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Abstract

Secure multi-party computation can provide a solution for privacy protec-

tion and ensure the correctness of the final calculation results. Lattice-based

algorithms are considered to be one of the most promising post-quantum crypto-

graphic algorithms due to a better balance among security, key sizes and calcu-

lation speeds. The NTRUEncrypt is a lattice-based anti-quantum attack cryp-

tographic algorithm. Since there haven’t been much candidate post-quantum

cryptographic algorithms for secure multi-party computation. In this paper, we

propose a novel secure two-party computation scheme based on NTRUEncrypt

and implement the polynomial multiplication operations under NTRUEncrypt-

OT. Our secure two-party computation scheme mainly uses oblivious transfer

and privacy set interaction. We prove the security of our scheme in the semi-

honest model. Our scheme can be applied for multi-party computation scenar-

ios, such as quantum attack-resisted E-votes or E-auctions.

Keywords: Secure Multi-party Computation, NTRUEncrypt, Oblivious

Transfer, Privacy Set Intersection, Polynomial Multiplication

1. Introduction

Secure multi-party computation originate from Yao’s [1] millionaire problem.

Afterwards, in [2], Goldreich proposed a secure multi-party computation pro-

tocol, which can compute arbitrary functions [3]. The purpose of secure multi-
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party computation is to allow each participant to jointly calculate an objective

function without revealing their private data. n the parties, holding private

inputs x1, x2, . . . , xn, wish to compute a given function f(x1, x2, . . . , xn). Se-

cure multi-party computation can be widely used, such as electronic voting [4],

sorting and searching [5] for information, deception detection [6], deep learning

[7], etc. Due to the different credibility of the participants in multi-party com-

putation, the security issues are also different. Security models are divided into

ideal models, semi-honest models, and malicious models. Our scheme is based

on a semi-honest [8] model, because the ideal model does not exist in reality,

and malicious participants who undermine the normal operation of the protocol

will be bound by the protocol to a certain extent. In the semi-honest model,

each party will calculate the relevant results according to the agreement and

correctly return them to other participants. There is no risk of data tampering

in the intermediate process, but the participants may be based on other infor-

mation entered by the participants or the intermediate results when interacting

data are extra derivation of other information.

In this paper, we apply the idea of secure multi-party computation for

NTRUEncrypt, and describe how to use secure two-party computation to com-

plete various stages of operations. In fact, the essence of secure multi-party com-

putation is the comprehensive use of cryptographic protocols with different func-

tions. The commonly used cryptographic protocols in multi-party computation

include Oblivious Transfer (OT), Garble Circuit (GC), and Secrets Share (SS)

etc. In this paper, we use OT to construct our scheme. The first form of

oblivious transfer was originally proposed by Michael O.Rabin in [9]. Another

more practical 1-out-of-2 OT protocol, that is to get one of the two data, was

proposed by Shimon Even, Oded Goldreich in [10]. There are many ways to im-

plement oblivious transfer, which are generally implemented using public and

private key cryptosystem encryption, such as RSA, ECC, and so on. In this

paper, we use the NTRUEncrypt-based OT proposed in [11]. Further, we use

OT extension to improve efficiency. Based on the OT extension, the efficient

Privacy Set Intersection (PSI) is used in NTRUEncrypt key generation stage.
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As an important part of our scheme, PSI allows two parties holding their

respective sets to jointly calculate the intersection of the two sets. Freedman

et al. proposed a privacy protection intersection operation based on a public

key encryption system in [12]. After that, a random function combined with

homomorphic encryption was proposed in [13], and the efficiency was further

improved by Chen et al in [14], in which is based on fully homomorphic encryp-

tion. Then, B.Pinkas proposed a privacy set intersection based on oblivious

transfer in [15]. In addition, in order to meet the intersection operation of large

amounts of data, Kamaea et al. proposed a PSI scheme in [16], in which the

number of set elements can reach billion times. At the end of the PSI protocol

interaction, one or both parties should get the correct intersection, and will not

get any information in the other party’s set other than the intersection.

