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Abstract. Attribute-based Signatures (ABS) allow users to obtain attributes from issuing authorities,
and sign messages whilst simultaneously proving compliance of their attributes with a verification policy.
ABS demands that both the signer and the set of attributes used to satisfy a policy remain hidden to
the verifier. Hierarchical ABS (HABS) supporting roots of trust and delegation were recently proposed
to alleviate scalability issues in centralised ABS schemes.

An important yet challenging property for privacy-preserving ABS is revocation, which may be applied to
signers or some of the attributes they possess. Existing ABS schemes lack efficient revocation of either sign-
ers or their attributes, relying on generic costly proofs. Moreover, in HABS there is a further need to support
revocation of authorities on the delegation paths, which is not provided by existing HABS constructions.

This paper proposes a direct HABS scheme with a Verifier-Local Revocation (VLR) property.We extend the
original HABS security model to address revocation and develop a new attribute delegation technique with
appropriate VLRmechanism for HABS, which also implies the first ABS scheme to support VLR.Moreover,
our scheme supports inner-product signing policies, offering a wider class of attribute relations than previous
HABS schemes, and is the first to be based on lattices, which are thought to offer post-quantum security.
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1 Introduction

(Hierarchical) Attribute-based Signatures. To provide privacy-preserving authentication, Attribute-
based Signatures (ABS), introduced in [31,40], allow users to collect attributes from authorities and
produce signatures showing attribute-compliance with some signing policy. A core security property
of ABS schemes is that they are attribute-hiding, and for schemes that consider multiple users, it is
often required that they also remain anonymous. A second security property, unforgeability, prevents
users from generating signatures for policies for which they do not have a satisfying set of attributes.

Most constructions for ABS schemes [20,45,46,6,18,23,17,51] are based on bilinear groups and
make use of the flexible Groth-Sahai proof system [25] to provide anonymity guarantees. Notable
exceptions include constructions from RSA [26] and recent work in the lattice setting [19,54,57,56],
which are in the random oracle model. Originally, ABS schemes were proposed in the centralised
model, that is, one central authority is responsible for all attribute issuance, but to allow for larger
scalability, decentralised schemes [18,23] have also been developed.

More recently, Hierarchical Attribute-Based Signatures (HABS) [15,21] overcome the shortcomings
of previous schemes by allowing attribute delegation to intermediate authorities. In particular, a
central Root Authority (RA) delegates issuing rights of a subset of attributes to lower tier Intermediate
Authorities (IA) who can delegate further, or issue directly to a user. This overcomes the bottleneck
of requiring a single authority to issue all attributes in a scheme with either a large number of users
or attributes, and also allows a verifier to trust a signature without having to trust each authority
in the scheme, as is the case in decentralised constructions.
Revocation. A desirable property of any privacy-preserving signature is the support for user re-
vocation. This would enable a trusted authority to prevent users from producing signatures that
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pass verification, without compromising the anonymity of honest participants. Revocation for a
hierarchical structure of authorities would require the ability to check that a revoked authority does
not appear anywhere in the delegation path of an attribute. This brings new challenges and any
HABS construction would have to perform these additional checks when verifying the HABS signature.
Specific to attribute-based protocols, it may also be desirable to revoke an attribute itself, rather than
issuing authorities. For example, this maybe be required in the setting where attributes may depend
on the time period or changed dynamically.

Revocation techniques typically follow one of few approaches. Firstly, it can be achieved by
requiring signers to update their secret credentials in order to produce a valid signature. Another
approach is to use a public revocation list, which is updated with some information about revoked
users. When a signature is formed, the signer typically proves in zero-knowledge that its information
does not appear in the list. Finally, we have verifier-local revocation which puts the onus on the verifier
to check that signatures have not been generated by a revoked signer. This approach still requires
up-to-date revocation information but has more semblance to traditional public key infrastructure that
typically use Certificate Revocation Lists, and can allow for more efficient constructions as it bypasses
the need for costly zero-knowledge proofs when generating signatures. Previously, VLR as a means
of revocation has appeared in group signatures (introduced in [8]) but it remains an open problem for
an ABS scheme to support any revocation technique1. We note that Herranz [26] proposed a scheme
called Revocable Attribute-based Signatures, where revocation refers to the revocation of anonymity,
which in this, and many other ABS works, is called traceability.

Contribution. In this paper we improve upon security and functionality of existing HABS construc-
tions by proposing a lattice-based scheme which supports revocation and a wider range of signing
policies. Our scheme is based on the widely used LWE and SIS assumptions over integer lattices, and
supports inner-product relations which allow for conjunctive, disjunctive and threshold policies as
well as polynomial evaluations of attributes [27]. Revocation in our HABS schemes uses a novel VLR
mechanism to revoke signers and attributes as well as intermediate authorities. We model HABS
security and use an integration of techniques from identity-based encryption, trapdoor delegation and
signature schemes as well as novel techniques to realise our construction. This work also implies the
first lattice-based (non-hierarchical) ABS scheme with the aforementioned properties.
Related Work. In this section we review related works on VLR, lattice-based signatures and signing
policies in ABS schemes.
Revocation. VLR was first suggested in [3] and formalised in [7] and has been widely researched since
then, for example, improving efficiency (e.g. [58]), functionality (e.g. [14]), stronger security properties
(e.g. [44,9]) or basing on different hardness assumptions (e.g. lattices [30], bilinear groups [58,44]).
The first scheme secure in the standard model that supported VLR was a group signature scheme by
Libert and Vergnaud [32], based on the DLIN and variants of Diffie-Hellman type assumptions. In the
recent lattice-based VLR group signature scheme from Langlois et al. [30], signing requires knowledge
of a secret revocation token. We note that this technique cannot be transferred to the HABS setting
as a signature must also include tokens for intermediate authorities, which are part of the secret, thus
a new approach is needed.
Post-Quantum Security. Most ABS schemes are based on bilinear groups [20,45,46,6,18,23,17,51],
or RSA [26] and do not offer post-quantum security. As lattice-based hardness assumptions are
believed to be resistant to quantum adversaries, and also have provable security under worst-case
hardness assumptions, this area has attracted significant research interest. As a result, there have
been many privacy-preserving signature schemes constructed, such as lattice-based group signature
schemes (e.g.[24,30,35,36,37]), ring signatures (e.g.[13,5]), anonymous attribute tokens [10] and even
ABS schemes (e.g.[57,19,54,56]). However, whilst ABS have been proposed from lattices, current
literature falls short of the delegation feature offered by HABS.
Signing Policies in (H)ABS. Constructing schemes with more expressive signing policies is an active

