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An Improved Model on the Vague Sets-Based
DPoS’s Voting Phase in Blockchain
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Abstract— As a common consensus mechanism used in
blockchain systems, DPoS uses voting to select committee
members who will generate the corresponding blocks. In
order to elect committee members as fairly as possible,
the vague sets are introduced into the voting phase of
DPoS. In the vague sets based model proposed by Xu et
al., the voting nodes can vote for, oppose or abstain from
it. In this paper, we improve this vague set based model
by introducing a new mapping from the vague set to fuzzy
set and considering the case that each voting node is
assigned a weight. In addition, several nice properties of
our improved model are proved and it makes the voting
phase of DPoS more fair.

Index Terms— Blockchain, DPoS, Voting, Vague Set, Con-
sensus Mechanism

I. INTRODUCTION

Since Satoshi Nakamoto proposed Bitcoin [1], its core
technology, blockchain, has been highly valued. Blockchain
technology can solve the security issues of untrusted third
parties and data tampering. Blockchain can be seen as a non-
tamperable distributed ledger and a decentralized database. In
blockchain, each block contains transaction data generated by
the network over a period of time. By consensus mechanism,
all the network nodes in the network can verify the validity
of a new block and participate in the mining to generate the
next block [2]. As a result, the continuous blocks form a chain
structure in the chronological order, which is the origin of the
term ”blockchain”. Blockchain technology has been constantly
improving these years. Up to now, Blockchain has successively
experienced the three obvious eras. In the era of Blockchain
1.0, the main research topic is digital cryptocurrencies [3],
among which Bitcoin is the typical representative. Blockchain
2.0 introduces the concept of smart contracts [4], by which
users can customize contracts and expand the blockchain. In
this era, Ethereum [5] is a typical programmable blockchain
system. Blockchain 3.0 is supposed to be a more secure
and complete smart contract. However, there is currently no
blockchain platform meeting such requirements.
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There are currently three types of blockchains: public
chains, private chains, and consortium chains [6]. The public
chains are completely decentralized, in which any user can
freely enter and exit. The private chains are usually the
blockchains within a company, and only the members of this
company can join in. The consortium chains are a type of
blockchains between the public chains and the private chains.
The members of the consortium can not enter or exit the
system without the consent of the consortium.

Blockchain uses technologies such as p2p networks, digital
signatures and smart contracts to achieve openness, decentral-
ization, immutability and permanence. These nice properties
make blockchains suitable for applications in the fields of
medicine, finance and data storage. At present, blockchain has
been showing a trend of continuous development. However,
Before blockchain can be widely used and improve our daily
life, the research on blockchain security issues still needs more
our attentions.

Consensus mechanism is the key to the decentralization and
security of blockchain technology. There are many existing
consensus mechanisms [7], such as PBFT [8], [9], PoW, PoS
[10], and DPoS [11]. This paper is focused on the voting phase
of DPoS and is organized as follows: In Section II, several
typical consensus mechanisms are introduced, among which
DPoS is an important one. In Section III, the concepts of Fuzzy
Set and Vague Set are briefly explained. The existing vague
set-based DPoS voting model is introduced in Section IV. Then
an improved model and the reason for the improvement are
presented in Section V. Later, the improved model is analyzed
and several nice properties of it are proved in Section VI. In
the next section, the experiment simulation on our improved
model is done and described. The last section summarizes the
article.

II. BLOCKCHAIN’S CONSENSUS MECHANISM AND DPOS

The consensus mechanism [12] of blockchain is a tech-
nology that allows irrelevant nodes to reach a consensus
on the transactions. Due to the existence of the consensus
mechanism, any transaction does not need to be processed
by an untrusted third party. Instead, all the network nodes
use the consensus mechanism to reach the agreement on any
transaction. This improves the security of the transaction and
avoids tampering of any transaction. The main phases of the
consensus mechanism are as follows [13]:

• 1) Election of block producers: Select the node which
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is responsible for generating blocks. A node needs to
complete certain tasks to become block producers.

• 2) Block generation: Pack the transaction data generated
on the network within a period of time into the current
block. The block header contains the hash value of the
previous block, time-stamp and other contents.

• 3) Node verification and blockchain update: Once the
current block is generated, it will be broadcasted across
the entire network. The nodes that receive the information
can verify the correctness of the block and update the
blockchain.

