Improved Straight-Line Extraction in the Random
Oracle Model With Applications to Signature
Aggregation

Yashvanth Kondi abhi shelat
ykondi@ccs.neu.edu abhi@neu.edu
Northeastern University Northeastern University
Abstract

The goal of this paper is to improve the efficiency and applicability of
straightline extraction techniques in the random oracle model. Straightline
extraction in the random oracle model refers to the existence of an extractor,
which given the random oracle queries made by a prover P*(x) on some theo-
rem x, is able to produce a witness w for x with roughly the same probability
that P* produces a verifying proof. This notion applies to both zero-knowledge
protocols and verifiable computation where the goal is compressing a proof.

Pass (CRYPTO ’03) first showed how to achieve this property for NP using
a cut-and-choose technique which incurred a A2-bit overhead in communication
where A is a security parameter. Fischlin (CRYPTO ’05) presented a more
efficient technique based on “proofs of work” that sheds this A cost, but only
applies to a limited class of Sigma Protocols with a “quasi-unique response”
property, which for example, does not necessarily include the standard OR
composition for Sigma protocols.

With Schnorr/EdDSA signature aggregation as a motivating application,
we develop new techniques to improve the computation cost of straight-line
extractable proofs. Our improvements to the state of the art range from 70x —
200x for the best compression parameters. This is due to a uniquely suited
polynomial evaluation algorithm, and the insight that a proof-of-work that re-
lies on multicollisions and the birthday paradox is faster to solve than inverting
a fixed target.

Our collision based proof-of-work more generally improves the Prover’s
random oracle query complexity when applied in the NIZK setting as well. In
addition to reducing the query complexity of Fischlin’s Prover, for a special
class of Sigma protocols we can for the first time closely match a new lower
bound we present.

Finally we extend Fischlin’s technique so that it applies to a more gen-
eral class of strongly-sound Sigma protocols, which includes the OR composi-
tion. We achieve this by carefully randomizing Fischlin’s technique—we show
that its current deterministic nature prevents its application to certain multi-
witness languages.

1 Introduction

A Sigma protocol is a three move public coin proof for a language L that al-
lows for efficient sampling of transcripts without a witness (honest-verifier zero-
knowledge), and has the property that any pair of accepting conversations that
share the same first message will yield a witness for the statement (two-special
soundness). Sigma protocols are a useful abstraction in multiple regards, as
many algebraic languages admit highly efficient sigma protocols [Sch91], com-
pilers for more complex languages have been constructed [CDS94], and analysis
of whether a protocol does indeed meet the definition of a Sigma protocol is
usually straightforward.

In the many settings where a non-interactive zero-knowledge proof (NIZK)
suits the network constraints, a Sigma protocol can be efficiently compiled to a
NIZK in the Random Oracle model [FS87, Pas03, Fis05]. The Fiat-Shamir com-
piler [FS87] is the most efficient with essentially no overhead in computation or
communication, however the extractor induced for the proof-of-knowledge prop-
erty requires rewinding a malicious prover in order to extract a witness. This
extraction technique known as “forking” the adversary is due to Pointcheval and
Stern [PS96] and incurs a substantial penalty in the tightness of the security
reduction.

Moreover while a rewinding extractor is conducive to proving sequential
composition, when arbitrary concurrent composition is desired, an online or
straight-line extractor vastly simplifies matters. Straightline extraction refers
to the notion of soundness by which the witness for a theorem can be extracted
from a prover without rewinding. Early work in this area [SG02, CF01] estab-
lished its benefits for composition and tight security, and that protocols which
support straightline extraction require some setup such as a common random
string or a random oracle. The later choice is particularly useful in more prac-
tical protocols.

Signature Aggregation. A recent application of straight-line extraction tech-
niques is in the aggregation of Schnorr/EdDSA signatures [CGKN21]. Signature
schemes based on the discrete logarithm problem alone have not traditionally
been known to support aggregation methods, unlike say pairing based construc-
tions [BLS01]. Chalkias et al. [CGKN21] construct a Sigma protocol by which
one can prove knowledge of a collection of Schnorr signatures rather than trans-
mit them naively. The Sigma protocol is compressing, as its transcript is only
half the size of a naive concatenation of the signatures. Compiling this Sigma
protocol to a non-interactive proof (i.e. an aggregate signature) via the Fiat-
Shamir transformation is efficient but problematic as it incurs a quadratic secu-
rity loss due to the forking lemma—doubling the size of the underlying elliptic
curve (to retain the same security level as the original signature) entirely erases
the compression due to aggregation. Using a straight-line extractable compiler
to produce a non-interactive proof yields a tight reduction, and therefore has

the scope to retain the compression of the Sigma protocol while maintaining
the same security level as the signature itself.

1.1 Existing Approaches to Straight Line Extraction

Pass [Pas03] showed that the random oracle model could be used to achieve
efficient and easily implementable protocols that were straightline extractable,
deniable, and concurrently secure. The main idea in Pass is to apply a cut and
choose technique to a Sigma protocol wherein a Prover commits to the tran-
scripts of 2¢ invocations of the protocol with the same first message but different
challenges. These commitments are implemented using a Merkle tree consisting
of random oracle evaluations. The Merkle tree root is itself used as a random
oracle query, and the result determines the index of the transcript that is to
be decommitted to the verifier. Intuitively a prover that succeeds in this proto-
col must have committed to at least two accepting transcripts with probability
greater than 27¢; these two transcripts can then be used by the extractor (with-
out rewinding) to extract a witness due to the two-special soundness property of
the original Sigma protocol. This basic unit is repeated r = A/ times to amplify
the soundness to a A-bit security level. This technique applies to any two-special
sound Sigma protocol, and thus shows the universal straightline extractability
for any language in NP via Blum’s Hamiltonicity protocol. Unruh [Unr15] shows
how to adapt this technique to construct a non-interactive zero-knowledge proof
of knowledge that is secure against polynomial-time quantum adversaries'.