In this paper, we use Oblivious Pseudo-Random Functions (OPRF) to im-

plement the PSI protocol. An OPRF is a function F : given a key k from the

sender and an input element e from the receiver, computes and outputs Fk (e)

to the receiver. The sender obtains no output and learns no information about e

while the receiver learns no information about k. We adopt the scheme proposed

in [17]. Namely, by combining the Cuckoo hashing with OPRF, we limit the

transmission combination of the sender to O (n). Running PSI is an important

part of the key generation phase in NTRUEncrypt.

Another goal of ours is to realize the multiplication [18] calculation of poly-

nomials through secure two-party computation. The reason is that the opera-

tions involved in the NTRUEncrypt are basically multiplications of polynomials.

Specifically, the sender and the receiver hold polynomials f (x) and g (x) respec-

tively, and hope to jointly complete the calculation f (x)g (x) =A (x)+B (x),

where the sender holds A (x), and the receiver holds B (x). In the 3.1 section,

we give the details of this scheme.
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2. Preliminaries

2.1. NTRUEncrypt

The National Institute of Standards and Technology (NIST) started research

on post-quantum cryptography as early as 2012, and launched a global call for

post-quantum cryptography standards in February 2016, of which NTRUEn-

crypt [19] is the algorithm submitted in the round 1. A polynomial quotient

ring is applied in NTRUEncrypt. R is a ring, m∈R. For any a∈R, use
−
a

to represent the set of all a′ satisfying a′=a (modm), then the set
−
a is called

the congruence class of a, and use R/(m) or R/mR to represent the set of all

congruence classes. That is:

R/(m) = R/mR =
{−
a: a ∈ R

}
.

From this, we can form a polynomial ring whose coefficients are taken from R :

R [x] =
{
a0 + a1x+ a2x

2 + · · ·+ anx
n : n ≥ 0, a0, a1, . . . , an ∈ R

}
.

Therefore, a polynomial quotient ring can be constructed by combining the

polynomial ring and the quotient ring. As for the polynomial quotient ring in

NTRUEncrypt, we call it a convolutional polynomial ring. Given a positive

integer N , the convolutional polynomial ring with rank N is R = Z [x]/(xN −1)

. Similarly, the convolutional polynomial ring modulo p is Rp=Zp [x]/(xN − 1),

and modulo q is Rq=Zq [x]/(xN − 1). With the above relevant knowledge, we

formally introduce the NTRUEncrypt.

Let N≥1 and select the modulus p and q, set the convolution polynomial

ring as:

R = Z [x]/(xN − 1), Rp = Zp [x]/(xN − 1), Rq = Zq [x]/(xN − 1).

By modulo the coefficients, the polynomial a (x) in R is regarded as an

element inRp orRq. On the contrary, the element inRp orRq can be promoted

to R by the method of center lifting. At the same time, there is a set of

three-valued polynomials Γ (d1, d2), and each polynomial in the set has a d1
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term coefficient of 1, and a d2 term coefficient of −1. For example, if a (x) =

x17 − x13 + x5 + x3 − x, then a (x)∈Γ (3, 2).

We are divided into three stages to introduce the NTRUEncrypt in detail:

Key generation. The receiver chooses public parameters [20] (N, p, q, d),

where N and p are prime numbers, and it needs to satisfy q > (6d+ 1) p

the inequality relationship can be decrypted correctly. The receiver’s private

key consists of two random polynomials: f (x) ∈ Γ (d+ 1, d), g (x) ∈ Γ (d, d).

The receiver calculates the inverse element: Fq (x) = f(x)−1 ∈ Rq, Fp (x) =

f(x)−1 ∈ Rp. If there is no inverse element, the receiver reselects f (x). Then,

the receiver calculates the public key h (x) = Fq (x) g (x) ∈ Rq. Finally, the

corresponding private key is (f (x),Fp (x)).

