
Share & Shrink: (In-)Feasibility of MPC from one
Broadcast-then-Asynchrony, and Improved Complexity

Antoine Urban and Matthieu Rambaud

Télécom Paris, Institut Polytechnique de Paris

Version 2 - 9 June 20231

Abstract. We consider protocols for secure multi-party computation (MPC) under honest majority,
i.e., for N = 2t+ 1 players of which t are corrupt, that achieve guaranteed output delivery (GOD), and
which operate in 1 single initial round of broadcast (BC), followed by some steps of asynchronous peer-
to-peer (P2P) messages. The power of closely related “hybrid networks” was studied in [Fitzi-Nielsen,
Disc’09], [Beerliova-Hirt-Nielsen, Podc’10], [Patra-Ravi, IEEE Trans. Inf. Theory’18] and [Choudhury,
Podc’20]. Interest of such protocols is that they go at the actual speed of the network, and their security
is preserved under arbitrary network conditions (past the initial broadcast).
We first complete the picture of this model with an impossibility result showing that some setup is
required to achieve honest majority MPC with GOD. We then consider a bare bulletin-board PKI
setup, and leverage recent advances on multi-key fully homomorphic encryption [BJMS, Asiacrypt’20],
to state feasibility of MPC in a tight 1 BC then 1 single step of asynchronous P2P.
We then consider efficiency. The only protocols which can be adapted to tolerate such network model
and setup are [Gordon-Liu-Shi, Crypto’15] and [BJMS, Asiacrypt’20]. The former does not allow inputs
from external lightweight owners and is inherently limited to the GSW FHE, while the sizes of the
ciphertexts of the latter are quadratic in the number of input owners.
Our main contribution is a very simple and generic design which enables MPC in 1BC-then-asynchronous
P2P. It operates over ciphertexts encrypted over a (threshold) single-key encryption scheme. Hence,
they have the smallest sizes expectable. It operates from any public key encryption scheme with a
key generation, encryption and decryption which are built from linear maps (such as GSW, BFV,
CL). Our main building block is the squishing in the BC of both the publicly verifiable sharing of
the inputs (“Share”), in parallel with distributed key generation (DKG), then followed by threshold
encryption (“Shrink”) in one step of asynchronous P2P. As a bonus, this design allows inputs from
possibly lightweight external owners.
We then aim at instantiating the design from the BFV FHE, but surprisingly there exists no robust
threshold BFV scheme. Precisely, all existing protocols for generating a common relinearisation key
can abort as soon as one player deviates. We solve this issue, with a relinearisation key (adapted from
[CDKS, CCS’19]) which we show how to securely generate in parallel of the threshold key, in the
same broadcast. We thus obtain the first robust threshold BFV. We believe that this contribution is of
independent interest.
Of independent interest, as an optional alternative, we propose the first threshold FHE decryption
enabling simultaneously: (i) robustness under asynchrony with honest majority; (ii) tolerating a power-
of-small-prime ciphertext modulus, e.g., 2e; and (iii) secret shares of sizes quasi-independent of N .

1 Introduction . 2
2 Model . 7
3 Cryptographic Ingredients . 9
4 Share & Shrink: DKG & Encrypted Input Distribution in 1 BC + 1 Async. P2P 12
5 MPC Protocol ΠFLSSS . 14
6 ΠFLSSS from BFV + CDKS∗: the first robust threshold BFV scheme. 16

1Framework enlarged to various linearly homomorphic encryption schemes (GSW, CL) in addition to BFV. The
Theorem 1 (feasibility of MPC in 1BC + 1 async P2P) has been imported from the Section 4.4.1 of eprint 2021/503
(8 November 2021 version).

7 Proofs of Theorems 1 to 3 . 18
8 Impossibility of 1-Broadcast-then-Asynchronous MPC . 19
A Further Details on Related Works . 24
B Model: Further Formalism and Discussion . 26
C More on FLSSS and Secret Sharing over Rings . 31
D Complements on BFV + CDKS∗ . 35
E BFV + CDKS∗ Bootstrapping . 42
F Detailed Protocol ΠFLSSS when instantiated from BFV + CDKS∗ . 43
G Practical Parameters Estimation . 43
H Further Details on the Proof of Theorem 3 . 45

1 Introduction

Byzantine broadcast (BC) and round-by-round synchronous communication, are handy abstractions for de-
signing simple multi-party computation protocols. However both of them are costly to implement. For in-
stance, due to the loss of security when messages are not delivered within a round, protocol implementations
must set very high the duration of a round (typically [AMN+20] 50× larger than the actual network delay,
in order to tolerate slowdowns). Implementing BC from such protocols fails beyond t < n/3 corruptions
if the network cannot deliver a number of consecutive synchronous rounds. An example is the protocol of
[SBKN21] for the closely related primitive of consensus, without distributed key generation (DKG) setup,
which requires an expected 48 rounds, as shown in their Table 2. Thus significant effort is currently put
to remove or minimize the use of BC and synchronous rounds of communications in MPC [FN09; BHN10;
GGOR13; PR18; CGZ20; GJPR21; DMR+21; DRSY23]. We push further this line of work by asking for
only one initial call to BC without any DKG setup, followed by a fully asynchronous protocol. Beyond their
security under network slowdowns, a further benefit of asynchronous protocols is that they go at the actual
speed of the network, i.e., are responsive [CGHZ16; PR18]. Since we aim at the (arguably gold standard) of
guaranteed output delivery (GOD) under honest majority, this initial call to BC is necessary, as shown by
an elementary split-brain attack [BHN10].

A mainstream tool for round-efficient MPC is based on (N, t)-Threshold Fully Encryption schemes
(ThFHE). The following generic approach, or close variations ([BGG+18, §6.2]), is highly mainstream. It
may be called “DKG-then-Input-distribution”, and consists of the following steps:

0. Setup, i.e., the generation of common public parameters;

1. DKG, i.e., the generation of a common public encryption key ek, denoted threshold key, along with the
private assignment to each player of a secret decryption key share such that ciphertexts have IND-CPA
for any adversary controlling up to t key shares;

2. Input distribution, i.e., the broadcast of encrypted inputs under the threshold key;

3. Evaluation & Partial decryption, i.e., the evaluation of a circuit through an algorithm Eval on the en-
crypted inputs, that outputs a ciphertext. Either Eval is non-interactive (FHE), or interactive gate-by-gate
in a CDN ([CDN01]) manner [BHN10]. The ciphertext output is then used along with a key share to pro-
duce a partial decryption.

Finally an algorithm that takes any t+1 correct partial decryptions of any ciphertext and combines them into
the plaintext. However this approach does not match our goal, since implementing DKG would require at the
very least one more BC [FS01], hence a total of at least two BC instead of one. Of course it would be possible
to further open the box of DKG under honest majority [SBKN21]. But inside there are several synchronous
rounds, due to the primitive called consensus (or MVBA), which is essentially equivalent to broadcast. So
we aim at a different approach. Let us further illustrate that sometimes the DKG is not addressed, as in
[BHN10; AJL+12][BGG+18, §5], or, is established by a single trusted entity, as in [BGG+18, §6.2], thereby
preventing security under honest majority. Even when a threshold key is set-up, aborting players can delay
[AJL+12] or completely prevent output delivery [KJY+20; MTBH21; Par21] in some protocols (see Table
2, §1.2 and §A). An orthogonal technique denoted multi-key (MFHE) [CDKS19; BJMS20], enables joint

2

evaluation of encryptions under different keys without a DKG. But the sizes of ciphertext are at least linear
in the number |L | of input owners, as well as their homomorphic evaluation complexity (since [KKL+22;
KÖA23]).

What we see from the previous DKG-then-Input-distribution approach, is that broadcasts are paid for the
goal of providing players with a common view on threshold-encrypted inputs. In a breakthrough approach,
[GLS15], achieved this task in one single BC (plus preliminary publication of input-independent material on
a bulletin board PKI). Then, the very original approach of [BJMS20] achieves the same, and furthermore,
as we are going to state in Theorem 1, they allow to incorporate in the computation the inputs of external
lightweight input owners not participating to the MPC. However both these approaches suffer from a number
of limitations, which impacts the works using them, e.g., [GPS19]. The sizes of the (multi-key) ciphertexts
of [BJMS20] are quadratic in the number |L | of input owners. The sizes of the ciphertexts of [GLS15] are
n× larger than those under the BFV FHE [FV12] (n the lattice dimension, see Table 2). These sizes are
inherited from [GSW13]. To achieve better sizes would require a RLWE-based encryption. But the approach
of [GLS15] is not portable to RLWE, since it relies on the subset-sum Lemma of [Reg05] (see Appendix A).
Moreoever, [GLS15] cannot enable inputs from lightweight owners (see Section 1.2).

Is there a generic method providing a common view on ciphertexts of inputs under (threshold) single-key
encryption (so of sizes independent of |L |), using no more than one broadcast, without a DKG setup?

1.1 Results

Before we move to our main contributions, we complete the theoretical picture of honest majority MPC with
GOD from one initial round of broadcast. We enrich it with two new (in)feasibility results, as illustrated in
Section 1.1.1.

1.1.1 Feasibility of 1 BC + asynch MPC with GOD under honest majority We assume one
initial access to a broadcast functionality BC, which guarantees eventual output whatever the (non)behavior
of the sender.

Theorem 1. There exists a MPC protocol with guaranteed output delivery (GOD) under honest majority
(N = 2t + 1), under the sole setup of a bulletin board PKI; which furthermore enjoys (i) termination in
1BC-then-1 step of asynchronous P2P messages; (ii) allows inputs from external owners, i.e., which do not
take part in the computation.

The baseline is the protocol of [BJMS20]. As stated, it does not have properties (i) nor (ii). We show in
Section 7.4 how to modify it to obtain these claimed properties.

Comm.
Setup

DKG 2 bPKI + URS bPKI No setup

1 BC + 1 Sync P2P
[GLS15]+[DMR+21]

X
X [GIKR02]

%

1 BC + ∞ Asynch P2P
[BHN10]

X X
Thm. 6

%

[BJMS20] + Thm. 1

Table 1: Feasibility and impossibility of MPC with GOD under honest majority with different setups and
communication patterns. URS stands for a public uniform random string, and bPKI for a bulletin-board PKI.

2Threshold encryption key, secret-shared decryption key

3

Impossibility of 1-Broadcast-then-Asynchronous MPC without setup In Theorem 6 we show that
for t ≥ 3 and N ≤ 3t − 4, then some functionalities are not securely implementable, without setup, in
one broadcast followed by an arbitrary number of pairwise asynchronous communications. It thus parallels
[PR18], which dealt with perfect security. The strategy adapts [GIKR02, §4.1].

1.1.2 Main Result: Share & Shrink method. We answer positively the main question by proposing a
new generic protocol in the bulletin-board PKI (bPKI) model, called Share & Shrink. It performs in parallel :
a DKG, and a distribution of ciphertexts of inputs under the single threshold key (thus of sizes independent
of |L |). The broadcast BC is used only once simultaneously by both players and input owners. The second
(and last) step is performed over asynchronous point-to-point channels. The first ingredient for Share &
Shrink is any (linear) publicly verifiable secret sharing (PVSS) scheme [GV22; KMM+23]. Recall that a
PVSS sharing algorithm, on input a secret s, roughly consists in: generate a t-out-of-N linear secret sharing
of s, generate an encryption of each share under the key of one player, and output the N ciphertexts obtained.
The second ingredient is any linearly homomorphic encryption scheme, in a precise sense to be defined in
Section 3.1. This includes the schemes known as CL [CL15], GSW [GSW13] and BFV [FV12], along with
most of their variations. Share & Shrink can be described as follows.

0. Setup. Each player non-interactively generates then publishes a public key, for any public-key encryption
scheme (PKE). Players also retrieve a uniform random string (URS), as needed in most of the practical
cases considered.

1. Share. Players run a DKG protocol in one round of broadcast. The pattern is the same as in [FS01].
Namely, each player Pi generates an additive contribution ski to the decryption key, and eki to the
threshold encryption key, which is the image of ski (and possibly some noise) by a fixed public linear map

(e.g., for BFV: eki ← (−a.ski + e
(pk)
i , a), where a is a URS). It broadcasts eki and a PVSS of ski. We

leave here implicit the necessary NIZK’s proving that the public eki is derived from the shared ski (with

possibly some noise e
(pk)
i).

In parallel, input owners also broadcast PVSS’s of their inputs and of encryption randomnesses.

2. Shrink, each player locally sets the threshold encryption key ek as roughly the sum of the eki’s for which the
ski’s were correctly shared. Players perform threshold encryption of the shared inputs under ek, thereby
“shrinking” them down to the sizes to ciphertext encrypted under the (threshold) single-key ek. What
makes threshold encryption work in one step of point-to-point asynchronous messages, is that it simply
consists in the opening of a linear map, parametrized by ek, evaluated over the shared secret inputs (and
the shared encryption randomnesses).

In conclusion, players obtain a common view on inputs encrypted with a (threshold) single-key ek. They
can thus proceed as in the remaining of the DKG-then-Input-distribution method (which requires no further
broadcast).

Theorem 2 (Share & Shrink). For any linearly homomorphic encryption scheme in the sense of Def-
inition 4, and evaluation algorithm (or protocol) over encrypted inputs in the sense of Section 5.1, there
exists a MPC protocol under honest majority with GOD, in 1 BC followed by asynchronous point to point
messages. It furthermore allows inputs of external input owners. It operates on ciphertexts of inputs under
a (threshold) single-key encryption, in particular their sizes are independent of the number of input owners
|L |, and of N .

It has furthermore the delayed function property, i.e., messages from owners are independent of the circuit
to be evaluated. [BHKL18] point out that the lack of handling inputs from external lightweight owners, like
mobile phones or web browsers, is one of the main obstacles to the deployment of MPC in practice. We
thus believe that enabling input owners, and not having a complexity which grows with their number, is a
significant advantage of our scheme over previous ones in 1BC then asynchrony [GLS15; BJMS20].

1.1.3 Of independent interest: the first robust threshold BFV (and instantiating Share &
Shrink with it). To obtain the smallest possible ciphertexts, we take the example of the RLWE-based

4

Protocol 1 BC + asynch P2P
GOD

for t < N/2
Size of

ciphertexts
External
Inputs

[AJL+12][KJY+20]
[MTBH21][Par21][MBH23] % % O(n log q) %

[CDKS19] % % O(nN log q) %

[GLS15] X X O(n2 log(q)3) %

[ACGJ18] X X O(Nτ |C|+Nτ+1d) (a)
%

[BJMS20] + Thm. 1 X X O
(
(|L |n)2 log(q)3

)
X

Thm. 2 X X Same size as single-key
encryption (b)

X

Thm. 3 X X O(n log q) X
(a) τ > 2 and d is the depth of C.
(b) Size independent of N and of L . However a minimum modulus q exponentially larger than the noise of the
evaluated ciphertext is required: see Section 1.1.4.

Table 2: MPC for N = 2t+1 players and |L | input owners, using FHE with lattice dimension n and modulus
q, and assuming a URS and a bulletin-board PKI. The last column indicates whether or not the protocol
allows inputs from lightweight external owners, which do not take part in the computation. We did not
mark as GOD the protocols which must be restarted when one player drops-out in the middle (detailed in
Appendix A.1.3). The “Size” is the one of the ciphertexts which undergo homomorphic evaluation (called
“Transformed” ciphertexts, in [GLS15; BJMS20]) (possibly with asynchronous interactions, cf Section 5.1).

FHE known as BFV. Let us denote by Rq its ciphertext space, where elements are encoded in size O(n log q)
bits, with n the dimension of the ring and q the modulus, see Appendix D for details. Then, we have:

Theorem 3 (Share & Shrink instantiated from BFV (§7.1)). In the model of (GURS, bPKI), consider
N = 2t + 1 players, of which t are maliciously corrupt. There exists a protocol that UC implements secure
evaluation of any arithmetic circuit, with GOD, in 1 broadcast of size of O(Nn log q) bits for each player and
owner, followed by 2 asynchronous steps of peer-to-peer messages, comprising non-interactive homomorphic
evaluation of the circuit on ciphertexts of size O(n log q).

Applying the Share&Shrink method to BFV is not straightforward, especially the task of generating a
common “relinearization key” rlk (also known as “evaluation key”). A protocol for distributed generation of
the rlk of the RLWE-based FHE “CKKS” was cleverly carried out in [KJY+20, p. III]. However their protocol
requires one more BC, so is not compatible with our model. This additional BC is because rlk (both in CKKS
and [FV12]) is an encryption of the square of the secret threshold key sk. There is actually one more issue in
the generation protocols of rlk in both [KJY+20; Par21]. It is the fact that, since their sk is additively shared
(which makes computations easier), if one player aborts in the subsequent broadcast for generating rlk, then
the whole DKG needed to be restarted. The same squaring-of-sk issue shows up in the bootstrapping key (of
which no robust distributed generation was ever carried out, to our knowledge). In Section 6 we overcome
these issues by introducing an alternative relinearization key (adapted from [CDKS19]), along with a robust
distributed generation of it. More precisely, its generation operates in parallel of the DKG, and is guaranteed
to terminate under honest majority. We do the same for generation of the bootstrapping key (§6.1.2). So
this makes the whole robust, since, unlike in previous works ([KJY+20; Par21] & appendix A), the protocol
needs not be restarted if players subsequently deviate.

1.1.4 Of independent interest: alternative threshold decryption enabling q power of a small
prime (+ robustness under asynchrony & honest majority). Most previous threshold FHE schemes

5

used the following mainstream approach. To decrypt a ciphertext c, each player added some locally gener-
ated noise esm to its decryption share of c, then sent the whole. As a result, when the secret sharing was
instantiated with Shamir, these noises were subsequently multiplied by the N !-sized Lagrange coefficients.
Worse, as explained in [BGG+18, §2.1], players actually multiplied their local noises by an extra N !2 factor,
in order to later clear-out the denominators of the Lagrange coefficients. All-in-all, this is why [BGG+18,
§5.3.1] imposed an extra-multiplicative overhead of N.N !3 on the ciphertext modulus q. This resulted in a
N× blowup of the ciphertext length, as observed in [GLS15, §1.2] and [BGG+18, §2.1]. They also imposed
the modulus q to be a prime ([BGG+18, Appendix B]) in order for the multiplied noise to be uniformly
distributed modulo q.

Although this maintream approach is compatible with Share & Shrink, we now propose an alternative
optional approach for threshold decryption. It enables simultaneously (i) a N !3× smaller total smudging
noise, (ii) and a modulus q which is possibly a power of a small prime, e.g., 2e, thereby allowing efficient
implementations [CH18; GIKV23]. It is obtained by the novel combination of two existing ingredients. First,
players pre-generate common secret-shared smudging noises, one for every subsequent opening to be done.
To open c, players perform all-at-once the opening of the evaluation of the linear form of (raw) decryption,
added with one secret-shared smudging noise. This first ingredient was introduced by [GLS15], but was never
later used to our knowledge. Second, in order to enable q of small size 2e, we use Shamir sharing over Z/2eZ,
i.e., embed polynomials into Galois rings extensions [Feh98; ACD+19]. The shares size overhead of the latter
is only of log(N). Notice that this last ingredient, alone, would not have been applicable. Indeed, without the
first ingredient, i.e., with the mainstream approach, then it would have been required that q has no factor
in common with N !.

Related approaches. Another technique was proposed in [BGG+18, §8.4] to remove the linear depen-
dency in N of sizes of ciphertexts. Roughly, players pre-generate a common threshold FHE ciphertext of
the shared decryption key. It is roughly contained in what they denote as utpp. Then, to do distributed
decryption of a ciphertext c, players homomorphically evaluate the decryption circuit of c over utpp, then
threshold-decrypt the output. On the one hand, we observe that Share & Shrink would enable to do the
generation of utpp with no further broadcast. On the other hand, their method requires an extra-layer of
homomorphic evaluation. Another way around both the linear dependency in N and the requirement for a
prime modulus, is proposed in [BGG+18, §5.2]. However, it comes at the cost of replacing Shamir sharing
by a {0, 1}−LSSSD secret sharing3 , of which the shares have large size Ω(N4.3) [BS23, Table 1]. It was
recently announced [CCK23] that a special purpose secret-sharing can reduce this size to Ω(N2+o(1)). By
comparison, the threshold decryption which we propose as an optional alternative, has amortized constant
overhead. Indeed, the communication complexity of an `-sized broadcast, when amortized over `, is O(N`)
([NRS+20]). Then, the cost of the N to N broadcasts can be amortized over the generation of N−t smudging
noises in parallel, using well-known linear randomnss extraction techniques [BH08]. Finally, the somewhat
follow-up work [DDE+23, Fig. 8] introduces a very nice optimization of the smudging lemma. They propose
a threshold decryption using Canetti’s “online error-correction” ([Can95, p. 4.4.4]). As a result, they tolerate
up to t < n/4 corruptions under asynchrony. We observe that they could be upgraded into robustness under
asynchrony and honest majority, which we have. Following their [DDE+23, Fig. 14], this would have been
at the cost of players proving in ZK their correct evaluations of AES.

Finally, some works [CSS+22; BS23] address an orthogonal size dependency. It is that the smudging
noise, hence, the modulus, should be exponentially larger than the decryption noise of the ciphertext of
the output. Denoting BC an upper-bound on the latter noise, they propose the smudging noise to be only
polynomial in BC. However, as they stress, they cannot anymore achieve that simulated decryption shares
would be indistinguishable from actual shares 4. Hence, it is not proven if their alternative can be used to do
UC-secure MPC (since all existing proof strategies since [CDN01] require indistinguishable shares). What
they achieve is a weaker property, i.e., IND-CPA in presence of partial decryption queries.

3D stands for “derived” [JRS17], which is stated equivalently as “with strong reconstruction” in [BS23]. As pointed
in [BS23, footnote 6], the specification {0, 1}−LSSS in the merged paper [BGG+18] is slightly too weak.

4In [BS23, Footnote 4], and in [CSS+22]: “On the contrary, it is seemingly hard to achieve the original notion of
simulation security proposed in [MW16; BGG+18; CCK23] without a superpolynomial modulus-to-noise ratio.”

6

1.1.5 Minor contribution: an asynchronous semi-malicious model compilable into malicious
security We consider the well-known paradigm of semi-malicious-to-malicious security [AJL+12, §A.2]
[BHP17; GLS15; BJMS20]. Recall that in these prior works, semi-malicious players were meant to explain
the messages which they sent based on the broadcasts in prior rounds. So, contrary to our asynchronous
setting, they had no freedom to pretend that they did not receive such or such message. In Sections 2.2
and 7.2 we extend this model to the asynchronous phase of our MPC protocol, in a way which can still be
compiled into malicious security.

1.2 More Related Works

Further related works and details can be found in Appendix A.

In the Approach of [GLS15], players initially generate and publish GSW public keys, using the same
common randomness (from a URS). To encrypts its input, a player generates a ciphertext of it under its
own public key, and concatenates to it encryptions of 0 under the N − 1 keys of other players, all with the
same encryption randomness (denoted R). Such vector of ciphertext is denoted as a flexible ciphertext. They
are subsequently transformed into threshold GSW ciphertexts (by summing the coordinates of nonaborting
players). A first limitation is that, since this technique relies on the leftover hash Lemma (see §A.1.1), it is
unknown how to port it over RLWE. So if we are aiming at shorter sizes of ciphertexts (in O(n log q) for
BFV vs O(n2 log(q)3) for [GSW13]), we need completely different techniques, which we do in this work.

The Approach of [BJMS20] is described in Section 7.4. Its drawback is that MFHE ciphertexts
unavoidably undergo a processing expanding their size in |L |, even in |L |2 in their construction that uses
GSW.

DKG-then-Input distribution approach. [KJY+20] carried-out the DKG-then-Input distribution
approach, with a thresholdization of the RLWE-based FHE “CKKS”. However, their protocol for distributed
generation of a relinearization key, in III, fails as soon as there exists one player which participated in the
DKG, but not in this subsequent protocol. The same issue appears in the (N,N)-ThFHE of [Par21]. Finally,
an inherent limitation of the DKG-then-Input distribution approach is that the encryption key ek produced
by a DKG is not published explicitly: it is the result of a local computation made by each player, which
furthermore involves checking NIZKs of correctness of broadcasts in the DKG. So to allow external input
owners would require another intermediary step after the DKG, in which players would notify ek to the
external input owners.

Other approaches. [ACGJ18, §6.1] achieve MPC with GOD and delayed function property in 3 rounds.
Contrary to TFHE-based approaches, the per-player communication cost depends on |C| the size of the circuit
evaluated, since it is in O(Nτ |C|+Nτ+1d), where τ > 2 and d is the depth of C. Provision of external inputs
is prevented by the fact that messages contain hardcoded information combining both material specific to
the player P sending them, and its secret input. We discuss further related works using Garbled circuits in
§A.2, and how they benefit from being combined with TFHE, e.g., in use-cases of deep neural networks. The
protocols [DHL21; GPS19] proceed by intervals of fixed duration, denoted rounds, so are not responsive.
When cast under a malicious dishonest minority: N = 2t+ 1, then the latter is not secure under asynchrony
(it is however more network-tolerant when the malicious corruptions tolerance is lowered). The protocols
[DHL21; LLM+20] do not tolerate more than ta < N/3 corruptions under asynchrony.

