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Abstract

We design several new protocols for private set intersection (PSI) with active security: one for the two party
setting, and two protocols for the multi-party setting. In recent years, the state-of-the-art protocols for two party
PSI have all been built from OT-extension. This has led to extremely efficient protocols that provide correct
output to one party; seemingly inherent to the approach, however, is that there is no efficient way to relay the
result to the other party with a provable correctness guarantee. Furthermore, there is no natural way to extend
this line of works to more parties. We consider a new instantiation of an older approach. Using the MPC-in-
the-head paradigm of Ishai et al. [IPS08], we construct a polynomial with roots that encode the intersection,
without revealing the inputs. Our reliance on this paradigm allows us to base our protocol on passively secure
Oblivious Linear Evaluation (OLE) (requiring 4 such amortized calls per input element). Unlike state-of-the-art
prior work, our protocols provide correct output to all parties. We have implemented our protocols, providing
the first benchmarks for PSI that provides correct output to all parties. Additionally, we present a variant of
our multi-party protocol that provides output only to a central server.

1 Introduction

Secure multi-party computation (MPC) allows two or more parties to perform some agreed upon computation on
their private input, while revealing nothing beyond the value of the output. General solutions to the problem were
first developed in the 1980s [Yao86, Gol09], and allow for the computation of arbitrary functions over the input: m
participants agree on m functions, f1, . . . , fm, and each provides an input to the computation. At the end of their
interaction, party i learns fi(X1, . . . , Xm), where Xj is the input provided by party j. In the last fifteen years, the
research has shifted towards the study of concrete efficiency [WRK17, EKR18, BCS19]. While the general solutions,
which support arbitrary computations, have become quite efficient, for certain particular computations, tailored
protocols can greatly outperform the generic approach, both asymptotically and concretely e.g., [HT10, CHI+21].
Private set intersection (PSI) is an example of such a concrete and well-studied function.

There are many variants of the PSI problem, but, broadly, two or more parties each hold a private set of input
values, and they all learn the intersection of those sets: ∀j ∈ {1, . . . ,m} : fj(X1, . . . , Xm) =

⋂
i Xi. In reality, it

is surprisingly challenging to provide a correct output to all parties. In fact, all prior works on PSI, in both the
two-party and multi-party settings, provide an output to only one party: f1 =

⋂
i Xi, and, for j > i, fj = ⊥. While

there are generic ways of “compiling” such protocols to provide output to all parties, e.g., using zero-knowledge,1

this ruins the efficiency of known constructions. In this work, we consider both variants of PSI, referring to protocols
that realize the former as “fully secure”, and those realizing the latter as having “one-sided output”. Ours is the
first construction to offer full security in this sense,2 providing features that are important in many PSI use cases.
(We provide some examples in Section 1.2.)

∗gordon@gmu.edu
†carmit.hazay@biu.ac.il
‡ple13@gmu.edu
1In a semi-honest setting, the party receiving output can forward it to the other participants, and, by assumption, it will do so

correctly. In the malicious setting, those parties need a method of verifying the correctness of this output. This issue is independent of
the issue of fairness which is discussed below.

2We note that the PSI computation, like any other, can be compiled into a Boolean circuit, and evaluated using any appropriate
generic protocol for secure computation. This would also yield full security, but the asymptotic complexity, and concrete cost of this
approach is worse than custom PSI protocols.
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As with general-purpose secure computation, the solution space depends greatly on whether the adversary is
assumed to be semi-honest (aka passive), in which case corrupted parties always follow the protocol, or malicious
(aka active), in which case the corrupted parties might deviate arbitrarily from the protocol specification. In this
work, we only consider active adversaries. Finally, another important feature in MPC regards fairness: when
multiple parties are meant to receive output, a protocol is considered fair if no party can learn their own output
while preventing others from doing the same. (The question of fairness is irrelevant when the computation is meant
to be one-sided.) When half or more parties might be malicious, fairness is impossible to achieve [Cle86], and the
standard security definition [Gol09], called security with abort, ensures only that if a party receives output, it is
guaranteed to be correct. Throughout our paper we consider the setting where m − 1 parties might be malicious,
including the two-party setting; we therefore only consider security with abort.

We construct three new PSI protocols for the malicious model, one in the two-party setting, and two in the
multi-party setting. Specifically, we construct the first actively secure two-party protocol that provides output to
both parties, or “fully secure”. To our knowledge, the only other PSI protocol that claims to be fully secure is the
two-party protocol by Ghosh and Nilges [GN19]. However, a recent analysis [AMZ21] has shown that [GN19] is
insecure and is susceptible to various attacks. Mitigating these attacks seems to imply a much higher complexity
than reported.

We then extend our result to the multi-party setting, providing the first fully secure multi-party PSI construction
(MPSI). Finally, we show how to relax security of this protocol, providing an output to a single designated party,
and improving efficiency. We provide a comparison with several recent MPSI protocols that provide this weaker
guarantee in Sections 5-6.

We have implemented our protocols, providing the first benchmarks for fully secure PSI in both the two-party
and multi-party settings. Our constructions rely heavily on a cryptographic primitive called Oblivious Linear
Evaluation (OLE). In our protocols, the PSI problem is reduced to oblivious polynomial multiplication via OLE
where correctness is ensured via the use of a watchlist mechanism that prevents the adversary from using any
malformed input or deviating from the protocol. Another important feature of our protocols is in relying on passively
secure OLE (while achieving active security), requiring only 4 passive OLE executions per input. When compared
with using generic, malicious secure, 2PC (e.g. Overdrive [KPR18]) to compute a PSI circuit (e.g. [HEK12]), our
protocol is nearly 1000× faster (assuming trusted key setup for Overdrive).

Since our PSI protocols are the first fully secure constructions, there is no readily available prior work to compare
with. When providing an output to only one party, concurrent with our work, Ben-Efraim et al. [BNOP21] have
provided the only other experimental evaluation of MPSI with active security. We compare our experimental
results with theirs as best as we can in Section 6. Beside [BNOP21], and also concurrent with our work, Garimella
et al. [GPR+21] provide another construction with this weaker output guarantee (but without any experimental
evaluation). As demonstrated, our protocols are highly competitive despite the stronger level of security.

1.1 A Brief History of PSI

Before describing our precise contributions, we provide a brief, and non-exhaustive history of this highly studied
problem. We categorize prior work according to the technical approach.

PSI from polynomial evaluation. One of the earliest PSI protocols, by Freedman et al. [FNP04], provided an
elegant semi-honest solution using additively homomorphic encryption. Party P1 encodes its input as the roots of
a polynomial, P . It then encrypts the coefficients of this polynomial and sends the ciphertexts to party P2, who
evaluates the same polynomial, homomorphically, on each of its own inputs. P2 then randomizes the result of each
evaluation as follows, and sends the randomized encodings to party P1 to determine the output: for input y, party
P2 computes Enc(r · P (y) + y). If y is a root of P , this encodes y, while in all other cases, it encodes a random
value. Preventing malicious behaviour requires using cut-and-choose and the random oracle, where only the first
party learns the PSI result. Specifically, Freedman et al. in [FNP04] uses the random oracle to derandomize the
computations of P2, which can be recomputed by P1 for the elements that intersect. Over the next years, several
results strengthened the security guarantees and the performance of this approach [KS05, DMRY09, HN10, Haz15,
HV17].

Recently, Ghosh and Nilges [GN19] provided a malicious fully secure construction. They also extended their
construction to the one-sided multi-party setting. Unfortunately, their constructions are flawed [AMZ21]. To the
best of our knowledge, that was the only attempt to design a PSI construction with this property (excluding generic
protocols for secure computation).

PSI from oblivious PRFs. A separate line of works explores a different approach, using oblivious pseudo-random
functions (OPRFs) [FIPR05, HL08, JL09]. In this approach, party P1 samples a random PRF key k for PRF F and
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computes Fk(x) for every input x in its set, and finally sends the encoded values to the second party. Party P2 then
obliviously evaluates the same PRF F , without knowing k, on each of its own inputs and computes the intersection
on the encoded values. In the construction from [HL08], the OPRF is constructed from the number theoretic PRF
of Naor and Reingold [NR97], though later variations would improve upon this approach (e.g. [JL09]). None of
these constructions is fully secure in the malicious setting.

Generic solutions. In 2012, Huang et al. [HEK12] demonstrated that generic protocols for secure computation,
based on Yao’s garbled circuits, had improved to the point that they were now faster than custom PSI protocols.
The computational complexity of garbled circuits is dominated by oblivious transfer (OT). OT extension, introduced
by Ishai et al. [IKNP03], allows us to reduce O(w) OTs to O(κ) public key operations and O(w) symmetric key
operations, where w is the input size and κ the security parameter. Huang et al. presented a circuit of size O(w logw)
for performing PSI on two sets of size w, which determines the communication complexity. While several existing
custom protocols already offered linear communication complexity, they required O(w) public key operations which
overcome the cost of sending O(w logw) data in “reasonable” networks. More recently, Pinkas et al. [PSTY19]
showed how to reduce the circuit size to O(w) using cuckoo hashing, but only in the semi-honest setting.

OT-based PSI. Since 2013, a long line of works that is based on OT extension, have outperformed the generic
solutions, providing the best running times3 [DCW13, PSZ14, PSSZ15, KKRT16, RR17, PRTY20]. The most recent
constructions of this type are similar to the earlier protocols that embed oblivious PRFs. These works rely on OT
extension to construct randomized, correlated encodings of the input values [KKRT16], similarly to oblivious PRFs.
The earlier results in this line of works only offered semi-honest security, but with O(w) communication complexity
and very few public key operations. Rindal and Rosulek provided the first malicious secure construction from OT
extension, requiring O(w logw) communication [RR17]. Pinkas et al. [PRTY20] introduced the first maliciously
secure PSI protocol from OT extension with linear communication complexity. Rindal and Schoppmann [RS21]
improved on Pinkas et al. [PRTY20] in concrete terms, though they again required O(w logw) communication.
Building on [RR17], a recent work by Ben-Efraim et al. [BNOP21] designed and implemented a multi-party PSI
protocol with malicious security and communication complexity dominated by O(mwκ2) where m is the number of
parties and κ is the security parameter. Their construction provides an output to one party.

1.2 Our Contributions

Applying MPC-in-the-head to PSI: We depart from this successful line of works building PSI from OT exten-
sion, and return instead to methods based on oblivious polynomial evaluation. We present three new, maliciously
secure PSI protocols, one for the two-party case, and two different extensions to the multi-party setting. In a very
broad sense, our approach is similar to the old result by Kissner and Song [KS05], in that we arrive at the output
by computing a polynomial T (x) = Q(x) · R(x) + P (x) · S(x), where the roots of Q(x) encode the inputs of one
party, the roots of P (x) encode the inputs of the other, and the polynomials S(x) and R(x), which are not known
to either party, serve to hide the elements that are not in the intersection.

Table 1: A comparison of communication complexity. w is the input size, m is the number of parties, λ, κ are the
security parameters, and t = O(λ). In all protocols, multiples of mw are the dominant terms. All protocols are
secure against malicious adversaries.

Protocol
Communication complexity

Fully secure
Total P0

[HV17] O(mwκ logw +m2κ) O(mwκ logw) NO
[GPR+21] O(mw(κ+ λ+ logw) +m2κ) O(mw(κ+ λ+ logw)) NO
[BNOP21] O(mwκ2 +mwκ log(κw) O(mwκ2 +mwκ log(κw) NO
Ours (P0 receives output) O(mwκ+m2κ+mtκ logw) O(mwκ+mtκ logw) NO
Ours (All receive output) O(mwκ+m2tκ logw) O(mwκ+mt logw) YES

However, while Kissner and Song homomorphically encrypt the coefficients of these polynomials, our approach
for computing this polynomial is more similar to the recent protocols proposed by Ghosh and Nilges [GN19]. Like
them, we reduce the problem of computing this polynomial T to the problem of OLE. However, we manage to do
this while guaranteeing output to all parties. Additionally, we rely on the MPC-in-the-head paradigm of Ishai et

3When considering communication cost rather than end-to-end running time, it is still possible to outperform OT-based solutions,
including those based on garbled circuits [CT10, CLR17, MPR+20], by using a linear number of public key operations.
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al. (IPS) [IPS08] to ensure security, which provides several benefits: (1) This allows us to rely only on semi-honest
OLE and, (2) it can support an arbitrary number of parties.

