A Note on the Security Framework of Two-key DbHtS MACs

Tingting $Guo^{1,2}$ and $Peng Wang^{1,2(\boxtimes)}$

SKLOIS, Institute of Information Engineering, CAS
 w.rocking@gmail.com, guotingting@iie.ac.cn
 School of Cyber Security, University of Chinese Academy of Sciences

Abstract. Double-block Hash-then-Sum (DbHtS) MACs is a class of MACs achieve beyond-birthday-bound (BBB) security, including SUM-ECBC, PMAC_Plus, 3kf9 and LightMAC_Plus etc. Recently, Shen et al. (Crypto 2021) proposed a security framework for two-key DbHtS MACs in the multi-user setting, stating that when the underlying blockcipher is ideal and the universal hash function is almost regular and universal, the two-key DbHtS MACs achieve 2n/3-bit security. Unfortunately, the regular and universal properties can not guarantee the BBB security of two-key DbHtS MACs. We propose three counter-examples which are proved to be 2n/3-bit secure in the multi-user setting by the framework, but can be broken with probability 1 using only $\mathcal{O}(2^{n/2})$ queries even in the single-user setting. We also point out the miscalculation in their proof leading to such a flaw.

Keywords: MAC · DbHtS · Beyond-birthday-bound security · Multiuser security.

1 Introduction

Message Authentication Code (MAC). MAC is a fundamental symmetric-key primitive to ensure integrity of messages. It is usually build from blockcipher (CBC-MAC [4], OMAC [9], LightMAC [13]) or hash function (HMAC [3], NMAC [3], NI-MAC [1]). Their security proof all follow the Hash-then-PRF (HtPRF) framework:

$$HtPRF[H, E](K_h, K, M) = E_K(H_{K_h}(M)),$$

where M is the massage, H_{K_h} is a universal hash function and E_K is a block-cipher. Assume E_K is on n bits. But all these MACs have only birthday bound security, and are vulnerable to birthday attack with $\mathcal{O}(2^{n/2})$ queries. However, this strength of security is always not enough for lightweight blockciphers (PRESENT [6], GIFT [2]), whose n = 64. Because in this case, the security is only 32 bits (i.e., secure within 2^{32} queries), which is practically vulnerable. So researchers make great efforts to improve the security strength of MAC.

Birthday-Bound MACs. Plenty of MACs with beyond-birthday-bound security have been put forward. Such as SUM-ECBC [17], PMAC.Plus [18],

3kf9 [19], LightMAC_Plus [14], and so on. At FSE 2019, Datta et al. showed all of them follow the DbHtS framework [8], i.e., three-key DbHtS:

$$DbHtS[H, E] (K_h, K_1, K_2, M) = E_{K_1}(H^1_{K_{h,1}}(M)) \oplus E_{K_2}(H^2_{K_{h,2}}(M)),$$

where M is the massage, hash key $K_h = (K_{h,1}, K_{h,2})$, $H^1_{K_{h,1}}$ and $H^2_{K_{h,2}}$ are two universal hash functions and E_{K_1} and E_{K_2} are two blockciphers on n bits with two independent keys K_1, K_2 respectively. BBB MACs following three-key DbHtS have been proved with 2n/3-bit security in their primary proofs [17–19, 14] and under the framework of three-key DbHtS proposed by Datta [8]. Later, Leurent et al. [12] showed the best attacks to them cost $\mathcal{O}(2^{3n/4})$ queries. Recently at EUROCRYPT 2020, Kim et al. [11] have proved the tight 3n/4-bit security.

To facilitate key management, Datta et al. [8] also raised two-key DbHtS framework, that is to say, $K_1 = K_2$ in DbHtS framework. They showed two-key DbHtS MACs (2K-ECBC_Plus, 2K-PMAC_Plus, and 2K-LightMAC_Plus) under their framework are still 2n/3-bit security.

Two-Key DbHtS in the Multi-User Setting. All the above BBB results only considered a single user. In practice, the adversary can attack multiple users. For instance, MACs are core elements of real-world security protocols such as TLS, SSH, and IPsec, which are used by lots of websites with plenty of daily active users. However, by a generic reduction, all above BBB results degrade to (or even worse than) the birthday bound in the multi-user setting [16].

So at Crypto 2021, Shen et al. [16] revisited the security of two-key Db-HtS framework in the multi-user setting elaborately. And use the framework, they showed two-key variants of BBB MACs, including 2k-SUM-ECBC, 2k-PMAC_Plus and 2k-LightMAC_Plus are still beyond-birthday-bound security.

Our Contributions. We show that Theorem 1 in Shen et al.'s paper [16], giving the security of two-key DbHtS framework, has a critical flaw by three counter-examples. According to their Theorem 1, these counter-examples are proved 2n/3-bit security (ignoring the maximum message length and ideal-cipher queries) in the multi-user setting. However, they are all attacked successfully with only $\mathcal{O}(2^{n/2})$ queries even in the single-user setting. We also show clearly the miscalculation in their proof leading to such a flaw.