2 Model

More details and comments can be found in §B.

General notations. All logarithms are in base two, excepted in §C.2. We denote x $←− D the sampling
of x according to distribution D . Cardinality of a set X is denoted as |X|. For a finite set E, we denote
U(E) the uniform distribution on E. The set of positive integers [1, . . . , N] is denoted [N]. We denote by λ
the security parameter throughout the paper. {0, 1}∗ denotes bitstrings of arbitrary lengths.

7

2.1 Players, Input Owners and Corruptions. We consider N = 2t+1 players P = (Pi)i∈[N], which are
probabilistic polynomial-time (PPT) machines, of public identities. We also consider PPT machines denoted
input owners (Q`)`∈L , which are logically disjunct from players. We consider the Universal Composability
(UC) model [Can01] with static corruptions, recalled in §B.7. We consider a PPT machine, denoted as the
Environment E . It fully controls an entity denoted the “dummy adversary” A. At the beginning of the
execution, A may corrupt up to t players of its choice, along with an arbitrary number of owners. They
behave as arbitrarily instructed by A. Our model needs not counting in the corruption budget t the honest
players whose hardware is hosting a corrupt owner. Without loss of generality we assume that A corrupts
exactly t players, of which we denote the indices by I ⊂ [N]. The remaining ones are called honest and
indexed by H = [N] \ I . A notifies E of every message received by corrupt players and from (simulated)
functionalities. The adversary A can rush, in the sense that all messenging functionalities (BC, bPKI, FAUTH)
will let A learn the messages sent by honest players before letting A choose those sent by corrupt players.

2.2 Extending the Semi-Malicious Model to Asynchrony We broadly define a semi-maliciously
corrupt player, as one which, if it sends a message, then must be able to exhibit a view of the execution
explaining this message. Precisely, it must be able to exhibit a consistent witness tape containing: values of
coins explaining its random choices, the set of all broadcasted values so far (possibly from other senders) and,
for each previous asynchronous step, a set of t+1 received messages. The latter requirement is new and specific
to our asynchronous context. Recall that in [AJL+12, §A.2], semi-malicious players simply had to explain
their behavior based on previous broadcasted messages. By contrast, in our model, nothing prevents them
from arbitrarily picking the sets of t+ 1 messages. The observation which we make is that this new choosing
power is useless, since our MPC protocol is made only of threshold openings of linear maps. Precisely, the
choice of the t+1 messages does not modify the reconstructed value, from which semi-malicious players must
build their next message. Then, we compile our results into malicious security, roughly, by having players
append NIZKs to all their messages. Further subtleties are discussed in Appendix B.9 and section 7.2.

2.3 Formalizing Guaranteed Output Delivery (GOD) in UC. Informally, our MPC protocols guar-
antee output delivery (GOD) in executions where all messages sent by honest players are eventually deliv-
ered. To formalize GOD, we use the following mainstream UC formalism called public delayed output, from
[Can01]. It is still used for its simplicity, e.g., [AAPP22; CP23]. We refer to appendix B.5 for more complex
approaches. We say that an ideal functionality F sends a public delayed output v to R, if it, first, makes a
request to A, which we denote ReqDeliv, for permission to output v to R. The adjective “public” denotes
that the value v is given to the adversary in the request. Since all our functionalities have public output, we
leave it implicit in what follows. When A allows, then F outputs v to R. Also, the broadcast functionality BC
(and also bPKI) waits for A to provide the input values of corrupt senders, which we formalize as ReqInput.
Hence, the adversary can artificially block the MPC protocol by not giving inputs to BC, and/or, by not
allowing the delivery of some messages (by BC or asynchronous P2P channels FAUTH). Of course in actual
synchronous implementations of BC, players always obtain an output, e.g., ⊥, even if the sender is corrupt.

Briefly, we say that a MPC protocol has GOD if, in every execution in which the adversary provides the
inputs required by BC, and eventually allows delivery of their ouptput by BC and FAUTH, then all honest
players obtain an output. We provide more formalism in Appendix B.5. There, we argue why our definition
of GOD coincides with the classical definition of GOD, as soon as BC and FAUTH are implemented with
protocols or ressources which eventually deliver messages.

The session identifier of the MPC protocol, sid, is left implicit in all calls to functionalities. Some calls to
functionalities are parametrized by sub-session identifiers ssid. In FLSSS and BC, ssids are encoded by labels
of variables.

2.4 BC Broadcast with eventual termination, also known as Byzantine Agreement. It is formalized
in Fig. 1 (adapted from [GO14]). It is parametrized by a sender S , which in this work will be in P tL ,
and by a set of receivers, which in this work will be P (except for bPKI, for which it will be P tL).

8

BCS,R

Upon receiving
{

(input, ssid, v ∈ {0, 1}∗) from S if S honest
}

OR
{

(ssid, v ∈ {0, 1}∗ t{⊥}
)

from A if S
corrupt

}
then: if ssid is not stored, store it and delay-output (ssid, v) to every R ∈ R.

Fig. 1: Broadcast for sender S and receivers R.

2.5 “Bulletin Board PKI”: bPKI. We consider the ideal functionality denoted as bPKI. It is simply an
instance of BC accessible by players before the protocol starts, and with set of receivers equal to P tL . We
refer to Appendix B.2 for a detailed survey of related notions in the literature.

2.6 (Asynchronous) Authenticated Message Transmitting FAUTH as defined in [Can01], is formal-
ized in Fig. 7 of §B. It is parametrized by a sender S and receiver R. On input v from S , it provides R with
delayed output v.

2.7 Global Public Uniform Random String (URS) GURS. It samples uniformly at random a se-
quence of bits of pre-defined length κ, denoted URS, then outputs it to all players. It is further formalized
in Figure 8 of §B, along with discussions on implementation. The following discussion is optional, as the
reader may simply consider GURS in the plain UC model. We strictly upgrade the security of our model in
that we allow the string produced by GURS to be directly observed by the Environment. In particular, our
simulator will not have the choice but to use the URS provided by GURS when simulating the contributions
of honest players to the keys (bi and rlki). Furthermore, it will be clear from our UC proof in §7.1, i.e.,
Hybrid2, based on Corollary 14, that the same URS can possibly re-used in multiple concurrent executions.
Which, by the “EUC⇒GUC” in [CDPW07], implies that GURS can be treated as a global resource.

2.8 Ideal Functionality of MPC FC. We refer to appendix B.7 for reminders on the UC model. The
ideal functionality of MPC that we aim to UC implement, is formalized as FC in Fig. 2. It returns to players
the evaluation of a public arithmetic circuit C over their inputs. For simplicity: C has |L | input gates, one
single output gate, FC expects exactly one single input from each input owner, and delivers the output to
all players and only them. For simplicity, C is hardcoded in FC. Inputs of owners which come as ⊥ are
arbitrarily set to 0. But our protocol ΠFLSSS actually allows players to adaptively choose C based on the list
of non-⊥ inputs received: see §B.6. This is actually what will do FLSSS, for the case of linear combinations.

FC

Input Upon receiving
{

(input,m` ∈ Rk) from any ` ∈ L
}

OR
{

for a corrupt `, (input, `,m` ∈ Rk∪{⊥})
from A

}
, if no value is stored for `, then: (i) send to each player the delayed output (input, `,m`);

(ii) if m` = ⊥ then set m` := 0 ∈ Rk; (iii) store (input, `,m`).

Circuit evaluation Wait until for all ` ∈ L , there is some (input, `,m` ∈ Rk) which is stored. Compute
y := C((m`)`∈L). Send to each player the delayed output m.

Fig. 2: Functionality of secure circuit evaluation. Each input m` is identified by a public label m`.

3 Cryptographic Ingredients

3.1 Toy model of linear homomorphic encryption scheme

We observe that in a number of encryption schemes [FV12; CL15; CKKS17] (and more specifically in most
FHE schemes), key generation, encryption and decryption are essentially linear maps. In a general sense,
a linear map between abelian groups f : (E,+) → (F, ∗) is such that f(e1 + e2) = f(e1) ∗ f(e2), with
some further compatibility to multiplication by scalar constants (either polynomials, or integers, possibly
modulo some prime p or prime power pe, depending on the cases). Specifically, the key generation is a linear

9

function in a secret key sk ad some randomness, the encryption is a linear function in a message and some
randomnesses, while the decryption is, roughly, linear in sk. The following Definition 4 provides a wrapper
for all such schemes, formalized using generic linear maps (Λpp

EKeyGen, Λ
c
Dec(sk) and Λc

Dec).

Definition 4 (Linear Homomorphic Encryption (LHE)). A linear homomorphic encryption scheme
(LHE) consists in a message space M ; spaces of secret and public keys X , E k; randomness spaces BKey

and
−−−→
BEnc (for key generation, and encryption) and a cipherspace C ; along with the following probabilistic

polynomial-time algorithms:

• Setup(1λ): On input the security parameter λ, the setup algorithm outputs a set of public parameters
pp. Some schemes furthermore assume a uniform random string (URS), noted a, as part of the public
parameters.

• KeyGen(pp): On input some public parameters pp, the key generation algorithm samples a secret key
sk $←−X , a key randomness ρKey

$←− BKey and outputs an encryption (public) key ek← Λpp
EKeyGen(sk, ρkey) ∈

E k, where Λpp
EKeyGen is a public fixed linear map with coefficients determined by the public parameters pp.

• Enc(pp, ek ∈ E k, m ∈ M): On input public parameters pp, a public key ek and a plaintext m, the

encryption algorithm samples a vector of randomnesses ρEnc
$←−
−−−→
BEnc and outputs a ciphertext c ←

Λpp,ek
Enc (m, ρEnc) ∈ C , where Λpp,ek

Enc is a public fixed linear map.

• Dec(sk ∈ X , c ∈ C): On input a ciphertext c and a secret key sk, the decryption algorithm computes
µ ← Λc

Dec(sk) and either outputs a plaintext m = ΩDec(µ) or the symbol ⊥, where ΩDec denotes a
non-linear decoding function.

• IND-CPA, as reminded in Appendix B.10;

• and bounds on the “error noise” obtained by raw decryption of the ciphertexts after they underwent
circuit evaluation, as sketched in Section 5.2 and analyzed in Appendix D.7.

3.1.1 CL The LHE of Castagnos-Laguillaumie (CL) has plaintexts in Z/pZ but ciphertexts in a group of
hidden order, hence the operations are seen as Z-linear (the law ∗ in the target group being multiplication).
In [CCL+20, §3.2] it is described how to set-up the parameters for a public common prime p. A DKG
for CL is provided in [BDO23, Fig.4], including a suitable secret sharing over Z. The DKG can be made
non-interactive in one round of BC, using PVSS (Section 3.2).

3.1.2 BFV [FV12] We consider a positive integer n, denoted as lattice dimension; a monic polynomial
f of degree n; k < q positive integers denoted plaintext and ciphertext moduli; and R := Z[X]/f(X). They
will be further specified in Appendix D.1. We denote Rk = R/(k.R) and Rq = R/(q.R) the residue rings of
R modulo k and q. Let Ψq, BEnc,q and Xq be distributions over Rq. We denote d.e, b.c, b.e the rounding to
the next, previous, and nearest integer respectively, and [.]k the reduction of an integer modulo k into Rk.
When applied to polynomials or vectors, these operations are performed coefficient-wise. Let ∆ = bq/kc be
the integer division of q by k. We now describe BFV seen as a mere LHE scheme, following Definition 4.
Departing from BFV, we specify that the key generation algorithm takes a fixed public uniform random
string (URS) denoted a as input, while a is sampled locally in BFV. The reason is that, for our distributed
key generation (DKG) to operate, some form of additivity will be required between the keys. Intuitively, this
specification of a as a URS is harmless, since t + 1 = N − t honest public keys (bi) generated with this
same a are t + 1 instances of RLWE with same public a, hence, are indistinguishable from t + 1 uniform
randomnesses. This is exactly what is done in the UC proof of MPC (in Section 7.1 Hybrid2).

• BFV.KeyGen(pp = (a ∈ Rq)): Sample e(pk) $←− Ψq and sk $←−Xq, and define the linear form ΛaEKeyGen :

(sk, e(pk))→ (−a.sk + e(pk), a).

Output ek← ΛaEKeyGen(sk, e(pk)) = (−a sk + e(pk), a) = (b, a) and sk.

• BFV.Enc(ek = (b, a), m ∈ Rk): Sample the encryption randomnesses e
(Enc)
0

$←− BEnc,q, e
(Enc)
1

$←− Ψq, and

u $←−Xq. Define the linear map Λb,aEnc : (∆m,u, e
(Enc)
0 , e

(Enc)
1)→

(
∆m+ ub+ e

(Enc)
0 , u a+ e

(Enc)
1

)
.

10

Output c← Λb,aEnc
(
∆m,u, e

(Enc)
0 , e

(Enc)
1

)
∈ R2

q .

[In the formalism of Definition 4, the space of encryption randomness is thus
−−−→
BEnc = BEnc,q × Ψq ×Xq.]

• BFV.Dec(sk, c): Given a ciphertext c = (c[0], c[1]) ∈ R2
q , define the linear form Λc

Dec : sk → c[0] + c[1].sk
and compute µ← Λc

Dec(sk).

Output m← [
⌊
k
q (µ)

⌉
]k := ΩDec(µ) ∈ Rk.

3.1.3 GSW. From a remote perspective, the original GSW [GSW13] public key fully homomorphic en-
cryption scheme (FHE) falls short from our linearity requirements. Indeed the encryptor needs to secretly
compute a non-linear function, which takes as input the public key and some encryption randomness (namely:
BitDecomp(A.R)). Then, [AP14] introduced a variation of GSW which is compatible with our syntax, since
encryption is now a linear map. Furthermore, they observe that their variation is lossless, i.e., a ciphertext
under their variation can be transformed into a GSW ciphertext without knowing the secret decryption
key. This GSW-AP variation is explicitely spelled-out in [MW16] ([AP14] described only a symmetric-key
simplification) and used in [BGG+18, Appendix B]. Then, [BHP17] and [BJMS20] used a dual version of
the GSW-AP variation, which we call “GSW*”. It differs from GSW only from the choices of dimensions
and distributions. Below we recall the GSW-AP, where E is a distribution over Z, m an integer, G ∈ Zn×mq

a fixed efficiently computable matrix and G−1(.) an efficiently computable deterministic “short preimage”
function as defined in [MW16, Lemma 2.1]. As in Section 3.1.2, for additivity reasons we consider that the
public uniform randomness A is fixed and drawn from a common URS.

• GSW.KeyGen(pp = (A ∈ Z(n−1)m
q)): Sample e(pk) $←− Em and s $←− Zn−1q and set sk = (−s, 1) ∈ Znq ,

and define the linear form ΛA
EKeyGen : (sk, e(pk)) → (s.A + e(pk),A). Output ek ← ΛA

EKeyGen(s, e
(pk)) =

(sk.A + e(pk),A) = (b,A).

• GSW.Enc(ek = (b,A), m ∈ Z): Sample R $←− {0, 1}m×m, and define the linear form ΛA,b
Enc : (R,m) →([A

b

]
R +mG

)
, where G ∈ Zn×mq . Output c← ΛA,b

Enc

(
R,m

)
∈ Zn×mq .

• GSW.Dec(sk, c): Given a ciphertext c ∈ Zn×mq , define a vector w = [0, . . . , 0, dq/2c] ∈ Znq , and Λc
Dec :

(sk)→ sk.cG−1(wT) and compute µ← Λc
Dec(sk). Output m :=

∣∣∣⌊ µ
q/2

⌉∣∣∣ = ΩDec(µ).

3.2 Toy functionality of LSSS, instantiation in 1BC (share) + 1 async P2P (open)

We now specify, in Fig. 3, a generic ideal functionality for linear secret sharing, denoted FLSSS. It parametrized
by a list of entities, denoted S the Senders, and for each of them by a predetermined list XS of input labels
(xS,α)α∈XS . Here, all senders can be corrupt. Upon receiving all these inputs from Senders, FLSSS accepts
subsequent requests from players to open to them the evaluations of any linear maps over these inputs.

We now outline its implementation, which is one of the main ingredients of Share & Shrink. Its main
features are that, after the unique round of broadcast, players have a common view on the set of shared secrets.
Subsequently, they can perform the threshold opening of the evaluation of any linear map over the shared
secrets, using only one step of all-to-all asynchronous peer-to-peer messages. To send a secret s to FLSSS, i.e.,
to share it, the first step is to generate a (N,t)-linear secret sharing (LSSS) of s. Let [s(i) : i ∈ [N]] the vector
of shares obtained. Encrypt each share s(i) under Pi’s public key. The N -sized vector of ciphertexts obtained
is called a Public Secret Sharing (PSS). Notice that the usual terminology is PVSS, where V stands for
verifiable, because of the additional inclusion of NIZKs proving that the vector is well-formed. These NIZKs
will be added when compiling from semi-malicious to malicious security. State of the art implementations of
PVSS can be found in [GV22; KMM+23]. The former includes NIZKs of smallness of the secret, which will
be needed, e.g., for sharing noises.

To open a linear map Λ over a set of shared secrets (sj)j : every player i decrypts its encrypted shares

s
(i)
j , then evaluates Λ on them. By linearity of the LSSS, the result is a partial opening share z(i) of Λ((sj)j).

11

FLSSS

Participants: A set S of senders.
Inputs (For each S ∈ S): xS,α identified by a unique ’label’ xS,α.

Setup For each corrupt P ∈ P: send (ReqInput, P) to A. Upon receiving {(Setup) from any P ∈ P}
OR {if P corrupt, upon receiving (activate,Setup, P) from A }, then: if no (Setup, P) is stored yet,
then store it and provide every player with delayed output (Setup, P).
Wait until (Setup, P) is stored ∀P ∈P, then send ready to every S .

Input For each corrupt S ∈ S and α ∈ XS : send (ReqInput, xS,α) to A.
Upon receiving {(input, xS,α, xS,α ∈ Rq), from any S ∈ S } OR

{
for some corrupt S :

(activate, xS,α, xS,α ∈ Rq ∪ ⊥) from A }, then: (i) delay-output to every P ∈ P: (stored, xS,α)
appended with “xS,α = ⊥” when the case; (ii) if xS,α = ⊥ then set it to 0; (iii) store (input,S , xS,α).

LCOpen Upon receiving input (LCOpen, ssid = Λ) from t+ 1 players, such that all xS,α appearing with
nonzero coefficient in Λ are stored, then delay output (ssid = Λ, y := Λ((xS,α)S,α) to every player.

Fig. 3: Sharing with Delayed Linear Combination functionality. sid omitted

Then it sends z(i) to all, via asynchronous P2P channels. Finally, from any t+ 1 partial opening shares, the
desired linear combination Λ((sj)j) is efficiently reconstructible.

Let us first examplify when the ciphertext space is a polynomial ring Rq, of which the modulus q is
chosen as a prime (larger than N + 1). There, the LSSS can simply be implemented as Shamir-sharing
separately every coordinate of the secret polynomial s (see also [BS23, §2.2]). Then, to multiply a shared
secret by a fixed polynomial a, simply apply the linear map (w.r.t. q) of polynomial multiplication by a to
the vector of the coordinates of shares. So we see that no extra structure is needed in the sharing. Actually,
this construction is equivalent to the one described in [KJY+20, IV. A] as “extended Shamir sharing”. Now,
we introduce the full generalization to any q, including the useful case where q is a power q = pe of a prime,
itself possibly small p 6 N ([CH18; GIKV23]). For this, two options are left. Either a {0, 1}-LSSSD ([JRS17],
mistakenly weakened in [BGG+18], as noticed in [BS23]) with Ω(N4.3)-sized shares (recently improved in
[CCK23]). The second option is a secret sharing over Galois extensions of polynomial rings which we introduce
in Appendices C.2 and C.4 (which is a mere extention of [Feh98; ACD+19]). The overhead in the size of
shares is only of dlogpNe. In this appendix we also prove, in Proposition 11, that the construction does
UC-implement FLSSS. The construction is much simpler than it sounds. For instance, it boils down to an
elementary variation of Shamir in the case where the modulus q = p1 × · · · × pα has prime factors which are
all larger than N + 1. In this case, simply apply Shamir sharing over a CRT decomposition of q.

4 Share & Shrink: DKG & Encrypted Input Distribution in 1 BC + 1 Async.
P2P

We follow the model and the formalism introduced in Section 3 and assume a linear homomorphic encryption
scheme as in Definition 4, represented by a tuple of PPT algorithms LHE = (Setup,KeyGen,Enc,Dec). Recall

in particular that they are built from public fixed linear forms Λpp
EKeyGen, Λ

pp,ek
Enc , Λ

c
Dec (as well as a non-linear

decoding function ΩDec).
We now describe a protocol, called Share & Shrink and formalized in Fig. 4, which performs a “DKG

& Encrypted Input distribution” in 1 BC + asynch P2P. Precisely, it allows players to obtain all-at-once:
(i) a common threshold encryption key ek, (ii) a secret-shared secret key sk (formally: in FLSSS), and (iii) a
common view on LHE ciphertexts of the inputs encrypted under ek. The challenge is that the input owners
have access to the broadcast, to distribute their inputs, only before ek is known! Events are gathered by the

strict ordering relation, e.g., steps denoted 1 are performed by honest players after they did the ones denoted 0 ,

but on the other hand, all the steps 1 can be done concurrently by all entities, in arbitrary order.

0 Setup: Players receive some public parameters pp (which optionally include a uniform random string).
In parallel, they Setup FLSSS (concretely: generate and publish encryption keys).

12

1 Broadcast: Input owners send (Share) their inputs & encryption randomnesses to FLSSS (concretely:

broadcast PSS of them).
In parallel , based on public parameters pp, players generate additive contributions ski to the threshold
LHE private key, which they input to FLSSS (concretely: broadcast PSS of them); and eki to the public key,
which they broadcast (along with possibly extra material, e.g., Section 6.1.1 for BFV).
Local computation: Then each player locally computes the common threshold key ek, out of the con-
tributions of the subset S of non-aborting players. Precisely, S ⊂ [N] are those which broadcasted correct
material (including the PSS, as captured by FLSSS). By linearity of the LHE scheme, this key is merely the
sum of the contributions from S:

(1) (sk = Σi∈Sski, ek = Σi∈SΛ
pp
EKeyGen(ski, ρ

key
i))5

2 Asynchronous step (Shrinking of the inputs): Then players jointly compute threshold encryptions
under ek of the shared inputs m`. Concretely, thanks to linearity of the LHE scheme, this can be done as
simple threshold openings of the images of the m` (and of the shared encryption randomnesses) by the
linear map Λek

Enc. So this is expedited in one step of asynchronous P2P messages, as recalled in Section 3.2.

The outlined protocol is fundamentally different from related threshold-LHE works [CDKS19; KJY+20;
MTBH21] which roughly follow the pattern DKG-then-Input-distribution, since using our method the Input
Distribution is done without knowing a common key, which allows us i) to reduce the number of broadcast
rounds to just one while guaranteeing output delivery, and ii) to keep short ciphertexts compared to [GLS15;
BJMS20].

Share & Shrink protocol

Participants: N players Pi, i = 0, . . . , N , and |L | input owners;
Inputs (for each input owner ` ∈ L): plaintext m` with label m`. // we assume only one plaintext per

input owner.

• 0 Setup. Each player Pi:
• Sends (Setup) to FLSSS

• Obtains some public parameters pp← LHE.Setup.

• 1 Broadcast.
• Input and Randomness Distribution (part I): Each input owner `:
∗ Samples ρ`

$←− BEnc and sends (input, {m`, ρ`}, {m`, ρ`}) to FLSSS.

• DKG (part I): Each player Pi:
∗ Computes (ski, eki) ← LHE.KeyGen(pp). Sends (input, ski, ski) to FLSSS and broadcasts eki,

denoted “additive contribution to the encryption key”.
• Local computation.
• DKG (part II): let S be the subset of players which broadcast a eki and for which FLSSS has

acknowledged the receipt of an additive contribution to the secret key. Each player Pi:
∗ Computes ek = Σi∈Seki and define the (secret shared) secret key as sk = Σi∈Sski and its label

as sk //sk is accessible only through FLSSS

• 2 Asynchronous step
• Input and Randomness Distribution (part II): let Sc be the set of input owners for which FLSSS has

acknowledged the receipt for all variables of `’s “input and randomness distribution”. Each player
Pi:
∗ For each ` ∈ Sc, given labels (m`, ρ`) and a key ek, sends

(
LCOpen, Λek

Enc(m`, ρ`)
)

to FLSSS, and
obtains a ciphertext c`.

Fig. 4: Share & Shrink Protocol5Note that in the case of BFV presented in section 3.1.2, the public key has another component with is the public
parameter a, which is left outside of the sum. The same caveat applies to GSW (Section 3.1.3).

13

Note that the security properties will come as a byproduct of the proof of MPC in section 7.1, which is a
strictly harder setting, due to adversarial influence on the public key (Lemma 23), re-use of random public
parameters (Corollary 14), and public openings of smudged raw decryptions (§5.2 and Lem. 21).