1 We note here the work [53] of Su et al. that claims to propose a revocable ABS scheme, however we note that their
scheme does not hide the attributes (nor takes a signing policy) so does not meet traditional definitions of ABS.
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area of research for ABS, as it allows for a wider range of use-cases and offers signers more flexibility.
Despite this, many schemes [23,18,40], including all known HABS constructions [15,21], utilise span
programs that result in restrictive monotone boolean policies. Wang et al. [56] provide a different
construction for threshold policies but benefit from shorter private key sizes over comparable schemes.
There are notable exceptions that support non-monotone policies [45] and even unbounded circuits
[19]. In particular, [4] offers a lattice construction for a threshold scheme in a centralised setting,
and then shows how to transform this to support more expressive (∧,∨)-policies. ABS from lattices
supporting inner-product policies [57] have been proposed, yet without distinguishing between signers,
which prevents any meaningful definition for delegation or revocation.

2 Preliminaries

We denote vectors by lower-case bold letters (a), and use capital bold font for matrices (A). The
transpose of a matrix A (or vector) is denoted by AT , and the concatenation of matrices (or vectors)
A and B by [A||B]. We use I to denote the identity matrix, and if we wish to be clear on the
dimension then we write In×m, for some naturals n and m. The interval [a,b] is used to denote all
integer values x in the range a⩽x⩽b. Sampling a random variable x from a distribution X is written
x←↩X . The maximum number of users in the scheme is given by N=2d, and we denote the security
parameter by λ. The number of levels in the hierarchy is l, and denote a signing policy by Ψ , and
set δ := |Ψ |, i.e. the number of attributes that form the signing policy.

Lattices. Let n,m,q⩾2 be integers. For a matrix A∈Zn×m
q , define the m-dimensional lattice

Λ⊥(A)={z∈Zm : A·z=0 mod q}⊆Zm.

For a vector u in the preimage of A, define the coset Λ⊥
u ={z∈Zm :A·z=u mod q}.

Gaussian Distributions over Lattices. For a postive real σ, the n-dimensional Gaussian function
is given as ρσ(z)=exp(−π||z||/σ2) for all z∈Rn. For any n-dimensional lattice Λ, define the discrete

Guassian distribution over Λ as: DΛ,σ(z)=
ρσ(z)
ρσ(Λ)

for all z∈Λ.
Hardness Assumptions. We will introduce the LWE and SIS probelems and state their hardness
assumptions.

LWE. The (Decisional) Learning With Errors (LWE n,m,q,χ) problem is as follows. Let n,m⩾1, q⩾2
and χ be a probability distribution over Z. Let s∈Zn

q , then Ds,χ is a distribution obtained by sampling

a←Zn
q and e←χ and computing (a,aTs+e)∈Zn

q×Zq. Then the LWEn,m,q,χ requires an adversary to
distinguish m samples chosen from χ and m samples chosen from a uniform distribution from Zn

q×Zn
q .

If q is a prime power, β⩾
√
n · ω(logn) and γ=O(nq/β) then there exists an efficient sample-able

β-bounded distribution χ, usually instantiated as a discrete Gaussian DZ,α. That is, the distribution
χ outputs samples with norm at most β with overwhelming probability. Then, χ is such that the
LWEn,m,q,χ problem is as least as hard as SIVPγ (see [50]). We will also make use of a variant of LWE
called Binary-LWE, where the domain from which s is sampled is restricted to {0,1}n, which incurs
an increase in parameter size by a factor of logn to maintain claimed security level [41].

SIS. The Short Integer Solution problem (SIS n,m,q,β), introduced in [1], requires an adversary who,
given a uniformly matrix A∈Zn×m

q , to find a non-zero vector z∈Zm
q such that ||z||∞⩽β and Az=0

mod q. We define the Inhomogenous Short Integer Solution (ISISn,m,q,β) as SIS but for a non-zero
syndrome, i.e. Az=u mod q. By considering the relationship between the l2, l∞ norms, it is shown
that SISn,m,q,β is at least as hard as SIVPγ (in l2) for γ=β ·O(

√
n) [43].

3 VLR-HABS Model: Entities and Definitions

We start with the description of entities for the VLR-HABS ecosystem.