The most commonly used consensus mechanisms are the
proof-of-work mechanism (PoW) and the proof-of-stake mech-
anism (PoS). The proof-of-work is the earliest consensus
mechanism, which is firstly used in Bitcoin. The term ”proof-
of-work” refers to that a node has to prove how much work it
has done, meaning to solve a difficult mathematical problem,
for which the problem difficulty can be dynamically adjusted.
For example, in Bitcoin system, each block header contains
the hash value of the previous block (prev-hash), a random
number (nonce), the time stamp (time-stamp), and the root
of the Merkle tree (Merkle-root). The node packs the header
block of the block producer and the random number together
for hash output, where the hash function used in most of the
blockchain systems is SHA-256. Given the difficulty level k,
the node keeps guessing the value of the nonce until it satisfies
that hash(block data||nonce) starts with k consecutive 0. The
node that finds the proof of work broadcasts the new block
together with its hash value. Then the other nodes receiving
the data verify the legitimacy of the new block and update the
local blockchain. Since the hash function has strong collision-
resistance and nearly uniform output, it is very difficult to find
a valid nonce, which means that the node needs to pay a great
deal of computing power to find such a random number. Such
a process is the so-called ”mining”, and only the first node
completing the mining can obtain rewards.

Ethereum, as a typical system of the blockchain 2.0 era,
also adopted a proof-of-work mechanism at the beginning of
its release. However, compared with the previous Bitcoin’s
proof-of-work mechanism, Ethereum has a huge difference.
In Ethereum, the interval time among the block productions
is about 15 seconds, which is much faster than the block
production by Bitcoin (about 10 minutes per block). In Bitcoin,
only the main chain is used and chain forks are not allowed. In
contrast, chain forks are legal in Ethereum. Even the forked
miners can get a certain percentage of remuneration. How-
ever, the workload proof mechanism requires huge resource
consumption. Thus, Ethereum began to do the transition from
a proof-of-work mechanism to a proof-of-stake mechanism.
Specifically, the Casper adopted by Ethereum is a consensus
mechanism that combines PoW and PoS. In Casper, a check-
point is generated and verified for every 100 blocks to avoid
the resulting forks by the previous PoW method. To become
a verifier, a node needs to bet its own ”ether”(Ethereum’s
token) into a smart contract. A successful verification will
bring a reward to the verifier, while the verification failure
will also penalize the corresponding ether. The verifier needs

to broadcast a message, including the block hashes and the
block heights of the source checkpoint and the destination
checkpoint, together with the signature of the verifier. The
checkpoint will only be confirmed if it receives 2/3 of the
valid votes of the verifier.

As a relatively new consensus mechanism, Delegated Proof
of Stake(DPoS) [14] was proposed in 2014. In DPoS, token
holders vote to elect the nodes that generate blocks. The size of
the equity held by the holders determine their votes [15]. The
nodes owing greater equity have more votes. After the voting
phase, the fixed number of the nodes with the most votes will
become committee members to generate blocks. Each node
will generate a block in turn. If the node does not generate a
block during a specific time period, it will be delisted. And
the network will select a new node to replace it. In this paper,
we improve the vague set-based voting phase to make the
election more reasonable. Such an improvement ensures the
fairness of the election and keeps the members entering the
committee more reliable and so reducing the possibility of
selecting malicious nodes.

III. FUZZY SET AND VAGUE SET

In the traditional set theory [16], given a set U , for any
element a, there are only two cases related to U and a: a
belongs to U or does not belong to U , which refers to only
two distinct values: 0 and 1. Fuzzy set theory introduces the
concept of membership degree. The degree of membership
refers to the certainty of an element in this set. For a set U ,
each element in the set has a corresponding membership value
µF : U → [0, 1] and this value is unique. For example, in a
set of tall people, µF maps a person of 2-meters height to
0.7, and maps a person of 1.7-meters height to 0.4. With the
emergence of fuzzy set theory, the possibilities are expressed
in numbers. Subsequently, vague set was proposed. Compared
with fuzzy set, vague set proposed the interval more accurately.
Moreover, the vague set combines certainty and uncertainty,
the fuzzy set has only a single certainty or uncertainty.

Vague set can also describe the degree of membership in
the set [17]. However, an interval instead of a single value is
used to represent a vague set. Given a set U , tV (u) represents
the degree of membership that V truly belongs to U , and
tV (u) is the lower bound of support membership derived from
the support of evidence. At the same time, the membership
degree fV (u) represents the degree of membership that V
falsely belongs to U . As a result, fV (u) is the lower bound of
opposing membership derived from the opposing of evidence.
Therefore, the membership interval of V is [tV (u), 1−fV (u)].