5 MPC Protocol ΠFLSSS

When instantiating Share & Shrink from an FHE scheme, players can locally evaluate the ciphertexts of the
inputs, into a ciphertext of the output. We now aim at allowing alternative methods to obtain such an output.
To this end, in Section 5.1 we introduce the following generic ingredient. We specify an evaluation protocol,
possibly interactive over asynchronous channels, of a circuit over threshold-encrypted ciphertexts. We require
it to be simulatable. We then review a number of known such evaluation protocols. Then in section 5.2, we
detail a method for distributed decryption with improved complexity. In section 5.3 we provide our generic
MPC protocol ΠFLSSS in the FLSSS-hybrid model.

5.1 Asynchronous Evaluation of a Circuit

Consider a generic linear homomorphic encryption scheme LHE (Def 4), N players with inputs a common
set of LHE ciphertexts {c`}`∈L of plaintexts {m`}`∈L under a common key ek. We assume that there
exists an asynchronous evaluation protocol Eval for (any) arithmetic circuit C : M |L | → M with |L |
input gates, that outputs a ciphertext of the evaluation of the circuit. Formally, we require that ∀ pp ←
LHE.Setup(1λ, 1d), there exists a distributed key generation in one broadcast that returns a public encryption
key ek and, privately to the players, shares ski of the corresponding secret decryption key sk; ∀ (m`)`∈L ,
c` ← LHE.Enc(pp, ek,m`) ; then LHE.Dec(sk,Eval(C, c1, . . . , c|L |), ek) = C(m1, . . . ,m|L |). We furthermore
require that Eval is simulatable, as examplified below. In practice, there are different ways to implement
Eval, among others:

• FHE. When using a fully homomorphic scheme as a particular kind of LHE (as seen for BFV or GSW in
Section 3.1), there exist a built-in non-interactive function Eval that comes as a property of the scheme. In
particular it is simulatable from the knowledge of the public encryption key (& evaluation/relinearization
key: see Section 6.1 for these further issues in MPC).

• [CLO+13]. Choudhury et al. proposed, through a clever use of pre-processed masks, a protocol for
evaluating a circuit based on an efficient interactive multi-party bootstrapping protocol for a somewhat
homomorphic encryption (SHE) scheme. Players open threshold decryptions of masked intermediary
evaluations, the simulator simply simulates the opening of a random value.

• [BHN10]. From a common view of LHE encrypted inputs under a common key, and from decryption key
shares assigned to each player, it is possible to apply that asynchronous CDN-like ([CDN01]) protocol of
[BHN10] to evaluate a circuit. Players open threshold decryptions of masked intermediary results. Since
some masks can be deduced from each other by adversarially-chosen (but extractable) offsets, some extra
care is paid by their simulator.

5.2 Distributed decryption, Alternative enabling N times shorter ciphertexts

LHE decryption can be seen as a two steps process: (1) interactive opening of a linear map Λc
Dec applied to

the (secret shared) decryption key sk, with public coefficients equal to the ciphertext c, (2) followed by local
computation of a non-linear decoding function ΩDec. However a direct adaptation from this decryption to the
threshold setting is not trivial, when ΩDec is nontrivial, as the case in fully homomorphic encryption (FHE).
Indeed, the raw output µraw of (1) actually leaks information about the secret (threshold) decryption key
(see also, e.g., [BGG+18, §2.1]), which ruins the security of the LHE. To circumvent this issue, Asharov et
al. [AJL+12] introduced the technique of adding additional noise to the raw output of (1) before it can be
opened. This noise esm is, roughly, sampled uniformly in some large enough interval [−Bsm, Bsm]. Concretely,
we add as a combined requirement to Def. 4 and Eval, that the raw output of (1) µraw = Λc

Dec(sk) is

14

statistically close enough to the (scaled) plaintext circuit evaluation ∆.y (e.g., in GSW we have ∆ = bq/2c).
Then, there should exist some level of noise Bsm, so that adding a uniform noise esm ∈ [−Bsm, Bsm]
to both µ and y, makes them indistinguishable, while leaving correct the result: y = ΩDec(µraw + esm).
As stated in Lemma 21, the indistinguishability requirement imposes a level of noise high enough so that
BC/Bsm 6 negl(λ) (Equation (12)), where BC is a fixed upper-bound on the decryption noise of a ciphertext
after evaluation of circuit C (given by Equation (11), in the case of BFV), and negl(λ) a fixed negligible
function in the security parameter λ. On the other hand, the correctness requirement imposes that BC added
with this noise stays small (in GSW: smaller than q/2, where q is the ciphertext modulus; in BFV: smaller
than ∆/2, as stated in Equation (10)). In Fig. 5, we give two methods for distributively opening µraw added
with such noise.

Distributed Decryption protocol

Participants: N players Pi, i = 1, . . . , N ;
Inputs: a public ciphertext c; shared decryption key sk in FLSSS with label sk // concretely, in the form

of a PSS of sk.

Outputs: decryption LHE.Dec(sk, c)
Additional input for 2nd method: secret shared smudging noise esm ∈ [−N.Bsm, N.Bsm] in FLSSS

with label esm (usable only for one decryption).
(1st method - mainstream): Each player Pi, given a ciphertext c and a secret share ski of the secret
key:

• Generates its opening share of the raw decryption (1), i.e. µraw,i = Λc
Dec(ski). Samples a noise

esm,i
$←− [−Bsm, Bsm]. Then, multicasts over P2P channels its “smudged opening share” µi = µraw,i+

N !2esm,i. // The N !2 factor is not needed if {0, 1}-LSSSD is used [JRS17; BS23; CCK23];

• Each player Pi waits until it receives smudged opening shares from a subset U ⊂ [N] of t + 1
players: (µj→i)j∈U . Denote (λUj)j∈U the Lagrange reconstruction coefficients corresponding to the

subset U ⊂ [N]. It sets µ =
∑
j∈U λ

U
j µi→j the smudged raw decryption. Then it outputs ΩDec(µ).

(2nd method, with smaller noise): Each player Pi:

• Given labels (sk, esm), and a ciphertext c, sends
(
LCOpen, Λc

Dec+sm(sk, esm)
)

a to FLSSS, obtains µ̃,
and outputs m = ΩDec(µ).

aWhere Λc
Dec+sm is the linear form (sk, esm)→ Λc

Dec(sk) + esm

Fig. 5: Distributed Decryption Protocol

The first mainstream method Follows the approach of [AJL+12] and has been used in most other works
[AJL+12; BGG+18; KJY+20]. Each player Pi locally samples a so-called smudging noise esm,i

$←− [−Bsm, Bsm]
uniformly in some interval to be specified, multiplies it by N !2 ([BGG+18, Construction 5.11]), then adds
it to its decryption share of c, which it multicasts. The reason for multiplying by N !2 is to clear-out the
denominators of the Lagrange coefficients applied at reconstruction (see [ABV+12] [BGG+18, §2.1]). Fol-
lowing the previous notation and explanations, the bound Bsm is chosen in [BGG+18, §5.3.1] such that:
BC/Bsm = negl(λ) (for indistinguishability), and such that BC + N.N !3.Bsm < q/4 (for correctness of La-
grange reconstruction-then-rounding, in their instantiation with GSW). Notice that under our instantiation
with BFV, the RHS would then be ∆/2 instead of q/4.

The second method circumvents this issue. It is the following forgotten approach, which we credit to [GLS15].
Players do not anymore blurr their opening share of µraw, which we recall is the linear combination (1).
Instead, they now open all at once the sum of µraw and a common shared noise esm, i.e., they open Λc

Dec(sk)+
esm. The distributed generation of the noise is simply by adding secret-shared contributions esm,i, each
sampled in [−Bsm, Bsm]. As a result, the correctness constraint now imposes only BC + N.Bsm < ∆/4
(Equation (10)). Hence, the ciphertext expansion factor ∆ has dependency in N which is only linear (N),
instead of N.N !3 in the previous method. These formulas show up in the proof of MPC in Section 7.1, as

15

further detailed in Lemma 22. Since the noise can be used only for one distributed decryption, players must
precompute as much noises as many circuits to be subsequently evaluated. We will formalize this simple
Distributed Noise Generation protocol, denoted DNG, in the MPC protocol. Concretely, each player Pi
secret-shares a contribution esm,i ← [−Bsm, Bsm] in the form of a PSS in the broadcast step. Then, players
define the common shared smudging noise as the sum over the contributions of the players which did not
abort: esm =

∑
i∈S esm,i.

5.3 Protocol ΠFLSSS in (FLSSS,BC)-hybrid model, with external resource GURS

Consider any linear homomorphic encryption scheme satisfying Def 4, represented by a tuple of PPT algo-
rithms LHE = (Setup,KeyGen,Enc,Dec) formalized by a set of linear forms Λpp

EKeyGen, Λ
ek
Enc, Λ

c
Dec as well as

a non-linear decoding function ΩDec. Then, we show in Fig. 6 how to build a MPC protocol ΠFLSSS from
the Share&Shrink protocol instantiated from LHE as introduced in Section 4, an evaluation algorithm Eval
as discussed in Section 5.1, and a distributed decryption protocol as detailed in Section 5.2. Note that the
number of shared smudging noises to be generated in parallel, for use in the 2nd method of distributed
decryption, is equal to the number of distinct decryptions to be performed, i.e., of circuits to be evaluated.

Note that we push back the problems related to the generation of the evaluation keys in section 6.1, since
they depend on the LHE scheme used. It will be done, along with a concrete instantiation of ΠFLSSS from
BFV, and a summarized proof of security in Section 7.1, fully detailed in Appendix H.3.

Protocol ΠFLSSS

Participants: N players P1, . . . , PN , and |L | input owners;
Inputs (for each input owner ` ∈ L): a plaintext m` with label m`.

• Share & Shrink. Players and Input Owners play the Share&Shrink protocol of Fig. 4, in which each
input owner ` ∈ L has an input m`.
Denote Sc ⊂ L the owners (resp. S ⊂P the players), for which no instance returned ⊥ i.e players which

broadcast a eki and for which FLSSS has acknowledged the receipt of an additive contribution to the secret key,

and input owners for which FLSSS has acknowledged the receipt for all variables of `’s “input and randomness

distribution”.

After Share & Shrink, players have a common view on i) a set of ciphertexts {cj}j∈Sc under a common
key ek, ii) a shared decryption key sk in FLSSS, as well as iii) a shared smudging noise esm in FLSSS for
threshold decryption (if the 2nd method is used for decryption).

• Evaluation. To evaluate a circuit C, each player Pi runs c← Eval(C, {cj}j∈Sc , ek).

• Distributed Decryption. Players play the Distributed Decryption of Fig. 5 with input the ciphertext
c and the shared decryption key sk in FLSSS. They output the plaintext m obtained.

Fig. 6: MPC protocol ΠFLSSS

6 ΠFLSSS from BFV + CDKS∗: the first robust threshold BFV scheme.

Our goal in this section is to propose an instantiation of our MPC protocol ΠFLSSS from BFV. The choice of
this scheme is motivated by the small size of its ciphertexts, which are only of size O(n log q), although we
remind that other schemes (such as GSW) or other evaluation method (as seen in section 5.1) can be chosen.

Unfortunately, this poses some challenges, which we detail in section 6.1. Along the line, we describe a
new variant of BFV (introduced in section 3.1.2) that we call BFV + CDKS∗. This will serve as our baseline
scheme, and we will show how to thresholdize it. Finally, in section 6.2 we detail an instantiation of ΠFLSSS

from BFV that we prove in sections 7.1 and 7.2.

16

6.1 Challenges when implementing ΠFLSSS from BFV

We now highlight the specific challenges posed by BFV to implement ΠFLSSS . Note that we provide a com-
prehensive description of the scheme in Appendix D.

6.1.1 Challenge 1: Robust Relinearization Key Generation Homomorphic multiplication in BFV
involves two steps: the first, denoted “tensoring” produces a degree two ciphertext consisting of three elements
ĉ = (ĉ[0], ĉ[1], ĉ[2]) ∈ R3

q . To reduce the degree back to one, a second step, denoted relinearization, must
be carried out to turn ĉ into a size 2 ciphertext c′ = (c′[0], c′[1]) which can be decrypted as the product of
the plaintexts. The latter requires what is denoted as a relinearization key (rlk) that takes the form of an
encryption of the square of the secret key. In our context of secret-shared key, computing this squaring in
an MPC manner would take 2 consecutive broadcasts, which is done in other works [AJL+12; MTBH21;
KJY+20] but which we want to avoid.

Our solution. Chen et al [CDKS19] introduced a new rlk for BFV which depends linearly on the secret key
and on some noises. Their context, denoted multi -key FHE (MFHE), is a priori different, since each player
Pi generates its own secret key, from which it generates then publishes its own rlki, the global relinearization
key then consisting in the vector of all rlki. Our simple but seemingly new observation is that their method
can be particularized to the single key case, and thus, applied to our setting. In this particularization, their
vector collapses into a single rlk = (d0,d1,d2) ∈ (Rlq)

3 (the choice of the integer l is detailed in [CDKS19]).

Notice that our description of the generation of a standalone rlk ∈ (Rlq)
3 takes as argument common

uniform random strings (a,d1) ∈ (Rlq)
2. In particular, the a of the public key (Section 3.1.2) is the first

coordinate a = a[0]. The modification with respect to [CDKS19] is that they specified, instead, that d1 is
sampled locally by the owner of a public key (b, a) to generate the corresponding relinearization key rlk. Our
reason for this modification is that, in our MPC protocol, players will need to generate rlk distributively,
by providing additive contributions denoted (d0,i,d2,i). Additivity between these would not be possibly if
they had not been generated using the same common d1. In Appendix D.4 we formalize this modifica-
tion to [CDKS19] as a function: CDKS which generates a relinearization key, and which has the desired
additivity. We call BFV + CDKS∗ our new LHE derived from BFV with this new relinearization key genera-

tion function. In order to apply Share&Shrink, at setup 0 , we let players obtain common uniform strings

(a,d1) from GURS, and let 1 each Pi compute and broadcast (d0,i,d2,i) ← CDKS(a,d1, ski). Denoting S

the subset of players of which the broadcasts in 1 were correctly formed, a common relinearization key

rlk := (Σi∈Sd0,i,d1, Σi∈Sd2,i) can later be computed in 2 .
In Corollary 14 we prove that, despite our specification of a common d1, the concatenation of all the

honestly generated contributions (d0,i,d2,i) ← CDKS(a,d1, ski) to the common relinearization key, as well
as the contributions bi to the public key, is indistinguishable from a large uniform random string, under the
same circular security assumption as implicitely made in [CDKS19]. For completeness we recall in Appendix
D.6.2 the relinearization algorithm Relin of [CDKS19, §3.3.2], when particularized into our single-key setting.

6.1.2 Challenge 2: Enabling Bootstrapping The “Bootstrapping” of a single-key BFV ciphertext
is a local computation that homomorphically brings back the size of its decryption noise, roughly to the
one of a fresh ciphertext, in order to evaluate deeper circuit. We show in Appendix E how to add a robust
bootstrapping key generation, by particularizing, as we did for relinearization, the one described in [CDKS19,
§5] in their context of multikey BFV. In brief, we detail in Appendix E a function BkKG for bootstrapping
key generation.

In order to apply Share&Shrink, at setup 0 , we let players obtain a common uniform string h1 from

GURS, and let 1 each Pi compute and broadcast bki(j) ← BkKG(h1, ski, j). Denoting S the subset of

players of which the broadcasts in 1 were correctly formed, each player locally sets the common (j-th
component of) the bootstrapping key as bk(j) := (Σi∈Sh0,i(j),h1).

17

6.2 Protocol ΠFLSSS instantiated from BFV + CDKS∗

We give in Fig. 11 a complete breakdown of protocol ΠFLSSS when instantiated from BFV + CDKS∗. Thanks
to the generic definition provided in Section 4, we can easily instantiate the Share&Shrink protocol from
BFV + CDKS∗ using the public parameters and distributions pp = (Rq, l,Xq, Rk, Ψq,BEnc,q, Bsm,a) and

linear forms Λa
EKeyGen, Λ

b,a
Enc, Λ

c
Dec+sm introduced in section 3.1.2. Parameters (Rq, l,Xq, Ψq) are chosen so

that Assumption 13 is verified. Notice that this assumption implies RLWE (cf Appendix D.3).
More details about the distributions selection and a comprehensive noise analysis are provided in ap-

pendix D.

6.2.1 Communication complexity of ΠFLSSS→ΠLSSS , i.e., when FLSSS is instantiated with ΠLSSS.
Each player initially broadcasts PSSs of its key and noise shares, each of size O(N n log q) bits, as well as
its public and relinearization keys of size O(n log q) bits. Thus overall, O(N2 n log q) bits are broadcast.
In parallel, each input owner initially broadcasts an PSS of size O(N n log q) bits. Ciphertexts obtained by
threshold encryption (the “Shrink” step) are of size 2.n log q and, by construction of the BFV + CDKS∗

scheme, so are the evaluated ciphertexts and the partial decryptions.

7 Proofs of Theorems 1 to 3

7.1 UC Proof of Theorem 3 By Proposition 11, ΠLSSS UC implements FLSSS. Thus, the following
Theorem 5 implies Theorem 3.

Theorem 5. ΠFLSSS implemented from BFV + CDKS∗ UC implements the ideal functionality FC for any
semi-malicious adversary, in the (FLSSS,BC)-hybrid model with external resource GURS.

To prove Theorem 5, we describe in Appendix H.3.1 a simulator S of ΠFLSSS that simulates honest players
following the protocol, and ideal functionalities behaving as specified.

We now convey the main ideas of S by describing it via a sequence of incremental changes, starting from
a real execution. In the last hybrid obtained, the view of E is generated solely by interaction with FC, hence
what we are describing is a simulator. The full details of the hybrids and the proofs of indistinguishability
are in appendix H.3.

We first simulate decryption by modifying the behavior of FLSSS in Output computation. There it,
incorrectly, outputs µS := ∆.y +Σj∈Sesm,j , where y := C((m`)`∈Sc) is the evaluation in clear of the circuit
on the actual inputs. Indistinguishability follows from the “smudging” Lemma 21, as detailed in Lemma 22.

Then, in Hybrid2, the additive contributions (bi, (d0,i,d2,i))i∈H of honest players to the public and relin-
earization keys, are replaced by a sample in U(Rl×3q). Indistinguishability from Hybrid1 follows from Corol-
lary 14.

Finally, in Hybrid3, we replace the actual inputs m` of simulated honest owners by m̃` := 0. Importantly,

the behavior of FLSSS is unchanged, i.e., correct until 3 included, then outputs µS := ∆y + Σj∈Sesm,j ,
where y := C((m`)`∈Sc) is still the evaluation of the circuit on the actual inputs. Thanks to the modifications
so far, the secret keys of the honest players are no longer used in any computation. Furthermore, since honest
players sample their contributions bi to the common public key independently (uniformly at random), we can
assume without loss of generality that corrupt contributions are generated after having seen the honest ones.
We can thus apply Lemma 20 “IND-CPA under Joint Keys”, which adapts the one of [AJL+12, Lemma 3.4]
in the RLWE setting. This enables to conclude that the distributions are indistinguishable. In conclusion,
we arrived at a view produced by a machine which interacts only with E and FC.

7.2 Semi-malicious Security to Malicious Security At a high level, malicious security can be achieved
by applying the compiler of [AJL+12, §E], i.e., by instructing players and owners to append NIZK to their
messages, to prove knowledge of a witness explaining them. But the compiler of [AJL+12] is designed for

broadcast-based protocols, whereas in ours, players in 2 and 3 also act based on previous outputs of

18

FLSSS. This is why we also required semi-malicious players to explain their messages also based on these
outputs, in our adapted model in section 2.2. We can also simplify their compiler by allowing players to
prove their statements with UC NIZKs, recalled in §B.8, since these can be set-up under honest majority
from one initial call to bPKI, thanks to the technique denoted Multi-String CRS [GO14; BJMS20]. On the
face of it, this call pre-pends one more step before the publication of keys on bPKI. However, we can actually
have players publish multi-strings in parallel. Indeed in our semi-malicious model §2.2 we did not impose
any condition when publishing on bPKI. Multi-Strings instead of GURS-based NIZKs have the merits (i) to
relieve Owners from the need to access GURS when constructing their NIZKs, and (ii) to preserve GURS as
a global resource, which would otherwise have needed to be simulated if used to produce NIZKs: see §B.8.

7.3 Proving Theorem 2 for other instantiations. We believe that the previous proof of Theorem 3
conveys all the ideas of a generic proof of Theorem 2, since it is arguably the most complex instantiation. For
instance, the instantiation with GSW is a strict simplification, since no relinearization key is needed. How
to adapt our proof of Theorem 2 to interactive evaluation protocols, follows directly (in black box) from our
simulatability requirement, examplified in Section 5.1.

Let us finally quickly review a minor alternative for a specific part of the proof. For the encryption
scheme of CL, the IND-CPA property under a distributively generated key is not argued as in our lattice-
based context (Lemma 20 “IND-CPA under Joint Keys”). Instead, in [BDO23], they provide a biased-but-
simulatable DKG, which also returns a pair of encryptions: of 1 and of 0. Their simulator of [CDN01] uses
the latter to replace the actual inputs by 0.

7.4 Proof of Theorem 1 The MPC protocol of [BJMS20] proceeds in 3 rounds of broadcast, of which the
first is input-independent. Hence, we replace their round 1 by publication on the PKI. Then, the broadcast
in their round 2 consists in broadcasting one’s input encrypted with multikey FHE (MFHE), along with a
publicly verifiable secret sharing (PVSS) of one’s secret decryption key. The 3rd broadcast is used to send
one’s decryption share of the evaluated MFHE ciphertext of the output (with a suitable NIZK of correct
decryption, as in [BJMS20], when compiled from semi-malicious to malicious security).

The modification to obtain (ii) is simply to allow any external input owner to perform their round 2
broadcast, directed to the N players. In more detail, consider the subset S2 ⊂ L of owners which correctly
shared their input and key (in [BJMS20] S2 is instead a subset of players). From these secret shared keys, it
is described in [BJMS20] how the players still-honest-in-round-3 can emulate MFHE-reconstruction, as if it
would have been performed by members of S2 themselves (their participation as input owners is not needed
anymore).

Finally, to obtain (i), we need to replace the broadcast in their round 3 by one step of asynchronous P2P
messages. The output after round 3 is unchanged: players still obtain the same common threshold decryption.
In case, here is one more low-level explanation why their round 3 can be performed over asynchronous P2P channels.

It is because the computation step performed by a player P at the end of round 3 is: choose any set S of t+ 1 valid

decryption shares received in round-3 messages, then apply the local threshold decryption algorithm on them. So this

step does not depend on whether all round-3 messages from honest players where received by P or not (it could be

that t out-of the t+ 1 valid decryption shares chosen by P , originate from corrupt players)

8 Impossibility of 1-Broadcast-then-Asynchronous MPC

“Secure channels” is the upgrade of FAUTH which does not leak the content of messages to A. The function-
ality of simultaneous broadcast ([CGMA85]), denoted SB, is parametrized by two senders P1 and PN , and
returns to all players a pair (x1, xN) such that, for i ∈ {1, N}, xi is the input of Pi if it is honest.

Theorem 6. Consider a hybrid network in which players are initially given access to one single round
of: synchronous pairwise secure channels and broadcast; then: only access to pairwise secure channels with
guaranteed eventual delivery. Then for any t ≥ 3 and N ≤ 3t − 4 there is no computationally secure SB
protocol.

19

Proof. We assume such a protocol for N = 3t − 4. We construct an adversary A which corrupts PN but
not P1, and still manages so that the second output, xN , will be correlated with the input of the honest P1.
However, in an ideal execution, then there is no link between the adversary and P1 until the moment when
SB reveals (x1, xN). Thus, the influence of A on the outcome is unachievable in the ideal execution, hence
a contradiction.

We define the subsets Q := {P1, . . . , PN−t=2t−4} and Q′ := {Pt, . . . , PN−1=3t−5}, which we may denote
as ”quorums”. The 3t−4 comes from the following tight constraints: We managed to have |Q| = |Q′| = N−t,
so that in our proof, each of these quorums, respectively, when all its members behave honestly and do not
hear from the outside, then they must output in a noninfinite number of steps. A corrupts P2. A corrupts
a well-chosen player Pi ∈ Q, which we will detail. A selects a player Pj in Q′ at random and corrupts it. A
corrupts the remaining players in Q ∩Q′, which it can do since they are at most t − 3, reaching a total of
at most t corruptions.

In the first round, all players act honestly, except PN , which we will detail.
Then in the asynchronous phase, PN is silent. A cuts the network in two, i.e.: A does not deliver {any

message from honest players in Q to honest players in Q′}, nor {any message from honest players in Q′ to
honest players in Q}. Q∩Q′ behaved honestly so far, thus it is meaningful to define the internal states that
they would have if they were honest. A makes a copy of these States(Q ∩Q′).
A first “probes” the value of x1 as follows. It “freezes” Q, i.e., from now it does not deliver any

message to honest players in Q. A makes the corrupt players in Q′ play honestly, and has messages in Q′
delivered in round-robin order. Thus, the view of honest players in Q′ is indistinguishable from an execution
in which {Q′ were the n− t honest players, while the remaining ones would be silent}. Thus, they all output
after some non-infinite number of steps. In particular, since Pj plays the correct algorithm, it will learn the
same output as honest players. With probability 1/(N − t), Pj is the first in Q′ which learns the output
(x1, xN).

