
On Extension of Evaluation Algorithms in Keyed-Homomorphic

Encryption

Hirotomo Shinoki1 Koji Nuida23

1 Graduate School of Information Science and Technology, The University of Tokyo
2 Institute of Mathematics for Industry (IMI), Kyushu University

(nuida@imi.kyushu-u.ac.jp)
3 National Institute of Advanced Industrial Science and Technology (AIST)

Abstract

Homomorphic encryption (HE) is public key encryption that enables computation over ciphertexts
without decrypting them, while it is known that HE cannot achieve IND-CCA2 security. To overcome
this issue, the notion of keyed-homomorphic encryption (KH-PKE) was introduced, which has a separate
homomorphic evaluation key and can achieve stronger security (Emura et al., PKC 2013).

The contributions of this paper are twofold. First, the syntax of KH-PKE supposes that homomor-
phic evaluation is performed for single operations, and its security notion called KH-CCA security was
formulated based on this syntax. Consequently, if the homomorphic evaluation algorithm is enhanced in
a way of gathering up sequential operations as a single evaluation, then it is not obvious whether or not
KH-CCA security is preserved. In this paper, we show that KH-CCA security is in general not preserved
under such modification, while KH-CCA security is preserved when the original scheme additionally
satisfies circuit privacy.

Secondly, Catalano and Fiore (ACM CCS 2015) proposed a conversion method from linearly HE
schemes into two-level HE schemes, the latter admitting addition and a single multiplication for ci-
phertexts. In this paper, we extend the conversion to the case of linearly KH-PKE schemes to obtain
two-level KH-PKE schemes. Moreover, based on the generalized version of Catalano–Fiore conversion,
we also construct a similar conversion from d-level KH-PKE schemes into 2d-level KH-PKE schemes.

1 Introduction

Homomorphic encryption (HE) [33] is a kind of public key encryption that allows computation over encrypted
data without knowing the secret key, and has several applications such as delegated computation on the
clouds. Major classes of HE include additive HE [25, 32] and multiplicative HE [17, 34] that allow only a
single kind of operations, and fully HE (FHE) [9, 10, 11, 12, 16, 23, 24] that allows arbitrary computation over
encrypted data. Among them, there is a trade-off between the efficiency (for additive/multiplicative HE) and
the enhanced functionality (for FHE). As an intermediate class, there also exists leveled HE (or somewhat
HE) where a limitation on the number of possible operations exists (typically for multiplication) while the
efficiency is much better than FHE. In particular, there exist some constructions of two-level HE (2LHE)
schemes [1, 8, 22, 26] in which an arbitrary number of additions and a single multiplication are possible.
Besides such direct constructions of 2LHE schemes, Catalano and Fiore [14] proposed a general conversion
method from an additive HE scheme into a 2LHE scheme (with non-compact level-two ciphertexts). We refer
to this method as “Catalano–Fiore conversion” in this paper. They also proposed in [13] a generalization
of the conversion to obtain a (slightly restricted) 2d-level HE scheme (i.e., that allows additions and 2d− 1
multiplications) from a d-level HE scheme.

For ordinary public key encryption (PKE) schemes, IND-CCA2 security is regarded as a standard security
requirement due to e.g., Bleichenbacher’s attack [6] and the implication of non-malleability from IND-CCA2

1

security [4]. However, in principle HE schemes cannot achieve IND-CCA2 security due to the ability of
unrestricted computation over ciphertexts. To resolve the issue, Emura et al. [19, 20] proposed the notion
of keyed-homomorphic PKE (KH-PKE) in which the homomorphic evaluation on ciphertexts requires an
evaluation key. They introduced a security definition for KH-PKE called KH-CCA security, which, roughly
speaking, ensures IND-CCA2 security for adversaries not having the evaluation key and IND-CCA1 security
for those having the evaluation key in advance. It is also known that KH-CCA security implies security
against ciphertext validity attacks [18].

As concrete instantiations of KH-PKE, Emura et al. [19, 20] proposed a multiplicative KH-PKE scheme
based on the Decisional Diffie–Hellman (DDH) assumption and an additive KH-PKE scheme based on the
Decisional Composite Residuosity (DCR) assumption. Multiplicative KH-PKE schemes are also proposed
by Libert et al. [29] based on the Decisional Linear (DLIN) assumption and by Jutla and Roy [27] based
on the Symmetric External Diffie–Hellman (SXDH) assumption. On the other hand, for fully homomorphic
versions of KH-PKE called keyed-FHE, Lai et al. [28] proposed a construction using indistinguishability
obfuscation (iO) [2] and recently Sato et al. [35, 36] proposed a construction without iO. Moreover, recently
Maeda and Nuida [30] proposed a two-level KH-PKE scheme based on the SXDH assumption. To the best
of our knowledge, these are all of the known constructions of KH-PKE schemes in the literature, which are
still few in comparison to ordinary (non-keyed) HE schemes. In particular, there exists only one known
construction of leveled KH-PKE schemes.

On the other hand, we note that except for keyed-FHE, the homomorphic evaluation algorithm in KH-
PKE was formulated in a way of corresponding to a single operation, say C1 + C2. When we perform two
operations sequentially, say (C1 + C2) + C3, some instantiation of KH-PKE (such as in [19, 20]) performs a
rerandomization at the end of the computation of C ′ := C1 + C2 and then another rerandomization at the
end of the computation of C ′ + C3. From the viewpoint of efficiency, we want to gather the two operations
as a single operation and perform only one rerandomization at the end of the computation. Now, in order to
formalize such a technique, the formulation of the homomorphic evaluation algorithm should be enlarged to
also handle such sequential operations at once. However, as an adversary in the KH-CCA game is supposed
to have oracle access to the evaluation algorithm, and the modification of the evaluation algorithm as above
also enhances the ability of the oracle, the adversary after the modification becomes, in theory, stronger
than the original case. As a result, it is not obvious whether or not the KH-CCA security is preserved by
this modification of the evaluation algorithm. (We note that, as a related work, Emura et al. [21] studied
similar security issues when constructing “mis-operation resistant” searchable homomorphic encryption from
keyed-homomorphic identity-based encryption. However, their work only concerned such an issue in some
concrete schemes, and no argument was given in the same generality as the present paper.)

1.1 Our Contributions

Our contributions in this paper are twofold. First, we consider the modification of the evaluation algorithm
to handle multiple operations at once as in the last paragraph; let E and Comp(E) denote the original and
the modified KH-PKE schemes, respectively. We show that, in general, the KH-CCA security of E does
not imply the KH-CCA security of Comp(E); under some reasonable assumptions, we construct a KH-CCA
secure E for which Comp(E) is not KH-CCA secure (Theorem 1). We also show that, if E is moreover circuit
private, then the KH-CCA security of E implies the KH-CCA security of Comp(E) (Theorem 2).

We explain a technical overview of our results above. As the counterexample, from any KH-CCA secure
KH-PKE scheme E0 we construct a KH-CCA secure KH-PKE scheme E with the following property: E
has a special ciphertext C0 for which given the result C + C0 of a homomorphic operation for C0 and any
ciphertext C, the original ciphertext C can be easily recovered. Now given a challenge ciphertext C∗, a KH-
CCA adversary against Comp(E) asks the evaluation oracle to obtain at once the ciphertext (C∗ +C ′) +C0

where C ′ is another ciphertext. Due to the property above, now the adversary recovers the ciphertext
C∗ + C ′ and knows its plaintext (and also knows the plaintext of C∗ by using the plaintext of C ′) by
querying C∗+C ′ to the decryption oracle (which is not prohibited, as C∗+C ′ itself was not returned by the
evaluation oracle). Hence Comp(E) is not KH-CCA secure. On the other hand, the circuit privacy assumed
in Theorem 2 guarantees that there exists no such special ciphertext C0.

2

Secondly, we extend the Catalano–Fiore conversion for (non-keyed) HE schemes to the case of KH-PKE
schemes, to obtain a two-level KH-PKE scheme from a linearly KH-PKE (Theorem 3). We also generalize the
result to the case of converting a d-level KH-PKE scheme into a 2d-level KH-PKE scheme (Theorem 4). As
a technical overview, we note that in the original Catalano–Fiore conversion, a level-2 ciphertext consists of
a number of level-1 ciphertexts. Therefore, if we just apply it to a KH-PKE scheme, then a level-2 ciphertext
of the resulting scheme is malleable even without the evaluation key, which violates the KH-CCA security.
To resolve this issue, we modify level-2 ciphertexts by encrypting the whole of each level-2 ciphertext again
(where the key for the latter encryption is included in the evaluation key). Assuming appropriate security
properties for the latter encryption, an adversary cannot modify nor generate a two-level ciphertext without
using the evaluation key or the evaluation oracle. This property enables us to control the behaviors of
ciphertexts well in our security proof.

1.2 Organization of the Paper

Section 2 summarizes basic definitions and properties used in this paper. Section 3 summarizes basic defini-
tions for KH-PKE. In Section 4, we describe the first part of our results on the extended evaluation algorithm
for multiple sequential operations. Section 5 summarizes the definitions for the original Catalano–Fiore con-
version for non-keyed HE schemes. In Section 6, we describe the second part of our results on the extension
of the Catalano–Fiore conversion to KH-PKE schemes.

2 Preliminaries

2.1 Basic Definitions and Properties

In this paper, “PPT” is an abbreviation of “probabilistic polynomial-time”. We write x
$←− S to mean a

uniformly random choice of an element x from a finite set S. We say that a function f : N→ R is negligible
(in security parameter λ) if for any integer k > 0, there exists an integer λk > 0 satisfying that for any
λ > λk we have |f(λ)| < λ−k. For random variables X,Y on a finite set U , their statistical distance is
defined by

SD[X,Y] =
∑
u∈U
|Pr[u←X]− Pr[u←Y]| .

The following lemma is used in our security proofs.

Lemma 1 (Difference Lemma [37]). Suppose that for events A,B, F we have Pr[A ∧ ¬F] = Pr[B ∧ ¬F].
Then we have

|Pr[A]− Pr[B]| ≤ Pr[F] .

2.2 Homomorphic Encryption

We explain the syntax for (public key) homomorphic encryption (HE). Let F be a set of possible operations
for plaintexts. Then an HE scheme consists of the following four PPT algorithms.

• Gen(1λ) : Given the security parameter λ as input, it outputs a public key pk and a secret key sk.

• Enc(pk,M) : Given a public key pk and a plaintext M as input, it outputs a ciphertext C.

• Dec(sk, C) : Given a secret key sk and a ciphertext C as input, it outputs either a plaintext or a failure
symbol ⊥.

• Eval(pk, f, C1, . . . , Cn) : Given a public key pk, an n-ary operation f ∈ F , and ciphertexts C1, . . . , Cn
as input, it outputs either a ciphertext or a failure symbol ⊥.

We require an HE scheme to satisfy the correctness as follows: for any (pk, sk)←Gen(1λ),

3

• for any plaintext M and any C←Enc(pk,M), we always have M←Dec(sk, C);

• for any n-ary operation f ∈ F and any ciphertexts C1, . . . , Cn, if Mi←Dec(sk, Ci) for i = 1, . . . , n and
C←Eval(pk, f, C1, . . . , Cn), then we always have f(M1, . . . ,Mn)←Dec(sk, C).

We also consider a d-level HE scheme for integer d ≥ 1 (where 1-level HE is the same as additive HE). It
satisfies the following conditions:

• The level `(C) ∈ {1, 2, . . . , d} is determined for each ciphertext C.

• The encryption algorithm outputs a ciphertext of level 1.

• The addition can be performed for a pair of ciphertexts of the same level, say L, and its output has
level L.

• The multiplication can be performed for a pair of ciphertexts of levels L1 and L2, respectively, provided
L1 + L2 ≤ d; and its output has level L1 + L2.