2 Preliminaries

Notation. For a finite set \mathcal{X} , let $X \stackrel{\$}{\leftarrow} \mathcal{X}$ denote sampling X from \mathcal{X} uniformly and randomly. Let $|\mathcal{X}|$ be the size of the set \mathcal{X} . For a domain \mathcal{X} and a range \mathcal{Y} , let $\mathsf{Func}(\mathcal{X},\mathcal{Y})$ denote the set of all functions from \mathcal{X} to \mathcal{Y} .

Multi-User Pseudorandom Function. Let $F: \mathcal{K} \times \mathcal{X} \to \mathcal{Y}$ be a function. The game $\mathbf{G}_F^{\mathrm{prf}}(\mathscr{A})$ about adversary \mathscr{A} is defined as follows.

1. Initialize $K_1, K_2, \ldots \stackrel{\$}{\leftarrow} \mathcal{K}, f_1, f_2, \ldots \stackrel{\$}{\leftarrow} \mathsf{Func}(\mathcal{X}, \mathcal{Y}), \text{ and } b \stackrel{\$}{\leftarrow} \{0, 1\};$

2. \mathscr{A} make queries of (i, X) to Eval function and get $\mathsf{Eval}(i, X)$, where $i \in \{1, 2, \ldots\}, X \in \mathcal{X}$, and

$$\mathsf{Eval}(i,X) = \begin{cases} F(K_i,X), & \text{if } b = 0, \\ f_i(X), & \text{if } b = 1; \end{cases}$$

3. \mathscr{A} output b' = b.

Then the advantage of the adversary $\mathscr A$ against the multi-user Pseudorandom Function (PRF) security of F is

$$\mathrm{Adv}_F^{\mathrm{prf}}(\mathscr{A}) = 2\Pr[\mathbf{G}_F^{\mathrm{prf}}(\mathscr{A})] - 1.$$

The H-Coefficient Technique. When considering interactions between an adversary $\mathscr A$ and an abstract system $\mathbf S$ which answers $\mathscr A$'s queries, let X_i denote the query from $\mathscr A$ to $\mathbf S$ and Y_i denote the response of X_i from $\mathbf S$ to $\mathscr A$. Then the resulting interaction can be recorded with a transcript $\tau = ((X_1,Y_1),\ldots,(X_q,Y_q))$. Let $p_{\mathbf S}(\tau)$ denote the probability that $\mathbf S$ produces τ . In fact, $p_{\mathbf S}(\tau)$ is the description of $\mathbf S$ and independent of the adversary $\mathscr A$. Then we describe the H-coefficient technique [7,15]. Generically, it considers an adversary that aims at distinguishing a "real" system $\mathbf S_1$ from an "ideal" system $\mathbf S_0$. The interactions of the adversary with those two systems induce two transcript distributions D_1 and D_0 respectively. It is well known that the statistical distance $\mathsf{SD}(D_0,D_1)$ is an upper bound on the distinguishing advantage of $\mathscr A$.

Lemma 1. [7,15] Suppose that the set of attainable transcripts for the ideal system can be partitioned into good and bad ones. If there exists $\epsilon \geq 0$ such that $\frac{p_{S_1}(\tau)}{p_{S_0}(\tau)} \geq 1 - \epsilon$ for any good transcript τ , then

$$SD(D_0, D_1) \leq \epsilon + Pr[D_0 \text{ is bad}].$$

Regular and Almost Universal (AU). Let $H: \mathcal{K}_h \times \mathcal{X} \to \mathcal{Y}$ be a hash function where \mathcal{K}_h is the key space, \mathcal{X} is the domain and \mathcal{Y} is the range. Hash function H^i is said to be ϵ_1 -regular if for any $X \in \mathcal{X}, Y \in \mathcal{Y}$,

$$\Pr[K_h \stackrel{\$}{\leftarrow} \mathcal{K}_h : H_{K_h}(X) = Y] \le \epsilon_1.$$

And hash function H is said to be ϵ_2 -AU if for any two distinct strings $X, X^{'} \in \mathcal{X}$,

$$\Pr[K_h \stackrel{\$}{\leftarrow} \mathcal{K}_h : H_{K_h}(X) = H_{K_h}(X')] \le \epsilon_2.$$

3 BBB-Security framework in [16]

Let \mathcal{M} be the message space and $\mathcal{K}_h \times \mathcal{K}$ be the key space. Let blockcipher $E: \mathcal{K} \times \{0,1\}^n \to \{0,1\}^n$ and $\mathcal{K} = \{0,1\}^k$. Let hash function $H: \mathcal{K}_h \times \mathcal{M} \to \{0,1\}^n \times \{0,1\}^n$. The function H is consist of two n-bit hash functions H^1 and H^2 , i,e., $H_{K_h}(M) = (H^1_{K_{h,1}}(M), H^2_{K_{h,2}}(M))$ where $K_h = (K_{h,1}, K_{h,2}) \in$

 $\mathcal{K}_{h,1} \times \mathcal{K}_{h,2}$ and $K_{h,1}, K_{h,2}$ are two independent keys. Then the two-key DbHtS framework in paper [16] (see Fig.1) is

$$\mathrm{DbHtS}[H,E]\left(K_h,K,M\right) = E_K\left(H^1_{K_{h,1}}(M)\right) \oplus E_K\left(H^2_{K_{h,2}}(M)\right).$$

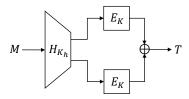


Fig. 1. The two-key DbHtS construction. Here H is a 2n-bit hash function from $\mathcal{K}_h \times \mathcal{M}$ to $\{0,1\}^n \times \{0,1\}^n$, and E is a n-bit blockcipher from $\mathcal{K} \times \{0,1\}^n$ to $\{0,1\}^n$.