Encryption phase. The plaintext is the polynomial m (x) in R, and its coeffi-

cients are between − 1
2p and 1

2p. s (x) is the center lift of the polynomial in Rp.

To encrypt a message s (x), the sender randomly selects the polynomial r (x) ∈

Γ (d, d) and calculates the ciphertext e (x),

e (x) = ph (x) r (x) +m (x) (mod q) .

The finally calculated ciphertext is in the ring Rq.

Decryption phase. After obtaining the ciphertext e (x), the receiver first com-

putes a (x)=f (x)e (x) (mod q), then raise the center of a (x) to R and perform

the modulo p operation to get the plaintext b (x)=Fp (x)a (x) (mod p).

We can verify that the b (x) calculated by the receiver and the plaintext

s (x) are equal, as long as the NTRUEncrypt parameter (N, p, q, d) satisfies

the following inequality:

q > (6d+ 1) p.

Then, the b (x) calculated by the receiver is equal to the plaintext m (x).

2.2. Oblivious Transfer

Oblivious Transfer [21] is an important module for constructing secure multi-

party compution protocols, and generally can be divided into 1-ouf-of-2 OT and

1-out-of-n OT. In 1-ouf-of-2 OT, the receiver gets one of the two data from the
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sender. When the oblivious transfer protocol is called n times, the sender holds

n element pairs
(
xi0, x

i
1

)
,
.
i∈{0, 1}l, and the receiver holds an n-bit vector b.

After the protocol is completed, the receiver obtains each selected element xib[i],

but does not know another element xi1−b[i], while the sender does not know b.

We denote this form of oblivious transfer as 1-out-of-2 OTml , which means that

the two parties involved in the oblivious transfer interaction for m times, then

each time the receiver can choose one from two l-bit data. Correspondingly,

1-out-of-N OTml can be interpreted as an N -to-1 oblivious transfer protocol for

m calls of l-bit elements.

2.2.1. NTRUEncrypt-OT

OT is usually implemented using public and private key encryption. In this

paper, for the sake of anti-quantum, our underlying specific OT implementation

utilizes the NTRUEncrypt-based OT solution proposed in [11]. Specific steps

are as follows:

1. The sender holds the polynomial as n1 (x), n2 (x), . . . , nt (x), and chooses

h1 (x) ∈ Rq as the public key during oblivious transfer. The receiver chooses

h2 (x) ∈ Rq.

2. The sender randomly chooses three-valued polynomials r1 (x), r2 (x), . . . ,

rt (x) in order to encrypt n1 (x), n2 (x), . . . , nt (x), then calculates:

ei (x) = ri (x)h1 (x) + ni (x) (mod q) .

3. After the receiver receives all ei (x), the receiver select one of eµ (x),

µ∈{1, . . . , t}, then randomly chooses small coefficients polynomial r′ (x), and

calculates:

c′µ (x) = r′ (x)h2 (x) + ei (x) (mod q) ,

then send the result to the sender.

4. After the sender receives c′µ (x), and calculates:

e′′i (x) = c′µ (x)− rih1 (x) .

5. The receiver receives all e′′i (x) and decrypts it with own private key to get

nµ (x).
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Using the above process, the two parties involved first randomly select their

own public key, and then complete the oblivious transfer. Specifically in our

scheme, in the use of NTRUEncrypt-based oblivious transfer, the interactive

data is converted into a binary form, and then further expressed as a polynomial.

When describing our scheme, we treat OT as a black box. In the specific scheme,

we will no longer elaborate on the detailed process of OT. All OTs in the scheme

use NTRUEncrypt-based OT by default.

2.2.2. Construct OPRF by Extension OT

Based on the idea of OPRF, we introduce the OT extension method proposed

in [17]. Because OT is a time-consuming operation, the use of OT extension

[22] is to reduce the use of OT to improve algorithm efficiency. A large number

of OPRF are constructed by transforming the OT extension. We use S to

represent the sender and R to represent the receiver. The specific description is

as follows.