Ishai et al. presented a general compiler for constructing maliciously secure MPC in the dishonest setting out of
simpler primitives. At a high level, this is done by combining two protocols: an “outer protocol” for computing the
desired function – in our case, the polynomial T , and an “inner protocol” for securely simulating the roles of the
participants in the outer protocol. The outer protocol is unconditionally secure against an adversary corrupting a
minority of parties, while the inner protocol relies on some cryptographic primitive, and must be secure against a
semi-honest adversary corrupting m − 1 parties. (Often, m = 2.) The parties in the inner protocol secret share
among themselves the state of the parties in the outer protocol, and securely simulate each of their executions.
Using oblivious transfer, the members of the inner protocol obliviously establish “watch channels” through which
they can monitor the behavior of a minority of simulated parties. This allows them to catch any cheating with very
high probability, without violating privacy.

We describe how our protocol is derived from the IPS paradigm. For simplicity, we stick to the two party setting.
As in IPS, we view the outer protocol as involving multiple servers, and two clients: the two parties with input play
the role of the clients, and begin by secret sharing their input sets with the servers. This is done by sampling a
random polynomial with roots at the points corresponding to the clients’ inputs, and sending a single evaluation of
this polynomial to each server. We denote the polynomials encoding the input sets as P and Q. The two clients then
separately sample random polynomials to serve as additive shares of the masking polynomials: R(·) = R1(·)+R2(·),
and S(·) = S1(·) + S2(·). These polynomials are secret shared with the servers as well. The servers add the shares
of R and S, and perform two polynomial multiplications by locally multiplying their threshold shares, doubling the
degree of the polynomial. They add the results, each arriving at a secret share of: T = Q ·R+ P · S.

Our main observation is that this particular outer protocol lends itself very nicely to the IPS approach. In the
IPS compiler, the state of each server is additively secret shared by the clients, and the outer protocol is emulated
on these additive shares. This emulation can be quite expensive, depending on the particular instantiations of these
protocols. However, for this particular inner protocol, arriving at the polynomial encoding of the input requires
only two parallel polynomial multiplications, and a few additions. After providing the additive secret sharing (of
the polynomial shares), the clients use the GMW protocol in the OLE hybrid model to emulate the product of the
additively shared points on the polynomial. This requires just two OLE calls for each server.

This captures the high-level idea of our construction, but omits several important details. The two clients
perform a degree check of all polynomials (simultaneously) in order to defend against any cheating in the server
emulation. Furthermore, we have neglected to discuss the implementation of the watch channels, which is a crucial
component of the IPS paradigm, and allows us to benefit from the efficiency of semi-honest OLE constructions. All
of these details can be found in the formal protocol description.

Although our protocol relies heavily on the ideas behind the IPS compiler, we do not in fact rely on their
theorem [IPS08], and instead provide a direct proof of security for our protocol. The IPS protocol is highly general,
while we are focusing on a very specific problem. Once the general abstraction has been removed, the resulting PSI
protocol is in fact easier to understand without the added complexity of separating an outer and inner protocol.
We presented the IPS framework in this introduction only to explain how we arrived at our result, and to provide
intuition for why our use of semi-honest secure OLE suffices for our claim of malicious secure PSI.

Fully secure PSI: In many applications, it is highly important that all parties learn the output. Consider, for
example, two competing companies that would both benefit from identifying their overlapping customers. They
intend to perform this computation on a monthly basis. If one company aborts the computation unfairly, the
collaboration can be terminated, and little harm has been done. However, if one party consistently learns the
correct intersection and reports only 25% of the resulting set to its competitor, it then receives an unfair advantage,
indefinitely! Other PSI applications would benefit from fully secure protocols for similar reasons, such as distrustful
governments comparing satellite positions [HLOI16], or searching for software vulnerabilities.

Constructions from OT extension proceed by providing a list of random encodings to one party, who then
computes the intersection on these encodings, locally. There is no simple way to certify this list, so it is trivial
for the adversary to lie about what was recovered. A naive approach to certifying the output would be to employ
a zero-knowledge proof, where the witness is the input to a random oracle. Instantiating the random oracle with
an MPC friendly hash function, e.g., [AAB+19], implies a circuit for this proof statement that contains around 29

AND gates. Estimating the parameters according to Limbo [dSGOT21], a recently designed proof system that also
relies on the MPC-in-the-head paradigm, implies a circuit with 20KB proof size and around 0.01s running time for
the prover. Other proof systems will achieve different tradeoffs between the proof size and the prover’s running
time. This approach is not scalable as the input size grows: on input sets containing 1 million items, this would
require close to 3 hours of computing time. For this reason, all custom constructions in the literature only provide
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output to one party.

Multi-party PSI (MPSI): Another drawback of the recent constructions based on OT-extension is that they
do not readily extend to the multi-party setting. In contrast, we extend our result to the multi-party setting and
provide two protocol variants. The main protocol that we present in detail ensures that all parties receive correct
output. As we mentioned previously, ours is the first construction of this kind. It has communication complexity
of O((m2 logw +mw)κ), where m denotes the number of parties, w denotes the input set size, and κ is a security
parameter, and it is based on the MPC-in-the-head paradigm. Applying the IPS compiler directly will result in
a very inefficient protocol, which has the communication complexity of at least O((m3 +m2w)κ. That is just the
cost to set up the watchlists [LOP11]. In order to achieve better performance, we use a customized version the IPS
compiler for our multi-party PSI protocol. We redesign the watchlist mechanism for the MPSI protocol, basing it
on the commit-and-reveal paradigm. In the context of our MPSI protocol, the new watchlist mechanism reduces
the number of watch channels from O(mt) to O(t) where t is the number of channels that each party watches. In
Section 4 we discuss in detail how we implement our new watchlist mechanism.

Our MPSI protocol requires O((m2 logw+mw)κ) bits of communication for setting up the watchlists channels,
and then only O(mwκ) bits to compute the polynomial encoding the intersection. We also present a variant
that provides output to a single designated party. In this construction the communication reduces to O((m2 +
mw)κ). Our MPSI constructions need just 4m passive OLE calls per input item. Recently, Ben-Efraim et al.
[BNOP21] gave a new construction for (one side) multi-party PSI and provided experimental results (their code
is not currently available). Their construction is based on Garbled Bloom Filters and requires communicating
O(mwκ2 +mwκ log(κw)) bits. Because of the κ2 overhead, they quickly run into memory constraints and report
only on input sizes up to 218, which is relatively small in this line of work.

Performance: Our two-party protocol only requires 4 passively secure OLE instances for each element in the
set (amortized). For our multi-party PSI, the bottleneck of the protocol is with respect to the central party that is
required to perform 4m passive OLE per input item. To test the performance of our protocols, we implemented a
prototype that performs an end-to-end PSI functionality (see Section 6).

Black-box use of OLE: Since our reliance on OLE is black-box, we can instantiate this functionality with any
OLE construction, and can benefit from future improvements, such as new developments in OLE extension and
parallelization. Our implementation currently instantiates the OLE instances with either OT [Gil99] or with the
packed, additively homomorphic encryption scheme [BGV12], based on Ring LWE. The latter allows us to pack 212

values into a single instance, which greatly contributes to the concrete efficiency.

1.3 Related Work

Ghosh and Nilges [GN19]. These authors made the observation that the computation of T = Q(R1+R2)+P (S1+
S2) can be reduced to computing tj = qj(r1,j + r2,j) + pj(s1,j + s2,j) where w is the input size, j ∈ {1, . . . , 2w+1},
and tj , qj , pj , r1,j , r2,j , s1,j , s2,j are the evaluations of the above polynomials on public points ηj . Ghosh and Nilges
attempted to make their protocol secure against malicious adversaries by using actively secure OLE to compute tj ,
where the output polynomial T (·) is verified by checking if T (x) ≡ Q(x)(R1(x)+R2(x))+P (x)(S1(x)+S2(x)) over
two random points x1 and x2, each chosen by a party (in the two-party setting). Unfortunately, these checks do not
catch all the malicious attacks [AMZ21]. Specifically, their verification step does not ensure that the evaluations
above are well-formed or used consistently throughout the protocol. An adversary can modify these shares during
the computation, or use the shares, say r1,j , that are not consistent with a polynomial R1(x) =

∑w
i=0 aix

i but

some R1(x) =
∑w

i=0 aix
i∑k

i=0 bixi . These attacks have shown to violate both privacy and correctness. As opposed to [GN19],

our protocol guarantees that the shares are consistent and well-formed throughout the computation via the use of
MPC-in-the-head.

Leviosa [HIMV19]. Our construction leverages a lot of the techniques of Hazay et al. [HIMV19]. They provide
a concrete instantiation of the IPS framework, resulting in a generic two-party secure computation protocol with
security against a malicious adversary.

We note that Leviosa makes no claims about the multi-party setting, though, IPS does, and one can consider
how Leviosa would generalize: it would not scale well. As we mentioned earlier, the cost of setting up the watchlist
channels alone would be O((m3 +m2w)κ). When focusing on PSI, we are able to extend this approach much more
efficiently, primarily because the protocol is amenable to a star topology in the communication network. Specifically,
because we can arrive at the output encoding, T , through a series of pairwise computations with an (arbitrarily)
designated central party, the “inner protocol” in the IPS framework still only requires pairwise additive secret-
sharings of the state of the outer protocol. This allows us to perform pairwise OLEs on additively shared values
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(as in our two-party protocol), rather than some multi-party execution of the OLE. Furthermore, when verifying
correctness of the OLE executions, each party only needs to verify the correctness of the central party; beyond that,
they can rely on the central party to perform the verification of the other peers. For this reason, only the central
party must send m decommitments, while the other parties each sends only one. We note that without replacing
the OT-based watchlist channels with commit-and-reveal, we could not have benefited from this latter advantage
implied by a star topology.

In the two-party setting, Leviosa could be used “off-the-shelf” in order compile the semi-honest polynomial
multiplication protocol into a malicious-secure protocol. In our two-party protocol, this would result in roughly
twice the number of OLE calls, as their generic input encoding does not leverage the fact that PSI input is already
naturally, correctly encoded. Our main contribution in the two-party setting is to recognize the relevance of Leviosa
for two-party PSI.

2 Preliminaries

Basic notations. We denote a security parameter by κ. We denote by [n] the set of elements {1, . . . , n} for some
n ∈ N. Throughout the paper, we denote by m the number of parties, w the input size. We assume functions to be
represented by an arithmetic circuit C (with addition and multiplication gates of fan-in 2), and denote the size of
C by |C|. By default we define the size of the circuit to include the total number of gates including input gates.

2.1 Secure Multi-Party Computation

We use a standard stand-alone definition of secure multi-party computation protocols. In this work, we only consider
static corruptions, i.e. the adversary decides which parties it corrupts before the execution begins. We also only
consider security with abort, in which the one party receives their output first, and, if malicious, may choose to
abort before others recover the output. Note that in the variant of our multi-party protocol in which only one
designated party receives an output, this ability to abort is irrelevant. Nevertheless, for simplicity, we use the same
security definition. We use two security parameters in our definition: a computational security parameter κ, and a
statistical security parameter λ that captures a statistical error of up to 2−λ. We assume that λ ≤ κ. We let F be
a multi-party functionality that maps a set of m inputs to an output over some field F (w.l.o.g).