The drawbacks of this approach are two-fold: first, the Prover must compute
r - 2% protocol transcripts and hash them, and second, there is large overhead
in opening the leaves of the Merkle tree in each repetition of the basic unit.
Concretely revealing a single leaf costs £ bits, and r leaves have to be revealed,
bringing the total overhead to 7¢\ = A\? bits for the openings alone.

To partially address this inefficiency, Fischlin [Fis05] suggested a different
method for achieving straightline extraction that relies on the Prover using a
proof of work to find a suitable protocol transcript. Intuitively, the Prover must
compute a protocol transcript that, for example, hashes to zero for a suitably
chosen hash function. This is equivalent to ‘inverting’ the hash function at a
fixed target, i.e. finding a pre-image x so that H(z) = 0. The proof of work intu-
itively forces the Prover compute several valid protocol transcripts (all starting
with the same first message), and thus allows an extractor to find a witness sim-
ply by reading the different queries to the random oracle. This method avoids
the overhead of having to commit to many protocol instances and opening only
one. The main advantage of this approach is an asymptotically smaller tran-
script because it entirely sheds the A? bits required for the Merkle tree openings,

1The Unruh transformation removes the Merkle tree alltogether and thus incurs a large
overhead penalty; however the aim in that work is security against quantum adversaries
(which, e.g., cannot be rewound).

which in many situations could be the dominant asymptotic term?.

Inadequacies in the state of the art. While the method of Fischlin achieves
a lower communication complexity, it also has two drawbacks.

e Prover Computation Overhead. The prover must hash roughly the same
number of transcripts in expectation as Pass in order to find a proof. Fis-
chlin provides some justification as to why the Prover of any NIZKPoK with
a straight-line extractor that does not program the random oracle must in-
cur a cost of w(log \) queries made to the random oracle [Fis05, Proposition
2] however the gap between optimal performance and the performance of
Fischlin’s scheme (if there is one) remains unexplored. This aspect is partic-
ularly evident in the signature aggregation application, as the construction
that Chalkias et al. obtained upon applying Fischlin’s transformation suffered
from a high computation cost for the prover/aggregator.

e Limited Applicability Due To Quasi-unique Responses. For technical
reasons in their proof, Fischlin’s method only applies to a subset of three-
move protocols which satisfy a “quasi unique responses” property. Roughly
this means that no efficient prover can output a theorem z and a,e,z, 2’
such that (a,e,z) and (a,e,z’) are both accepting transcripts for x. This
excludes Sigma protocols such as logical compositions and proof of knowledge
of Pedersen commitment openings. While it is folklore that this property is
not necessary for the extractor to succeed, to our knowledge it is unknown at
present if this property is strictly necessary for zero-knowledge.

1.2 This Work

We advance the study of straight-line extraction in the random oracle model on
the fronts of computation cost, as well as the applicability of Fischlin’s transform.
We make orthogonal but compatible improvements in both dimensions.

Computation Cost of Straight-Line Extraction. Our motivating appli-
cation in which to improve computation cost is signature aggregation, and so
we first develop our new techniques in this context and subsequently examine
implications that are of more general interest. Roughly, the prover/aggregator
in Chalkias et al’s construction evaluates a polynomial f that encodes the sig-
natures, in order to find points z;, f(x;) such that H(z;, f(z;)) = 0. The com-
putation cost can be broken into two components: the cost Cqry per evaluation
of f, and the prover query complezity, i.e. number Tagg of evaluations of f that
must be hashed before a solution is found—we improve both components in
this work.

2If a single Sigma protocol transcript is of size S, then a proof by Pas03 is of size S - @ +
A2, Assuming S € O()), the A2 Merkle opening cost dominates asymptotically

e Better C,, via Improved Polynomial Evaluation. We make use of an
O(n'%) polynomial evaluation algorithm that performs over an order of mag-
nitude better than the O(n?) naive method for practically relevant parame-
ters. After diligently searching the literature for this simple technique, we are
unaware of any previous application of this observation—perhaps because
it was already folklore. Nonetheless, we are the first to discover its unique
suitability to straight-line extraction especially for the parameters and el-
liptic curve groups relevant to signature aggregation. Polynomial evaluation
algorithms with significantly better asymptotic costs are known [vzGG13,
BCKL21], however they are either concretely inferior in the relevant parame-
ter ranges, or outright incompatible with commonly used signing curve groups.

e Collision Predicates Improve Prover Query Complexity. We replace
the inversion based proof-of-work predicate with a collision based one. In
particular the prover must now find z;, f(z;) values such that H(x1, f(z1)) =
-+« = H(x,, f(z,)), which is significantly faster (up to 2x) than finding in-
versions at the same security level. We find that the principle of collision
finding having superior combinatorics as compared to inversions more gener-
ally improves prover query complexity—Fischlin’s NIZKPoK construction is
sped up by 10 — 15% by directly applying this insight. For a special class of
Sigma protocols, the prover query complexity improvement due to the colli-
sion predicate idea is up to 2x.

e Lower Bound on Query Complexity. We tighten Fischlin’s asymptotic
lower bound on prover query complexity to obtain a concrete one under cer-
tain conditions. This bound is not met by any existing constructions for non-
trivial parameters. However the special class of Sigma protocols mentioned
above with the collision predicate idea achieves the optimal query complexity
for a range of non-trivial parameters—this also serves to inspire confidence
in the tightness of the bound.

