all honest
parties have the same commitment, and it accepts. Otherwise, it aborts. The fact that
this achieves a UC-secure broadcast with non-unanimous abort (i.e., there exists a single
value so that each honest party either outputs that value or aborts) was shown in [26]. As

4It is possible to agree on an sid in one round and not more since it needs to be unique only, and does
not need to be random. Thus, it suffices for each party to send a random identifier and to set the sid to be
the collision-resistant hash of the concatenation of all of the sent identifiers.

8 Simple Three-Round Multiparty Schnorr Signing with Full Simulatability

we have discussed, in some settings, the subset of participating parties is known only in
the second round. Therefore, the consensus on who is participating and who received the
broadcast is only obtained at the end. The ideal multiparty broadcast commitment Fmcom
is defined in Functionality 2.

FIGURE 2 (The Broadcast Commitment Functionality Fmcom).
Functionality Fmcom works with parties P1, . . . , Pn and adversary S, as follows:

• Upon receiving (commit, sidi, pidi, S, x) with S ⊂ [n] from party Pi: store (sidi, pidi, S, x)
and send (receipt, sidi, pidi, S) to S and every Pjwith j ∈ S.

• Upon receiving (decommit, sidi, pidi, S, x) from party Pi, if (sidi, pidi, S, x) is recorded
then send (decommit, sidi, pidi, S, x) to S and to Pj for every j ∈ S.

Note that the decommitment also needs to include the commitment value x since
there is no other way to identify exactly what is being decommitted when the committing
party is corrupted and so may use the same sidi for two different commitments (unlike
regular UC-commitments, the functionality is willing to accept multiple commitments with
the same sidi). We now prove that the standard UC-commitment in the random-oracle
model together with an echo-broadcast securely realizes Fmcom. The protocol assumes
that the lengths of the bit representation of sidi, pidi and S are fixed and known, but
any unambiguous encoding of the strings would be equivalent. For simplicity, we present
the commitment protocol assuming point-to-point channels, and later explain how it is
modified for the case of communication via a central coordinator, using a PKI of public
signing keys.

Our protocol is proven secure in the random-oracle model. We model this via an
ideal random-oracle functionality From that works as follows. Upon receiving (ROM, x),
functionality From checks if a pair (x; y) is stored for some y ∈ {0, 1}κ. If yes, it returns
y. Else, it chooses a random y ← {0, 1}κ, stores (x; y), and returns y. We prove that
Protocol 3 securely realizes Fmcom for the case that honest parties always input unique
sidi values. This is achieved in practice by simply choosing sidi ∈ {0, 1}κ randomly.5

PROTOCOL 3 (Broadcast Commitment Protocol).
• Commit: Upon input (commit, sidi, pidi, S, x), party Pi works as follows:

1. Message 1 (broadcast) – Pi to all: Pi chooses a random r ← {0, 1}κ, computes
c = Com(sidi, pidi, S, x; r) = Hro(sidi∥pidi∥S∥x∥r) and sends (sidi, pidi, S, c) to Pj

for every j ∈ S.
2. Message 2 (echo) – all to all: Upon receiving (sidi, pidi, S, c), if j ∈ S then party

Pj sends (sidi, pidi, S, c) to Pℓ for every ℓ ∈ S. Else, it ignores the message.
3. Output decision: If Pj received the same (sidi, pidi, S, c) from all parties (including

itself), then it outputs and stores (sidi, pidi, S, c). Otherwise, it ignores the
commitment.

• Decommit: Upon input (decommit, sidi, pidi, S, x), party Pi works as follows:

1. Pi sends (decommit, sidi, pidi, S, x, r) to Pj for every j ∈ S.
2. Upon receiving (decommit, sidi, pidi, S, x, r), party Pj computes c =

Hro(sidi∥pidi∥S∥x∥r). If it had previously stored (sidi, pidi, S, c) then it out-
puts (decommit, sidi, pidi, S, x). Otherwise, it ignores the message.

5Note that this can be enforced by the functionality rather than assuming it, by having the ideal
functionality reject a repeated sidi from an honest party, while allowing a corrupted party to use the same
sidi multiple times. However, this involves the functionality to be aware of which parties are honest and
which are corrupted. This can be modeled, but unnecessarily complicates the treatment here.

Yehuda Lindell 9

Proposition 1. Let Hro be modeled by the ideal random oracle functionality From. Then,
Protocol 3 UC-securely realizes Fmcom in the From-hybrid model, in the presence of a
malicious static adversary, in the case that honest parties always use unique local sidi

identifiers.

Proof. We prove security acccording to [10] where S delivers all messages between Fmcom
and the parties. (Note that in this model, the public header for Fmcom contains the type
of message (commit or decommit) along with sidi, pidi, S, and the private content is the
message being committed to.) Let A be a real (dummy) adversary who simply forwards
messages to and from the environment Z. Let I ⊂ [n] be the set of corrupted parties. We
now describe the ideal-model adversary/ simulator S:

1. Random-oracle queries: When A sends any message (ROM, sidi, pidi, S, x, r) to From,
simulator S works exactly as the real From except that it doesn’t allow any collision.
That is, S checks if it has stored (ROM, sidi, pidi, S, x, r; c) for some c ∈ {0, 1}κ. If
yes, it returns c. Else, it chooses a random c← {0, 1}κ. If the chosen c has already
been chosen previously, then S outputs fail1. Else, it stores (ROM, sidi, pidi, S, x, r; c),
and returns c.

2. Commitments from corrupted parties: Upon receiving (sidi, pidi, S, c) from A for some
i ∈ I, as a message sent from a corrupted Pi to some honest party Pj , simulator
S checks if a tuple (ROM, sidi, pidi, S, x, r; c) has been stored for some x ∈ {0, 1}∗

(x ̸= ⊥). If no, then S stores (ROM,⊥, c) and ignores the message. If yes, but the
stored tuple doesn’t represent a valid commitment string, e.g., not having a correct
pidi, then it is also ignored. If yes and the stored tuple is of valid format, then S
sends (commit, sidi, pidi, S, x) to Fmcom and proceeds as follows:

S plays the honest parties in the echo-broadcast to A for this commitment.
For every honest party Pj who concludes successfully and would store
(sidi, pidi, S, c), simulator S delivers the message (receipt, sidi, pidi, S) from
Fmcom to Pj .

3. Decommitments from corrupted parties: Upon receiving a message (decommit,
sidi, pidi, S, x, r) from A for some i ∈ I to be sent to some honest Pj , simulator
S checks if some (ROM, sidi, pidi, S, x, r; c) has been stored. If yes, then it sends
(decommit, sidi, pidi, S, x) to Fmcom and delivers the decommit message to Pj . If no,
then it chooses a random c← {0, 1}κ. If (ROM,⊥, c) has been stored, then S outputs
fail2. Else, S ignores this decommit message.