Let Π = ⟨P1, . . . , Pm⟩ denote a multi-party protocol, where each party is given an input xi and security param-
eters 1λ and 1κ. We allow honest parties to be PPT in the entire input length (this is needed to ensure correctness
when no party is corrupted), but bound adversaries to time poly(κ) (this effectively means that we only require
security when the input length is bounded by some polynomial in κ). We denote by realΠ,A(z)(x1, . . . , xm, κ, λ)
the output of the honest parties and the adversary A controlling a subset I ⊂ [m] of parties in the real execution
of Π, where z is the auxiliary input, xi is Pi’s initial input, κ is the computational security parameter, and λ is the
statistical security parameter. We denote by idealF,S(z)(x1, . . . , xm, κ, λ) the output of the honest parties and the
simulator S in the ideal model where F is computed by a trusted party. We stress that in this ideal model, the
adversary is given the output first, and then instructs F whether to send output to the honest parties, or to abort.
We refer the reader to Goldreich’s textbook for more detail [Gol09]. In some of our protocols the parties have
access to ideal model implementations of certain cryptographic primitives such as ideal coin tossing (FCOIN). We
denote such executions by realFCOIN

Π,A(z)(x1, . . . , xm, κ, λ). Due to Canetti’s stand-alone composition theorem [Can00],

it suffices to prove that this hybrid execution is indistinguishable from the ideal execution.

Definition 1. A protocol Π = ⟨P1, . . . , Pm⟩ is said to securely compute a functionality F in the presence of active
adversaries if the parties always have the correct output F(x1, . . . , xm) when neither party is corrupted, and moreover
the following security requirement holds. For any probabilistic poly(κ)-time adversary A controlling a subset I ⊂ [m]
of parties in the real world, there exists a probabilistic poly(κ)-time adversary (simulator) S controlling I in the
ideal model, such that for every non-uniform poly(κ)-time distinguisher D there exists a negligible function ν(·) such
that the following ensembles are distinguished by D with at most ν(κ) + 2−λ advantage:
{realΠ,A(z)(x1, . . . , xm, κ, λ)}κ∈N,λ∈N,x1,...,xm,z∈{0,1}∗ and {idealF,S(z)(x1, . . . , xm, κ, λ)}κ∈N,λ∈N,x1,...,xm,z∈{0,1}∗

2.2 Secret-Sharing

A secret-sharing scheme allows distribution of a secret among a group of n players, each of whom in a sharing phase
receives a share of the secret. In its simplest form, the goal of secret-sharing is to allow only subsets of players of
size at least t + 1 to reconstruct the secret. More formally a (t + 1)-out-of-n secret sharing scheme comes with a
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sharing algorithm that on input a secret s outputs n shares s1, . . . , sn and a reconstruction algorithm that takes
as input {i, si}i∈S where |S| > t and outputs either a secret s′ or ⊥. In this work, we use polynomial encodings to
share a set of secrets in F = GF(q). We only require that the output of the reconstruction algorithm includes every
secret, and it may output a superset of the secret set. We present the sharing and reconstruction algorithms below:

Sharing algorithm Share: For any input set {x1, . . . , xw} : xi ∈ F \ {1, . . . , n}, pick a random polynomial p(·) of
degree t+ w in the polynomial ring F[x] with the condition that p(xi) = 0. Output p(1), . . . , p(n).

Reconstruction algorithm Reconst: For any input {i, s′i}i∈S , compute a polynomial g(x) such that g(i) = s′i for
every i ∈ S. This is possible using Lagrange interpolation where g is given by

g(x) =
∑
i∈S

s′i
∏

j∈S/{i}

x− j

i− j
.

Finally the reconstruction algorithm outputs the roots of g.

A secure secret sharing scheme is required to satisfy the following properties:

Correctness: For every secret set {x1, . . . , xw}, and every set of t+w+1 shares si1 , . . . , sit+w+1 ⊆ Share({x1, . . . , xw}),

Pr
[
{x1, . . . , xw} ⊆ Reconst

(
si1 , . . . , sit+w+1

)]
= 1

Secrecy: For any pair of secret sets x, x′, and every two sets of shares si1 , . . . , sit+w
⊆ Share(x) and s′i1 , . . . , s

′
it+w

⊆
Share(x′), {si1 , . . . , sit} and {s′i1 , . . . , s

′
it
} are identically distributed.

Coding notation. For a code C ⊆ Fn and a vector v ∈ Fn, denote by d(v, C) the minimal distance of v from
C, namely the number of positions in which v differs from the closest codeword in C, and by ∆(v, C) the set of
positions in which v differs from such a closest codeword (in case of ties, take the lexicographically first closest
codeword). We further denote by d(V,C) the minimal distance between a vector set V and a code C, namely
d(V,C) = minv∈V d(v, C).

Definition 2 (Reed-Solomon code.). For positive integers n, k, finite field F, and a vector η = {η1, · · · , ηn} ∈ Fn

of distinct field elements, the code RSF,n,k,η is the [n, k, n − k + 1] linear code over F that consists of all n-tuples
(p(η1), ..., p(ηn)) where p is a polynomial of degree < k over F and d = n− k + 1 is the minimum distance.

2.3 Commitment Schemes

We use cryptographic commitments in our coin-flipping functionality. In a commitment scheme, a sender holds
some secret value x ∈ F. It sends a commitment to x to a receiver, which reveals nothing about x. At a later time,
the sender can send a decommitment, which proves that x was the value used at the time of commitment.

Committing algorithm Com: On input x ∈ F, and security parameter κ, the committing algorithm outputs a
pair of values (c, d).

Decommitting algorithm Decom: Given a commitment c and a decomittment value d, the decommitment
scheme outputs a value x. We note that the decommitment algorithm might take x as part of d, and re-
turn ⊥ in case x and d are inconsistent.

A secure commitment scheme is required to satisfy the following properties.

Hiding: For every pair of inputs, x1, x2 ∈ F, and for every non-uniform, poly(κ) time distinguisher D, there exists
a negligible function ν(·) such that |Pr[D(Com(x1) = 1]− Pr[D(Com(x2) = 1]| ≤ ν(κ).

Binding: For every non-uniform, poly(κ) time adversary A outputting (c, d1, d2), there exists a negligible function
ν(·) such that Pr[Decom(c, d1) = Decom(c, d2)] ≤ ν(κ).

Additional preliminaries are found in Appendix A.
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Functionality F2PSI

Setup. Let t, e, w, n be positive integers where w is the parties’ input size, k = w + t + e, n > 2k,
d = n− k + 1, e < d/3, (1− e/n)t < 2−λ where λ is the security parameter.

Functionality. F2PSI communicates with parties P1, P2, and adversary A.
• Wait for the input X = (x1, ..., xw) and Y = (y1, ..., yw) from P1 and P2 respectively.

• Wait for the adversary A to add up to (t + e) more items to the input set of the corrupted party.

Let X̃ and Ỹ be the input sets after this step (only the corrupt party’s input is modified).

• Send the output X̃ ∩ Ỹ to P2.

• Wait for abort/continue from P2. Upon receiving abort from P2, the functionality sends ⊥ to P1.

Else, the functionality sends X̃ ∩ Ỹ to P1.

Figure 1: Fully Secure Two-Party PSI Ideal Functionality.

3 Fully Secure Active PSI

In this section we present our two-party actively secure protocol for computing the PSI functionality (cf. Figure 1)
where both parties learn the output.

Our protocol follows the basic design of Kissner and Song [KS05], where the parties generate two polynomials
P (·) and Q(·) that correspond to their inputs (namely, the roots of these polynomials are the input sets). Next, the
parties jointly compute T (·) = P (·)S(·)+Q(·)R(·), where S and R are random polynomials, and all polynomials have
the same degree. They can then extract the intersection from the roots of T . Specifically, Kissner and Song proved
that if S(·) and R(·) are chosen uniformly at random, and privately, then T (·) can be represented as T (·) = I(·)W (·)
where I(·) is the polynomial with the roots at the intersection items, and W (·) is a random polynomial. Intuitively,
note that if P (ω) = 0, then P (ω)S(ω) = 0. If Q(ω)R(ω) = 0, then P (ω)S(ω) + Q(ω)R(ω) = 0, and ω is a root
of T (·). On the other hand, if Q(ω) ̸= 0, then because R(ω) is uniform, T (ω) is uniform, and unlikely to be 0.
Because both S(·) and R(·) are uniform and unknown, it follows that T (·) is a uniform polynomial, subject to have
the intersecting roots. Furthermore, note that if P (·) ̸= 0 and Q(·) ̸= 0, revealing T (·) to Pi does not leak any
information about the other party’s input other than the intersection. In order to guarantee that R(·) and S(·) are
sampled uniformly at random, each party Pi independently samples Ri(·) and Si(·) uniformly at random. Following
that, the parties compute T (·) = P (·)(S1(·) + S2(·)) + Q(·)(R1(·) + R2(·)). Then as long as one party honestly
samples its polynomials shares, R(·) and S(·) will be uniformly random polynomials and T (·) will be distributed as
explained above.

We use OLE (see Figure 7 for the OLE functionality) to perform the polynomial multiplications, as follows. All
polynomials have degree w, and we fix a set of n > 2w public indices. Let pi = P (i) denote the evaluation of P1’s
input polynomial at public index i, and define qi similarly. P1 samples random polynomials R1(·), U1(·) and S1(·)
and evaluates them at all n public indices: let r1,i = R1(i), and we use a similar notation for the remaining random
polynomials. P2 does the same with random polynomial R2(·), U2(·) and S2(·). P1 submits r1,i to the ith OLE
instance, and P2 submits (qi, u2,i); P1 receives qir1,i+u2,i. Symmetrically, P2 receives from a parallel OLE instance
pis2,i+u1,i. P2 computes and sends (pis2,i+u1,i)+(qir2,i−u2,i). P1 computes and sends (pis1,i−u1,i)+(qir1,i+u2,i).
Summing these together, they each learn pisi + qiri, where si = s1,i + s2,i is the evaluation of random, private
polynomial S at the ith public index (and ri is similar).

To ensure security, our protocol follows the blueprint of the two-party protocol designed by Hazay et al.
[HIMV19], which is based on the IPS compiler [IPS08], and achieves malicious security using the “MPC-in-the-
head” paradigm. This powerful paradigm securely realizes an arbitrary functionality F with active security, while
making black-box use of the following two ingredients: (1) an active MPC protocol which realizes F in the honest
majority setting, and (2) a passive MPC protocol in the dishonest majority setting (e.g. a two-party protocol) that
realizes the next-message functions4 for each party in protocol (1). When applied to our setting, protocol (1) is
the point-wise multiplication and addition of the polynomials previously described, and protocol (2) is the OLE
execution above.

To enforce correct behaviour, Ishai et al. introduced a novel concept called watchlists: the parties run an
emulation of protocol (1) by securely executing protocol (2) for each message. Each party obliviously checks the
other party’s behavior in (2) through OT channels, and because (1) is secure against a minority of corruptions,
privacy is still guaranteed. Namely, the parties commit to the input and the randomness used in each OLE execution.

4The function computing the next outgoing message, given the current state of the participating party.
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Π2PSI MPC-in-the-Head based two-party PSI

Setup: P1 and P2 agree on a common finite field Fq and ω is an nth root of unity of the field (namely, n|(q − 1)).
Let η = {1, ω, ..., ωn−1}, w be the input size and t, e, n be positive integers where k = (w + t + e), 2k < n and
(1− e/n)t ≤ 2−λ.
Inputs: P1 and P2 have inputs X = {x1, ..., xw} and Y = {y1, ..., yw} respectively. (Assume η ∩X = ∅, η ∩Y = ∅.)
The Protocol:

1. Input Sharing Phase. P1 samples T1(x) and P2 samples T2(x), each a random polynomial of degree t+e. P1

computes P (x) = [Πw
j=1(x−xj)] ·T1(x). P2 computes Q(x) = [Πw

j=1(x−yj)] ·T2(x). P1 computes pj = P (ωj),
P2 computes qj = Q(ωj) for all j ∈ [1, n].

2. Random polynomials sampling.a

• P1 samples random polynomials Z1(·), R1(·), S1(·) and computes the RSFq,n,k,η encodings: z1 = Z1(η),
r1 = R1(η), s1 = S1(η). P2 samples Z2(·), R2(·), S2(·) and computes z2 = Z2(η), r2 = R2(η), s2 = S2(η).
All polynomials have degree at most (w + t+ e) and are chosen over the finite field Fq.

