
Side-channel attacks based on power trace
decomposition

Fanliang Hu1, Huanyu Wang2, Junnian Wang1*
1School of Physics and Electronic Science, Hunan University of Science and Technology, Xiangtan, China;

2School of EECS, KTH Royal Institute of Technology, Stockholm, Sweden;
Email: {fanliang, jnwang}@mail.hnust.edu.cn; huanyu@kth.se

Abstract—Side Channel Attacks (SCAs), an attack that exploits
the physical information generated when an encryption algorithm
is executed on a device to recover the key, have become one of the
key threats to the security of encrypted devices. Recently, with
the development of deep learning, deep learning techniques have
been applied to side channel attacks with good results on publicly
available dataset experiences. In this paper, we propose a power
tracking decomposition method that divides the original power
tracking into two parts, where the data-influenced part is defined
as data power tracking and the other part is defined as device
constant power tracking, and use the data power tracking for
training the network model, which has more obvious advantages
than using the original power tracking for training the network
model. To verify the effectiveness of the approach, we evaluated
the ATxmega128D4 microcontroller by capturing the power
traces generated when implementing AES-128. Experimental
results show that network models trained using data power traces
outperform network models trained using raw power traces
in terms of classification accuracy, training time, cross-subkey
recovery key and cross-device recovery key.

Index Terms—Power analysis, Side-channel attacks, Power
trace decomposition, Deep learning, AES

I. INTRODUCTION

Side Channel Attacks (SCAs) have been a problem that
the hardware security community has had to confront since
they were first introduced over 20 years ago [1]. An attacker
recovers sensitive data from a target cryptographic device by
analysing information such as algorithm runtime, power con-
sumption and electromagnetic radiation that is unintentionally
leaked during the execution of the cryptographic algorithm.
Common cryptographic devices are small embedded devices
such as smart cards, FPGAs, ASICs, IoTs and microcontrollers
[2]–[5]. In addition some recent research has targeted remote
devices such as Screaming Channels and Bluetooth [6], [7]. In
recent years, with the advancement of deep learning techniques
[8], Deep Learning Side-Channel Attacks (DLSCAs) have
been shown to be more effective and easier to implement than
traditional side-channel attacks. Since deep neural networks
are good at extracting features from data, they can help
attackers find correlations between physical leaks and the
internal state of the processing algorithm.Maghrebi et al. first
applied deep learning techniques to SCAs in 2016, when
they analysed MultiLayer Perceptron (MLP) and Convolu-
tional Neural Network (CNN). Convolutional Neural Network
(CNN) on SCAs [9]. Subsequently, Cagli et al. proposed an
end-to-end CNN-based approach for the analysis of SCAs

in 2017, which does not require pre-processing of power
traces nor precise selection of Points of Interest (POI) [10], in
addition to improving the performance of convolutional neural
networks using data augmentation [11]. In 2019, the Huanyu
et al.’s study illustrated how the diversity of target chips affects
the efficiency of side channel attacks [12]. 2020, Moonen et
al, investigated the effect of the depth of the network model
on the efficiency of side channel attacks by introducing a heat
map [13]. These research works show that DLSCAs have good
performance in terms of key attack efficiency and accuracy.

However, most of the current studies on DLSCAs use the
original power traces and key-dependent sensitive values to
build deep networks, which degrade the quality of side channel
analysis because the original power traces contain power
information unrelated to the sensitive values. In this paper,
based on the fact that power traces consist of multiple power
information, we propose a method to split the power traces
by defining the data-dependent part (e.g., plaintext, ciphertext,
key) as data power traces and the other part as constant
power traces. By using the data power traces to train the
network model, the efficiency of the side-channel attack can
be improved. We conduct experiments using power consump-
tion traces captured from an ATXmega28D4 microcontroller
running AES-128. The experimental results show that (1)
when the network model achieves the same classification
accuracy, the model trained using the data power traces is
3.64 times more efficient compared to the model trained using
the original power traces; (2) in the experiments on cross-
byte key recovery, the model trained using the data power
traces is 14.62 times more efficient compared to the model
trained using the original power traces; (3) in the experiments
on cross-device recovery (3) in the experiment of key recovery
across devices, the model trained with original power traces
cannot complete key recovery, while the model trained with
data power traces only needs 511 power traces to recover all
keys.