We tighten the parameters and benchmark our improved aggregation construc-
tion, the result of which report in Table 2. We obtain up to a 200x improvement
in prover computation over Chalkias et al. [CGKN21] for practically relevant pa-
rameters, at the same compression rate. This makes provably secure parameters
for signature aggregation far more accessible in many real-world settings.

Applicability of Fischlin’s Transform. We revisit (and eliminate) the role
of quasi-unique responses in Fischlin’s transform. To our knowledge, it is folk-
lore that the extractor does not strictly need this property, and it is unclear as to
whether it is really necessary for zero-knowledge. In fact, Fischlin even suggested
informally [Fis05, pg. 13] that their construction works for Sigma protocols for
languages with multiple witnesses (such as logical combinations [CDS94]) where
achieving quasi-unique responses appears to be simply a matter of adjusting
syntax. We find this intuition to be false; in particular we show by means

of an attack that witness indistinguishability is not preserved upon applying
Fischlin’s transformation to a natural Sigma protocol (i.e. logical OR compo-
sition [CDS94]) in a context that appears to be conducive to quasi-unique re-
sponses. Intuitively this stems from the deterministic nature of Fischlin’s Prover
which leads to a subtle trace of the witness in compiled proofs.

Through a new proof, we show how a simple randomization of Fischlin’s
method allows it to be safely applied to any strong special sound Sigma pro-
tocol, where strong special soundness—which we introduce—is a simpler prop-
erty of a Sigma protocol and does not require context-specific reasoning (i.e.
dependence on setup parameters) like quasi-unique responses. Requiring strong
special soundness rather than quasi-unique responses strictly increases the ap-
plicability of Fischlin’s transform.

Our attack on WI appears to uncover an interesting aspect of the role of
randomness in straight-line extractable zero-knowledge proofs. Pass’ transfor-
mation is randomized (due to its use of a commitment scheme), and naively
derandomizing it would result in a similar attack. An interesting and natu-
ral question for future work would be to identify the class of languages for
which “well-behaved” transforms that make black-box use of an underlying zero-
knowledge protocol and compile them into a straightline extractable one in the
random oracle model must be randomized.

We therefore demonstrate conclusively that one can do better than generic
cut-and-choose (i.e. Pass [Pas03]) for straight-line extractable NIZKs for many
algebraic languages in the random oracle model. Such languages include logical
combinations [CDS94], openings to Pedersen commitments, among many others
that are used in non-trivial cryptographic systems such as the anonymous survey
protocol [HMPs14].

2 Our Techniques

We first recall Fischlin’s transformation in order to build intuition for our tech-
niques. The base unit of the transformation is the following: for the instance =,
the Prover computes a first message a of the Sigma protocol, and finds second
and third messages e, z such that V,(a,e,2) = 1 and H(a,e, z) = 03 for some
£-bit hash function H, where ¢ € O(log A). This is done by starting with e = 0
(and the corresponding response z) and computing H(a, e, z), iteratively step-
ping through e, z candidates which verify until the first e, z pair is found such
that H(a,e, z) evaluates to the all-zero string 0. An adversarial prover is able
to produce (a,e,z) such that H(a,e,z) = 0 without querying more than one
transcript to H only if it gets lucky with its first query, which happens with
probability 27¢. This base unit is therefore repeated » = \// times to achieve
A bits of soundness; specifically, to bind these instances together and prevent

3The instance z is also included in the hash, but omitted for clarity.

independent grinding, all of the a messages for the repeated instances are in-
corporated into the input to the hash function. For example, for 2 repetitions,
the Prover must produce aq, as, €1, €2, 22, 22 such that H (a1, az,e1,21) = 0 and
H(ay,as,es,22) =0 and of course V,(aj,e1,21) =1 and V(az,e2,22) = 1.
Prover Query Complexity. We refer to the (expected) number of queries
that the prover makes to the random oracle as the prover query complexity. For
instance, the Prover query complexity of Fischlin’s construction as described
above is r-2¢ = - 2%, which implies a tradeoff between r (which governs proof
size and verification cost) and the query complexity. We develop the study of
prover query complexity in this work, as part of our study on the computation
cost of straight-line extraction.

A note on exact vs. ‘near’ inversions. The version of the transformation
described above is referred to as the ‘basic’ one by Fischlin. They proceed to
tweak the Verifier to accept ‘near’ inversions, where it is sufficient for the Prover
to output transcripts 7,---, 7. such that H(7;) is interpreted as a positive
integer and), H(7;) < S for some parameter S = r. The purpose of this change
is to reduce the completeness error for the Prover (by increasing the soundness
error). Our discussion on quasi-unique responses is unaffected by this change as
the Prover is still deterministic and the same vulnerability persists. Regarding
Prover query complexity, it is already pointed out in [Fis05] that relaxing this
requirement for an accepting proof increases the soundness error, and adjusting
the hash function parameter ¢ to retain the same r, A values results in an increase
in the expected Prover query complexity. Consequently we do not discuss the
near-inversion variant further in this paper, and every reference to Fischlin’s
construction will pertain to the basic exact inversion predicate.

2.1 Schnorr/EdDSA Signature Aggregation and Compu-
tation Cost

Our motivating practical application is that of aggregating Schnorr/EdDSA
signatures with tight security. Chalkias et al. construct a compressing Sigma
protocol to prove knowledge of n Schnorr signatures, to which they apply Fis-
chlin’s transformation to obtain a non-interactive proof. As mentioned ear-
lier, their scheme is roughly to have the prover encode the n signatures as the
coefficients of a degree n — 1 polynomial f, and output a proof consisting of
(1, f(z1)),- -, (@, f(z,)) such that each H(x;, f(x;)) = 0. They find produc-
ing such a proof to be computationally intensive, for instance over a minute
to aggregate even hundreds of signatures at a 53% compression ratio* which
induces a prohibitively high latency for many applications.

