A Note on the Security Framework of Two-key DbHtS MACs

Tingting Guo ${ }^{1,2}$ and Peng Wang ${ }^{1,2(\boxtimes)}$
${ }^{1}$ SKLOIS, Institute of Information Engineering, CAS
guotingting@iie.ac.cn, w.rocking@gmail.com
${ }^{2}$ School of Cyber Security, University of Chinese Academy of Sciences

Abstract

Double-block Hash-then-Sum (DbHtS) MACs are a class of MACs achieve beyond-birthday-bound (BBB) security, including SUMECBC, PMAC_Plus, 3kf9 and LightMAC_Plus etc. Recently, Shen et al. (CRYPTO 2021) proposed a security framework for two-key DbHtS MACs in the multi-user setting, stating that when the underlying blockcipher is ideal and the universal hash function is regular and almost universal, the two-key DbHtS MACs achieve $2 n / 3$-bit security. Unfortunately, the regular and universal properties can not guarantee the BBB security of two-key DbHtS MACs. We propose three counter-examples which are proved to be $2 n / 3$-bit secure in the multi-user setting by the framework, but can be broken with probability 1 using only $\mathcal{O}\left(2^{n / 2}\right)$ queries even in the single-user setting. We also point out the miscalculation in their proof leading to such a flaw. However, we haven't found attacks against $2 \mathrm{k}-\mathrm{SUM}-\mathrm{ECBC}, 2 \mathrm{k}-\mathrm{PMAC} _$Plus and 2 k -LightMAC_Plus proved $2 n / 3$-bit security in their paper.

Keywords: MAC • DbHtS • Beyond-birthday-bound security • Multiuser security.

1 Introduction

Message Authentication Code (MAC). MAC is a symmetric-key crypto primitive to ensure integrity of messages. Most of their security proofs, including XCBC [4], PMAC [5,13], HMAC [2], and NMAC [2], follow the Hash-then-(Fixed-Input-Length) Function (HtF) framework:

$$
\operatorname{HtF}[H, E]\left(K_{h}, K, M\right)=E_{K}\left(H_{K_{h}}(M)\right)
$$

When H is an almost universal (AU) hash function and E is a fixed-inputlength PRF (often instantiated as a blockcipher), HtF is a variable-input-length PRF [16] with birthday bound security, i.e. they are secure up to $\mathcal{O}\left(2^{n / 2}\right)$ queries where n is the input size of E. However, birthday bound security is always not enough for modes of lightweight blockciphers, such as PRESENT [6], GIFT [1], etc. whose block size is 64 -bit. In this case, the security is only 32 -bit (i.e., security up to 2^{32} queries), which is practically vulnerable. Therefore researchers make great efforts to construct MACs with better security bounds.

Birthday-Birthday-Bound (BBB) MACs. Plenty of MACs with BBB security have been put forward, such as SUM-ECBC [17], PMAC_Plus [18], 3kf9 [19], LightMAC_Plus [11], and so on. Their primary proofs [17,18,19,11] gave 2n/3bit security (ignoring the maximum message length). At FSE 2019, Datta et al. showed that these MACs all follow the three-key Double-block Hash-then-Sum (DbHtS) framework [8]:

$$
\operatorname{DbHtS}[H, E]\left(K_{h}, K_{1}, K_{2}, M\right)=E_{K_{1}}\left(H_{K_{h, 1}}^{1}(M)\right) \oplus E_{K_{2}}\left(H_{K_{h, 2}}^{2}(M)\right)
$$

where M is the massage, $K_{h}=\left(K_{h, 1}, K_{h, 2}\right)$ are keys for two universal hash functions H^{1} and H^{2}, K_{1}, K_{2} are keys for blockcipher E. In the following, we treat the blockcipher is as a Pseudorandom Permutation (PRP). $E_{K_{1}}$ and $E_{K_{2}}$ mean two independent PRPs. Datta et al. proved that when H is weak-cover-free and weak-block-wise universal, the three-key DbHtS is $2 n / 3$-bit secure. Later, Leurent et al. [10] showed the best attacks to them cost $\mathcal{O}\left(2^{3 n / 4}\right)$ queries. Recently at EUROCRYPT 2020, Kim et al. [9] have proved the tight $3 n / 4$-bit security (ignoring the maximum message length) if H is only almost universal.

Datta et al. [8] also found that the two-key DbHtS , that is to say, $K_{1}=K_{2}$ in the above framework, is still $2 n / 3$-bit security when H is cover-free, block-wise universal and colliding.

Two-key DbHtS in the Multi-User (MU) setting. All the above MAC frameworks only considered Single-User (SU) setting. In practice, the adversary can attack multiple users. For instance, MACs are core elements of real-world security protocols such as TLS, SSH, and IPsec, which are used by lots of websites with plenty of daily active users. However, by a generic reduction, all above BBB results degrade to (or even worse than) the birthday bound in the MU setting [14].

At CRYPTO 2021, Shen et al. [14] revisited the security of two-key DbHtS framework in the MU setting elaborately. Their framework (Theorem 1 in [14]) states that when the underlying blockcipher is an ideal cipher and the two independent universal hash functions are both regular and almost universal, the two-key DbHtS MACs, including $2 \mathrm{k}-\mathrm{SUM}-\mathrm{ECBC}$, achieve $2 n / 3$-bit security. They adjusted the proof of the framework for adapting to $2 \mathrm{k}-\mathrm{PMAC}$ _Plus and 2k-LightMAC_Plus based on two dependent universal hash functions, stating they achieve $2 n / 3$-bit security, too.

We summarise the above security frameworks for MACs in Table 1.
Our contributions. We show that Theorem 1 in Shen et al.'s paper [14], giving the security of two-key DbHtS framework, has a critical flaw by three counterexamples. According to their framework, these counter-examples are proved $2 n / 3$-bit security (ignoring the maximum message length) in the multi-user setting. However, they are all attacked successfully with only $\mathcal{O}\left(2^{n / 2}\right)$ queries even in the single-user setting. We also show clearly the miscalculation in their proof leading to such a flaw.

Table 1. Summary of security frameworks for MACs. n is the input size of E. The security of MACs ignores the maximum message length.