4. Commitments from honest parties: Upon receiving (commit, sidj , pidj , S) from Fmcom
for some honest j /∈ I, simulator S chooses a random c, stores (ROM, sidi, pidj , S, ∗, ∗; c)
and simulates the honest parties running an echo broadcast with Pj sending (sidj , pidj , S, c)
to all parties. (Note that if such a c has already been stored, then S outputs fail.)

5. Decommitments from honest parties: Upon receiving (decommit, sidj , pidj , S, x) from
Fmcom for some honest j /∈ I, simulator S chooses a random r ← {0, 1}κ and updates
the stored tuple (ROM, sidj , pidj , S, ∗, ∗; c) to the full tuple (ROM, sidj , pidj , S, x, r; c).
Then, S simulates Pj sending the decommitment message (decommit, sidj , pidi, S, x, r)
to all parties.

We claim that as long as S does not output fail, the view of the enviroment in the ideal and
real executions are identical. In order to see this, observe that if S does not output fail1
then there are never any collisions in c. Furthermore, if S does not output fail2 then A must
have queried the random oracle with a commitment value before it decommits. Together,
this implies that the commitment and decommitment messages sent by S to Fmcom map
exactly to the commitment and decommitment messages of A in a real execution.

10 Simple Three-Round Multiparty Schnorr Signing with Full Simulatability

Furthermore, commitments and decommitments made by honest parties are perfectly
simulated. In particular, the commitment values have the same distribution since S runs
the random oracle. Thus, it can first choose c and later on “fill in” the commitment value
(sidj , pidj , S, x, r) by programming the oracle, and this has exactly the same distribution
of a real execution. (Note that the correct mapping of commitments to decommitments is
achieved under the assumption that an honest party Pj never uses the same sidj in two
different commitments.)

It is easy to see that S outputs fail with negligible probability (since a collision with a
random oracle happens with negligible probability, and the probability that S chooses a
random c that equals a commitment value previously sent by A is also negligible). We
therefore conclude that the view of the environment in a real execution is statistically close
to its view in an ideal execution, as required.

Realizing Fmcom via a coordinator. In our main communication model, all messages
are sent via a coordinator. Since we also need to ensure consistency of commitments sent to
all honest parties, this is achieved by having the committer send its commitment message
signed to the coordinator, who forwards it to all parties. Then, each party signs on what
it received and sends it back to the coordinator, who forwards all signatures to all parties.
The commitment is accepted only if all parties have signed on the same commitment string.
Since all messages are signed, any modification made by the coordinator or any party
sending different messages to different parties will result in an abort. This is valid since
the second round of the commitment protocol is only used to validate that the committer
sent the same commitment to all parties.
Parallel commit and decommit. The commitment phase of the protocol takes two
rounds of communication. However, if we need to run a “coin tossing” flow, where all
parties commit and then all parties decommit, this can all be achieved in two rounds as
well. This works by verifying that all signatures are to the same commitment strings of all
parties in the decommitment round, and accepting the commitment and decommitment
only in that case.
Instantiating the random-oracle commitment. A good instantiation is to compute
Com(sidi, pidi, S, x; r) = Hro(sidi∥pidi∥S∥x∥r) = HMACr(sidi∥pidi∥S∥x), where r is of a
fixed (predetermined) length. That is, use r as the HMAC key and the rest as input.
This has the advantage that it is a secure commitment scheme in the standard model. In
particular, hiding holds under the assumption that HMAC is a pseudorandom function,
and binding follows from the collision resistance of the hash function. Of course, in order
for it to be a UC-secure commitment, we need the random-oracle properties so that the
simulator can extract committed values from corrupted parties and equivocate simulated
commitments from honest parties.

4 Multiparty Schnorr Signing – Assuming Initialization
4.1 The Protocol
In this section, we present the basic protocol for a set of parties who hold Shamir shares
of the private key. In this presentation, we assume that the set of t + 1 participating
parties S ⊂ [n] is known, and that all parties hold the same message m. Furthermore, we
assume that a global sid is known to all parties in the second round. In Section 5 we will
present the general protocol where parties begin from nothing except their share of the
private key and a PKI. The protocol can be presented more succinctly assuming pairwise
communication between all parties, and assuming the ideal Fmcom and Fzk functionalities
(see Protocol 7 in the proof of Theorem 10). Nevertheless, as mentioned in the introduction,
we present this more detailed and specific description here where all communication is via

Yehuda Lindell 11

a coordinator and signatures are used to achieve consistency of views of all honest parties,
since this is how it will most likely be implemented in practice.

PROTOCOL 4 (Multiparty Schnorr Signing).
Input: Each party in the set S of parties has the Schnorr public key Q, the set of participating
parties S, a session identifier sid (from the second round), the message to be signed m, a
PKI of signing keys {pki}i∈S , its private signing key ski, and its private input which is a
Shamir share of the private key d where d ·G = Q.
The protocol:
Before beginning, each party Pi updates its Shamir share to be an additive share di of the
private key, using the Lagrange coefficients for the set S.

1. Message 1 – all to C: Each party Pi works as follows:

(a) Pi chooses a random ki ← Zq and sets Ri = ki ·G.
(b) Pi chooses a random sidi ← {0, 1}κ and a random ri←{0, 1}κ and sets ci =

H(sidi∥pidi∥S∥Ri∥ri).
(c) Pi sends (σ1

i , sidi, ci) to the coordinator C, where σ1
i = signski

(1, sidi, ci) using its
signing-key ski from the PKI.

2. Transmission 1 – C to all: C receives all (σ1
i , sidi, ci) messages, and sends {(σ1

i , ci)}i∈S

to all parties.
3. Message 2 – all to C: Each party Pi works as follows:

(a) Pi verifies that it received (σ1
j , sidj , cj) for every j ∈ S, that ci as it sent in the

first message appears in the set, and that all signatures are valid. If not, it aborts.
(b) Pi computes πi ← ZKDLP (sid, pidi, Ri; ki) (where ZKDL denotes a Fiat-Shamir

proof of knowledge of the discrete log, pidi is the known identity or public-key of
Pi, and sid is the session identifier).

(c) Pi sends (σi
2, Ri, ri, πi) to the coordinator C, where σ2

i =
signski

(sid, 2, {ci}i∈S , Ri, ri, πi) using its signing-key ski from the PKI.

4. Transmission 2 – C to all: C receives all (σ2
i , Ri, ri, πi) messages, and sends

{(σ2
i , Ri, ri, πi)}i∈S to all parties.

5. Message 3 – all to C: Each party Pi works as follows:

(a) After receiving all {(σ2
j , Rj , rj , πj)}j∈S , party Pi verifies all signatures (using its

sid and the series of commitments it received from C in the first round). If not
valid, it aborts. If valid, it proceeds.