IV. THE VAGUE SET-BASED DPOS’S VOTING PHASE

The DPoS voting model recently proposed is based on the
conversion from vague set to fuzzy set [18]. In this model [19],
each node can vote for, against or to abstain. And the ratio
of affirmative votes to the total votes is the true membership
degree, namely tV (u). The percentage of negative notes is the
false membership degree fV (u). Because of the existence of
abstention votes, it is obvious that tV (u)+fV (u) ≤ 1, match-
ing the requirements of vague set. Through the transformation
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from vague set to fuzzy set, the interval value of vague set
is transformed into the unique value of fuzzy set. As a result,
vague set can be transformed into a fuzzy set. In [16], Y. Liu et
al. proposed several relatively simple transformation methods
and discussed their advantages and shortcomings. In [19], G.
Xu et al. formally presented a more complicated conversion
from [tV (u), 1− fV (u)] to µF (V )(u):

µF (V )(u) = tV (u) +
1

2
[1 +

tV (u)− fV (u)

tV (u) + fV (u) + 2λ
]

× (1− tV (u)− fV (u))

(1)

After applying this conversion, the µF (V )(u) for each node
can be computed. Then all the nodes can be sorted by the
µF (V )(u), which means the node with higher fuzzy value
is in the front rank. Suppose there are m nodes to select
among n nodes, according to µA(Ni1) > µA(Ni2) > · · · >
µA(Nin), the first m nones Ni1 , Ni2 , · · ·Nim are selected. If
µA(Nim) = µA(Nim+1), a lottery algorithm is performed for
node selection. First, uniformly choose a random number r
from [0, 1). Then the m-th node is selected if r ∈ [0, 0.5), and
the the m+ 1-th node is selected if r ∈ [0.5, 1). Moreover, it
is natural to generalize the lottery algorithm to the case that
more nodes share the same µF (V )(u).

V. THE IMPROVED MODEL ON THE VAGUE SET-BASED
DPOS’S VOTING PHASE

In this section, we present two improvements on the vague-
set based DPoS’s voting phase.

A. Improvement on the vague to fuzzy mapping
First, we rewrite the mapping function from vague set to

fuzzy set in [19] as follows.

µF (V )(u) = tV (u) +
1

2
(1 + α(tV (u)− fV (u)))

× (1− tV (u)− fV (u))

where
α = 1/(tV (u) + fV (u) + 2λ).

The multiplication ratio α clearly represents the trend of the
abstention part being counted into the final fuzzy value of the
node.

We notice that this α is decreasing on tV (u) + fV (u) for
fixed λ > 0. However, we consider that this property of α is
not reasonable. If tV (u)+fV (u) is higher, then its percentage
of abstentions is smaller, which means the abstention part
should contribute more when computing the fuzzy value. From
this perspective, α should be increasing on tV (u) + fV (u).

We now present our improvement, which is based on such a
hypothesis: α is increasing on tV (u) + fV (u). For simplicity,
we just set

α = tV (u) + fV (u)

which leads to an improved mapping function:

µF (V )(u)

= tV (u) +
1

2
[1 + (tV (u) + fV (u))(tV (u)− fV (u))]

× (1− tV (u)− fV (u))

(2)

Remark 1: Notice that when tV (u) = fV (u), µF (V )(u) =
tV (u) + 1

2 (1− 2tV (u)) = 1
2 as required.

B. Improvement on the voting weights of each node
In the previous voting model, each node can only cast

one vote and the weight of each vote is set to be 1, 0
and −1 for affirmative votes, abstention votes and negative
votes, respectively. Thus the fuzzy value of each node can be
computed by calculating the ratio of YES votes and the ratio
of NO votes.

Under the improved model, the weight of node voting is
considered [20]. In DPoS, the number of votes each node can
vote is different due to the different rights and interests held.
Here we use voting weights to represent the equity of each
node. For an elector, the affirmative votes received is the sum
of the weights of all nodes that voted in favor, and we set
tV (u) to be the ratio of this value in the sum of the weights
of all nodes voted. Similarly, we set fV (u) to be the ratio of
the weight summation of all nodes that voted against. Then
we use formula 2 to calculate each node’s fuzzy value and
sort all the nodes by decreasing µF (V )(u).