R has m selection strings r=(r1, r2, . . . , rm), 1 ≤ i ≤ m, r i ∈{0, 1}∗. R

and the S have a common random encoding function C: {0, 1}∗→{0, 1}k and a

common hash function H: {0, 1}k→{0, 1}l.

1. First, R randomly initializes a random matrix T with m rows and k

columns, where each element in the matrix is either 0 or 1. S randomly se-

lects the bit string s=(s1, s2, . . . , sk) of length k.

2.R constructs a matrix U, uj= tj⊕C (r j), where uj and tj are represented

as the j-th row of U and T respectively. r j is an arbitrary length input data.

3.R as the receiver and S as the sender, execute 1-out-of-2 OT km. For the

i-th oblivious transfer of length m, the input of R is
(
t i,u i

)
, t i and u i are

represented as the i-th column of the matrix T and U respectively. The input

of S is si, when si=0, S gets t i , si=1, S gets u i. S will be arranged into a

matrix Q in the order of the received columns.

4. Finally, R as the receiver and S as the sender can perform m times

OPRF. R outputs H(j, tj), and S outputs H(j, q j⊕(C (r ′) · s)), 1 ≤ j ≤ m,

r ′ ∈{0, 1}∗. q j is represented as the j-th row of matrix Q.
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In this way, a large number of OPRF can be realized, and only a fixed

number of 1-out-of-2 oblivious transfer are required to realize m times OPRF.

Therefore, the pseudo-random function F (·) is generated by the above method.

r j and r denote the data to be compared between R and S, S outputs H(j,

q j⊕(C (r ′) · s)) , and R outputs H(j, tj). Only need to compare the output

results of R and S to achieve privacy comparison. That is, in our scheme, F (·)

is a hash function, and “·” represents the selected randomization seed and the

specific element that needs to complete the intersection operation.

2.3. Privacy Set Intersection

Private Set Intersection (PSI) [23] can be regarded as a secure multi-party

computation that takes the participants’ respective private information as a set,

and the function implemented by the objective function is the set intersection.

We use OPRF and Cuckoo hashing [24] to construct PSI. Using the Cuckoo

hashing to map n pieces of data to b bins, we first select 3 hash functions h1, h2,

h3: {0, 1}∗→a, 1 ≤ a ≤ b, and b empty bins B [1, 2, . . . , b]. Before putting data

x into the bin, need to check whether the three buckets B [h1 (x)], B [h2 (x)],

B [h3 (x)] have empty bins. If there is, put the data x into an empty bin, if not,

randomly select a bin from the three bins, propose the original element x′ in

this bin, and put x into the bin. This operation is performed recursively for the

elements that are kicked out, until the elements are put into a bin. If after a

certain number of rounds, there are still elements that are not found in the bin,

then the element is put into a special bin, which we call a bucket.

In the construction of the private set intersection, we take the communication

between Alice and Bob as an example. Alice has n pieces of data, 1.2n bins and

one bucket are constructed, and the size of the bucket is s. For Bob, there is

now at most one element in each bin, and the bucket has at most s elements.

Bob can forge other data to fill these bins and bucket.

As the sender, Alice generates 1.2n+s random seeds k, which are used as

random seeds for 1.2n+s oblivious pseudo-random functions. As the receiver,

Bob computes an OPRF for the data it holds. At the same time, Alice can
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arbitrarily compute a pseudo-random function, compute two sets of its own

input data:

H =
{
F
(
khz(x), xi

)
|xi ∈ X, z ∈ (1, 2, 3)

}
,

S = {F (k1.2n+j , x1.2n+j) |x1.2n+j ∈ X, j ∈ (1, . . . , s)} .

F (·) is OPRF constructed by extension OT that we introduced in section 2.2.2.