Theorem 1 in [16]. Let E be modeled as an ideal blockcipher. Let H^1 and H^2 both satisfy ϵ_1 -regular and ϵ_2 -AU. Then Shen et al. [16] proved the security of two-key DbHtS in the multi-user setting as following, which is the core of their paper and they named it Theorem 1. For any adversary $\mathscr A$ that makes at most q evaluation queries and p ideal-cipher queries,

$$\operatorname{Adv}_{\mathrm{DbHtS}}^{\mathrm{prf}}(\mathscr{A}) \leq \frac{2q}{2^{k}} + \frac{q(3q+p)(6q+2p)}{2^{2k}} + \frac{2qp\ell}{2^{n+k}} + \frac{2qp\epsilon_{1}}{2^{k}} + \frac{4qp}{2^{n+k}} + \frac{4q^{2}\epsilon_{1}}{2^{k}} + \frac{2q^{2}\ell\epsilon_{1}}{2^{k}} + 2q^{3}\left(\epsilon_{1} + \epsilon_{2}\right)^{2} + \frac{8q^{3}\left(\epsilon_{1} + \epsilon_{2}\right)}{2^{n}} + \frac{6q^{3}}{2^{2n}}$$

$$(1)$$

where ℓ is the maximal block length among these evaluation queries and assuming $p + q\ell \leq 2^{n-1}$.

An Overview of the Proof of Theorem 1 in [16]. They proved Theorem 1 based on H-coefficient technique. Let S_1 be "real" system and S_0 be "ideal" system. For $b \in \{0, 1\}$, system S_b performs the following procedure.

- 1. Initialize $(K_h^1, K_1), \ldots, (K_h^u, K_u) \stackrel{\$}{\leftarrow} \mathcal{K}_h \times \mathcal{K}$ if b = 1; otherwise, initialize $f_1, \ldots, f_u \stackrel{\$}{\leftarrow} \mathsf{Func}(\mathcal{M}, \{0, 1\}^n)$;
- 2. If an adversary $\mathscr A$ make queries of (i,M) to Eval function, where $i\in\{1,2,\ldots\}$, $M\in\mathcal M$, return

$$\mathsf{Eval}(i, M) = \begin{cases} \mathsf{DbHtS}[H, E](K_h^i, K_i, M), & \text{if } b = 1, \\ f_i(M), & \text{if } b = 0; \end{cases}$$

3. If an adversary $\mathscr A$ make queries of (J,X) to Prim function, where $J\in\mathcal K,X\in\{+,-\}\times\{0,1\}^n,$ return

$$Prim(J, X) = \begin{cases} E_J(x), & \text{if } X = \{+, x\}, \\ E_J^{-1}(y), & \text{if } X = \{-, y\}. \end{cases}$$

They called the query to Eval evaluation query and the query to Prim ideal-cipher query. For each query $T \leftarrow \text{Eval}(i, M)$, they associated it with an entry (eval, i, M, T). The query to Prim is similar to it. Transcript τ consisted of such entries. Then they defined bad transcripts, including fourteen cases. If a transcript is not bad then they said it's good. Let D_1 and D_0 be the random variables for the transcript distributions in the system \mathbf{S}_1 and \mathbf{S}_0 respectively. They firstly bounded the probability that D_0 is bad as follows. Let Bad_i be the event that the i-th case of bad transcripts happens. They calculated the probability $\mathrm{Pr}[\mathrm{Bad}_1], \ldots, \mathrm{Pr}[\mathrm{Bad}_{14}]$ in sequence. After summing up, they got

$$\Pr[D_0 \text{ is bad }] \leq \sum_{i=1}^{14} \Pr[Bad_i]$$

$$\leq \frac{2q}{2^k} + \frac{q(3q+p)(6q+2p)}{2^{2k}} + \frac{2qp\ell}{2^{k+n}} + \frac{2qp\epsilon_1}{2^k} + \frac{4qp}{2^{n+k}}$$

$$+ \frac{4q^2\epsilon_1}{2^k} + \frac{2q^2\ell\epsilon_1}{2^k} + 2q^3(\epsilon_1 + \epsilon_2)^2 + \frac{8q^3(\epsilon_1 + \epsilon_2)}{2^n}.$$

Besides, they proved the transcript ratio $\frac{p_{\mathbf{S}_1}(\tau)}{p_{\mathbf{S}_0}(\tau)} \geq 1 - \frac{6q^3}{2^{2n}}$ for any good transcript τ . Thus they concluded Theorem 1 by Lemma 1.