Attribute Authorities. The set of Attribute Authorities (AA) comprises the Root Authority (RA)
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and Intermediate Authorities (IAs). As the name suggests, the RA is the root of the hierarchy, and
upon setup defines the universe of attributes A. With its key pair (skd0,pkd0), the RA can delegate
a subset of attributes to IAs which hold their own key pairs (skdi,pkdi), i > 0. IAs can further
delegate/issue attributes to other IAs or to any end user. This allows for a dynamically expandable
VLR-HABS hierarchy to be established.
Users. With key pair (usk,upk), a user joins the scheme by being receiving issued attributes from
potentially many AAs. Then, a user can use usk to create a VLR-HABS signature, provided their
issued set of attributes A satisfies the policy, i.e. Ψ(A′)=1 for some A′⊆A and a signing policy Ψ .
Users are prevented from delegating attributes further and thus can be viewed as the lowest tier of
the hierarchy. We realise this in our scheme by requiring users to obtain public keys in a different
space to that of authorities.
Warrants. A warrant is used to store delegated attributes for each IA or user. It contains the attribute,
the delegation information, and a list of identities that comprise the delegation path of the attribute.
Warrants are updated any time a new attribute is issued by appending a new entry. We use the notation
|warr| to denote the size of the warrant, i.e. the number of attributes stored in the warrant warr, and we
use |warr [att ]| to denote the length of the delegation path of the attribute att∈A. During the signing
phase, the user submits uses a reduced warrant for an attribute set A′⊆A that satisfies Ψ(A′)=1. We
fix the maximum depth of the delegation path to be l and stress this is not a restriction on theminimum.
Tracing Authority. The tracing authority (TA), independent of the hierarchy, is responsible for
removing anonymity in the case of misuse. It can identify the signer and all authorities on the
delegation paths for attributes that the signer used to satisfy the signing policy, and proves correctness
of these identities by producing a publicly verifiable proof.
Revocation Authority. The Revocation Authority (RevA) is a trusted third party that acts
independently of the hierarchy. The role of the RevA is to publish a list of revoked IDs that cause
any signature generated with a corresponding revoked identity to fail verification. The RevA would
require input of a user or AA identity in order to execute its function, which given the anonymity
of VLR-HABS, could require extraction from a signature by the TA. In practice, it might be likely
that the TA and RevA would be instantiated as a single authority whose role covers both functions,
however, we present them as independent parties to cover a more general scheme.

Definition 1 (VLR-HABS). A VLR-HABS :=(Setup, UKGen, AKGen,
AttIssue, Revoke, Sign, Verify, Trace, Judge) consists of the following nine processes:

• Setup(1λ) is the initialisation process. Based on some security parameter λ∈N, the public pa-
rameters pp of the scheme are defined. In this phase, the root, tracing and revocation authorities
independently generate their own key pairs, i.e. RA’s (skd0,pkd0), TA’s (skTA,pkTA) and RevA’s
(skRevA,pkRevA). In addition, RA defines the universe of attributes A, and initialises an empty list
RevokeList. We stress that due to dynamic hierarchy, the system can be initialised by publishing
(pp, pkd0,pkTA,pkRevA) with A and RevokeList contained in pp.
• UKGen(pp,skd0) is a key generation algorithm executed by the root authority for users and issued
to users as (usk,upk,id).
• AKGen(pp) is a key generation algorithm executed independently by intermediate authorities. Each
IA generates its own public key, i.e., pkdi,idi (i>0).
• AttIssue(warri,att,{pkdj|upkj}) is an algorithm that is used to delegate attributes to an authority
idj with pkdj or issue them to the user uid with upk. On input of an authority’s warrant warri,
an attribute att from warri, and the public key of the entity to which attributes are delegated or
issued, it outputs a new warrant warr for that entity.
• Revoke(skRevA,id) is an algorithm executed by the Revocation Authority. Using RevokeList from the
implicit input pp, and on input of a User or AA ID (uid,id), it outputs an updated RevokeList.
• Sign((usk,warr),m,Ψ) is the signing algorithm. On input of the signer’s usk and (possibly reduced)
warr, a message m and a predicate Ψ it outputs a signature σ.
• Verify(pkd0,(m,Ψ,σ)) is a deterministic algorithm that outputs 1 if a candidate signature σ on a mes-
sagem is valid with respect to the predicate Ψ and revocation list RevokeList from pp, and 0 otherwise.
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• Trace(skTA,pkd0,(m,Ψ,σ)) is an algorithm executed by the TA on input of its private key skTA and a
VLR-HABS signature σ, it outputs either a triple (upk,warr,π̂) if the tracing is successful or ⊥ to in-
dicate its failure. Note that warr contains attributes and delegation paths that were used by the signer.
• Judge(pkTA,pkd0,(m,Ψ,σ), (upk,warr,π̂)) is a deterministic algorithm that
checks a candidate triple (upk,warr,π̂) from the tracing algorithm and outputs 1 if the triple is valid
and 0 otherwise.

A VLR-HABS scheme satisfies the correctness property if any signature σ generated based on an
honestly issued warrant that satisfies the signing policy, will verify and trace correctly, if and only if
identities used in the warrant have not been revoked. The output (upk,warr,π̂) of the tracing algorithm
on such signatures will be accepted by the public judging algorithm with overwhelming probability.
Formally, we have:

Definition 2 (Correctness). A VLR-HABS scheme is correct if the following condition holds:{
Ψ(A)=1 (1)

∀att∈A,∃warr[att]∈warr s.t. warr[att] is valid. (2)

implies

Verify(pkd0,(m,Ψ,Sign((usk,warr),m,Ψ)))=1 ⇐⇒ ∀id∈warr,id /∈RevokeList (3)

and Judge((pkTA,pkd0,(m,Ψ,σ),Trace(skTA,pkd0,(m,Ψ,σ)))=1 (4)

3.1 Security Properties of VLR-HABS

Our security definitions are closely related to path anonymity, path traceability, and non-frameability
from [15] but with modifications to allow for revocation functionality. We give new game-based
definitions assuming probabilistic polynomial time (PPT) adversaries interacting with VLR-HABS
entities through a set of oracles given below and formally described in Figure 1.