Next, Alice sends H and S to Bob in a random order, and Bob compares it with

the result of the function computed by itself, if any the same value indicates that

the corresponding data is shared data. So far, a secure privacy set intersection

method has been constructed using Cuckoo hashing.

3. Secure Two-party Computation Scheme

In this section, we introduce our two-party computation solution in detail.

This scheme is used in the key generation and decryption phases in NTRUEn-

crypt. For the key generation stage, our main work is to generate a three-valued

polynomial that satisfies the conditions. In the introduction of the NTRUEn-

crypt, it is mentioned that the selection of the private key is two random poly-

nomials, which belong to Γ (d+ 1, d) and Γ (d, d) respectively. We use a PSI

scheme based on extension OT to construct OPRF, which is used in the pri-

vate key generation phase of the NTRUEncrypt. We describe the private key

generation phase in detail in Section 3.2. In addition, since both the private

key generation phase and the decryption phase involve polynomial multiplica-

tion, we first describe how the two parties involved complete the polynomial

multiplication in Section 3.1.

3.1. Polynomial Multiplication in NTRUEncrypt

We take the communication between the two participants Alice and Bob as

an example. Alice holds a and Bob holds b. They wish to perform a computation

by which Alice obtains x and Bob obtains y such that x+y=ab. In [25], this

method is described in detail. We propose a new scheme that allows this idea to

be applied to the multiplication calculation of polynomials, that is, Alice holds
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f (x) and Bob holds f (x), they wish to perform a computation by which Alice

obtains A (x) and Bob obtains B (x) such that A (x)+B (x)=g (x)f (x). Alice

and Bob perform the following operations.

1. Alice claims that the polynomial has N terms, and N is a public parameter

of NTRUEncrypt, which is expressed as:

f (x) = a0 + a1x
1 + a2x

2 + · · ·+ aNx
N .

It should be noted that even if the coefficients of most terms are 0, they are still

expressed in this form. The purpose of this is to hide the number of terms in

the polynomial.

2. Bob randomly generates (N + 1)
2

polynomials Cq (x) locally, 1 ≤ q ≤

(N + 1)
2

and does not impose any restrictions on the number of terms, coeffi-

cients and exponents of these polynomials.

3. Alice and Bob perform NTRU-Based OT operations, for f (x), Alice ex-

presses the coefficient ai of each term as ai0ai1 . . . aiN . If aiu=0, Alice gets:

cq (x) . If aiu=1, Alice gets: g (x) + cq (x) , 0 ≤ u ≤ N.

4. For each coefficient ai, after Alice and Bob perform N OT operations,

Alice obtains:

Ai (x) =

N∑
i=0,u=0

2i (aiug (x) + Cq (x)) .

Bob calculates :

Bi (x) = −
N∑
i=0

2iCq (x) .

Obviously, Alice and Bob can complete the calculation of aig (x)xi after per-

forming (N + 1) times OT on each coefficient, g (x)aix
i=Ai (x)+Bi (x). Simi-

larly, after OT for each coefficient, we can easily get:

g (x) (a0 + a1x
1 + a2x

2 + · · ·+ aNx
N ) =

N∑
i=0

Ai (x) +

N∑
i=0

Bi (x) .

Alice holds A (x)=
∑N
i=0Ai (x) and Bob holds B (x)=

∑N
i=0Bi (x). We also

briefly describe our solution in Figure 1. Each time the two parties calculate a

polynomial multiplication, (N + 1)
2

times of OT are required.
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Figure 1: Two-party Polynomial Multiplication

Table 1: Reversal

Algorithm 1: Inversion Operation

Input: [a (x)], [·] expressed as secret data

Output:
[
a−1 (x)

]
1. Choose randomly [b (x)]

2. Compute [c (x)]<−[a (x)][b (x)]

3. Open [c (x)] , and reverse it

4.
[
a−1 (x)

]
=c−1 (x)[b (x)]