Example: In order to visually see the changes of fuzzy
value before and after weighting, we present a simple example.
Assuming there are 10 nodes in total, the voting status of one
node is shown in TABLE 1. The node received 5 supporting
votes, 3 abstention votes and 2 negative votes. The distribution
of weights for voting is listed in TABLE 2. For simplicity,
the weights of 10 nodes are set to be ranging from 1 to 10.
The weight vector of the supporting, abstention and negative
votes are [1, 4, 6, 7, 9], [3, 5, 10] and [2, 8], respectively. In
this way, the vague value and fuzzy value before and after
weighting can be calculated.

TABLE I: Node voting results before weighting

Total votes YES votes Abstention votes NO votes
10 5 3 2

TABLE II: Weights for voting

Total weights YES weights Abstention weights NO weights
[1,2,3,4,5,6,7,8,9,10] [1,4,6,7,8] [3,5,10] [2,8]

TABLE III: vague value and fuzzy value before and after
weighting

Vague value Fuzzy value
Before weighting [0.5, 0.8] 0.6815
After weighting [0.49, 0.82] 0.6886

From TABLE I, the vague value before weighting can be
calculated as

tV (u) =
5

10
= 0.5, fV (u) =

2

10
= 0.2.

Then we use TABLE II to calculate the weighted vague value:

tV (u) =
1 + 4 + 6 + 7 + 9∑10

i=1 i
=

27

55
= 0.49.
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fV (u) =
2 + 8∑10
i=1 i

=
10

55
= 0.18.

This means that the vague value before weighting is
[0.5, 0.8], and the weighted vague value is [0.49, 0.82]. Then
we use function 2 to calculate the corresponding fuzzy value.
The results are shown in TABLE III. For the vague value
before and after weighting, notice that the requirements on
tV (u) and fV (u) are always tV (u) ∈ [0, 1], fV (u) ∈ [0, 1],
tV (u) + fV (u) ∈ [0, 1]. This also means that after the
introduction of weights, it is still feasible to vote through the
proposed model in Section V.A.

The improvement of introducing weights is necessary and
meaningful. It makes our model closer to the real situation of
DPoS’s voting phase since each node in DPoS has different
voting rights. Moreover, the effect of weighting to the model
will be further explained in Section VII’s experimental analysis
.

VI. MODEL ANALYSIS

Recall that for vague set V , the improved model mapping
vagues sets to fuzzy sets is defined by

µF (V )(u)

= tV (u) +
1

2
[(1 + (tV (u)− fV (u)))(tV (u) + fV (u))]

× (1− tV (u)− fV (u))

where [tV (u), 1− fV (u)] is the vague value of u ∈ U .
After checking the properties of µF (V )(u), it can be proved

that µF (V )(u) is increasing on tV (u) and decreasing on
fV (u).

Theorem 1: For any u ∈ U and the mapping function (2),
we have

∂µF (V )(u)

∂tV (u)
≥ 0,

∂µF (V )(u)

∂fV (u)
≤ 0

on the conditions that tV (u), fV (u), tV (u) + fV (u) ∈ [0, 1].
Proof: For simplicity, we replace tV (u), fV (u),

µF (V )(u) by t, f, µ to rewrite the model (3) as

µ = t+
1

2
(1 + t2 − f2)(1− t− f).

We have to prove that on conditions t, f, t+ f ∈ [0, 1],

∂µ

∂t
≥ 0,

∂µ

∂f
≤ 0.

It can be directly computed that
∂µ

∂t
= 1 +

1

2
(1 + t2 − f2)

′

t · (1− t− f)

+ (1 + t2 − f2) · ((1− t− f)
′

t))

= 1 +
1

2
(2t · (1− t− f)− (1 + t2 − f2))

=
1

2
(2 + 2t− 2t2 − 2tf − 1− t2 + f2)

=
1

2
(−3t2 + (2− 2f)t+ (1 + f2)).

Since t, f, t + f ∈ [0, 1], then the domain of t is actually
t ∈ [0, 1− f ] for some f ∈ [0, 1]. Moreover, we have

∂µ

∂t
|t=0 =

1

2
(1 + f2) > 0.

and
∂µ

∂t
|t=1−f =

1

2
(−3(1− f)2 + (2− 2f)(1− f) + (1 + f2))

= f ≥ 0.

which means that ∂µ
∂t ≥ 0 at two endpoints. Since ∂µ

∂t is a
parabola opening down with respect to variable t, it is true
that

∂µ

∂t
≥ 0

for any t ∈ [0, 1 − f ] where f ∈ [0, 1], which completes the
first part of the proof.