4 Counter-Examples

We will show three counter-examples who follow two-key DbHtS framework and satisfy ϵ_1 -regular and ϵ_2 -AU are attacked in the single-user setting with fewer queries than the security claimed by Theorem 1 [16].

4.1 Counter-Example 1

Our first counter-example is a function with fixed input length. Let hash function

$$H_{K_h}(M) = (H_{K_1}^1(M), H_{K_2}^1(M)) = (M \oplus K_1, M \oplus K_2),$$

where M is the message from massage space $\{0,1\}^n$, $K_h = (K_1,K_2)$ and $K_1,K_2 \stackrel{\$}{\leftarrow} \{0,1\}^n$. Let blockcipher $E_K: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$. Then we define function $F: \{0,1\}^{2n} \times \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ as

$$F[H, E](K_h, K, M) = E_K(H^1_{K_1}(M)) \oplus E_K(H^2_{K_2}(M)).$$

 H^1 and H^2 are $\frac{1}{2^n}$ -Regular and $\frac{1}{2^n}$ -AU. It is easy to know that for any $M \in \{0,1\}^n, Y \in \{0,1\}^n$ and $i \in \{1,2\}$,

$$\Pr[K_i \stackrel{\$}{\leftarrow} \{0,1\}^n : M \oplus K_i = Y] \le \frac{1}{2^n}.$$

And for any two distinct strings $M, M^{'} \in \{0, 1\}^{n}$ and $i \in \{1, 2\}$,

$$\Pr[K_i \stackrel{\$}{\leftarrow} \{0,1\}^n : M \oplus K_i = M' \oplus K_i] = 0.$$

So hash functions H^1 and H^2 are both $\frac{1}{2^n}$ -regular and $\frac{1}{2^n}$ -AU.

So according to Theorem 1 [16], function F is secure within $\mathcal{O}(2^{2n/3})$ evaluation queries assuming ideal-cipher queries is $\mathcal{O}(1)$ in the multi-user setting.

Attack. It is easy to know that for all keys in keyspace and messages in message space,

$$F[H, E](K_h, K, M \oplus K_1 \oplus K_2) = E_K(M \oplus K_2) \oplus E_K(M \oplus K_1)$$
$$= F[H, E](K_h, K, M).$$

It means F has a period $s := K_1 \oplus K_2$. Based on this, there is an adversary \mathscr{A} can distinguish F from random function f with only $\mathcal{O}(2^{n/2})$ evaluation queries as follows, which is contradictory to Theorem 1 [16].

- 1. \mathscr{A} firstly makes $\mathcal{O}(2^{n/2})$ evaluation queries of distinct massages M_1, M_2, \ldots chosen uniformly and randomly, and get T_1, T_2, \ldots ;
- 2. \mathscr{A} searches a message pair (M_i, M_j) for $M_i \neq M_j, M_i, M_j \in \{M_1, M_2, \ldots\}$ which makes (i) and (ii) hold.
 - (i) $T_i = T_i$;
 - (ii) After make another two evaluation queries of massages M' and $M' \oplus M_i \oplus M_j$ for $M' \notin \{M_i, M_j\}$, \mathscr{A} gets two identical answers.

If the evaluation query is to F, one can expect on average that there exists one message pair (M_i, M_j) among $\mathcal{O}(2^{n/2})$ massages such that $M_i = M_j \oplus s$. Conditions (i) and (ii) in the second step of \mathscr{A} filter out such pair. However, random function f has no period. If the evaluation query is to f, on average there exists one message pair (M_i, M_j) among $\mathcal{O}(2^{n/2})$ massages such that $T_i = T_j$. However, the probability of $f(M') = f(M' \oplus M_i \oplus M_j)$ for any $M' \notin \{M_i, M_j\}$ is only $1/2^n$. So \mathscr{A} finds a pair (M_i, M_j) satisfying conditions (i) and (ii) with negligible probability. Thus \mathscr{A} distinguish F from random function with probability $1 - 1/2^n$.

4.2 Counter-Example 2

Compared with the first counter-example with fixed input length, our second counter-example can handle variable-length input. We define the function of counter-example 2 the same as counter-example 1 except dealing with messages from $(\{0,1\}^n)^*$ and altering two hash functions H^1 and H^2 to

$$H_{K_i}^i(M) = M[1] \oplus M[2]K_i \oplus M[3]K_i^2 \oplus \ldots \oplus M[m]K_i^{m-1} \oplus |M|K_i^m, i = 1, 2.$$

where $M = M[1] \parallel M[2] \parallel \dots \parallel M[m]$ and every message block is *n*-bit. This example is a variant of PolyMAC [11].

 H^1 and H^2 are $\frac{\ell}{2^n}$ -Regular and $\frac{\ell}{2^n}$ -AU. Assume the maximal block length of all evaluation queries is ℓ . Any equation of at most ℓ degree has at most ℓ roots. So it is easy to know that for any $M \in (\{0,1\}^n)^*, Y \in \{0,1\}^n$ and $i \in \{1,2\}$,

$$\Pr[K_i \stackrel{\$}{\leftarrow} \{0,1\}^n : H_{K_i}^i(M) = Y] \le \frac{\ell}{2^n}.$$

And for any two distinct strings $M, M' \in (\{0, 1\}^n)^*$ and $i \in \{1, 2\}$,

$$\Pr[K_i \xleftarrow{\$} \{0,1\}^n : H^i_{K_i}(M) = H^i_{K_i}(M^{'})] \le \frac{\ell}{2^n}.$$

It means H^1 and H^2 are both $\frac{\ell}{2^n}$ -regular and $\frac{\ell}{2^n}$ -AU.