(b) For every j ∈ S (j ̸= i):
i. Pi verifies that H(sidj∥pidj∥S∥Rj∥rj) = cj , and that all values are valid

(i.e., it has the correct sidj , pidj and S, and overall structure).
ii. Pi verifies ZKDLV (sid, pidj , Rj ; πj) = 1.

iii. If the commitment is not valid, or Rj is not a valid point in the curve subgroup,
or Rj is equal to the identity point, or if ZKDLV (sid, pidj , Rj ; πj) = 0 (i.e.,
the ZK verification fails) then Pi aborts. Else, it proceeds.

(c) Pi sets R =
∑

j∈S
Rj , e = H(m∥Q∥R) and si = ki − di · e (mod q), with the

exact hash and si formula as needed for the Schnorr variant.
(d) Pi sends si to C

6. Output: C sets s =
∑

i∈S
si (mod q) and checks that verifyQ(m, (s, e)) = 1. If yes,

then it outputs (e, s); otherwise it aborts.

Communication pattern. Observe that the communication pattern in both the
consensus phase and in Protocol 4 is all parties send a message to C, and C sends all
messages together to all parties. This simple communication pattern is easy to implement.

12 Simple Three-Round Multiparty Schnorr Signing with Full Simulatability

4.2 Proof of Security
We begin by defining the ideal functionality F for signing. We wish our protocol to
be secure for any key generation (trusted key generation, distributed key generation,
hierarchical-deterministic key generation via BIP-032 [43] and so on). As such, we define
the ideal functionality for the signing process only, and where parties input their key
shares, however they may have been generated. This guarantees that the signing protocol
provides the same level of security as a local signing operation, irrespective of how the
keys are generated.

The natural way to model this is that each party inputs their private share di and the
public key Q, with the guaranteed that all t + 1 input di values lie on a single polynomial
p(x) such that p(0) · G = Q. (That is, the input shares define the correct private key.)
However, in many case, especially when distributed key generation is used (e.g., with
Feldman VSS), the parties also all have the vector (Q1, . . . , Qn) where Pi’s private share
is di and Qi = di ·G. We therefore prove security even when this additional information is
held by the parties (and the adversary).

We prove that our protocol is secure for any set of inputs, as long as all parties hold the
same vector (Q, Q1, . . . , Qn) and as long as each party’s private input share di is correct,
meaning that Qi = di · G. If this holds, we say that the inputs are valid and consistent.
We stress that if the parties are not guaranteed to have valid and consistent inputs, then
each party should verify that their input share is correct, and the parties should run an
echo-broadcast on the vector (Q, Q1, . . . , Qn). We do not include this in our protocol since
in practical settings, this input is the result of a secure distributed key generation or the
like, and so the parties’ inputs are guaranteed to indeed be valid and consistent.

We define the functionality such that only C receives output. This is sufficient since
C can always forward the signature to any other party, and since the signature can be
verified the output cannot be modified. Note that if C is not corrupted, then the adversary
can cause it to not receive output since we consider security with abort.

FUNCTIONALITY 5 (Schnorr Signing Functionality F).
• Signing: Upon receiving (sign, sid, m, Q, Q1, . . . , Qn, di) from t+1 different parties

Pi, functionality F verifies that all parties sent the same (sid, m, Q, Q1, . . . , Qn),
that Qi = di ·G for all inputs received, and that there eixsts a degree-t polynomial
p(x) such that p(i) · G = Qi for i = 1, . . . , n, and p(0) · G = Q. If no, then
it does nothing. Else, it chooses a random k ← Zq, and computes R = k · G,
e = H(m∥Q∥R) and s = k − e · d (mod q). Then, F sends (sid, e, s) to C.

We are now ready to state the theorem and prove it secure. We stress that the
“perfect security” in the theorem statement only holds in the hybrid model with ideal
commitment and zero-knowledge functionalities (and assuming honest relay of messages
by C). In reality, it is computationally secure (e.g., the signatures generated by the parties
to authenticate their messages can be broken, and the instantiations of Fmcom and Fzk
may have computational security). We note that the fact that the security of Schnorr
signatures is itself a computational assumption is of no consequence here since our protocol
securely computes the signature as is. Thus, our MPC protocol can be perfectly secure,
even while computing a computationally secure object.

Theorem 6. Assume that the parties have valid and consistent inputs, and are invoked
with the same (S, m, sid), where S ⊂ [n] (with |S| = t + 1) is the set of participating parties,
m is the message to be signed, and sid is a unique session identifier. Then, Protocol 4
securely computes Functionality 5 in the (Fmcom,Fzk)-hybrid model with perfect security
with abort, in the presence of a malicious static adversary A controlling any subset of the
parties and the coordinator C.

Yehuda Lindell 13

Proof. We prove the theorem in the (Fmcom,Fzk)-hybrid model. This means that instead
of a party sending (σ1

i , sidi, ci) in the first message where ci is a commitment to Ri (where
coordinator C sends this to all parties), it sends (commit, sidi, pidi, S, Ri) to Fmcom and the
functionality forwards (receipt, sidi, pidi, S) to all parties. Likewise, instead of sending the
opening and zero-knowledge proof (σ2

i , Ri, ri, πi), party Pi sends (decommit, sidi, pidi, S, x)
to Fmcom and sends (prove, sid, S, Ri, ki) to Fdl

zk. Note that the signatures on the messages
are only needed in order to ensure that C forwards all values without change, and that all
parties receive the same set of committed values. This is guaranteed by communicating
directly via Fmcom and Fzk; recall that these functionalities ensure consistency. The formal
protocol description in this hybrid model appears in Protocol 7.

PROTOCOL 7 (Multiparty Schnorr Signing).
Input: Each party in the set S of parties has the Schnorr public key Q, the set of participating
parties S, a session identifier sid, the message to be signed m, and its private input which is
a Shamir share of the private key d where d ·G = Q.
The protocol: Before beginning, each party Pi derives an additive share di of the private
key, using the Lagrange coefficients for the set S.

1. Message 1: Each party Pi chooses a random ki ← Zq, computes Ri = ki · G, and
sends (commit, sidi, pidi, S, Ri) to Fmcom.

2. Message 2: After receiving (receipt, sidj , pidj , S) for every j ∈ S, each party Pi sends
(decommit, sidi, pidi, S, Ri) to Fmcom and sends (prove, sid, S, (G, G, Ri), ki) to Fdl

zk.
3. Message 3: After receiving (decommit, sidj , pidj , S, Rj) from Fmcom and

(zkproof, pidj , sid, Rj) from Fdl
zk for every j ∈ S, party Pi computes

R =
∑

j∈S
Rj , e = H(R∥Q∥m) and si = ki − di · e (mod q), and sends si to C.