Faster Polynomial Evaluation with Curve25519. If we denote the
prover query complexity as Tagg, the prover must evaluate f at Tagg points.

4The r parameter governs a tradeoff between query complexity and compression ratio—a
lower ratio is better compression, and 50% is the lowest possible [CGKN21]

The first aspect of the prover’s computation cost that we improve is the cost of
producing Tage evaluations of f. The naive method to evaluate a degree n poly-
nomial costs n multiplications in Z,, meaning that the prover performs nTag,
multiplications. The Fast Fourier Transform (FFT) is a well-known method to
speed up polynomial evaluation to O(Tagglogn), and is used in straight-line
extractable proofs for general statements [AHIV17, BCR19]. Unfortunately
the most common variant of Schnorr in practice—EdDSA—uses Curve25519,
whose corresponding base field does not have a sufficiently large multiplicative
subgroup to support the FFT.

We instead make use of a method (Theorem 4.1) by which we can derive a
randomly chosen polynomial h of degree k < n, such that it agrees with f on k
points. Deriving h costs n multiplications, and evaluating h at each point costs
k multiplications, which means that we can obtain k evaluations of f at roughly
n+k? cost rather than the naive nk—a substantial improvement when k ~ \/n.
A prerequisite to use this method is that Z, must have a multiplicative subgroup
of size k, however unlike the FFT this method is randomized and can be invoked
multiple times using the same subgroup, with negligible probability of producing
redundant evaluations (Corollary 4.3). Curve25519 has multiplicative subgroups
of size up to 132, which provides nearly optimal values of k =~ /n for the
parameters relevant to signature aggregation (n up to 212 or $0).

The intuition for the method is as follows: we decompose f into k different
degree n/k polynomials f; such that f(z) = > 2% - f;(z¥). We then sample

i€ (k]
o 4 Zg, and derive h(z) = > ;1 x® - f;(a¥). Observe that for any primitive
k™ root of unity w € Z, and for any j € [k], it holds that f;((aw?)*) = f;(a®)
for every f;. Consequently, h agrees with f on the points {a - w’ Yiew-

Better Prover Query Complexity via Collisions. We change the under-
lying proof of work predicate to that of finding collisions rather than inversions
of the hash function. In particular, the prover outputs a proof consisting of
(x1, f(x1)),- -+, (zr, f(2,)) such that H(zq, f(z1)) = --- = H(x,, f(z,)). For
the same 7 and soundness level (note that ¢ has to be adjusted), analytical
estimates on multicollision running times [vM39, Pre93| place the query com-
plexity Tagg induced by this collision predicate at up to 2x better than that of
inversions.

Combining these improvements (along with a tighter analysis that makes the
proof of work easier by 2-8x) yields an improvement of a factor of 70x-200%
for the most aggressive compression settings reported in prior work (see Table 2).

Collisions Improve Fischlin’s NIZK. We generalize this principle and apply
it to Fischlin’s transform for NIZKPoKs as well, by using a collision pair base
unit as a drop-in replacement for inversion base units. In particular, a collision
pair base unit instructs the prover to find pairs of accepting Sigma protocol

transcripts (a,e, z) and (a’,€’,2’) such that H((a,a’),e,2) = H((a,ad’), €, 2).
A forgery requires a collision within the first two queries to the random oracle,
which happens with probability 2~¢ for an £-bit hash function. This serves as a
drop-in replacement for a pair of inversion base units that achieve a combined ¢
bits of soundness. Analyzing the query complexity is difficult as this is a chosen
prefiz collision [SLAWO07], and so we test the new proof-of-work problem empiri-
cally and observe an 11% — 15% improvement for common practical parameters.

A Query Complexity Lower Bound. We tighten Fischlin’s asymptotic lower
bound on hash queries for a NIZK with a non-programming extractor [Fis05,
Proposition 2] to derive Lemma 5.1 and subsequently Corollary 5.2, which char-
acterizes the optimal prover query complexity Popt[V] for a given verifier query
complexity V. Intuitively if the prover makes P queries of which V' are checked
by the verifier, (5) must be at least 2* to achieve a 2 soundness error.
We note that this bound applies to schemes with perfect completeness, and
while Lemma 5.1 is sufficiently general to derive a strict bound for probabilistic
schemes, Popt serves as a useful reference point, and will be the quantity that
we refer to as ‘optimal’ prover query complexity.

We show via Claim 5.3 that the expected query complexity of Fischlin’s
construction is never better than v/2Pgpt in any non-trivial parameter regime.

We note that Pass’ transform (and equivalently Unruh’s transform® [Unr15])
has a (strict) query complexity that is twice that of the expected prover com-
plexity of Fischlin in any non-trivial parameter regime, and so we do not consider
Pass/Unruh going forward.

Achieving Popt. For a special class of r-simulatable Sigma protocols (i.e. r
transcripts are simulatable at once) we show that a NIZKPoK with prover
query complexity Popt can be achieved for a range of non-trivial parameters.
We construct this NIZK by applying a multicollision predicate akin to our
signature aggregation construction, where the prover must produce transcripts
(a,e1,21), -+ ,(a,e, z) such that H(a,ei,z1) = --- = H(a, e, z). We make
use of classic results on multicollision complexities [vM39, Pre93] to analyze
the expected prover query complexities. Note that this transform is limited in
applicability—we show how Schnorr’s proof of knowledge of discrete logarithm
can be made r-simulatable, but leave it as an interesting problem for future
work to expand the scope of this transform.