The chapters in this paper are organized as follows: in
Section 2, we introduce the background knowledge of deep
learning-based side channel attacks. In Section 3, we provide
an analysis of the principles of power consumption trace
decomposition and an explanation of why the network can be
trained using a component of the power consumption trace. In
Section 4, we describe the collection of data, the construction
of the experimental environment, data pre-processing, network

models and evaluation criteria. In section 5, we describe how
the models are trained and how they compare in terms of
training time, classification accuracy and mean rank. Finally,
in Section 6 we summarise all the work in this paper and
present the outlook for future work.

II. FUNDAMENTALS OF SIDE CHANNEL ANALYSIS

A. Advanced Encryption Standard

The National Institute of Standards and Technology (NIST)
published the Advanced Encryption Standard (AES) in 2001
[14]. AES can be divided into AES-128, AES- The side
channel attack in this paper is based on the AES-128 cipher
implementation, which is executed on a 4 × 4 byte matrix.
The initial value matrix is obtained by a plaintext (p) of
128 bits in length (8 bits to a byte, a plaintext containing
16 bits distributed in a top-to-bottom, left-to-right order in a
4×4 matrix) and a key (k) of 128 bits (the same distribution
as the plaintext) in a corresponding byte anomaly operation.
The encryption process requires a total of 10 iterations, each
of which consists of four basic steps: byte substitution, row
displacement, column obfuscation and round key addition,
of which the last round consists only of byte substitution,
row displacement and round key addition without column
obfuscation.

In AES, a non-linear substitution is performed on the
elements of the initial value matrix using an S-Box (S-Box,
which is a matrix of 16 x 16 bytes containing one permutation
of the 256 numbers that can be represented by 8 bits of data),
an operation called byte substitution. Byte substitution is the
only non-linear transformation in the AES algorithm and is key
to the security of the algorithm. We define v to be the output
of the S-box, the intermediate value of the AES encryption
algorithm, with subscript i denoting the 1st to 16th byte,
vi denoting the output of the S-box at the i − th byte, and
similarly pi, ki denoting the input to the S-box at the i − th
byte.

vi = SBox(pi ⊕ ki), i = 1, 2, ..., 16 (1)

where p denotes the plaintext, k denotes the key, p ⊕ k is
also the initial value matrix mentioned earlier, and ⊕ denotes
the iso-or operation. Since v depends on k, the output v of
the SBox is sensitive data.

B. Side channel analysis

The aim of a side-channel attack is to recover the key using a
physical leak generated by an encryption device implementing
an encryption algorithm. Typically, a partitioning strategy is
used to recover different sub-secret keys of the key separately.
For example, an attacker recovers one 8-bit subkey byte at
a time iteratively to recover the entire 128-bit subkey in an
AES-128 cryptographic implementation.

One of the most powerful of the side-channel attacks
is the modeling class side-channel attack, which assumes
that an attacker can learn the leakage distribution offline
in a supervised manner using an open copy of the target

device in advance and attack the target device online using
the learned model. In the analysis phase, the attacker has
a device that knows the key and obtains N power traces
Xprofiling = xi, (i = 1, 2, ..., N). Each power consumption
trace xi corresponds to a known plaintext (p), a key (k) and
an energy leakage model θ (e.g., the Hamming weight model
HW) with a sensitivity value function vi = θ(pi, k). In our
experiments, we first collect the power consumption traces
and once the collection of power traces is completed, the
attacker will configure the appropriate model and compute the
probability estimate: Pr[x|V = v], the data set used for the
analysis phase is denoted as xi, vi, (i = 1, 2, ..., N).

In the attack phase, the attacker collects M power consump-
tion traces, denoted as the set Xattack = xi, (i = 1, 2, ...,M).
Xprofiling and Xattack are independent of each other, and
each power trace xi corresponds to a fixed unknown key
k∗. The attacker calculates the probability of the intermediate
value corresponding to the guessed key k for each power
consumption trace according to Bayes’ theorem.

Pr[vi|x = xi] =
Pr[x = xi|vi] · Pr[vi]

Pr[x = xi]
(2)

The likelihood function value dk corresponding to each
guess key k is then calculated using the maximum likelihood
probability criterion.

dk =

M∏
i=1

Pr[vi = θ(pi, k)|x = xi] (3)

Calculate the maximum likelihood function estimate k̃ for
k.

k̃ = argmax
k

(dk) (4)

As the number of attack bars M increases, eventually k̃
equals the correct key k∗.

C. Deep learning based on side channel analysis

What is the same in DLSCAs as in modelling class side
channel attacks is that we consider that an attacker has access
to the same pair of devices: an encryption device that uses
a fixed and unknown key k ∈ ∗K, (K = 0, 1, 2, ..., 255)
to run the encryption device, and an analysis device that
knows and controls the keys and inputs. A partitioning strategy
is usually used, e.g. this attack recovers the key byte k3.
deep learning training is used as the analysis method, not
multivariate Gaussian analysis as in the template attack. the
DLSCAs are also divided into two phases.