For the second part, similarly, we compute

∂µ

∂f
=

1

2
(1 + t2 − f2)

′

f · (1− t− f)

+ (1 + t2 − f2) · ((1− t− f)
′

f ))

=
1

2
(−2f · (1− t− f)− (1 + t2 − f2))

=
1

2
(−2f + 2tf + 2f2 − 1− t2 + f2)

=
1

2
(3f2 + (2t− 2)f − (1 + t2)).

For t, f, t + f ∈ [0, 1], the domain of f is f ∈ [0, 1 − t] for
some t ∈ [0, 1]. Then we compute

∂µ

∂f
|f=0 = −1

2
(1 + t2) < 0.

and
∂µ

∂f
|f=1−t =

1

2
(3(1− t)2 + (2t− 2)(1− t)− (1 + t2))

= −t ≤ 0.

which means that ∂µ
∂t ≥ 0 at two endpoints. Similarly, since

∂µ
∂t is a parabola opening up with respect to variable f , it is
true that

∂µ

∂t
≤ 0

for any f ∈ [0, 1 − t] where t ∈ [0, 1], finishing the second
part of the proof.

Remark 2: These properties of µF (V )(u) are reasonable.
Since larger tV (u) or smaller fV (u) means that the possi-
bility of node u to be chosen into the next phase is larger,
corresponding to the larger µF (V )(u).

Theorem 2: Given a vague set V in U , for any u ∈ U , on
the conditions that tV (u), fV (u), tV (u) + fV (u) ∈ [0, 1], we
have

tV (u) ≤ µF (V )(u) ≤ 1− fV (u)

and

value of µF (V )(u) relation on tV (u) and fV (u)
1 tV (u) = 1, fV (u) = 0

(0.5, 1] tV (u) > fV (u)
0.5 tV (u) = fV (u)

[0, 0.5) tV (u) < fV (u)
0 tV (u) = 0, fV (u) = 1
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Proof: Similarly, we replace tV (u), fV (u), µF (V )(u) by
t, f, µ to simplify the model as

µ = t+
1

2
(1 + t2 − f2)(1− t− f).

For the first part, notice that for t, f, t+f ∈ [0, 1], it is easy
to obtain

1 + t2 − f2 ∈ [0, 2].

Since 1− t− f ≥ 0, we have

µ ≥ t+
1

2
· 0 · (1− t− f) ≥ t.

and
µ ≤ t+

1

2
· 2 · (1− t− f) = 1− f.

which proves the first part of the theorem.
For the second part, we prove it in the following cases:
1) Case 1: µ = 1⇔ t = 1, f = 0
⇐:
For t = 1, f = 0,

µ = t+
1

2
(1 + t2 − f2)(1− t− f)

= 1 +
1

2
(1 + 12 − 02)(1− 1− 0) = 1.

⇒:
If µ = 1, since t ≤ µ ≤ 1 − f from the first part, we
know that 1 − f = 1, implying f = 0. Then in fact
µ = t+ 1

2 (1 + t2)(1− t) = 1. Simplify this equation to
obtain

(1− t2)(t− 1) = 0.

Consequently, t = 1 and f = 0.
2) Case 2: µ = 0⇔ t = 0, f = 1
⇐:
For t = 0, f = 1,

µ = t+
1

2
(1 + t2 − f2)(1− t− f)

= 0 +
1

2
(1 + 02 − 12)(1− 0− 1) = 0.

⇒:
If µ = 0, since we know that t ≤ µ ≤ 1−f , then t = 0.
Thus we have µ = 0 + 1

2 (1 − f2)(1 − f) = 0, which
can be simplified as

(1− f2)(1− f) = 0.

As a result, f = 1 and t = 0.
3) Case 3: µ = 0.5⇔ t = f
⇐:
For t = f ,

µ = t+
1

2
(1 + t2 − f2)(1− t− f)

= t+
1

2
(1 + t2 − t2)(1− t− t)

= t+
1

2
(1− 2t) = 0.5.

⇒:

If µ = 0.5, then

0 = µ− 0.5

= t+
1

2
(1 + t2 − f2)(1− t− f)− 1

2

=
1

2
(2t+ (1 + t2 − f2)(1− t− f)− 1)

=
1

2
(t− f − (t3 − f3) + (t2 − f2)− tf(t− f))

=
1

2
(t− f)(1− (t2 + tf + f2) + t+ f − tf)

=
1

2
(t− f)(1− (t+ f)2 + (t+ f)).