2.2 Extending the Applicability of Fischlin’s Transform

A technicality in Fischlin’s transformation arises when it is possible for the
Prover to iterate through verifying transcripts without having to change the

5For the purpose of prover query complexity, Unruh’s transform can be seen as Pass’
transform without the Merkle trees to reduce the number of repetitions of the base Sigma
protocol.

challenge message e. Consider a Sigma protocol that permits an adversary with-
out a witness to sample (a,e), 21, 29, - z, such that each (a,e,z;) is a valid
transcript. Applying Fischlin’s transformation will not produce a sound NIZK
because an adversary can simply step through H(a,e, z1), - -, H(a,e,2,) to
find a pre-image of 0 whereas an extractor may not be able to extract a witness
from this sequence of queries because they do not satisfy the requirements for
2-special soundness.

Although it is folklore that many Sigma protocols allow for extraction even
given accepting transcripts (a, e, 21), (a, €, 2z2) (examples include the famous log-
ical OR composition [CDS94], opening of a Pedersen commitment, etc. for which
this is simply a matter of adjusting syntax), Fischlin’s transform only applies
to protocols that support a quasi-unique response property, given below.

Definition 2.1. [Fis05, Definition 1] A Sigma protocol has quasi-unique re-
sponses if for every PPT algorithm A, for system parameter k and (x,a, e, z1, 22) <
A(k), we have as a function of k that the following probability is negligible:

Pr([Vi(a,e,z1) = Vy(a,e,22) = 1 A 21 # 23]

Here the system parameter k can be an arbitrarily structured object sampled
according to some distribution, for eg. an RSA modulus or h € G such that
DLog,(h) is unknown, as required in Okamoto’s identification protocols [Oka93].

Interestingly, Fischlin’s proof also uses this property to argue zero-knowledge.
It is less obvious as to why quasi-unique responses is relevant for this purpose. In
the absence of an explicit attack on the zero-knowledge property when quasi-
unique responses does not hold, one may even conclude that it is simply an
artefact leveraged to prove the simulation secure.

We show this intuition to be false. In particular, we construct an explicit
attack on Witness Indistinguishability when Fischlin’s transformation is applied
to a common Sigma protocol for a language with two witnesses. This attack is
the result of combining two facts:

e Fischlin’s Transformation is Deterministic. Once the Sigma protocol
first messages have been sampled, the prover’s algorithm is deterministic.

e Some Sigma Protocols Reveal the Prover’s Randomness. In particu-
lar Schnorr’s proof of knowledge of discrete logarithm reveals a linear combi-
nation of the witness and the prover’s randomness—knowledge of the witness
therefore allows an attacker to reconstruct the prover’s randomness.

It is therefore possible for an attacker to retrieve the prover’s random tape
when given a Fischlin-compiled Schnorr proof, and replay the prover’s steps
and reconstruct the proof string. To demonstrate why this is problematic, we
examine the effect of this retrieve-and-replay strategy given a Fischlin-compiled
proof of knowledge of one-out-of-two discrete logarithms [CDS94]. In particular
if a prover uses one of xg, r1 to prove knowledge of zo-GV -G, an attacker with

knowledge of say xy can execute the retrieve-and-replay strategy to test if xg
was indeed used in producing the proof string. We show that if the attacker uses
xo to execute this strategy on a proof that was actually produced using x1, there
is a non-negligible chance that the proof string that the attacker reconstructs
will be different from the given one (as opposed to a proof string produced
using xp, which always matches the reconstruction). Intuitively, this is because
the proof string serves as a record of how many Sigma protocol transcripts had
to be hashed before a solution to the proof of work was found—recomputing
the proof using a different witness might result in finding a solution by hashing
fewer transcripts.

We note that our attack runs entirely in the random oracle model and does
not exploit concrete instantiations of the hash function, unlike previous work
that studies the concrete instantiability of Fischlin’s transform [ABGR13].

Randomization Fixes the Problem. We formalize a notion of strong special
soundness to capture the folklore notion that accepting transcripts of the form
(a,e,21),(a,e, 22) yield a witness. This is a subtle change in the definition of
special soundness; luckily many natural Sigma protocols (including those with
multiple witnesses for which Fischlin’s transformation is shown not to work
as above) satisfy this property, including every regular special sound Sigma
protocol that supports quasi-unique responses.

We then show how to randomize Fischlin’s transformation to erase all traces
of the witness from the compiled proof strings, and prove that zero-knowledge is
guaranteed unconditionally for any strong special sound Sigma protocol. Intu-
itively this is achieved by having the prover step randomly through the challenge
space to find a solution to the proof of work, and this form of randomization is
directly compatible with a collision-based proof of work.

3 Preliminaries

A Sigma protocol is a three move public coin protocol between a prover Py (x, w)
and a verifier Vx(x). We further use (state,a) < Py 4(x,w) to denote the in-
ternal state and first message output by Py respectively. Subsequently z <
Ps, . (state, e) denotes the response of Ps, upon being given the previously pro-
duced internal state, and the verifier’s challenge respectively. The standard
definition of a Sigma protocol is given below.

Definition 3.1. [Dam02] A Sigma protocol for relation R is a three move
public coin protocol between a prover Ps, and verifier Vs that has the following
properties:

e Completeness: If Ps (with private input w) and Vs with public input x
such that (x,w) € R execute the protocol honestly, then the protocol always
terminates with V' accepting.