So according to Theorem 1 [16], function F is secure within $\mathcal{O}(2^{2n/3})$ evaluation queries assuming ideal-cipher queries is $\mathcal{O}(1)$ and $\ell = \mathcal{O}(1)$ in the multi-user setting.

Attack. Fix any arbitrary string

$$M_{fix} := M[2] || M[3] || \dots || M[m] \in (\{0,1\}^n)^{m-1},$$

where $2 \le m \le \ell = O(1)$. Let

$$K_{i}^{'} := M[2]K_{i} \oplus M[3]K_{i}^{2} \oplus \dots M[m]K_{i}^{m-1} \oplus nmK_{i}^{m}, i = 1, 2.$$

Then it is easy to obtain for any keys in key space and $M[1] \in \{0,1\}^n$,

$$F[H, E](K_{h}, K, (M[0] \oplus K_{1}^{'} \oplus K_{2}^{'}) \parallel M_{fix})$$

$$=E_{K}(M[0] \oplus K_{2}^{'}) \oplus E_{K}(M[0] \oplus K_{1}^{'})$$

$$=F[H, E](K_{h}, K, M[0] \parallel M_{fix}).$$

It means F has a period $s := (K_1' \oplus K_2') \parallel 0^{n(m-1)}$ for any $M \in \{0,1\}^n \times \{M_{fix}\}$. Based on this, there is an adversary \mathscr{A} can distinguish F from random function f with only $\mathcal{O}(2^{n/2})$ evaluation queries as follows, which is contradictory to Theorem 1 [16].

- 1. \mathscr{A} firstly makes $\mathcal{O}(2^{n/2})$ evaluation queries of distinct massages $M_1 \parallel M_{fix}$, $M_2 \parallel M_{fix}$, where $M_1, M_2, \dots \stackrel{\$}{\leftarrow} \{0, 1\}^n$, and get T_1, T_2, \dots :
- $M_2 \parallel M_{fix}, \ldots$ where $M_1, M_2, \ldots \stackrel{\$}{\leftarrow} \{0,1\}^n$, and get T_1, T_2, \ldots ; 2. \mathscr{A} searches a pair (M_i, M_j) for $M_i \neq M_j, M_i, M_j \in \{M_1, M_2, \ldots\}$ which makes (i) and (ii) hold.
 - (i) $T_i = T_j$;
- (ii) After make another two evaluation queries of massages $M' \parallel M_{fix}$ and $(M' \oplus M_i \oplus M_j) \parallel M_{fix}$ for $M' \notin \{M_i, M_j\}$, $\mathscr A$ gets two identical answers. The same as counter-example 1, $\mathscr A$ distinguishes F from f with probability almost 1.

4.3 Counter-Example 3

Unlike counter-examples 1 and 2, the third counter-example with hash functions based on block ciphers. It is a variant of 2k-SUM-ECBC [16]. Let $E: \{0,1\}^n \times \{0,1\}^n \to \{0,1\}^n$ be a blockcipher with key $K \in \{0,1\}^n$. The two *n*-bit hash functions used in this function are two CBC MACs without the last cipherblocks, which we call as CBC'. They are keyed with two independent keys K_1 and K_2 respectively. And they deal with at least two message blocks respectively. For a

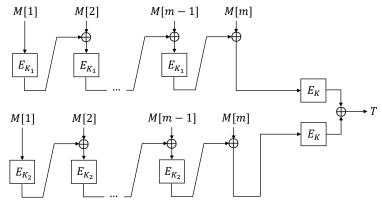


Fig. 2. The variant of 2k-SUM-ECBC. K_1, K_2, K_3 are three independent keys in $\{0,1\}^n$. E is a n-bit blockcipher from $\{0,1\}^n \times \{0,1\}^n$ to $\{0,1\}^n$.

message $M = M[1] \parallel M[2] \parallel \dots \parallel M[m]$ where every message block is n-bit and $m \geq 2$, the CBC algorithm CBC [E](K, M) is defined as Y_m , where

$$Y_1 = M[1],$$

 $Y_j = E_K(Y_{j-1}) \oplus M[j], j = 2, \dots, m.$

Let $K_h = (K_1, K_2)$. Then we define the function (see Fig.2) as

$$F[CBC'[E], E](K_h, K, M) = E_K(CBC'[E](K_1, M)) \oplus E_K(CBC'[E](K_2, M)).$$

 $\mathrm{CBC}'[E]$ is $\left(\frac{2\sqrt{\ell}}{2^n} + \frac{16\ell^4}{2^{2n}}\right)$ -Regular and $\left(\frac{2\sqrt{\ell}}{2^n} + \frac{16\ell^4}{2^{2n}}\right)$ -AU. For any two different message $M, M' \in (\{0,1\}^n)^*$ with at most ℓ blocks and the adversary making no ideal-cipher query, Ballare et al. [5] and Jha and Nandi [10] show that for $i \in \{1, 2\}$,