4. Output: C sets s =
∑

i∈S
si (mod q) and checks that verifyQ(m, (s, e)) = 1. If yes,

then it outputs (s, e); otherwise it aborts and reports a corruption.

Let F denote Functionality 5. Let A be an adversary corrupting a (strict) subset of
parties I ⊂ S of size at most t (if t + 1 are corrupted, then the protocol is vacuously
secure), and let J denote the set of honest parties (note that I ∪ J = S). Without loss
of generality, assume that 1 ∈ J (i.e., P1 is an honest participant). We are now ready to
construct the simulator S, with input {(sign, sid, m, Q, Q1, . . . , Qn, di)}i∈I , as follows:

1. S externally sends (sign, sid, m, Q, Q1, . . . , Qn) to F and receives back (sid, e, s). S
computes R = s ·G + e ·Q. Then, S invokes A in an execution of the protocol.

2. S sends (receipt, sidj , pidj , S) to A for every j ∈ J (for each honest party), as if
coming from Fmcom.

3. S receives (commit, sidi, pidi, S, Ri) as sent by each corrupted party to Fmcom. (Note
that if any illegal commitments are sent, with incorrect values or format, then this is
just ignored by S).

4. For all j ∈ J \{1}, simulator S chooses a random sj ← Zq and sets Rj = sj ·G+e ·Qj

(where e is from the signature received from F). Then, S sets R1 = R−
∑

i∈I Ri −∑
j∈J\{1} Rj , using R computed from the signature received from F .

5. S simulates Fmcom sending (decommit, sidj , pidj , S, Rj) to A for every j ∈ S (using
the Rj values computed in the previous step). In addition, S simulates Fzk sending
(zkproof, j, sid, (G, G, Rj)) to A for every j ∈ S.

6. S receives (decommit, sidi, pidi, S, Ri) and (prove, sid, S, (G, G, Ri), ki)
messages sent by A to Fmcom and Fzk for every corrupted party. If any message is
not sent or if Ri ̸= ki ·G, then S waits.

14 Simple Three-Round Multiparty Schnorr Signing with Full Simulatability

7. S computes si = ki − di · e (mod q) for every i ∈ I (S can do this since it knows the
ki values for each corrupted party from the ZK proof and the di values from the key
generation). Then, S computes

s1 = s−
∑
i∈I

si −
∑

j∈J\{1}

sj (mod q).

8. If C is corrupted, then S simulates each Pj sending sj to C, for every j ∈ J . If C is
honest, then S receives the si values sent by A to C for the corrupted parties. S
verifies that

∑
i∈I si =

∑
i∈I(ki − di · e) mod q where the si values are received from

A and the (ki, di) values are as above (ki from the ZK proofs and di from the input).
If yes, then it instructs F to provide output to C in the ideal model; if no, then it
instructs F to send abort to C in the ideal model.

This completes the simulation. We argue that the simulation is perfect. In order to see
this, we show that the (Rj , sj) values sent by the simulator to the adversary are identically
distributed to the values sent by the honest parties to the corrupted parties in a real
protocol execution. In order to see this, first note that for every j ∈ J \ {1} the values are
generated as follows:

• Real: kj ∈R Zq is random, Rj = kj ·G, and sj = kj − e · dj mod q

• Simulation: s̃j ∈R Zq is random, R̃j = s̃j · G + e · Qj (we write s̃j and R̃j to
differentiate from the real)

Let k̃j be such that R̃j = k̃j ·G. We remark that the simulator S does not know k̃j , but
the value is well defined. It follows that k̃j = s̃j + e ·dj mod q and so s̃j = k̃j− e ·dj mod q,
exactly like in a real execution. Furthermore, choosing k̃j at random and computing
s̃j = k̃j − e · dj mod q yields the exact same distribution as choosing s̃j at random and
computing k̃j = s̃j + e · dj mod q.

Next, regarding (R1, s1), we have that

R1 = R−
∑
i∈I

Ri −
∑

j∈J\{1}

Rj = k ·G−
∑
i∈I

ki ·G−
∑

j∈J\{1}

kj ·G

where k is the discrete log of R (as computed from the signature), {ki}i∈I are the corrupted
parties’ values from the ZK-proofs, and {kj}j∈J\{1} are the implicit values defined above.
This therefore defines k1 = k −

∑
i∈I ki −

∑
j∈J\{1} kj mod q. Similarly, we have

s1 = s−
∑
i∈I

si −
∑

j∈J\{1}

sj = k − e · d−
∑
i∈I

(ki − e · di)−
∑

j∈J\{1}

(kj − e · dj) (mod q)

which holds for i ∈ I by how the simulator computes {si}i∈I and for j ∈ J \ {1} by the
above analysis. Writing k =

∑
ℓ∈I∪J kℓ and d =

∑
ℓ∈I∪J dℓ we have that

s1 =
∑

ℓ∈I∪J

kℓ − e ·
∑

i∈I∪J

dℓ −
∑
i∈I

(ki − e · di)−
∑

j∈J\{1}

(kj − e · dj) (mod q)

and so s1 = k1 − e · d1 mod q, as required. (We stress that S does not know these values,
and in particular it does not know the dj values of the honest parties including d1, and
yet is able to generate the correct distribution, as described above.)

Finally, since S is able to perfectly verify whether or not the corrupted parties send
correct values, since it knows all of the corrupted (kj , dj) values and so can detect if
the sum over all si values sent by A is correct. (Note that only the sum matters for C
computing a correct signature.) Thus, the distribution over C receiving or not receiving
output is exactly the same in the real and ideal executions.

Yehuda Lindell 15

Security under concurrent composition. As shown by [29], perfect security without
rewinding implies UC security. As such, assuming that the commitments and zero-
knowledge implementations are UC secure, we have that the protocol is UC-secure and so
secure under concurrent composition.

On the necessity of the ZK proofs. It may appear that the zero-knowledge proofs
are not required since S can extract the Ri values of the corrupted parties from the
commitments, and can set R1 = R−

∑
i∈I Ri −

∑
j∈J\{1} Rj without knowing the ki

values. Indeed, this is correct, and there is no need for zero-knowledge proofs in order
to achieve simulation of the Ri values so that they sum up to R. However, when the
simulator needs to generate the signature part s1 = s−

∑
i∈I si −

∑
j∈J\{1} sj (mod q),

it does use the ki (discrete log of Ri) and di (share of private key) values. This is so
that it can compute

∑
i∈I si itself. Note that S cannot rely on the si values sent by the

corrupted parties for this computation since they may be incorrect. In such a case where
A does send incorrect si values, S is unable to generate the correct s1 value with the
correct distribution. This would therefore result in the real and ideal distributions being
distinguishable.