– ORegU :A registers new users through this registration oracle, for which a key pair will be generated
and added to List. The public key is given to the adversary. Initially, the entity is considered
honest, and so the public key is also added to the list HUList.

– ORegA : A registers new IAs through this registration oracle, for which an identity will be generated
and added to AList, which is given to the adversary.

– OCorrU : This oracle allows A to corrupt registered users. Upon input of a public key, the corre-
sponding private key is given as output if it exists in List. The public key is removed from HUList
so the oracle keeps track of corrupt entities.

– OCorrA : This oracle allows A to corrupt registered IAs and User attribute keys. Upon input of a
public key and an attribute, the corresponding private key is given as output the if the pair exists
in AList. The identity is removed from HAList so the oracle keeps track of corrupt delegations.

– OAtt : A uses this oracle to invoke an attribute authority to delegate attributes to either an IA or
to a user. In particular, the adversary has control over which attributes are issued and the oracle
outputs a warrant warr if both parties are registered, otherwise it outputs ⊥. The public key and
attribute are added to a list HAList, that is initialised with {0,⊥,⊥,⊥,att}, ∀att∈A.

– OSig : A uses this oracle to obtain a VLR-HABS signature from a registered user. The adversary
provides the warrant (and implicitly the attributes used), signing policy, message and the public
key of the signer. If the attribute set satisfies the policy, and the public key is contained in HUList
then the signature will be given to A, otherwise ⊥ is returned.

– OTr : A uses the Trace oracle on a VLR-HABS signature (provided by the adversary) to extract
the attributes and identities. The TA does verification checks on the signature and upon failure,
will return ⊥, otherwise it outputs the warrant warr.

– ORevID : A uses this oracle to revoke a user. In particular, the adversary has control over which
IDs (both Users and AAs) are revoked. The oracle outputs an updated revocation list RevokeList
if the entity exists in List or AList, otherwise it outputs ⊥.
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ORegU( i ), i /∈List

1 : (id,uski,upki)←UKGen(pp)

2 : List←List∪{(i,id,upki,uski)}
3 : HUList←HUList∪{i}
4 : return (id,upki)

ORegA( i ), i /∈AList

1 : id←AKGen(pp)

2 : AList←AList∪{(i,id,⊥,⊥,⊥)}
3 : return id

OCorrU( i )

1 : HUList←HUList\{i}
2 : return skdi from List

OCorrA(i,pkdi,att,att)

1 : HAList←HAList\{i,pkdi,att,att}
2 : return skdi,att from AList

OTr(m,Ψ,σ)

1 : return Trace(skTA,pkd0,(m,Ψ,σ))

OAtt(i,warri,att,{idj|uidj})

1 : L :={(i,pkdi,att,att)|{i,id,pkdi,att,
2 : skdi,att,att}∈AList}
3 : if (i,warri,att)∈L∧j∈List∨AList then
4 : (skdi,att,pkdi,att)←AttIssue(skdi,att,

5 : warri,att,{idj|uidj})
6 : warrj[att]←warri[att]∪{pkdi,att,idj,att}
7 : AList←AList∪{j,idj,pkdj,att,skdj,att,att}
8 : HAList←HAList∪{j,pkdj,att,att}
9 : return warr

10 : return ⊥

OSig(i,warr,m,Ψ)

1 : A←{att| att∈warr}
2 : if i∈HUList ∧ Ψ(A) then

3 : σ←Sign((uski,warr),m,Ψ)

4 : return σ

5 : return ⊥

ORevID(i,id,RevokeList)

1 : if (i,id,⋆,⋆,[⋆])∈List∨AList then
2 : tok←Revoke(skRevA,id)

3 : RevokeList←RevokeList∪{tok}
4 : return RevokeList

Fig. 1. Oracles for VLR-HABS security experiments.

Path Anonymity. This property guarantees anonymity of the signer as well as all intermediate author-
ities involved in attribute-delegation for attributes used to satisfy the signing policy. The definition for
path anonymity for a VLR-HABS scheme is closely related to that given in [15], however we make ad-
justments to allow for the revocation feature. Our definition captures unlinkability for unrevoked signers,
without considering backwards unlinkability [44,9] which splits time into different epochs and preserves
unlinkability across them. The experiment for path anonymity, defined in Figure 2, requires a two-stage
PPT adversary (A1,A2) to distinguish which warrant and private key were used in the generation of the
challenge VLR-HABS signature σb. Initially,A1 generates the authority and user hierarchy, utilising the
registration and delegation oracles. A challenge VLR-HABS signature σb according to the predefined
challenge bit b, using warrants and keys provided by the adversary. Then, with access to the tracing or-
acle, the adversary A2 guesses b

′. We note that the game returns 0 if A revokes the identity in either of
the warrants warr0 and warr1 that it provides the experiment. Since it does not have access to the revoke
oracle in the second phase of the experiment, it cannot use this to help determine the challenge bit.

Definition 3 (Path Anonymity). A VLR-HABS scheme offers path anonymity if no PPT
adversary A can distinguish between Exppa−0

VLR-HABS,A and Exppa−1
VLR-HABS,A defined in Figure 2, i.e., the

following advantage is negligible in λ:

AdvpaVLR-HABS,A(λ)= |Pr[Exp
pa−0
VLR-HABS,A(λ)=1]−Pr[Exppa−1

VLR-HABS,A(λ)=1]|

Non-frameability. Defined in Figure 3, this property captures traditional unforgeability notions, i.e.,
that no PPT adversary can create a VLR-HABS signature without having an honestly issued warrant
for a set of attributes that satisfies the policy. It also forbids an adversary from framing another user,
i.e. creating a verifiable VLR-HABS signature on behalf of a user for which the secret key is not
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Exppa-bVLR-HABS,A(λ)