Analysis phase: In the analysis phase, there exists a set of
N power consumption traces Tk = Ti, k|i = 1, 2, ..., N , and
from each key the power consumption traces are collected to
form the training set X, so X can be defined as:

X =

255⋃
k=0

Tk (5)

The labels used for training are defined as Y. In order to use
the neural network to explore the relationship between power
consumption traces and labels, a neural network needs to be
built that can be trained to classify power consumption traces
according to their corresponding labels.

Attack phase: To recover the key k∗ using M power traces
collected from the target device, each trace Ti(1 ≤ i ≤ M)
is first evaluated using the trained network to obtain a score
vector yi = N(Ti ∈ R|K|). The highest scoring value is then
selected as:

k = argmax(

M∑
i=1

yi)j

j∈K

(6)

If k = k∗ then the attack is successful.
In most of the current DLSCAs studies, the power traces

used for analysis are the original power traces. In this paper,
the original power traces are decomposed for use in DLSCAs
with respect to the composition of the power traces, and the
principles of the power trace decomposition are described
below.

III. POWER TRACE DECOMPOSITION

A. Composition of power traces

The power consumption based side channel attack exploits
the fact that different inputs and different operations generate
different power consumptions during the execution of encryp-
tion by the cryptographic device. Thus, the data-dependent
component of the power trace is denoted as Pdata and the
operation-dependent component is denoted as Pop. In addition,
the power trace is dependent on two other factors, the elec-
tronic noise Pel.noise, which is present in every measurement,
and it is due to the effect of the electronic noise that the
power traces obtained are different even for the same input. In
addition, due to the presence of leakage currents and transistor
conversion activity unrelated to Pdata and Pop, a constant
power consumption is generated, noted as Pconst. A power
trace is the sum of these components, so that the power trace
can be expressed by the following equation.

Ptotal = Pdata + Pop + Pel.noise + Pconst (7)

In power consumption based SCAs, Pdata, Pop and Pel.noise

are the key components, while Pconst is a component that is
not relevant to the power analysis as it does not contain any
information that can be exploited by an attacker. An attacker
can usually only obtain the key through Pdata and Pop. And as
the component Pel.noise increases as a percentage of the power
consumption trace, the difficulty of the attack increases.

B. Power trace composition analysis

When dealing with classification problems using traditional
deep learning algorithms, the data is divided according to
its own characteristics, and the basic principle is to find a
suitable classification curve or surface to solve the problem.
However, from the composition of the power traces, based

Fig. 1. The shape of 10 power consumption traces when processing the same
data.

on this principle DLSCAs use some non-essential information
related to the recovery key when training the network model
using the original power traces. In the following we will
analyse the components of the power consumption trace.

First we analyse the component Pel.noise. At time t, the
power consumption trace of the sensitive variable v consists
of a constant power consumption trace and noise, which can
be defined as:

Ptotal = fv(t) + Pel.noise (8)

where v is a sensitive variable, fv(t) is a time-dependent func-
tion mapping from v to the actual power consumption leakage,
and Pel.noise is a time-dependent, v-independent and normally
distributed noise. In order to have a better understanding of the
noise in the power traces, we have collected 10 power traces
that are generated when constant data is executed and have the
same operation, as shown in Fig.1. It is clear that the 10 traces
are very similar, but there are also some differences between
these traces due to the presence of electronic noise. The effect
of electronic noise on side-channel attacks is negative, and
much research has been done on noise reduction [15], [16],
which is not described in detail here.

The next step is to analyse the component Pdata, which is
not only dependent on the data being processed, but is also
related to the encryption device, which is an 8-bit ATMEL
microcontroller, a low-power 8-bit CMOS microcontroller
with an AVR RISC architecture. The total energy consumption
of the CMOS circuit is equal to the sum of the individual
logic components of the CMOS circuit. As shown in Fig.2,
the logic elements in the COMS circuit are powered by a
constant voltage VDD and process the input signal. When the
total instantaneous current is denoted iDD(t), then the total
instantaneous energy consumption is denoted Pcit(t) and the
average consumption over time T can be calculated using the
following equation.

Pcir =
1

T

∫ T

0

pcir(t)dt =
VDD

T

∫ T

0

iDD(t)dt (9)

CMOS components are all based on complementary pull-
up and pull-down networks, where, for example, a CMOS
inverter contains two transistors P1 and N1, as shown in

Fig. 2. Energy consumption of CMOS circuits.