• Pi samples a random polynomial Ui(·) of degree 2k and computes ui = Ui(η).
3. Coin tossing. The parties call FComCoin twice (Functionality 9), each receiving n random strings and de-

commitments for those strings: ((σi,1, τi,1), . . . , (σi,n, τi,n)), as well as n commitments to the other party’s
randomness: (comi,1, . . . , comi,n). Pi will use σi,j as its randomness for the jth OLE execution.

4. Watchlist channels setup via t-out-of-n OT. The parties call F t:n
OT (Functionality 5). P1 receives t tuples

(qj , u2,j , r2,j , s2,j , z2,j , τ2,j) from P2. They repeat the process with reversed roles, where P2 receives t tuples
(pj , u1,j , r1,j , s1,j , z1,j , τ1,j) from P1. Let I1 and I2 be the sets of indices chosen by P1 and P2, respectively,
defined by the receiver’s input to each OT instance

5. Degree Test. The parties perform degree test on Z1, Z2, R1, R2, S1, S2, P,Q to verify that they have a degree
of at most w + t+ e.

• The parties call FCOIN (Functionality 8) to sample random public values {α1, ..., α8}.
• P1 sends a where aj ← α1 · z1,j + α2 · r1,j + α3 · s1,j + α4 · pj to P2, j ∈ [1, n].
• P2 sends b where bj ← α5 · z2,j + α6 · r2,j + α7 · s2,j + α8 · qj to P1, j ∈ [1, n].
• The parties verify that a and b are valid RSFq,n,k,η codewords. They also check the correctness of these

shares against their watched channels.

– P1: ∀j ∈ I1 : bj = α5 · z2,j + α6 · r2,j + α7 · s2,j + α8 · qj .
– P2: ∀j ∈ I2 : aj = α1 · z1,j + α2 · r1,j + α3 · s1,j + α4 · pj

6. OLE. The parties make a sequence of calls to FOLE (Functionality 7):
• P1 provides r1 whereas P2 provides (q,u2) to FOLE. P1 obtains c1 = (c1,1, · · · , c1,n) where c1,j =

qj · r1,j + u2,j .
• P1 provides (p,u1) whereas P2 provides s2 to FOLE. P2 obtains c2 = (c2,1, · · · , c2,n) where c2,j =

pj · s2,j + u1,j .
• Pi verifies that ci is a valid RSFq,n,2k,η codeword.
• P1 verifies against the watchlist that for j ∈ I1 : c1,j = qj · r1,j + u1,j , and that τ2,j is consistent with

the OLE execution for those inputs of P2.
• P2 verifies against the watchlist that for j ∈ I2 : c2,j = pj · s2,j + u2,j , and that τ1,j is consistent with

the OLE execution for those inputs of P1.
7. Output Reconstruction.

(a) P1 computes d1 where d1,j = c1,j + pj · s1,j − u1,j and sends d1 to P2.

(b) P2 computes d2 where d2,j = c2,j + qj · r2,j − u2,j and sends d2 to P1.

(c) The parties verify that di is a valid RSFq,n,2k,η codeword. They also verify against the watchlist that

• For j ∈ I1 : d2,j = c2,j + qj · r2,j − u2,j .

• For j ∈ I2 : d1,j = c1,j + pj · s1,j − u1,j .

(d) Both parties compute tj = d1,j + d2,j = pj(s1,j + s2,j) + qj(r1,j + r2,j).

(e) P1 and P2 obtain T (·) = P (·)S(·) + Q(·)R(·) by interpolating the points (ωj , tj) and evaluate T (·) on
their input.

(f) P1 outputs X ∩ Y = {xj | T (xj) = 0} and P2 outputs X ∩ Y = {yj | T (yj) = 0}.
aThe random polynomials Zi(·) are used in the degree test to verify that all shares are valid Reed-Solomon codes. The

random polynomials Ui(·) are used to randomize the output of the OLE.

Figure 2: Fully Secure Active Two-Party PSI Protocol.
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Then, each party is allowed to obliviously open t committed values to be checked against the messages received
in the OLE execution. This oblivious choice is made via OT instances. With an appropriate choice of parameters
(see Section 5), any attack will be caught with high probability. In this work, we build on the concrete analysis of
[HIMV19] the honest majority building block of IPS, for concrete PSI protocols.

We use w denote the size of each user’s input set. We describe here how we set the degree of the polynomials.
Namely, since every party will open and verify t OLE instances, they will immediately learn t shares of every
polynomial. Furthermore, a malicious party might cheat in e OLE instances, breaking the privacy of that execution,
and learning an additional e shares of each polynomial. We therefore use polynomials with degree greater than
w + t + e, ensuring that t + e shares do not leak anything about the roots of the polynomials. (Note that T has
double this degree, due to the polynomials multiplication.)

Our protocol is black-box in the implementation details of the underlying OLE and can be instantiated with
any OLE protocol. To verify correctness of the OLE executions, the users begin by executing a secure coin-flipping
protocol that provides randomness for the OLE execution to one party, and a commitment to that randomness
to the other party. The decommitment to the randomness is sent over the watchlist channels, together with the
OLE inputs. This allows the receiving party to verify the correctness of all OLE messages in that execution.
To maintain the reliance on black-box OLE, we treat the OLE executions as ideal function calls; however, the
verification procedure just described will require knowledge of the particular OLE instantiation.

Overall, it costs only two passive OLE to compute each T (ηj). Based on the analysis from [HIMV19], the
amortized number of passive OLE needed for each item is 2n/w = 2(2(w + t + e) + 1)/w = 4 + (4t + 4e + 2)/w
where w is the input size and t, e are parameters associated with w such that (1 − e/n)t < 2−λ. As w increases,
(4t+ 4e+ 2)/w → 0.

The watchlist mechanism used in our protocol also allows us to prevent the adversary from setting P (·) or Q(·)
to 0 for free. In particular, via the use of a watchlist, each party can verify the computation of t evaluations T (ηj).
Therefore, if the adversary deliberately sets P (·) or Q(·) to 0, or even if it sets more than e evaluations P (ηj) or
Q(ηj) to 0, this will be caught immediately by the honest party since the error probability will be (1− e/n)t (the
concrete parameters are fixed in Section 5). See Figure 2 for our two-party PSI protocol.

Slackness. We note that our approach introduces some slackness in terms of the input size: while honest parties
will provide an input set of size w, a malicious party might include an additional t+e inputs of its choosing without
detection, by embedding the chosen values in an additional t + e roots.5 This leaks some additional information
about the honest input set.

Rather than attempting to prevent this, we weaken the functionality to reflect this attack. This weakening
admits a more efficient protocol. In our protocols, the slackness is defined as ϵ = (t+ e)/w. The slackness also has
a negative impact on the efficiency, thus it is desirable to keep the slackness as low as possible. Concretely, for an
input size 224, our slackness is 24% of the input size (See Section 5.1). We stress that input size slackness exists
in many efficient PSI constructions. For example, the fastest semi-honest protocol [PSTY19] is based on cuckoo
hashing, and has slackness at least 100%.

Theorem 1. Let k, t, e, w, n be positive integers such that k ≥ t+e+w, e < d/3, and 2k < n, then protocol Π2PSI (cf.
Figure 2) securely computes functionality F2PSI (cf. Figure 1) with two parties in the {FComCoin,F t:n

OT ,FCOIN,FOLE}-
hybrid, tolerating static adversaries with a statistical error of d/|F|+(1−e/n)t+2(w+ t+e)/|F| where d = n−k+1
is the distance of the underlying code.

We will consider each corruption case separately. In our simulations, m̃ is a message generated by the simulator to
simulate the message m in the hybrid protocol.

Simulation for a corrupted P1.

1. Coin-tossing. The simulator plays the role of the trusted party in FComCoin honestly, generating random
coins and commitments.

2. Watchlists.

q̃I , ũ2,I , z̃2,I , r̃2,I , s̃2,I : The simulator samples random polynomials Q̃(·), Z̃2(·), R̃2(·), S̃2(·) of degree w+ t+e,
and U2(·) of degree 2(w + t+ e). It evaluates the polynomials on the roots of unity η = (1, ω, . . . , ωn−1) and
obtains RSFq,n,k,η encodings q̃, r̃2, s̃2, z̃2, and RSFq,n,2k,η encoding u2. The simulator sees P1’s choice bits
when it submits them to the ideal functionality F t:n

OT in Step 4. If more than t bits are set to 1, the simulator

5Technically, even in an honest execution, a random polynomial consistent with the honest input may contain some additional roots.
However, if these are random points, the probability that they end up in the intersection is negligible. In an adversarial setting, the
adversary could embed values of interest, based on some auxiliary information about the honest input.
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aborts and outputs whatever P1 outputs. Else, the simulator obtains the indices I = {i1, ..., it} where the
choice bits are 1. It hands P1 the values q̃I , ũ2,I , z̃2,I , r̃2,I , s̃2,I to simulate the messages P1 receives. (Note
that the simulation follows similarly also in the case where P1 set fewer than t selection bits.)

The simulator extracts {pj , u1,j , r1,j , s1,j , z1,j}j when P1 sends its input to F t:n
OT in Step 4. The simulator

reconstructs the polynomials p(·), R1(·), S1(·), Z1(·) from these values. If any of the polynomials has a degree
greater than w + t+ e, the simulator sets abort0 = 1. Otherwise, abort0 = 0.

3. Degree test.

α̃1, α̃2, α̃3, α̃4, α̃5, α̃6, α̃7, α̃8, b̃j : The simulator samples α̃1, . . . , α̃8 uniformly at random and hands them to P1

to simulate the output of FCOIN. It computes b = (b1, . . . , bn) where b̃j = α5 · z̃2,j +α6 · r̃2j +α7 · s̃2j +α8 · q̃j
and hands b to P1 to simulate the messages P1 receives in Step 5. If abort0 == 1 the simulator aborts and
outputs whatever P1 outputs.

Input extraction. If abort0 == 0, the simulator interpolates the polynomial P̃ (·) from the points (ωj , pj).

If P̃ (·) ≡ 0, the simulator aborts and outputs whatever P2 outputs. Else, the simulator extracts P1’s input

X̃ defined by X̃ = {x | P̃ (x) = 0}. The extracted input must be embedded with the following slackness:

X̃ = X ∪X ′ where X ′ are the roots of T1(·) chosen by P1 in Step 1.

Synthesize P2’s input. The simulator submits X̃ to the ideal functionality and obtains X̃∩Y . It recomputes
Q̃(·) such that Q̃(·) = W (·)

∏
z∈X̃∩Y

(X − z) such that deg(Q̃) = w+ t+ e, Q̃(ηj) = q̃j for j ∈ I1, and W (z) ̸= 0

for z ∈ X̃/(X̃ ∩ Y ).

4. OLE. c̃1 = (c̃1,1, . . . , c̃1,n): The simulator verifies the messages sent in all n executions of the passive OLE
in Step 6, verifying correctness against the decommitted randomness.6 If more than d/3 executions are
inconsistent with the watchlists yet the adversary is not caught, the simulator sets abort1 = 1. The simulator
extracts r1,j when P1 sends its input to the first FOLE in Step 6. The simulator hands c̃1 where c̃1,j =
qj · r1,j + u2,j to P1 to simulate this step. The simulator extracts (pj , u1,j) when P1 sends its input to the
second FOLE in Step 6.

5. Output reconstruction.

• d̃2: The simulator computes d̃2 from c2 and its shares, and hands it to P1.

• The simulator receives d1 = (d1,1, . . . , d1,n) from P1. It verifies that d1,j = c1,j + pj · s1,j − u1,j =
qj · r1,j +u2,j + pj · s1,j −u1,j for all j ∈ [1, n]. If abort1 = 1 or if the check fails for at least d/3 positions,
the simulator aborts and outputs whatever P1 outputs.

The simulator completes the simulation and outputs whatever P1 outputs.

We define the event where a malicious P1 deviates from the protocol.

1. E1: In Step 2, P1 sends at least one invalid RSFq,n,k,η codeword to F t:n
OT where the number of errors is bounded

by d/3.