10

o Two-special soundness: There exists an efficient extractor Ext which given
as input the accepting conversations T = (a,e,z) and T' = (a,e’,2’) for
statement x such that e # €', outputs w such that (x,w) € R.

e Honest verifier zero-knowledge: There exists an efficient simulator Sim
which upon input a statement x and challenge e outputs a, z such that (a, e, 2)
is an accepting conversation. Moreover when e is uniformly chosen, (a,e, z)
is distributed identically to an execution of the honest protocol.

A strong-special sound Sigma protocol—which is a notion that we introduce
in this paper—additionally has the following property:

Definition 3.2. A strongly two-special sound Sigma protocol for relation R is
a three move protocol between a prover P and verifier V' that is complete and
honest verifier zero-knowledge as per Definition 3.1, and additionally has the
following property:

e Strong two-special soundness: There exists an extractor Ext which given
as input the accepting conversations T = (a,e,z) and T' = (a,e’,z’) for
statement x such that T # T, outputs w such that (z,w) € R.

Next we present the definition of straightline extraction as given by Pass.

Definition 3.3 ([Pas03]). We say that an interactive proof with negligible sound-
ness (P, V) for the language L € NP, with the witness relation Ry, is straight-
line witness extractable in the RO model if for every PPT machine P* there ez-
ists a PPT witness extractor machine E such that for allx € L, ally,r € {0, 1},
if Py, . convinces the honest verifier with non-negligible probability, on common
input x, then E(viewy|[(P*x,y,r,V(x))],f) € RL(z) with overwhelming prob-
ability, where Py, . denotes the machine P* with common input fized to x,
auziliary input fized to y and random tape fized to r, viewy[(Py, ., V(v))] is
V'’s view including its random tape, when interacting with P}

and £ is a list
of all oracle queries and answers posed by Py, . and V.

yYsT?

We recall Fischlin’s transformation in Figure 1.

4 Signature Aggregation With a Tight Reduc-
tion

We first explore aggregating EADSA signatures as a motivating practical ap-
plication. In particular, we are focused on obtaining a tight reduction for the
unforgeability of the aggregate signature to that of the underlying signatures,
which at its core is a problem of straight-line extraction. We briefly recap
the work of Chalkias et al. [CGKN21] who recently constructed an aggrega-
tion scheme for Schnorr (of which EADSA is a widely used instantiation) that
achieves factor 2 compression in the random oracle model.

11

Protocol n{%?

The prover P and verifier V are both given the statement x while the prover also
has a witness w for the statement x € L. The security parameter)\ defines the
integers 7, ¢,t. These integers are related as 7 - £ = 2%, and t = [logA] - £. Both
parties have access to a Random Oracle H : {0,1}* — {0,1}*. The underlying
sigma protocol is given by ¥ = ((P%,P%), V).
PH (x,w):
1. For each ¢ € [r], compute (a;, state;) < P%(z, w)
2. Set a = (ai);c}r), and initialize e; = —1 for each i € [r]
3. For each i € [r], do the following:

(a) If e; > t, abort. Otherwise increment e; and compute z; = P (state;, e;)

(b) If H(a,i,ei,2) # 0°, repeat Step 3a
4. Output 7 = (ai, e, 2i)ier)
VH (z, 7):
1. Parse (as, e, 2i)ic[r) = 7, and set @ = (a:)ie[r]

2. For each i € [r], verify that H(a,i,e;,z1) = 0° and Vs (z, (a:,e:,2)) = 1,
aborting with output 0 if not

3. Accept by outputting 1

Figure 1: Fischlin’s Transformation [Fis05]

Sigma Protocol and Non-Interactive Compilation. Their first step is
to construct an n-special sound Sigma protocol to prove knowledge of n Schnorr
signatures. For signatures instantiated over a field of order ¢, the transcript of
the Sigma protocol is of size (n+ 1)|q| bits, as opposed to naive transmission of
n signatures which would require 2n|q| bits.

They subsequently apply Fischlin’s transformation to their Sigma proto-
col in order to construct a non-interactive proof of knowledge that enjoys a
tight reduction (yielding provably secure parameters, unlike Fiat-Shamir) while
achieving a compression rate that can be arbitrarily close to 2. However the
proximity to factor 2 compression comes at the expense of prover computation.

Concretely as per [CGKN21, Figure 2] aggregating EADSAS signatures with
Fischlin’s transformation incurs an amortized cost of 4.2ms per signature when
compressing by a factor of 1.33, and 39.7ms for factor 1.81 compression. This is
multiple orders of magnitude slower than the Fiat-Shamir compiled proof (which
incurs a fraction of a microsecond per signature on the same hardware) and
processing even hundreds of signatures at once becomes prohibitively expensive.

6We use EADSA to refer to Ed25519 [BDL112] in particular, which is believed to instan-
tiate a 128-bit security level.

12

Related Work. Recently, Chen and Zhao [CZ22] showed that the Fiat-
Shamir compiled construction of Chalkias et al. can be proven secure with a
tight reduction in the Random Oracle and Algebraic Group Model [FKL18].
While such a proof can build confidence in the Fiat-Shamir construction in
that it rules out attacks by algebraic adversaries, the aim of this paper is to be
more conservative with assumptions, i.e. we consider security against any attack
in the random oracle model. Interestingly, Chen and Zhao also showed that in
the related (but incomparable) model of sequential aggregation [LMRS04] it
is possible to prove a Fiat-Shamir compiled construction secure with a tight
reduction in the random oracle model alone.