Framework	Property of H	Property of $E \mid$ Setting		
HtF	AU	PRF	SU	$n / 2[16]$
Three-key DbHtS	Weak-cover-free Weak-block-wise universal	PRP	SU	$2 n / 3[8]$
Two-key DbHtS	Cover-free Block-wise universal Colliding	PRP	SU	$2 n / 3[8]$
Three-key DbHtS	AU	PRP	SU	$3 n / 4[9]$
Two-key DbHtS	Regular AU	Ideal cipher	MU	$2 n / 3[14]$

2 Preliminaries

 and randomly. Let $|\mathcal{X}|$ be the size of the set \mathcal{X}. For a domain \mathcal{X} and a range \mathcal{Y}, let $\operatorname{Func}(\mathcal{X}, \mathcal{Y})$ denote the set of all functions from \mathcal{X} to \mathcal{Y}.
Multi-user Pseudorandom Function (PRF). Let $F: \mathcal{K} \times \mathcal{X} \rightarrow \mathcal{Y}$ be a function. The game $\mathbf{G}_{F}^{\text {prf }}(\mathscr{A})$ about adversary \mathscr{A} is defined as follows.

1. Initialize $K_{1}, K_{2}, \ldots \stackrel{\$}{\leftarrow} \mathcal{K}, f_{1}, f_{2}, \ldots \stackrel{\$}{\leftarrow} \operatorname{Func}(\mathcal{X}, \mathcal{Y})$, and $b \stackrel{\$}{\leftarrow}\{0,1\}$;
2. \mathscr{A} queries Eval function with (i, X) and get $\operatorname{Eval}(i, X)$, where $i \in\{1,2, \ldots\}, X \in$ \mathcal{X}, and

$$
\operatorname{Eval}(i, X)= \begin{cases}F\left(K_{i}, X\right), & \text { if } b=0 \\ f_{i}(X), & \text { if } b=1\end{cases}
$$

3. \mathscr{A} output b^{\prime}.

Then the advantage of the adversary \mathscr{A} against the multi-user PRF security of F is

$$
\operatorname{Adv}_{F}^{\operatorname{prf}}(\mathscr{A})=2 \operatorname{Pr}\left[b^{\prime}=b\right]-1
$$

The H-coefficient technique. When considering interactions between an adversary \mathscr{A} and an abstract system \mathbf{S} which answers \mathscr{A} 's queries, let X_{i} denote the query from \mathscr{A} to \mathbf{S} and Y_{i} denote the response of X_{i} from \mathbf{S} to \mathscr{A}. Then the resulting interaction can be recorded with a transcript $\tau=\left(\left(X_{1}, Y_{1}\right), \ldots,\left(X_{q}, Y_{q}\right)\right)$. Let $p_{\mathbf{S}}(\tau)$ denote the probability that \mathbf{S} produces τ. In fact, $p_{\mathbf{S}}(\tau)$ is the description of \mathbf{S} and independent of the adversary \mathscr{A}. Then we describe the Hcoefficient technique [7,12]. Generically, it considers an adversary that aims at distinguishing a "real" system \mathbf{S}_{1} from an"ideal" system \mathbf{S}_{0}. The interactions of the adversary with those two systems induce two transcript distributions D_{1} and D_{0} respectively. It is well known that the statistical distance $\operatorname{SD}\left(D_{0}, D_{1}\right)$ is an upper bound on the distinguishing advantage of \mathscr{A}.

Lemma 1. [7,12] Suppose that the set of attainable transcripts for the ideal system can be partitioned into good and bad ones. If there exists $\epsilon \geq 0$ such that
$\frac{p_{\mathbf{S}_{1}}(\tau)}{p_{\mathbf{S}_{0}}(\tau)} \geq 1-\epsilon$ for any good transcript τ, then

$$
\mathrm{SD}\left(D_{0}, D_{1}\right) \leq \epsilon+\operatorname{Pr}\left[D_{0} \text { is bad }\right]
$$

Regular and AU. Let $H: \mathcal{K}_{h} \times \mathcal{X} \rightarrow \mathcal{Y}$ be a hash function where \mathcal{K}_{h} is the key space, \mathcal{X} is the domain and \mathcal{Y} is the range. Hash function H^{i} is said to be ϵ_{1}-regular if for any $X \in \mathcal{X}, Y \in \mathcal{Y}$,

$$
\operatorname{Pr}\left[K_{h} \stackrel{\left.\$ \mathcal{K}_{h}: H_{K_{h}}(X)=Y\right] \leq \epsilon_{1} ~}{\text {. }}\right.
$$

And hash function H is said to be ϵ_{2} - AU if for any two distinct strings $X, X^{\prime} \in \mathcal{X}$,

$$
\operatorname{Pr}\left[K_{h} \stackrel{\$}{\leftarrow} \mathcal{K}_{h}: H_{K_{h}}(X)=H_{K_{h}}\left(X^{\prime}\right)\right] \leq \epsilon_{2}
$$

3 BBB-security Framework in [14]

Let \mathcal{M} be the message space and $\mathcal{K}_{h} \times \mathcal{K}$ be the key space. Let blockcipher $E: \mathcal{K} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ and $\mathcal{K}=\{0,1\}^{k}$. Let hash function $H: \mathcal{K}_{h} \times \mathcal{M} \rightarrow$ $\{0,1\}^{n} \times\{0,1\}^{n}$. The function H is consist of two n-bit hash functions H^{1} and H^{2}, i,e., $H_{K_{h}}(M)=\left(H_{K_{h, 1}}^{1}(M), H_{K_{h, 2}}^{2}(M)\right)$ where $K_{h}=\left(K_{h, 1}, K_{h, 2}\right) \in$ $\mathcal{K}_{h, 1} \times \mathcal{K}_{h, 2}$ and $K_{h, 1}, K_{h, 2}$ are two independent keys. Then the two-key DbHtS framework in paper [14] (see Fig.1) is

$$
\operatorname{DbHtS}[H, E]\left(K_{h}, K, M\right)=E_{K}\left(H_{K_{h, 1}}^{1}(M)\right) \oplus E_{K}\left(H_{K_{h, 2}}^{2}(M)\right)
$$

Fig. 1. The two-key DbHtS construction. Here H is a $2 n$-bit hash function from $\mathcal{K}_{h} \times \mathcal{M}$ to $\{0,1\}^{n} \times\{0,1\}^{n}$, and E is a n-bit blockcipher from $\mathcal{K} \times\{0,1\}^{n}$ to $\{0,1\}^{n}$.