2. E2: At least d/3 of the OLE instances, or the d1,j values sent in Step 7 or the degree test values, are
inconsistent with the watchlists.

We prove that the joint distributions in the hybrid and ideal worlds are computationally indistinguishable by a
sequence of hybrid games.

{
real

FComCoin,Ft:n
OT,FCOIN,FOLE

Π2PSI,A(z) (X,Y, κ, s))
}
κ,s,X,Y,z

c≡
{
idealF2PSI,S(z) (X,Y, κ, s))

}
κ,s,X,Y,z

• H0 : This game is a hybrid execution of the protocol.

• H1 : Similar to H0, except that when E1 happens, the simulator aborts.

6As explained in the second footnote in Figure 2, for simplicity, in the remainder of the simulation we will treat these OLE executions
as ideal. However, to verify correctness of the executions, we have to examine the messages of the particular instantiation of the ideal
primitive. Since this can be done generically, for any instantiation, we allow ourselves this simplification.
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• H2 : Similar to H1, except that when E2 happens, the simulator aborts.

• H3 : Ideal execution of the protocol.

H0 and H1: We prove that H0 and H1 are statistically close. Note that H0 and H1 can be distinguished if and
only if one of the random polynomials sampled in Step 2 in H0 has a degree greater than w + t+ e, yet the degree
test passes. Whereas in H1, the simulator always knows if the adversary cheats and aborts when the degree test is
executed, even if it passes.

Recall first that a random polynomial p that is sampled honestly in Step 2, p(η) ≡ (p(1), ..., (ωn−1)) is a
[n, k, n − k + 1] Reed-Solomon codeword. Moreover, the degree test checks whether a random linear combination
of the codewords generated from those random polynomials belongs to RSFq,n,k,η. When one of these random
polynomials has a degree higher than (w + t + e), in order to pass the degree test, P1 must come up with a tuple
(a1, ..., an) that is a valid RSFq,n,k,η codeword.

To bound this error, we rely the following Lemma from Ames et al. [AHIV17] to bound the error probability
that the degree test passes by d/F. We denote by the matrix Ui the list of codewords to be proven by party Pi.

Lemma 2. [AHIV17] Let L = RSFq,n,k,η and e a positive integer such that e < d/3, where d is the minimum
distance of L. Suppose d(Ui, L

m) > e where Ui is as defined as above. Then, for a random l∗ in the row-span of
Ui, it holds that

Pr[d(l∗, L) ≤ e] ≤ d/|F|.

H1 and H2: We prove that H1 and H2 are statistically close. Note that H1 and H2 can be distinguished if and
only if in H1 the event E2 happens but it is not caught by the watchlists. This error probability is bounded by
(1− e/n)t. Meaning, if the adversary is deviating in at least e positions overall, it will be caught except with this
probability.

H2 and H3: We prove that the views in H2 and H3 are statistically close to each other.
Recall that in H3, instead of using the actual P2’s input to simulate the watchlist messages in Step 4, the

simulator samples a random polynomial Q̃(·) and generates the messages q̃I1 . Only after the OT, the simulator

extracts P1’s input X̃. The output is determined based on the extracted input of the adversary. Once the simulator
obtains the output X̃ ∩ Y , the simulator needs to recalculate the polynomial Q̃(·) used in the following steps of the

simulation. Now Q̃(·) = Π
w+t+e−|X̃∩Y |
i=1 (X − zi)Πyi∈X̃∩Y (X − yi) · T̃ ′

2(·) where zi /∈ X̃ ∩ Y and T̃ ′
2(·) are random

polynomials of degree (t+ e), and chosen such that the new Q̃(·) is consistent with the shares q̃I1 sent through the

watchlist channels. Denote Ỹ = {zi} ∪ (X̃ ∩ Y ). On the other hand, in H2 we have Q(·) =
w∏
i=1

(X − yi) · T2(·).

Due to the watchlist mechanism, the adversary sees t evaluations of Q(·) and Q̃(·). However, as Πw
i=1(X − yi)

and Πw
i=1(X − ỹi) are both masked with random polynomials of degree t+ e, nothing is leaked about yi or ỹi from

observing t evaluations.
In H2, P1 receives the RSFq,n,k,η encoding (t1, . . . , tn) of a polynomial T = P (S1 + S2) + Q(R1 + R2). While

in H3, upon extracting P1’s input X̃, the simulator submits X̃ to the ideal functionality and obtains the output
X̃ ∩ Y , so P1 receives (t̃1, . . . , t̃n) of T̃ = W̃ · Πzi∈X̃∩Y (X − zi) where W̃ is a random polynomial of degree

2(w+ t+e)−|X̃∩Y | that does not contain any roots of P1 or of P2. According to Kissner and Song [KS05] (Lemma
2), whenever R = R1+R2 and S = S1+S2 are random polynomials, then the polynomial T = W ·Πzi∈X∩Y (X−zi)
where W is distributed as a random polynomial of degree 2(w+ t+ e)− |X ∩ Y |. In H3, the simulator obtains the

exact X̃ ∩ Y , however, in H2, W may contain extra roots that are in X̃\(X̃ ∩ Y ) or Y \(X̃ ∩ Y ). H2 and H3 will
be indistinguishable if W does not have common roots with the input polynomials of both parties. We claim that
the probability that this happens is bounded by 2(w + t+ e)/|F|.

Lemma 3. The probability that at least one of the values {x1, . . . , xt} is a root of a uniformly random polynomial
P (X) = a0 + · · ·+ anX

n over the field F is bounded by t/|F|.

Proof. It is clear that for any value x and for any combinations of (a1, . . . , an), there is only one value a0 that makes
P (x) = 0. So, the probability that x is a root of the random polynomial P (X) is exactly 1/|F|. Taking the union
bound, the probability that at least one value of the set {x1, . . . , xt} is the root of P (X) is bounded by t/|F|.

From Lemma 3, the probability that W (·) has a common root with P̃ (·) is bounded by (w+ t+ e)/|F|, and that
W (·) has a common root with Πw

i=1(X − yi), where yi values are P2’s input, is bounded by w/|F|. In overall, the
chance that H2 and H3 are different is bounded by 2(w + t+ e)/|F|.
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Furthermore, we claim that the adversary’s input is well defined. This is because the simulator did not abort
either in the degree test and either due to the watchlists checks. This implies that the adversary followed the degree
test correctly and provided polynomials that are consistent with the values committed via the watchlists.

We conclude that H2 and H3 are statistically close with an error bounded by 2(w + t+ e)/|F|. Note that H3 is
identically distributed to the simulation.

This concludes the proof for the first case.

Simulation for a corrupted P2. The roles of P1 and P2 in our two-party PSI protocol are symmetric and thus
the simulation and proof are identical.

4 Fully Secure Active PSI: The Multi-Party Extension

Another important benefit of our paradigm is that, in contrast to most prior two-party approaches, it can be
extended to any number of parties. At the heart of our multi-party protocol is an extension of the protocol shown
in Section 3. The m parties compute the polynomial T of the form T = Q0

∑m−1
i=0 Ri+

∑m−1
i=1 Qi(S

i
0+Si). Namely,

all parties contribute their input polynomials as well as the masking polynomials. Our two-party PSI functionality
is adapted to the multi-party setting in Figure 3. Throughout this section we highlight in blue any text related to
our modified protocol that provides output only to P0.

Functionality FMPSI

Setup. Let t, e, w, n be positive integers where w is the parties’ input size. k = w + t + e, n > 2k,
d = n− k + 1, e < d/3, (1− e/n)t < 2−λ.

Functionality. FMPSI communicates with parties P0, · · · , Pm−1, and adversary A.

• Wait for the input X(i) = (x
(i)
1 , ..., x

(i)
w ) from Pi. If P0 is one of the corrupted parties, replace all

other corrupted parties’ input with P0’s input.

• Wait for the adversary A to add as many as ((m− 1)t+ e) additional items to the input set of the

corrupted parties. Let X̃(i) be the modified input set of party Pi.

• Send output S ←
m−1⋂
i=0

X̃(i) to P0.

• If all parties are supposed to receive output:

– If P0 is corrupted, wait for abort/continue from P0. Upon receiving abort, send ⊥ to all honest
parties. Else, send S to all honest parties.

– If P0 is honest, send S to all parties.

Figure 3: Multi-Party PSI Ideal Functionality.

Our protocol uses a hybrid approach between a fully connected network and a star topology network, where the
parties communicate with a single central party. That is, our protocol considers both types of networks, which is
similar to the approach proposed by [GPR+21]. Nevertheless, our MPSI protocol is fully secure while theirs only
provides output the central party. We use watchlists to enforce honest behavior of all the parties. A fully connected
network is needed to set up the watchlist channels among the parties, then a star topology is used to compute a
masked intersecting polynomial between P0 and Pi. For each pair (P0, Pi), the central party P0 learns an RSFq,n,2k,η

encoding of the polynomial Ti = Q0 ·Ri +Qi(S
i
0 + Si) + Vi where Qi is the polynomial that encodes Pi’s input, S

i
0

and (Ri, Si) are random polynomials sampled by P0 and Pi, respectively, and Vi is the masked polynomial used to
hide the intersection between P0 and Pi. Specifically, the Vi’s are random polynomials that are sampled such that∑m−1

i=1 Vi = 0, allowing P0 to add all Ti together to compute the intersection.

After P0 obtains the RSFq,n,2k,η encoding of the polynomial T = Q0 ·R0+
∑m−1

i=1 Ti. It broadcasts the encoding
to all other parties who can verify it against their watchlists. As all parties must commit their inputs during the
watchlist channel setup steps, P0 cannot drop or add anything to the intersection without being caught by the
watchlists.

Naive IPS watchlist setup. The watchlist channels setup step proposed in [LOP11] requires O(m3 +m2n) bits
where n = O(w +mt + e). To set up the watch channels, each party Pi executes the multi-sender t-out-of-n OT
protocol, called Ft:n

mOT (see Figure 6), which allows Pi to watch all other parties at the same t channels of its
choice. The authors proposed an instantiation for Ft:n

mOT based on DDH assumption, where each channel requires
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O(n) = O(w+mt+e) exponentiations for input length w. It is clear that if the watchlist channels for our multi-party
PSI protocol are set up using their instantiation, the protocol will be very inefficient.

Watchlist channels via the commit-and-reveal paradigm. We propose a new way to set up our watchlist
channels. We send only O(m2 log n) bits (where n = O(w+t+e)), and the construction has very low computational
cost. The number of watched channels in [LOP11] is O(mt), as each party independently chooses t servers to watch.
If (m−1) parties are corrupt, they can collectively learn (m−1)t shares from the honest party. This would force us
to pad the input polynomials with a random polynomial of degree of (m−1)t+e, resulting in n > 2(w+(m−1)t+e).
If we could instead arrange for all parties to watch the same t channels, we could set n > 2(w + t + e) instead of
n > 2(w+ (m− 1)t+ e). The challenge is that a colluding party will tell P0 which channels are being watched; the
adversary can avoid being caught when it cheats.

To solve this problem, we replace the OT watchlist with a commit-and-reveal protocol. Instead of “quietly”
watching a live channel, the parties are asked to commit to their shares before the computation, and only when
they perform a check, after the messages are sent, do they agree on a random set of t channels. They decommit
those shares, together with any randomness used in these channels, to all other parties. To reduce the cost of
broadcasting the commitments, the parties commit to their shares using a Merkle tree [Mer87]. They broadcast
only the root of each tree, followed by a hash of the received roots to verify consistency.

The cost for all parties to commit to their shares is O(m2κ), and the cost to perform one check is O(m2tκ log n).
Note that we need to pick t and e such that (1 − e/n)t < 2−λ where n > 2(w + t + e). When the input size w is
large, we can choose t = 5λ then e = n(1− 5

√
1/2) = 2(1− 5

√
1/2)(w + t+ e) ⇒ e = 0.35w + 1.76λ. Now t = O(λ)

(typically λ = 40) and can be dropped from our asymptotic cost. The total communication for our watchlist set up
and watchlist verification is O(m2κ log n) if one check is performed. The computational cost is the cost to generate
the Merkle tree, and to reveal and verify t servers. For our multi-party PSI protocol, we need just three checks
(Figure 4). It is extremely cheap compared to the cost of the multi-party t-out-of-n OT used in the IPS compiler.