2.3 Symmetric Key Encryption

We explain the syntax for symmetric key encryption (SKE). An SKE scheme consists of the following three
PPT algorithms.

• Gen(1λ) : Given the security parameter λ as input, it outputs an encryption key K.

• Enc(K,M) : Given an encryption key K and a plaintext M as input, it outputs a ciphertext C.

• Dec(K, C) : Given an encryption key K and a ciphertext C as input, it outputs either a plaintext or a
failure symbol ⊥.

We require an SKE scheme to satisfy the correctness: for any K ← Gen(1λ), any plaintext M , and any
C ← Enc(K,M), we always have M ← Dec(K, C).

We explain two security definitions for SKE used in this paper.

Definition 1 (IND-CPA Security). We say that an SKE scheme SE = (Gen,Enc,Dec) is (Left-or-Right)
IND-CPA secure if for any PPT adversary A, the advantage∣∣∣∣Pr

[
K←Gen(1λ); b

$←− {0, 1}; b′←AO(b) : b = b′
]
− 1

2

∣∣∣∣
is negligible in λ, where O(b) denotes an oracle that, given two plaintexts m0,m1, returns an output of
Enc(K,mb).

We note that the “Left-or-Right” type definition above is known to be equivalent to the “Find-then-
Guess” type definition of IND-CPA security [3].

The following security notion intuitively means that an adversary (without the encryption key) cannot
generate a valid ciphertext.

Definition 2 (INT-CTXT Security). We say that an SKE scheme SE = (Gen,Enc,Dec) is INT-CTXT
secure if for any PPT adversary A, the winning probability of A in the following game is negligible in λ:

• First, the challenger generates K←Gen(1λ) and sets List = ∅. Then A performs the following two
kinds of procedures, possibly adaptively and many times:

– A sends a plaintext m to the challenger. The challenger sends an output C of Enc(K,m) back to
A and appends C to List.

– A sends a ciphertext C∗ to the challenger. When C∗ 6∈ List and Dec(K, C∗) 6= ⊥, A wins the game.
Otherwise, the challenger returns to A “valid” if Dec(K, C∗) 6= ⊥ and “invalid” if Dec(K, C∗) = ⊥.

We note that an SKE scheme satisfying both IND-CPA and INT-CTXT security can be constructed
from an IND-CPA secure SKE and an SUF-CMA secure message authentication code explained in the next
subsection [5].

4

2.4 Message Authentication Codes

We explain the syntax for message authentication codes (MACs). A MAC consists of the following three
PPT algorithms.

• Gen(1λ) : Given the security parameter λ as input, it outputs a MAC key K.

• Tag(K,M) : Given a MAC key K and a plaintext M as input, it outputs a MAC tag τ .

• Verify(K,M, τ) : Given a MAC key K, a plaintext M , and a MAC tag τ as input, it outputs 0 (“invalid”)
or 1 (“valid”).

We require a MAC to satisfy the correctness: for any K←Gen(1λ), any plaintext M , and any τ←Tag(K,
M), we always have 1←Verify(K,M, τ).

We explain the security definition for MAC used in this paper.

Definition 3 (SUF-CMA Security). We say that a MAC MAC = (Gen,Tag,Verify) is SUF-CMA secure if
for any PPT adversary A, the winning probability of A in the following game is negligible in λ:

1. The challenger generates K←Gen(1λ) and sets List = ∅.

2. A sends a plaintext m to the challenger. The challenger generates τ←Tag(K,m), sends (m, τ) back
to A, and appends (m, τ) to List. This procedure may be performed multiple times.

3. A sends a pair (m∗, τ∗) to the challenger. A wins the game if and only if (m∗, τ∗) 6∈ List and
1←Verify(K,m∗, τ∗).

3 Keyed-Homomorphic Public-Key Encryption

We explain the syntax for keyed-homomorphic public key encryption (KH-PKE). LetM be a plaintext space
and let F ⊂ {f | f : M2 →M}. A KH-PKE scheme consists of the following four PPT algorithms.

• Gen(1λ) : Given the security parameter λ as input, it outputs a public key pk, a secret key sk, and an
evaluation key ek.

• Enc(pk,M) : Given a public key pk and a plaintext M as input, it outputs a ciphertext C.

• Dec(sk, C) : Given a secret key sk and a ciphertext C as input, it outputs either a plaintext or a failure
symbol ⊥.

• Eval(ek, f, C1, C2) : Given an evaluation key ek, an operation f ∈ F , and ciphertexts C1, C2 as input,
it outputs either a ciphertext or a failure symbol ⊥.

We require a KH-PKE scheme to satisfy the correctness as follows.

Definition 4 (Correctness for KH-PKE). We say that a KH-PKE scheme is correct if the following two
conditions hold for any (pk, sk, ek)←Gen(1λ).

• For any plaintext M and any C←Enc(pk,M), we always have M←Dec(sk, C).

• For any ciphertexts C1, C2 and any operation f ∈ F , if M1←Dec(sk, C1), M2←Dec(sk, C2), and
C←Eval(ek, f, C1, C2), then we always have f(M1,M2)←Dec(sk, C).

For the security of KH-PKE, in contrast to ordinary (non-keyed) HE schemes that cannot in principle
achieve IND-CCA2 security, a KH-PKE scheme can achieve IND-CCA2 security against adversaries not
having an evaluation key. By also considering leakage of an evaluation key, the following KH-CCA security
was introduced.

5

Definition 5 (KH-CCA Security). We say that a KH-PKE scheme is KH-CCA secure if for any PPT
adversary A, the advantage∣∣∣∣Pr

[
(pk, sk, ek)←Gen(1λ); (M∗0 ,M

∗
1 , st)←AO(find, pk);

b
$←− {0, 1};C∗←Enc(pk,M∗b); b′←AO(guess, st, C∗) : b = b′

]
− 1

2

∣∣∣∣
is negligible in λ. Here O denotes three oracles RevEK, Dec(·), and Eval(·, ·, ·) defined as follows, and we set
List = ∅ in the find phase and set List = {C∗} at the beginning of the guess phase.

• RevEK : It returns the evaluation key ek. This oracle can be used only once.

• Dec(·) : For a ciphertext C as input, it returns ⊥ if C ∈ List, and otherwise it returns an output of
Dec(sk, C). In the guess phase, this oracle cannot be used when RevEK has been used.

• Eval(·, ·, ·) : For an operation f and ciphertexts C1, C2 as input, it returns an output C of Eval(ek, f, C1,
C2). Moreover, if C1 ∈ List or C2 ∈ List, then C is appended to List. This oracle cannot be used when
RevEK has been used.

We also extend the notion of circuit privacy for ordinary HE schemes (following the definition by Catalano
and Fiore [14]) to the case of KH-PKE.

Definition 6 (Circuit Privacy for KH-PKE). We say that a KH-PKE scheme is circuit private if there exist
a PPT algorithm Sim and a negligible function ε satisfying the following condition: for any (pk, sk, ek)←
Gen(1λ), any f ∈ F , and any ciphertexts C1, C2, if m1←Dec(sk, C1) and m2←Dec(sk, C2), then we have

SD[Eval(ek, f, C1, C2),Sim(1λ, ek, f(m1,m2))] ≤ ε(λ) .

4 On Extension of the Evaluation Algorithm

In this section, we introduce an extension of the evaluation algorithm in KH-PKE schemes to multiple
sequential operations, and investigate the effect to the security. We describe our two results in Section 4.1,
and give proofs for them in Sections 4.2 and 4.3.

4.1 Extension of the Evaluation Algorithm

Our extension of the evaluation algorithm for KH-PKE is defined as follows.

Definition 7. Let E be a KH-PKE scheme with the set F of possible operations. Let C(F) denote the set
of circuits for which an element of F is associated to each gate in the circuit. Now for each n-input circuit
f ∈ C(F), we define the extended evaluation algorithm Eval(ek, f, C1, . . . , Cn) by naturally composing the
evaluation algorithms in E . We write the resulting scheme with the extended evaluation algorithm as
Comp(E).

For example, if f is a circuit representing the computation (C1 + C2) + C3, then

Eval(ek, f, C1, C2, C3) = Eval(ek,+,Eval(ek,+, C1, C2), C3) .

We also naturally extend the KH-CCA security to such a scheme Comp(E) by modifying the evaluation
oracle accordingly. A motivation of considering such an extension Comp(E) is that the extended evaluation
algorithm can sometimes be implemented more efficiencly without changing the output distribution. For
example, when the evaluation algorithm in the original scheme E performs a rerandomization for each
output, the computation of Eval(ek, f, C1, C2, C3) in the example above can be simplified by omitting the
first rerandomization at the end of Eval(ek,+, C1, C2).

6

Now the extension from E to Comp(E) also changes the security definition in a direction of enhancing an
oracle, hence strengthening the ability of adversaries. Therefore, it is not obvious whether or not KH-CCA
security of E implies KH-CCA security of Comp(E). In fact, we have the following non-implication result,
which is proved in Section 4.2.

Theorem 1. Assume that there exist a KH-CCA secure KH-PKE scheme with non-trivial group as the
plaintext space, and an SUF-CMA secure MAC. Then there exists a KH-CCA secure KH-PKE scheme E for
which Comp(E) is not KH-CCA secure.

On the other hand, as an affirmative result, we show that KH-CCA security of E implies KH-CCA security
of Comp(E) when E is moreover circuit private. To state our result, we extend the definitions of KH-PKE
and its circuit privacy to the case of leveled KH-PKE.

Definition 8 (Leveled KH-PKE). By modifying KH-PKE, we define a syntax for leveled KH-PKE as follows.

• Associated to the ciphertext space C, there exist a finite set S and a polynomial-time computable
function ` : C → S called the level function.

• There exists an element a ∈ S for which any output ciphertext C of Enc satisfies `(C) = a. (Intuitively,
all the fresh ciphertexts have the same level.)

• For each operation f ∈ F , there exist a subset Lf ⊂ S2 and a function pf : Lf → S satisfying
that Eval(ek, f, ·, ·) only accepts pairs of ciphertexts (C1, C2) with (`(C1), `(C2)) ∈ Lf and we have
`(Eval(ek, f, C1, C2)) = pf (`(C1), `(C2)) for any such (C1, C2). (Intuitively, the latter condition means
that the level of the resulting ciphertext by the homomorphic evaluation is determined only by the
type of operation and the levels of input ciphertexts.)

Definition 9 (Leveled Circuit Privacy for KH-PKE). Let E be a leveled KH-PKE scheme with level func-
tion `. We say that E is leveled circuit private if there exist a PPT algorithm Sim and a negligible func-
tion ε satisfying the following: for any (pk, sk, ek)←Gen(1λ), any f ∈ F , and any ciphertexts C1, C2 with
(`(C1), `(C2)) ∈ Lf , if m1←Dec(sk, C1) and m2←Dec(sk, C2), then we have

SD[Eval(ek, f, C1, C2),Sim(1λ, ek, pf (`(C1), `(C2)), f(m1,m2))] ≤ ε(λ) .

We note that any KH-PKE scheme E is also a leveled KH-PKE scheme with constant level function, and
if E is circuit private then E is also leveled circuit private. Now our result is as follows, which is proved in
Section 4.3.

Theorem 2. If a leveled KH-PKE scheme E is KH-CCA secure and leveled circuit private, then Comp(E)
is KH-CCA secure.

4.2 Proof of Theorem 1

In this section, we prove Theorem 1. Let E = (Gen,Enc,Dec,Eval) be a KH-CCA secure KH-PKE scheme
and MAC = (GenMAC,Tag,Verify) be an SUF-CMA secure MAC in the assumptions of the statement. By
modifying E , we construct a KH-PKE scheme E ′ = (Gen′,Enc′,Dec′,Eval′) as in the statement.