If the probing is successful, i.e., upon this event, then we have that (i) A learns the actual input
value x1 of P1; (ii) whereas no honest player has output yet, thus, the actual output of the protocol is not
yet defined. In this case, then A (immediately) “freezes” Q′, i.e., delivers no more message to honest players
in Q′, so that none of them will ever output. Then A reinitializes corrupt players in Q ∩ Q′ back to their
States(Q ∩ Q′) just after the first round. Then A “un-freezes” the set of honest players in Q, and have
all players in Q play honestly the protocol, with their messages delivered in round-robin order. Let us now
specify the behavior of Pi.

Choosing Pi and its joint action with A. By (B,M), where M = (M1, . . . ,MN) we denote joint
distribution of broadcast and messages sent by PN in round 1. By (B0,M0) and (B1,M1) we denote the
honest distributions corresponding to inputs xN = 0 and xN = 1. For a distribution (B,M), and σ ∈ {0, 1},
let qσ(B,M) be the probability that the protocol’s output second entry be 1, given that

(1) x1 = σ,
(2) PN ’s messages in round 1 are (B,M) then PN becomes silent,
(3) and all players in Q follow the protocol, with their messages delivered in round-robin order, while players

in Q′\Q play honestly in round 1 then become silent.

Finally, let q(B,M) := (q0(B,M), q1(B,M))

Lemma 7. (B0,M0
1) and (B1,M1

1) are computationally indistinguishable.

Proof. Assume that there exists a distinguisher D with non-negligible advantage. Then we could construct
an adversary A1 corrupting P1, but not PN , rushing to learn (B0,M0

1) before all other players, submit it
to D, obtain an estimate of xN , and choose P1’s input equal to this estimate, obtaining a non-negligible
correlation.

Corollary 8. ∀σ ∈ {0, 1}, qσ(B0,M0
1)− qσ(B1,M1

1) = negl.

Proof. For each σ, we build a distinguisher E for the distributions of Lemma 7 as follows. Simulate a set P
of players, all starting with a blank state excepted P1 with input σ. Upon receiving a challenge (Bb,M b

1),
make PN broadcast Bb and send M b

1 , while the other players play the first round honestly. Then silence all

20

players not in Q, simulate an execution complete for Q with messages delivered in round robin order, and
output the same b := xN as players.

Remark. This is where we used that there is no setup. Otherwise, if there had been a bulletin board PKI,
then E would have had to initialize players with an internal state compatible with their public keys, thereby
somehow guessing their secret keys. Actually, such E could not exist since there exists a secure N -SB under
a bulletin board PKI setup. Namely: players broadcast PVSSs of their inputs, then threshold-decrypt the
PVSSs over asynchronous channels.

Consider now the following four pairs of probabilities:

Q1 = q(B1,M1
1 , . . . ,M

1
N−t, 0, . . . , 0)

Q2 = q(B1,M1
1 , 0, . . . , 0, . . . , 0)

Q3 = q(B0,M0
1 , 0, . . . , 0, . . . , 0)

Q4 = q(B0,M0
1 , . . . ,M

0
N−t, 0, . . . , 0)

By the protocol’s correctness, we have that Q1 ≥ 1 − negl. Indeed, the view of honest players in Q under
B1,M1

1 , . . . ,M
1
N−t, 0, . . . , 0) is indistinguishable from (B1,M1

1 , . . . ,M
1
N), in which case their output must be

1 since PN acts honestly. Symmetrically we have Q4 ≤ negl. By Corollary 8, Q2 −Q3 = negl. Thus, there is
a substantial difference either between Q1 and Q2 or Q3 and Q4. Without loss of generality we assume the
former, i.e., that |Q1 −Q2| ≥ 1/3 (the other cases are similar). By a hybrid argument, we have existence of
a i ∈ [2, . . . , N − t] such that |q0(B1,M1

1 , . . . ,M
1
i , 0, . . . , 0)− q0(B1,M1

1 , . . . ,M
1
i−1, 0, . . . , 0)| ≥ 1/(3(n− t)).

It follows that one of the two q0 probabilities above must be different by at least 1/(6(n − t)) from one of
the two corresponding q1 probabilities, e.g., w.l.o.g.:

(2) |q0(B1,M1
1 , . . . ,M

1
i , 0, . . . , 0)− q1(B1,M1

1 , . . . ,M
1
i−1, 0, . . . , 0)| > 1

6(n− t)
Back to the main strategy. In round 1, A sends (B1,M1

1 , . . . ,M
1
i , 0, . . . , 0). In the asynchronous phase,

after having learned x1, once Q′ is frozen, and upon unfreezing Q, then: if x1 = 0, A instructs Pi to play
honestly; else if x1 = 0, Pi is instructed to play as if it did not have received Mi but otherwise honestly.
In the first case, the view of honest players follows the distribution which defines the q0 on the left-hand in
(2), while in the latter case, follows the distribution which defines the q1 on the right-hand in (2). Thus, the
joint action of Pi and PN will has for effect to substantially correlate the second output xN with x1.

References

[AAPP22] I. Abraham, G. Asharov, S. Patil, and A. Patra. “Asymptotically Free Broadcast in Constant
Expected Time via Packed VSS”. In: TCC. 2022.

[ABV+12] S. Agrawal, X. Boyen, V. Vaikuntanathan, P. Voulgaris, and H. Wee. “Functional encryption
for threshold functions (or fuzzy IBE) from lattices”. In: PKC. 2012.

[ACC+21] M. Albrecht et al. “Homomorphic Encryption Standard”. In: Protecting Privacy through Ho-
momorphic Encryption. 2021.

[ACD+19] M. Abspoel, R. Cramer, I. Damg̊ard, D. Escudero, and C. Yuan. “Efficient Information-
Theoretic Secure Multiparty Computation over Z/pkZ via Galois Rings”. In: TCC. 2019.

[ACGJ18] P. Ananth, A. R. Choudhuri, A. Goel, and A. Jain. “Round-optimal secure multiparty com-
putation with honest majority”. In: CRYPTO. 2018.

[AJL+12] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan, and D. Wichs. “Multiparty
Computation with Low Communication, Computation and Interaction via Threshold FHE”.
In: EUROCRYPT. 2012.

[AMN+20] I. Abraham, D. Malkhi, K. Nayak, L. Ren, and M. Yin. “Sync HotStuff: Simple and Practical
Synchronous State Machine Replication”. In: IEEE S&P. 2020.

[AP14] J. Alperin-Sheriff and C. Peikert. “Faster Bootstrapping with Polynomial Error”. In: CRYPTO.
2014.

[BDO23] L. Braun, I. Damg̊ard, and C. Orlandi. “Secure Multiparty Computation from Threshold
Encryption based on Class Groups”. In: CRYPTO. 2023.

21

[BGG+18] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. Rasmussen, and A. Sahai. “Threshold
Cryptosystems from Threshold Fully Homomorphic Encryption”. In: CRYPTO. 2018.

[BHKL18] A. Barak, M. Hirt, L. Koskas, and Y. Lindell. “An end-to-end system for large scale p2p
mpc-as-a-service and low-bandwidth mpc for weak participants”. In: CCS. 2018.

[BHN10] Z. Beerliová-Trub́ıniová, M. Hirt, and J. B. Nielsen. Almost-Asynchronous MPC with Faulty
Minority. PODC’10. we refer to eprint 2008/416. 2010.

[BHP17] Z. Brakerski, S. Halevi, and A. Polychroniadou. “Four round secure computation without
setup”. In: TCC. 2017.

[BJMS20] S. Badrinarayanan, A. Jain, N. Manohar, and A. Sahai. “Secure MPC: Laziness Leads to
GOD”. In: ASIACRYPT. 2020.

[BLL20] E. Blum, C.-D. Liu-Zhang, and J. Loss. “Always have a backup plan: fully secure synchronous
MPC with asynchronous fallback”. In: CRYPTO. 2020.

[BS23] K. Boudgoust and P. Scholl. “Simple Threshold (Fully Homomorphic) Encryption From LWE
With Polynomial Modulus”. In: (2023).

[CCK23] J. H. Cheon, W. Cho, and J. Kim. Improved Universal Thresholdizer from Threshold Fully
Homomorphic Encryption. ePrint 2023/545. 2023.

[CCL+20] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker. “Bandwidth-efficient
threshold EC-DSA”. In: PKC. 2020.

[CDKS19] H. Chen, W. Dai, M. Kim, and Y. Song. “Efficient multi-key homomorphic encryption with
packed ciphertexts with application to oblivious neural network inference”. In: CCS. 2019.

[CDN01] R. Cramer, I. Damg̊ard, and J. B. Nielsen. “Multiparty Computation from Threshold Homo-
morphic Encryption”. In: EUROCRYPT. 2001.

[CGJ+17] A. R. Choudhuri, M. Green, A. Jain, G. Kaptchuk, and I. Miers. “Fairness in an Unfair World:
Fair Multiparty Computation from Public Bulletin Boards”. In: CCS. 2017.

[CGMA85] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. “Verifiable secret sharing and achieving
simultaneity in the presence of faults”. In: FOCS. 1985.

[CGZ20] R. Cohen, J. Garay, and V. Zikas. “Broadcast-Optimal Two-Round MPC”. In: EUROCRYPT.
2020.

[CH18] H. Chen and K. Han. “Homomorphic Lower Digits Removal and Improved FHE Bootstrap-
ping”. In: EUROCRYPT. 2018.

[Cho20] A. Choudhury. “Brief Announcement: Almost-surely Terminating Asynchronous Byzantine
Agreement Protocols with a Constant Expected Running Time”. In: PODC. 2020.

[CL15] G. Castagnos and F. Laguillaumie. “Linearly Homomorphic Encryption from DDH”. In: CT
RSA. 2015.

[CLO+13] A. Choudhury, J. Loftus, E. Orsini, A. Patra, and N. P. Smart. “Between a Rock and a Hard
Place: Interpolating between MPC and FHE”. In: ASIACRYPT. 2013.

[CP23] A. Choudhury and A. Patra. “On the Communication Efficiency of Statistically-Secure Asyn-
chronous MPC with Optimal Resilience”. In: J. Cryptol. (2023).

[CSS+22] S. Chowdhury, S. Sinha, A. Singh, S. Mishra, C. Chaudhary, S. Patranabis, P. Mukherjee, A.
Chatterjee, and D. Mukhopadhyay. Efficient Threshold FHE with Application to Real-Time
Systems. ePrint 2022/1625. 2022.

[DDE+23] M. Dahl, D. Demmler, S. Elkazdadi, A. Meyre, J.-B. Orfila, D. Rotaru, N. P. Smart, S. Tap,
and M. Walter. Noah’s Ark: Efficient Threshold-FHE Using Noise Flooding. ePrint 2023/815.
2023.

[DHL21] G. Deligios, M. Hirt, and C.-D. Liu-Zhang. “Round-efficient byzantine agreement and multi-
party computation with asynchronous fallback”. In: TCC. 2021.

[DMR+21] I. Damg̊ard, B. Magri, D. Ravi, L. Siniscalchi, and S. Yakoubov. “Broadcast-Optimal Two
Round MPC with an Honest Majority”. In: CRYPTO. 2021.

[DRSY23] I. Damg̊ard, D. Ravi, L. Siniscalchi, and S. Yakoubov. “Minimizing Setup in Broadcast-Optimal
Two Round MPC”. In: EUROCRYPT. 2023.

22

[Feh98] S. Fehr. “Span Programs over Rings and How to Share a Secret from a Module”. MA thesis.
ETH Zurich, 1998.

[FS01] P.-A. Fouque and J. Stern. “One Round Threshold Discrete-Log Key Generation without
Private Channels”. In: PKC. 2001.

[FV12] J. Fan and F. Vercauteren. “Somewhat practical fully homomorphic encryption.” In: IACR
ePrint (2012).

[GGOR13] J. Garay, C. Givens, R. Ostrovsky, and P. Raykov. “Broadcast (and Round) Efficient Verifiable
Secret Sharing”. In: ITC. 2013.

[GIKR02] R. Gennaro, Y. Ishai, E. Kushilevitz, and T. Rabin. “On 2-Round Secure Multiparty Compu-
tation”. In: CRYPTO. 2002.

[GIKV23] R. Geelen, I. Iliashenko, J. Kang, and F. Vercauteren. “On Polynomial Functions Modulo pe

and Faster Bootstrapping for Homomorphic Encryption”. In: EUROCRYPT. 2023.
[GLS15] S. Dov Gordon, F.-H. Liu, and E. Shi. “Constant-Round MPC with Fairness and Guarantee

of Output Delivery”. In: CRYPTO. 2015.
[GMP19] N. Genise, D. Micciancio, and Y. Polyakov. “Building an Efficient Lattice Gadget Toolkit:

Subgaussian Sampling and More”. In: EUROCRYPT. 2019.
[GMPS21] V. Goyal, E. Masserova, B. Parno, and Y. Song. “Blockchains Enable Non-Interactive MPC”.

In: TCC. 2021.
[GO14] J. Groth and R. Ostrovsky. “Cryptography in the multi-string model”. In: J. of Cryptol.

(2014).
[GPS19] Y. Guo, R. Pass, and E. Shi. “Synchronous, with a Chance of Partition Tolerance”. In:

CRYPTO. 2019.
[GSW13] C. Gentry, A. Sahai, and B. Waters. “Homomorphic encryption from learning with errors:

Conceptually-simpler, asymptotically-faster, attribute-based”. In: CRYPTO. 2013.
[GV22] S. Gentry Craig and Halevi and L. Vadim. “Practical Non-interactive Publicly Verifiable Secret

Sharing with Thousands of Parties”. In: EUROCRYPT. 2022.
[HNP05] M. Hirt, J. B. Nielsen, and B. Przydatek. “Cryptographic Asynchronous Multi-party Compu-

tation with Optimal Resilience”. In: EUROCRYPT. 2005.
[JRS17] A. Jain, P. M. R. Rasmussen, and A. Sahai. Threshold Fully Homomorphic Encryption. ePrint

2017/257. 2017.
[KJY+20] E. Kim, J. Jeong, H. Yoon, Y. Kim, J. Cho, and J. H. Cheon. “How to Securely Collaborate

on Data: Decentralized Threshold HE and Secure Key Update”. In: IEEE Access (2020).
[KKL+22] T. Kim, H. Kwak, D. Lee, J. Seo, and Y. Song. Asymptotically Faster Multi-Key Homomorphic

Encryption from Homomorphic Gadget Decomposition. eprint 2022/347. 2022.
[KMM+23] A. Kate, E. V. Mangipudi, P. Mukherjee, H. Saleem, and S. A. K. Thyagarajan. Non-interactive

VSS using Class Groups and Application to DKG. ePrint 2023/451. 2023.
[KÖA23] J. Klemsa, M. Önen, and Y. Akin. “A Practical TFHE-Based Multi-Key Homomorphic En-

cryption with Linear Complexity and Low Noise Growth”. In: ESORICS. 2023.
[LPR13a] V. Lyubashevsky, C. Peikert, and O. Regev. “On Ideal Lattices and Learning with Errors over

Rings”. In: J. ACM (2013).
[MTBH21] C. Mouchet, J. Troncoso-Pastoriza, J.-P. Bossuat, and J.-P. Hubaux. “Multiparty homomor-

phic encryption from ring-learning-with-errors”. In: PoPETS (2021).
[MW16] P. Mukherjee and D. Wichs. “Two round multiparty computation via multi-key FHE”. In:

EUROCRYPT. 2016.
[NRS+20] K. Nayak, L. Ren, E. Shi, N. H. Vaidya, and Z. Xiang. “Improved Extension Protocols for

Byzantine Broadcast and Agreement”. In: DISC. 2020.
[Par21] J. Park. “Homomorphic Encryption for Multiple Users with Less Communications”. In: IEEE

Access (2021).
[PR18] A. Patra and D. Ravi. “On the Power of Hybrid Networks in Multi-Party Computation”. In:

IEEE Transactions on Information Theory (2018).

23

[Reg05] O. Regev. “On lattices, learning with errors, random linear codes, and cryptography”. In:
STOC. 2005.

[SBKN21] N. Shrestha, A. Bhat, A. Kate, and K. Nayak. Synchronous Distributed Key Generation without
Broadcasts. ePrint 2021/1635. 2021.

A Further Details on Related Works

A.1 Related Approaches with FHE

A.1.1 Details on the Approach of [GLS15] -1 players receive a uniform random string. 0 based

on the received string, players generate and publish GSW public keys. 1 each player Pi encrypts its
input. The encryption consists of a ciphertext of it under its own GSW public key, appended with N − 1
encryptions of 0 under the keys of the other players. The whole vector output by Pi is denoted as a Flexiblei
ciphertext (more details below). Pi broadcasts it. 1 In parallel, players perform the second event of a DKG,

establishing a common (N, t)-TFHE public key. 2 Upon learning this key, players are able to Transform,
locally and deterministically, the Flexible ciphertexts into TFHE ciphertexts under the common key. Then
players proceed with local evaluation of the circuit; then finally threshold decryption, which can done over
asynchronous P2P channels, by our observation.

More precisely, Flexiblei of player i goes as follows: on inputmi, output the vector ĉi = (ci,1, ci,2, . . . , ci,N),
where ci,i is a ciphertext of input mi under Pi’s GSW public key, while the other ci,js are GSW ciphertexts
of 0 under each Pj ’s public key. By construction, since every Flexiblei scheme has its secret key known by the
corresponding Pi, it has threshold 0 with respect to the players, which prevents it from being used by external
input owners. Another particularity of Flexible ciphertexts is that all the N GSW ciphertexts contained are
actually generated with the same secret randomness. Thus, given that half of these ciphertexts are encrypted
under GSW public keys which were generated by the adversary A, they a priori give A an extra advantage
to guess the plaintext of ci,i. For the security of GSW to hold, their public keys are thus scaled slightly larger
(m = Ω((n + N) log(q)) vs m = Ω((n) log(q)) in GSW), in order to apply the leftover-hash-lemma (LHL
[GLS15, lemma 1]).

However this technique is not efficiently transposable to our setting, for the following reasons. To start
with, referring to §D, suppose that the adversary is given one (or several) BFV encryptions of 0 under

semi-maliciously generated key(s) (a, bi), i.e.,
(
u bi + e

(Enc)
0,i , u a+ e

(Enc)
1,i

)
, which would all be generated with

the same secret randomness u ← Xq. Then this may provide it with distinguishing advantage when given
a BFV encryption of some m under some honest key (a, bj) which would re-use the same randomness u.
One could possibly think of a fix, e.g., adapting BFV by specifying that the first component of the public
keys, a := a[0], would be instead vectors with coordinates in Rq, and encryption randomness u equal to a
random vector with entries in Rq. But this fails since [DGKS21, §1] evidenced a counterexample showing
that the LHL does not hold in general (a leakage of 1/n of the secret randomness which would make the
outcome far from indistinguishable from uniform). They also point that [LPR13b, Cor 7.5] showed that a
weaker version of LHL, denoted “regularity”, does apply in this setting, nonwithstanding the previous leakage
issue, in the case where the distribution of secret randomness would be Discrete Gaussian with sufficiently
large parameter. Concretely, we would apply “regularity” to A.u, where A would be a matrix with N rows
encoding all public keys. The problem is that, for the applicability of “regularity”, it is required that A
be sampled uniformly, whereas in our setting we have t keys in A which are semi-maliciously generated,
furthermore possibly depending on the other t + 1 honest keys. Thus, this situation could potentially leak
substantial information on u, and thus potentially enable to distinguish the outcome from random uniform,
such as mentioned above [DGKS21, §1].

As a final remark on [GLS15], notice that, on the face of it, their DKG is specified over pairwise channels,
thus a player which would abort after sending only part of the messages it is meant to send, would leave
honest players with inconsistent views on which contributions to the threshold key should be taken into
account. However this is handled by [GLS15, Remark 4.1], who observe that players can be instructed to

24

broadcast the set of their messages, encrypted under each recipient’s public key. From this perspective, their
DKG, as well as the one of [FS01], can be seen as a particular case of FLSSS to do a sum of contributions
to the secret threshold decryption key, for the particular parameter of a modulus q equal to a prime larger
than N + 1 [GLS15, §B, §C].

A.1.2 Based on Multi-key FHE and on (N,N)-Threshold FHE The recent work [CDKS19] con-
structs a multikey variant (MFHE) of the BFV [FV12] and CKKS [CKKS17; LM21] schemes, with ciphertexts
of linear size in the number N of players. So this is N× larger than single-key FHE (it was even quadratic
before: [MW16; BHP17]). Their homomorphic evaluation complexity is quadratic in N [CDKS19, Table 1].
Recently, [KKL+22; KÖA23] reduced the overhead in homomorphic evaluation complexity to linear in N ,
which is still N× larger than under single-key.

Turning to (N,N)-threshold FHE, this particular threshold t := N yields a simplification over general
(N, t)-ThFHE, which is that establishing the threshold key can be done straight from the PKI: each player
generates a key pair and publishes the public key, the threshold key is then defined as the sum of public
keys. The secret decryption key is equal to the sum of the secret keys, which by definition constitutes an
additive secret sharing.

However, both MFHE and (N,N)-threshold FHE suffer from nonconstant worst case latencies. Indeed
threshold decryption fails as soon as one player aborts, by definition ofN -out-of-N access structure. Assuming
synchrony, then one could imagine a compilation of such protocols into ones guaranteeing GOD, at the cost of
Ω(t) consecutive broadcasts and re-evaluations of the circuit. Namely: require players to send their decryption
shares via terminating reliable broadcast. Then, if some instances of broadcast for some players returned ⊥,
discard them and restart the whole protocol with the remaining players. Recall that we have another non-
responsive event at the beginning of every execution, which is the time-out after which players which did not
broadcast an encryption of their input are discarded from the protocol. Thus, in the case of t consecutively
aborting players in the distributed decryption, the execution is restart t times.

There are moreover other sources of potential slowdown in specific approaches, such as the (N,N)-TFHE
of [Par21]. There, generation of the relinearization key is done after the threshold key is known, and completes
only if all players who contributed to generation of the threshold key, also participate. Notice that there is
the same issue for the distributed generation of the bootstrapping key. Thus, if one had wanted to enable
GOD in [Par21], one would need to also require that players send their contribution to the relinearization
key via broadcast. Let us observe that this broadcast could be done in parallel of the broadcast of encrypted
inputs. However, if some instances of broadcast for some players returned ⊥, then these players need to be
discarded and the whole DKG restarted with the remaining players.

A.1.3 Based on (N, t)-threshold FHE The work [AJL+12] (in their paragraph “Fairness”) was the
first to introduce (N, t)-ThFHE with thresholds t lower than N − 1. Unfortunately, their construction adds
2 additional rounds to the protocol as soon as one player aborts. Indeed, in this case it is required that
the honest majority reconstructs the player’s state and resume the protocol. The work [KJY+20, §IV B]
implement a DKG for CKKS with reconstruction from t + 1-out-of-N Shamir shares of the secret key. It is
implemented by having players reshare the key from N -out-of-N , into t+1-out-of-N . A variant of the DKG of
[KJY+20, §IV B] is proposed in [MBH23]. Since [KJY+20; MBH23] follow the DKG-then-input distribution
approach, they require at least two broadcasts, which is incompatible with our requirement. Finally, the MPC
protocols suggested in [KJY+20; MBH23] are also non-robust, by lack of a robust distributed generation
of relinearization & bootstrapping keys. Recall that this is an issue which we also solve in this work (in
Section 6).

The work [BGG+18] also proposed (N, t)-ThFHE schemes. However, their §5 leaves unspecified the DKG,
while their §6.2 has the drawback that the encryption and decryption key pair is generated by one entity
(typically, one secret owner, before encrypting its secrets), thus it would be unsafe to have other secret owners
also encrypt their secret under this same key, which prevents MPC.

25

A.2 Garbled circuits, and Joint Use with BFV for Numerical Computation

Note that the communication size in [ACGJ18] is improved by [ACGJ20] to O(|C| + N4), but with a
suboptimal corruption threshold 1

2 − ε, this is why they recommend to use [ACGJ18] for small values of N .
[AZ21], which provides security with abort, allows external inputs.

Garbled circuits and TFHE benefit from being used together, e.g., in use-cases of machine learning.
Indeed, each layer of a neural network has a large circuit of linear gates over arithmetic values, where homo-
morphic encryption or secret-sharing techniques are very fast, whereas conversion of these linear operations to
a boolean circuit is prohibitively expensive. Thus, the typical approach is hybrid: on the one hand, computa-
tions of linear functions (FC/CNNs) use either homomorphic encryption (Gazelle [JVC18]) or secret-sharing
(MiniONN [LJLA17]). Then, non-linear functions are computed with garbled circuits (except possibly matrix
products [CKR+20]).