Since t+ f ∈ [0, 1], we know that

1− (t+ f)2 + (t+ f) ≥ 1,

which implies that t− f = 0.
4) Case 4 and 5:

µ ∈ (0.5, 1]⇔ f < t,

µ ∈ [0, 0.5)⇔ t < f.

From the proof in Case 3, we know that

µ− 0.5 =
1

2
(t− f)(1− (t+ f)2 + (t+ f)).

Since t+ f ∈ [0, 1], we know

1− (t+ f)2 + (t+ f) ≥ 1.

As a result,

sgn(µ− 0.5) = sgn(t− f).

Thus we have

µ > 0.5⇔ f < t,

µ < 0.5⇔ t < f.

From the first part of the proof for this theorem, we have
t ≤ µ ≤ 1 − f , implying µ ∈ [0, 1], which completes
the proof of Case 4 and 5.

VII. EXPERIMENTS AND ANALYSIS

After proposing the new Blockchain’s DPoS voting model,
we conducted experimental simulations to verify its effective-
ness. And the simulations are in two version: small-scale and
large-scale.

A. Small-scale Simulation
In this version, we conducted the simulation in small scale

according to the following steps:
• 1) Generate nodes and assign weights. We assume that

5 nodes are to elect among 30 nodes. First we generate
30 nodes in personal computer. In order to simplify the
experiment, we regard all of these nodes as voters and
electors. Then we randomly assign weight to each node.
Here we choose a random integer in [1, 100) for each
node as its weight.
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• 2) Make each node vote and calculate vague values. We
make each node randomly do the voting, where it can vote
for, against, and abstention with same probabilities equal
to 1

3 . After the voting, we calculate the voting results for
each node. For each node u, Let the ratio of the favored
weights to the total weights be tV (u), and the ratio of
the opposed weights to the total weights be fV (u).

• 3) Compute fuzzy values to sort nodes and do election.
After calculating tV (u) and fV (u), we use the new
mapping function (2) to obtain the fuzzy value µF (V )(u)
for each node, and sort the 30 nodes by their fuzzy values
from large to small. The first 5 nodes will be selected as
committee members. In the case that different nodes share
the same fuzzy value, the node with the highest weight
will be chosen. If their weights are still the same, we
apply the lottery algorithm to randomly select nodes.

TABLE IV: Distribution of weights of each node

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10N11N12N13N14N15

55 97 38 19 49 70 61 68 23 19 70 78 31 51 81
N16N17N18N19N20N21N22N23N24N25N26N27N28N29N30

8 61 2 70 22 15 91 93 17 77 1 61 87 97 34

Table IV shows the weight distribution of 30 nodes. This
also represents the size of the node’s power, which has an
impact on the subsequent voting. It can be easily calculated
that the weight sum of all nodes is

∑30
i=1 w(Ni) = 1546.

TABLE V: Fuzzy set value sorting of each node

NodesYES votesNo votesAbstention votesunweighted fuzzy valueweighted fuzzy value
N11 17 7 6 0.6933 0.7331
N18 14 7 9 0.6412 0.6917
N30 13 6 11 0.6438 0.6508
N28 16 6 8 0.6993 0.6503
N3 14 10 6 0.5773 0.6312
N22 11 8 11 0.5616 0.5662
N20 12 8 10 0.5815 0.5642
N13 13 10 7 0.5589 0.5403
N8 9 7 14 0.5416 0.5386
N17 11 7 12 0.5827 0.5299
N23 11 11 8 0.5 0.5163
N7 10 9 11 0.5205 0.5065
N2 10 10 10 0.5 0.5063
N29 7 7 16 0.5 0.5020
N5 10 9 11 0.5205 0.4808
N1 9 9 12 0.5 0.4671
N9 7 10 13 0.4377 0.4576
N25 11 9 10 0.5407 0.4525
N27 7 13 10 0.3778 0.4447
N4 9 10 11 0.4795 0.4273
N24 7 11 12 0.4173 0.4179
N15 9 15 6 0.384 0.4146
N21 11 11 8 0.5 0.4082
N10 5 10 15 0.3958 0.4073
N14 9 14 7 0.4018 0.4051
N26 6 9 15 0.4375 0.4010
N19 10 13 7 0.4411 0.3938
N16 8 13 9 0.3992 0.3324
N12 5 14 11 0.3152 0.3314
N6 5 14 11 0.3347 0.2916