1 : (pp,skd0,skTA)←Setup(1λ)

2 : ((usk0,warr0),(usk1,warr1),m,Ψ)←A1(pp,skd0 :

ORegU,ORegA,OCorrU,OCorrA,OTr,ORevID)

3 : if |warr0|= |warr1| then

4 : σ0←Sign((usk0,warr0),m,Ψ), σ1←Sign((usk1,warr1),m,Ψ)

5 : if Verify(pkd0,(m,Ψ,σ0))=1 and Verify(pkd0,(m,Ψ,σ1))=1 then

6 : b′←A2(σb :OTr)

7 : return b′ ∧ A2 did not query OTr(skTA,(m,Ψ,σb))

8 : return 0

Fig. 2. Path Anonymity Experiment for VLR-HABS

ExpnfVLR-HABS,A(λ)

1 : (pp,skd0,skTA)←Setup(1λ)

2 : ((σ,m,Ψ),(upkj,warr,π̂))←A(pp,pkd0,skTA :
OAtt,OSig,ORegU,ORegA,OCorrU,OCorrA,ORevID)

3 : if Verify(pkd0,(m,Ψ,σ)) ∧ Judge(pkTA,pkd0,(m,Ψ,σ),(upkj,warr,π̂)) then

4 : if j∈HUList∧A did not query OSig((uskj,warr),m,Ψ) then , return 1

5 : if ∃att∈warr=⇒ (pkd0,pkd1,...,pkdl−1,upkj)=warr[att] ∧
6 : ∀j∈ [0,l] :(j,pkdj,att)∈HAList∨
7 : ((∃i∈ [0,l−2]. A didn’t query OAtt(i, · , att,pkdi+1)

and ∀j∈ [0,i] :(j,pkdj,att)∈HAList) ∨
8 : (A did not query OAtt(l−1, · ,att,upkj)

∧∀j∈ [0,i] :(j,pkdj,att)∈HAList) ) then , return 1

9 : if Ψ(A)≠1, where A :={att|att∈warr} then , return 1

10 : if ∃i s.t. idi∈RevokeList∩warr then , return 1

11 : return 0

Fig. 3. Non-Frameability Experiment for VLR-HABS

known. The adversary wins if either it produces a valid VLR-HABS signature, or is able to perform
delegation for at least one attribute on behalf of any honest authority that is not ‘below’ a corrupt
authority. This trivially implies that the root authority must also remain honest, unlike the definition
given in Dragan et al. [15]. We also modify the original definition to include extra winning conditions
that capture the scenario the adversary is able to produce a signature that verifies despite using an
ID that was revoked. This can be seen in line 10 of Figure 3. As in Dragan et al., A also wins if it
can generate a signature for which its attribute do not satisfy the policy.

Definition 4 (Non-Frameability). A VLR-HABS scheme is non-frameable if no PPT adversary A
wins the experiment ExpnfVLR-HABS,A defined in Figure 3, i.e., the following advantage is negligible in λ:

AdvnfVLR-HABS,A(λ)=Pr[ExpnfVLR-HABS,A(λ)=1]

Path Traceability. This property, defined in Figure 4, provides accountability for authorities in the
delegation path. It ensures that any valid VLR-HABS signature can be traced (by the tracing authority)
to the signer and the path of authorities that were involved in the issuance of the attributes. To win this
game, the adversary A is required to satisfy one of two conditions. Firstly, it can output a VLR-HABS
signature that verifies but cannot be traced (that is, the tracing algorithm fails), or secondly, one in
which the tracing algorithm outputs a warrant containing at least one unknown IA or user, i.e., were not

7



ExptrVLR-HABS,A(λ)

1 : (pp,skd0,skTA)←Setup(1λ)

2 : ((σ,m,Ψ),(upk,warr,π̂))←A(pp,skTA :OAtt,ORegU,ORegA,OCorrU,OCorrA,ORevID)

3 : if Verify(pkd0,(m,Ψ,σ)) then ,

4 : if Trace(skTA,(m,Ψ,σ))=⊥ then ,return 1

5 : if Judge(pkTA,pkd0,(m,Ψ,σ),(upk,warr,π̂)) ∧
6 : (∃att∈warr=⇒ (pkd0,pkd1,...,pkdl−1,upk)=warr[att] ∧
7 : ( (∃i∈ [0,l−2]. i∈HAList∧i+1 /∈AList) ∨
8 : (l−1∈HUList ∧ ( · ,upk,usk) /∈List) ) ) then ,return 1

9 : return 0

Fig. 4. Path Traceability Experiment for VLR-HABS

previously registered in List or AList. To prohibit trivial attacks, we require the attribute-issuing oracle
to check that both entities are registered (are in List or AList) before returning a delegated attribute.

Definition 5 (Path Traceability). A VLR-HABS scheme offers path traceability if no PPT ad-
versary A can win the experiment ExptrVLR-HABS,A defined in Figure 4, i.e., the following advantage is
negligible in λ:

AdvtrVLR-HABS,A(λ)= |Pr[ExptrVLR-HABS,A(λ)=1]|

4 Building Blocks

We now recall some useful building blocks and techniques that will be used in our VLR-HABS
construction. We will use a zero-knowledge argument of knowledge to form the core of our construction,
a trapdoor delegation technique to issue attributes and an identity-based encryption scheme that will
allow the tracing authority to extract the warrant. First we recall a commitment scheme that will
be compatible with our argument of knowledge.

KTX Commitment Scheme. Kawachi et al. [28] constructed a string commitment scheme
COM :{0,1}∗×{0,1}m̃/2→Zn

q , such that:

– If m̃>2n(1+η)logq for some positive η, then COM is statistically hiding.
– If the SIS∞n,m̃,q,β problem is hard, then COM is computationally binding.