Fig. 3. Equivalent Capacitance of CMOS Contrarians.

Fig.3. The energy in an inverter consists of static energy
Pstat and dynamic energy Pdyn. When there is no energy
conversion in the element, the energy that the element has is
called static energy, and the energy generated when there is an
internal signal or an output signal is called dynamic energy.
In the following, we focus on the analysis of dynamic energy,
as shown in Table.I. In the cases 0 → 0 and 1 → 1, the
logic element only generates static energy consumption, while
the other two cases generate dynamic energy consumption.
It is worth noting that in a typical CMOS circuit, dynamic
energy consumption is always the dominant factor in energy
consumption, which is dependent on the data being processed.

Simulation models for COMS energy consumption usually
use Hamming weight or Hamming distance. Due to the

TABLE I
CMOS OUTPUT AND ENERGY CONSUMPTION COMPARISON TABLE.

Status Energy consumption Type of energy consumption
0 → 0 P00 Static
0 → 1 P01 Static+
1 → 0 P10 Static+Dynamic
1 → 1 P11 Static

Fig. 4. Target boards XMEGA A and XMEGA B.

simplicity of the principle and implementation, these two
energy models are widely used in energy simulations and,
although the simulation of energy is relatively crude, they
are a way to calculate energy consumption quickly. A formal
representation of the two energy models is given below. The
Hamming distance between the values m0 and m1 is equal to
m0 isomorphic to m1 and the Hamming weight is equal to the
number of bits with a logical value of 1. Thus the Hamming
weight represents the number of dissimilar bits in m0 and
m1. Although no general statement can be made about the
dependence of Pdata on the data being processed, we can ap-
proximate the Pdata component by a normal distribution when
the data processed by the cryptographic device is uniformly
distributed.

Since only Pel.noise and Pdata are used as experimental
objects in this paper, the components Pop and Pconst will not
be described too much.

IV. EXPERIMENTAL ENVIRONMENT CONFIGURATION AND
DATA ACQUISITION

A. Experimental environment configuration
All experiments in this paper were completed in the same

experimental environment configuration. A total of two tar-
get boards were used for data acquisition, XMEGA A and
XMEGA B as shown in Fig.4. They both contain the same
8-bit ATMEL microcontroller ATxmega128D4 to complete
the encryption operation, and use the Chipwhisperer platform
to complete the collection of all the power traces generated
during the encryption process, with the encryption mode being
the Electric Code Book (ECB) mode of AES-128. Fig.5 shows
the experimental equipment and the data acquisition process.
In this experiment, all our models were built and trained
under the deep learning frameworks Keras-gpu 2.3.1 and
tensorflow-gpu 2.1.0, with the main hardware configuration
of the computer being an Intel(R) Core(TM) i7-9750H CPU
@2.60GHz and an NVIDIA GeForce GTX 2060 6GB GPU
to perform all numerical computations and model training in
the experiments.

B. Data collection
A total of 70,000 power consumption traces were collected

as the experimental dataset. Of these, 50,000 traces were

Fig. 5. Capturing power consumption traces with ChipWhisperer devices.

Fig. 6. Power trace waveform display.

generated by the cryptographic device XMEGA A using ran-
dom plaintext and random key, and the other 20,000 traces
were generated by XMEGA A and XMEGA B using random
plaintext and fixed key, respectively, as the test set. After
alignment of the traces, each trace contains 1,700 samples.
Fig.6 shows the example traces.

V. DLSCAS BASED ON POWER TRACE DECOMPOSITION

A. Choice of point of attack and interval of interest

When implementing a side-channel attack, researchers first
need to model the energy consumption of the cryptographic
device when running the encryption algorithm. There are three
energy models, the Identity (ID), Hamming Distance (HD)
and Hamming Weight (HW) models, and for different energy
consumption models, the labels of the power consumption data
vary. In this paper we choose the ID model, which corresponds
to a total of 28 = 256 types of labels.

After determining the energy consumption model, the lo-
cation of the target attack point needs to be determined. In
this paper, the encryption algorithm we target is AES-128,
and the target attack point chosen is the output location of the
byte substitution in the first round of encryption operations
of that encryption algorithm (i.e. the output of the SBox).