The key generation algorithm Gen′ is defined as follows:

• Gen′(1λ) : It generates (pk, sk, ek)←Gen(1λ) and K←GenMAC(1λ), and outputs (pk, sk, ek′) where
ek′ := (ek,K).

Given the ciphertext space C of E and the tag space T of MAC, the ciphertext space of E ′ is defined as
C′ := C ∪ (C × T)∪ {S} where S is an additional symbol. The encryption algorithm Enc′ is the same as Enc
(hence it outputs an element of C ⊂ C′). For the decryption algorithm Dec′, roughly speaking, a “tagged”
ciphertext in C × T ⊂ C′ is correctly decrypted if and only if the tag is valid, while S ∈ C′ is decrypted to
the unit element. Precisely, for Dec′(sk, ct) where ct ∈ C′,

7

• when ct = c ∈ C, it outputs Dec(sk, c);

• when ct = (c, τ) ∈ C × T , it outputs Dec(sk, c) if 1←Verify(K, C, τ), and otherwise it outputs ⊥;

• when ct = S, it outputs the unit element e of the plaintext space.

For the evaluation algorithm Eval′, roughly speaking, the evaluation with ciphertext S switches non-tagged
ciphertexts and tagged ciphertexts, and the tagged ciphertexts are correctly evaluated (and the tag is re-
moved) if and only if the tag is valid. Precisely, for Eval′(ek′, ct1, ct2) where ct1, ct2 ∈ C′,

• when cti = Ci ∈ C for each i ∈ {1, 2}, it outputs Eval(ek, C1, C2);

• when cti = S and ct3−i = C ∈ C for some i ∈ {1, 2}, it outputs (C,Tag(K, C));

• when cti = S and ct3−i = (C, τ) ∈ C × T for some i ∈ {1, 2}, it outputs C if 1←Verify(K, C, τ), and
otherwise it outputs ⊥;

• when ct1 = ct2 = S, it outputs S.

• when cti = (Ci, τ) ∈ C × T and ct3−i = C3−i ∈ C for some i ∈ {1, 2}, it outputs Eval(ek, C1, C2) if
1←Verify(K, Ci, τ), and otherwise it outputs ⊥;

• when cti = (Ci, τi) ∈ C × T for each i ∈ {1, 2}, it outputs Eval(ek, C1, C2) if 1←Verify(K, C1, τ1) = 1
and 1←Verify(K, C2, τ2), and otherwise it outputs ⊥.

We note that the correctness of E and MAC imply that E ′ is also correct.
Now the scheme Comp(E ′) is not KH-CCA secure: given a challenge ciphertext C∗ with unknown plaintext

m∗, an adversary chooses a circuit representing the function f(x1, x2, x3) := (x1 ∗ x2) ∗ x3 where ∗ is the
group operation, and generates C←Enc′(pk,m) with some plaintext m 6= e. Then the adversary makes
a query to the extended Eval oracle and obtains (C ′, τ)←Eval′(ek′, f, C∗, C, S). As C ′ is a ciphertext of
m∗ ∗m 6= m∗, the adversary can query C ′ 6= C∗ to the Dec oracle (note that C ′ itself was not returned by
the Eval oracle) and obtain m∗ ∗m, from which the adversary can know the m∗.

The remaining task is to show that E ′ is KH-CCA secure. In the proof, we define V (K, C) = V (K, S) = 1
for C ∈ C and define V (K, (C, τ)) for (C, τ) ∈ C × T to be the output of Verify(K, C, τ). On the other hand,
we define F (C) = C for C ∈ C, F (S) = S, and F (C, τ) = C for (C, τ) ∈ C × T .

Let AE′ be any PPT adversary for the KH-CCA game for E ′. To show that the advantage of AE′ is
negligible, we construct a PPT adversary BE for the KH-CCA game for E that executes AE′ internally. Here
we use the following lists:

• DList : the list used in the KH-CCA game for E (note that BE can know the current content of DList
by simulating the updates of DList by the challenger)

• DList′ : the list used in the KH-CCA game for E ′, maintained by BE ; DList′ := ∅ at the beginning

• IList : a list of pairs (C,m) of a ciphertext C ∈ C and a plaintext m satisfying that C is known to have
plaintext m from the viewpoint of BE ; IList := ∅ at the beginning

• ICList : the list of the first components of the pairs in IList (ICList = ∅ at the beginning)

The adversary BE performs as follows.

• Given a public key pk for E , BE generates K←GenMAC(1λ) and sends pk to AE′ .

• When AE′ makes a query to RevEK, BE makes a query to the own oracle RevEK to obtain ek, and
sends (ek,K) back to AE′ .

• When AE′ makes a decryption query with input ct ∈ C′:

8

1. If ct ∈ DList′ or V (K, ct) = 0, then BE returns ⊥ to AE′ .
2. If ct = S, then BE returns e to AE′ .
3. If F (ct) ∈ ICList and (F (ct),m) ∈ IList with a plaintext m, then BE returns m to AE′ .
4. If F (ct) ∈ DList, then BE outputs a uniformly random bit b′ to the challenger and finishes the

game; we write this event as T .

5. Otherwise, BE makes a decryption query with input F (ct), and forwards the response to AE′ .

• When AE′ makes an evaluation query with inputs ct1, ct2 ∈ C′:

1. For each i ∈ {1, 2},
– if F (cti) ∈ ICList, then let mi be the plaintext with (F (cti),mi) ∈ IList;

– if F (cti) 6= S and F (cti) 6∈ DList, then BE makes a decryption query with input F (cti),
obtains the response mi, and appends (F (cti),mi) to IList if mi 6= ⊥;

– otherwise, let mi := ⊥.

2. If V (K, ct1) = 0 or V (K, ct2) = 0, then BE returns ⊥ to AE′ .
3. If ct1 = S or ct2 = S, then

(a) BE computes the output ct of Eval′(ek′, ct1, ct2) by itself (note that this is possible by the
definition of Eval′) and returns ct to AE′ ;

(b) if ct1 ∈ DList′ or ct2 ∈ DList′, then BE appends ct to DList′.

4. Otherwise,

(a) BE makes an evaluation query with input (F (ct1), F (ct2)), obtains the response C, and returns
C to AE′ ;

(b) if ct1 ∈ DList′ or ct2 ∈ DList′, then BE appends C to DList′;

(c) if m1 6= ⊥ and m2 6= ⊥, then BE appends (C,m1 ∗m2) to IList.

• When AE′ gives challenge plaintexts, BE forwards them to the challenger, appends the challenger’s
response C to DList′, and returns C to AE′ .

• When AE′ finally outputs a bit b′, BE outputs the b′ to the challenger and finishes the game.

If the event T does not occur during an execution of BE , then BE perfectly simulates the KH-CCA game
for E ′ from the viewpoint of AE′ . This and Difference Lemma imply∣∣∣∣Pr

BE
[b = b′]− Pr

AE′
[b = b′]

∣∣∣∣ ≤ Pr[T] ,

therefore by the triangle inequality, the difference of the advantages of AE′ and BE is at most Pr[T]. Hence
by the KH-CCA security of E , our task is reduced to showing that Pr[T] is negligible.

During an execution of BE , we say that a ciphertext ct ∈ C′ at some step is unallowable if ct 6∈ DList′,
V (K, ct) = 1, ct 6= S, F (ct) 6∈ ICList, and F (ct) ∈ DList. Let T ′ denote the event that an unallowable
ciphertext is given from AE′ to BE as an input for a decryption or an evaluation query. Note that if the
event T occurs with ct ∈ C′ then ct is unallowable; hence Pr[T] ≤ Pr[T ′], and our task is reduced to showing
that Pr[T ′] is negligible. Now we have the following lemma.

Lemma 2. In the current setting, if the event T ′ occurs firstly with unallowable ciphertext ct, then we have
ct ∈ C × T and ct was not generated by algorithm Eval′ executed by BE at some earlier step.

Proof. Assume for the contrary that ct = C ∈ C, hence F (ct) = C. As ct 6∈ DList′, the timing where C
was appended to DList is an evaluation query with input (F (ct1), F (ct2)) by BE (rather than the challenge
query) made in order to respond to an evaluation query by AE′ , which we call the query Q, with input, say
ct1, ct2. By the definition of BE , now V (K, ct1) = V (K, ct2) = 1, ct1 6= S, ct2 6= S, and ct1, ct2 6∈ DList′ at the

9

beginning of the query Q (as otherwise BE would append BE ’s response C = ct to DList′, a contradiction).
Moreover, as BE did not append a pair of the form (C,m) to IList during the query Q (note that C 6∈ ICList
as ct is unallowable), we have F (cti) ∈ DList \ ICList for some i ∈ {1, 2} at the beginning of the query Q.
Summarizing the argument, it follows that this cti was also unallowable at the beginning of the query Q,
meaning that an event T ′ already occurred at the earlier query Q. This is a contradiction. Hence we have
ct ∈ C × T .

Assume for the contrary that ct was generated by algorithm Eval′ executed by BE at some earlier step.
This step was an evaluation query by AE′ , which we call the query Q′, with inputs, say ct1, ct2, where
cti = S for some i ∈ {1, 2}. By the definition of Eval′, ct3−i is of the form ct3−i = C3−i ∈ C, hence
V (K, ct3−i) = 1 and ct3−i 6= S. The fact ct 6∈ DList′ implies that ct3−i 6∈ DList′ at the beginning of the query
Q′. Moreover, as F (ct) = C3−i = F (ct3−i) by the definition of Eval′, the fact F (ct) 6∈ ICList implies that
F (ct3−i) 6∈ ICList, therefore we have F (ct3−i) ∈ DList at the beginning of the query Q′ as otherwise a pair
of the form (F (ct3−i),m3−i) would be appended to IList during the query Q′, a contradiction. Summarizing
the argument, it follows that this ct3−i was also unallowable at the beginning of the query Q′, meaning that
an event T ′ already occurred at the earlier query Q′. This is a contradiction. Hence the lemma holds.

We construct a PPT adversary BMAC against the SUF-CMA game for MAC as follows. BMAC generates
(pk, sk, ek)←Gen(1λ) and then simulates the KH-CCA game between BE and the challenger (by using sk
and ek), except for the following differences:

• The simulated BE does not generate K←GenMAC(1λ) at the beginning. At every time BE is required
to generate a tag in order to execute the algorithm Eval′, BMAC queries the oracle in the SUF-CMA
game to obtain the tag.

• If the event T ′ occurs firstly with unallowable ciphertext ct, then ct ∈ C × T by Lemma 2; now BMAC

outputs the ct to the challenger of the SUF-CMA game. If the event T ′ has not occurred during the
simulated KH-CCA game, then BMAC aborts.

• If AE′ which is executed internally in the simulated BE makes a query to RevEK, then BMAC aborts.
(Note that the event T ′ never occur after AE′ makes a query to RevEK, as then AE′ in the guess phase
cannot use the oracles Dec and Eval by the definition of the KH-CCA game. Hence this change does
not affect the probability that T ′ occurs.)

By Lemma 2, if BMAC outputs ct ∈ C × T (i.e., T ′ occurs), then the tag in ct was not generated by
the challenger of the SUF-CMA game, therefore BMAC wins the SUF-CMA game. Moreover, the winning
probability of BMAC is negligible by the SUF-CMA security of MAC. Hence Pr[T ′] is also negligible, as
desired. This completes the proof of Theorem 1.

4.3 Proof of Theorem 2

In this section, we prove Theorem 2. Let ` denote the level function for E , and let Sim be the algorithm
in the leveled circuit privacy for E . Then by the definition of the leveled circuit privacy, the output of
Sim(1λ, ek, L,m) is a ciphertext of level L for plaintext m except for negligible probability. To simplify the
argument, we assume without loss of generality that this property holds with probability 1.