We implicitly choose m̃ sufficiently large, e.g., m̃= 4nlogq, to make COM statistically hiding. It
consists of 3 algorithms, Setup, COM and Open.

– Setup: Fix n,m,m̃∈Z and sample A←↩Zn×(m+m̃)
q . Output pp :=(n,m,m̃,A).

– COMA(m;ρ): On input of a message m and randomness ρ←↩Zm̃
q , the commitment is computed

as co :=COMA(m;ρ)=A[m||ρ]T modq.

– Open(pp,m,co,ρ). To open a commitment, reveal ρ and m, then check co
?
=A[m||ρ]T mod q.

4.1 Techniques for our Zero-Knowledge Argument of Knowledge

We recall the techniques of Ling et al. [34] to create a zero-knowledge argument of knowledge that
will form the core of VLR-HABS.

Decomposition-Extension Technique. These techniques have been introduced in [34] and developed
further in [30,38]. It is a permutation-based argument of knowledge that supports a range of relations,
including for (I)SIS and LWE. In this work we rely on these techniques to achieve the strong anonymity
properties of a VLR-HABS scheme. We introduce the notation and algorithms used to construct the
argument. We start with a description of various groups and sets.
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– Sn: The permutation group of n elements. Let Sn×m denote m copies Sn. In particular, ϕ←↩Sn×m

operates on matrices of dimension n×m as m column-wise n-permutations.
– B3m the set of all vectors in {−1,0,1}3m, that have exactly m coordinates of each −1,0 and 1. We

extend this notation to define B3m×k as k vectors from B3m.
– B2m. Similarly, the set of all vectors in {0,1}2m, that have exactly m coordinates of each 0 and

1, i.e. with Hamming weight m/2. We also define B2m×k as k vectors from B2m.
– Secretβ(k): The set of all vectors z=(z0||z01||z11||...||z0d||z1d)∈Zm(2d+1) consisting of 2d+1 blocks

of size m such that ∥zi∥∞⩽β and the d blocks, z
1−k[1]
1 ,...,z

1−k[d]
s , are zero-blocks 0m.

– SecretExtβ(k): The set of all vectors z= (z0||z01||z11||...||z0d||z1d) ∈ {−1,0,1}3m(2d+1) consisting of

2d+1 blocks of size 3m such that the d+1 blocks z0,z
k[1]
1 ,...,z

k[d]
d are elements of B3m and the

remaining blocks are zero-blocks 03m.
– SecretExtβ(k): The set of all matrices such that each column, viewed as a vector

z=(z0||z01||z11||...||z0d||z1d)∈{−1,0,1}2m(2d+1) consisting of 2d+1 blocks of size 2m such that the

d+1 blocks z0,z
k[1]
1 ,...,z

k[d]
d are elements of B2m and the remaining blocks are zero-blocks 02m.

Given a vector z=(z0||z(0)1 ||z
(1)
1 ||...||z

(0)
d ||z

(1)
d )∈Z3m(2d+1) consisting of 2d+1 blocks of size 3m, and

ẑ=(z(0)||z(1)||...||z(δ))∈Z3δm(2d+1) where z(i) are potentially distinct vectors of the form z. We define
two sets of permutations:

– The set P of all permutations π that keep the arrangement of the blocks. Specifically, if π∈P
then π(z)=(τ0(z0)||τ01 (z01)||τ11 (z11)||...||τ0ld(z0ld)||τ1ld(z1ld)) where τ0,τ01 ,τ11 ,...,τ0ld,τ1ld∈S3m, and S3m is

the symmetric group of 3m elements. We further denote P̂ to denote the restricted case that l=1.
– The set P of all permutations π that keep the arrangement of the blocks. Specifically, if π∈P then
π(Z)=(τ0(Z0)||τ01 (Z0

1)||τ11 (Z1
1)||...||τ0d (Z0

d)||τ1d (Z1
d)), where τ0,τ

0
1 ,τ

1
1 ,...,τ

0
d ,τ

1
d ∈S2m×n, and S2m×n

is the symmetric group of 2m elements, sampled n times and applied to each of n columns in
the matrix.

– The set T = {Te|e ∈ {0,1}ld}, where for e= e[1],...,e[ld],Te ∈ T rearranges the blocks: Te(z) =

(z0||ze[1]1 ||z
1−e[1]
1 ||...||ze[ld]d ||z1−e[ld]

d ).

In particular, given t,c∈{0,1}d,π∈P, and z∈Z3m(2d+1), where ⊕ denotes bit-wise addition mod 2,
and ◦ is composition of permutations, it can be checked that:

z∈SecretExtβ(t)⇐⇒ π(z)∈SecretExtβ(t)⇐⇒ Tc ◦ π(z)∈SecretExtβ(t ⊕ c)

Decomposition. On input vector z=(z1,z2,...,zm)∈Zm such that ∥z∥∞⩽β, the procedure VecDec
outputs p=⌊logβ⌋+1 vectors w1,...,wp such that

∑p
j=1βj ·wj=z. This is achieved by the following:

– For each i ∈ [1,m], write the ith element of z as zi = β1 ·wi,1 + β2 ·wi,2 + ...+ βp · vi,p where
∀j∈ [1,p] :wi,j∈{−1,0,1}, and β1=⌈β/2⌉,β2=⌈(β−β1)/2⌉,β3=⌈(β−β1−β2)/2⌉,...,βp=1.2

– For each j∈ [1,p], let wj :=(w1,j,w2,j,...,wm,j)∈{−1,0,1}m. Output {wj}pj=1.