In Table V, we counted the votes of all nodes and used the
votes to compare the fuzzy value of each node before and after
weighting. Then we sort the nodes according to their weighted
fuzzy values in descending order. Since 5 nodes needs to be
chosen, from Table V, the nodes N11, N18, N30, N28 and
N3 will be selected. However, in the case of no weights,
the nodes N28, N11, N30, N18 and N17 will be selected.
Compared to node N3, node N17 has higher unweighted fuzzy

value but lower weighted fuzzy value. After adding weights,
the probability of obtaining the same fuzzy value seems to
become smaller. For example, node N2 and N29 share the
same fuzzy value 0.5 before weighting, but their fuzzy values
after weighting are different, which allows us to directly sort
them and therefore improve the sorting efficiency.

B. Large-scale Simulation

In this version, to study the influence that assigning weights
to nodes has in the distribution of fuzzy values, a large-scale
simulation is conducted. We generate 1000 nodes with each
node’s weight randomly chosen from [1, 1000000). Then we
also make all of the nodes vote for, against or to abstain
in random and compute the unweighted and weighted vague
values for each node. Finally, we use the new mapping
function (2) to compute the corresponding fuzzy value of each
node and study the distributions of unweighted fuzzy values
and weighted fuzzy values, which can be seen in Figure 2 and
Figure 3.

Fig. 1: Distribution of weighted fuzzy values.

Fig. 2: Distribution of unweighted fuzzy values.

It can be seen from the above figures that the distributions of
unweighted fuzzy values and weighted fuzzy values are both
subject to a normal distribution. However, the variances of two
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distribution seem to be different. To be more specific, we use
hypothesis testing in statistics to study the two distributions of
unweighted fuzzy values and weighted fuzzy values, denoted
by X and Y :

X : samples from weighted fuzzy value,

Y : samples from unweighted fuzzy value.

1) Apply KS-test to ensure the normality of X and Y:
Kolmogorov-Smirnov test (KS-test) can be used to determine
if one dataset comes from a certain type of distribution. In
this case, we intend to clarify that both X and Y are subject
to normal distribution. Since the KS-test has the advantage of
making no assumption about the distribution of data, we now
apply it to ensure the normality of X and Y , or

X,Y ∼ Normal Distribution.

First, we calculate the sample mean and sample standard
deviation of X and Y :

X̄ = 0.50001, SX = 0.01833,

Ȳ = 0.50025, SY = 0.01533.

Then we standardize X and Y by setting Xstd = (X −
X̄)/SX and Ystd = (Y − Ȳ )/SY , set the significance level
α = 0.05 and the null hypothesis and the alternate hypothesis
as follows:

H0(X) : Xstd ∼ N (0, 1),

H1(X) : Xstd � N (0, 1),

H0(Y ) : Ystd ∼ N (0, 1),

H1(Y ) : Ystd � N (0, 1).

After using the scipy.stats.kstest module in python to apply
the KS-test to the standardized X and Y , we obtain the testing
results:

KstestResult(statistic = 0.02288, pvalue = 0.66323),

KstestResult(statistic = 0.02738, pvalue = 0.43371).

The two p-values are both greater than 0.05, which indicates
the strong evidence for the null hypothesis. Thus we retain the
null hypotheses H0(X), H0(Y ) and reject the alternative hy-
potheses H1(X), H1(Y ), which means Xstd, Ystd ∼ N (0, 1)
and therefore X and Y are subject to normal distribution.

2) Apply T-test to estimate the means of X and Y: T-test is
a type of inferential statistic used to determine if there is a
significant difference between the means of two groups. It is
mostly used when the data sets have unknown variances. In
this case, we use T-test to show that X,Y are both subject to
normal distributions with mean = 0.5, or

X ∼ N (0.5, σ2
1), Y ∼ N (0.5, σ2

2).

First, we use X̄ = 0.50001, SX = 0.01833, Ȳ =
0.50002, SY = 0.01533 to construct T-Statistics TX and TY :

TX =
X̄ − 0.5

SX/
√
n

=
0.50001− 0.5

0.01833/
√

1000
= 0.01725,

TY =
Ȳ − 0.5

SY /
√
n

=
0.50025− 0.5

0.01533/
√

1000
= 0.51570.