Theorem 1 in [14]. Let E be modeled as an ideal cipher. Let H^{1} and H^{2} both satisfy ϵ_{1}-regular and ϵ_{2}-AU. Then Shen et al. [14] proved the security of two-key DbHtS in the multi-user setting as following, which is the core of their paper and they named it Theorem 1 . For any adversary \mathscr{A} that makes at most q evaluation queries and p ideal-cipher queries,

$$
\begin{align*}
\operatorname{Adv}_{\mathrm{DbHtS}}^{\mathrm{prf}}(\mathscr{A}) \leq & \frac{2 q}{2^{k}}+\frac{q(3 q+p)(6 q+2 p)}{2^{2 k}}+\frac{2 q p \ell}{2^{n+k}}+\frac{2 q p \epsilon_{1}}{2^{k}}+\frac{4 q p}{2^{n+k}} \\
& +\frac{4 q^{2} \epsilon_{1}}{2^{k}}+\frac{2 q^{2} \ell \epsilon_{1}}{2^{k}}+2 q^{3}\left(\epsilon_{1}+\epsilon_{2}\right)^{2}+\frac{8 q^{3}\left(\epsilon_{1}+\epsilon_{2}\right)}{2^{n}}+\frac{6 q^{3}}{2^{2 n}} \tag{1}
\end{align*}
$$

where ℓ is the maximal block length among these evaluation queries and assuming $p+q \ell \leq 2^{n-1}$.
An overview of the proof of Theorem 1 in [14]. They proved Theorem 1 based on H-coefficient technique. Let \mathbf{S}_{1} be "real" system and \mathbf{S}_{0} be "ideal" system. For $b \in\{0,1\}$, system \mathbf{S}_{b} performs the following procedure.

1. Initialize $\left(K_{h}^{1}, K_{1}\right), \ldots,\left(K_{h}^{u}, K_{u}\right) \stackrel{\$}{\leftarrow} \mathcal{K}_{h} \times \mathcal{K}$ if $b=1$; otherwise, initialize $f_{1}, \ldots, f_{u} \stackrel{\$}{\leftarrow} \operatorname{Func}\left(\mathcal{M},\{0,1\}^{n}\right)$;
2. If an adversary \mathscr{A} queries Eval function with (i, M), where $i \in\{1,2, \ldots\}$, $M \in \mathcal{M}$, return

$$
\operatorname{Eval}(i, M)= \begin{cases}\operatorname{DbHtS}[H, E]\left(K_{h}^{i}, K_{i}, M\right), & \text { if } b=1 \\ f_{i}(M), & \text { if } b=0\end{cases}
$$

3. If an adversary \mathscr{A} queries Prim function with (J, X), where $J \in \mathcal{K}, X \in$ $\{+,-\} \times\{0,1\}^{n}$, return

$$
\operatorname{Prim}(J, X)= \begin{cases}E_{J}(x), & \text { if } X=\{+, x\} \\ E_{J}^{-1}(y), & \text { if } X=\{-, y\}\end{cases}
$$

They called the query to Eval evaluation query and the query to Prim idealcipher query. For each query $T \leftarrow \operatorname{Eval}(i, M)$, they associated it with an entry (eval, i, M, T). The query to Prim is similar to it. Transcript τ consisted of such entries. Then they defined bad transcripts, including fourteen cases. If a transcript is not bad then they said it's good. Let D_{1} and D_{0} be the random variables for the transcript distributions in the system \mathbf{S}_{1} and \mathbf{S}_{0} respectively. They firstly bounded the probability that D_{0} is bad as follows. Let Bad_{i} be the event that the i-th case of bad transcripts happens. They calculated the probability $\operatorname{Pr}\left[\operatorname{Bad}_{1}\right], \ldots, \operatorname{Pr}\left[\operatorname{Bad}_{14}\right]$ in sequence. After summing up, they got

$$
\begin{aligned}
\operatorname{Pr}\left[D_{0} \text { is bad }\right] \leq & \sum_{i=1}^{14} \operatorname{Pr}\left[\operatorname{Bad}_{i}\right] \\
\leq & \frac{2 q}{2^{k}}+\frac{q(3 q+p)(6 q+2 p)}{2^{2 k}}+\frac{2 q p \ell}{2^{k+n}}+\frac{2 q p \epsilon_{1}}{2^{k}}+\frac{4 q p}{2^{n+k}} \\
& +\frac{4 q^{2} \epsilon_{1}}{2^{k}}+\frac{2 q^{2} \ell \epsilon_{1}}{2^{k}}+2 q^{3}\left(\epsilon_{1}+\epsilon_{2}\right)^{2}+\frac{8 q^{3}\left(\epsilon_{1}+\epsilon_{2}\right)}{2^{n}} .
\end{aligned}
$$

Besides, they proved the transcript ratio $\frac{p_{\mathbf{S}_{1}}(\tau)}{p_{\mathbf{S}_{0}}(\tau)} \geq 1-\frac{6 q^{3}}{2^{2 n}}$ for any good transcript τ. Thus they concluded Theorem 1 in [14] by Lemma 1.

4 Counter-examples

We show that the regular and universal properties of hash function can not guarantee the BBB security of two-key DbHtS MACs. We construct three universal hash functions which satisfy the properties, leading to $2 n / 3$-bit security of twokey DbHtS MACs by Theorem 1 in [14]. But all the instantiations can be broken with probability 1 using only $\mathcal{O}\left(2^{n / 2}\right)$ queries even in the single-user setting.