Extension. On input of a vector w∈{−1,0,1}m, VecExt extends the vectors w to a vector ŵ∈B3m,
computed as follows:

– Let η(−1),η(0),η(1) be the numbers of coordinates in w that equal −1,0,1.
– Pick a random vector w′ ∈ {−1,0,1}2m that has m− η(−1) coordinates equal to -1, m− η(0)

coordinates equal to 0 and m−η(1) coordinates equal to 1. Output ŵ=(w||w′)∈B3m.

VecExt2 is defined with input ŵ∈{0,1}m and extends to w∈B2m of Hamming weight m, as follows.

w[i] :=

{
ŵ[(i+1)/2] if i is odd

1−ŵ[i/2] if i is even
2 It was noted in [34] that any set of {βi}i that allows any integer in the range [0,β] to be expressed as a subset sum
would suffice, but the choice here allows for no extraction gap, and thus is an optimal choice.
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Preparing Secret Vectors. We define a process VecDE as follows:

– On input of a vector z∈Secretβ(s) for s a bit-string of length d, parse z as (z0||z01||z11||...||z0d||z1d)∈
Zm(2d+1).

– Execute VecDec on each z
s[i]
i for i∈ [1,d] to obtain (d+1)p vectors wi.

– Execute VecExt(wi),i∈ [1,d] to compute the (d+1)p vectors ŵ∈B3m, denoted by {{ŵi,j}pj=1}di=0.

– For each j ∈ [1,p], let yj =(ŵ0,j||ŵ0
1,j||ŵ1

1,j||...||ŵ0
d,j||ŵ1

d,j)∈Z3m(2d+1) where ŵ
1−s[i]
i,j is the zero

vector 03m.

– Output yj∈SecretExtβ(s) for j∈ [1,p].

Useful Functions. We now define two functions fk :Zlmd
q →Zm(2ld+1)

q and f̂k :Zn×lmd
q →Zn×m(2ld+1)

q ,

that are indexed by a vector k∈{0,1}2ld.

fk(z):=(z||k[1]z1||(1−k[1])z1||...||k[d]zd||(1−k[d])zd)T

f̂k(X):=(fk(Xi,1)||fk(Xi,2)||...||fk(Xi,m)) for i∈ [1,n]

Matrix Decomposition. We define MatDE based on VecDE, except it calls VecExt2 instead of VecExt.
Denote Bj,f for f∈ [1,k] to describe the kth column of B, and s a binary string of length d:

– Input matrix B∈Zm×k
q

– Return {B(i)}pi=1← [VecDE(Bj,1,s)||...||VecDE(Ej,k,s)]∈SecretExtβ(s) for i∈ [1,p].

We define MatDec to be {E(i)}pi=1← [VecDec(Ej,1)||...||VecDec(Ej,k)] for f∈ [1,k].

Matrix Extension. On input of a matrix A∈Zn×m(2ld+1)
q , the procedure MatExt outputs a matrix

A∗∈Zn×3m(2ld+1)
q . Parse A=[Ã||A0||A1||...||Ad||...||A(l−1)d||...||Ad] and define

A∗=[Ã||A0||0n×2m||...||Ad||0n×2m||...||A(l−1)d||...||Ad||0n×2m]. Also define

A
∗
=[Ã||A0||0n×2m||...||Ald||0n×2m].

Proving consistency of identities. During the argument of knowledge, we will need to show that
the same identity id is used throughout. This is particularly challenging as id is encoded differently
across different sub-relations, so we are required to do more than just reusing a single commitment,
as one might intuitively hope. In particular, we will be required to relate id to Aid in the equation
Aidz=u by proving the relation instead showing Afid∗(z)=u and fid∗(z)∈Secretβ(id∗), that is, the
output vector of fid∗(z) has the correct structure that ensures id

∗ was used. At a high level, to argue
that id∈{0,1}d, we first extend id to id∗∈B2d (the set of all vectors in {0,1}2d with Hamming weight d),
and then show that a random permutation of id∗ belongs to the set B2d which implies that id∈{0,1}d.

4.2 Signatures and Basis Delegation

We recall the notion of Bonsai Trees [12] and a natural signature scheme that follows.

Delegating a Short Basis. A trapdoor for a matrix A, for Bonsai trees, is a short basis for Λ⊥(A).
Cash et al. [12] show how one can delegate this basis to an extended matrix A′ :=[A||Ã] such that
the new basis TA′ is also short, but for which is is hard to recover TA. We note that the extension
matrix Ã∈Zn×m′

q is flexible, and in particular m′ can be any integer greater than 0. We recall some
algorithms from Cash et al. whose existence and security properties are proven in [12].

– GenBasis (n,m,q). There is a fixed constant C>1 and a probabilistic polynomial-time algorithm
GenBasis that, for poly(n)-bounded m⩾Cnlogq, outputs and S∈Zm×m such that A∈Zn×m

q , the

distribution of A is within negl (n) statistical distance of uniform, S is a basis of Λ⊥(A), and
∥S∥⩽O(

√
nlogq).
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– SampleD(S,A,u,β). For given A∈Zn×m
q , a trapdoor S for A, a parameter β=ω(nlogqlogn) and

a vector u∈Zn
q , there is a PPT algorithm SampleD that returns a z∈Λ⊥

u (A) with distribution
statistically close to DΛ⊥

u (A),α, and norm at most β.

– ExtBasis((TA=S),A′) takes as input a short-basis TA for a lattice Λ⊥(A), and A′ which describes

a superlattice of A, i.e. A′=[A||Ā]. It returns an extended basis for A′ as TA′ :=S′←
(
SW
0 I

)
where W is such that AW=−Ā mod q.

– RandBasis(S,A,y,β) takes as input a short basis S for A with respect to a syndrome y, and
returns a randomised basis S′ with small loss in quality.