Let AComp be any PPT adversary for the KH-CCA game for Comp(E). To show that the advantage of

AComp is negligible, we construct a PPT adversary BE = B(ν)E (ν ∈ {0, 1}) for the KH-CCA game for E that
executes AComp internally. Here we use the following lists and functions:

• DList : the list used in the KH-CCA game for E (note that BE can know the current content of DList
by simulating the updates of DList by the challenger)

• DListComp : the list used in the KH-CCA game for Comp(E), maintained by BE ; DListComp := ∅ at the
beginning (BE will be constructed in a way that DListComp ⊂ DList)

10

• IList : a list of pairs (C,m) of a ciphertext C and a plaintext m satisfying that C is known to have
plaintext m from the viewpoint of BE ; IList := ∅ at the beginning

• ICList : the list of the first components of the pairs in IList (ICList = ∅ at the beginning)

• Fi (i ∈ {0, 1}) : the function with domain DList ∪ ICList, satisfying that any C ∈ DList ∪ ICList would
have plaintext Fi(C) if among the two challenge plaintexts M∗0 and M∗1 the challenger chose M∗i to
generate the challenge ciphertext; we suppose that the list IList will be automatically updated in a way
that a pair (C,m) belongs to IList whenever F0(C) = F1(C) = m

The adversary BE performs as follows.

• Given a public key pk for E , BE sends pk to AComp.

• When AComp makes a query to RevEK, BE makes a query to the own oracle RevEK to obtain ek, and
sends ek back to AComp.

• When AComp makes a decryption query or an evaluation query:

– If at least one of the input ciphertexts of the query belongs to DList \ (DListComp ∪ ICList), we
write this event as T and let CT be the first such ciphertext; we call CT the crit-
ical ciphertext . Now BE makes a query to RevEK to obtain ek, and by using ek, computes
CT,i←Sim(1λ, ek, `(CT), Fi(CT)) for i ∈ {0, 1}. Then

∗ if CT = CT,i with i ∈ {0, 1}, then BE outputs b′ := i to the challenger and finishes the game;

∗ otherwise, BE outputs a uniformly random bit b′ to the challenger and finishes the game.

– Otherwise, for each input ciphertext C not belonging to DList (hence not belonging to DListComp

either, by the property DListComp ⊂ DList), BE makes a decryption query with input C, obtains
the response m, and

∗ appends (C,m) to IList and sets F0(C) = F1(C) := m if m 6= ⊥;

∗ returns ⊥ to AComp if m = ⊥.

Note that after this process (when ⊥ has not been returned to AComp), any input ciphertext
belongs to DListComp ∪ ICList.

When the query is a decryption query with input ciphertext C, if C ∈ DListComp then BE returns
⊥ to AComp; otherwise, BE returns the plaintext m with (C,m) ∈ IList to AComp.

On the other hand, when the query is an evaluation query:

1. For i = 1, . . . , n recursively, where n is the number of gates in the circuit to be computed, BE
obtains the output ciphertext Ci,out of the i-th gate with input ciphertexts, say Ci,in,1 and
Ci,in,2, by making a query to the own evaluation oracle for E with inputs Ci,in,1, Ci,in,2. At
the same time, for each j ∈ {0, 1}, BE computes the value of Fj(Ci,out) by using the values
of Fj(Ci,in,1) and Fj(Ci,in,2).

∗ Now it follows recursively (by using the property DListComp ⊂ DList) that all of Ci,in,1,
Ci,in,2, and Ci,out belong to DList ∪ ICList; note that if F0(Ci,in,k) = F1(Ci,in,k) for both
k = 0, 1 then F0(Ci,out) = F1(Ci,out).

∗ We call the ciphertexts C1,out, . . . , Cn−1,out intermediate ciphertexts.

2. If at least one of the input ciphertexts of the query belongs to DListComp, then BE appends
Cn,out to DListComp.

3. BE returns Cn,out to AComp.

• When AComp gives challenge plaintexts M∗0 and M∗1 , BE sends them to the challenger and obtains the
challenge ciphertext C∗, appends C∗ to DListComp, sets Fi(C

∗) := M∗i for i ∈ {0, 1}, and returns C∗ to
AComp.

11

• When AComp finally outputs a bit b̂,

– if ν = 0, then BE = B(ν)E outputs b′ := b̂ to the challenger;

– if ν = 1, then BE = B(ν)E outputs a uniformly random bit b′ to the challenger.

If the event T does not occur during an execution of BE , then BE perfectly simulates the KH-CCA game
for Comp(E) from the viewpoint of AComp. This and Difference Lemma imply∣∣∣∣∣Pr

B(0)
E

[b′ = b]− Pr
AComp

[b′ = b]

∣∣∣∣∣ ≤ Pr[T]

(note that Pr[T] in B(0)E and in B(1)E are equal), therefore by the triangle inequality, the difference of the

advantages of AComp and B(0)E is at most Pr[T]. Hence by the KH-CCA security of E , our task is reduced

to showing that Pr[T] is negligible. Moreover, in an execution of B(1)E , B(1)E wins the KH-CCA game with

conditional probability 1 if the event T occurs and CT = CT,b, and otherwise B(1)E wins with conditional
probability 1/2. Hence we have

Pr
B(1)

E

[b′ = b]− 1

2
=

1

2
Pr[T ∧ CT = CT,b] .

The left-hand side is negligible by the KH-CCA security of E , therefore Pr[T ∧ CT = CT,b] is negligible as
well.

Let G0 denote the original KH-CCA game for E between BE and the challenger. As BE is PPT, the number
of computations of the evaluation algorithm by the challenger, say C←Eval(ek, f, C1, C2), is bounded by
a positive polynomial, say P (λ). For 1 ≤ k ≤ P (λ), let Gk be the game modifying G0 in a way that for
the first k computations of Eval as above, the challenger instead computes mi←Dec(sk, Ci) for i = 1, 2
and C← Sim(1λ, ek, pf (`(C1), `(C2)), f(m1,m2)). By the condition of Sim in the leveled circuit privacy, the
behaviors of Gk−1 and Gk have only negligible statistical distance, so do the behaviors of G0 and G := GP (λ).
Hence our task is reduced to showing that PrG[T] is negligible, while it follows that PrG[T ∧ CT = CT,b] is
negligible.

We note that in the game G, all the computations of Eval by the challenger have been replaced by Sim. As
a result, the distribution of the response by BE to an evaluation query from the internal AComp is independent
of the intermediate ciphertexts generated during this query. Therefore, the behavior of the internal AComp at
some step is independent of the previously generated intermediate ciphertexts. As BE is PPT, the number
of ciphertexts sent from the internal AComp to BE at some query is bounded by a positive polynomial, say

Q(λ). For each 1 ≤ h ≤ Q(λ), let C
(h)
A denote the h-th ciphertext sent from AComp to BE . Now the event

T occurs if and only if for some 1 ≤ h ≤ Q(λ) and some ciphertext C, we have C
(h)
A = C, C

(h)
A is a critical

ciphertext, and C
(h′)
A is not a critical ciphertext for any h′ < h. As these cases are disjoint, we have

Pr
G

[T] =

Q(λ)∑
h=1

∑
~C=(C1,...,Ch)

Pr
G

[E(~C)] · Pr
G

[E′(~C) | E(~C)]

where E(~C) denotes the event that C
(h′)
A = Ch′ for any 1 ≤ h′ ≤ h, and E′(~C) denotes the event that

C1, . . . , Ch−1 are not critical and Ch is critical. On the other hand, under the two events E(~C) and E′(~C),
we have CT = Ch, therefore the conditional probability of T ∧ CT = CT,b is equal to Pr[Ch←Sim] :=
Pr[Ch←Sim(1λ, ek, `(Ch),mh)] where mh is the plaintext for Ch. Hence we have

Pr
G

[T ∧ CT = CT,b] =

Q(λ)∑
h=1

∑
~C=(C1,...,Ch)

Pr
G

[E(~C)] · Pr
G

[E′(~C) | E(~C)] · Pr[Ch←Sim] .

12

Moreover, under the event E(~C), the event E′(~C) occurs only if at least one of the intermediate ciphertexts

is equal to Ch, which occurs with probability at most P (λ) · Pr[Ch←Sim]. Hence we have PrG[E′(~C) |
E(~C)] ≤ P (λ) · Pr[Ch←Sim], therefore

Q(λ)P (λ) · Pr
G

[T ∧ CT = CT,b] ≥ Q(λ) ·
Q(λ)∑
h=1

∑
~C=(C1,...,Ch)

Pr
G

[E(~C)] · Pr
G

[E′(~C) | E(~C)]2

≥

Q(λ)∑
h=1

∑
~C=(C1,...,Ch)

Pr
G

[E(~C)]

 ·
Q(λ)∑
h=1

∑
~C=(C1,...,Ch)

Pr
G

[E(~C)] · Pr
G

[E′(~C) | E(~C)]2

 .

By applying Cauchy–Schwarz inequality to two vectors (PrG[E(~C)]1/2)h, ~C and (PrG[E(~C)]1/2 PrG[E′(~C) |
E(~C)])h, ~C in the right-hand side, we have

√
Q(λ)P (λ) · Pr

G
[T ∧ CT = CT,b] ≥

Q(λ)∑
h=1

∑
~C=(C1,...,Ch)

Pr
G

[E(~C)]1/2 · Pr
G

[E(~C)]1/2 Pr
G

[E′(~C) | E(~C)]

=

Q(λ)∑
h=1

∑
~C=(C1,...,Ch)

Pr
G

[E(~C)] · Pr
G

[E′(~C) | E(~C)]

= Pr
G

[T] .

Now the left-hand side is negligible, as PrG[T ∧CT = CT,b] is negligible as shown above and P (λ) and Q(λ)
are polynomials. Hence it follows that PrG[T] is also negligible, as desired. This completes the proof of
Theorem 2.

5 Catalano–Fiore Conversion

In this section, we summarize the original Catalano–Fiore conversion [14] and its generalization [13] for the
case of non-keyed HE schemes.

5.1 The Original Catalano–Fiore Conversion

We explain the Catalano–Fiore conversion [14] for linearly HE schemes; i.e., having a finite commutative
unital ring as the plaintext space and allowing additions C1�C2 and scalar multiplication m�C (the latter
generates a ciphertext for plaintext m ·Dec(sk, C)). We say that an HE scheme is public-space if a uniformly
random plaintext can be efficiently sampled. Note that many HE schemes are public-space, and most of the
known non-public-space HE schemes such as [7, 8, 15, 31] can be easily converted to public-space schemes.

The conversion yields a two-level HE (2LHE) scheme; that is, the ciphertexts are classified into level-
1 ciphertexts and level-2 ciphertexts; homomorphic addition is possible for ciphertexts of the same level;
and homomorphic multiplication for two level-1 ciphertexts is possible and yields a level-2 ciphertext. The
conversion is described as follows.

Definition 10 (Catalano–Fiore Conversion). Let E = (Gen,Enc,Dec,Eval) be a linearly HE scheme that
is public-space in the sense described above. For the algorithm Eval, we write its special case of addition
as Add and of scalar multiplication as cMult, and abbreviate them as the operators � and �, respectively.
Then we define a new 2LHE scheme CF(E) = (Gen′,Enc′,Dec′1,Dec′2,Eval′) as follows. Here Dec′1 and Dec′2
are decryption algorithms for level-1 and level-2 ciphertexts, respectively.

• Gen′ and Enc′ : The same as Gen and Enc.

13

• Eval′(pk, f,C) : We suppose that C is a pair of two ciphertexts when f is addition or multiplication,
and C is a single ciphertext when f is scalar multiplication. For i = 1, 2, we write Addi to mean
addition for level-i ciphertexts, cMulti to mean scalar multiplication for level-i ciphertexts, and Mult
to mean multiplication for level-1 ciphertexts. These algorithms are defined as follows.

– Add1 and cMult1 : The same as Add and cMult.