Our MPSI asymptotic communication cost. Our new watchlist mechanism has communication cost of
O(m2κ log n) bits where n = O(w + t + e), and t + e ≪ w). Additionally, the pairwise OLE executions (Step
8) cost O(nmκ) bits. In total, the communication cost of our protocol is O((m2 log n +mn)κ) bits. Our protocol
is presented in Figure 4.

MPSI with one party output. While we have mainly focused on achieving full security, where every party
receives correct output, it is worth noting that if we relax security as in [GPR+21], then with a few modifications
our communication cost is only O((m2+nm)κ). First, during the watchlist channels setup step, instead of requiring
Pi ̸= P0 to watch all other parties, Pi only needs to watch P0. As a result, the communication cost of the watchlist
channels setup is now reduced to O((m2 + nm)κ). Specifically, P0 commit to its shares via a Merkle tree and
broadcasts the tree’s root to everyone. This costs O(m2κ) bits. The OLE verification cost is O(tκ log n) for each
pair (P0, Pi), which is very small compared to the cost to compute the OLE. Concretely, our relaxed multi-party
PSI has the amortized cost of 4m passive OLE per input item.

Theorem 4. Let k, t, e, w, n be positive integers such that k ≥ w+3t+ e, e < d/3, and 2k < n, then protocol ΠMPSI

(cf. Figure 4) securely computes functionality FMPSI (cf. Figure 3) with m parties in the {FCOIN,FOLE}-hybrid,
tolerating static adversaries with a statistical error of d/|F|+ (1− e/n)t +m(w+3t+ e)/|F| where d = n− k+1 is
the distance of the underlying code.

We consider two cases. In the first case P0 is corrupt. In the second case P0 is not corrupt. Let A be the set of
indices of corrupt parties.

Simulation for a corrupted P0.

1. Merkle tree commitment. The simulator acts on behalf of honest parties Pi, running the protocol honestly
until Step 6 (in Step 2 it uses random input Q̃i for the honest party Pi). The simulator samples three random
coins, each is used to generate the set of indices I1, I2, I3 of the watch channels in each check. Let I = I1∪I2∪I3.
It then uses the random input and random polynomials to generate the Merkle tree’s root. It stores all honest
Pi’s shares at these indices (q̃i,j , j ∈ I).

2. Input extraction. In Step 7, the simulator hands corrupt parties a random coin, which correspond to a list
of t indices used for the degree test, and learns t shares. The simulator rewinds the process until it extracts
all the corrupt parties’ input and randomness used in the protocol.

• P0’s input: (q0,j , r0,j , z0,j , s
1
0,j , · · · , s

m−1
0,j , u1

0,j , · · · , u
m−1
0,j ) for j ∈ [1, n].

• Pi’s input (i ∈ A \ {P0}): (qi,j , ri,j , si,j , zi,j , vi,j , ui,j) for j ∈ [1, n].
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ΠMPSI MPC-in-the-Head based MPSI

1. Setup. Parties P0, . . . , Pm−1 agree on a common finite field Fq and ω is an nth root of unity of the field
(namely, n|(q − 1)). Let η = {1, ω, . . . , ωn−1}, w the input size and t, e, n be positive integers such that
2k < n, k = (w + 3t+ e), e < (n− k + 1)/3, and (1− e/n)t ≤ 2−λ.

2. Input Sharing Phase. Each party Pi has an input Xi = {xi
1, ..., x

i
w}. Pi samples a random polynomial

Ti(x) of degree t+ e, computes Qi(x) = Ti(x)Π
w
j=1(x− xi

j) and the RSFq,n,k,η encoding qi = Qi(η).
3. Sample random masked polynomials.

• For each pair (i, j) where 1 ≤ i < j ≤ (m − 1), Pi and Pj call FCOIN (Functionality 8) to sample a
common seed seedij . Let Vij ← PRG(seedij) be a random polynomial of degree 2k. Pi stores Vij while
Pj stores Vji = −Vij .

• For i = 1, . . . ,m− 1, Pi sets Vi =
∑

1≤j ̸=i≤m−1 Vij and computes the RSFq,n,2k,η encoding vi = Vi(η).
4. Random polynomials sampling.

• P0 samples random polynomials R0(·), Z0(·), and Si
0(·) for each i ∈ [1,m− 1]. Pi samples Zi(·), Ri(·),

and Si(·). All polynomials have degree at most k and are chosen over the finite field Fq.
• P0 computes the RSFq,n,k,η encodings: zi0 = Zi

0(η), r
i
0 = Ri

0(η), and si0 = Si
0(η).

• Pi computes zi = Zi(η), ri = Ri(η), and si = Si(η).
• For each i ∈ [1,m− 1], Pi samples a random seed and uses it to generate a random polynomial Ui(·) of

degree 2k. They compute the RSFq,n,2k,η encoding ui = Ui(η). Each party broadcasts the commitment
of this seed to all other parties.

5. Coin tossing. Each pair (P0, Pi) call FComCoin twice (Functionality 9), each receiving n random strings and
decommitments for those strings. The random values are used for the OLE invocations.

6. Watchlist channels commitment. P0 commits its shares (q0,j , r0,j , z0,j , s
1
0,j , . . . , s

m−1
0,j ) to all parties using

Merkle tree. Pi commits its shares (qi,j , ri,j , si,j , zi,j , vi,j , ui,j) to all parties using Merkle tree. For one-sided
output: Pi only sends the commitment to P0.

7. Degree test (first check).
• The parties call FCOIN to sample random public values {α1, α2, α3, α

i
4, ..., α

i
8} together (1 ≤ i ≤ m− 1).

• Pi, 1 ≤ i ≤ m− 1, computes bi where bi,j ← αi
5 · zi,j + αi

6 · ri,j + αi
7 · si,j + αi

8 · qi,j , then sends it to P0.
• P0 computes b0 where b0,j ← α1 · z0,j + α2 · r0,j + α3 · q0,j +

∑m−1
i=1 αi

4 · si0,j .
• P0 computes b =

∑m−1
k=0 bi, then broadcasts it to all other parties.

• Select watchlist channels for first check. All parties make a call to FCOIN to sample t indices
I1 = {i1,1, . . . , i1,t}. Each party reveals to all other parties all the shares, and the OLE randomness,
that match these indices.

• Verify Qi(·) ̸= 0. All parties verify that qi,j ̸= 0 for j ∈ I.
• Degree test. All parties verify that b is a valid RSFq,n,k,η code word and for every j ∈ I1:

bj =
∑m

i=1[α
i
1 · z0,j + αi

2 · r0,j + αi
3 · si0,j + αi

4 · q0,j + αi
5 · zi,j + αi

6 · ri,j + αi
7 · si,j + αi

8 · qi,j ]
8. OLE. Each pair (P0, Pi) makes a sequence of calls to FOLE on inputs. P0 provides si0 whereas Pi provides

(qi,ui) to FOLE. P0 obtains ci0 = (ci0,1, . . . , c
i
0,n) where ci0,j = qi,j · si0,j + ui,j . P0 provides (q0,u

i
0) whereas

Pi provides ri to FOLE. Pi obtains ci = (ci,1, . . . , ci,n) where ci,j = q0,j · ri,j + ui
0,j . For one-sided output:

(P0, Pi) executes only one OLE, P0 provides q0, Pi provides (ri,qisi + vi), P0 learns f i0 = q0ri + qisi + vi.
9. Verify OLE (second check).

• Select watchlist channels for OLE verification. All parties make a call to FCOIN to sample a
common random coin, and use that coin to sample t indices I2 = {i2,1, . . . , i2,t}. The parties reveal all
the shares and randomnesses used at these indices to all other parties.

• Verify FOLE. For each pair (P0, Pi)
– P0 verifies that ci0 is a valid RSFq,n,2k,η code word and for j ∈ I2: c

i
0,j = qi,j · si0,j + ui,j .

– Pi verifies that ci is a valid RSFq,n,2k,η code word and for j ∈ I2: ci,j = q0,j · ri,j + ui
0,j .

For one-sided output: (P0, Pi) verify the execution of only one OLE that computes f i0.
10. Output aggregation and verification.

• P0 computes d0 = q0 · r0 +
∑m−1

i=1 (ci0 − ui
0) = q0 · r0 +

∑m−1
i=1 qi · si0 +

∑m−1
i=1 (ui − ui

0).
• Pi computes di = ci + qi · si − ui + vi = q0 · ri + qi · si + vi + (ui

0 − ui).
• Pi sends di to P0. P0 computes t =

∑m−1
i=0 di and broadcasts it to all Pi.

• Select watchlist channels for third check. All parties make a call to FCOIN to sample a common
random coin, and use that coin to sample t indices I3 = {i3,1, . . . , i3,t}. The parties reveal all the shares
used at these indices to all other parties.

• P0 verifies that di,j = q0,j · ri,j + qi,j · si,j + vi,j + (ui
0,j − ui,j) for i ∈ [1,m− 1] and j ∈ I3.

Pi verifies that tj = q0,j ·
∑m−1

i=0 ri +
∑m−1

i=1 qi,j(s
i
0,j + si,j) for j ∈ I3.

• Each Pi reconstructs the polynomial T (·) from the points (ωj , tj) and outputs the intersection S = {x ∈
Xi|T (x) = 0}.

For one-sided output: P0 computes t = q0 · r0 +
∑m−1

i=1 f i0, reconstructs T (·), and computes S.

Figure 4: Fully Secure Active Multi-Party PSI Protocol.
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The simulator reconstructs the corresponding polynomials Q0, R0, Z0, S
i
0, U

i
0, and Qi, Ri, Zi, Si, Ui for

i ∈ A \ {P0}. If any of the polynomials Q0, R0, Z0, S
i
0, or Qi, Ri, Zi, Si has degree higher than w + 3t+ e,

the simulator sets abort0 = 1. Else, it sets abort0 = 0.

3. Synthesize honest parties’ input. If abort0 == 0, the simulator submits the corrupt parties’ input to
the ideal functionality, receiving X = ∩m−1

i=0 Xi. For each honest party Pi, the simulator uses X̃i = X ∪ Zi

where each Zi consists of (w − |X|) random values such that X ∩ Zi = ∅. It recomputes Q̃i(·) such that

Q̃i(·) = Πz∈X̃i
(X − z) · Ti(·), where deg(Ti) = 3t + e. It sets q̃i,j = Q̃i(η

j) for j ∈ I. This is always possible
as Ti(·) is defined as a random polynomial of degree 3t + e. There is always a Ti that satisfies the above
conditions.

We note that, whenever the parties need to reveal the shares to perform the checks, q̃i,j will be opened, and
they are always consistent with the committed Merkle tree’s root.

4. Degree test. The simulator runs the degree test on behalf of honest parties. If abort0 == 1, it aborts and
outputs whatever P0 outputs.

5. OLE. c̃1 = (c̃1,1, · · · , c̃1,n): The simulator monitors the randomness used in all n executions of the passive
OLE in Step 8, verifying correctness. If more than d/3 executions are inconsistent with the watchlists yet the
adversary is not caught, the simulator sets abort1 = 1. Specifically, the simulator extracts si0 when P0 sends
its input to the first FOLE in Step 8. The simulator hands c̃i0 where c̃i0,j = qi,j · si0,j + ui,j to P0 to simulate
this step.

The simulator extracts (q0,u
i
0) when P0 sends its input to the second FOLE in Step 8. If P0 uses encodings

that are not consistent with the watchlist (that also enforces the use of the same q0 in all FOLE invocations),
the simulator aborts. The simulator uses the extracted input to FOLE to compute ci for the honest party Pi

and stores it.

6. Output Reconstruction.

• d̃i: The simulator computes d̃i from ci and its shares, and hands it to P0 on behalf of honest parties Pi.