5 Threshold Signing Without Trusted Initialization

5.1 Achieving Consensus on the Parties, Message and SID

We begin by showing how parties can agree on the list of participating parties, a unique
session identifier, and the message to be signed. The idea of the protocol is based on the
fact that an echo-broadcast where every party sends a message to all others, and then they
echo them and accept if they only see the same message from all, is a secure broadcast
protocol with abort [26]. As above, the description here assumes a coordinator C and
parties P1, . . . , Pn of which t + 1 need to participate. In practice, the message to be signed
is typically sent by some coordinator to all parties, and thus this is the way that we start.
We consider a setting where the coordinator chooses any subset of t + 1 parties amongst
those who responded to participate. Our method assumes a PKI for signing, and so each
party Pi has a signing/verification key-pair (ski, pki), where the public keys (pk1, . . . , pkn)
are known to all other parties. See Protocol 8.

Security. Observe that the above method is essentially an echo-broadcast: after the
second transmission from C, all parties have a message that consists of the concatenation
of the identities of the parties and their session identifiers. In the next message, they all
echo this message by signing on it, and all accept if they receive valid signatures on the
string. As we have mentioned, it has been shown in [26] (Protocol 1 in Section 3) that
echo-broadcast of this type constitutes a secure broadcast with abort, guaranteeing that
there exists a string such that every honest parties either outputs that string or aborts.
Here, one can view C as the general or leader, and the message being broadcast as that
sent in C’s second transmission. The formalization in [26] is also one where all parties
directly communicate with each other. Here this is replaced with signatures which is the
same up to the possiblity of replay. However, replay is prevented by each party verifying
that their own sidi is present. As a result, we can conclude that all honest parties agree
on the message, the set of the participants and on the sid (since all of these are included
in the hash to generate the sid). In addition, since each honest party verifies that its fresh
sidi is part of the set of identifiers, it is also guaranteed that the resulting sid is unique
(except with negligible probability).

16 Simple Three-Round Multiparty Schnorr Signing with Full Simulatability

PROTOCOL 8 (Input Consensus Protocol).
Input: Each party Pi has its private signing key ski, and the set of public keys (pk1, . . . , pkn)
for all parties.
The protocol:

1. Transmission 1 – C to all: C sends a request to sign on a message m to all parties.
2. Message 1 – all to C: Upon receiving a request to participate, party Pi chooses a

random sidi ← {0, 1}κ and sends (i, sidi) to C. Party Pi stores (m, sidi) for use below.
3. Transmission 2 – C to all: After receiving a quorum of t + 1 responses from parties,
C sends the concatenated list of identities and sid’s to all chosen parties. The list is
sorted in a canonical ordering (e.g., lexicographically increasing based on ID if such an
identity is known, or based on the parties’ public keys). Let S denote the set of t + 1
participating parties.

4. Message 2 – all to C: After receiving the list from C, each Pi verifies that its identity
is in the list, that its sidi chosen initially is present in the list, and that the list is a
valid authorized quorum (i.e., there are exactly t + 1 parties overall). If yes:

(a) Pi sets the session identifier sid for this execution to be a collision-resistant hash
applied to the message m, the list of identities S, and the identifiers {sidi}i∈S

that were signed.
(b) Pi prepares a signature σi on the session identifier sid using its signing key ski.

Party Pi stores the list of identities and identifiers for use below.
(c) Pi sends σi to C.

5. Transmission 3 – C to all: C sends each party in S the signatures {σj}j∈S .
6. Output: After receiving the series of signatures {σj}j∈S from C, party Pi verifies that

each of the participating parties (in its list received previously) signed on the same
sid (using their public keys available via the PKI). If no, it aborts. If yes, it output
(m, sid, S).

5.2 The Full Three-Round Protocol

In this section, we present the protocol that is derived from running Protocols 4 and 8 in
parallel. The only deviation from above here is that in Protocol 4, the message and set of
participating parties is known at the onset, and the sid is known in the second round. In
contrast, in this parallel execution, the message m is known at the onset, but the set of
participating parties and the sid are only known in the second round (i.e., the difference is
with respect to the set of participating parties which is only known in the second round).
Furthermore, consensus on all of these values is only achieved at the beginning of the third
round (i.e., before computing message 3). In order to see why this suffices, note that the
consensus on m and sid do not matter before the third message is sent. This is due to the
fact that only the third message is dependent on the private key shares. Thus, everything
else is easily simulatable up to that point even when consensus will not be reached due to
cheating (note also that the simulator easily detects this cheating). Regarding the set of
participating parties S, we use this information in Protocol 4 in order to ensure that the
commitment is actually a commitment broadcast to the set S, with the guarantee that all
honest parties in S who do not abort have the same commitment value. In Protocol 9,
we achieve this same effect by having all parties sign on all of the commitment values
{ci}i∈S that they receive. This therefore trivially achieves the same effect. See Protocol 9
for the full description of the 3-round protocol including consensus on the input message,
participating parties and sid.

Yehuda Lindell 17

PROTOCOL 9 (Multiparty Schnorr Signing Without Initialization).
Input:

1. Each of P1, . . . , Pn has the Schnorr public key Q, a PKI of signing keys {pk1, . . . , pkn},
its signing key ski, and its private input which is a Shamir share of the private key d
where d ·G = Q.

2. The coordinator C has a message m to be signed.
The protocol:

1. Transmission 1 – C to all: C sends a request to sign on a message m to all parties.
2. Message 1 – all to C: Each party Pi works as follows:

(a) Pi chooses a random sidi ← {0, 1}κ.
(b) Pi chooses a random ki ← Zq and sets Ri = ki ·G.
(c) Pi chooses a random ri←{0, 1}κ and sets ci = H(sidi∥pidi∥Ri∥ri).
(d) Pi sends (σ1

i , sidi, ci) to the coordinator C, where σ1
i = signski

(1, sidi, ci).

3. Transmission 2 – C to parties in S: After receiving a quorum of t + 1 responses
(σ1

i , sidi, ci), C sets S to be the set of responding parties (assume a canonical ordering
of parties). C sends {(σ1

i , sidi, ci)}i∈S to Pi for all i ∈ S.
4. Message 2 – all to C: Each party Pi works as follows:

(a) Pi verifies that it received (σ1
j , sidj , cj) for t + 1 parties, that it is included in the

list of participants, that the sidi that it chose is in the list, that ci as it sent in
the first message appears in the set, and that all signatures are valid. If not, it
aborts. If yes, it sets sid to be a collision-resistant hash of m, S and all {sidj}j∈S .

(b) Pi computes πi ← ZKDLP (sid, pidi, Ri; ki) (where ZKDL denotes a Fiat-Shamir
proof of knowledge of the discrete log and i is the known identity or public-key
of Pi).