3.2. Private Key Generation

According to the public parameter d in NTRUEncrypt, we stipulate that

if d is an odd number, then for the random polynomial f (x), Alice generates

d+1
2 positive monomials and d−1

2 negative monomials locally, while Bob gen-

erates d+1
2 positive monomials and d+1

2 negative monomials locally. For g (x),

Alice generates d+1
2 positive monomials and d+1

2 negative monomials locally,

while Bob generates d−1
2 positive monomials and d−1

2 negative monomials lo-

cally. Similarly, if d is an even number, for the random polynomial f (x) , Alice

generates d+2
2 positive monomials and d

2 negative monomials locally, while Bob
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generates d
2 positive monomials and d

2 negative monomials locally. For g (x), Al-

ice generates d
2 positive monomials and d

2 negative monomials locally, while Bob

generates d
2 positive monomials and d

2 negative monomials locally. It should be

noted that we stipulate that the exponents of the polynomials generated locally

by Alice and Bob must satisfy the characteristics of the set, that is, the same

elements cannot exist.

Further, we consider that the exponents of the monomials selected by both

parties may overlap, which leads to the fact that the coefficients of the poly-

nomials combined by the two parties do not meet the conditions of three-value

polynomials. For the coefficients, in order to avoid the number of terms is

reduced, we stipulated that participants cannot choose two elements with the

same absolute value. Both parties combine it with the corresponding index and

take its absolute value. Then both parties obtain a set of positive integers, cal-

culate the intersection elements based on PSI, and loop this operation until the

intersection is an empty set.

Alice and Bob respectively hold private sets X and Y. For f (x), g (x), we

need to perform this operation twice. In order to calculate whether there is an

intersection between the elements of the two parties, we use the PSI protocol in-

troduced in section 2.3. Under the premise of no intersection, Alice and Bob have

jointly completed the generation of two random polynomials f (x)∈Γ (d+ 1, d)

and g (x)∈Γ (d, d). Among them, Alice holds fA (x) and gA (x), Bob holds

fB (x) and gB (x), so that, f (x)=fA (x)+gA (x), g (x)=gA (x)+gB (x). Next,

Alice and Bob calculate the inverse element Fq (x)=f(x)
−1 ∈Rq, Fp (x)=f(x)

−1

∈Rp. We describe the method of calculating the inverse element in Algorithm

1. Under the condition of mutual calculation by both parties, based on the poly-

nomial multiplication scheme proposed in Section 3.1, we perform the following

operations:

1. Alice and Bob each randomly generate polynomials locally, and then add

them to form b (x). That is, b (x)=bA (x)+bB (x). Among them, Alice holds

bA (x) and Bob holds bB (x).
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2. Both sides calculate the inverse element of f (x):

f (x) b (x) = (fA (x) + fB (x)) (bA (x) + bB (x))

= fA (x) bA (x) + fA (x) bB (x) + fB (x) bA (x) + fB (x) bB (x)

For cross terms: fA (x) bB (x), fB (x) bA (x), we complete the two-party compu-

tation through the polynomial multiplication scheme proposed in Section 3.1.

After the calculation of f (x) b (x) is completed, the result of f (x) b (x) is marked

as c (x), and the inverse element of c (x) can be calculated publicly by using the

extended Euclidean algorithm. Finally, after both parties have performed the

inversion computation, Alice holds FAq (x) , and Bob holds FBq (x). Similarly,

for inverse element of g (x), Alice holds FAp (x) , and Bob holds FBp (x).

Next, we calculate the public key h (x)=Fq (x)g (x)∈Rq. Similarly, for the

cross term, we use the polynomial multiplication scheme in Section 3.1 to com-

plete the calculation. Since then, we have implemented the key generation phase

in NTRUEncrypt through two-party computations.

3.3. Encryption and Decryption Stage

In the encryption phase, we only need to calculate according to the process

of NTRUEncrypt itself. Suppose a participant encrypts the plaintext m (x),

first randomly select the polynomial r (x)∈Γ (d, d), and then use the public

key h (x) generated in the key generation stage to calculate the ciphertext:

e (x) = ph (x) r (x) +m (x) (mod q) .