$$\Pr[K_i \stackrel{\$}{\leftarrow} \{0,1\}^n : E_K(CBC'[E](K_i, M)) = E_K(CBC'[E](K_i, M'))]$$

$$\leq \frac{2\sqrt{\ell}}{2^n} + \frac{16\ell^4}{2^{2n}}.$$

Blockcipher E_K is a permutation. So

$$\Pr[K_i \stackrel{\$}{\leftarrow} \{0,1\}^n : CBC'[E](K_i, M) = CBC'[E](K_i, M')] \le \frac{2\sqrt{\ell}}{2^n} + \frac{16\ell^4}{2^{2n}}.$$

It means ${\rm CBC}^{'}$ is $\left(\frac{2\sqrt{\ell}}{2^n}+\frac{16\ell^4}{2^{2n}}\right)$ -AU. Let $M=X[1]\parallel(X[2]\oplus Y)\parallel Z\in (\{0,1\}^n)^*\times\{0,1\}^n\times\{0,1\}^n$ and $M^{'}=0^n\parallel Z\in\{0,1\}^n\times\{0,1\}^n$. Then

$$\Pr[K_i \overset{\$}{\leftarrow} \{0,1\}^n : \text{CBC}'[E](K_i, X[1] \parallel X[2]) = Y]$$

$$= \Pr[K_i \overset{\$}{\leftarrow} \{0,1\}^n : \text{CBC}'[E](K_i, M) = \text{CBC}'[E](K_i, M')]$$

$$\leq \frac{2\sqrt{\ell}}{2^n} + \frac{16\ell^4}{2^{2n}}.$$

So
$$\operatorname{CBC}'$$
 is $\left(\frac{2\sqrt{\ell}}{2^n} + \frac{16\ell^4}{2^{2n}}\right)$ -regular.

So according to Theorem 1 [16], function F is secure within $\mathcal{O}(2^{2n/3})$ evaluation queries assuming no ideal-cipher queries and $\ell = \mathcal{O}(1)$ in the multi-user setting.

Attack. Fix any arbitrary string $M_{fix} \in (\{0,1\}^n)^{m-1}$ where $2 \le m \le \ell = O(1)$.

$$s = CBC'[E](K_1, M_{fix} \parallel 0^n) \oplus CBC'[E](K_2, M_{fix} \parallel 0^n)).$$

Then it is easy to obtain for any keys in key space and $M[m] \in \{0,1\}^n$,

$$\begin{split} &F[\text{CBC}'[E], E](K_h, K, M_{fix} \parallel (M[m] \oplus s)) \\ = &E_K(\text{CBC}'[E](K_2, M_{fix} \parallel 0^n) \oplus M[m]) \oplus \\ &E_K(\text{CBC}'[E](K_1, M_{fix} \parallel 0^n) \oplus M[m]) \\ = &E_K(\text{CBC}'[E](K_2, M_{fix} \parallel M[m])) \oplus E_K(\text{CBC}'[E](K_1, M_{fix} \parallel M[m])) \\ = &F[\text{CBC}'[E], E](K_h, K, M_{fix} \parallel M[m]). \end{split}$$

It means F has a period $s := 0^{n(m-1)} \parallel s$ for any $M \in \{M_{fix}\} \times \{0,1\}^n$. So there is an adversary \mathscr{A} distinguishes F from random function with only $\mathcal{O}(2^{n/2})$ evaluation queries when considering single user similar as counter-example 2.

5 The Flaw of the Proof of Theorem 1 in [16]

In section 3, we have shown the procedure of how Shen et al. [16] proved Theorem 1 based on H-coefficient technique. However, we find they make a critical flaw when they were calculating Pr[Bad₉] in their proof, which leads to existing our counter-examples. We now show it.

Assume there are u users and the adversary make q_i evaluation queries to the i-th user in all. Let $(eval, i, M_a^i, T_a^i)$ be the entry obtained when the adversary makes the a-th query to user i. During the computation of entry $(eval, i, M_a^i, T_a^i)$, let Σ_a^i and Λ_a^i be the internal outputs of hash function H in "real" system \mathbf{S}_1 , namely $\Sigma_a^i = H^1_{K_{h,1}}\left(M_a^i\right)$ and $\Lambda_a^i = H^2_{K_{h,2}}\left(M_a^i\right)$ respectively. The ninth bad event is

"There is an entry $(eval, i, M_a^i, T_a^i)$ such that either $\Sigma_a^i = \Sigma_b^i$ or $\Sigma_a^i = \Lambda_b^i$, and either $\Lambda_a^i = \Lambda_b^i$ or $\Lambda_a^i = \Sigma_b^i$ for some entry $(eval, i, M_a^i, T_a^i)$."