(c) Pi sends (σi
2, sid, Ri, ri, πi) to the coordinator C, where σ2

i =
signski

(sid, 2, {ci}i∈S , Ri, ri, πi).

5. Transmission 3 – C to parties in S: C receives all (σ2
i , sid, Ri, ri, πi) messages, and

sends {(σ2
i , sid, Ri, ri, πi)}i∈S to all parties Pi with i ∈ S.

6. Message 3 – all to C: Each party Pi works as follows:

(a) After receiving all {(σ2
j , sid, Rj , rj , πj)}i∈S , party Pi verifies that all signatures

are valid and are computed on the same sid that it computed.
(b) For every j ∈ S (j ̸= i):

i. Pi verifies that H(sidj∥pidj∥Rj∥rj) = cj and that all values are valid (i.e.,
has the correct sidj and pidj and the overall structure).

ii. Pi verifies ZKDLV (sid, pidj , Rj ; πj) = 1.
iii. If the commitment is not valid, or Rj is not a valid point in the curve subgroup,

or Rj is equal to the identity point, or if ZKDLV (sid, pidj , Rj ; πj) = 0 (i.e.,
the ZK verification fails) then Pi aborts. Else, it proceeds.

(c) Pi updates its Shamir share to be an additive share di of the private key, using
the Lagrange coefficients for the set S.

(d) Pi sets R =
∑

j∈S
Rj , e = H(m∥Q∥R), and si = ki − di · e (mod q).

(e) Pi sends si to C

7. Output: C sets s =
∑

i∈S
si (mod q) and checks that verifyQ(m, (s, e)) = 1. If yes,

then it outputs (s, e); otherwise it aborts.

18 Simple Three-Round Multiparty Schnorr Signing with Full Simulatability

The following theorem is proven in the same way as Theorem 10, with the addition of
the guarantees provided by the echo-broadcast:

Theorem 10. Assume that the parties have valid and consistent inputs. Then, Protocol 9
securely computes Functionality 5 in the (Fmcom,Fzk)-hybrid model with perfect security
with abort, in the presence of a malicious static adversary A controlling any subset of the
parties and the coordinator C.

6 Identifiable Abort
In the standard model of security with abort for MPC, the honest parties may not
necessarily know what caused the abort and who is “to blame”. Protocols with identifiable
abort have the advantage of adding deterrent to a party to misbehave and cause the
protocol to fail, since they will be caught.

In Protocol 9, since all messages are signed, it is possible to detect who cheated in the
first two rounds. The only exception to this is regarding the consensus in that a party
can claim that the coordinator sent it a different set of parties. This can be solved by
also having the coordinator sign on all messages sent (using the sid that can already be
computed after the first-round messages have been received).

In contrast, the way it is described, it is not possible to know if some party Pi sent an
incorrect si at the end of the protocol. Rather, the coordinator C will fail to obtain a valid
signature, but that is all. However, in many cases (e.g., when distributed key generation is
used), all parties are given (Q1, . . . , Qn) where Qi = di ·G. This additional information
can be used to achieve identifiable abort in the following way. Upon receiving si from
party Pi, it is possible to check that si ·G = Ri − e · λS

i ·Qi, where λS
i is the Lagrange

coefficient for converting Pi’s Shamir share to an additive share amongst the set S. Since
si is supposed to equal ki − e · λS

i · di, this validates with certainty whether or not Pi sent
a correct value. In order to determine whether C or Pi is cheating, we can simply have Pi

sign on the last message si sent to C (together with the sid). Then, C can also prove to
other parties that Pi cheated.

7 UC NIZK for Discrete Log in the Random Oracle
Model

In order to instantiate the Fzk functionality with UC security, it is necessary to extract
the witness without rewinding. One may just “assume” that the Fiat-Shamir transform
provides a zero-knowledge proof of knowledge that fulfills the UC requirements. However,
there is no justification for this. Fortunately, an efficient transformation from Sigma
protocols to zero-knowledge with non-rewinding extraction was given in the random-oracle
model in [20]. The transformation requires some parallel repetition of the proof, but the
additional expense is relatively mild (the example parameters provided in [20] are such
that the proof needs to be repeated approximately 10 times to get a good balance of
completeness and extraction). For the discrete log proof we need here, the computational
cost is approximately 2.1ms for the prover and 0.7ms for the verifier (averaged over 1000
repetitions), when run on a Macbook Pro with a 2.3 GHz 8-Core Intel Core i9 CPU. This
therefore does not add significant overhead.

References
[1] H.K. Alper and J. Burdges. Two-Round Trip Schnorr Multi-Signatures via Delin-

earized Witnesses. In CRYPTO 2021, Springer (LNCS 12825), pages 157–188

Yehuda Lindell 19

[2] M. Bellare and A. Palacio. The Knowledge-of-Exponent Assumptions and 3-Round
Zero-Knowledge Protocols. In CRYPTO 2004, Springer (LNCS 3152), pages 273–
289, 2004.

[3] M. Bellare and G. Neven. Multi-Signatures in the Plain Public-Key Model and a
General Forking Lemma. In ACM CCS 2006, pages 390–399, 2006.

[4] F. Benhamouda, T. Lepoint, J. Loss, M. Orru and M. Raykova. On the (in)security
of ROS. In EUROCRYPT 2021, Springer (LNCS 12696), pages 33–53, 2021.

[5] D.J. Bernstein, N. Duif, T. Lange, P. Schwabe, and Y. Bo-Yin. High-speed high-
security signatures. In Journal of Cryptographic Engineering, 2(2):77–89, 2012.

[6] O. Blazy, C. Chevalier, D. Pointcheval and D. Vergnaud. Analysis and Improvement
of Lindell’s UC-Secure Commitment Schemes. In ACNS 2013, Springer (LNCS
7954), pages 534–551, 2013.

[7] C. Boyd. Digital Multisignatures. In Cryptography and Coding, pages 241–246,
1986.

[8] R. Canetti. Security and Composition of Multiparty Cryptographic Protocols.
Journal of Cryptology, 13(1):143–202, 2000.

[9] R. Canetti. Universally Composable Security: A New Paradigm for Crypto-
graphic Protocols. In 42nd FOCS, pages 136–145, 2001. Full version available at
http://eprint.iacr.org/2000/067.

[10] R. Canetti, A. Cohen and Y. Lindell. A Simpler Variant of Universally Composable
Security for Standard Multiparty Computation. In CRYPTO 2015, Springer (LNCS
9216), pages 3–22, 2015.

[11] R. Canetti and A. Herzberg. Maintaining Security In The Presences Of Transient
Faults. In CRYPTO’94, Springer-Verlag (LNCS 839), pages 425–438, 1994.