In the decryption phase, when Alice and Bob receive the ciphertext e (x), both

parties complete the decryption together. They first compute:

a (x) = f (x) e (x) = fA (x) e (x) + fB (x) e (x) = aA (x) + aB (x) .

Among them, Alice holds aA (x), and Bob holds aB (x). Then compute the

plaintext b (x), b (x)=Fp (x)a (x), where Fp (x)=f−1 (x)∈Rp. Next, Alice and

Bob use the two-party polynomial multiplication calculation for the cross term.

So that b (x)=bA (x)+bB (x), where Alice holds bA (x) and Bob holds bB (x).
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Similarly, Fp (x)=FAp (x)+FBp (x), where Alice holds FAp (x) and Bob holds

FBp (x).

DECRYPTION PROCESS

Initialization:

When Alice and Bob receive the ciphertext e (x), both parties complete

the decryption together, that is, complete two polynomial multiplication

calculations

1. In the first stage, polynomial multiplication is done modulo q:

Alice Bob

computes: aA (x)=fA (x)e (x) computes: aB (x)=fB (x)e (x)

Output: aA (x) ←→ Output: aB (x)

Therefore, Alice and Bob complete a (x) = f (x) e (x) together.

2. In the second stage, polynomial multiplication is done modulo p:

Alice Bob

computes: bA (x)=FAp (x)aA (x) computes: bB (x)=FBp (x)aB (x)

Output: bA (x) ←→ Output: bB (x)

4. Complete Implementation Overview

Initialization phase

In this section, we describe the scheme as a whole. Alice and Bob each

randomly select a polynomial as their public key for the default NTRUEncrypt-

OT. Then, in the process of constructing OPRF with OT extension, Alice acts

as the sender and Bob acts as the receiver. Both parties construct the oblivious

pseudo-random function F (·) according to the method we introduced in section

2.2.2. Nextly, Alice and Bob randomly select three hash functions together, and

use the Cuckoo hashing principle and OPRF F (·) to construct a PSI protocol.

Key generation phase:

1. Alice and Bob implement the PSI protocol to determine whether the mono-

mial exponent sets they generate have intersections. If there is an intersection,
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the set is regenerated, otherwise, the monomials are added to generate the cor-

responding polynomials f (x)∈Γ(d+ 1, d), g (x)∈Γ(d, d).

2. Using Algorithm 1 to calculate the inverse element Fq (x)=f−1 (x)∈Rq,

Fp (x)=f−1 (x)∈Rp. Note that the algorithm involves polynomial multiplica-

tion, so we can use the scheme proposed in Section 3.1 to complete the polyno-

mial multiplication computation.

3. Similarly, complete the polynomial multiplication h (x)=Fq (x)g (x)∈Rq,

the corresponding private key is (f (x), Fp (x)).

Encryption and decryption stage:

According to the public key generated in the key generation stage, any party

or other participant can choose a polynomial in R with a coefficient between

− 1
2p and 1

2p for encryption.

After encryption, both parties complete the decryption together. For the

ciphertext e (x), both parties first calculate a (x), and then perform further

calculations to obtain the plaintext b (x)=Fp (x)a (x)(mod p). In Figure 2, we

describe the general process of our scheme.

Figure 2: The Overall Process of the Program
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5. Security Analysis

The security of our two-party computation scheme is based on the security

of the PSI and the security of the NTRUEncrypt.

Theorem : Our two-party computation scheme is safe in the semi-honest

model.

Proof : In the semi-honest model, if the receiver R try to derive the infor-

mation of the sender S during the execution of the protocol as much as possible.

The information sent by S to R is H (qj ⊕ (C (r′) · s)), r′ 6=rj . If R solves r′ by

brute force, however, we observe the following equation:

qj ⊕ (C (r′) · s) = tj ⊕ (C (r′) · s)⊕ (C (r′) · s) = tj ⊕ ((C (r′)⊕ C (rj)) · s) .