Faster Straight-Line Extraction. In this section we will develop the
tools to substantially speed up the aggregation of EADSA signatures with straight-
line extraction in the random oracle model. Our improved aggregation algorithm
is up to 200x faster for practically relevant parameters, and potentially within
the performance envelope of real-world applications.

4.1 Recap of [CGKN21] Construction

Schnorr Compression Sigma Protocol [CGKN21]. Recall that a Schnorr
signature on a message m € {0,1}* under a public key pk € G consists of a
nonce R € G and a scalar s € Z, such that z - G = Hscn(pk, R, m) - pk + R.
Informally the Sigma protocol is the combination of two ideas:

1. Once m,pk, R are determined there is a unique s € Z, that ‘completes’
the signature, and this is the discrete logarithm of the publicly computable
group element S = Hsch(pk, R, m)-pk+ R. Proving knowledge of the discrete
logarithm of S is therefore equivalent to proving knowledge of the missing
component of the signature.

2. There is an n-special sound Sigma protocol to simultaneously prove knowl-
edge of the discrete logarithms of n public group elements at the same band-
width cost of a single PoK of DLog [GLSY04].

Upon fixing n messages m; and signatures (R;, s;);c[) under respective public
keys pk;, the prover is given a challenge e € Z,, to which it computes the re-
sponse z = Zie[n] s; - e'. The verifier is given the statement (pk;, Ri,mi)icn)s
challenge e, and the putative Prover’s response z, and validates them by veri-
fying that z - G = Zie[n] €' - (Hseh(pk;, Ri,my;) - pk + R;).

Applying Fischlin’s Transformation. Chalkias et al. directly apply Fis-
chlin’s transformation to the above Sigma protocol to obtain a non-interactive
proof. In particular, a ‘base unit’ of the proof is a challenge-response pair (e;, 2;)
such that H (prefix, e;, z;) = 0 where H is an (-bit random oracle, and this unit
is repeated r times in order to achieve a A-bit soundness level. These parameters

13

Algorithm PolyEval

This algorithm is parameterized by a finite field Z, where ¢ is prime, a primitive
E*™® root of unity w € Zg, and a degree n polynomial f € Z,[X]. For simplicity
we assume that k divides m. The output of this algorithm is a list of points

{(xs, f(z)) Ve -

PolyEval(q, k, f,n):

1. Parse the coefficients of f, with ¢; as the coefficient of 2*

2. For each i € [0..k — 1], define polynomial fi(z) = Y. 27 cjuti
J€0-n/k]

3. Sample o < Z; and for each i € [0..k — 1] compute &; = f;(a)

4. Define the degree k — 1 polynomial h(z) = Y. dz’
i€[0..k—1]

5. Let points denote the (initially empty) list of output points
6. For each ¢ € [0..k — 1], append (a ~wh h(a- wl)) to points
7. Output points

Figure 2: Improved Polynomial Evaluation

are set so that a successful prover must query the random oracle with at least
n accepting transcripts except with probability 277

Breaking down the cost. We can express the prover’s computation cost in
producing a proof as Tagg - Cqry, Where Tagg is the prover query complexity, i.e.
the number of (e, z) values the prover queries to the random oracle, and Cqyy
is the cost of generating each (e, z) value. We discuss below how to improve on
both of these dimensions.

4.2 Reducing Cy, via Improved Polynomial Evaluation

The efficiency of polynomial evaluation algorithms is usually tied to the degree
of the polynomial being evaluated. In our case, the degree of the polynomial
corresponds to the number of signatures being aggregated. As the signature
batch size can be small in practice (eg. number of transactions in a block, which
is around 2000 for Bitcoin [Blo]) asymptotically efficient polynomial evaluation
algorithms [vz2GG13, BCKL21] may not be relevant to our setting.

Theorem 4.1. Given a prime q, degree n polynomial f € Z4[X], and primitive
k™ root of unity w € Z,, Algorithm PolyEval outputs a list of k distinct points
that lie on f at a cost of k*+n+2log k multiplications and k(k—1)+n additions
in ZLq.

Proof. We begin by showing correctness. It suffices to show that for any a € Z7,

14

the corresponding polynomial h agrees with f on the points {or-w’}je(0. k—1]-
First we establish that f(2) = > ;20 41 z fi(x*) for every x € Z,—this follows
from the definition of f;. Next we use the fact that w is a k" root of unity to
simplify the expansion of f(a - w?) as follows:

flarw)y= 3 (a-w)fia-w))= 3 (a-w)fia*)

i€[0..k—1] i€[0..k—1]

= Z (a'wj)id'i:h(owwj)

i€[0..k—1]

Now we count the number of multiplications in Z, used by PolyEval. Step 3
requires computing o (2log k& multiplications by repeated squaring) and eval-
uating k degree n/k polynomials. Assuming we naively make use of Horner’s
rule (n/k multiplications and as many additions per polynomial), it costs n
multiplications and n additions in Z4 to evaluate these polynomials, for a total
of n 4+ 2logk Z4 multiplications and n additions induced by Step 3. Finally, in
Step 6 we require k multiplications to generate each « - w?, and we can evaluate
the degree k — 1 polynomial h at k points using Horner’s rule, bringing the cost
for this step to k? multiplications and k(k — 1) additions in Z,. Across all steps,
the total number of operations required are k2 +n + 2log k multiplications, and
k(k — 1) +n additions in Z,. This proves the theorem. O

While this is a significant improvement over the naive polynomial evaluation
algorithm (which requires nk Z, multiplications), in our application we need to
evaluate f over a large set of points, and PolyEval only produces a batch of k
evaluations. A simple extension to produce a batch of say m -k evaluations is to
invoke PolyEval m times independently. However it is possible that there may
be some redundancy across the multiple evaluations, i.e. independent instances
may evaluate f at the same point. We show via Lemma 4.2 and Corollary 4.3
that for the parameters relevant to our setting, the probability of there being
any redundancy is negligible.