• The simulator receives t = (t1,1, · · · , t1,n) from P0. It verifies that tj = q0,j ·
∑m−1

i=0 ri +
∑m−1

i=1 qi,j(s
i
0,j +

si,j) for j ∈ [1, n]. If abort1 = 1 or if the check fails for at least d/3 positions, the simulator aborts and
outputs whatever the adversary outputs.

The simulator completes the simulation and outputs whatever the adversary outputs.

We define the event where a malicious adversary (including P0) deviates from the protocol.

1. E1: In Step 4, at least one of the corrupted parties commits to an invalid RSFq,n,k,η codeword where the
number of errors is bounded by d/3.

2. E2: At least d/3 of the OLE instances or the d1,j values sent in Step 10, or the degree test values are
inconsistent with the commitments.

In the full version we prove that the joint distributions in the hybrid and ideal worlds are computationally
indistinguishable via a sequence of hybrid games.

Simulation for honest P0.

1. Merkle tree commitment. The simulator acts on behalf of honest parties Pi, running the protocol honestly
until Step 6 (in Step 2 it uses random input Q̃i for the honest party Pi). The simulator samples three random
coins, each is used to generate the set of indices I1, I2, I3 of the watch channels in each check. Let I = I1∪I2∪I3.
It then uses the random input and random polynomials to generate the Merkle tree’s root. It stores all honest
Pi’s shares at these indices (q̃i,j , j ∈ I).

2. Input extraction. In Step 7, the simulator hands corrupt parties a random coin, which correspond to a list
of t indices used for the degree test, and learns t shares. The simulator rewinds the process until it extracts all
the corrupt parties’ input and randomness used in the protocol. For i ∈ A, the simulator obtains Pi’s input
(i ∈ A \ {P0}): (qi,j , ri,j , si,j , zi,j , vi,j , ui,j) for j ∈ [1, n].

The simulator reconstructs the corresponding polynomials Qi, Ri, Zi, Si, Ui. If any of the polynomials Qi,
Ri, Zi, Si has degree higher than w + 3t+ e, the simulator sets abort0 = 1. Else, it sets abort0 = 0.
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3. Synthesize honest parties’ input. If abort0 == 0, the simulator submits the corrupt parties’ input to
the ideal functionality, receiving X = ∩m−1

i=0 Xi. For each honest party Pi, the simulator uses X̃i = X ∪ Zi

where each Zi consists of (w − |X|) random values such that X ∩ Zi = ∅. It recomputes Q̃i(·) such that

Q̃i(·) = Πz∈X̃i
(X−z) ·Ti(·) such that deg(Ti) = 3t+e, Q̃i(η

j) = q̃i,j for j ∈ I. This is always possible as Ti(·)
is defined as a random polynomial of degree 3t + e. There is always a Ti that satisfies the above conditions.
Whenever the parties need to reveal the shares to perform the checks, q̃i,j will be opened, and they are always
consistent with the committed Merkle tree’s root.

4. Degree test. The simulator runs the degree test on behalf of honest parties. If abort0 == 1, it aborts and
outputs whatever the corrupt parties output.

5. OLE. c̃1 = (c̃1,1, · · · , c̃1,n): The simulator monitors the randomness used in all n executions of the passive
OLE in Step 8, verifying correctness.If more than d/3 executions are inconsistent with the watchlists yet the
adversary is not caught, the simulator sets abort1 = 1.

Specifically, the simulator extracts qi,ui when Pi sends its input to the first FOLE in Step 8. The simulator
extracts ri when Pi sends its input to the second FOLE in Step 8. The simulator hands c̃i where c̃i,j =
q0,j · ri,j + ui

0,j to Pi to simulate this step.

If Pi uses encodings that are not consistent with the watchlist, the simulator aborts. The simulator uses the
extracted input to the FOLE to compute ci0 and ci for honest party Pi and stores it.

6. Output Reconstruction d̃: For each honest parties Pi, the simulator computes d̃i from ci and its shares.
For each corrupt party Pi, the simulator receives d̃i and verifies that di,j = q̃0,jri,j+qi,jsi,j+vi,j+(ui

0,j−ui,j)
for i ∈ A and j ∈ [1, n].

If abort1 = 1 or if the check fails for at least d/3 positions, the simulator aborts and outputs whatever the

adversary outputs. Otherwise, the simulator computes d̃ and sends it to corrupt parties.

The simulator completes the simulation and outputs whatever the adversary outputs.

The arguments to prove the the joint distributions in the hybrid and the ideal world is statistically close is similar
to the case of corrupt P0. We omit the proof.

5 The Efficiency of Our Protocols

5.1 The Two-Party Setting

In this section we will explore the concrete parameters of our two-party protocol. Let w be the input length, and let t,
e, and F be such that our statistical error (1−e/n)t+d/|F|+(w+t+e)/|F| is bound by 2−λ (where n = 2(w+t+e)+1)
and λ is the security parameter). Note that for the case of two-party PSI, it is desirable that t + e is as small as
possible, because the slackness of our protocol is defined by (t+ e)/w. We show that the optimal solution for t+ e
is bound by O(

√
λ · w). Fixing e0 =

√
λ ln 2 · (2w), we now look for t0 such that (1− e0/n)

t0 ≈ exp(−λ ln 2) = 2−λ,
or t0 · log(1 − e0/n) ≈ −λ ln 2. As e0 ≪ w < n, t0 · log(1 − e0/n) can be approximated with t0 · (−e0/n) using
Taylor’s approximation. Thus t0 ≈ λ ln 2 · (2(w + t0 + e0) + 1)/e0 ≈ e0 + 2λ ln 2 · t0/e0 + 2 · λ ln 2. It is clear that
t0 < 2 · e0. If t and e are optimized, then t+ e ≤ t0 + e0 < 3 ·

√
λ ln 2 · (2w).

Instantiate OLE with OT [Gil99]. To compute the OLE with input x ∈ Zp from the receiver and a, b ∈ Zp

from the sender, the receiver first decomposes x into bits (x1, . . . , x|x|) where |x| is the bit length of x. Both parties

execute |x| 1-out-of-2 OT where for the jth OT the sender provides the messages (bj , 2
j−1a+bj) such that b =

∑
j bj

and the receiver has the selection bit xj . The receiver obtains 2
j−1axj + bj . Upon concluding the OTs, the receiver

sums all the values it receives and gets ax + b =
∑

j(2
j−1axj + bj). The advantage of this instantiation is that

it is very efficient, computationally, due to the use of OT extension. However, the communication cost is high, at
O(|x|2) bits per OLE.

Slackness parameters for Ring-LWE based OLE. When the packed additive homomorphic encryption scheme
is instantiated with Ring-LWE, each ciphertext encodes N plaintexts where N is the degree of the polynomial used
in Ring-LWE scheme. Each randomness generated for the OLEs will be used in the batch setting: the Reed-Solomon
shares are partitioned into groups of N each, each consumes one randomness. The parameters for MPC-in-the-head
are set based on the number of groups, n′ = n/N . The probability that an adversary cheats without getting caught
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when executing FOLE becomes (1 − e/n′)t. Let N = 212 and w = 220, then n′ = 256 and t + e ≈ 360. In order
to verify one batched OLE, all N input shares in that batch will be revealed. As an adversary could learn or
corrupt up to (t+ e) OLE executions, we need to multiply a random polynomial of degree N · (t+ e) with the input
polynomials. Our protocol slackness is therefore N(t + e)/w × 100% = 140%. Our slackness will be smaller when
the input size increases.

Communication complexity. The overall communication cost of our two-party PSI protocol is linear in the
inputs sizes:

2 · CCt-out-of-n OT︸ ︷︷ ︸
watchlists setup

+2 · n · CCOLE︸ ︷︷ ︸
passive OLE

+ 6n · κ︸ ︷︷ ︸
coin toss

+ 10 · n · log |F|︸ ︷︷ ︸
watchlist comm.

+ n · log |F|︸ ︷︷ ︸
degree test

where CCt-out-of-n OT and CCOLE are the communication complexities of the underlying OT and OLE protocols,
respectively. As n = O(w), the overall communication complexity is O(w(κ+ log |F|)) bits.

The dominant communication cost of our protocol is due to computing the OLEs. Each OLE invocation requires
the parties to communicate 4 · log(q) bits, where q > N · |F|2 is the ciphertext modulus and N is the degree of the
polynomial ring used in the underlying encryption scheme. With a conservative estimation, the OLE computation
incurs at least 50% of the total communication.

Computational complexity. We measure the computational complexity in terms of number of field multipli-
cations and the number of local AES operations, which we use to sample random field elements, primarily when
sampling random polynomials. It is clear that our protocol make O(n) calls to local AES, thus the number of AES
calls is linear in terms of input size. The number of multiplications in our protocol is

O(n/N · (N · logN))︸ ︷︷ ︸
input encodings

+O(n/N · (N · logN))︸ ︷︷ ︸
passive OLE

+ O(n)︸ ︷︷ ︸
degree test

+ O(n · log n))︸ ︷︷ ︸
input sharing

+ O(n)︸ ︷︷ ︸
compute t

+ O(w · log2 w))︸ ︷︷ ︸
output reconstruction

Overall, our asymptotic computational complexity is O(w log2 w) field multiplications (due to the output recon-
struction step that requires polynomial evaluation on w points) and O(n) local AES calls to sample the random
polynomials. Even though polynomial evaluation has higher asymptotic computational complexity, the actual
running time is dominated by the OLE costs. Further optimizations can be found in Appendix B.

Table 2: Fully secure MPSI: Runtime (in seconds) and communication cost (in MB). Input items are represented
by elements of a 64-bit prime field Fp. Our OLE is instantiated with OT for w ∈ {28, 212, 216} and with Ring-LWE
for w ∈ {218, 220}.

w = 28 w = 212 w = 216 w = 218 w = 220

Parties Runtime Comm Runtime Comm Runtime Comm Runtime Comm Runtime Comm
2 0.16 4.8 0.83 40.2 8.10 230 12.28 323 26.23 654
4 0.27 14.5 1.55 120 12.56 689 18.29 970 35.42 1963
8 0.19 33.8 3.00 282 20.50 1606 31.43 2261 63.00 4582
16 1.05 72.5 6.40 602 40.53 3442 58.33 4845 117.4 9818
32 2.26 150 12.7 1245 77.16 7114 116.8 10013 - -

5.2 The Multi-Party Setting

We implement our fully secure multi-party PSI protocol (see Table 2). Here, we provide an estimation for the
theoretical communication and computation cost for the central party and for non-central ones.

Communication complexity. We distinguish between the central party and the remaining parties. First, the
cost for the central party is

m · κ︸ ︷︷ ︸
watchlists commit

+mn · CCOLE︸ ︷︷ ︸
passive OLE

+ 6mn · κ︸ ︷︷ ︸
coin toss

+ mt log n · log |F|︸ ︷︷ ︸
watchlist comm.

+ ·mn · log |F|︸ ︷︷ ︸
degree test

CCOLE is the communication complexities of the underlying OLE protocols. Next, the communication cost for each
non-central party is
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m · κ︸ ︷︷ ︸
watchlists commit

+ 2n · CCOLE︸ ︷︷ ︸
passive OLE

+ 6n · κ︸ ︷︷ ︸
coin toss

+ mt log n · log |F|︸ ︷︷ ︸
watchlist comm.

+ n · log |F|︸ ︷︷ ︸
degree test

Computational complexity. In terms of computational cost, the central party has to make O(mw) AES calls
to sample the random polynomials and the encryption randomness, while each non-central party makes O(w) AES
calls. Next, we count the number of field multiplications that are performed by each party. For the central party,
the number of field multiplications is

O(n/N · (N · logN))︸ ︷︷ ︸
input encodings

+O(m · n/N · (N · logN))︸ ︷︷ ︸
passive OLE

+ O(mn)︸ ︷︷ ︸
degree test

+ O(n · log n))︸ ︷︷ ︸
input sharing

+ O(n)︸ ︷︷ ︸
compute t

+ O(w · log2 w))︸ ︷︷ ︸
output reconstruction

For each non-central party, the number of field multiplications is

O(n/N · (N · logN))︸ ︷︷ ︸
input encodings

+O(n/N · (N · logN))︸ ︷︷ ︸
passive OLE

+ O(mn)︸ ︷︷ ︸
degree test

+ O(n · log n))︸ ︷︷ ︸
input sharing

+ O(n)︸ ︷︷ ︸
compute t

+ O(w · log2 w))︸ ︷︷ ︸
output reconstruction

We can see that the heaviest work is done by the central party. The actual runtime of the central party is
dominated by the cost to compute the OLE, which is O(mn logN) field multiplications. Compared with the two-
party PSI, the main extra cost that the central party has to handle is the cost to perform the OLE with all the
other parties.