They defined this event bad for the reason that the appearance of such entry $(eval, i, M_a^i, T_a^i)$ is easy used to distinguish systems S_1 and S_0 . We call the event of either $\Sigma_a^i = \Sigma_b^i$ or $\Sigma_a^i = \Lambda_b^i$ as event 1, and the event of either $\Lambda_a^i = \Lambda_b^i$ or $\Lambda_a^i = \Sigma_b^i$ as event 2. Then we can regard the simultaneous events 1 and 2 as one of the following 4 events:

- $\begin{array}{l} \text{ Event 3: } \Sigma_a^i = \Sigma_b^i \text{ and } \Lambda_a^i = \Lambda_b^i; \\ \text{ Event 4: } \Sigma_a^i = \Sigma_b^i \text{ and } \Lambda_a^i = \Sigma_b^i; \\ \text{ Event 5: } \Sigma_a^i = \Lambda_b^i \text{ and } \Lambda_a^i = \Lambda_b^i; \end{array}$

– Event 6:
$$\Sigma_a^i = \Lambda_b^i$$
 and $\Lambda_a^i = \Sigma_b^i$.

In "real" system \mathbf{S}_1 , event 4 or 5 leads to $T_a^i = 0^n$; event 3 or 6 leads to $T_a^i = T_b^i$. However in "ideal" system \mathbf{S}_0 these happen with negligible probability by the randomness of random function f_i . Thus it is easy distinguish these two systems.

When calculating $\Pr[\text{Bad}_9]$, Shen et al. [16] regarded that the event 1 is independent from event 2 when $K_{h,1}^i, K_{h,2}^i$ are independent from each other. So by H^1, H^2 are both ϵ_1 -regular and ϵ_2 -AU, they thought the probability of event 1 (resp. event 2) is at most $\epsilon_1 + \epsilon_2$. Note that for each user, there are at most q_i^2 pairs of (a, b). So they summed among u users and got

$$\Pr[\text{Bad}_9] \le \sum_{i=1}^u q_i^2 (\epsilon_1 + \epsilon_2)^2 \le q^2 (\epsilon_1 + \epsilon_2)^2.$$

In fact, even if $K_{h,1}^i, K_{h,2}^i$ are independent of each other, the event 1 and event 2 may not be independent, which has been shown in counter-examples 1-3. We regard the ninth event as the union set of events 3,4,5 and 6. Event 3 holds with probability at most ϵ_2^2 by the assumption that H^1 and H^2 are ϵ_2 -AU. Event 4 holds with probability at most $\epsilon_1\epsilon_2$ by the assumption that H^1 is ϵ_2 -AU and H^2 is ϵ_1 -regular. Event 5 holds with probability at most $\epsilon_1\epsilon_2$ by the assumption that H^1 is ϵ_1 -regular and H^2 is ϵ_2 -AU. For event 6,

$$\Pr[K_{h,1}^{i} \stackrel{\$}{\leftarrow} \mathcal{K}_{h,1}, K_{h,2}^{i} \stackrel{\$}{\leftarrow} \mathcal{K}_{h,2} : \Sigma_{a}^{i} = \Lambda_{b}^{i}, \Lambda_{a}^{i} = \Sigma_{b}^{i}]$$

$$= \Pr[K_{h,1}^{i} \stackrel{\$}{\leftarrow} \mathcal{K}_{h,1}, K_{h,2}^{i} \stackrel{\$}{\leftarrow} \mathcal{K}_{h,2} : \Sigma_{a}^{i} = \Lambda_{b}^{i} | \Lambda_{a}^{i} = \Sigma_{b}^{i}]$$

$$\cdot \Pr[K_{h,1}^{i} \stackrel{\$}{\leftarrow} \mathcal{K}_{h,2}, K_{h,2}^{i} \stackrel{\$}{\leftarrow} \mathcal{K}_{h,1} : \Lambda_{a}^{i} = \Sigma_{b}^{i}]$$

$$\leq \epsilon_{3} \epsilon_{1}$$

by the assumption that H^2 is ϵ_1 -regular and let

$$\epsilon_3 = \Pr[K_{h,1}^i \stackrel{\$}{\leftarrow} \mathcal{K}_{h,1}, K_{h,2}^i \stackrel{\$}{\leftarrow} \mathcal{K}_{h,2} : \Sigma_a^i = \Lambda_b^i | \Lambda_a^i = \Sigma_b^i].$$

So we sum among u users and got

$$\Pr[\mathrm{Bad}_9] \le \sum_{i=1}^u q_i^2 (\epsilon_2^2 + 2\epsilon_1 \epsilon_2 + \epsilon_3 \epsilon_1) \le q^2 (\epsilon_2^2 + 2\epsilon_1 \epsilon_2 + \epsilon_3 \epsilon_1).$$

For counter-examples 1-3, it is easy to get $\epsilon_3 = 1$. So for these cases, $\Pr[\text{Bad}_9] \leq q^2(\epsilon_2^2 + 2\epsilon_1\epsilon_2 + \epsilon_1)$. If we substitute our $\Pr[\text{Bad}_9]$ for that in paper [16], we get the security of proofs of counter-examples 1-3 should be within $\mathcal{O}(2^{n/2})$ evaluation queries assuming ideal-cipher queries are $\mathcal{O}(1)$ and the maximal block length of all evaluation queries is $\mathcal{O}(1)$, which is consistent with attacks.