The ultimate goal of our side-channel attack experiment is
to recover the first byte of the initial key block, denoted by
k0. We set the labels of each model trained in the experiment
to the output state of the S-box byte substitution in the first
round of encryption operations, denoted as:

state0 = SBox(p0 ⊕ k0) (10)

In Equation 10, ⊕ indicates the byte-by-bit operation, p0 and
k0 indicate the first byte of the plaintext and the first byte of
the initial key respectively, and state0 indicates the state after
the output of the SBox, i.e. the tag. The main reason for setting
the tag in this way is that when the target encryption chip runs
the encryption algorithm, it first needs to call SBox from the
internal registers to perform the byte substitution operation in
the encryption algorithm, and then load the intermediate state
after the operation onto the data bus, and the capacitive load of
the data bus is generally very large, which has a great impact
on the energy consumption of the encryption chip.

Since the target attack point of the experiment is the output
location after the SBox byte replacement in the first round of
encryption operation, and this location contains a total of 16
bytes of SBox output information, we need to find the leaked
information interval (interval of interest) of the target byte (the
first byte of the first round of SBox output state).

Common methods for finding interest intervals for target
bytes include SNR, CPA, t-test and ρ-test [17]. In this paper,
the method of averaging data power traces is used to find the
intervals of interest, with the following main steps.

1) Collect raw power consumption data using a power
consumption acquisition device and align all data.

2) Obtain the data power traces by using Algorithm.V-B.
3) Average the power consumption traces with the same

intermediate values.
4) Reduce the dimensionality of all the raw power con-

sumption data and retain only the power consumption
data in the interval of interest.

The power consumption traces were analysed in the experi-
ments using the method of averaging data power consumption
traces. Since the data power traces contain only Pel.noise

and Pdata, and since Pel.noise obeys a normal distribution,
the average data power traces with the same sensitive values
are averaged out, the average data power traces contain only
Pdata. The area that is only relevant to the sensitive values
is intercepted and is the interval of interest, which is shown
in Fig.7, where the range marked by the dashed line is the
target in the experiments of this paper The interval of interest
for the byte is [56: 152]. As shown in Fig.8, the average data
power consumption trace curves with sensitivity value of 0 and
sensitivity value of 255 are approximately symmetrical. From
the theoretical point of view, the two curves should be com-
pletely symmetrical, but since the actual encryption process is
not simply a superposition of several power consumption trace
components to form the original power consumption trace, the
two curves are only approximately symmetrical.

Fig. 7. Average power consumption trail points of interest.

Fig. 8. Average data power traces with intermediate values of 0 and 255.

B. Power trace decomposition method

In order to reduce the information irrelevant to the recovery
of sensitive values, the Pdata component based on the pro-
cessed data part should be extracted from the original power
consumption trace so that the neural network can better learn
the data features associated with the sensitive information.
There is noise information in each power consumption trace
that obeys a Gaussian distribution, and our current study
can only extract a mixture of Pdata and Pel.noise power
consumption traces, which is also considered by us as a data
power consumption trace. Obtaining the data power traces is
straightforward and simple, and first requires averaging the
power traces in the sample. Once the average of the power
traces is obtained, we can generate the data power traces by
the method in Algorithm.V-B.

Average power trace: the average of all power traces. The
average power trace is obtained by averaging the power traces
of different intermediate values, and a trace containing only
Pop and Pconst, because Pdata and Pel.noise obey normal
distribution, so after a large number of power traces are
averaged, the average power trace then does not contain Pdata

and Pel.noise.
Data power trace: each power trace minus the average power

trace. Theoretically, Pop and Pconst are fixed, so the data
power trace contains only Pdata and Pel.noise.

In the following experiments, we will demonstrate through
comparative trials that network models trained on data power
traces are more efficient in side-channel attacks.

Algorithm 1 Method for obtaining data power traces
Input: original power trace Xoriginal = xi, (i = 1, 2, ..., N)

Output: Data power traces Xdata = {xi − 1
N

∑N
j=1 xj}Nj=1

1: Initialize the data power trace dataset Xdata to the empty set

2: Calculation of the average trace of the original power
consumption trace

3: For all xi ∈ Xoriginal do

4: xdatai = xi − x

5: Append(xdatai) into Xdata

6: end for xdatai

7: return Xdata

TABLE II
NETWORK MODEL STRUCTURE AND PARAMETERS.