Then we set the significance level α = 0.05 and the null
hypothesis and the alternate hypothesis as follows:

H0(X) : X ∼ N (0.5, σ2
1),

H1(X) : X � N (0.5, σ2
1),

H0(Y ) : Y ∼ N (0.5, σ2
2),

H1(Y ) : Y � N (0.5, σ2
2).

Finally, we apply the T-test to X and Y to obtain the testing
results:

|TX | = 0.01725 < 2.24479 = T0.025(999) = Tα/2(n− 1),

|TY | = 0.51570 < 2.24479 = T0.025(999) = Tα/2(n− 1).

Since TX and TY are both smaller than Tα/2(n−1), we retain
the null hypothesis H0(X), H0(Y ) and reject the alternative
hypothesis H1(X), H1(Y ), which means X ∼ N (0.5, σ2

1) and
Y ∼ N (0.5, σ2

2).
3) Apply F-test to show the difference between variances of X

and Y: F-test is used to test if the variances of two populations
are equal. The two-tailed version tests against the alternative
that the variances are not equal. In this case, we use F-test to
show that there is a strong difference between the variances
of X and Y , or X ∼ N (0.5, σ2

1) and Y ∼ N (0.5, σ2
2), where

σ2
1 > σ2

2 .

First, we use SX = 0.01833 and SY = 0.01533 to construct
F-Statistics F :

F =
S2
X

S2
Y

= 1.42969.

Then we also set the significance level α = 0.05 and the
hypotheses as follows:

H0 : σ2
1 ≤ σ2

2 ,

H1 : σ2
1 > σ2

2 .

Similarly, we apply the F-test to X and Y to obtain

F = 1.42969

> 1.10975 = F0.5(999, 999) = Fα(n− 1, n− 1).

Since F is larger than Fα(n − 1, n − 1), we accept the
alternate hypothesis H1 and reject the alternative hypothesis
H0, which means σ2

1 > σ2
2 .

C. Analysis of Experimental Results
The improved model was verified through experimental

results. From Figure 2 and 3 and the hypothesis testing in the
large-scale simulation, it can be concluded that under the new
mapping function, for weighted fuzzy value X and unweighted
fuzzy value Y , we have

X ∼ N (0.5, σ2
1), Y ∼ N (0.5, σ2

2),

where
σ2
1 > σ2

2 .
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This indicates that the strategy of adding weights makes
the distribution of the fuzzy value more uniform, which is
helpful in selecting the nodes by the sorting fuzzy value. The
probability of appearing same fuzzy value will become less,
reducing the necessity of applying lottery algorithm. Thus the
improved model definitely leads to the efficiency growth in
voting phase.

The advantages of the improved voting model can be seen
from the following aspects.

• 1) Better simulation to real DPoS’s voting phase. After
adding weights, our voting model is closer to the real
voting mechanism of DPoS, since the number of votes
for each node in DPoS is different. To be elected in the
voting phase, nodes need not only to get the yes votes,
but also to get the yes votes with high weights. This
undoubtedly increases the fairness of voting model.

• 2) More theoretical analyses on the new mapping func-
tion. The new conversion function 2 retains the fuzzy
value of 0.5 when the approval and disapproval are the
same. We also prove its own unique characteristics in
Section VI.

• 3) More efficient selection of nodes. We can see from
the experimental results that by padding weights, the
variance of the distribution of fuzzy value is becoming
larger, which makes the fuzzy value closer to uniform
distribution. As a result, this will improve the efficiency
of node selection.

VIII. CONCLUSION

In this paper, an improved model on DPoS’s voting phase in
blockchains has been proposed. In the previous voting model,
the voters can only vote for, oppose or abstain from a single
vote. By applying the conversion of the vague set to the fuzzy
set in voting, the nodes will be elected more fairly. In our
new model, a more reasonable conversion formula between
the vague set and fuzzy set is proposed. If there are more pros
and cons, the participation rate will be higher, and it implies
that the abstention part should contribute more in computing
the fuzzy value. Our new conversion formula is proposed by
following this idea. In addition, in order to make the model
closer to the real voting situation, we add weights to the voting.
In this way, what each node has is no longer a single vote,
but it is a weighted one. The larger the weight is, the more
significant its vote will be. Our experimental results show that
the new model is both valid and efficient. However, we leave
the problem of how to further improve the decentralization of
the DPoS’s voting phase as a open question.
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