4.1 Counter-example 1

Our first counter-example is a universal hash function with fixed input length. Let function

$$
H_{K_{h}}(M)=\left(H_{K_{1}}^{1}(M), H_{K_{2}}^{1}(M)\right)=\left(M \oplus K_{1}, M \oplus K_{2}\right)
$$

where M is the message from massage space $\{0,1\}^{n}, K_{h}=\left(K_{1}, K_{2}\right)$ and $K_{1}, K_{2} \stackrel{\$}{\leftarrow}$ $\{0,1\}^{n}$. Let blockcipher $E_{K}:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$. Then the derived twokey DbHtS MAC is $F:\{0,1\}^{2 n} \times\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ as

$$
F[H, E]\left(K_{h}, K, M\right)=E_{K}\left(H_{K_{1}}^{1}(M)\right) \oplus E_{K}\left(H_{K_{2}}^{2}(M)\right)
$$

$\boldsymbol{H}^{\mathbf{1}}$ and $\boldsymbol{H}^{\mathbf{2}}$ are $\frac{1}{2^{n}}$-regular and $\frac{1}{2^{n}}$-AU. It is easy to know that for any $M \in\{0,1\}^{n}, Y \in\{0,1\}^{n}$ and $i \in\{1,2\}$,

$$
\operatorname{Pr}\left[K_{i} \stackrel{\$}{\leftarrow}\{0,1\}^{n}: M \oplus K_{i}=Y\right] \leq \frac{1}{2^{n}} .
$$

And for any two distinct strings $M, M^{\prime} \in\{0,1\}^{n}$ and $i \in\{1,2\}$,

$$
\operatorname{Pr}\left[K_{i} \stackrel{\$}{\leftarrow}\{0,1\}^{n}: M \oplus K_{i}=M^{\prime} \oplus K_{i}\right]=0
$$

So hash functions H^{1} and H^{2} are both $\frac{1}{2^{n}}$-regular and $\frac{1}{2^{n}}$-AU.
2n/3-bit security. According to Theorem 1 [14], function F is secure within $\mathcal{O}\left(2^{2 n / 3}\right)$ evaluation queries assuming ideal-cipher queries is $\mathcal{O}(1)$ in the multiuser setting.
Attack with $\mathcal{O}\left(2^{n / 2}\right)$ query complexity. It is easy to know that for all keys in keyspace and messages in message space,

$$
\begin{aligned}
F[H, E]\left(K_{h}, K, M \oplus K_{1} \oplus K_{2}\right) & =E_{K}\left(M \oplus K_{2}\right) \oplus E_{K}\left(M \oplus K_{1}\right) \\
& =F[H, E]\left(K_{h}, K, M\right)
\end{aligned}
$$

It means F has a period $s:=K_{1} \oplus K_{2}$. Based on this, there is an adversary \mathscr{A} can distinguish F from random function f with only $\mathcal{O}\left(2^{n / 2}\right)$ evaluation queries as follows, which is contradictory to Theorem 1 [14].

1. \mathscr{A} firstly makes $\mathcal{O}\left(2^{n / 2}\right)$ evaluation queries of distinct massages M_{1}, M_{2}, \ldots chosen uniformly and randomly, and get T_{1}, T_{2}, \ldots;
2. \mathscr{A} searches a message pair $\left(M_{i}, M_{j}\right)$ for $M_{i} \neq M_{j}, M_{i}, M_{j} \in\left\{M_{1}, M_{2}, \ldots\right\}$ which makes (i) and (ii) hold.
(i) $T_{i}=T_{j}$;
(ii) After make another two evaluation queries with massages M^{\prime} and $M^{\prime} \oplus$ $M_{i} \oplus M_{j}$ for $M^{\prime} \notin\left\{M_{i}, M_{j}\right\}, \mathscr{A}$ gets two identical answers.
If the evaluation query is to F, one can expect on average that there exists one message pair $\left(M_{i}, M_{j}\right)$ among $\mathcal{O}\left(2^{n / 2}\right)$ massages such that $M_{i}=M_{j} \oplus s$. Conditions (i) and (ii) in the second step of \mathscr{A} filter out such pair. However, random
function f has no period. If the evaluation query is to f, on average there exists one message pair $\left(M_{i}, M_{j}\right)$ among $\mathcal{O}\left(2^{n / 2}\right)$ massages such that $T_{i}=T_{j}$. However, the probability of $f\left(M^{\prime}\right)=f\left(M^{\prime} \oplus M_{i} \oplus M_{j}\right)$ for any $M^{\prime} \notin\left\{M_{i}, M_{j}\right\}$ is only $1 / 2^{n}$. So \mathscr{A} finds a pair $\left(M_{i}, M_{j}\right)$ satisfying conditions (i) and (ii) with negligible probability. Thus \mathscr{A} distinguish F from random function with probability $1-1 / 2^{n}$.

4.2 Counter-example 2

Compared with the first counter-example with fixed input length, our second counter-example can handle variable-length input. We construct two hash functions H^{1} and H^{2} dealing with messages from $\left(\{0,1\}^{n}\right)^{*}$:

$$
H_{K_{i}}^{i}(M)=M[1] \oplus M[2] K_{i} \oplus M[3] K_{i}^{2} \oplus \ldots \oplus M[m] K_{i}^{m-1} \oplus|M| K_{i}^{m}, i=1,2 .
$$

where $M=M[1]\|M[2]\| \ldots \| M[m]$ and every message block is n-bit. This example is a variant of PolyMAC [9].
\boldsymbol{H}^{1} and \boldsymbol{H}^{2} are $\frac{\ell}{2^{n}}$-regular and $\frac{\ell}{2^{n}}$-AU. Assume the maximal block length of all evaluation queries is ℓ. Any equation of at most ℓ degree has at most ℓ roots. So it is easy to know that for any $M \in\left(\{0,1\}^{n}\right)^{*}, Y \in\{0,1\}^{n}$ and $i \in\{1,2\}$,

$$
\operatorname{Pr}\left[K_{i} \stackrel{\$}{\leftarrow}\{0,1\}^{n}: H_{K_{i}}^{i}(M)=Y\right] \leq \frac{\ell}{2^{n}} .
$$

And for any two distinct strings $M, M^{\prime} \in\left(\{0,1\}^{n}\right)^{*}$ and $i \in\{1,2\}$,

$$
\operatorname{Pr}\left[K_{i} \stackrel{\$}{\leftarrow}\{0,1\}^{n}: H_{K_{i}}^{i}(M)=H_{K_{i}}^{i}\left(M^{\prime}\right)\right] \leq \frac{\ell}{2^{n}}
$$