Layer Type Output Shape Parameter #
Input (None, 96, 1) 0

Conv1D 1 (None, 92, 64) 384

AveragePooling 1 (None, 46, 64) 0

Conv1D 2 (None, 40, 64) 28736

AveragePooling 2 (None, 20, 64) 0

Flatten (None, 1280) 0

Dense 1 (None, 256) 327936

Dense 2 (None, 256) 65792

Output(Dense 3) (None, 256) 65792
Total Parameter: 488,640

C. Network model structure

In this experiment, the network structure is used in all ex-
periments and the hyperparameters are the same. The network
has 8 layers, two of which are convolutional layers, both
with 64 convolutional kernels, a convolutional step size of
5 for the first layer and 7 for the second layer, two pooling
layers with average pooling, a Flatten layer and three fully
connected layers with 256 neurons. The output layer uses
the Softmax activation function and the rest of the network
layers are set to Relu. 488,640 parameters are included in the
final convolutional model, as shown in Table.II.

D. Evaluation metrics

(1) Model accuracy Model accuracy refers to the probability
that the model achieves the correct classification result on the
test set [18], [19]. An increase in model accuracy indicates that
the back propagation algorithm’s optimisation of the weights
and bias term parameters gradually converges closer to the
optimal parameter values and the network model gradually

converges to the optimal model. Model accuracy is generally
defined as:

acc(Xattack) =
|{xi ∈ Xattack}|

|Xattack|
(11)

In the formula Xattack denotes the test dataset, xi denotes
the ith power trace in the dataset, and xi ∈ Xattack denotes the
set of all power curves when the guess key equals the correct
key. Thus the accuracy of the model is also understood as the
ratio of the number of power consumption curves when the
guess key is equal to the correct key to the number of power
consumption curves in all the verification sets.

(2) Mean rank To evaluate the performance of a model in
SCAs, a metric is needed to represent the number of power
traces used to acquire keys using the model. This metric
typically uses mean rank (average rank) [20]. The mean rank
indicates how many power traces are needed on average by the
attacker to recover the key after performing the side channel
analysis. For example, there are T power consumption traces
in the attack phase and the attack outputs a guess vector
g = [g1, g2, ..., g[K]], where g is decreasing in probability. The
mean rank is then the average ranked position of the correct
key k∗ in g over multiple experiments.

(3) Training time Training time is one of the most important
criteria for evaluating the merits of a deep learning model.
When two models are compared and the same accuracy is
achieved, if the training time of a model is shorter, it indicates
that the model performs better, the model converges faster and
is easier to train for deep learning.

VI. EXPERIMENTAL RESULTS AND ANALYSIS

A. Model training

In the experiments, the optimiser of the model was set
to RMSprop, the corresponding learning rate size was set
to 0.0005, the number of iterations was set to 500, and
the random seed for the initialisation of the network model
weights was set to 122.

(1) Model training using raw power traces The final results
of the classification experiments of the model trained with the
original power consumption traces are shown in Fig.9. From
the experimental results, it can be seen that the model trained
using the original power consumption trace has an accuracy of
97.70% on the training set and 95.68% on the validation set
at epochs equal to 175. As the number of iterations increased,
the accuracy began to converge slowly and eventually reached
the optimal model at the 463rd epochs of training. Optimal
model: acc=99.73%, val acc=99.67%.

(2) Model training using data power traces The final results
of the classification experiments of the model trained with
data power traces are shown in Fig.10. From the experimental
results, it can be seen that the model trained using the data
power consumption trace has an accuracy of 99.81% on the
training set and 97.88% on the validation set at epochs equal to
40. As the number of iterations increases, the accuracy starts
to converge slowly and eventually reaches the optimal model

Fig. 9. Presentation of the results of the model trained with the original power
traces (Model raw).

Fig. 10. Presentation of the results of the model trained with the data power
traces (Model data).

at the 254th epochs of training. Optimal model: acc=99.99%,
val acc=99.92%.

B. Comparative experiments of the two models

In order to investigate the performance of models trained
on data power traces in side-channel attacks, three further sets
of comparison experiments are done in this paper.

(1) Model training time comparison As can be seen in Fig.9
and Fig.10, the model trained based on data power traces has
the advantage of fast convergence and robustness. To quantify
the efficiency gains of the model on side channel attacks, we
compared the two models in terms of model training time.
The time required to train each model when both models
achieved 99.00% accuracy on the validation set is represented
in Fig.11. The model trained using the power consumption
trace dataset takes only 47 seconds to achieve 99.00% accuracy
on the validation set, however the model trained using the
original power consumption trace takes 171 seconds. When
both models reached 99.00% accuracy on the validation set,
the model using the data power traces was 3.64 times more
efficient than the model trained using the original power traces.
The model trained using the data power traces is denoted as
Model data and the model trained using the raw power traces
is denoted as Model raw.

(2) Two models of cross-byte recovery key comparison
experiments Previous studies have used a partitioned approach
in recovering the key, where it is necessary to recover ki(i =

Fig. 11. Comparison of the time taken by the two models when the validation
set is 99.00% accurate.