6 Implementation Details

Table 3: One-sided output MPSI: Runtime (in seconds) and communication cost (in MB). Input items are repre-
sented by elements of a 64-bit prime field Fp. Ours uses single thread, while [KMP+17] and [BNOP21] both use
multi-threading. [BNOP21] uses 32 threads on a 32-core machine for their central party, [KMP+17] users (m− 1)
threads for all parties where m is the number of parties. In these experiment, we consider an adversary corrupting
at most (m − 1) parties. The numbers for [KMP+17] and [BNOP21] are taken directly from their paper. Our
OLE is instantiated with OT for w ∈ {28, 212, 216} and with Ring-LWE for w ∈ {218, 220}. (SH: semi-honest, M:
malicious secure)

w = 28 w = 212 w = 216 w = 218 w = 220

Protocols Parties Runtime Comm Runtime Comm Runtime Comm Runtime Comm Runtime Comm

[KMP+17] (SH)
4 - - 0.34 4.9 3.16 78 - - 52.25 1402
15 - - 1.85 23 20.61 363 - - 304.36 6547

[BNOP21] (M)

4 0.20 - 0.55 - 6.62 - 27.09 - 128.25 -
8 0.25 - 0.66 - 7.62 - 30.82 - 143.20 -
16 0.37 - 0.91 - 13.18 - 57.33 - - - -
32 0.80 - 1.60 - 21.54 - 85.37 - - -

Ours (M)

4 0.15 3.67 0.64 30.5 8.52 416 16.34 684 33.26 1386
8 0.22 8.55 1.10 71.1 14.04 972 24.77 1596 51.59 3234
16 0.37 18.3 2.05 152 24.36 2430 45.41 3420 96.72 6931
32 0.70 37.9 4.24 315 53.33 4305 86.10 7068 - -

Experiments setting. We implemented our protocols using C++ and the NTL library, and deployed it over AWS
servers. We demonstrate our protocol performances in the LAN network where the AWS instances are located in
the same region (Northern Virginia). We ran our experiments for sets of input sizes 28, 212, 216, 218, and 220 with
2, 4, 8, 16, or 32 parties. We report the running times of the average over 5 executions. For all our experiments,
the standard deviation is at most 4.2% of the average runtime.

In these experiments, two AWS instances of type c5.24xlarge were used. Each instance has 48 physical cores
supporting 96 threads, CPU clock speed of 3.6 GHz, 192 GB RAM, and its LAN network bandwidth is 25 Gbps.
We deployed the central party P0 on one instance and parallelize P0’s code with 32 threads. The second AWS
instance hosted the remaining (m − 1) parties. When m = 2, we used 32 threads for P1. For m ≥ 4, all parties
P1, . . . , Pm−1 share 96 threads (on average each party runs with 96/(m− 1) threads).
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Our protocol is fully parallelizable. Number theoretic transform is used extensively in our protocol: computa-
tion of Reed-Solomon encodings for input and random polynomials, Ring-LWE operations, polynomial multiplica-
tion, polynomial division, polynomial evaluation over w points, etc. Fortunately, number theoretic transform is fully
parallelizable and we utilize it as much as possible in our implementation. The part that is not fully parallelizable in
our protocol is the construction of the Merkle trees. However, instead of generating one Merkle tree, we can divide
the data into p chunks and generate p trees in parallel (assume p is the number of threads used). The commitment
is p hash digests instead of one. This increases the communication cost a bit, but in return our implementation is
fully parallelizable.

Results. Our experiment results are reported in Tables 2 and 3. Table 2 shows the running time and communication
cost for our fully secure PSI protocols, while Table 3 shows the results for the variant in which only the central
party receives output.

Our efficiency depends partly on the slackness, which is disproportional to the input size. In our experiments,
we instantiate the OLE instances with OT when the input size is small (i.e., 28, 212, 216) and with Ring-LWE
when w ≥ 218. The reason for that is because the slackness of the Ring-LWE based OLE is large for small input
sizes, causing the protocol to be less concretely efficient than for the OT-based OLE. For example, when w = 216,
the slackness of Ring-LWE based OLE is 1250% whereas that of OT-based OLE is 7%. On the other hand, the
Ring-LWE based OLE has the asymptotic communication cost of O(p) bits per OLE while the OT-based has the
cost of O(p2), where p is the bit length of the field.

As there is no other fully secure multi-party PSI to compare with, we only provide a comparison between our
relaxed one-sided output MPSI with prior similar protocols. Among them, only PSimple [BNOP21] and [KMP+17]
report experimental results. [BNOP21] uses at least 36 threads for the central party which was deployed on a
c5.18xlarge machine (36 cores, 3.6 GHz clock speed, and 144 GB RAM) for P0 and one c5.4xlarge machine (8
cores, 3.6 GHz clock speed, and 32 GB RAM) for each other Pi. Even though we are somewhat less parallelized
than [BNOP21] (in terms of the number of threads and cores used for P0 and Pi when there are more than 6
parties), our protocol is still competitive and outperforms [BNOP21] when the input size is at least 218. When
w = 220 our protocol is at least 3× faster. (See Table 3). Asymptotically, their protocol also requires much higher
communication complexity than ours, namely, O(mwκ2 +mwκ log(κw)) vs. O((mw+m2 +mt logw)κ) (see Table
1).

For large input sizes, e.g., n = 220, our protocol is also very competitive against [KMP+17] which is only
semi-honest secure. [KMP+17] ran their experiments with all parties deployed on the same machine, a 2× 36-core
Intel Xeon with 2.30 GHz CPU and 256 GB of RAM. Considering 15 parties and 14 threads per party (in their
implementation, each party uses (m− 1) threads where m is the number of parties), [KMP+17] is 3× slower than
ours. Garimella et al. [GPR+21] modifies the augmented semi-honest version of [KMP+17] and make it malicious
secure with one-sided output. As no experiment results are provided for [GPR+21], we used the available results
from [KMP+17] for comparison.

7 Conclusions

In this paper, we present two new fully secure PSI constructions with active security: a two-party and a multi-party
protocols that provide correct output to all parties (if they ever receive it). Unlike existing state-of-the-art prior
work that provides output to only one party, ours are the first practical PSI protocols to provide this feature.
Our protocols are constructed based on the MPC-in-the-head paradigm and can be instantiated with any passively
secure OLE. Beside the fully secure protocols, we also provide a more efficient multi-party PSI protocol when only
one party obtains the output.
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A Additional Preliminaries

A.1 Oblivious Transfer

1-out-of-2 oblivious transfer (OT) is a fundamental functionality in secure computation that is engaged between a
sender S and a receiver R where a receiver learns only one of the sender’s inputs whereas the sender does not learn
anything about the receiver’s input. Here we consider a generalized version of t-out-of-n OT where the receiver
learns t values and which will be useful in establishing the watchlist channels; see Figure 5 for its formal description.

We also define a variance of t-out-of-n OT where there are multiple senders. In this setting the receiver learns t
values from each sender. The indices of these values are the same across all the senders. See Figure 6 for its formal
description.
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Functionality F t:n
OT

Functionality F t:n
OT communicates with sender S and receiver R, and adversary A.

1. Upon receiving input (sid, v1, . . . , vn) from S where vi ∈{0,1}κ for all i ∈ [n], record (sid, v1, . . . , vn).

2. Upon receiving (sid, u1, . . . , ut) from R where ui ∈{0,1}logn for all i ∈ [t], send (vu1 , . . . vut) to R.
Otherwise, abort.

Figure 5: The oblivious transfer functionality.

Functionality Ft:n
mOT

Functionality F t:n
mOT communicates with senders Si and receiver R, and adversary A.

1. Upon receiving input (sid, vi1, · · · , vin) from Si where i ∈ [m] and vj ∈ {0, 1}κ for all j ∈ [n], record
(sid, vi1, · · · , vin).

2. Upon receiving (sid, u1, · · · , ut) from R where ui ∈ {0, 1}logn for all i ∈ [t], send (viu1
, · · · , viut

) for
all i ∈ [m] to R. Otherwise, abort.

Figure 6: The multi-sender t-out-of-n OT functionality.

A.2 Oblivious Linear Evaluation

An extension of the oblivious transfer functionality for larger fields is the OLE functionality. More concretely, OLE
over a field F takes a field element x ∈ F from the receiver and a pair (a, b) ∈ F2 from the sender and delivers
ax+ b to the receiver. Note that in the case of binary fields, OLE can be realized via a single call to standard (bit-)
1-out-of-2 OT functionality; see Figure 7 for its formal description.

Functionality FOLE

Functionality FOLE communicates with sender S and receiver R, and adversary A.

1. Upon receiving the input (sid, (a, b)) from S where a, b ∈ F, record (sid, (a, b)).

2. Upon receiving (sid, x) from R where x ∈ F, send a · x+ b to R. Otherwise, abort.

Figure 7: The oblivious linear evaluation functionality.

A.3 Coin Tossing

We use a standard coin tossing functionality FCOIN for generating the randomness for the degree test. This function-
ality can be implemented using commitments. We further use functionality FComCoin for generating the randomness
used in the OLE instances.

Functionality FCOIN

Upon receiving (rand, S) from all parties, where S is any efficiently sampleable set,
• Sample r ← S, send r to A and wait for its input.

• If A inputs ’continue’ then output r to all parties, otherwise output ⊥.

Figure 8: Public coin tossing functionality.

B Optimizations for Two-Party PSI

In our two-party PSI protocol, we compute each share tj = pj(s1,j + s2,j) + qj(r1,j + r2,j) via blackbox access to
FOLE. Our FOLE (the first one) is instantiated with Ring-LWE as below:

• P1 partitions shares pj into blocks of N , and encrypts each block using the public key and the randomness
obtained from the coin tossing (Step 3).
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Functionality FComCoin

Upon receiving (rand, S) from both parties, where S is any efficiently sampleable set,
• For i ∈ [n], sample σi ← S, and compute (comi, τi)← Commit(σi).

• Send (comi) to P1 and wait for its response.

• If P1 inputs ’continue’ then output (σi, τi) to P2, otherwise output ⊥.

Figure 9: Committed coin tossing functionality for two parties. Instead of calling this functionality n times, we
describe the functionality as returning n random strings. When realizing this functionality, this allows us to use
succinct commitments, e.g. through the use of Merkle trees.

• P2 also partitions shares s2,j , u2,j into blocks of N , computes Enc(PK, pj · s2,j + u2,j) for the whole block
using the randomness from the coin tossing step.

• The process is reversed with P2 provides qj and P1 provides r1,j , u1,j and P1 is the receiver.

Instead of making two calls to FOLE to compute tj , we just use Ring-LWE in a way that allows us to have better
MPC-in-the-head parameters.

• P1 encrypts pj , r1,j and sends to P2.

• P2 computes Enc(PK, pjs2,j + qjr1,j + qjr2,j) and sends it back to P1.

• P1 decrypts the ciphertext, adds pjs1,j itself to the output, and obtains tj . P1 sends tj to P2.

This new way of computing tj also needs just semi-honest Ring-LWE operations; honest behavior is enforced
with the use of MPC-in-the-head. The value pjs2,j +qjr1,j +qjr2,j does not leak any additional information beyond
what was presented in Figure 2, as P1 can learn pjs2,j + qjr1,j + qjr2,j from tj = pj(s1,j + s2,j) + qj(r1,j + r2,j)
anyway (as it knows pj and s1,j).
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