[12] E.C. Crites, C. Komlo and M. Maller. Fully Adaptive Schnorr Threshold Signatures.
In CRYPTO 2023, Springer (LNCS 14081), pages 678–709, 2023.

[13] R.A. Croft and S.P. Harris. Public-Key Cryptography and Reusable Shared Secrets.
In Cryptography and Coding, pages 189–201, 1989.

[14] E. Crites, C. Komlo and Mary Maller. How to Prove Schnorr Assuming Schnorr:
Security of Multi- and Threshold Signatures. Cryptology ePrint Archive, 2021/1375,
2021.

[15] I. Damgård, M. Jurik andJ.B. Nielsen. A Generalization of Paillier’s Public-Key Sys-
tem with Applications to Electronic Voting. In International Journal of Information
Security, 9(6):371–385, 2010.

[16] Y. Desmedt. Society and Group Oriented Cryptography: A New Concept. In
CRYPTO’87, Springer (LNCS 293), pages 120–127, 1988.

[17] Y. Desmedt and Y. Frankel. Threshold Cryptosystems. In CRYPTO’89, Springer
(LNCS 435), pages 307–315, 1990.

[18] M. Drijvers, K. Edalatnejad, B. Ford, E. Kiltz, J. Loss, G. Neven and I. Stepanovs.
On the Security of Two-Round Multi-Signatures. In IEEE Symposium on Security
and Privacy, pages 1084–1101, 2019.

20 Simple Three-Round Multiparty Schnorr Signing with Full Simulatability

[19] P. Feldman. A Practical Scheme for Non-interactive Verifiable Secret Sharing. In
FOCS 1987, pages 427–437, 1987.

[20] M. Fischlin. Communication-Efficient Non-interactive Proofs of Knowledge with
Online Extractors. In CRYPTO 2005, Springer (LNCS 3621), pages 152–168, 2005.

[21] E. Fujisaki. Improving Practical UC-Secure Commitments Based on the DDH
Assumption. In SCN 2016, Springer (LNCS 9841), pages 257–272, 2016.

[22] R. Gennaro, S. Goldfeder and A. Narayanan: Threshold-Optimal DSA/ECDSA
Signatures and an Application to Bitcoin Wallet Security. In ACNS 2016, Springer
(LNCS 9696), pages 156–174, 2016.

[23] R. Gennaro, S. Jarecki, H. Krawczyk and T. Rabin. Robust Threshold DSS
Signatures. In EUROCRYPT’96, Springer (LNCS 1070), pages 354-–371, 1996.

[24] R. Gennaro, D. Leigh, R. Sundaram,and W.S. Yerazunis. Batching Schnorr Identi-
fication Scheme with Applications to Privacy-Preserving Authorization and Low-
Bandwidth Communication Devices. In ASIACRYPT 2004, Springer (LNCS 3329),
pages 276–292, 2004.

[25] O. Goldreich. Foundations of Cryptography: Volume 2 – Basic Applications.
Cambridge University Press, 2004.

[26] S. Goldwasser and Y. Lindell. Secure Computation Without Agreement. In the
Journal of Cryptology, 18(3):247–287, 2005. (Extended abstract appeared at DISC
2002.)

[27] C. Hazay and Y. Lindell. Efficient Secure Two-Party Protocols: Techniques and
Constructions. Springer, November 2010.

[28] C. Komlo and I. Goldberg. FROST: Flexible Round-Optimized Schnorr Threshold
Signatures. In SAC 2020, Springer (LNCS 12804), pages 34–65, 2020.

[29] E. Kushilevitz, Y. Lindell and T. Rabin. Information-Theoretically Secure Protocols
and Security Under Composition. In the SIAM Journal on Computing (SICOMP),
39(5):2090—2112, 2010. (Preliminary version in the 38th STOC, pages 109–118,
2006.)

[30] Y. Lindell: Highly-Efficient Universally-Composable Commitments Based on the
DDH Assumption. In EUROCRYPT 2011, Springer (LNCS 6632), pages 446–466,
2011.

[31] Y. Lindell. An Efficient Transform from Sigma Protocols to NIZK with a CRS and
Non-Programmable Random Oracle. In TCC 2015, Springer (LNCS 9014), pages
93-109, 2015.

[32] Y. Lindell. Fast Secure Two-Party ECDSA Signing. In Journal of Cryptology, 34:44,
2021. (An extended abstract appeared at CRYPTO 2017.)

[33] P.D. MacKenzie and M.K. Reiter. Two-party generation of DSA signatures. In-
ternational Journal of Information Security, 2(3-4):218–239, 2004. (An extended
abstract appeared at CRYPTO 2001.)

[34] N. Makriyannis. On the Classic Protocol for MPC Schnorr Signatures. Cryptology
ePrint Archive, Paper 2022/1332, 2022.

[35] S. Micali, K. Ohta and L. Reyzin. Accountable-Subgroup Multisignatures. In ACM
CCS 2001, pages 245–254, 2001.

Yehuda Lindell 21

[36] A. Nicolosi, M.N. Krohn, Y. Dodis and D. Mazieres: Proactive Two-Party Signatures
for User Authentication. NDSS 2003.

[37] J. Nick, T. Ruffing and Y. Seurin. MuSig2: Simple Two-Round Schnorr Multi-
signatures. In CRYPTO 2021, Springer (LNCS 12825), pages189–221, 2021.

[38] C.P. Schnorr. Efficient Identification and Signatures for Smart Cards. In CRYPTO
1989, Springer (LNCS 435), pages 239–252, 1989.

[39] V. Shoup and R. Gennaro. Securing Threshold Cryptosystems against Chosen
Ciphertext Attack. In EUROCRYPT 1998, Springer (LNCS 1403), pages 1–16,
1998.

[40] V. Shoup. Practical Threshold Signatures. In EUROCRYPT 2000, Springer (LNCS
1807), pages 207–220, 2000.

[41] V. Shoup. Private communication, 2019.

[42] D.R. Stinson and R. Strobl. Provably Secure Distributed Schnorr Signatures and a
(t, n) Threshold Scheme for Implicit Certificates. In ACISP 2001, Springer (LNCS
2119), pages 417–434, 2001.

[43] BIP 32: Hierarchical Deterministic Wallets. https://github.com/bitcoin/bips/
blob/master/bip-0032.mediawiki.

A Distributed Key Generation
Observe that the first stage of Schnorr signing is the generation of a random element
R ∈ G where its discrete log is additively shared amongst the participants. As such, the
exact same protocol can be used for generating a random public-key Q whose private key
(the discrete log of Q) is additively shared amongst the participants. Since we wish to use
threshold sharing, the same strategy works for choosing a random Feldman VSS sharing [19]
where each coefficient of the polynomial is generated in this way. See Protocol 11 for
details. In this protocol, since each party needs to receive a private share on the generated
polynomials, the parties also need to have a PKI of encryption keys.