– Mult(pk, C1, C2) : It chooses plaintexts m1,m2←M uniformly at random, sets α←Enc(pk,m1 ·
m2), and for each i = 1, 2, sets C ′i←Enc(pk,−mi) and βi←Ci � C ′i. Then it computes

γ←α� (m2 � β1) � (m1 � β2)

(where the �’s are calculated from left to right), and outputs (γ, β1, β2).

– Add2(pk, C1, C2) : First, it parses the inputs as

C1 = (α, β11, β21, . . . , β1i, β2i, . . . , β1n, β2n) ,

C2 = (γ, δ11, δ21, . . . , δ1j , δ2j , . . . , δ1m, δ2m) .

Then it sets ε←α� γ and puts

C = (ε, β11, β21, . . . ,β1n, β2n, δ11, δ21, . . . , δ1m, δ2m) .

Finally, it outputs C ′←Rerand(pk, C) where Rerand is as defined later.

– cMult2(pk,m,C) : First, it parses the input C as C = (α, β11, β21, . . . , β1n, β2n). Then it
sets α′←m � α and for each k = 1, . . . , n, sets β′1k←m � β1k, β′2k←β2k, and puts C ′ =
(α′, β′11, β

′
21, . . . , β

′
1n, β

′
2n). Finally, it outputs C ′′←Rerand(pk, C ′) where Rerand is as defined

later.

• Dec′1(sk, C) : It outputs m←Dec(sk, C).

• Dec′2(sk, C) : First, it parses the input C as C = (α, β11, β21, . . . , β1n, β2n). It computes

m = Dec(sk, α) +

n∑
i=1

Dec(sk, β1i) · Dec(sk, β2i)

and outputs m.

Now the algorithm Rerand used in the construction of Eval′ is given as follows.

• Rerand(pk, C) : First, it parses the input C as C = (α, β11, β21, . . . , β1n, β2n). For each i = 1, 2 and
j = 1, . . . , n, it chooses mij←M uniformly at random and sets γij←Enc(pk,mij). Moreover, it sets
β′ij←βij � γij and δj←Enc(pk,−(m1j ·m2j)). Then it sets

εj← δj � ((−m2j) � β1j) � ((−m1j) � β2j)

and α′←α� ε1 � · · ·� εn, and outputs C ′ = (α′, β′11, β
′
21, . . . , β

′
1n, β

′
2n).

5.2 The Generalized Catalano–Fiore Conversion

In [13], Catalano and Fiore proposed a generalized conversion method from a d-level HE scheme into a
2d-level HE scheme with a restriction that in the resulting 2d-level HE scheme, homomorphic multiplication
for a pair of ciphertexts including one of level d+ 1 or higher is not possible. The conversion is described as
follows.

14

Definition 11 (Generalized Catalano–Fiore Conversion). Let E = (Gen,Enc,Dec,Eval) be a d-level HE
scheme that is public-space in the sense described above. For the algorithm Eval, we write its special case of
addition as Add, scalar multiplication as cMult, and multiplication as Mult, and abbreviate Add and cMult
as the operators � and �, respectively. Here, when the two input ciphertexts for Add have different levels,
it is interpreted in a way that the ciphertext with lower level is implicitly converted in advance into the level
of the other ciphertext. Then we define a new 2d-level HE scheme CF(E) = (Gen′,Enc′,Dec′≤d,Dec′>d,Eval′)

as follows. Here Dec′≤d and Dec′>d are decryption algorithms for ciphertexts of level ≤ d and of level > d,
respectively.

• Gen′ and Enc′ : The same as Gen and Enc.

• Eval′(pk, f,C) : We suppose that C is a pair of two ciphertexts when f is addition or multiplication,
and C is a single ciphertext when f is scalar multiplication. We write Add≤d to mean addition for
ciphertexts of level ≤ d, Add>d to mean addition for ciphertexts of level > d, cMult≤d to mean scalar
multiplication for ciphertexts of level ≤ d, cMult>d to mean scalar multiplication for ciphertexts of
level > d, Mult≤d to mean multiplication for two ciphertexts for which the sum of levels is ≤ d, and
Mult>d to mean multiplication for two ciphertexts for which the sum of levels is > d. These algorithms
are defined as follows.

– Add≤d, cMult≤d, and Mult≤d : The same as Add, cMult, and Mult.

– Mult>d(pk, C1, C2) : Suppose that C1 and C2 are of levels d1 ≤ d and d2 ≤ d, respectively. It
chooses plaintexts m1,m2←M uniformly at random, sets α←Enc(pk,m1 · m2), and for each
i = 1, 2, sets C ′i←Enc(pk,−mi) and βi←Ci � C ′i. Then it computes

γ←α� (m2 � β1) � (m1 � β2)

(where the �’s are calculated from left to right), and outputs (γ, β1, β2).

– Add>d(pk, C1, C2) : First, it parses the inputs as

C1 = (α, β11, β21, . . . , β1i, β2i, . . . , β1n, β2n) ,

C2 = (γ, δ11, δ21, . . . , δ1j , δ2j , . . . , δ1m, δ2m) .

Then it sets ε←α� γ and puts

C = (ε, β11, β21, . . . ,β1n, β2n, δ11, δ21, . . . , δ1m, δ2m) .

Finally, it outputs C ′←Rerand(pk, C) where Rerand is as defined later.

– cMult>d(pk,m,C) : First, it parses the input C as C = (α, β11, β21, . . . , β1n, β2n). Then it
sets α′←m � α and for each k = 1, . . . , n, sets β′1k←m � β1k, β′2k = β2k, and puts C ′ =
(α′, β′11, β

′
21, . . . , β

′
1n, β

′
2n). Finally, it outputs C ′′←Rerand(pk, C ′) where Rerand is as defined

later.

• Dec′≤d(sk, C) : It outputs m←Dec(sk, C).

• Dec′>d(sk, C) : First, it parses the input C as C = (α, β11, β21, . . . , β1n, β2n). It computes

m = Dec(sk, α) +

n∑
i=1

Dec(sk, β1i) · Dec(sk, β2i)

and outputs m.

Now the algorithm Rerand used in the construction of Eval′ is given as follows.

• Rerand(pk, C) : First, it parses the input C as C = (α, β11, β21, . . . , β1n, β2n). For each i = 1, 2 and
j = 1, . . . , n, it chooses mij←M uniformly at random and sets γij←Enc(pk,mij). Moreover, it sets
β′ij←βij � γij and δj←Enc(pk,−(m1j ·m2j)). Then it sets

εj← δj � ((−m2j) � β1j) � ((−m1j) � β2j)

and α′←α� ε1 � · · ·� εn, and outputs C ′ = (α′, β′11, β
′
21, . . . , β

′
1n, β

′
2n).

15

6 Catalano–Fiore Conversion for KH-PKE

In this section, we extend the Catalano–Fiore conversion to the case of KH-PKE. In Section 6.1, we show that
the original Catalano–Fiore conversion applied to a linearly KH-PKE scheme does not preserve KH-CCA
security. In Section 6.2, we describe our proposed extension of the Catalano–Fiore conversion to the case of
KH-PKE. In Section 6.3, we give a security proof for our proposed conversion. In Section 6.4, we also give
a similar argument for the case of the generalized Catalano–Fiore conversion for leveled HE schemes.

6.1 Motivation: The Original Catalano–Fiore Conversion Fails

First, we consider a two-level KH-PKE scheme CF(E) obtained by simply applying the original Catalano–
Fiore conversion to a KH-PKE scheme E . In this case, CF(E) is in general not KH-CCA secure even if E is
KH-CCA secure. Indeed, the following properties of CF(E) are contradictory to KH-CCA security:

• An adversary without the evaluation key, given a level-1 ciphertext C, can still generate a level-2
ciphertext (C,Enc(pk, 0),Enc(pk, 0)) with the same plaintext as C.

• An adversary without the evaluation key, given a level-2 ciphertext C = (α, β1, β2), can still generate
another level-2 ciphertext (α, β2, β1) with the same plaintext as C.

6.2 Catalano–Fiore Conversion for KH-PKE

The essence of the attacks mentioned in Section 6.1 is that an adversary can handle each component of a
level-2 ciphertext separately. Our idea to prevent such attacks is that we will encrypt the whole of a level-2
ciphertext again by an appropriate SKE scheme. The resulting conversion method is described as follows.

Definition 12 (Our Proposed Conversion for KH-PKE). Let E = (Gen,Enc,Dec,Eval) be a linearly KH-
PKE scheme that is public-space, and let SE = (GenSE ,EncSE ,DecSE) be an SKE scheme. For the algorithm
Eval, we write its special case of addition as Add and of scalar multiplication as cMult, and abbreviate them
as the operators � and �, respectively. Then we define a new two-level KH-PKE scheme CF′(E ,SE) =
(Gen′,Enc′,Dec′1,Dec′2,Eval′) as follows. Here Dec′1 and Dec′2 are decryption algorithms for level-1 and level-
2 ciphertexts, respectively.

• Gen′(1λ) : It generates (pk, sk, ek) by Gen(1λ) and K by GenSE(1
λ), and outputs (pk, sk, ek′) where

ek′ = (ek,K).

• Enc′(pk,m) : The same as Enc(pk,m).

• Eval′(ek′, f,C) : We suppose that C is a pair of two ciphertexts when f is addition or multiplication,
and C is a single ciphertext when f is scalar multiplication. For i = 1, 2, we write Addi to mean
addition for level-i ciphertexts, cMulti to mean scalar multiplication for level-i ciphertexts, and Mult
to mean multiplication for level-1 ciphertexts. These algorithms are defined as follows.

– Add1(ek′, C1, C2) and cMult1(ek′,m,C) : The same as Add(ek, C1, C2) and cMult(ek,m,C).

– Mult(ek′, C1, C2) : It chooses plaintexts m1,m2←M uniformly at random, sets α←Enc(m1 ·m2),
and for each i = 1, 2, sets C ′i←Enc(−mi) and βi←Ci � C ′i. Then it computes

γ←α� (m2 � β1) � (m1 � β2)

(where the �’s are calculated from left to right), and outputs C←EncSE(K, γ||β1||β2) where “||”
denotes the concatenation of strings.

– Add2(ek′, C1, C2) : First, it computes C ′1←DecSE(K, C1) and C ′2←DecSE(K, C2) (it rejects the
input if C ′1 = ⊥ or C ′2 = ⊥), and parses them as

C ′1 = α||β11||β21|| · · · ||β1n||β2n ,

C ′2 = γ||δ11||δ21|| · · · ||δ1m||δ2m .

16

Then it sets ε←α� γ and puts

C ′ = ε||β11||β21|| · · · ||β1n||β2n||δ11||δ21|| · · · ||δ1m||δ2m .

Finally, it computes C ′′←Rerand(ek, C ′) and outputs C←EncSE(K, C ′′) where Rerand is as de-
fined later.

– cMult2(ek′,m,C) : First, it computes C ′←DecSE(K, C) (it rejects the input if C ′ = ⊥), and
parses C ′ as C ′ = α||β11||β21|| · · · ||β1n||β2n. Then it sets α′←m � α and for each k = 1, . . . , n,
sets β′1k←m � β1k, β′2k = β2k and puts C ′0 = α||β′11||β′21|| · · · ||β′1n||β′2n. Finally, it computes
C ′′0 ←Rerand(ek, C ′0) and outputs C0←EncSE(K, C ′′0) where Rerand is as defined later.

• Dec′1(sk, C) : It outputs m←Dec(sk, C).

• Dec′2(sk, C) : First, it computes C ′←DecSE(K, C) (it rejects the input if C ′ = ⊥), and parses C ′ as
C ′ = α||β11||β21|| · · · ||β1n||β2n. It computes

m = Dec(sk, α) +

n∑
i=1

Dec(sk, β1i) · Dec(sk, β2i)

and outputs m.

Now the algorithm Rerand used in the construction of Eval′ is given as follows.