A.3 Other synchronous / asynchronous hybrid models

The question of minimizing the number of initial synchronous rounds or broadcast(s) in an execution of MPC
was initiated in [HNP05]. The broadcast of [FN09] uses a few synchronous rounds, then guarantees responsive
eventual output delivery, under a honest majority. The consensus of [Cho20] with t < N/3 tolerance uses
one initial round of synchrony. In information-theoretic MPC with t < N/3, [PR18] reached an optimal
3 initial synchronous rounds. In the setting of MPC with non-constant latency, then [BHN10] exhibited
a protocol with only one all-to-all broadcast of encrypted inputs, followed by asynchronous peer-to-peer
messages. However, they assume for granted a DKG setup, i.e, a (N, t)-threshold additively homomorphic
encryption scheme. Establishing such a DKG setup with Paillier, as they suggest, would cost a number of
more broadcast rounds, so is incompatible with our goal. If they were instantiated with CL (Section 3.1.1),
the DKG would add at least 1 other broadcast round (in the bulletin board PKI model).

The protocol [BLL20] proceeds by intervals of fixed duration, denoted rounds, of which the number grows
with the depth of the circuit. In particular it is not responsive. Since their model is free of primitives such
as Byzantine Agreement under honest majority, if the network is asynchronous and more than ta < N/3
players are corrupt, then they cannot guarantee input provision, nor agreement on the output.

The protocols [CGHZ16; Coh16] are purely asynchronous, i.e., responsive, thus do not withstand more
than t < N/3 corruptions. Even if the latter has a trusted setup, withstanding more than t < N/3 corruptions
is impossible since the protocol is purely responsive.

B Model: Further Formalism and Discussion

B.1 More on Broadcast BC with Possibly External Senders

B.1.1 Comments on Implementations Implementations of BCP,P for P ∈ P are mainstream since
[LSP82]. They necessarily assume that P and P are able to start the protocol synchronously, and that
P is provided with authenticated ∆-synchronous channels to P. Otherwise, one would need to relax the
specification into allowing that the output be not always the one of S whenever honest, as the case in
weak/partial synchronous models [GPS19; ANRX21]. Indeed, a S which lags behind could not be told
apart from a dishonest S which remains silent. In our generalized context with possibly external receivers,
implementation of bPKIP can be obtained directly from BCP,P , as: players run BCP,P , then, upon receiving
their output, each player sends it to all external receivers, i.e., in L . Each ` ∈ L waits to receive t + 1
times the same value, then outputs it. In our generalized context with a possibly external sender ` ∈ L :
an implementation of BC` can be obtained assuming (i) channels from ` to P with guaranteed delay δ, and
that (ii) ` and P are able to start synchronously, by: ` sends its input to all P, then after δ, P perfom
Byzantine consensus with inputs what they received from ` (⊥ if none). Notice that our protocol will instruct
all players and owners to act as senders in BC upon completion of all instances of bPKI. As discussed above,
implementation of BC thus necessarily requires senders and P to start synchronously at a point in time
after completion of these instances.

26

B.1.2 Sub-sessions For sake of UC analysis, in our MPC protocol we specify multiple broadcast instances
per sender. This is why we formalize BCS,R with sub-session identifiers denoted ssid. Importantly, we force
BCS,R into allowing at most one ssid per sender, to prevent two players from receiving different outputs from
a corrupt sender for the same ssid. In practice in our protocol the ssid is the label of the variable which is
broadcast. Furthermore, we make the abuse of notation, in our protocol, to have one sender concatenate
multiple broadcasts instances of several variables at once, likewise for the input command of FLSSS. Indeed
this is how the protocol would be efficiently implemented. In a model allowing that, an input owner can
possibly be logically identified to some player, and thus both would either be simultaneously honest or

corrupt. One could furthermore have them concatenate all their broadcasts in 1 .

B.2 More on our bPKI, and the { Bulletin board / Untrusted / bare } PKI model

B.2.1 Comparison with Canetti’s certification authority Recall that we formalized bPKI as a mere
broadcast, with possibly external receivers. The closest UC definition of bPKI known to us is the “certification
authority” FCA of Canetti [Can04]. There, it is presented in the same use-case, namely, a service enabling
players to record their public keys. In appearance, its formalization is different than ours since it provides
delayed output only to players who requested it. But it actually seems to implement our bPKI, by having
players repeatedly query an output. Notice the conflict of terminology in [Can04], in which the symbol ⊥
means that the instance did not terminate yet, instead of, in our definition, did terminate with adversarially
chosen output ⊥.

B.2.2 PKI assumptions in the literature The bPKI functionality, for our usage limited to publication
of public keys, could be traded by the assumption denoted {Bare/Untrusted/Bulletin board} public key
setup (PKI)” [ACGJ18; BCG21; GJPR21]. The PKI model was first sketched in [CGGM00, §6], then de-
noted as “bare PKI” in [ACGJ18]. It is renamed as “untrusted PKI” in [GJPR21]. As specified in [CGGM00,
§6.1][GPS19; DMR+21], the PKI model is slightly stronger than ours, since it abstracts-out all the imple-
mentation constraints discussed in §B.1, in a way which could be phrased as: (i) all instances of bPKI are
assumed to terminate before a public time denoted t = 0, (ii) players (and owners) are then able to reset
their clocks synchronously at t = 0, which, e.g., enables them to subsequently run implementations of BC. By
contrast, the implementation of BC in [FN09] does not guarantee delivery within a fixed delay (the “t = 0”),
only eventually.

Notice that, formalized like this, the “t = 0” is related to the notion of “synchronization point” in
[DGKN09; LLM+20].

Likewise, in the specific case of protocols for Byzantine agreement, [BCG21] also assume access to the
board only before players are assigned their inputs, which is the same assumption in our case. We refer to
[BCG21] for a comparison of bulletin-board PKI with more demanding setup assumptions. Notice that our
generalization, where inputs are formally assigned to owners instead of players, parallels the regime of state
machine replication in which commands originate from external lightweight “clients”.

B.2.3 The power of { Bulletin board / Untrusted / bare } PKI in MPC By construction, bPKI
does not perform any check on the written strings, it displays them to all players. Thus it is strictly weaker
than the setup denoted as “registered PKI”, or KRK, in [CDPW07], where it is proven to have strictly more
power. Notice that implementing KRK without GURS would, in turn, require an extra event before bPKI
in which players would publish multi-string CRS. Fortunately KRK is not required in our protocol, only
plaintexts are extracted in our UC proof, not secret keys.

In [GJPR21] it is proven that MPC in two rounds is impossible in the plain model, even with identifiable
abort. However, it is feasible assuming the bare/untrusted PKI Model.

To the best of our knowledge, bPKI is the minimal setup necessary in all implementations of synchronous
broadcast for t ≥ N/3, since the seminal [LSP82]. Also, [Bor96, Thm 1] shows that the relaxation of bPKI
denoted as “local setup”, precludes synchronous broadcast for t ≥ N/3. [Local setup means that a corrupt

27

player can possibly make bPKI display different strings to different players. However, it cannot claim for
itself a string previously published by a honest player.]

To be complete, let us mention that Borcherding’s impossibility is circumvented with the additional
assumption that the majority of a restricted resource, e.g. the computing power (or, alternatively, storage
space) is in the hands of honest players, which we may denote as the “proof of work (PoW) model”. There,
[GKLP16] implement what is denoted as a “pseudonymous” PKI, i.e., a mechanism that outputs to all honest
players a single set of public keys, with possibly several keys assigned to the same players, while guaranteeing
that the majority of keys were issued by, and thus are owned by, honest players. In the same PoW model,
[GKOPZ20] implement an actual untrusted PKI, i.e., the FCA of [Can04], which they denote FREG.

B.2.4 A Related Notion of Bulletin Board The terminology “bulletin board” is introduced in
[CGJ+17], where it is used as a support of communication for MPC, as well as in [GMPS21]. Therefore, this
usage contrasts with the mainstream usage of a “bulletin board PKI”, which is also ours, in which players
cannot write on the board after the time t = 0 when owners receive their inputs. However, the formalization
of [CGJ+17; GMPS21] seems identical to our bPKI. The only formal difference is that they specify synchrony,
with possibly offline players. Thus, in their terminology, our “eventual delivery” is replaced by something
which could be phrase as “provides output even to players which were offline while the bulletin-board was
written on”.

B.3 FAUTH

FS,RAUTH

On input (input, ssid, v) from S : then provide R with delayed output (ssid, v).

Fig. 7: (Asynchronous, Public) Authenticated message transmitting for S and R.

In the two last (asynchronous) steps of our MPC protocol, when FLSSS is instantiated with ΠLSSS, each
player is instructed to send the same opening share to all using FAUTH. Notice that nothing prevents corrupt
players from sending different opening shares to different players. However, when sending a share, semi-
maliciously corrupt players must exhibit an input tape containing a pair of: secret key and a key noise,

compatible with the bi which they broadcast in 1 . Thus, for whatever compatible pair which they could
exhibit, the decryption share coming with it is necessarily correct.

Notice that, in our protocol, players are instructed to publish their public key on bPKI at the beginning,
thus FAUTH could actually have been implemented from non-authenticated channels.

Notice that, contrary to BC and bPKI, there is no activate command for the output from a corrupt sender
in FAUTH. Hence, our definition of “complete execution” does not require termination of FAUTH instances for
corrupt senders. Requiring so would have lead to a definition of “guaranteed output delivery” which would
not even have withstanded fail-stop adversaries.

On the other hand, in order to guarantee GOD in our MPC protocol, we need implementations of
FAUTH with guaranteed eventual delivery from a honest sender. Notice that without this guarantee, then no
asynchronous protocol could have guaranteed termination.

B.4 GURS

GURS is a particular case of Fcrs in [CLOS02].

GκURS

On input query from all honest players in P, then samples a sequence of κ bits uniformly at random
then outputs it to each player P ∈P, then halts.

Fig. 8: Uniform Random String.

28

On the one hand, MPC under honest majority enables to UC implement fair coin tossing. Thus GURS

could have been implemented, at the cost of extra preliminary non-responsive steps. Notice that optimized
implementations exist, but at the cost of more assumptions. E.g., [CD20] requires a CRS for generation of
NIZKs, while [KMQR21] requires an initial seed.

On the other hand, when upgrading GURS to a global setup, then it is not proven in general if one can
safely implement a global setup by using any protocol proven UC secure, e.g., see [BHZ21].

B.5 More on Guaranteed Eventual Output Delivery (GOD)

Our formalism of UC functionalities which deliver their outputs only when allowed by the adversary, is the
classical one [Can01]. It is still in use for its simplicity, e.g., in [AAPP22; CP23].

Subsequent works [CGHZ16; LLM+20] formalised eventual delivery in UC. To delay a message, the
adversary somehow repeatedly presses a button (technically: it enters a delay in unary notation). Since it
is polynomial machine, it is exhausted at some point so the message gets delivered. We did not choose this
approach to keep the presentation simple.

Consider a protocol Π, in the (GURS,FAUTH, BC, bPKI)-hybrid model. Extending [Lam06], we denote as
complete an execution of Π in which: honest players took all the steps they could, the adversary responded
to all requests from BC by providing input messages on behalf of all corrupt senders, allowed all delivery
requests of BC and FAUTH for honest senders to honest receivers and all delivery requests from GURS for
honest receivers. We say that a protocol Π has GOD if, in every complete execution, then every honest
player outputs. [Although our MPC protocol has finite executions, this definition also applies to infinite ones
[DLS88, Remark 2].]

Claim: If Π has GOD in the (GURS,FAUTH,BC, bPKI) model, then, when (BC, bPKI, FAUTH) are in-
stantiated by protocols with guaranteed eventual output delivery, then Π has GOD in the usual sense.

Proof: From the specifications of the previous functionalities, an execution of Π is complete if and only
if: (i) all instances of BC and bPKI delivered an output to every honest player, whatever the sender, and
(ii) every input to FAUTH from a honest sender to a honest receiver was delivered. Thus, when (i) BC and
bPKI are instantiated by Broadcast protocols, and (ii) FAUTH by channels with eventual delivery, then every
execution of Π is complete.

B.6 Straightforward Generalizations of FC

To start with, in our MPC protocol, messages of input owners do not depend on the actual circuit to
be computed. Thus, our protocol actually achieves the “delayed function” property ([ACGJ18]), i.e., it
implements a more general functionality to which honest players can possibly provide the circuit to be
computed after the broadcast instances from all owners terminated, possibly with some ⊥ or badly formed
messages for some of them. Such a functionality is also known as reactive [CDN15, §5]. We do formalize and
implement such a functionality in §3.2 for the specific case of linear forms, because we need this possibility
in the implementation of MPC protocol.

As such, our definition of FC imposes that every honest player, and only them, outputs. However, it
straightforwardly generalizes to capture protocols delivering outputs to arbitrary receivers, be them included,
overlapping, or disjunct, from the set P of players. Interestingly, different feasibility bounds hold for general
receivers, e.g., the case of Solitary MPC [BMMR21].

B.7 Reminder of the UC model, and our Simulators

Consider a protocol Π, a functionality F and any PPT environment E which can interact with either one
or the other of the following protocols, without being informed which of them. In every execution, E may
provide inputs to honest players, may provide instructions to the adversary, and may observe the outputs
of players. At some point of every execution, E must output a bit. In the first, denoted “real” REALΠ ,
E interacts with the dummy adversary A, and honest players follow the actual protocol Π. In the second,

29

denoted “ideal” IDEALF ,S,E , E interacts with an adversary S , while honest players are connected only

to F . Following [Can01], we say that protocol Π UC emulates F if there exists a PPT machine, denoted
as the simulator S , such that for any such E , the gap of probabilities of outputing 1 when faced with an
execution of the first protocol, and when faced with an execution of the second, is negligible. Notice that this
definition, with only the dummy adversary, is easily seen, and proven in [Can01, §4.3.1], to be equivalent to
UC emulation against any adversary.

B.7.1 Simulators in our UC Proofs Our simulators S , unless specified, have the following high level
behavior. Initiate in its head: a set of N players and |L | Owners, along with the ideal functionalities with
which they are meant to interact in the actual protocol, excepted GURS, since it is an external resource. Upon
corruption requests from E , S labels in turn the corresponding simulated players or owners as corrupt. Upon
every output from a simulated functionality to a simulated corrupt player, or, upon every ReqInput request
from a simulated functionality to S , then S immediately updates E with it, at would have done the actual
dummy adversary.

We will abuse notations such as: ”honest P sends message to corrupt Q”, where we actually mean that, in
the simulated execution, FP,QAUTH requests (ReqInput,m) to S , then, upon receiving an instruction to activate

from E , then the simulated FP,QAUTH outputs to simulated corrupt Q, then immediately updates E with this
reception by Q, as the dummy adversary would have done.

The same abuses of notation apply to other interactions of simulated corrupt players with other simulated
functionalities, such as FLSSS in our proof in Appendix H. In particular, when we say that “FLSSS delivers
some delayed output c to some corrupt player Q”, then we actually mean that: S creates a value c; simulates
towards E that it received a request (a “ReqDeliv”) from FLSSS (which does not exist) for delayed output of
c. Then, upon receiving an instruction to activate from the Environment, then S simulates towards E that
it was notified by Q (which does not exist) its reception of c from FLSSS.

B.8 UC Non-Interactive Zero-knowledge (NIZK) functionality

Non-Interactive Zero-knowledge FNIZK, following exactly [GOS06], upon request of a prover P exhibiting
knowledge of some witness w verifying a public statement (x, ∗) ∈ R, delivers to P the delayed output of
a string π which can subsequently be checked by any verifier to verify that P does know some w verifying
(x,w) ∈ R.

FNIZK

The functionality is parameterized with an NP relation R of an NP language L, and a prover P .

Proof: On input (prove, sid, ssid, x, w) from P , ignore if (x,w) /∈ R. Send (ReqInput, proof, x) to A and
wait for answer (activate, π). Upon receiving the answer store (x, π) and send (proof, sid, ssid, π) to P.

Verification: On input (verify, sid, ssid, x, π) from V ∈P, check whether (x, π) is stored. If not send
(ReqInput, verify, x, π) to and wait for an answer (activate, witness, w). Upon receiving of the answer,
check whether (x,w) ∈ R and in that case, store (x, π). If (x, π) is stored, return (verification, sid, ssid, 1)
to V , else return (verification, sid, ssid, 0).

Fig. 9: Non-Interactive Zero-knowledge functionality

UC implementations of FNIZK exist, which do not require honest majority [DDOPS01], but at the cost
of requiring a uniform random string (URS). Nonwithstanding that [DDOPS01] allow the same URS to
be reused in concurrent executions, the bottom-line is that the URS needs to be part of a local setup in
their implementation. Without a honest majority assumption, then [CDPW07] prove that UC NIZK are
non-implementable in the global common random string model, i.e., which we formalized as GURS in the
particular case where the string is uniform.

Fortunately, the need of a URS can be escaped under honest majority, provided access to bPKI, thanks
to the technique denoted multi-string CRS [GO14; BJMS20].

30

B.9 Semi-Malicious corruptions.

In our protocols and proofs we will consider what we define as Semi-Malicious Corruptions, following
[AJL+12, §A.2] [BHP17; GLS15; BJMS20]. Semi-maliciously corrupt players and owners continuously for-
ward to A their outputs received from ideal functionalities, and act arbitrarily as instructed by A. E.g., they
can possibly not send some message although the protocol instructs them to. However, when a corrupt entity
M inputs a message m to FAUTH or BC, then the sending of m must be compatible with the requirements
of the protocol, with respect to: (i) all outputs of instances of GURS, bPKI, BC, and also FLSSS in the case
of our Π, required for sending m (ii) an internal witness tape that M must have, of the form (x, r) with x
an input and r of the same length as all random coins that a honest player would have been meant to have
tossed upon sending m. M can however use conflicting (x, r) when sending different messages m, m′. Finally,
we also require that the semi-malicious adversary can only activate an output v to BCM for some corrupt M
only if: either v could have been input to BCM by M itself according to the above rule, or, if v = ⊥. Notice
that we do not impose any condition for the sending of some m on bPKI. Concretely, this is because in the
UC proof of Prop. §11 of our implementation of FLSSS, we do not need extractable secret keys. See §7.2 for
the favorable consequence of this relaxation.

B.10 Reminder of IND-CPA security

For pp ← Setup(1λ, 1d) for any m0,m1 ∈ M , for any (sk, ek) ← KeyGen(1λ, pp) and for any probabilistic
polynomial-time (PPT) adversary A, letting
c0 ← Enc(pp, ek,m0) and c1 ← Enc(pp, ek,m1), we have

|P[A(ek,m0,m1, c0) = 1]− P[A(ek,m0,m1, c1) = 1]| ≤ negl(λ).

C More on FLSSS and Secret Sharing over Rings

Notice that the specification of FLSSS, done in Section 3.2, is related to the one denoted Fcom in [CDN15,
p. V].

The minor difference is that we merged in one single command LCOpen the three separated commands
of Fcom which were Addition, scalar Multiplication and Open.

The major difference is that FLSSS.LCOpen produces an output as soon as it receives request from any
t+1 players, i.e., is responsive. By contrast, Fcom needs request from all t+1 honest players to open a value.

C.1 High Level Implementation of FLSSS from Public Secret Sharing (PSS).

To implement FLSSS, we use the following (non interactive) algorithms as main ingredients.

Definition 9 ((N, t)-LSSS). A (N, t)-linear secret sharing scheme is defined by two algorithms (LS.Share, LS.Reco)
for sharing and reconstructing a secret. LS.Share takes a secret s ∈ Rk and outputs a set {s(1), ..., s(N)} of
shares. LS.Reco takes as input a set of shares {s(1), ..., s(d)} and returns an integer s ∈ Rk if d ≥ t, or ⊥ if
d < t.

Furthermore they must satisfy correctness and privacy, as follows.

Correctness: any s ∈, U ⊂ [n] with |U | > t and any projection SU of S ← LS.Share(s), it holds that
LS.Reco(SU) = s with probability 1.

Privacy: For privacy we demand that for any s, s′ ∈ and set U ⊂ [n] with |U | ≤ t, the projections SU of
S ← LS.Share(s) and S′U of S′ ← LS.Share(s′) are identically distributed.

31

High level implementation To send a secret s to FLSSS, generate a (N,t)-secret sharing of s using LS.Share.
Then for all i ∈ [N], encrypt each share s(i) under Pi’s public key: this constitutes a Public Secret Sharing.

Later, to compute a linear combination Λ of some inputs (sj)j : each player P decrypts its share s
(P)
j of each

sj , then evaluates Λ on these shares: this constitutes a partial opening share. Then from any t + 1 partial
opening shares, the desired linear combination Λ((sj)j) is efficiently reconstructible.

More formally, let PKE = (KeyGen,Enc,Dec) be any public key encryption scheme satisfying IND-CPA.
By convention, encryption under an incorrectly formatted public key pkPKE, e.g., ⊥, returns the plaintext
itself.

Def-Prop 10 (Public Secret Sharing). Let us consider the following randomized function PSS, parametrized

byN strings (pkPKEi)i∈[N]. On input s ∈ Rq: compute (s(1), ..., s(N))← LSRq
.Share(s), output

[
Enc(pkPKEi , s(i)), i ∈

[N]
]
. PSS is IND-CPA for any A being given at most t secret keys

(
skPKEi

)
i∈I⊂[N]

.

An intuition of proof is that, under the idealized assumption that PKE ciphertexts under the unknown
t+1 public keys would perfectly hide their content, then, the view of the adversary is the vector of t plaintext
shares [s(i), i ∈ I]. But by Property 12 in §C, for any chosen plaintext s, it varies in U(Rtq). We carry out
this idea in §C, by lack of reference, with a reduction to multi-messages multi-keys IND-CPA of PKE.

C.2 Linear Secret Sharing over Polynomial Rings Modulo pe.

For any commutative ring A with unit 1, we denote as A[Y]t the polynomials of degree ≤ t. For any s ∈ A,

we denote A[Y]
(s)
t the affine subspace evaluating at 0 to s, i.e., with constant coefficient s. Suppose that

we are given a sequence {α0 := 0, . . . , αN} ∈ AN+1, such that all pairwise differences αi − αj for i 6= j are
invertible in A. Such a sequence is denoted as “exceptional” in [ACD+19].

For U ⊂ (αi)i∈[0,...,N] we denote EvalU : P ∈ A[Y]t → [P (αi), i ∈ U] the map returning the evaluations
at points of U . By [ACD+19, Thm 3], for every (t + 1)-sized U ⊂ [0, . . . , N], we have that EvalU is an
isomorphism. For such U , we denote the inverse of EvalU as “Polynomial Reconstruction” PolRecoU : At+1 −→
A[Y]t. We can construct is as: for each i ∈ U , define the Lagrange polynomial as λUi (Y) :=

∏
j∈U\{i}

Y−j
i−j ;

then PolRecoU ([s(i), i ∈ U]) :=
∑
i∈U s

(i).λUi (Y).
This isomorphism yields the following [ACD+19, Construction 1] of Linear Sharing over A. Define the

randomized function LSA.Share : A −→ AN , as: on input a secret s ∈ A, sample P ← U
(
A[Y]

(s)
t

)
then

return Eval(αi)i∈[N]
(P) ∈ AN denoted “shares” of s. We denote “(N, t)-secret sharing of s” any such possible

output of LSA.Share(s). In the other direction, for a (t + 1)-sized H ⊂ [N], we have the map SRecoH :=
Eval{0} ◦ PolRecoH which takes as input any t + 1 shares and reconstructs the secret. Also, surjectivity of
Eval{0}∪I for any t-sized I , implies Uniformity of any t shares of any fixed secret, cf. Property 12 of §C. In
addition, let us introduce two useful A-linear maps:

• Perfect Simulation of (honest) Shares. For any t-sized I ⊂ [N], denote ShSimI := Eval[N]\I ◦
PolReco{0}tI . It takes as input any t (typically corrupt) shares (s(i))i∈I with some secret s, and recon-
structs the unique set of shares (s(h))h∈H, with indices H := [N]\I , such that the whole (s(j))j∈[N] forms
a (N, t)-secret sharing of s;

• Inference of (Corrupt) Shares. For any t+1-sized H ⊂ [N], denote ShInferH := Eval[N]\H ◦PolRecoH. It

takes as input any t+ 1 shares (s(h))h∈H, and reconstructs the unique set of shares (s(i))i∈I , with (corrupt)
indices I := [N]\H, such that the whole (s(j))j∈[N] forms a (N, t)-secret sharing of some s.

Construction of an Exceptional Sequence for Rq. The easy case is when all prime factors of q are of
size at least N + 1. Then we have that [0, . . . , N] ⊂ Rq forms an exceptional sequence. Indeed, all i− j for{

(i, j) ∈ [0, . . . , N]2, i 6= j
}

are invertible modulo all the prime factors of q, thus are invertible modulo q
by the Chinese remainders theorem (CRT), and thus in Rq. In the general case, we need to enlarge Rq. We
do the construction for q = pe a prime power, then the case of composite q follows from the CRT. Denote
d := dlogp(N + 1)e. The construction is conceptually as follows, and made explicit in full details in §C.4.