It means H^{1} and H^{2} are both $\frac{\ell}{2^{n}}$-regular and $\frac{\ell}{2^{n}}$-AU.
2n/3-bit security. According to Theorem 1 [14], function F is secure within $\mathcal{O}\left(2^{2 n / 3}\right)$ evaluation queries assuming ideal-cipher queries is $\mathcal{O}(1)$ and $\ell=\mathcal{O}(1)$ in the multi-user setting.
Attack with $\mathcal{O}\left(2^{n / 2}\right)$ query complexity. Fix any arbitrary string

$$
M_{f i x}:=M[2]\|M[3]\| \ldots \| M[m] \in\left(\{0,1\}^{n}\right)^{m-1}
$$

where $2 \leq m \leq \ell=O(1)$. Let

$$
K_{i}^{\prime}:=M[2] K_{i} \oplus M[3] K_{i}^{2} \oplus \ldots M[m] K_{i}^{m-1} \oplus n m K_{i}^{m}, i=1,2
$$

Then it is easy to obtain for any keys in key space and $M[1] \in\{0,1\}^{n}$,

$$
\begin{aligned}
& F[H, E]\left(K_{h}, K,\left(M[0] \oplus K_{1}^{\prime} \oplus K_{2}^{\prime}\right) \| M_{f i x}\right) \\
= & E_{K}\left(M[0] \oplus K_{2}^{\prime}\right) \oplus E_{K}\left(M[0] \oplus K_{1}^{\prime}\right) \\
= & F[H, E]\left(K_{h}, K, M[0] \| M_{f i x}\right) .
\end{aligned}
$$

It means F has a period $s:=\left(K_{1}^{\prime} \oplus K_{2}^{\prime}\right) \| 0^{n(m-1)}$ for any $M \in\{0,1\}^{n} \times\left\{M_{f i x}\right\}$. Based on this, there is an adversary \mathscr{A} can distinguish F from random function f with only $\mathcal{O}\left(2^{n / 2}\right)$ evaluation queries as follows, which is contradictory to Theorem 1 [14].

1. \mathscr{A} firstly makes $\mathcal{O}\left(2^{n / 2}\right)$ evaluation queries with distinct massages $M_{1} \|$ $M_{f i x}, M_{2} \| M_{f i x}, \ldots$ where $M_{1}, M_{2}, \ldots \stackrel{\$}{\leftarrow}\{0,1\}^{n}$, and get T_{1}, T_{2}, \ldots;
2. \mathscr{A} searches a pair $\left(M_{i}, M_{j}\right)$ for $M_{i} \neq M_{j}, M_{i}, M_{j} \in\left\{M_{1}, M_{2}, \ldots\right\}$ which makes (i) and (ii) hold.
(i) $T_{i}=T_{j}$;
(ii) After make another two evaluation queries with massages $M^{\prime} \| M_{f i x}$ and $\left(M^{\prime} \oplus M_{i} \oplus M_{j}\right) \| M_{f i x}$ for $M^{\prime} \notin\left\{M_{i}, M_{j}\right\}, \mathscr{A}$ gets two identical answers.
The same as counter-example $1, \mathscr{A}$ distinguishes F from f with probability almost 1 .

4.3 Counter-example 3

Fig. 2. The variant of 2 k -SUM-ECBC. K_{1}, K_{2}, K_{3} are three independent keys in $\{0,1\}^{n} . E$ is a n-bit blockcipher from $\{0,1\}^{n} \times\{0,1\}^{n}$ to $\{0,1\}^{n}$.

Unlike counter-examples 1 and 2 , the third counter-example is based on blockciphers. Let $E:\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$ be a blockcipher with key $K \in$ $\{0,1\}^{n}$. The two n-bit hash functions used in this function are two CBC MACs without the last blockcipher call, which we name CBC'. They are keyed with two independent keys K_{1} and K_{2} respectively. And they deal with at least two message blocks respectively. For a message $M=M[1]\|M[2]\| \ldots \|, M[m]$ where every message block is n-bit and $m \geq 2$, the CBC^{\prime} algorithm $\mathrm{CBC}^{\prime}[E](K, M)$ is defined as Y_{m}, where

$$
\begin{aligned}
& Y_{1}=M[1] \\
& Y_{j}=E_{K}\left(Y_{j-1}\right) \oplus M[j], j=2, \ldots, m
\end{aligned}
$$

Let $K_{h}=\left(K_{1}, K_{2}\right)$. Then we define the function as

$$
F\left[\mathrm{CBC}^{\prime}[E], E\right]\left(K_{h}, K, M\right)=E_{K}\left(\mathrm{CBC}^{\prime}[E]\left(K_{1}, M\right)\right) \oplus E_{K}\left(\mathrm{CBC}^{\prime}[E]\left(K_{2}, M\right)\right)
$$

F can be seen as a variant of $2 \mathrm{k}-\mathrm{SUM}-\mathrm{ECBC}$ [14] (see Fig.2).
$\mathbf{C B C}^{\prime}[\boldsymbol{E}]$ is $\left(\frac{2 \ell}{2^{n}}+\frac{16 \ell^{4}}{2^{2 n}}\right)$-regular and $\left(\frac{2 \ell}{2^{n}}+\frac{16 \ell^{4}}{2^{2 n}}\right)$-AU. For any two different message $M, M^{\prime} \in\left(\{0,1\}^{n}\right)^{*}$ with at most ℓ blocks and the blockcipher E_{K} being a random permutation, Ballare et al. [3] showed that for $i \in\{1,2\}$,

$$
\operatorname{Pr}\left[E_{K}\left(\mathrm{CBC}^{\prime}[E]\left(K_{i}, M\right)\right)=E_{K}\left(\mathrm{CBC}^{\prime}[E]\left(K_{i}, M^{\prime}\right)\right)\right] \leq \frac{2 \ell}{2^{n}}+\frac{16 \ell^{4}}{2^{2 n}}
$$

Blockcipher E_{K} is a permutation. So

$$
\operatorname{Pr}\left[\mathrm{CBC}^{\prime}[E]\left(K_{i}, M\right)=\mathrm{CBC}^{\prime}[E]\left(K_{i}, M^{\prime}\right)\right] \leq \frac{2 \ell}{2^{n}}+\frac{16 \ell^{4}}{2^{2 n}}
$$