• Rerand(ek, S) : First, it parses the input as S = α||β11||β21|| · · · ||β1n||β2n. For each i = 1, 2 and
j = 1, . . . , n, it chooses mij←M uniformly at random and sets γij←Enc(pk,mij). Moreover, it sets
β′ij←βij � γij and δj←Enc(pk,−(m1j ·m2j)). Then it sets

εj← δj � ((−m2j) � β1j) � ((−m1j) � β2j)

and α′←α� ε1 � · · ·� εn, and outputs α′||β′11||β′21|| · · · ||β′1n||β′2n.

The correctness of CF′(E ,SE) follows from the correctness of E and SE and can be verified straightfor-
wardly. In the scheme above, for a level-1 ciphertext C, we define D(C) := {C}. For a level-2 ciphertext C,
we define D(C) to be the set of the level-1 ciphertexts obtained by parsing DecSE(C). We call the elements
of D(C) the components of C.

We show that the conversion method CF′ preserves “KH-CCA secure + circuit private” provided the
SKE scheme SE satisfies certain conditions. Namely, we have the following result, which is proved in Section
6.3.

Theorem 3. Let E be a linearly KH-PKE scheme that is KH-CCA secure and circuit private, and let SE be
an SKE scheme that is IND-CPA secure and INT-CTXT secure. Then CF′(E ,SE) is KH-CCA secure and
leveled circuit private, where the level function ` used in the leveled circuit privacy is defined by `(C) = 1 for
any level-1 ciphertext C and `(C) = (2, (|D(C)| − 1)/2) for any level-2 ciphertext C.

6.3 Proof of Theorem 3

In this section, we prove Theorem 3. First, we show that CF′(E ,SE) is leveled circuit private. We are going
to construct a simulator Sim′ for the leveled circuit privacy of CF′(E ,SE). Let Sim be the simulator for the
circuit privacy of E .

For the case of level-1 ciphertexts, i.e., `(C) = 1, we simply define Sim′(1λ, ek′, 1,m) := Sim(1λ, ek,m).
Then the condition for Sim implies that Sim′ also satisfies the desired condition in this case.

For the case of level-2 ciphertexts, i.e., `(C) = (2, n) for some integer n ≥ 1, we define Sim′(1λ, ek′, (2, n),
m) as follows.

17

For each i = 1, 2 and j = 1, . . . , n, it chooses mij←M uniformly at random and puts

βij←Sim(1λ, ek,mij) .

It moreover sets

α←Sim

1λ, ek,m−
n∑
j=1

m1j ·m2j


and outputs C←EncSE(K, α||β11||β21|| · · · ||β1n||β2n).

By the construction of the algorithm Rerand used in the evaluation algorithm of CF′(E ,SE) and the condition
for Sim, it follows that the output distribution of Sim′ is indistinguishable from the correct output distribution
of the evaluation algorithm. Hence CF′(E ,SE) is leveled circuit private, as desired.

The remaining task is to show that CF′(E ,SE) is KH-CCA secure. Let ACF′ be any PPT adversary for
the KH-CCA game for CF′(E ,SE). To show that the advantage of ACF′ is negligible, we construct a PPT

adversary BE = B(ν)E (ν ∈ {0, 1}) for the KH-CCA game for E that executes ACF′ internally. Here we use
the following lists and functions:

• DList : the list used in the KH-CCA game for E (note that BE can know the current content of DList
by simulating the updates of DList by the challenger)

• DListCF′ : the list used in the KH-CCA game for CF′(E ,SE), maintained by BE ; DListCF′ := ∅ at the
beginning (BE will be constructed in a way that any level-1 ciphertext in DListCF′ also belongs to DList;
below we write this property as (*))

• IList : a list of pairs (χ,m) of a ciphertext χ in E and a plaintext m satisfying that χ is known to have
plaintext m from the viewpoint of BE ; IList := ∅ at the beginning

• ICList : the list of the first components of the pairs in IList (ICList = ∅ at the beginning)

• Fi (i ∈ {0, 1}) : the function with domain DList ∪ ICList, satisfying that any χ ∈ DList ∪ ICList would
have plaintext Fi(χ) if among the two challenge plaintexts M∗0 and M∗1 the challenger chose M∗i to
generate the challenge ciphertext; we suppose that the list IList will be automatically updated in a way
that a pair (χ,m) belongs to IList whenever F0(χ) = F1(χ) = m

The adversary BE performs as follows.

• Given a public key pk for E , BE sends pk to ACF′ . Moreover, BE generates K←GenSE(1
λ).

• When ACF′ makes a query to RevEK, BE makes a query to the own oracle RevEK to obtain ek, and
sends ek′ := (ek,K) back to ACF′ .

• When ACF′ makes a decryption query or an evaluation query, if at least one input ciphertext C is of
level 2 and satisfies that DecSE(K, C) cannot be appropriately parsed into level-1 ciphertexts, then BE
returns ⊥ to ACF′ . Otherwise:

– If at least one of the input ciphertexts C of the query satisfies that C 6∈ DListCF′ and D(C) ∩
(DList\ ICList) 6= ∅, we write this event as T , and let CT be the first such ciphertext and
χT be the first element of D(CT)∩ (DList \ ICList) 6= ∅; we call CT the critical ciphertext
and call χT the critical component . Now BE makes a query to RevEK to obtain ek, and by
using ek, computes χT,i←Sim(1λ, ek, Fi(χT)) for i ∈ {0, 1}. Then

∗ if χT = χT,i with i ∈ {0, 1}, then BE outputs b′ := i to the challenger and finishes the game;

∗ otherwise, BE outputs a uniformly random bit b′ to the challenger and finishes the game.

– Otherwise, for each input ciphertext C not belonging to DListCF′ (note that now D(C) ∩ (DList \
ICList) = ∅ and hence D(C) ∩ DList ⊂ ICList), for each χ ∈ D(C) \ DList, BE makes a decryption
query with input χ, obtains the response m, and

18

∗ appends (χ,m) to IList and sets F0(χ) = F1(χ) := m if m 6= ⊥;

∗ returns ⊥ to ACF′ if m = ⊥.

Note that after this process (when ⊥ has not been returned to ACF′), any input ciphertext C
not belonging to DListCF′ satisfies that D(C) ⊂ ICList. In particular, any level-1 input ciphertext
belongs either to DListCF′ (hence to DList as well, by the property (*) mentioned above) or to
ICList.

When the query is a decryption query with input ciphertext C, if C ∈ DListCF′ , then BE returns
⊥ to ACF′ . Otherwise:

∗ When C is of level 1, note that C ∈ ICList as mentioned above; BE returns the plaintext m
with (C,m) ∈ IList to ACF′ .

∗ When C is of level 2, D(C) ⊂ ICList as mentioned above; BE parses DecSE(K, C) as

α||β11||β21|| · · · ||β1n||β2n ,

takes the plaintext mχ with (χ,mχ) for each χ ∈ D(C), and returns mα +
∑n
i=1mβ1i

·mβ2i

to ACF′ .

On the other hand, when the query is an evaluation query, BE proceeds as follows. Here, whenever
BE makes an evaluation query of the form Add(χ1, χ2) with χ1, χ2 ∈ DList ∪ ICList and obtains
the response χ, BE defines Fi(χ) := Fi(χ1) + Fi(χ2) for i ∈ {0, 1}. Similarly, whenever BE makes
an evaluation query of the form cMult(m,χ0) with χ0 ∈ DList ∪ ICList and obtains the response
χ, BE defines Fi(χ) := m · Fi(χ0) for i ∈ {0, 1}.
∗ When the query is an evaluation query Add1(C1, C2), BE makes an evaluation query Add(C1,
C2) and obtains the response C, and returns C to ACF′ . If C1 or C2 belongs to DListCF′ ,
then BE appends C to DListCF′ (note that now C1 or C2 belongs to DList by the property (*),
therefore C also belongs to DList and the property (*) is preserved).

∗ When the query is an evaluation query cMult1(m,C0), BE makes an evaluation query cMult(m,
C0) and obtains the response C, and returns C to ACF′ . If C0 belongs to DListCF′ , then BE
appends C to DListCF′ (note that now C0 belongs to DList by the property (*), therefore C
also belongs to DList and the property (*) is preserved).

∗ When the query is an evaluation query Mult1(C1, C2), note that C1, C2 ∈ DList ∪ ICList as
mentioned above. Then:

1. BE chooses m1,m2←M uniformly at random, and generates C ′1←Enc(−m1), C ′2←
Enc(−m2), and α←Enc(m1 · m2). Moreover, BE defines F0(C ′j) = F1(C ′j) := −mj for
j ∈ {1, 2} and defines F0(α) = F1(α) := m1 ·m2.

2. By making evaluation queries sequentially, BE obtains βj←Cj � C ′j for j ∈ {1, 2} and
obtains γ←α� (m2 � β1) � (m1 � β2).

3. BE generates C←EncSE(K, γ||β1||β2) and returns C to ACF′ . If C1 or C2 belongs to
DListCF′ , then BE appends C to DListCF′ .

∗ When the query is an evaluation query Add2(C1, C2), BE computes DecSE(K, C1) and DecSE(K,
C2), and parses them as α||β11||β21|| · · · ||β1n1 ||β2n2 and γ||δ11||δ21|| · · · ||δ1n2 ||δ2n2 , respec-
tively. Then, by using the own evaluation queries, BE obtains ε←Add(α, γ), sets

C ′ = ε||β11||β21|| · · · ||β1n1
||β2n1

||δ11||δ21|| · · · ||δ1n2
||δ2n2

,

and obtains C ′′←Rerand(ek, C ′). Finally, BE returns C←EncSE(K, C ′′) back to ACF′ .

∗ When the query is an evaluation query cMult2(m,C0), BE computes DecSE(K, C0) and parses
it as α||β11||β21|| · · · ||β1n||β2n. Then, by using the own evaluation queries, BE obtains
α′← cMult(m,α); for each k = 1, . . . , n, obtains β′1k← cMult(m,β1k) and puts β′2k = β2k;
puts C ′ = α′||β′11||β′21|| · · · ||β′1n||β′2n and obtains C ′′←Rerand(ek, C ′). Finally, BE returns
C←EncSE(K, C ′′) back to ACF′ .

19

• When ACF′ gives challenge plaintexts M∗0 and M∗1 , BE sends them to the challenger and obtains the
challenge ciphertext C∗, appends C∗ to DListCF′ , sets Fi(C

∗) := M∗i for i ∈ {0, 1}, and returns C∗ to
ACF′ .

• When ACF′ finally outputs a bit b̂,

– if ν = 0, then BE = B(ν)E outputs b′ := b̂ to the challenger;

– if ν = 1, then BE = B(ν)E outputs a uniformly random bit b′ to the challenger.

If the event T does not occur during an execution of BE , then BE perfectly simulates the KH-CCA game
for CF′(E ,SE) from the viewpoint of ACF′ . This and Difference Lemma imply∣∣∣∣∣Pr

B(0)
E

[b′ = b]− Pr
ACF′

[b′ = b]

∣∣∣∣∣ ≤ Pr[T]

(note that Pr[T] in B(0)E and in B(1)E are equal), therefore by the triangle inequality, the difference of the

advantages of ACF′ and B(0)E is at most Pr[T]. Hence by the KH-CCA security of E , our task is reduced to

showing that Pr[T] is negligible. As Pr[T] in B(0)E and in B(1)E are equal, in what follows we focus on B(1)E
instead of B(0)E .

We construct a PPT adversary B′E by modifying B(1)E in the following manner:

• When ACF′ makes a RevEK query, B′E sends any two challenge plaintexts to the challenger and ob-
tains the challenge ciphertext if B′E has not done it, and then outputs a uniformly random bit to the
challenger.