1, 2, ..., 16), then use the ki corresponding interest interval and
the corresponding sensitive value to build a network to recover
the byte key, this byte is called the target byte by the attacker.
In fact, it is not difficult to find that the shape of the power
trace of the target byte’s interest interval is similar to the shape
of the power trace of the interest interval of other bytes, as
shown in Fig.12. So the network model trained using the target
byte can also classify the power traces of other non-target
bytes.

Next, we perform comparative experiments between the two
models using the accuracy of the models across bytes and
mean rank. Fig.13 shows the results for the accuracy of the
two models on a test set of 16 bytes. Fig.14 shows the number
of power traces (i.e. mean rank) required to recover the full
key for both models.

(3) Cross-device recovery key comparison experiment be-
tween two models Based on the fact that both XMEGA A
and XMEGA B use 8-bit ATMEL microcontrollers, the power
traces obtained when running AES-128 on both target boards
are similar. Based on this fact, we conducted comparative
experiments using both models on the power traces taken when
running AES-128 on the XMEGA B target board. Figure 14
shows the accuracy of the two models for classification on
the XMEGA B target board. Figure 15 shows the number of
power consumption traces (i.e. mean rank) required by both
models to recover the key for the XMEGA B target board.

C. Analysis of experimental results

We have recorded the accuracy of both Model raw and
Model data models during the training process, as shown in
Fig.9 and Fig.10, and it can be seen that the Model data model
converges faster in accuracy during the training process.

To illustrate the effectiveness of Model data, we used both
models for cross-byte and cross-device attacks as a com-
parison test. From Fig.13 and Fig.15, it can be concluded
that Model data is more accurate than Model raw in clas-
sifying both non-target byte power traces and cross-device
power traces. In the following we quantify the efficiency
of Model data for recovering device key improvement using
mean rank. 73 power traces are required for Model data to
recover 16 byte keys and 1067 power traces are required for
Model raw to recover 16 byte keys, and the model trained

with data power traces recovers the key, compared to the
model trained with original power traces to recover key using
data power traces is 14.62 times more efficient than recovering
the key using the original power traces. For cross-device key
recovery, Model data requires 511 power traces to recover a
16-byte key, however, Model raw is unable to recover the key.

Comparison with Experiment 1 demonstrates that the ef-
ficiency as well as the robustness of the model training
can be improved by removing the power consumption trace
components that are not correlated with the sensitive values.

Comparison Experiment 2 demonstrates that the model can
improve the energy of the model to classify power traces
across bytes by learning the components Pdata and Pel.noise

in the power traces, but since the power traces are not simply
quantifiable, this leads to a lower classification accuracy for
non-target bytes.

Comparison experiment three also further demonstrates that
by learning the components Pdata and Pel.noise, the Pdata

components in the power consumption traces are similar even
though the devices are different, and the same classification
purpose can be accomplished, again because the components
in the power consumption traces cannot be quantified by
mathematical formulas, so the classification accuracy is further
reduced across devices. In addition, the Pconst varies from de-
vice to device, which also contributes to the further reduction
in classification accuracy. Overall, models trained on the basis
of data power consumption traces will be more efficient and
have better overall performance on side channel attacks.

VII. CONCLUSION

This paper proposes a hardware cryptographic chip-side
channel attack method based on power consumption trace
decomposition, and tests and evaluates the method through
the ChipWhisperer experimental platform. The experimental
results show that: (1) the model is 3.64 times more efficient
and has better robustness than the model trained with the
original power traces in achieving the same classification
accuracy of 99.00%; (2) the model is 14.62 times more
efficient in recovering keys for cross-byte attacks than the
model trained with the original power traces; (3) the model
only needs 511 (3) the model only needs 511 power traces
to recover all the keys when recovering keys across devices,
while key recovery cannot be completed using the original
power traces. Thus, the comprehensive performance of the
model training method based on power trace decomposition
is optimal.

Future work includes testing the approach of power trace de-
composition presented in this paper on other implementations
of cryptographic algorithms, as well as performing similar
attacks on AES-enabled devices. In addition, we plan to further
analyse the benefits of power trace decomposition for side-
channel attacks by experimenting with power trace decompo-
sition on other attack points. Of course, the most important
future work should be to design defensive countermeasures
against power trace decomposition-based side channel attacks.

Fig. 12. 16 byte power trace comparison.

Fig. 13. Classification accuracy of the two models on the full byte test set.

Fig. 14. Number of power traces used by both models to recover all keys.