Thus for ideal blockcipher E we get

$$
\operatorname{Pr}\left[K_{i} \stackrel{\$}{\leftarrow}\{0,1\}^{n}: \mathrm{CBC}^{\prime}[E]\left(K_{i}, M\right)=\mathrm{CBC}^{\prime}[E]\left(K_{i}, M^{\prime}\right)\right] \leq \frac{2 \ell}{2^{n}}+\frac{16 \ell^{4}}{2^{2 n}}
$$

It means CBC^{\prime} is $\left(\frac{2 \ell}{2^{n}}+\frac{16 \ell^{4}}{2^{2 n}}\right)$-AU. Let $M=X[1]\|(X[2] \oplus Y)\| Z \in\left(\{0,1\}^{n}\right)^{*} \times$ $\{0,1\}^{n} \times\{0,1\}^{n}$ and $M^{\prime}=0^{n} \| Z \in\{0,1\}^{n} \times\{0,1\}^{n}$. Then

$$
\begin{aligned}
& \operatorname{Pr}\left[K_{i} \stackrel{\$}{\leftarrow}\{0,1\}^{n}: \mathrm{CBC}^{\prime}[E]\left(K_{i}, X[1] \| X[2]\right)=Y\right] \\
= & \operatorname{Pr}\left[K_{i} \stackrel{\$}{\leftarrow}\{0,1\}^{n}: \mathrm{CBC}^{\prime}[E]\left(K_{i}, M\right)=\mathrm{CBC}^{\prime}[E]\left(K_{i}, M^{\prime}\right)\right] \\
\leq & \frac{2 \ell}{2^{n}}+\frac{16 \ell^{4}}{2^{2 n}}
\end{aligned}
$$

So CBC' is $\left(\frac{2 \ell}{2^{n}}+\frac{16 \ell^{4}}{2^{2 n}}\right)$-regular.
2n/3-bit security. According to Theorem 1 [14], function F is secure within $\mathcal{O}\left(2^{2 n / 3}\right)$ evaluation queries assuming no ideal-cipher queries and $\ell=\mathcal{O}(1)$ in the multi-user setting.
Attack with $\mathcal{O}\left(2^{n / 2}\right)$ query complexity. Fix any arbitrary string $M_{\text {fix }} \in$ $\left(\{0,1\}^{n}\right)^{m-1}$ where $2 \leq m \leq \ell=O(1)$. Let

$$
\left.s=\mathrm{CBC}^{\prime}[E]\left(K_{1}, M_{f i x} \| 0^{n}\right) \oplus \mathrm{CBC}^{\prime}[E]\left(K_{2}, M_{f i x} \| 0^{n}\right)\right)
$$

Then it is easy to obtain for any keys in key space and $M[m] \in\{0,1\}^{n}$,

$$
\begin{aligned}
& F\left[\mathrm{CBC}^{\prime}[E], E\right]\left(K_{h}, K, M_{f i x} \|(M[m] \oplus s)\right) \\
= & E_{K}\left(\mathrm{CBC}^{\prime}[E]\left(K_{2}, M_{f i x} \| 0^{n}\right) \oplus M[m]\right) \oplus \\
& E_{K}\left(\mathrm{CBC}^{\prime}[E]\left(K_{1}, M_{f i x} \| 0^{n}\right) \oplus M[m]\right) \\
= & E_{K}\left(\mathrm{CBC}^{\prime}[E]\left(K_{2}, M_{f i x} \| M[m]\right)\right) \oplus E_{K}\left(\mathrm{CBC}^{\prime}[E]\left(K_{1}, M_{f i x} \| M[m]\right)\right) \\
= & F\left[\mathrm{CBC}^{\prime}[E], E\right]\left(K_{h}, K, M_{f i x} \| M[m]\right) .
\end{aligned}
$$

It means F has a period $s:=0^{n(m-1)} \| s$ for any $M \in\left\{M_{f i x}\right\} \times\{0,1\}^{n}$. So there is an adversary \mathscr{A} distinguishes F from random function with only $\mathcal{O}\left(2^{n / 2}\right)$ evaluation queries when considering single user similar as counter-example 2.

5 The Flaw of the Proof of Theorem 1 in [14]

In section 3, we have shown the procedure of how Shen et al. [14] proved Theorem 1 based on H-coefficient technique. However, we find they make a critical flaw when they were calculating $\operatorname{Pr}\left[\mathrm{Bad}_{9}\right]$ in their proof, which leads to our counterexamples. We now show it.

Assume there are u users and the adversary make q_{i} evaluation queries to the i-th user in all. Let (eval, i, M_{a}^{i}, T_{a}^{i}) be the entry obtained when the adversary makes the a-th query to user i. During the computation of entry (eval, $, M_{a}^{i}, T_{a}^{i}$), let Σ_{a}^{i} and Λ_{a}^{i} be the internal outputs of hash function H in "real" system \mathbf{S}_{1}, namely $\Sigma_{a}^{i}=H_{K_{h, 1}}^{1}\left(M_{a}^{i}\right)$ and $\Lambda_{a}^{i}=H_{K_{h, 2}}^{2}\left(M_{a}^{i}\right)$ respectively. The ninth bad event is
"There is an entry (eval, i, M_{a}^{i}, T_{a}^{i}) such that either $\Sigma_{a}^{i}=\Sigma_{b}^{i}$ or $\Sigma_{a}^{i}=\Lambda_{b}^{i}$, and either $\Lambda_{a}^{i}=\Lambda_{b}^{i}$ or $\Lambda_{a}^{i}=\Sigma_{b}^{i}$ for some entry (eval, $\left.i, M_{a}^{i}, T_{a}^{i}\right)$."

They defined this event bad for the reason that the appearance of such entry (eval, i, M_{a}^{i}, T_{a}^{i}) is easy used to distinguish systems \mathbf{S}_{1} and \mathbf{S}_{0}. We call the event of either $\Sigma_{a}^{i}=\Sigma_{b}^{i}$ or $\Sigma_{a}^{i}=\Lambda_{b}^{i}$ as event 1 , and the event of either $\Lambda_{a}^{i}=\Lambda_{b}^{i}$ or $\Lambda_{a}^{i}=\Sigma_{b}^{i}$ as event 2 . Then we can regard the simultaneous events 1 and 2 as one of the following 4 events:

- Event 3: $\Sigma_{a}^{i}=\Sigma_{b}^{i}$ and $\Lambda_{a}^{i}=\Lambda_{b}^{i}$;
- Event 4: $\Sigma_{a}^{i}=\Sigma_{b}^{i}$ and $\Lambda_{a}^{i}=\Sigma_{b}^{i}$;
- Event 5: $\Sigma_{a}^{i}=\Lambda_{b}^{i}$ and $\Lambda_{a}^{i}=\Lambda_{b}^{i}$;
- Event 6: $\Sigma_{a}^{i}=\Lambda_{b}^{i}$ and $\Lambda_{a}^{i}=\Sigma_{b}^{i}$.