As the event T does not occur in an execution of B(1)E if ACF′ makes a RevEK query, it follows that Pr[T] in

B(1)E and in B′E are equal. Hence our task is reduced to showing that PrB′
E
[T] is negligible.

We construct a PPT adversary B′′E by modifying B′E in the following manner:

• B′′E initializes a list RList to ∅ at the beginning of the KH-CCA game. Whenever B′′E performs
C←EncSE(K, c) for some c, B′′E appends (C, c) to RList. Let RCList denote the set of the first compo-
nents C of the elements in RList.

• Whenever B′′E is given from ACF′ a level-2 ciphertext C as an input of a query, if C 6∈ RCList then B′′E
returns ⊥ back to ACF′ . Otherwise, B′′E performs by using the element c with (C, c) ∈ RList instead of
DecSE(K, C).

Then we have the following property.

Lemma 3. In the setting above,
∣∣PrB′

E
[T]− PrB′′

E
[T]
∣∣ is negligible.

Proof. Let E denote the event that B′′E receives from ACF′ a level-2 ciphertext C satisfying that C 6∈ RCList
and DecSE(K, C) 6= ⊥. If E does not occur, then the behavior of B′′E is identical to that of B′E . Therefore,
Difference Lemma implies that

∣∣PrB′
E
[T]− PrB′′

E
[T]
∣∣ ≤ PrB′′

E
[E]. Now our task is reduced to showing that

PrB′′
E

[E] is negligible.
We construct a PPT adversary ASE for the INT-CTXT game for SE as follows.

• ASE simulates both B′′E and the challenger in the KH-CCA game for E , where the simulated B′′E does
not generate K←GenSE(1

λ) and instead performs as follows:

– Whenever the simulated B′′E has to perform EncSE(K, c), ASE makes the own encryption query in
the INT-CTXT game and obtains the result of EncSE(K, c).

20

– Whenever the simulated B′′E receives from the internally executed ACF′ a level-2 ciphertext C with
C 6∈ RCList, ASE sends C to the challenger of the INT-CTXT game. If ASE does not win the
game with this ciphertext, then the challenger always returns “invalid” by the definition of RCList;
now ASE lets the simulated B′′E return ⊥ to ASE .

Now the simulation of ASE is perfect unless ASE wins the game, and ASE wins the game if and only if the
event E occurs in the simulated KH-CCA game. As the winning probability of ASE is negligible by the
INT-CTXT security of SE , it follows that PrB′′

E
[E] is also negligible, as desired. Hence Lemma 3 holds.

By the lemma, our task is reduced to showing that PrB′′
E

[T] is negligible.

We construct a PPT adversary B†E by modifying B′′E in the following manner:

• Whenever B†E performs C←EncSE(K, c) for some c, B†E instead chooses c′ with |c′| = |c| uniformly
at random, generates C ′←EncSE(K, c′), and appends (C ′, c) (instead of (C, c)) to RList if C ′ has not
belonged to RCList. In this case, we define D(C ′) to be the set of ciphertexts for E appearing in c.

Then we have the following property.

Lemma 4. In the setting above,
∣∣∣PrB′′

E
[T]− PrB†

E
[T]
∣∣∣ is negligible.

Proof. We construct a PPT adversary ASE for the IND-CPA game for SE as follows.

• ASE simulates both B′′E and the challenger in the KH-CCA game for E , where the simulated B′′E does
not generate K←GenSE(1

λ) and instead performs as follows:

– Whenever the simulated B′′E has to perform EncSE(K, c), ASE sets m0 := c and chooses m1 with
|m0| = |m1| uniformly at random. ASE sends (m0,m1) to the challenger of the IND-CPA game
and obtains the response C. Then the simulated B′′E uses C instead of EncSE(K, c) and appends
(C, c) to RList if C has not belonged to RCList. In this case, we define D(C) to be the set of
ciphertexts for E appearing in c.

• If the event T occurs during the simulation of B′′E , then ASE outputs 0 and finishes the game. If the
simulation of B′′E terminates before the event T occurs, then ASE outputs 1 and finishes the game.

Now the behavior of the simulated B′′E coincides with the original B′′E if the challenge bit b in the IND-CPA

game is b = 0, while it coincides with the behavior of B†E if b = 1. Therefore, the advantage of ASE , which
is negligible by the IND-CPA security of SE , is equal to∣∣∣∣∣Pr[b = 0] Pr

B′′
E

[T] + Pr[b = 1]

(
1− Pr

B†
E

[T]

)
− 1

2

∣∣∣∣∣ =
1

2

∣∣∣∣∣Pr
B′′

E

[T]− Pr
B†

E

[T]

∣∣∣∣∣ .
Hence Lemma 4 holds.

By the lemma, our task is reduced to showing that PrB†
E
[T] is negligible. Moreover, in an execution of

B†E , B
†
E wins the KH-CCA game with conditional probability 1 if the event T occurs and χT = χT,i, and

otherwise B†E wins with conditional probability 1/2. Hence we have

Pr
B†

E

[b′ = b]− 1

2
=

1

2
Pr
B†

E

[T ∧ χT = χT,b] .

The left-hand side is negligible by the KH-CCA security of E , therefore PrB†
E
[T ∧ χT = χT,b] is negligible as

well.
Let G0 denote the original KH-CCA game for E between B†E and the challenger. As B†E is PPT, the

number of computations of the evaluation algorithm by the challenger, say C←Eval(ek, f,C), is bounded

21

by a positive polynomial, say P (λ). For 1 ≤ k ≤ P (λ), let Gk be the game modifying G0 in a way
that for the first k computations of Eval as above, the challenger instead computes m←Dec(sk,C) and
C← Sim(1λ, ek, f(m)). By the condition of Sim in the circuit privacy, the behaviors of Gk−1 and Gk have
only negligible statistical distance, so do the behaviors of G0 and G := GP (λ). Hence our task is reduced to
showing that PrG[T] is negligible, while it follows that PrG[T ∧ χT = χT,b] is negligible.

Now we have the following property.

Lemma 5. In the game G, if the event T occurs with critical ciphertext CT , then CT is a level-1 ciphertext.

Proof. Assume for the contrary that CT is a level-2 ciphertext. If CT were not in RCList, then B†E would
just return ⊥ to ACF′ and hence the event T would not occur. Therefore we have CT ∈ RCList. This implies
that CT was sent to ACF′ as the response to a previous evaluation query, say q.

As CT was not appended to DListCF′ at the query q, each input ciphertext C of the query q was not in
DListCF′ at the time of the query q. Now by the construction of B†E , the fact that the event T did not occur
at the time of the query q implies that every element of D(C) is appended to ICList during the query q.
This also implies that D(CT) ⊂ ICList at the end of the query q, contradicting the condition of the critical
ciphertext CT . Hence Lemma 5 holds.

We note that in the game G, all the computations of Eval by the challenger have been replaced by Sim,
and all level-2 ciphertexts sent to ACF′ have been replaced by encryption results by SE of random plaintexts
with appropriate lengths. As a result, the behavior of the internal ACF′ at some step is independent of the
previously generated components of level-2 ciphertexts. As B†E is PPT, the number of level-1 ciphertexts

sent from the internal ACF′ to B†E at some query is bounded by a positive polynomial, say Q(λ). For each

1 ≤ h ≤ Q(λ), let C
(h)
A denote the h-th level-1 ciphertext sent from ACF′ to B†E . Now the event T occurs

if and only if for some 1 ≤ h ≤ Q(λ) and some level-1 ciphertext C, we have C
(h)
A = C, C

(h)
A is a critical

ciphertext, and C
(h′)
A is not a critical ciphertext for any h′ < h. As these cases are disjoint, we have

Pr
G

[T] =

Q(λ)∑
h=1

∑
~C=(C1,...,Ch)

Pr
G

[E(~C)] · Pr
G

[E′(~C) | E(~C)]

where E(~C) denotes the event that C
(h′)
A = Ch′ for any 1 ≤ h′ ≤ h, and E′(~C) denotes the event that

C1, . . . , Ch−1 are not critical and Ch is critical. On the other hand, under the two events E(~C) and E′(~C),
we have CT = χT = Ch, therefore the conditional probability of T ∧ χT = χT,b is equal to Pr[Ch←Sim] :=
Pr[Ch←Sim(1λ, ek,mh)] where mh is the plaintext for Ch. Hence we have

Pr
G

[T ∧ χT = χT,b] =

Q(λ)∑
h=1

∑
~C=(C1,...,Ch)

Pr
G

[E(~C)] · Pr
G

[E′(~C) | E(~C)] · Pr[Ch←Sim] .

Moreover, under the event E(~C), the event E′(~C) occurs only if at least one of the components of a level-
2 ciphertext generated during some query is equal to Ch, which occurs with probability at most P (λ) ·
Pr[Ch←Sim]. Hence we have PrG[E′(~C) | E(~C)] ≤ P (λ) · Pr[Ch←Sim], therefore

Q(λ)P (λ) · Pr
G

[T ∧ χT = χT,b] ≥ Q(λ) ·
Q(λ)∑
h=1

∑
~C=(C1,...,Ch)

Pr
G

[E(~C)] · Pr
G

[E′(~C) | E(~C)]2

≥

Q(λ)∑
h=1

∑
~C=(C1,...,Ch)

Pr
G

[E(~C)]

 ·
Q(λ)∑
h=1

∑
~C=(C1,...,Ch)

Pr
G

[E(~C)] · Pr
G

[E′(~C) | E(~C)]2

 .

22

By applying Cauchy–Schwarz inequality to two vectors (PrG[E(~C)]1/2)h, ~C and (PrG[E(~C)]1/2 PrG[E′(~C) |
E(~C)])h, ~C in the right-hand side, we have

√
Q(λ)P (λ) · Pr

G
[T ∧ χT = χT,b] ≥

Q(λ)∑
h=1

∑
~C=(C1,...,Ch)

Pr
G

[E(~C)]1/2 · Pr
G

[E(~C)]1/2 Pr
G

[E′(~C) | E(~C)]

=

Q(λ)∑
h=1

∑
~C=(C1,...,Ch)

Pr
G

[E(~C)] · Pr
G

[E′(~C) | E(~C)]

= Pr
G

[T] .

Now the left-hand side is negligible, as PrG[T ∧ χT = χT,b] is negligible as shown above and P (λ) and Q(λ)
are polynomials. Hence it follows that PrG[T] is also negligible, as desired. This completes the proof of
Theorem 3.

6.4 For the Generalized Catalano–Fiore Conversion

For the generalized Catalano–Fiore conversion from a d-level HE scheme into a 2d-level HE scheme, we can
also extend it to the case of KH-PKE schemes. Our conversion method is described as follows.

Definition 13 (Our Proposed Conversion for Leveled KH-PKE). Let E = (Gen,Enc,Dec,Eval) be a d-
level KH-PKE scheme that is public-space, and let SE = (GenSE ,EncSE ,DecSE) be an SKE scheme. For
the algorithm Eval, we write its special case of addition as Add, of scalar multiplication as cMult, and of
multiplication as Mult; and abbreviate Add and cMult as the operators � and �, respectively. Then we
define a new 2d-level KH-PKE scheme CF′(E ,SE) = (Gen′,Enc′,Dec′≤d,Dec′>d,Eval′) as follows. Here Dec′≤d
and Dec′>d are decryption algorithms for ciphertexts of level ≤ d and level > d, respectively.

• Gen′(1λ) : It generates (pk, sk, ek) by Gen(1λ) and K by GenSE(1
λ), and outputs (pk, sk, ek′) where

ek′ = (ek,K).

• Enc′(pk,m) : The same as Enc(pk,m).