In the above equation, only s is unknown to R. To ensure safety, we need to

make the hamming weight of C (r′)⊕C (rj) greater than the safety parameter k′.

Under this premise, R needs to guess at least k′ bits in s before it is possible. For

a successful attack, we usually set k′ to be greater than or equal to 128, which

is a symmetric password security parameter. We know that the output length

of the random coding function C is k. If the Hamming weight of C (r′)⊕C (rj)

is greater than k′ , k > k′ is required. According to the conclusion of [17], only

is needed to ensure that the hamming weight of C (r′)⊕C (rj) is less than the

probability of k′ is negligible.

The security of OT based on NTRUEncrrypt is proven in [11]. In Table

2, we give the security parameters of NTRUEncrypt. If p is fixed to 3 and q

is fixed to 2048, according to the relationship of q > (6d+ 1) p, the maximum

positive integer that d can take is 113, and the maximum positive integer that

d
2 can take is 56. In our two-party computations scheme, f (x) and h (x) are

jointly completed by both parties. The adversary can search for possible keys

by verifying whether f (x)h (x) is a three-valued polynomial. The adversary

needs to calculate the size of the three-valued polynomial set. We use NΓ(d1,d2)

to represent the size of the three-valued polynomial set, so:

NΓ(d1,d2) = Cd1

N C
d2

N−d1
=

N !

d1!d2! (N − d1 − d2)!
.
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When both d1 and d1 get N
3 , NΓ(d1,d2) can have the maximum value. Since

all cycles of f (x) can be decryption keys, there are N options. Therefore, the

adversary needs to try about
NΓ(d1,d2)

N times. In Table 3, we obtain the degree

of difficulty for the adversary to crack a polynomial held by a participant, and

in our two-party computation scheme, the number of calculations will increase

exponentially. For higher security levels, the number of times the adversary

needs to try to crack will be a more difficult value to estimate. Moreover, OT

based on NTRUEncrypt is proved is secure under the universal composability

framework in [11].

For our proposed two-party polynomial multiplication scheme, in order to

hide the number of polynomial terms, we express each coefficient as a bit string,

even if the coefficient is 0. Due to the nature of oblivious transfer, the sender

cannot obtain the specific bits transmitted by the receiver. At the same time,

if the adversary wants to brute force a certain coefficient of the polynomial,

each coefficient of the polynomial needs to be calculated 2N+1 times, and the

brute-force cracking of the entire polynomial needs to be calculated
(
2N+1

)N+1

times, which is even far greater than the number of attempts required by the

adversary to brute force the NTRUEncrypt private key.

Table 2: NTRU Security Parameters

Security Level N q p

Moderate Security 401 2048 3

Standard Security 439 2048 3

High Security 593 2048 3

Highest Security 743 2048 3

6. Conclusion

Post-quantum cryptography is not only more secure but also has wider ap-

plication scenarios. As for our proposed secure two-party computation scheme

NTRUEncrypt, is not only suitable for E-vote or E-auction against quantum

17



Table 3: Crack Difficulty

Security Level Number of calculations

Moderate Security 2445

Standard Security 2461

High Security 2515

Highest Security 2556

attacks, but also can be used to implement homomorphic encryption, attribute

encryption, function encryption and indistinguishable obfuscation. In the field

of cryptography, the protection of private keys is always the first issue. As far

as the NTRUEncrypt is concerned, the primary condition for the key recov-

ery problem to become a difficult mathematical problem is that this problem

cannot be broken by exhausting or colliding search methods. Nowadays, The

best known method to recover the private key from the NTRU public key is

the lattice reduction algorithm. But from another perspective, we have made

the private key generated by multiple parties. Hence, even if the private key is

recovered, the adversary cannot determine which part of the private key each

participant holds.
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