In "real" system \mathbf{S}_{1}, event 4 or 5 leads to $T_{a}^{i}=0^{n}$; event 3 or 6 leads to $T_{a}^{i}=T_{b}^{i}$. However in "ideal" system \mathbf{S}_{0} these happen with negligible probability by the randomness of random function f_{i}. Thus it is easy distinguish these two systems.

When calculating $\operatorname{Pr}\left[\mathrm{Bad}_{9}\right]$, Shen et al. [14] regarded that the event 1 is independent from event 2 when $K_{h, 1}^{i}, K_{h, 2}^{i}$ are independent from each other. So by H^{1}, H^{2} are both ϵ_{1}-regular and ϵ_{2} - AU , they thought the probability of event 1 (resp. event 2) is at most $\epsilon_{1}+\epsilon_{2}$. Note that for each user, there are at most q_{i}^{2} pairs of (a, b). So they summed among u users and got

$$
\operatorname{Pr}\left[\operatorname{Bad}_{9}\right] \leq \Sigma_{i=1}^{u} q_{i}^{2}\left(\epsilon_{1}+\epsilon_{2}\right)^{2} \leq q^{2}\left(\epsilon_{1}+\epsilon_{2}\right)^{2}
$$

In fact, even if $K_{h, 1}^{i}, K_{h, 2}^{i}$ are independent of each other, the event 1 and event 2 may not be independent, which has been shown in counter-examples 13 . We regard the ninth event as the union set of events $3,4,5$ and 6 . Event 3 holds with probability at most ϵ_{2}^{2} by the assumption that H^{1} and H^{2} are ϵ_{2}-AU. Event 4 holds with probability at most $\epsilon_{1} \epsilon_{2}$ by the assumption that H^{1} is $\epsilon_{2}-\mathrm{AU}$ and
H^{2} is ϵ_{1}-regular. Event 5 holds with probability at most $\epsilon_{1} \epsilon_{2}$ by the assumption that H^{1} is ϵ_{1}-regular and H^{2} is ϵ_{2}-AU. For event 6 ,

$$
\begin{aligned}
& \operatorname{Pr}\left[K_{h, 1}^{i} \stackrel{\$}{\leftarrow} \mathcal{K}_{h, 1}, K_{h, 2}^{i} \stackrel{\$}{\leftarrow} \mathcal{K}_{h, 2}: \Sigma_{a}^{i}=\Lambda_{b}^{i}, \Lambda_{a}^{i}=\Sigma_{b}^{i}\right] \\
= & \operatorname{Pr}\left[K_{h, 1}^{i} \stackrel{\$}{\leftarrow} \mathcal{K}_{h, 1}, K_{h, 2}^{i} \stackrel{\$}{\leftarrow} \mathcal{K}_{h, 2}: \Sigma_{a}^{i}=\Lambda_{b}^{i} \mid \Lambda_{a}^{i}=\Sigma_{b}^{i}\right] \\
& \cdot \operatorname{Pr}\left[K_{h, 1}^{i} \stackrel{\$}{\leftarrow} \mathcal{K}_{h, 2}, K_{h, 2}^{i} \stackrel{\$}{\leftarrow} \mathcal{K}_{h, 1}: \Lambda_{a}^{i}=\Sigma_{b}^{i}\right] \\
\leq & \epsilon_{3} \epsilon_{1}
\end{aligned}
$$

by the assumption that H^{2} is ϵ_{1}-regular and let

$$
\epsilon_{3}=\operatorname{Pr}\left[K_{h, 1}^{i} \stackrel{\$}{\leftarrow} \mathcal{K}_{h, 1}, K_{h, 2}^{i} \stackrel{\$}{\leftarrow} \mathcal{K}_{h, 2}: \Sigma_{a}^{i}=\Lambda_{b}^{i} \mid \Lambda_{a}^{i}=\Sigma_{b}^{i}\right] .
$$

So we sum among u users and got

$$
\operatorname{Pr}\left[\operatorname{Bad}_{9}\right] \leq \Sigma_{i=1}^{u} q_{i}^{2}\left(\epsilon_{2}^{2}+2 \epsilon_{1} \epsilon_{2}+\epsilon_{3} \epsilon_{1}\right) \leq q^{2}\left(\epsilon_{2}^{2}+2 \epsilon_{1} \epsilon_{2}+\epsilon_{3} \epsilon_{1}\right)
$$

For counter-examples $1-3$, it is easy to get $\epsilon_{3}=1$. So for these cases, $\operatorname{Pr}\left[\operatorname{Bad}_{9}\right] \leq$ $q^{2}\left(\epsilon_{2}^{2}+2 \epsilon_{1} \epsilon_{2}+\epsilon_{1}\right)$. If we substitute our $\operatorname{Pr}\left[\mathrm{Bad}_{9}\right]$ for that in paper [14], we get the security of proofs of counter-examples $1-3$ should be within $\mathcal{O}\left(2^{n / 2}\right)$ evaluation queries assuming ideal-cipher queries are $\mathcal{O}(1)$ and the maximal block length of all evaluation queries is $\mathcal{O}(1)$, which is consistent with attacks.