• Eval′(ek′, f,C) : We suppose that C is a pair of two ciphertexts when f is addition or multiplication,
and C is a single ciphertext when f is scalar multiplication. We write Add≤d to mean addition for
ciphertexts of level ≤ d, Add>d to mean addition for ciphertexts of level > d, cMult≤d to mean scalar
multiplication for ciphertext of level ≤ d, cMult>d to mean scalar multiplication for ciphertext of level
> d, Mult≤d to mean multiplication for two ciphertexts for which the sum of levels is ≤ d, and Mult>d
to mean multiplication for two ciphertexts for which the sum of levels is > d. These algorithms are
defined as follows.

– Add≤d(ek′, C1, C2), cMult≤d(ek′,m,C), and Mult≤d(ek′, C1, C2) : The same as Add(ek, C1, C2),
cMult(ek,m,C), and Mult(ek, C1, C2).

– Mult>d(ek′, C1, C2) : Suppose that C1 and C2 are of levels d1 ≤ d and d2 ≤ d, respectively. It
chooses plaintexts m1,m2←M uniformly at random, sets α←Enc(pk,m1 · m2), and for each
i = 1, 2, sets C ′i←Enc(pk,−mi) and βi←Ci � C ′i. Then it computes

γ←α� (m2 � β1) � (m1 � β2)

(where the �’s are calculated from left to right), and outputs C←EncSE(K, γ||β1||β2).

– Add>d(ek′, C1, C2) : First, it computes C ′1←DecSE(K, C1) and C ′2←DecSE(K, C2), and parses
them as

C ′1 = α||β11||β21|| · · · ||β1n||β2n ,

C ′2 = γ||δ11||δ21|| · · · ||δ1m||δ2m .

23

Then it sets ε←α� γ and puts

C ′ = ε||β11||β21|| · · · ||β1n||β2n||δ11||δ21|| · · · ||δ1m||δ2m .

Finally, it computes C ′′←Rerand(ek, C ′) and outputs C←EncSE(K, C ′′) where Rerand is as de-
fined later.

– cMult>d(ek′,m,C) : First, it computes C ′←DecSE(K, C) and parses it as

C ′ = α||β11||β21|| · · · ||β1n||β2n .

Then it sets α′←m�α and for each k = 1, . . . , n, sets β′1k←m� β1k, β′2k = β2k, and puts C ′0 =
α||β′11||β′21|| · · · ||β′1n||β′2n. Finally, it computes C ′′0 ←Rerand(ek, C ′0) and outputs C0←EncSE(K,
C ′′0) where Rerand is as defined later.

• Dec′≤d(sk, C) : It outputs m←Dec(sk, C).

• Dec′>d(sk, C) : First, it computes C ′←DecSE(K, C), and parses it as C ′ = α||β11||β21|| · · · ||β1n||β2n.
It computes

m = Dec(sk, α) +

n∑
i=1

Dec(sk, β1i) · Dec(sk, β2i)

and outputs m.

Now the algorithm Rerand used in the construction of Eval′ is given as follows.

• Rerand(ek, S) : First, it parses the input S as S = α||β11||β21|| · · · ||β1n||β2n. For each i = 1, 2 and
j = 1, . . . , n, it chooses mij←M uniformly at random and sets γij←Enc(pk,mij). Moreover, it sets
β′ij←βij � γij and δj←Enc(pk,−(m1j ·m2j)). Then it sets

εj← δj � ((−m2j) � β1j) � ((−m1j) � β2j)

and α′←α� ε1 � · · ·� εn, and outputs α′||β′11||β′21|| · · · ||β′1n||β′2n.

Then we have the following result corresponding to Theorem 3. The proof is also similar to Theorem 3
and is omitted here.

Theorem 4. Let E be a d-level KH-PKE scheme that is KH-CCA secure and leveled circuit private, and let
SE be an SKE scheme that is IND-CPA secure and INT-CTXT secure. Then CF′(E ,SE) is KH-CCA secure
and leveled circuit private.

7 Conclusion

In this paper, first we showed that when extending the number of inputs for the homomorphic evaluation
algorithm in a KH-PKE scheme, the KH-CCA security is not necessarily preserved; while the KH-CCA
security is preserved when the original scheme also satisfies circuit privacy. The latter is applicable to the
existing KH-PKE schemes in the literature. Secondly, we extended the Catalano–Fiore conversion (and its
generalized version) to the case of KH-PKE schemes, which results in conversion from linearly KH-PKE
schemes to two-level KH-PKE schemes and from d-level KH-PKE schemes to 2d-level KH-PKE schemes.
This conversion is applicable to KH-PKE schemes with various security assumptions such as the DDH and
the DCR assumptions (for linearly KH-PKE schemes) and the SXDH assumption (for two-level KH-PKE
schemes).

A drawback of our proposed conversion method (which is common to the original Catalano–Fiore con-
version) is that in the resulting scheme, the homomorphic evaluation for higher-level ciphertexts increases
the size of the ciphertext. In the original paper [14] of Catalano and Fiore, they proposed a primitive called

24

2S-DCED (two-server delegation of computation on encrypted data), and based on it, they constructed a
two-server protocol for resolving the issue of non-compact ciphertexts. It is a future research topic to in-
vestigate possible extensions of their technique to our case of KH-PKE schemes. On the other hand, the
original Catalano–Fiore conversion is known to preserve some more properties in addition to the IND-CPA
security and circuit privacy. Studying similar properties in the case of our proposed conversion method is
also a future research topic.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number 19H01109, Japan, and by JST CREST Grant
Number JPMJCR2113, Japan.

References

[1] N. Attrapadung, G. Hanaoka, S. Mitsunari, Y. Sakai, K. Shimizu, and T. Teruya, “Efficient two-level
homomorphic encryption in prime-order bilinear groups and a fast implementation in WebAssembly,”
ASIACCS 2018, pp.685-697, 2018.

[2] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K. Yang, “ On the (im)
possibility of obfuscating programs,” CRYPTO 2001, pp.1-18, 2001.

[3] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, “A concrete security treatment of symmetric encryp-
tion,” FOCS 1997, pp.394-403, 1997.

[4] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway, “Relations among notions of security for public-
key encryption schemes,” CRYPTO 1998, pp.26-45, 1998.

[5] M. Bellare and C. Namprempre, “Authenticated encryption: Relations among notions and analysis of
the generic composition paradigm,” ASIACRYPT 2000, pp.531-545, 2000.

[6] D. Bleichenbacher, “Chosen ciphertext attacks against protocols based on the RSA encryption standard
PKCS #1,” CRYPTO 1998, pp.1-12, 1998.

[7] D. Boneh, X. Boyen, and H. Shacham, “Short group signatures,” CRYPTO 2004, vol. 3152, pp.41-55,
2004.

[8] D. Boneh, E. Goh, and K. Nissim, “Evaluating 2-DNF formulas on ciphertexts,” TCC 2005, pp.325-341,
2005.

[9] Z. Brakerski, “Fully homomorphic encryption without modulus switching from classical gapsvp,”
CRYPTO 2012, pp.868-886, 2012.

[10] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(Leveled) fully homomorphic encryption without
bootstrapping,” ITCS 2012, pp.309-325, 2012.

[11] Z. Brakerski and V. Vaikuntanathan, “Fully homomorphic encryption from Ring-LWE and security for
key dependent messages,” CRYPTO 2011, pp.505-524, 2011.

[12] R. Canetti, S. Raghuraman, S. Richelson, and V. Vaikuntanathan, “Chosen-ciphertext secure fully
homomorphic encryption,” PKC 2017, pp.213-240, 2017.

[13] D. Catalano and D. Fiore, “Boosting linearly-homomorphic encryption to evaluate degree-2 functions
on encrypted data,” Cryptology ePrint Archive, 2014/813, 2014.

[14] D. Catalano and D. Fiore, “Using linearly-homomorphic encryption to evaluate degree-2 functions on
encrypted data,” ACM CCS 2015, pp.1518-1529, 2015.

25

[15] R. Cramer, R. Gennaro, and B. Schoenmakers, “A secure and optimally efficient multi-authority election
scheme,” EUROCRYPT 1997, vol. 1233 of LNCS, pp.103-118, 1997.

[16] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, “Fully homomorphic encryption over the
integers,” EUROCRYPT 2010, pp.24-43, 2010.

[17] T. El Gamal, “A public key cryptosystem and a signature scheme based on discrete logarithms,” IEEE
Transactions on Information Theory, vol. 31, no. 4, pp.469-472, 1985.

[18] K. Emura, “On the security of keyed-homomorphic PKE: preventing key recovery attacks and ciphertext
validity attacks,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer
Sciences, vol. E104.A, no. 1, pp.310-314, 2021.

[19] K. Emura, G. Hanaoka, K. Nuida, G. Ohtake, T. Matsuda, and S. Yamada, “Chosen ciphertext se-
cure keyed homomorphic public key cryptosystems,” Designs, Codes and Cryptography, vol. 86, no. 8,
pp.1623-1683, 2018.

[20] K. Emura, G. Hanaoka, G. Ohtake, T. Matsuda, and S. Yamada, “Chosen ciphertext secure keyed-
homomorphic public-key encryption,” PKC 2013, pp.32-50, 2013.

[21] K. Emura, T. Hayashi, N. Kunihiro, and J. Sakuma, “Mis-operation resistant searchable homomorphic
encryption,” ASIACCS 2017, pp.215-229, 2017.

[22] D. Freeman, “Converting pairing-based cryptosystems from composite-order groups to prime-order
groups,” EUROCRYPT 2010, pp.44-61, 2010.

[23] C. Gentry, “Fully homomorphic encryption using ideal lattices,” STOC 2009, pp.169-178, 2009.

[24] C. Gentry, A. Sahai, and B. Waters, “Homomorphic encryption from learning with errors: Conceptually-
simpler, asymptotically-faster, attribute-based,” CRYPTO 2013, pp.75-92, 2013.

[25] S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of Computer and System Sciences, vol.
28, pp.270-299, 1984.

[26] G. Herold, J. Hesse, D. Hofheinz, C. Rafols, and A. Rupp, “Polynomial spaces: A new framework for
composite-to-prime-order transformations,” CRYPTO 2014, pp.261-279, 2014.

[27] C. Jutla and A. Roy, “Dual-system simulation-soundness with applications to UC-PAKE and more,”
ASIACRYPT 2015, pp.630-655, 2015.

[28] J. Lai, R. H. Deng, C. Ma, K. Sakurai, and J. Weng, “CCA-secure keyed-fully homomorphic encryption,”
PKC 2016, pp.70-98, 2016.

[29] B. Libert, T. Peters, M. Joye, and M. Yung, “Nonmalleability from malleability: Simulation-sound quasi-
adaptive NIZK proofs and CCA2-secure encryption from homomorphic signatures,” EUROCRYPT
2014, pp.514-532, 2014.

[30] Y. Maeda and K. Nuida, “Chosen ciphertext secure keyed two-level homomorphic encryption,” Cryp-
tology ePrint Archive, 2021/722, 2021.

[31] T. Okamoto and S. Uchiyama, “A new public-key cryptosystem as secure as factoring,” EUROCRYPT
1998, vol. 1403, pp.308-318, 1998.

[32] P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,” EUROCRYPT
1999, vol. 1592, pp.223-238, 1999.

[33] R. Rivest, L. Adleman, and M. Dertouzos, “On data banks and privacy homomorphisms,” Foundations
of Secure Computation, vol. 4, no.11, pp.169-180, 1978.

26

[34] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public-key
cryptosystems,” Communications of the ACM, vol. 21, no. 2, pp.120-126, 1978.

[35] S. Sato, K. Emura, A. Takayasu, “Keyed-fully homomorphic encryption without indistinguishability
obfuscation,” Cryptology ePrint Archive, 2022/017, 2022.

[36] S. Sato, K. Emura, A. Takayasu, “Keyed-fully homomorphic encryption without indistinguishability
obfuscation,” ACNS 2022, to appear.

[37] V. Shoup, “Sequences of games: a tool for taming complexity in security proofs,” Cryptology ePrint
Archive, 2004/332, 2004.

27