Fig. 15. Classification accuracy of the two models on all bytes of the target
board XMEGA B.

Fig. 16. Number of power traces used by both models to recover the full key
of the target board XMEGA B.

VIII. ACKNOWLEDGEMENTS

This research was supported by National Natural Science
Foundation of China (No.61973109).

REFERENCES

[1] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems,” in Annual International Cryptology Conference.
Springer, 1996, pp. 104–113.

[2] C. Herbst, E. Oswald, and S. Mangard, “An aes smart card implemen-
tation resistant to power analysis attacks,” in International conference
on applied cryptography and network security. Springer, 2006, pp.
239–252.

[3] M. Zhao and G. E. Suh, “Fpga-based remote power side-channel
attacks,” in 2018 IEEE Symposium on Security and Privacy (SP). IEEE,
2018, pp. 229–244.

[4] S. B. Ors, F. Gurkaynak, E. Oswald, and B. Preneel, “Power-analysis
attack on an asic aes implementation,” in International Conference on
Information Technology: Coding and Computing, 2004. Proceedings.
ITCC 2004., vol. 2. IEEE, 2004, pp. 546–552.

[5] A. A. Pammu, K.-S. Chong, W.-G. Ho, and B.-H. Gwee, “Interceptive
side channel attack on aes-128 wireless communications for iot applica-
tions,” in 2016 IEEE Asia Pacific Conference on Circuits and Systems
(APCCAS). IEEE, 2016, pp. 650–653.

[6] G. Camurati, A. Francillon, and F.-X. Standaert, “Understanding scream-
ing channels: From a detailed analysis to improved attacks,” IACR
Transactions on Cryptographic Hardware and Embedded Systems, pp.
358–401, 2020.

[7] R. Wang, H. Wang, E. Dubrova, and M. Brisfors, “Advanced far field em
side-channel attack on aes,” in Proceedings of the 7th ACM on Cyber-
Physical System Security Workshop, 2021, pp. 29–39.

[8] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[9] H. Maghrebi, T. Portigliatti, and E. Prouff, “Breaking cryptographic
implementations using deep learning techniques,” in International Con-
ference on Security, Privacy, and Applied Cryptography Engineering.
Springer, 2016, pp. 3–26.

[10] F.-X. Standaert, T. G. Malkin, and M. Yung, “A unified framework
for the analysis of side-channel key recovery attacks,” in Annual
international conference on the theory and applications of cryptographic
techniques. Springer, 2009, pp. 443–461.

[11] E. Cagli, C. Dumas, and E. Prouff, “Convolutional neural networks
with data augmentation against jitter-based countermeasures,” in Interna-
tional Conference on Cryptographic Hardware and Embedded Systems.
Springer, 2017, pp. 45–68.

[12] H. Wang, M. Brisfors, S. Forsmark, and E. Dubrova, “How diversity
affects deep-learning side-channel attacks,” in 2019 IEEE Nordic Cir-
cuits and Systems Conference (NORCAS): NORCHIP and International
Symposium of System-on-Chip (SoC). IEEE, 2019, pp. 1–7.

[13] D. Moonen, “Little or large?: The effects of network size on ai
explainability in side-channel attacks,” 2020.

[14] J. Daemen and V. Rijmen, “Reijndael: The advanced encryption stan-
dard.” Dr. Dobb’s Journal: Software Tools for the Professional Program-
mer, vol. 26, no. 3, pp. 137–139, 2001.

[15] D. Kwon, H. Kim, and S. Hong, “Improving non-profiled side-channel
attacks using autoencoder based preprocessing,” Cryptology ePrint
Archive, 2020.

[16] G. Yang, H. Li, J. Ming, and Y. Zhou, “Cdae: towards empowering
denoising in side-channel analysis,” in International Conference on
information and communications security. Springer, 2019, pp. 269–
286.

[17] F. Durvaux and F.-X. Standaert, “From improved leakage detection to
the detection of points of interests in leakage traces,” in Annual Inter-
national Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2016, pp. 240–262.

[18] F. Hu, J. Wang, W. Wang, and F. Ni, “Software implementation of aes-
128: Cross-subkey side channel attack,” Open Access Library Journal,
vol. 9, no. 1, pp. 1–15, 2022.

[19] Z. Liu, Z. Wang, and M. Ling, “Side-channel attack using word
embedding and long short term memories,” Journal of Web Engineering,
pp. 285–306, 2022.

[20] F. Hu, H. Wang, and J. Wang, “Multi-leak deep-learning side-channel
analysis,” IEEE Access, 2022.