6 Conclusion

In this paper, we point out a flaw of the security framework for two-key DbHtS in the multi-user setting proposed by Shen et al. [14] by constructing three counter-examples. We also analyze how the flaw happens in their proof. This is due to the fact that the authors overlooked the dependence of $H_{K_{h_{1}}}\left(M_{1}\right)=$ $H_{K_{h_{2}}}\left(M_{2}\right)$ and $H_{K_{h_{2}}}\left(M_{1}\right)=H_{K_{h_{1}}}\left(M_{2}\right)$ when $K_{h_{1}}, K_{h_{2}}$ are independent and M_{1}, M_{2} are two different messages in the proof of Theorem 1 [14]. In their paper, they also stated 2k-SUM-ECBC, 2k-PMAC_Plus, and 2k-LightMAC_Plus all achieve $2 n / 3$-bit security. For 2 k -SUM-ECBC based on two independent CBC MACs, the probability ϵ_{3} is about $\frac{1}{2^{n}}$. So if we substitute our $\operatorname{Pr}\left[\mathrm{Bad}_{9}\right]$ for that in paper [14], 2k-SUM-ECBC still achieves $2 n / 3$ security. The two universal hash functions of $2 \mathrm{k}-\mathrm{PMAC}$ _Plus or 2 k -LightMAC_Plus are dependent, they adjusted the concrete proof of these two MACs from the framework. We haven't found attacks against these three MACs.

Recently, Shen et al. refined their paper [15] because of what we have found in this paper. Their new framework for two-key DbHtS is not universal. Because the $2 n / 3$-bit security of two-key DbHtS MACs doesn't only come from the regular and AU properties of the hash functions any more. To be specific, they added two variables to capture the probabilities of two subcases, the values of which will be clear until in the analysis of concrete MAC. In fact, theses two added subcases have been included in the cover-free property of H by Datta et al. [8] when they considered the framework of two-key DbHtS in the single user setting.

References

1. Banik, S., Pandey, S.K., Peyrin, T., Sasaki, Y., Sim, S.M., Todo, Y.: GIFT: A small present - towards reaching the limit of lightweight encryption. In: CHES 2017. vol. 10529, pp. 321-345. Springer (2017), https://doi.org/10.1007/ 978-3-319-66787-4_16 1
2. Bellare, M.: New proofs for NMAC and HMAC: security without collisionresistance. In: CRYPTO 2006, Proceedings. LNCS, vol. 4117, pp. 602-619. Springer (2006), https://doi.org/10.1007/11818175_36 1
3. Bellare, M., Pietrzak, K., Rogaway, P.: Improved security analyses for CBC MACs. In: CRYPTO 2005. vol. 3621, pp. 527-545. Springer (2005), https://doi.org/10. 1007/11535218_32 9
4. Black, J., Rogaway, P.: CBC MACs for arbitrary-length messages: The three-key constructions. In: CRYPTO 2000, Proceedings. LNCS, vol. 1880, pp. 197-215. Springer (2000), https://doi.org/10.1007/3-540-44598-6_12 1
5. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message authentication. In: EUROCRYPT 2002, Proceedings. LNCS, vol. 2332, pp. 384397. Springer (2002), https://doi.org/10.1007/3-540-46035-7_25 1
6. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: an ultra-lightweight block cipher. In: CHES 2007. vol. 4727, pp. 450-466. Springer (2007), https://doi.org/10.1007/ 978-3-540-74735-2_31 1
7. Chen, S., Steinberger, J.P.: Tight security bounds for key-alternating ciphers. In: EUROCRYPT 2014. vol. 8441, pp. 327-350. Springer (2014), https://doi.org/ 10.1007/978-3-642-55220-5_19 3
8. Datta, N., Dutta, A., Nandi, M., Paul, G.: Double-block hash-then-sum: A paradigm for constructing BBB secure PRF. IACR Trans. Symmetric Cryptol. 2018(3), 36-92 (2018), https://doi.org/10.13154/tosc.v2018.i3.36-92 2, 3, 11
9. Kim, S., Lee, B., Lee, J.: Tight security bounds for Double-Block Hash-then-Sum MACs. In: EUROCRYPT 2020. vol. 12105, pp. 435-465. Springer (2020), https: //doi.org/10.1007/978-3-030-45721-1_16 2, 3, 7
10. Leurent, G., Nandi, M., Sibleyras, F.: Generic attacks against beyond-birthdaybound macs. In: CRYPTO 2018. vol. 10991, pp. 306-336. Springer (2018), https : //doi.org/10.1007/978-3-319-96884-1_11 2
11. Naito, Y.: Blockcipher-based macs: Beyond the birthday bound without message length. In: ASIACRYPT 2017. vol. 10626, pp. 446-470. Springer (2017), https: //doi.org/10.1007/978-3-319-70700-6_16 2
12. Patarin, J.: The "coefficients H" technique. In: SAC 2008. vol. 5381, pp. 328-345. Springer (2008), https://doi.org/10.1007/978-3-642-04159-4_21 3
13. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to modes OCB and PMAC. In: ASIACRYPT 2004, Proceedings. LNCS, vol. 3329, pp. 16-31. Springer (2004), https://doi.org/10.1007/978-3-540-30539-2_2 1
14. Shen, Y., Wang, L., Gu, D., Weng, J.: Revisiting the security of DbHtS MACs: Beyond-birthday-bound in the multi-user setting. In: CRYPTO 2021. vol. 12827, pp. 309-336. Springer (2021), https://doi.org/10.1007/978-3-030-84252-9_11 $2,3,4,5,6,7,8,9,10,11$
15. Shen, Y., Wang, L., Weng, J.: Revisiting the security of DbHtS MACs: Beyond-birthday-bound in the multi-user setting. IACR Cryptol. ePrint Arch. p. 1523 (2020), https://eprint.iacr.org/2020/1523 11
16. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs. IACR Cryptol. ePrint Arch. p. 332 (2004), http://eprint.iacr.org/2004/332 1, 3
17. Yasuda, K.: The sum of CBC MACs is a secure PRF. In: CT-RSA 2010. vol. 5985, pp. 366-381. Springer (2010), https://doi.org/10.1007/978-3-642-11925-5_25 2
18. Yasuda, K.: A new variant of PMAC: beyond the birthday bound. In: CRYPTO 2011. vol. 6841, pp. 596-609. Springer (2011), https://doi.org/10.1007/ 978-3-642-22792-9_34 2
19. Zhang, L., Wu, W., Sui, H., Wang, P.: 3kf9: Enhancing 3GPP-MAC beyond the birthday bound. In: ASIACRYPT 2012. vol. 7658, pp. 296-312. Springer (2012), https://doi.org/10.1007/978-3-642-34961-4_19 2