The proof of security for Protocol 11 follows the same lines as for signing. In particular,
the A0

j values are simulated in exactly the same way as the Ri values so that the result is
the public key Q given to the simulator S by the ideal functionality. In more detail, for all
but one honest party, the simulator S works honestly. Regarding the last honest party,
denote it Pℓ, simulator S sets A0

ℓ = Q−
∑

i∈S A0
i . Then, S chooses random points aℓ(pidi)

for each corrupted party Pi, and additional random points for honest parties up to t (if
less than t parties are corrupted). Finally, S interpolates “in the exponent” to find the
polynomial Aℓ(x) with coefficients (A0

ℓ , A1
ℓ , . . . , At

ℓ) so that aℓ(pidi) ·G = A(pidi) for every
corrupted Pi.

Our simulation in the proof of Theorem 10 (and carried over to the proof of Theorem ??)
requires the simulator to know all of the private-key shares of t parties (i.e., except for
one designated honest party). Observe that S above has this exact property. This is
because S knows the exact polynomials chosen by the corrupted parties (via the batch
zero-knowledge proofs, enabling it to extract all coefficients), and because it chooses the
points of t parties and interpolates in the exponent to find the polynomial. Thus, the
simulator knows the exact shares di of t parties, and doesn’t know the share of just one
honest party, exactly as the proof of Theorem 10 begins.

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki

22 Simple Three-Round Multiparty Schnorr Signing with Full Simulatability

PROTOCOL 11 (Multiparty Schnorr Distributed Key Generation).
Input: Each of P1, . . . , Pn has a PKI of signing keys {pk1, . . . , pkn} and encryption keys
{ek1, . . . , ekn}, and its own signing key ski and decryption key dki.
The protocol:

1. Transmission 1 – C to all: C sends a request to generate a key to all parties.
2. Message 1 – all to C: Each party Pi works as follows:

(a) Pi chooses a random sidi ← {0, 1}κ.
(b) For k ∈ {0, . . . , t}, Pi chooses a random ak

i ← Zq and sets Ak
i = ak

i · G. Let Āi =
(A0

i , . . . , At
i), āi = (a0

i , . . . , at
i), ai(x) =

∑t

k=0 ak
i · x

k, and Ai(x) = ai(x) ·G.

(c) Pi chooses a random ri←{0, 1}κ and sets ci = H(sidi∥pidi∥Āi∥ri).
(d) Pi sends (σ1

i , sidi, ci) to the coordinator C, where σ1
i = signski

(1, sidi, ci).

3. Transmission 2 – C to parties in S: After receiving a quorum of t+1 responses (σ1
i , sidi, ci),

C sets S to be the set of responding parties (assume a canonical ordering of parties). C sends
{(σ1

i , sidi, ci)}i∈S to Pi for all i ∈ S.
4. Message 2 – all to C: Each party Pi works as follows:

(a) Pi verifies that it received (σ1
j , sidj , cj) for t + 1 parties, that it is included in the list

of participants, that the sidi that it chose is in the list, that ci as it sent in the first
message appears in the set, and that all signatures are valid. If not, it aborts. If yes, it
sets sid to be a collision-resistant hash of m, S and all {sidj}j∈S .

(b) Pi computes πi ← ZKDLt+1
P (sid, pidi, Āi; āi) (where ZKDLt+1 denotes a batch Fiat-

Shamir proof of knowledge of the discrete log of t + 1 values, and i is the known identity
or public-key of Pi).

(c) Pi sends (σi
2, sid, Āi, ri, πi) to the coordinator C, where σ2

i =
signski

(sid, 2, {ci}i∈S , Āi, ri, πi).

5. Transmission 3 – C to parties in S: C receives all (σ2
i , sid, Āi, ri, πi) messages, and sends

{(σ2
i , sid, Āi, ri, πi)}i∈S to Pi for all i ∈ S.

Message 3 – all to C: Each party Pi works as follows:
1. After receiving all {(σ2

j , sid, oj , πj)}j∈S , Pi verifies that all signatures are valid and are
computed on the same sid that it computed.

2. For every j ∈ S (j ̸= i):

(a) Pi verifies that H(sidj∥pidj∥Āj∥rj) = cj and that all values are valid (i.e., has the
correct sidj and pidj and the overall structure).

(b) Pi verifies ZKDLt+1
V (sid, pidj , Āj ; πj) = 1.

(c) If the commitment is not valid or any Ak
j is not a valid point in the curve subgroup of is

equal to the identity point, or if the zero-knowledge verification fails, then Pi aborts.
Else, it proceeds.

3. Pi sets the VSS sharing polynomial to be Q(x) =
∑

j∈S
Aj(x). That is, the kth coefficient

Qk of Q(x) is set to
∑

j∈S
Ak

j . Denote Q̄ = (Q0, . . . , Qt).

4. Pi sets the output public key to be Q = Q0.
5. For every j ∈ {1, . . . , n}, party Pi sets Pj ’s share in Ai(x) to be di→j = ai(pidj) and encrypts

it under Pj ’s public key ekj ; denote the ciphertext by ci→j . Denote the set of all these
ciphertexts by c̄i.

6. Pi signs on (sid, Q̄, c̄i) ; denote the signature by σ3
i .

7. Pi sends (σ3
j , sid, Q̄, c̄i) to C.

Transmission 4 – C to all parties: C receives all (σ3
i , sid, Q̄, c̄i) messages, and sends

{(σ3
i , sid, Q̄, c̄i)}i∈S to all parties Pi with i = {1, . . . , n}.

Output: Each party Pi works as follows.
1. Pi verifies that it received all {(σ3

i , sid, Q̄, c̄j)}j∈S , that all signatures are valid and are
computed on the same sid that it computed, and that all parties sent the same Q̄.

2. Pi decrypts all {cj→i}j∈S and sets di =
∑

j∈S
dj→i (mod q).

3. Pi verifies that (dj→i) ·G = Aj(pidi) for all j ∈ S and that di ·G = Q(pidi).
4. If any check fails, Pj aborts and raises a security alert. Else, Pj outputs the public-key Q, the

polynomial Q(x), and its polynomial share di.

	Introduction
	Preliminaries
	Multiparty Commitments Without SIDs
	Multiparty Schnorr Signing – Assuming Initialization
	The Protocol
	Proof of Security

	Threshold Signing Without Trusted Initialization
	Achieving Consensus on the Parties, Message and SID
	The Full Three-Round Protocol

	Identifiable Abort
	UC NIZK for Discrete Log in the Random Oracle Model
	References
	Distributed Key Generation