Lemma 4.2. The probability that m independent invocations of PolyEval with
the same polynomial f € Z,[X] and parameter k will output fewer than m - k
distinct points (i.e. repeat at least one point) is at most m?k/2q

Proof. In the event of a repetition, two independent invocations sample « and
o' that induce at least one common point, i.e. a-w? = o/ -w’ for some i, j € [k].
Rearranging the terms, we see that it must be the case that the ratio a/a’ is
an integer power of w. Note that there are exactly k integer powers of w in Z,,
i.e. the multiplicative subgroup that it generates. For any fixed x € Z7, the
probability that a uniformly chosen y € Z, is such that the ratio y/z lands in
this subgroup is k/q.

If we denote a; as the o value sampled by the i*" invocation of PolyEval and
correspondingly /fz = {a; - w? }je[o..k—1]7 we can therefore bound the event of a

15

repetition as follows:
Pri3i,je[m]:i#jAinA;#2]=Pr| \/ AinA#0o
i,j€[m]

< > Y PiAinA #£02

i€[m—1] j€[i+1..m]

SIS

i€[m—1] j€[i+1..m]

m2k
< 2"
=

|

This proves the lemma. U

Corollary 4.3. Given a parameter X, if ¢ € Q(2*) and m,k € poly(\), the
probability that m independent invocations of PolyEval with the same polynomial
will result in a redundant evaluation is negligible in .

Efficiency. As per Theorem 4.1, PolyEval achieves the best improvement
when k = +/n. In this case, evaluating a degree n polynomial at /n points
costs roughly 2n multiplications, which is a factor y/n/2 improvement over the
naive method. This improvement is subject to the availability of appropriate k
in the field in question. The setting that we consider in this paper involves the
EdDSA signature scheme, which uses Curve25519 [Ber(06], which in turn is of
order ¢ such that ¢ — 1 is divisible by 4, 3, and 11. Given that we are interested
in n < 2'2 or so, we are able to find a nearly optimal k for for any value of n in
our range. We plot the improvement achieved by PolyEval in Figure 3.

Comparison with ECFFT. The very recent work of Ben-Sasson et al. [BCKL21]
introduces a method to enable an FFT-like recursive evaluation of a polyno-
mial in any arbitrary Z,, by using isogenies of elliptic curves. Their algorithm
achieves impressive asymptotic as well as concrete performance in the prepro-
cessing model, and can be applied to our setting. However for our parameter
range, we find our PolyEval algorithm to perform better, as we show in Figure 4.

4.2.1 Further Applications

The algorithm PolyEval is generally useful in settings where one has to evaluate a
degree n polynomial in Z,, where n ranges from say 2° to 2'4, and ¢—1 is ‘slightly
smooth’, i.e. there are enough k ~ \/n values that divide ¢ — 1. Such settings
include the base fields of common elliptic curves such as Curve25519 (discussed
in this paper in the context of EADSA), and secp256kl (used by Bitcoin and
others for ECDSA). We describe some of these settings where PolyEval can be
relevant in this section.

16

4.1943x10° : :

. Nalvel ____I T T T T /,I
1.04858x106 - This work, PolyEval ; |

° P
3 262144 - e .
2] -
()] Je
=3 65536 |- s .
2] PR
g L
=1 16384 |- > .
= 4096 | o 1
= P
2
g 1024 - g
= -
@ 256 ot 1
o -
(&) s

64 o .

16 ’./...1....1....1....1....1....1....1....1....1..

4 8 16 32 64 128 256 512 1024 2048

Degree of polynomial

Figure 3: This graph plots the computation cost of evaluating a polynomial of
degree n up to 212 at n points in Z,, where ¢ is the order of the elliptic curve
Curve25519 used for EADSA. The cost is derived analytically.

Threshold Cryptography. A common method to protect signing/encryption
keys is to distribute them across a number m of devices, so that reconstructing
or operating with the key requires a threshold ¢ of the devices to cooperate. This
is typically done by using Shamir’s secret sharing in the base field of the elliptic
curve, i.e. defining a degree ¢ — 1 polynomial f such that f(0) = sk encodes the
secret key, and each party P; receives f(i). When ¢ is in the range of 2° to 214,
PolyEval can speed up the generation of these shares for threshold versions of
EdDSA and ECDSA keys.

Verifiable Secret Sharing and Beyond. There are numerous constructions
to upgrade the security of secret sharing schemes to tolerate a malicious dealer
and participants, i.e. verifiable secret sharing (VSS). Simple VSS schemes such
as Feldman’s [Fel87] for groups where the discrete logarithm assumption is as-
sumed to hold form the basis for distributed key generation protocols [Ped91] for
ECDSA/EdDSA. VSS can also form the basis for verifiable encryption [CD00],
where a ciphertext can be verified to encrypt the discrete logarithm of a public
point (say encrypt the secret component of an EdADSA/ECDSA public key),
when it is combined with MPC-in-the-head techniques [TZ21]. In this case, the
degree of the polynomial corresponds to the number of ‘transcripts’ that must

17

70

This work (PolyEval)
ECFFT - - - -

60 - b

40 | 1
30 | .

20 t .

Factor improvement over naive

0 S — W S SR S P S S S Tt i wr i " " P " " P " " P
4 16 64 256 1024 4096 16384
Degree of polynomial

Figure 4: This graph plots the factor improvement over the naive method, in
evaluating a po