6 Conclusion

In this paper, we find a critical flaw of the security framework of two-key DbHtS in the multi-user setting raised by Shen et al. [16] by three counter-examples. We also present the reason of existing such a flaw. This is due to the fact

that the authors overlooked the dependence of $H_{K_{h_1}}(M_1) = H_{K_{h_2}}(M_2)$ and $H_{K_{h_2}}(M_1) = H_{K_{h_1}}(M_2)$ when K_{h_1}, K_{h_2} are independent and M_1, M_2 are two different messages in the proof of Theorem 1 [16]. However, we haven't found attacks against 2k-SUM-ECBC, 2k-PMAC_Plus and 2k-LightMAC_Plus which following their the security framework of two-key DbHtS.

References

- An, J.H., Bellare, M.: Constructing vil-macs from fil-macs: Message authentication under weakened assumptions. In: CRYPTO' 99. pp. 252–269. Springer Berlin Heidelberg (1999)
- Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A small present towards reaching the limit of lightweight encryption. In: CHES 2017. vol. 10529, pp. 321–345. Springer (2017), https://doi.org/10.1007/978-3-319-66787-4_16
- Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authentication. In: CRYPTO '96. vol. 1109, pp. 1–15. Springer (1996), https://doi.org/10.1007/3-540-68697-5_1
- Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining message authentication code. J. Comput. Syst. Sci. 61(3), 362–399 (2000), https://doi.org/10.1006/jcss.1999.1694
- Bellare, M., Pietrzak, K., Rogaway, P.: Improved security analyses for CBC macs. In: CRYPTO 2005. vol. 3621, pp. 527–545. Springer (2005), https://doi.org/10.1007/11535218_32
- Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In: CHES 2007. vol. 4727, pp. 450–466. Springer (2007), https://doi.org/10.1007/978-3-540-74735-2_31
- Chen, S., Steinberger, J.P.: Tight security bounds for key-alternating ciphers. In: EUROCRYPT 2014. vol. 8441, pp. 327–350. Springer (2014), https://doi.org/10.1007/978-3-642-55220-5_19
- 8. Datta, N., Dutta, A., Nandi, M., Paul, G.: Double-block hash-then-sum: A paradigm for constructing BBB secure PRF. IACR Trans. Symmetric Cryptol. **2018**(3), 36–92 (2018), https://doi.org/10.13154/tosc.v2018.i3.36-92
- 9. Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: FSE 2003. vol. 2887, pp. 129–153. Springer (2003), https://doi.org/10.1007/978-3-540-39887-5_11
- 10. Jha, A., Nandi, M.: Revisiting structure graph and its applications to CBC-MAC and EMAC. IACR Cryptol. ePrint Arch. p. 161 (2016), http://eprint.iacr.org/2016/161
- 11. Kim, S., Lee, B., Lee, J.: Tight security bounds for Double-Block Hash-then-Sum MACs. In: EUROCRYPT 2020. vol. 12105, pp. 435–465. Springer (2020), https://doi.org/10.1007/978-3-030-45721-1_16
- Leurent, G., Nandi, M., Sibleyras, F.: Generic attacks against beyond-birthday-bound macs. In: CRYPTO 2018. vol. 10991, pp. 306–336. Springer (2018), https://doi.org/10.1007/978-3-319-96884-1_11
- 13. Luykx, A., Preneel, B., Tischhauser, E., Yasuda, K.: A MAC mode for lightweight block ciphers. In: FSE 2016. vol. 9783, pp. 43–59. Springer (2016), https://doi.org/10.1007/978-3-662-52993-5_3

- Naito, Y.: Blockcipher-based macs: Beyond the birthday bound without message length. In: ASIACRYPT 2017. vol. 10626, pp. 446–470. Springer (2017), https://doi.org/10.1007/978-3-319-70700-6_16
- Patarin, J.: The "coefficients h" technique. In: SAC 2008. vol. 5381, pp. 328–345.
 Springer (2008), https://doi.org/10.1007/978-3-642-04159-4_21
- 16. Shen, Y., Wang, L., Gu, D., Weng, J.: Revisiting the security of dbhts macs: Beyond-birthday-bound in the multi-user setting. In: CRYPTO 2021. vol. 12827, pp. 309–336. Springer (2021), https://doi.org/10.1007/978-3-030-84252-9_11
- 17. Yasuda, K.: The sum of CBC macs is a secure PRF. In: CT-RSA 2010. vol. 5985, pp. 366–381. Springer (2010), https://doi.org/10.1007/978-3-642-11925-5_25
- Yasuda, K.: A new variant of PMAC: beyond the birthday bound. In: CRYPTO 2011. vol. 6841, pp. 596–609. Springer (2011), https://doi.org/10.1007/978-3-642-22792-9_34
- 19. Zhang, L., Wu, W., Sui, H., Wang, P.: 3kf9: Enhancing 3gpp-mac beyond the birthday bound. In: ASIACRYPT 2012. vol. 7658, pp. 296–312. Springer (2012), https://doi.org/10.1007/978-3-642-34961-4_19