32

Consider the Z/qZ-algebra B := (Z/qZ)[Y]/g(Y), where g is monic of degree d, and irreducible modulo p,
denoted “Galois ring extension”. In [ACD+19] they observe that B contains a pd-sized exceptional sequence,
from which they deduce linear secret-sharing over B, that we denote LSB . By tensorisation of LSB , over
Z/qZ, with any inclusion of Z/qZ-algebras, e.g. Z/qZ ↪→ Rq, we obtain a S-linear secret-sharing scheme LSS
over S := Rq ⊗Z/qZ B. Rq being a sub-ring of S, we have that LSS particularizes to a Rq-linear sharing over

Rq, denoted LSRq
, as desired. Notice that, since each share is in S =̃Rdq , we have a size overhead of d. But

for simplicity, in the remaining we do as if shares were in Rq.

C.3 Implementation of FLSSS.

ΠLSSS

ΠLSSS.Setup ∀P ∈P: (skPKEP , pkPKEP)← KeyGen, publish pkPKEP on bPKIP .

ΠLSSS.Input Each sender S ∈ S , upon output of all instances of bPKIP ∀P ∈ P, set pkPKEP as the
output of bPKIP , possibly ⊥. For each α ∈ XS :
(i) Compute pssS,α := PSS

(
(pkPKEP)P∈P , xS,α

)
.

(ii) Broadcast (input, ssid := xS,α, pssS,α) over BCS .

ΠLSSS.LCOpen(Λ) (i) ∀Pj ∈ P, upon receiving output from all sub-instances of all BCS whose label
ssid = xS,α has nonzero coefficient in Λ: for each output (xS,α, ∗), if ∗ = ⊥ then set x(j) := 0; else

if ∗ = [c
(1)
S,α, . . . , c

(n)
S,α] then set x

(j)
S,α := PKE.Dec(skj , c

(j)
S,α). Evaluate µ(j) := Λ

(
(x

(j)
S,α)S,α

)
and send

it over FPj ,R
AUTH to every player R ∈P.

(ii) Upon receiving opening shares (µ(i))i∈U from any (t + 1)-set U ⊂ [N] of players, outputs µ :=
LSRq

.SRecoU
(
[µ(i), i ∈ U]).

Fig. 10: Protocol for secret-sharing then delayed linear combination

Proposition 11. Protocol ΠLSSS (Fig. 10 UC implements FLSSS

Proof. For simplicity we construct a simulator for the opening of only one evaluation of one linear map. The
case of multiple openings is handled as in [CDN15, p127], when they simulate each new Open.

- Game 1. We modify the Real execution in that the opening shares of µ sent by honest players,
are replaced as follows. Firstly, we define quantities denoted Infered Corrupt Opening Shares (µ(i))i∈I ,
nonwithstanding corrupt players may not have any opening shares on their witness tapes, since they may

not send any. For every input xS,α of some honest S , we simply define
(
x
(i)
S,α
)
i∈I as the actual shares produced

by S when it computes the PSS of xS,α. For each output (xS,α, ∗) of BCS from some corrupt S : (i) if ∗ = ⊥
then we define

(
x
(i)
S,α := 0

)
i∈I , otherwise (ii) this implies that ∗ is a correctly formed PSS. Thus in this

case, we define as
(
x
(i)
S,α
)
i∈I the plaintext shares read on the witness tape of S . Finally, for all i ∈ I we set

µ(i) := Λ
(
(x

(i)
S,α)α∈XS ,S∈S

)
. By linearity of LSRq

, they are equal to the opening shares of µ that the (Pi)i∈I
would have sent if they were honest.

We now replace the honest opening shares by ShSimI
(
µ, (µ(i))i∈I

)
. Since ShSimI simulates perfectly,

they are identical to the ones of the Real execution.
- Game 2. All the inputs x`,α of honest S ∈ S are replaced by 0. Since the secret decryption keys skh

of all honest players h ∈ H are not used anymore, we have the IND-CPA property of PSS which applies,
thus the view of E is indistinguishable from the one in the previous game.

- Game 3. We now modify the method to Infer the corrupt shares of the pss`,α broadcast by corrupt
senders `. First, decrypt the honest shares of pss`,α using, again, the honest secret keys (skh)h∈H. From

them, infer the corrupt shares using ShInferH. The infered shares are identical to the ones in the previous
game, by the property of ShInferH.

33

- Game 4. Honest players are now simulated, including generation of their their (pkh, skh)h∈H, as well
as all other honest senders, i.e., in L . Their behavior is the same as in the previous game, thus both views
have the same distribution.

But, in Game 4, the view is produced only from what is received from FLSSS and from the adversary,
without reading on the tapes of corrupt entities, i.e. without rewinding. Thus we are describing a simulator
in the Ideal execution.

C.4 Detailed construction of the linear secret sharing over Rq

Now for the details: consider an irreducible polynomial Q(T) ∈ Fp[T] of degree d := dlog(N + 1)e, then
an arbitrary lift Q in Z/qZ. Embed Rq in the Rq-algebra S := Rq[T]/Q, which we may also denote as
Gal(Rq, d). Now, in S = Gal(Rq, d) we have the sub-ring B := Z/qZ[T]/Q, denoted Gal(Z/qZ, d) the ”Galois
ring extension of degree d of Z/qZ” [ACD+19].

[
If it is not clear yet that B is a sub-ring: apply [AM69, ex

6 p32] to A := Z/qZ, M := Rq, B = Gal(Z/qZ, d)
]
. But, recall from [ACD+19] that Gal(T/qT, d) has the

desired property to contain at least N + 1 = 2log(N+1) elements, denoted (α0 := 0, α1, ..., αN) such that all
pair-wise differences αi − αj for i 6= j are invertible

[
Concretely: choose the (αi)i=0,...,N as arbitrary lifts

modulo q of distinct elements of the finite field Fpd
]
. Thus we can apply to S and these evaluation points

(αi)i=0,...,N the same previous construction as for LSRq
. We obtain a S-linear secret sharing scheme over S:

LSS , in particular by the ring inclusion Rq ↪→ S, a Rq-linear secret sharing over Rq. Each share, which is in

S, can be encoded as d elements of Rq.
[
Concretely, LSS(s) is defined as: sample P at random in S[Y]

(s)
t ,

then output [P (αi)]i∈[N]. Then for reconstruction use the Lagrange polynomials Πj 6=i(X − αj)/(αi − αj).
]

C.5 Detailed Proofs

Recall that, although in general each share is in Rdq , where d := dlogp(N + 1)e when q is some power of p,
for simplicity, in the remaining we do as if shares were in Rq.

C.5.1 Uniformity of any t shares of any given secret.

Property 12. For every s ∈ Rq, for any subset of t indices I ⊂ [N], the distribution of shares (s(i))i∈I
output by LSRq

.Share(s) is U(Rtq).

Proof. By surjectivity (isomorphism) of Eval{0}∪I : Rq[Y]t → Rt+1
q for any t-sized I , we have surjectivity

(isomorphism) of EvalI : Rq[Y]
(s)
t → Rtq for any fixed s ∈ Rq. Furthermore, the map EvalI being also linear,

we have in conclusion that it maps the uniform distribution onto the uniform distribution.

C.6 Proof of IND-CPA of Public Secret Sharing

We are going to show a bit more than IND-CPA. We consider a game in which the adversary APSS can select
t indices I ⊂ [N] to corrupt, without any further information given to it at this stage. Then the oracle OPSS

generates [N] public keys for PKE and shows them to APSS. Furthermore, it reveals to APSS the t secret keys
with indices in I . Then OPSS tosses a bit b and subsequently responds to encryption requests from APSS

as follows. Either (b = 1) then OPSS returns to APSS, upon each plaintext s chosen by APSS, a correctly
generated PSS of s of its choice, or, if (b = 0), a sample of the following distribution, which we denote V
such that:

• the entries in I are PKE encryptions of uniform independent values in Rq;

• the remaining entries are PKE encryptions of 0.

34

Since this distribution V is independent from s, the indistinguishability that we claim indeed implies IND-
CPA.

We are going to bound the advantage by any adversary APSS, by the maximum advantage of an adversary
AE against oracle OE of the following (N − t)-keys variant indistinguishability game for PKE. The latter is
upper-bounded by (N − t) times the advantage for one-message indistinguishability, see e.g. [BS20, Thm 5.1]
or our proof of Corollary 14, which is identical. OE samples (N−t) PKE public keys (pkPKEh)h∈H which it gives
to AE . OE tosses a bit b ∈ {0, 1} and subsequently has the following behavior: When AE submits (N − t)
chosen plaintexts (sh)h∈H to OE either (b = 0) then OE returns (N − t) encryptions of 0: (Enc(pkPKEh , 0))h∈H
, or: (b = 1) then OE returns actual encryptions of the plaintexts (Enc(pkPKEh , sh))h∈H.

The reduction is as follows. Upon receiving a set of keys (pkPKEh)h∈H from OE , then AE samples itself
t key pairs (skPKEi , pkPKEi)i∈I , initiates APSS, reorganizes the indices so that the indices chosen by APSS

correspond to I , gives to APSS the total N = |H|+ |I | public keys and furthermore gives to AE the t secret
keys (skPKEi)i∈I .

Upon receiving one challenge plaintexts s from APSS, AE computes the first step of PSS on it, namely:
(s(1), ..., s(N)) ← LSRq

.Share(s). It then sends the challenge (N − t) plaintext messages:
(
s(h))h∈H to OE .

Upon receiving the response ciphertexts (ch)h∈H from OE , it then computes the N -sized vector V consisting
of:

• The entries in I equal to correct encryptions
{

Enc(pkPKEi , s(i))i∈I
}

that AE generates itself.
• The remaining entries are set to the {ch}h∈H received from OE .

And sends it to APSS as response to its challenge. Upon answer a bit b from APSS, then AE outputs the
same bit b to OE .

• in the case where the ciphertexts {ch}h∈H are encryptions of the actual N − t shares {s(h)}h∈H, then
APSS receives from AE a correctly generated PSS of s.

• in the case where the ciphertexts {ch}h∈H are encryptions of 0, then, by Property 12 of uniform indepen-
dence of the t plaintext shares

(
s(i))i∈I , we have that what APSS receives from AE is undistinguishable

from a sample in the distribution V .

Thus in both cases b ∈ {0, 1} , APSS is faced with the same distribution as would have been generated by
oracle OPSS for the same b, thus the distinguishing advantage of AE is the same as the one of APSS.

Handling semi-adaptive security Notice that, although not necessary for our MPC model, where corruptions
are done ahead of publications of keys of honest players, one could have imagined a game in which APSS first
sees n public keys, then subsequently chooses for which t ones it wants to be revealed the secret keys. However
we do not consider corruptions after decryption shares are issued, thus the terminology “semi-adaptive”.

We can compile the reduction above to this semi-adaptive setting, although with an exponential loss
in n, as follows. AE , upon having received the (pkPKEh)h∈H from OE , and sampled itself the t key pairs
(skPKEi , pkPKEi)i∈I , shuffles the indices at random. Then it gives the N public keys to APSS, which queries t
indices of which it wants to be revealed the secret keys. In the case where AE would not known at least one
secret key of these t out of N indices then AE simply outputs a bit b at random to OE .

Otherwise, it means that APSS queried exactly the t indices which were previously the ones, denoted I ,
which A generated itself. Thus in this case AE opens the secret keys to APSS and we are exactly in the
same situation as in the non-adaptive game. Notice however that this situation happens with probability in
1/
(
N
t

)
,

D Complements on BFV + CDKS∗

Roadmap: This section builds on the description of BFV as a standalone public key encryption, done in
Section 3.1.2. First, in Appendices D.1 to D.3, we recall some generalities and cryptographic tools, that we
will use throughout this section. In Appendix D.4, we: detail our alternative relinearization key generation

35

algorithm, prove its security under a circular security assumption formalizing [CDKS19], and prove its secu-
rity when used to distributively generate a common relinearization key. As a result, it provides the solution
to the challenge of robust distributed generation of a relinarization key, as summarized in Section 6.1.1. Then
in Appendix D.5 we introduce the decryption noise and prove, as a warmup, correctness of the decryption
of a fresh encryption. In Appendix D.6, we detail the homomorphic properties that can be added to the
standalone scheme. Finally in Appendix D.7, we perform a complete noise analysis after homomorphic eval-
uation of a circuit. Of course, security of MPC will be proven as a whole (in Section 7.1 and appendix H.3),
re-using all the results of this section.

Opening Remark: As in Section 3.1.2, we specify our algorithms as taking a uniform random string as input.
It comes in the form of two vectors (a,d1) ∈ (Rlq)

2, of which a = a[0] is, as described in Section 3.1.2,
used to generate public encryption keys. The other components of the vectors will be used to generate
the relinearization keys. As a result, all functions that took some parameter a ∈ Rq as input variable, are
naturally extended to handle input a ∈ Rlq. In particular, BFV.KeyGen now returns (b,a) ∈ Rl×2q . Although
in [FV12] the uniform random string a is sampled locally uniformly in Rq by KeyGen, our DKG requires that
a is common and sampled in Rlq by GURS, to enable some form of additivity. The same goes for d1: while
in the relinearization key of [CDKS19] it is sampled locally by each key owner, we require instead that it is
equal to a fixed public uniform random string (URS). We refer to Corollary 14 then Appendix H.1 for why
IND-CPA is preserved even if these parameters are drawn from the URS, as we specify. This analysis will
be an ingredient in the proof of the MPC in Section 7.1.

D.1 Generalities

Notation. For any element r̃ = Σn−1
i=0 r̃iX

i ∈ R, we define its infinity norm as ‖r̃‖ := maxi |r̃i|. For r ∈ Rq,
let us consider the unique representative r̃ = Σn−1

i=0 r̃iX
i ∈ R such that r̃i ∈ [−(q − 1)/2, ..., (q − 1)/2] for all

i. Then we define ‖r‖ := ‖r̃‖. For two vectors u,v we denote 〈u,v〉 the dot product and, for a third vector
w, we denote u<·>(v,w) :=

(
〈u,v〉 , 〈u,w〉

)
. Recall that we denote ∆ = bq/kc,the integer division of q by

k. We denote vectors of some length l (see §D.2) in bold, e.g. a. For such vector r = (r1, . . . , rl) ∈ Rlq, we
define ‖r‖ := maxi |r̃i|. Finally, ⊗ : R2

q ×R2
q → R3

q denotes the tensor product.

For two polynomials p and d in Rq whose polynomial modulus s a degree-n power of 2 cyclotomic, we
have

(3) ‖pd‖ ≤ n‖p‖‖d‖.

The proof of this inequality is straightforward and it can be found in [BCN18, Lemma 2].

Distributions. Motivated by computational optimizations discussed in [FV12; CH18; CDKS19], we specify
n as a power of two, f := Xn + 1 the 2n-th cyclotomic polynomial, and thus q odd. According to [ACC+21,
p. 2.1.5], this enables to sample Ψq as: univariate polynomials with coefficients following a discrete Gaussian
distribution centered at zero, then reduced modulo q. From the variance σ2 of the distribution, one can derive
an integer B such that the norms of coefficients are lower than B with overwhelming probability. Similarly,
we consider an encryption distribution BEnc,q bounded by some value BEnc, i.e. for an element sampled
in BEnc,q the norms of coefficients are lower than BEnc with overwhelming probability. We specify Xq as
in [FV12, p5], [CDKS19, §6] and [MTBH21], as: polynomials in Z[X]/(Xn + 1) with coefficients varying
uniformly in {−1, 0, 1}, then reduced modulo q.

Semi-malicious adversaries are not required to sample correctly, they are only required to have values of
samples on their witness tapes, which are within the essential bounds on norms of the respective distributions,
i.e., 1, B, BEnc and Bsm. Thus, the definitions and bounds which we now provide are worst cases over the
following choices:

- a and d1, both in Rlq;

36

- for all i ∈ [N]: ski and ri, in Rq and both of norm ≤ 1; e
(pk)
i , e

(rlk)
0 and e

(rlk)
2 ; in Rlq and all of norms ≤ B;

- deduce from these, for all i ∈ [N] the additive contributions to encryption and relinearization keys, namely:
(ski, eki) and (d0,i,d2,i);

- Sum them into the threshold key (sk, ek) and the relinearization key rlk.

D.2 Gadget Decomposition.

Let us define the widely used, e.g., [GSW13; CDKS19; GMP19], gadget toolkit :

1. Gadget vector: g = (g0, g1, ..., gl−1) ∈ Rlq ; and integers l and (small) Bg;
2. The gadget decomposition denoted g−1(.): on input any x ∈ Rq, decomposes it into a vector u =

(u0, ..., ul−1) ∈ Rl of (small) coordinates, i.e, ‖ui‖ ≤ Bg for all 0 ≤ i ≤ l − 1, such that Σl−1
i=0ui.gi =

x (mod q).

D.3 Ring Learning with Errors.

Let Ψq and Xq be distributions over Rq. The decisional -Ring Learning with Errors (RLWE) [LPR13a]
assumption with parameter (Rq,Xq, Ψq) can be stated as follows: for a fixed secret sample s $←−Xq, then
any polynomially long sequence of samples in R2

q of the form (ai, bi = s ai + ei)i, where ai ← U(Rq), and
ei ← Ψq, is computationally indistinguishable from a uniform random sequence of elements of R2

q .

D.4 Relinearization Key Generation

BFV + CDKS∗ differs from BFV in its relinearization key generation algorithm that we now describe.

D.4.1 Alternative Relinearization Key Generation, adapted from [CDKS19] Recall from Sec-
tion 6.1.1 that we now consider two uniform random strings (a,d1) ∈ (Rlq)

2. To generate a relinearization
key rlk, we use the following CDKS function:

(d0,d2) ∈ Rl×2q ← CDKS(a,d1, sk): Given sk ∈ Rq and (a,d1) ∈ Rl×2q :

1. Sample r $←−Xq.

2. Sample e
(rlk)
0

$←− Ψ lq, and set d0 = −sk d1 + e
(rlk)
0 + r g

3. Sample e
(rlk)
2

$←− Ψ lq and set d2 = r a + e
(rlk)
2 + sk g

and set rlk = (d0,d1,d2).

D.4.2 Circular Security Hardness Assumption of [CDKS19]. The multikey FHE (MFHE) scheme
of [CDKS19] has its security based on the hardness of RLWE with parameter (n, q,Xq, Ψq) since it uses
the same encryption algorithm as BFV. In addition, they make a circular security assumption under which
their MFHE remains secure even if (b, rlk) is given to the adversary. Precisely, this assumption implies that
(b, rlk) is computationally indistinguishable from the uniform distribution over R4

q . We now show that our
modified relinearization key generation, i.e., with a common public randomness d1, remains secure under
their assumption.

We detail in §D.4.4 how this circular security shows up in [CDKS19] with their notations. For our usage,
we now state this assumption under a more concrete equivalent form, called Assumption 13. Consider an
oracle OD0

which samples a $←− U(Rlq) then KeyGenerates one BFV key pair (sk, ek), then samples d1
$←− U(Rlq),

then, using CDKS(a,d1, sk), computes from it one public relinearization key rlk = (d0,d1,d2) then outputs
the pair (ek, rlk). Then, any adversary has negligible advantage in distinguishing this single output from a
single sampling in U(Rl×5q).

37

Assumption 13. Define the distribution:

D0 :=
{

(b,a,d0,d1,d2) : (a,d1)← U(Rlq)
2, sk←Xq, (e

(pk), e
(rlk)
0 , e

(rlk)
2)← (Ψ lq)

3,

r ←Xq, b := −a sk + e(pk), d0 := −sk d1 + e
(rlk)
0 + r g, d2 := r a + e

(rlk)
2 + sk g

}
Then the maximum distinguishing advantage AdvλD0

between a single sample in D0 and in U(Rl×5q), is
negl(λ).

Very briefly, they first define a RLWE-based symmetric encryption scheme denoted UniEnc, for which
they state (p7) and prove (§B.1) indistinguishability from uniform randomness of any pair {BFV public key;
encryption of some chosen plaintext encrypted with UniEnc using the BFV secret key}, then they make the
circular security assumption that indistinguishability still holds if one replaces the chosen plaintext by the
BFV secret key itself.

D.4.3 Distributed Relinearization Key Generation To distributively generate a common relineariza-
tion key rlk, we can leverage the additional linearity given by the common d1 (recall that in [CDKS19], d1

is sampled locally). In short, we let each player Pi compute additive contributions to the relinearization key
(d0,i,d2,i) ← CDKS(a,d1, ski) and broadcast them. From a set S of players who have correctly broadcast
their additive contributions to the key (d0,i,d2,i)i∈S , we can then compute a common

rlk := (Σi∈Sd0,i,d1, Σi∈Sd2,i)

For our use-case of distributed generation of a common rlk, let us show that Assumption 13 extends to
the setting where several players, which are performing the distributed relinearization key generation, use
the same URS to do this generation, just as we specified. We formalize it as the following Corollary 14.
This statement, and the kind of reduction used to obtain it, is standard in lattice-based cryptography since
at least [BPR11]. We first state a more concrete equivalent statement, for later use in the proof of MPC.
Consider a public sampling of a uniform string (a,d1) ∈ U(Rl×2q), e.g., by GURS. Consider a polynomial
number M of independent machines, each of them generates a key pair (skm, ekm) by using BFV.KeyGen, all
using the common public a. Likewise, each machine m generates [d0,m,d2,m]← CDKS(a,d1, skm). Then the
collection of the public data issued by these machines {bm,d0,m,d2,m}m∈[M], jointly with the public (a,d1),

is still indistinguishable from one sample in U(R
(l×3)M
q ×Rl×2q).

Corollary 14 (Security with Common Public Randomness). Consider:

DM0 :=
{{

bm,d0,m,d2,m

}
m∈M ,a,d1 : (a,d1)← U(Rlq)

2, and

∀m ∈ [M] : skm ←Xq, (e(pk)
m , e

(rlk)
0,m , e

(rlk)
2,m)← (Ψ lq)

3, rm ←Xq, bm := −a skm + e(pk)
m ,

d0,m := −skm d1 + e
(rlk)
0,m + rm g, d2,m := rm a + e

(rlk)
2,m + skm g

}
Then the maximum distinguishing advantage AdvλDM

0
between a single sample in DM0 and in U(R

(l×3)M
q ×

Rl×2q), is bounded by MAdvλD0
.

Proof. Consider a cascade of oracles O0 := ODM
0
,O1, . . . ,OM such that each Oi returns the first i components

of R
(l×3)M
q in U(R

(l×3)i
q) and the remaining ones as in DM0 . Then the distinguishing advantage between two

consecutive Oi is at most AdvD0
, as a straightforward reduction shows.

D.4.4 How Assumption 13 appears in [CDKS19] Assumption 13 appears in [CDKS19] with the
following notations. They define a RLWE-based symmetric one-time encryption scheme with plaintexts in
Rq and ciphertexts in R3×l

q , denoted UniEnca, parametrized by a ∈ Rlq. In their use case, a ∈ Rlq is the
URS which is also used to generate (sk, (b,a)) ← BFV.KeyGen(a), exactly as in our MPC setting. Then,
they state in their (Security) formula p7, and prove in §B.1 that for any (chosen plaintext) µ, we have that:

38

for a sampling a ← U(Rlq), followed by a sampling (sk, (b,a)) ← BFV.KeyGen(a), followed by one single
randomized encryption UniEnca(sk, µ), then the single output (b, UniEnca(sk, µ)) is indistinguishable from
a single sample in U(Rl×5q). Next, they assume that (Security) also holds when the chosen µ is replaced by
the secret key sk itself, which is exactly what we spelled-out in Assumption 13. Concretely, in their UniEnca,
the r in our D0 shows up as the secret encryption randomness, while the d1 is specified in UniEnc to be
sampled uniformly when encrypting.

D.5 Warmup: Correctness & Decryption Noise of a Fresh Encryption

We first introduce some definitions:

Def-Prop 15 (Decryption noise). Let c ∈ C , m ∈ Rk and sk ∈ Xq. We define the “decryption noise”
as e(Dec)(c, sk,m) := Λc

Dec(sk)−∆.m.

Proposition 16 (Correctness). Let c = (c[0], c[1]) ∈ R2
q , m ∈ Rk and sk ∈ Xq. It satisfies the trivial

property that if |e(Dec)(c, sk,m)| < ∆
2 , then, BFV.Dec(sk, c) = m.

We now formalize the set in which belong the outputs of BFV.Enc. For any m ∈ Rk, we denote as a

“Fresh BFV Encryption of m”, any element of R2
q of the form: c = (∆m+ u. b+ e

(Enc)
0 , u a+ e

(Enc)
1), where

‖u‖ ≤ 1,
∥∥∥e(Enc)0

∥∥∥ ≤ BEnc and
∥∥∥e(Enc)1

∥∥∥ ≤ B. Let us denote e(fresh) := e(Dec)(c, sk,m) := c[0] + c[1] sk−∆m
its decryption noise (Def-Prop 16).

Recall that by definition we have that c[0] + c[1] sk = ∆m+ e(fresh). With e(pk) = e(pk)[0], we have

c[0] + c[1] sk = ∆m+ ub+ e
(Enc)
0 + sk a u+ sk e

(Enc)
1

= ∆m+ (−��sk a+ e(pk))u+ e
(Enc)
0 +���sk a u+ sk e

(Enc)
1

= ∆m+u e(pk) + e
(Enc)
0 + sk e

(Enc)
1︸ ︷︷ ︸

e(fresh)

(4)
∥∥∥e(fresh)∥∥∥ ≤ BEnc + n‖e(pk)‖+ nB ‖sk‖ := Bfresh

where ∆ =
⌊
q
k

⌋
.

D.6 Homomorphic Properties

We add homomorphic capabilities to BFV + CDKS∗ and perform a complete noise analysis in §D.6.1 and
§D.6.2

• (Addition) BFV.Add(c1, c2): Return c = c1 + c2 ∈ R2
q .

• (Multiplication) BFV.Mult(c1, c2, rlk,b): Compute ĉ =
⌊
k
q c1 ⊗ c2

⌉
∈ R3

q and return c′ ← Relin(ĉ, rlk,b)

(cf Appendix D.6.2).

• BFV.Eval(C, (c` ∈ R2
q)`∈L , rlk,b), for a circuit C with |L | input gates: return the evaluation obtained

by applying BFV.Add and BFV.Mult gate by gate, with inputs the (c`)`∈L .

In §D.6.2, we upper-bound the additional noise introduced by BFV.Mult as the sum of the bounds given by
eqns (7) and (9). These bounds are obtained by particularizing the analysis of [CDKS19, §C.1] in the single
key setting, and turning their variances into essential upper-bounds.

From them we deduce:

Proposition 17 (Decryption noise of a product). Consider two BFV ciphertexts c1 and c2 of m1

and m2 respectively under a key
(
b = −a sk + b ,a

)
∈ R2×l

q , with decryption noises (Def-prop 16) denoted

e
(Dec)
i := ci[0] + ci[1] sk − ∆mi, i ∈ {1, 2}. Consider any (d0,d2) ← CDKS(a,d1, sk), rlk = (d0,d1,d2),

denote c′ := Mult(c1, c2, rlk,b), then e(Dec)(c′, sk,m1m2) is dominated by k.n2.‖sk‖(‖e(Dec)1 ‖ + ‖e(Dec)2 ‖) +

n2.l.Bg.‖sk‖(‖e(pk)‖+ ‖e(rlk)
2 ‖).

39

D.6.1 Noise Analysis of Addition Let us consider two ciphertexts c1 and c2 such that c1[0]+c1[1] sk =

∆m1 + e
(Dec)
1 and c2[0] + c2[1] sk = ∆m2 + e

(Dec)
2 . Let cadd = BFV.Add(c1, c2) be the homomorphic sum of

c1 and c2, and let us define the ”decryption noise of an addition” as e(add) := e(Dec)(cadd, sk,m1 +m2). Thus
we have cadd[0] + cadd[1] sk = ∆[m1 +m2]k + e(add), with m1 +m2 = [m1 +m2]k + k.r for ‖r‖ ≤ 1 and

‖e(add)‖ = ‖e(Dec)1 + e
(Dec)
2 + rk(q) r‖ ≤ ‖e(Dec)1 ‖+ ‖e(Dec)2 ‖+ rk(q)(5)

where rk(q) denotes the remainder of the integer division of q by k.

D.6.2 Noise Analysis of Multiplication & Relinearization Let us consider two ciphertexts c1 and

c2 such that c1[0] + c1[0].sk = ∆m1 + e
(Dec)
1 and c2[0] + c2[1].sk = ∆m2 + e

(Dec)
2 . Recall from §6.1.1 that the

multiplication of two BFV ciphertexts involves two steps that introduce noise: a tensoring operation followed
by a relinearization.

Tensoring First, let ĉ =
⌊
k
q c1 ⊗ c2

⌉
= (ĉ[0], ĉ[1], ĉ[2]). Let us define the “decryption noise of a three-terms

ciphertext ĉ with respect to secret key sk and plaintext m1m2”, and denote it e(tens), as:

(6) ĉ[0] + ĉ[1] sk + ĉ[2] sk2 = ∆[m1m2]k + e(tens)

Using [FV12, Lemma 2], we conclude that

‖e(tens)‖ ≤ nk (‖e(Dec)1 ‖+ ‖e(Dec)2 ‖) (n ‖sk‖+ 1) + 2k2 n2 (‖sk‖+ 1)2(7)

which is dominated by the first term. This shows that the noise is roughly multiplied by the factor 2 k n2 ‖sk‖.

Relinearization Second, a relinearization is performed using a key, denoted rlk, generated by the CDKS
algorithm detailed in §D.4. Recall that rlk = (d0,d1,d2) where (d0,d2)← CDKS(a,d1, sk), the latter being
defined as:
for (e

(rlk)
0 , e

(rlk)
2) $←− (Ψ lq)

2 and r $←−Xq; output (d0,d1,d2) =
(
−sk.d1 + e

(rlk)
0 + r.g,d1, r.a + e

(rlk)
2 + sk.g

)
.

Consider a three terms ciphertext ĉ with decryption noise e(tens) with respect to plaintext m (m1m2 in our
context) and secret key sk.

Let us now define an algorithm Relin, that takes as input ĉ = (ĉ[0], ĉ[1], ĉ[2]) ∈ R3
q , rlk =

(
d0,d1,d2

)
∈

(Rlq)
3,b ∈ Rlq, and outputs c′ = (c′[0], c′[1]) ∈ R2

q .

1 c′[0]← ĉ[0]
2 c′[1]← ĉ[1]
3 c′[2]←

〈
g−1(ĉ[2]),b

〉
4 (c′[0], c′[1])← (c′[0], c′[1]) + g−1(c′[2])<·>(d0,d1)
5 c′[1]← c′[1] +

〈
g−1(ĉ[2]),d2

〉
Let us denote e(relin) the additional decryption noise of c′, namely:

(8) ĉ[0] + ĉ[1] sk + ĉ[2] sk2 = c′[0] + c′[1] sk + e(relin)

Let us estimate the noise introduced by the relinearization. Recall that c′[2] =
〈
g−1(ĉ[2]),b

〉
. Let us

denote err1 =
〈
g−1(c′[2]), e

(rlk)
0

〉
and err2 =

〈
g−1(ĉ[2]) , sk e(pk) + e

(rlk)
2 sk

〉
. We have

〈
g−1(c′[2])<·>(d0,d1), (1, sk)

〉
= r.c′[2] +

〈
g−1(c′[2]), e

(rlk)
0

〉
= r.c′[2] + err1 and

40

〈
g−1(ĉ[2]),d2

〉
sk =

〈
g−1(ĉ[2]),−r b + e(pk) sk + e

(rlk)
2 sk + sk2.g

〉
= −r c′[2] + ĉ[2].sk2 +

〈
g−1(ĉ[2]), sk.e(pk) + e

(rlk)
2 .sk

〉
= −r c′[2] + ĉ[2].sk2 + err2.

We can now analyze the noise introduced by the relinearization. First, recall that g−1(.) decompose an
element x ∈ Rq into a short vector u = (u0, ..., ul−1) ∈ Rl such that 〈u,g〉 = x mod q with ‖ui‖ ≤ Bg for
i = 0, 1, ..., l − 1. In details, we can write

c′[0] + c′[1].sk = ĉ[0] + g−1(c′[2])<·>(d0,d1) +
(

ĉ[1] + g−1(c′[2])<·>(d0,d1)

+
〈
g−1(ĉ[2]),d2

〉)
sk

= ĉ[0] + ĉ[1].sk +
〈
g−1(c′[2])<·>(d0,d1), (1, sk)

〉
+
〈
g−1(ĉ[2]),d2

〉
sk

= ĉ[0] + ĉ[1].sk + ĉ[2].sk2 + err1 + err2

= ∆m+ e(tens) + e(relin)

with e(tens) introduced above and

‖e(relin)‖ ≤ ‖err1‖+ ‖err2‖ ≤ nBg‖e(rlk)
0 ‖+ n2 l Bg‖sk‖(‖e(pk)‖+ ‖e(rlk)

2 ‖)(9)

D.7 Correctness of Threshold Decryption after Homomorphic evaluation of a Circuit and
Noise Analysis

Let us now define then estimate the noise BC introduced during the evaluation of a circuit C, and formalize
at which condition the threshold decryption of a homomorphically evaluated ciphertext, does return the
correctly evaluated plaintext.

Def-Prop 18 (Decryption noise of a circuit: BC). For any arithmetic circuit C : RL
k → Rk, with

input gates indexed by L , we consider the largest norm of the decryption noise e(Dec)(c, sk, y) of a ciphertext
c, over the previous choices, and over the choices: of elements (m` ∈ Rk)`∈L , and of arbitrary fresh BFV
Encryptions of them following Share & Shrink (Fig. 4) (c`)`∈L ; denoting c := Eval(C, (c`)`, rlk,b) and
y := C((m`)`). From Def-Prop 15 and Fig. 5, it follows that, for any y and c as above, If the second
distributed decryption method is used with a level of noise Bsm such that:

BC +N.Bsm <
∆

4
(10)

Then: ΩDec

(
c[0] + c[1].sk

)
= y.

The noise introduced by evaluating C is dominated by the one introduced by multiplications rather
than additions, unless the width is much larger than L, which we do not assume in this estimation. Thus
we neglect, comparatively, the impact of |L |. Using Proposition 17, we estimate an upper bound on the
decryption noise of the evaluated ciphertext as:

CL1 .Bfresh + C2Σ
L−1
i=0 C

i
1 ≤ CL1 .Bfresh + L.C2.C

L−1
1(11)

with C1 = 2.k.n2.N and C2 = 2.n2.l2.N2.B.Bg.

41

E BFV + CDKS∗ Bootstrapping

E.1 Bootstrapping Key Generation

The “Bootstrapping” of a single-key FHE ciphertext is a local computation that homomorphically brings
back the size of its decryption noise, roughly to the one of a fresh ciphertext. Our starting point is the one
described in [CDKS19, §5] in their context of multikey BFV. As we did for relinearization, we particularize
it to our single-key context. Leaving all details in §E, let us just mention that two elementary homomorphic
operations in bootstrapping require an auxiliary key. The latter consists of a collection of keys, indexed by
j ∈ (Z/2n)∗, constructed as follows in the single key setting. Let sk be the decryption key, considering τj
over Rq, sample h1 ← U(Rlq) and e(bk) ← Ψ lq and output bk(j) :=

(
h1, h0(j) = −sk h1 + e(bk) + τj(sk) g

)
.

We enrich the MPC protocol with generation of this bootstrapping key without changing the commu-
nication complexity, as follows. Receive h1 ← U(Rlq) from GURS. For each player i, let ski be its additive
contribution to the secret key, used in the DKG.

• BkKG(h1, ski, j): Given a secret key contribution ski, sample e
(bk)
i ← Ψ lq and compute h0,i(j) = −ski h1 +

e
(bk)
i + τj(ski) g.

Remark 1. To add bootstrapping in the UC simulation, we must enlarge the assumption 13 in order to take
into account these new keys. This is done implicitly in [CDKS19]. From such enlarged assumption, we deduce
the analogous of Corollary 14, w.r.t. h1 ← U(Rlq).

E.2 Bootstrapping Pipeline

We follow the bootstrapping of [CDKS19] for multikey FHE and particularize it in our single-key context.
In short, they follow the algorithm improved by [CH18], that consists in four steps, denoted as (1) Modulus
raise, (2) Linear Transformation, (3) Extraction and (4) the Inverse Linear Transformation.

Technically, the linear transformation requires the homomorphic evaluation of the rotation of plaintext
slots. In addition [CDKS19] also require the homomorphic evaluation of “Galois elements slot-by-slot”. In
[GHS12, p23] it is explained how these two evaluations, i.e., operations on plaintexts, can be decomposed
into additions, scalar multiplications and applications of automorphisms of Rk = Zk[X]/(Xn + 1), denoted
{τj , j ∈ (Z/2n)∗}, each being defined by: X → Xj . In [CDKS19], it is observed that homomorphic evaluation
of each τj can be realized with the auxiliary key, which we denoted as

(
h0(j), h1

)
whose technical purpose

is “key-switching”.

In some more details, given a ciphertext c = (c[0], c[1]) ∈ R2
q of m, the goal is to homomorphically

evaluate τj on the plaintext, i.e. to find c′ such that 〈c′, s〉 = τj(〈c, s〉). To achieve this, we first compute
τj(c) = (τj(c[0]), τj(c[1])) the ciphertext obtained by taking τj to the entries of c. Then τj(c) is a valid
encryption of τj(m) corresponding the secret key τj(sk). The key-switching procedure is then applied to
τj(c), which has for consequence to generate a new ciphertext encrypting the same message under the original
secret key s instead of τj(s). This key switching algorithm presented below is adapted from [CDKS19].

E.3 Key Switching algorithm (adapted from [CDKS19])

We now provide the key switching method KeySwitch and then discuss its correctness. It takes as input
c = (c[0], c[1]) ∈ R2

q ,bk = [h0|h1] ∈ (Rlq)
2, and outputs c′ = (c

′
[0], c

′
[1]) ∈ R2

q as follows:

1 c
′
[0]← τj(c[0])

2 c
′
[0]← c

′
[0] +

〈
g−1(τj(c[1])),h0

〉
3 c

′
[1]←

〈
g−1(τj(c[1])),h1)

〉
42

Correctness From the definition and with s = (1, sk), the output ciphertext c′ = (c
′
[0], c

′
[1])← KeySwitch(c,bk)

holds

c
′
[0] + c

′
[1] sk = τj(c[0]) +

〈
g−1(τj(c[1])),h0

〉
+
〈
g−1(τj(c[1])),h1)

〉
≈ τj(c[0]) +

〈
g−1(τj(c[1])), τj(s).g

〉
= 〈τj(c), τj(sk)〉 = τj(〈c, s〉)

as desired.

F Detailed Protocol ΠFLSSS when instantiated from BFV + CDKS∗

In Fig. 11, we detail our MPC protocol ΠFLSSS when instantiated from BFV + CDKS∗, that we adapt to our
distributed use-case. Notably, we use the alternative version of relinearization key generation presented in
Appendix D.4.1, and follow Appendix D.4.3 to make it distributed. Note that this requires uniform random
strings a and d1 to be in Rlq, and to be common parameters in to allow some form of additivity (they were

previously sampled locally in [FV12] and in [CDKS19] respectively). As a consequence, the function BFV.KeyGen
detailed in section 3.1.2 that took some parameter a ∈ Rq as input variable, is naturally extended to handle
input a ∈ Rlq and to return a public key (b,a) ∈ Rl×2q).

The choice of parameters are discussed in section 6.2. Moreover, for security and correctness, we require
Equation (10); and:

BC

Bsm
= negl(λ) and

2nNB

BEnc
= negl(λ) .(12)

// the former will be used in Lemma 22, the latter in Lemma 23

G Practical Parameters Estimation

Recall that the common encryption key generated by the DKG comes as a BFV + CDKS∗ single-key, of the
form (b,a) ∈ R2l

q , thus of total bit-size n.l. log q. Likewise, the common relinearization key is of the form

(d0,d1,d2) ∈ R3l
q , thus of total bit-size 3.n.l. log q. In the table below we recall the parameters used in

[CDKS19, 6.2, Table 2] (which are default settings in the library “SEAL”). Notice that in their table, l
is instead denoted “#pi”. The authors indicate that these parameters were chosen following the “the HE
security standard” [ACC+21], in order to achieve at least 128bits of security. Also, recall that [ACC+21]
advises to set σ = 3.2.

n log q l
213 218 4
214 438 8
215 881 16

Table 3: Parameters of [CDKS19, 6.2, Table 2], calibrated for at least 128 bits security according to [ACC+21].

43

Protocol ΠFLSSS instantiated from BFV

Participants: N players P1, . . . , PN and |L | input owners;
Inputs (for each input owner ` ∈ L): a plaintext ∆m` with label ∆m`.

Setup. Each player Pi:

• Sends (Setup) to FLSSS

• Obtains common uniform strings (a,d1)← GURS.

Broadcast.

• Input and Randomness Distribution: Upon ready from FLSSS, each input owner ` ∈ L :

1 Samples u $←−Xq, e
(Enc)
0

$←− BEnc,q and e
(Enc)
1

$←− Ψq and sends

(input, {∆m`, u`, e
(Enc)
0,` , e

(Enc)
1,` }, {∆m`, u`, e

(Enc)
0,` , e

(Enc)
1,` }) to FLSSS. Then it goes offline.

• Distributed Keys Generation: Upon ready from FLSSS, each player Pi:

1 Computes (ski, (bi,a)) ← BFV.KeyGen(a) and (d0,i,d2,i) ← CDKS(a,d1, ski). Sends

(input, ski, ski) to FLSSS and (bi, (d0,i,d2,i)) over BCPi .

• Distributed Smudging Noise Generation: Upon ready from FLSSS, each player Pi:

1 Samples esm,i
$←− [−Bsm, Bsm] and sends (input, esm,i, esm,i) to FLSSS. //Once for each subsequent

distributed decryption, if multiple circuits

Local computation. For all ` ∈ L , each player waits to receive (stored, `, ∗`) from FLSSS for all fours
variables of `’s “input and randomness distribution”; then sets Sc ⊂ L the `’s for which no ∗` = ⊥.
For all P ∈P, each player waits to receive (stored, P, ∗P) from FLSSS for both instances in “distributed
Keys Generation” and in “Distributed Smudging Noise Generation”, and an output from all instances
of (BCP)P∈P ; then sets S ⊂P the set of players for which no instance returned ⊥.
Each player Pi:

• ∀j ∈ S, parses the outputs of BCPj as (bj , (d0,j ,d2,j)) and computes b = Σj∈Sbj and rlk =
(Σj∈Sd0,j ,d1, Σj∈Sd2,j). Sets a = a[0] and b = b[0], and define the secret key as sk = Σi∈Sski and
the smudging noise esm = Σi∈Sesm,i //accessible through FLSSS, via the labels sk, esm

Asynchronous step. Each player Pi:

2 ∀` ∈ Sc, given labels (∆m`, u`, e
(Enc)
0,` , e

(Enc)
1,`), a key ek = (b, a), sends(

LCOpen, Λb,aEnc(∆m`, u`, e
(Enc)
0,` , e

(Enc)
1,`)

)
to FLSSS, and obtains a ciphertect c`.

Evaluation: To evaluate a circuit C, each player Pi:

3 Computes c← BFV.Eval(C, {cj}j∈Sc , rlk,b).

Distributed Decryption: Each player Pi:

3 Given labels (sk, esm), and a ciphertext c, sends
(
LCOpen, Λc

Dec+sm(sk, esm)
)

to FLSSS.

• Upon receiving (Λc
Dec, µ) from FLSSS, outputs m := ΩDec(µ).

Fig. 11: Protocol ΠFLSSS instantiated from BFV

44

H Further Details on the Proof of Theorem 3

H.1 Pseudorandomness of BFV ciphertexts with uniformly generated public keys

First, we want to prove that considering a public key sampled uniformly at random, the ciphertext produced
by BFV.Enc are pseudorandom under the RLWE assumption. The reason is that in the context of Hybrid3,
i.e., in Lemma 23 the view of E is very similar to the one of the BFV scheme, except that the key is uniformly
random. We formalize it by the game Semantic shown below:

Setup : The challenger generates samples a,b $←− U(Rlq) and sends (a,b) to A.

Query : A chooses a m ∈ Rk and sends it to the challenger.

Challenge The challenger picks a random β ∈ {0, 1}.
• If β = 0, it chooses c∗ = (c∗0, c

∗
1) $←− R2

q uniformly at random.

• If β = 1, it generates a valid ciphertext c∗ = (c∗0, c
∗
1)← BFV.Enc(ek = (b[0],a[0]),m).

Guess A gets c∗ = (c∗0, c
∗
1) and outputs β′ ∈ {0, 1}. It wins if β′ = β.

Lemma 19. Let pp = (Rq, l,Xq, Rk, Ψq) be parameters such that Assumption 13 holds and BEnc,q that
satisfies Equation 12 in §5. Then for any PPT adversary A, the function AdvCPASemanticA (λ) :=

∣∣Pr[β =

β′]− 1
2

∣∣, denoted as the advantage of A, is negligible in λ.

Proof. In case β = 1, the adversary is returned the pair (∆m + u.b + e
(Enc)
0 , a.u + e

(Enc)
1) ∈ R2

q , where the

fixed u $←−Xq, e
(Enc)
0

$←− BEnc,q and e
(Enc)
1

$←− Ψq are secretly sampled. Subtracting the known ∆m from the
left component, the pair constitutes 2 RLWE samples, namely: sample a fixed u $←−Xq, then construct the

first RLWE sample with (b← U(Rq), e
(Enc)
0 ← BEnc,q) and the second one with (a $←− U(Rq), e

(Enc)
0

$←− Ψq).
Thus, by RLWE for (Xq, Ψq), and thus a fortiori for (Xq,BEnc,q) (Equation 12), the two RLWE samples
are indistinguishable from a sample in U(R2

q).

H.2 IND-CPA under Joint Keys

In [AJL+12, Lemma 3.4], it is proven that an adversary cannot distinguish the ciphertext of a chosen
plaintext from a random string, even if the ciphertext if encrypted under a key of the form ek = (b+ b′, a),
where b′ is adaptively generated by the semi-honest adversary after it saw b. Our goal is to adapt their
result in the RLWE setting. Since we need only this result in the context of Hybrid3, i.e., in Lemma 23,
we can consider that the honest key ek = (b, a) is generated uniformly at random, instead of generated by
BFV.KeyGen. We consider an experiment JointKey(Rq, l,Xq, Rk, Ψq,BEnc,q) between an attacker A and a
challenger defined as:

Setup The challenger generates samples a,b $←− U(Rlq) and sends (a,b) to A.

Query A adaptively chooses: t pairs (ski, e
(pk)
i)i∈I , both terms being either ⊥ or such that ‖ski‖ = 1 and

‖e(pk)
i ‖ ≤ l B. Define sk′ := Σi∈Iski where the ⊥ values are set to 0, and likewise for e(pk) :=

∑
i∈I e

(pk)
i .

A outputs
{
b′ = −a.sk′ + e(pk), (sk′i)i∈I , (e

(pk)
i)i∈I

}
to the challenger, along with some m ∈ Rk of its

choice.

Challenge The challenger sets pk = b + b′ and picks a random β ∈ {0, 1}.
• If β = 0, it chooses c∗ = (c∗0, c

∗
1) $←− R2

q uniformly at random.

• If β = 1, it generates a valid ciphertext c∗ = (c∗0, c
∗
1)← BFV.Enc(ek = (pk[0],a[0]),m).

Guess A gets c∗ = (c∗0, c
∗
1) and outputs β′ ∈ {0, 1}. It wins if β′ = β.

Lemma 20. Let pp = (Rq, l,Xq, Rk, Ψq) be parameters such that Assumption 13 holds and BEnc,q that
satisfies Equation 12 in §5. Then for any PPT adversary A, we have:

Pr
[
JointKeyA(Rq, l,Xq, Rk, Ψq,BEnc,q) = 1

]
− 1/2 = negl(λ).(13)

45

Proof. We construct an adversary A′ playing the game of Lemma 19. A′ uses as black box an adversary A
for JointKey(Rq, l,Xq, Rk, Ψq,BEnc,q), as follows. The challenger gives A′ the value (b,a), and a ciphertext
(c0, c1) which is either chosen as BFV.Enc(ek = (b[0],a[0]), 0) (β = 1) or is a sample in U(R2

q) (β = 0). Then

A′ gives b to A and gets back
(
b′ = −a.sk′ + e(pk), sk′, e(pk),m

)
from A, where m is a challenge plaintext.

Finally, A′ sets (c∗0, c
∗
1) = (c0 − c1.sk′, c1) ∈ R2

q , sends it to A and outputs the bit β′ obtained from A.
It is easy to see that if β = 0, then (c∗0, c

∗
1) is uniformly random. On the other hand, if β = 1, we can

write c0 = u.b + e
(Enc)
0 ∈ Rq and c∗1 = u.a + e

(Enc)
1 ∈ Rq for some u $←−Xq, e

(Enc)
0

$←− BEnc,q, e
(Enc)
1

$←− Ψq
and b = b[0], a = a[0], and with e(pk) = e(pk)[0] :

c∗0 = u.b+ e
(Enc)
0 − c1.sk′ = u.b+ e

(Enc)
0 − (u.a+ e

(Enc)
1).sk′

= u(b+ b′) + e
(Enc)
0 − e(Enc)1 .sk′ − u.e(pk)

s≡ u.(b+ b′) + e
(Enc)
0

The last equality states a statistical indistinguishability between the distributions of e
(Enc)
0 − e(Enc)1 .sk′ −

u.e(pk) and of e
(Enc)
0 , which we now prove. To start with, from equation (3), we have both ‖e(Enc)1 .sk′‖ ≤ nNB

and ‖u.e(pk)‖ ≤ nNB. Thus, ‖e(Enc)1 .sk′ − u.e(pk)‖ ≤ 2nNB. But on the other hand, ‖e(Enc)0 ‖ ≤ BEnc. We
conclude since the parameters are chosen such that 2nNB

BEnc
= negl(λ) (cf Equation (12) in §D.7). This

conclusion can be formalized as the “smudging Lemma 21” below, which implies that, in the sum e
(Enc)
0 −

e
(Enc)
1 .sk′ − u.e(pk), we have that the distribution of −e(Enc)1 .sk′ − u.e(pk) is “smudged-out” by the one of

e
(Enc)
0 . Therefore, A′ acts indistinguishably from the challenger of the Game of Lemma 19, thus has the

same advantage as A.

The following lemma states that two distributions differing by a small noise, can be made indistinguish-
able by adding an exponentially larger “smudging” noise to both. Its parameters were recently improved
in [DDE+23, Lemma 2.3], in our use-case where the smudging noise comes itself as the sum of several
contributions (sampled uniformly by honest players).

Lemma 21 (Smudging lemma [AJL+12]). For B1, B2 positive integers and e1 ∈ [−B1, B1] a fixed inte-
ger, sample e2 uniformly at random in [−B2, B2]. Then the distribution of e2 is statistically indistinguishable
from that of e2 + e1 if B1/B2 = ε, where ε = ε(λ) is a negligible function.

H.3 Full Details of the Proof of Theorem 3

H.3.1 Description of the Simulator S of ΠFLSSS S Initiates in its head: sets of N players and L of
Owners, and may initially receive corruption requests from E for arbitrarily many owners and up to t players,
indexed by I ⊂P. It simulates functionalities BC,FLSSS following a correct behavior, apart from the value
returned by FLSSS in the Output computation. For instance, receiving activate from E intended to some
functionality, S internally sends it to the functionality then simulates the steps taken by the functionality
accordingly. Upon every output from a simulated functionality to a simulated corrupt player, or, upon every
message from a simulated functionality to the simulated A, then S immediately forwards it to E , as would
have done the actual dummy A.

• Setup.

0 Simulates the setup of FLSSS, i.e., queries ReqInput for corrupt players then, upon receiving Setup or
activate on behalf of all corrupt players, sends delayed output ready to players and owners.

0 Retrieves (a,d1) from GURS and sends it to all on behalf of GURS

• Input and randomnesses distribution: Simulates of a correct behavior of FLSSS. Moreover:

1 ∀ simulated honest ` ∈ L : sets m̃` := 0 and samples u $←−Xq, e
(Enc)
0

$←− BEnc,q and e
(Enc)
1

$←− Ψq. Then

sends (input, {∆m`, u`, e
(Enc)
0,` , e

(Enc)
1,` }, {∆m`, u`, e

(Enc)
0,` , e

(Enc)
1,` }) to FLSSS.

46

1 ∀ simulated corrupt ` ∈ L , upon
(

input OR activate,
{
∆m`, u`, e

(Enc)
0,` , e

(Enc)
1,`

}
,
{
∆m`, u`, e

(Enc)
0,` , e

(Enc)
1,`

})
from E , sets m̃` := 0 if m` = ⊥ or m̃` := m` otherwise, and sends (input, `,m`) to FC.

• Distributed Keys Generation: Simulates of a correct behavior of FLSSS. For every simulated honest
Pi ∈ H:

1 Samples ski $←−Xq (never used) and esm,i
$←− [−Bsm, Bsm], and sends them to FLSSS.

1 Samples bi
$←− U(Rlq) and (d0,i,d2,i)

$←− U(Rlq ×Rlq), sends them over BCPi .

As in the protocol, S sets Sc ⊂ L the owners, resp. S ⊂P the players, for which no instance returned ⊥.

• Threshold encryption (Shrink) and evaluation Simulates correct behaviors. For instance in 2 , de-
noting b :=

∑
j∈S bj and rlk := (

∑
j∈S d0,j ,d1,

∑
j∈S d2,j), the simulated FLSSS, for ∀` ∈ Sc, delay-outputs:(

Λa,bEnc, c̃` := (∆m̃` + u` b+ e
(Enc)
0,` , u` a+ e

(Enc)
1,`)

)
.

• Output computation: Upon receiving (evaluation, y) from FC, where by definition y = C({m`}`∈Sc), then
S simulates the following incorrect behavior:

• FLSSS delay-outputs
(
Λc
dec, µ

S := ∆y +Σj∈Sesm,j

)
.

Proof of indistinguishability with a real execution We go through a series of hybrid games, starting
from the real execution REALΠC

. For completeness they are spelled out in full details in §H.3. The view of
E consists of its interactions with A/S , and of the outputs of the actual honest players. We deal with the
latter once and for all in Lemma 22.

Hybrid1 [Simulated Decryption]. FLSSS is modified in Output computation: there it, incorrectly, outputs
µS := ∆.y+Σj∈Sesm,j , where y := C((m`)`∈Sc) is the evaluation in clear of the circuit on the actual inputs.

Lemma 22. The outputs of the actual honest players are the same in REALΠC
and IDEALFC,S,E . Also,

the views of E in REALΠC
and Hybrid1 are computationally indistinguishable.

Proof. It is convenient to prove the two claims at once. The view of E is identical in REALΠC
and Hybrid1

until 3 included. There, for all ` ∈ Sc, consecutively to an instance of Share&Shrink, FLSSS delay-outputs
a fresh BFV encryption c` of m` under ek = (b,a), following the terminology of §D.5. Thus, the evaluated
c := BFV.Eval(C, {cj}j∈Sc , rlk,b) is the same in both views. In the Output computation of REALΠC

, the
output of FLSSS is:

µ = c[0] + c[1].Σj∈Sskj +Σj∈Sesm,j ,(14)

with esm,j
$←− [−Bsm, Bsm] for all j ∈ S. First, by Def-Prop 18, we have, for some noise e(Dec), with ‖e(Dec)‖ ≤

BC

c[0] + c[1].Σj∈Sskj = ∆y + e(Dec) .(15)

Since ‖esm,j‖ ≤ Bsm for all j ∈ S, it follows from the choice of parameters (10) and the final remark in
Def-Prop 18, that the output of honest players in REALΠC

is m := ΩDec(µ) = y, which proves our first
claim. Second, since we specified ‖e(Dec)‖/N.Bsm = negl(λ) (equation (12)), it follows that the distribution
of µ, given by (14) is computationally indistinguishable from the one of ∆y+Σj∈Sesm,j , see the “smudging”
Lemma 21 in §H for a further formalization of this fact. But the latter is by definition µS , which is exactly
the output of FLSSS in Hybrid1.

Hybrid2 [Random Public Keys]. This is the same as Hybrid1 except that the additive contributions
(bi, (d0,i,d2,i))i∈H of honest players to the public and relinearization keys, are replaced by a sample in
U(Rl×3q). Indistinguishability from Hybrid1 follows from Corollary 14.

47

Hybrid3 [Bogus Honest Inputs] This is the same as Hybrid2 except that the input and randomness distri-
bution on behalf of honest owners are computed with m̃` := 0, instead of with their actual inputs m`. Impor-

tantly, the behavior of FLSSS is unchanged, i.e., correct until 3 included, then outputs µS := ∆y+Σj∈Sesm,j ,
where y := C((m`)`∈Sc) is still the evaluation of the circuit on the actual inputs.

We now have that Hybrid3 and IDEALFC,S,E produce identical views to E . Indeed, the behaviours of
GURS, of the simulated ideal functionalities (FLSSS,BC), and of the honest parties in Hybrid3, are identical
to the simulation done by S .

Lemma 23. Hybrid2 and Hybrid3 are computationally indistinguishable.

Proof. Since Hybrid2, the secret keys of the honest players (Pi ∈ H) are no longer used in any computation.
Furthermore, since honest players sample their contributions bi to the BFV public key independently (uni-
formly at random), we can assume without loss of generality that corrupt contributions are generated after
having seen the honest ones. We can thus apply Lemma 20 “IND-CPA under Joint Keys”, which adapts the
one of [AJL+12, Lemma 3.4] in the RLWE setting. It considers a uniform value b in Rq, then the adversary
can add to it the sum (b′,a) of t BFV public keys which it semi-maliciously produces (with the same a).
The lemma states that the ciphertext of a chosen message under the sum of keys (b + b′,a), is still indistin-
guishable from a uniformly random value. The reduction, from multi-message, to this latter single-message
statement, is straightforward.

H.3.2 Full details the series of hybrid games In section §H.3.1, we detailed a simulator S such
that no PPT environment E , which can choose the honest inputs, observe the honest outputs, and fully
controls t out of the N = 2t+ 1 players (via an adversary A), can distinguish between: (i) the real protocol
REALΠFLSSS , where E interacts with the adversary A, and honest players follow the actual protocol ΠFLSSS ,
and (ii) the ideal protocol IDEALFC,S,E , where E interacts with S , while honest players are connected only
to FC

We now spell out in full details the series of hybrid games used in §H.3.1 to prove the indistinguishability
of the real and ideal worlds. The output of each game is the output of the environment. Changes with respect
to the previous Hybrid are highlighted in blue. We abuse notations in that when we denote that “players
perform some action”, we mean implicitely that dishonest players perform it in accordance with a semi-
Malicious behavior (§2.2), i.e., send part of, or none, of the messages instructed, and, when sending some,
arbitrarily select their random parameters, as long as they are within the essential bounds of the prescribed
distributions, i.e., B, Bsm, BEnc.

Hybrid1:

• Setup: Each player Pi ∈P does the following:

0 Send (Setup) to FLSSS.

0 Retrieves (a,d1) from GURS.

• Input distribution: Upon ready from FLSSS, each input owner ` ∈ L :

1 Samples u $←−Xq, e
(Enc)
0

$←− BEnc,q and e
(Enc)
1

$←− Ψq and sends

(input, {∆m`, u`, e
(Enc)
0,` , e

(Enc)
1,` }, {∆m`, u`, e

(Enc)
0,` , e

(Enc)
1,` }) to FLSSS. Then it goes offline.

• Key distribution: Upon ready from FLSSS, each player Pi:

1 Computes (ski, (bi,a))← BFV.KeyGen(a) and (d0,i,d2,i)← CDKS(a,d1, ski), and sends (input, ski, ski)
to FLSSS.

1 Sample esm,i
$←− [−Bsm, Bsm] and sends (input, esm,i, esm,i) to FLSSS.

1 Sends (bi, (d0,i,d2,i)) over BCPi .

48

As in the protocol, we denote Sc ⊂ L the owners, resp. S ⊂P the players, for which no instance returned
⊥.

• Threshold encryption (Shrink) and evaluation: Each player Pi:

2 ∀j ∈ S, parses the outputs of BCPj as (bj , (d0,j ,d2,j)).

2 Computes b = Σj∈Sbj and rlk = (Σj∈Sd0,j ,d1, Σj∈Sd2,j). Sets a = a[0] and b = b[0].

2 ∀` ∈ Sc, given labels (∆m`, u`, e
(Enc)
0,` , e

(Enc)
1,`), a key ek = (b, a), sends

(
LCOpen, Λb,aEnc(∆m`, u`, e

(Enc)
0,` , e

(Enc)
1,`)

)
to FLSSS, and obtains a ciphertect c`.

3 Computes c← BFV.Eval(C, {cj}j∈Sc , rlk,b).

3 Given labels (sk, esm), and a ciphertext c, sends
(
LCOpen, Λc

Dec+sm(sk, esm)
)

to FLSSS.

• Output computation: Denote y := C({m`}`∈Sc)

• FLSSS delay-outputs
(
Λc
dec, µ

S := ∆.y + Σj∈Sesm,j

)
to all players. Upon receiving it from FLSSS,

players output m← ΩDec(µ
S).

Hybrid2:

• Setup: Each player Pi:
0 Send (Setup) to FLSSS.

0 Retrieves (a,d1) from GURS.

• Input distribution: Upon ready from FLSSS, each input owner ` ∈ L :
1 Samples u $←−Xq, e

(Enc)
0

$←− BEnc,q and e
(Enc)
1

$←− Ψq and sends

(input, {∆m`, u`, e
(Enc)
0,` , e

(Enc)
1,` }, {∆m`, u`, e

(Enc)
0,` , e

(Enc)
1,` }) to FLSSS. Then it goes offline.

• Key distribution: Upon ready from FLSSS, each player Pi:
1 If Pi corrupt, then unchanged instructions: Computes (ski, (bi,a))← BFV.KeyGen.(a) and (d0,i,d2,i)←

CDKS(a,d1, ski), and sends (input, ski, ski) to FLSSS.

1 If Pi honest: Samples ski $←−Xq and sends (input, ski, ski) to FLSSS. Computes bi ← U(Rlq) and

(d0,i,d2,i)← U(R2×l
q).

1 Sample esm,i
$←− [−Bsm, Bsm] and sends (input, esm,i, esm,i) to FLSSS.

1 Sends (bi, (d0,i,d2,i)) over BCPi .

As in the protocol, we denote Sc ⊂ L the owners, resp. S ⊂P the players, for which no instance returned
⊥.

• Threshold encryption (Shrink) and evaluation: Each player Pi:

2 ∀j ∈ S, parses the outputs of BCPj as (bj , (d0,j ,d2,j)).

2 Computes b = (Σj∈Sbj) and rlk = (Σj∈Sd0,j ,d1, Σj∈Sd2,j). Sets a = a[0] and b = b[0].

2 ∀` ∈ Sc, given labels (∆m`, u`, e
(Enc)
0,` , e

(Enc)
1,`), a key ek = (b, a), sends

(
LCOpen, Λb,aEnc(∆m`, u`, e

(Enc)
0,` , e

(Enc)
1,`)

)
to FLSSS, and obtains a ciphertect c`.

3 Computes c← BFV.Eval(C, {cj}j∈Sc , rlk,b).

3 Given labels (sk, esm), and a ciphertext c, sends
(
LCOpen, Λc

Dec+sm(sk, esm)
)

to FLSSS.

• Output computation: Each player Pi:

• FLSSS delay-outputs
(
Λc
dec, µ

S := ∆.y + Σj∈Sesm,j

)
to all players. Upon receiving it from FLSSS,

players output m← ΩDec(µ
S).

49

Hybrid3:

• Setup: Each player Pi does the following:

0 Send (Setup) to FLSSS.

0 Retrieves (a,d1) from GURS.

• Input distribution: Upon ready from FLSSS, every input owner ` ∈ L :

1 If ` corrupt : instructions unchanged.

1 If ` honest : Sets m̃` := 0 and samples u $←−Xq, e
(Enc)
0

$←− BEnc,q and e
(Enc)
1

$←− Ψq and sends

(input, {∆m`, u`, e
(Enc)
0,` , e

(Enc)
1,` }, {∆m`, u`, e

(Enc)
0,` , e

(Enc)
1,` }) to FLSSS.

• Key distribution: Upon ready from FLSSS, each player Pi:

1 If Pi corrupt, then unchanged instructions: Computes (ski, (bi,a))← BFV.KeyGen.(a) and (d0,i,d2,i)←
CDKS(a,d1, ski), and sends (input, ski, ski) to FLSSS.

1 If Pi honest: Samples ski ← Xq and sends (input, ski, ski) to FLSSS. Computes bi ← U(Rlq) and

(d0,i,d2,i)← U(R2×l
q).

1 Sample esm,i
$←− [−Bsm, Bsm] and sends (input, esm,i, esm,i) to FLSSS.

1 Sends (bi, (d0,i,d2,i)) over BCPi .

As in the protocol, we denote Sc ⊂ L the owners, resp. S ⊂P the players, for which no instance returned
⊥.

• Threshold encryption (Shrink) and evaluation: Each player Pi:

2 ∀j ∈ S, parses the outputs of BCPj as (bj , (d0,j ,d2,j)).

2 Computes b = Σj∈Sbj and rlk = (Σj∈Sd0,j ,d1, Σj∈Sd2,j). Sets a = a[0] and b = b[0].

2 ∀` ∈ Sc, given labels (∆m`, u`, e
(Enc)
0,` , e

(Enc)
1,`), a key ek = (b, a), sends

(
LCOpen, Λb,aEnc(∆m`, u`, e

(Enc)
0,` , e

(Enc)
1,`)

)
to FLSSS, and obtains a ciphertect c`.

3 Computes c← BFV.Eval(C, {cj}j∈Sc , rlk,b).

3 Given labels (sk, esm), and a ciphertext c, sends
(
LCOpen, Λc

Dec+sm(sk, esm)
)

to FLSSS.

• Output computation: Each player Pi:

• FLSSS delay-outputs
(
Λc̃
dec, µ

S := ∆.y + Σj∈Sesm,j

)
to all players. Upon receiving it from FLSSS,

players output m← ΩDec(µ
S).

References for the Appendices.

[ACGJ20] P. Ananth, A. R. Choudhuri, A. Goel, and A. Jain. “Towards Efficiency-Preserving Round
Compression in MPC”. In: ASIACRYPT. 2020.

[AM69] M. F. Atiyah and I. G. MacDonald. Introduction To Commutative Algebra. 1969.
[ANRX21] I. Abraham, K. Nayak, L. Ren, and Z. Xiang. “Good-case Latency of Byzantine Broadcast: a

Complete Categorization”. In: PODC. 2021.
[AZ21] P. Ananth and A. J. and Zhengzhong Jin and Giulio Malavolta. “Unbounded Multi-Party

Computation from Learning with Errors”. In: EUROCRYPT. 2021.
[BCG21] E. Boyle, R. Cohen, and A. Goel. “Breaking the O(

√
n)-Bit Barrier: Byzantine Agreement

with Polylog Bits Per Party”. In: PODC. 2021.

50

[BCN18] C. Boschini, J. Camenisch, and G. Neven. “Relaxed lattice-based signatures with short zero-
knowledge proofs”. In: International Conference on Information Security. Springer. 2018,
pp. 3–22.

[BH08] Z. Beerliová-Trub́ıniová and M. Hirt. “Perfectly-Secure MPC with Linear Communication
Complexity”. In: Theory of Cryptography. 2008.

[BHZ21] C. Badertscher, J. Hesse, and V. Zikas. “On the (Ir)Replaceability of Global Setups, or How
(Not) to Use a Global Ledger”. In: TCC. 2021.

[BMMR21] S. Badrinarayanan, P. Miao, P. Mukherjee, and D. Ravi. On the Round Complexity of Fully
Secure Solitary MPC with Honest Majority. Cryptology ePrint Archive, Report 2021/241.
https://ia.cr/2021/241. 2021.

[Bor96] M. Borcherding. “Levels of authentication in distributed agreement”. In: WDAG. 1996.
[BPR11] A. Banerjee, C. Peikert, and A. Rosen. “Pseudorandom Functions and Lattices”. In: EURO-

CRYPT. 2011.
[BS20] D. Boneh and V. Shoup. A Graduate Course in Applied Cryptography. Version 0.5 Jan 2020.

2020.
[Can01] R. Canetti. “Universally composable security: A new paradigm for cryptographic protocols”.

In: FOCS. We refer to eprint 2000/067 version 02/20/2020. 2001.
[Can04] R. Canetti. “Universally Composable Signature, Certification, and Authentication”. In: CSFW.

IEEE Computer Society, 2004, p. 219.
[Can95] R. Canetti. “Studies in Secure Multiparty Computation and Applications”. PhD thesis. 1995.
[CD20] I. Cascudo and B. David. “ALBATROSS: Publicly AttestabLe BATched Randomness Based

On Secret Sharing”. In: ASIACRYPT. 2020.
[CDN15] R. Cramer, I. Damg̊ard, and J. Nielsen. Secure Multiparty Computation and Secret Sharing.

Cambridge University Press, 2015.
[CDPW07] R. Canetti, Y. Dodis, R. Pass, and S. Walfish. “Universally Composable Security with Global

Setup”. In: TCC. 2007.
[CGGM00] R. Canetti, O. Goldreich, S. Goldwasser, and S. Micali. “Resettable Zero-Knowledge (Extended

Abstract)”. In: STOC. 2000.
[CGHZ16] S. Coretti, J. A. Garay, M. Hirt, and V. Zikas. “Constant-Round Asynchronous Multi-Party

Computation Based on One-Way Functions”. In: ASIACRYPT. 2016.
[CKKS17] J. H. Cheon, A. Kim, M. Kim, and Y. Song. “Homomorphic encryption for arithmetic of

approximate numbers”. In: ASIACRYPT. 2017.
[CKR+20] H. Chen, M. Kim, I. P. Razenshteyn, D. Rotaru, Y. Song, and S. Wagh. “Maliciously Secure

Matrix Multiplication with Applications to Private Deep Learning”. In: ASIACRYPT. 2020.
[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. “Universally Composable Two-Party and

Multi-Party Secure Computation”. In: STOC. 2002.
[Coh16] R. Cohen. “Asynchronous Secure Multiparty Computation in Constant Time”. In: PKC. 2016.
[DDOPS01] A. De Santis, G. Di Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. “Robust non-

interactive zero knowledge”. In: CRYPTO 2001. 2001.
[DGKN09] I. Damg̊ard, M. Geisler, M. Kroigaard, and J. Nielsen. “Asynchronous multiparty computation:

Theory and Implementation”. In: PKC. 2009.
[DGKS21] D. Dachman-Soled, H. Gong, M. Kulkarni, and A. Shahverdi. “Towards a Ring Analogue of

the Leftover Hash Lemma”. In: Journal of Mathematical Cryptology (2021).
[DLS88] C. Dwork, N. Lynch, and L. Stockmeyer. “Consensus in the Presence of Partial Synchrony”.

In: J. ACM (1988).
[FN09] M. Fitzi and J. B. Nielsen. “On the Number of Synchronous Rounds Sufficient for Authenti-

cated Byzantine Agreement”. In: DISC. 2009.
[GHS12] C. Gentry, S. Halevi, and N. P. Smart. “Fully Homomorphic Encryption with Polylog Over-

head”. In: EUROCRYPT. 2012.
[GJPR21] A. Goel, A. Jain, M. Prabhakaran, and R. Raghunath. “On Communication Models and Best-

Achievable Security in Two-Round MPC”. In: TCC. 2021.

51

https://ia.cr/2021/241

[GKLP16] J. A. Garay, A. Kiayias, N. Leonardos, and G. Panagiotakos. “Bootstrapping the Blockchain,
with Applications to Consensus and Fast PKI Setup”. In: PKC. 2016.

[GKOPZ20] J. Garay, A. Kiayias, R. M. Ostrovsky, G. Panagiotakos, and V. Zikas. “Resource-Restricted
Cryptography: Revisiting MPC Bounds in the Proof-of-Work Era”. In: EUROCRYPT. 2020.

[GOS06] J. Groth, R. Ostrovsky, and A. Sahai. “Perfect Non-interactive Zero Knowledge for NP”. In:
EUROCRYPT. 2006.

[JVC18] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan. “GAZELLE: A low latency framework
for secure neural network inference”. In: USENIX Security Symposium. 2018.

[KMQR21] A. Kiayias, C. Moore, S. Quader, and A. Russell. Efficient Random Beacons with Adaptive
Security for Ungrindable Blockchains. IACR ePrint 2021/1698. https://ia.cr/2021/1698.
2021.

[Lam06] L. Lamport. “Lower Bounds for Asynchronous Consensus”. In: Distrib. Comput. (2006).
[LJLA17] J. Liu, M. Juuti, Y. Lu, and N. Asokan. “Oblivious neural network predictions via minionn

transformations”. In: CCS. 2017.
[LLM+20] C.-D. Liu-Zhang, J. Loss, U. Maurer, T. Moran, and D. Tschudi. “MPC with Synchronous

Security and Asynchronous Responsiveness”. In: ASIACRYPT. 2020.
[LM21] B. Li and D. Micciancio. “On the Security of Homomorphic Encryption on Approximate

Numbers”. In: EUROCRYPT. 2021.
[LPR13b] V. Lyubashevsky, C. Peikert, and O. Regev. “A toolkit for ring-LWE cryptography”. In:

EUROCRYPT. 2013.
[LSP82] L. Lamport, R. E. Shostak, and M. C. Pease. “The Byzantine Generals Problem”. In: ACM

Trans. Program. Lang. Syst. (1982).
[MBH23] C. Mouchet, E. Bertrand, and J. Hubaux. “An Efficient Threshold Access-Structure for RLWE-

Based Multiparty Homomorphic Encryption”. In: J. Cryptol. (2023).

52

https://ia.cr/2021/1698

	Introduction
	Model
	Cryptographic Ingredients
	Share & Shrink: DKG & Encrypted Input Distribution in 1 BC + 1 Async. P2P
	MPC Protocol FLSSS
	FLSSS from BFV +CDKS *: the first robust threshold BFV scheme.
	Proofs of th:mainintro,th:share,th:feasibility
	Impossibility of 1-Broadcast-then-Asynchronous MPC
	Further Details on Related Works
	Model: Further Formalism and Discussion
	More on FLSSS and Secret Sharing over Rings
	Complements on BFV +CDKS *
	BFV +CDKS * Bootstrapping
	Detailed Protocol FLSSS when instantiated from BFV +CDKS *
	Practical Parameters Estimation
	Further Details on the Proof of Theorem 3