The primary function of this delegation mechanism in our scheme will be to support attribute delegation
and issuance. The matricesAwill be the public key of an authority or user, the attributes will be the syn-
dromes, and delegation from authority i to j will consist of extending the short basis TAi to T[Ai||Aj].

Bonsai Signature [12]. The signature scheme is instantiated with the following parameters: a
message m of length k=O(logq), a bound β=O(

√
nlogq), a Gaussian parameter α=β ·ω(

√
logq),

a uniform matrix A0∈Zn×m
q , with a corresponding basis S0 of Λ⊥(A0) such that ∥S0∥⩽β. Finally,

choose {Ab
i}ki=1 and b∈{0,1}. Set pk=(A0,{Ab

i}ki=1), sk=(S0), return (sk,pk).

– Sign(sk,m) takes as input a mess m and secret key sk=S0, it returns the signature σ computed

as follows. Define Am :=[A0||Am[1]
1 ||...||Am[k]

k ], and compute a short vector

z←SampleD(ExtBasis(S0,Am),0,β). In the rare event that z=0 or ∥z∥⩾β ·
√
m′, then resample

z. Set σ=z.
– Verify(pk,σ) upon input of a candidate signature σ=z, output ‘accept’ if z≠0,∥z∥⩽β ·

√
m′ and

Amz=0, else output ‘reject’.

This scheme offers static unforgeability [12], which requires the adversary to submit signing queries be-
fore it learns the verification key, under the SIS assumption. Using a family of chameleon hash functions,
there is a generic transformation from static to adaptive unforgeability [29]. For our construction, we
will use the lattice-based Chameleon Hash Function from Ducas and Miccancio [16], which we denote
H2 :Z∗

q→{0,1}k. The security properties intuitively require recovery of a short basis for A given a dele-
gated basisTA′ forA′ to be hard. This is the case due to the statistical independence ofTA andTA′ [12].
We will use Bonsai Signatures to prove attribute delegation and as a one-time signature in VLR-HABS.
Arguing in Zero-Knowledge. Proving knowledge of a valid Bonsai signature requires proving
the following two relations, ∥z∥∞ ⩽ β and Aidz=u mod q. To show the latter, we use the tech-
niques of Langlois et al. [30]. We rewrite the equation so that the matrix A is independent of id,
we do this by instead showing Afid(z)=u mod q, and that fid(z) is constructed correctly, that is,
fid(z)∈Secretβ(id). Now that only one term forms the witness, we can proceed to efficiently prove
the relation in zero-knowledge. This is done as follows:

– Extend A to A∗←MatExt(A), and compute z∗1,...,z
∗
p←VecDE(z,id).

Since z∗=
∑p

j=1βj ·z∗j , and the last two columns of A∗ are 0, then we have the following:

A∗

 p∑
j=1

βj ·z∗j

=u mod q⇐⇒Az=u mod q

In the Stern-like protocol, we will show the following:

A∗

 p∑
j=1

βj(z
∗
j+rz∗j )

− u=A∗

 p∑
j=1

βjrz∗j


To complete the proof, the prover is also required to show z∗1,...,z

∗
p∈SecretExtβ(id).
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4.3 Identity-based Encryption

We will use the Identity-based Encryption (IBE) scheme from Gentry, Peikert and Vaikuntanathan
(GPV-IBE) [22], which has the following parameters: a security parameter λ, a message m with length l,
an integer n=O(λ), a prime modulus q=O(n2), an integer m⩾2nlog q, an integer bound β=O(

√
n),

an efficiently sampleable distribution χ over Z parametrised by α⩽1/
√
m+1(ω(

√
logm·logn)) and

a hash function H :{0,1}→Zn×l
q .

The master public-secret key pair is (sk,pk) = (TD,D) generated via GenBasis(n,m,q). For a
identity id∈{0,1}∗, the extraction algorithm first hashes id to a matrix N=[g1||...||gl]∈Zn×l

q using
H and then runs si←SampleD(D,TD,gi,α) for i∈ [1,...,l]. Finally, it defines the decryption key for
a user id as Sid=[s1||...||sl]∈Zm×l

q .

– Enc(pk = D,m) outputs a ciphertext f := (f1, f2,) computed as f1 ← DT · s+ e1 ∈ Zm
q and

f2←NT ·s+e2+m·⌊q2⌋∈Z
l
q, where e1,e2←χ, s←↩Zn

q and N=H(id).
– Dec(sk=Sid,f) outputs the plaintextm computed viam′←f2−ST

idf1∈Zl
q. For each i∈ [1,...,l],m[i]=0

if m′[i] is closer to 0 than ⌊q2⌋, otherwise m[i]=1. Return m=[m[1]||...||m[l]].

This scheme in [22] is proven to be IND-CPA secure under the LWEn,m,q,χ assumption. We will use
the CHK transform [11] to achieve a IND-CCA secure PKE.
Proving Correctness of Encryption. Here we show how to make it compatible with the Stern-like
techniques of [34]. For our scheme, the signer will be required to show that each identity that appears
in the delegation path of an attribute is correctly encrypted into a ciphertext under a one-time
identity, usings tracing authority’s public key. Using the TA’s secret key, it can recover identities from
a signature. For a plaintext m∈{0,1}d, using the Hermite Normal Form (HNF) variants of LWE, the
relation among the related objects can be expressed as:

Pe+(0g−d||⌊q/2⌋m)=f mod q, where P=

(
DT I
NT I

)
where P∈Zg×h

q (for g=m+l,h=n+m+l) and I is the identity matrix, f=[f1||f2]T ∈Zg
q is a ciphertext,

e := [s||e1||e2]T ∈ Zh
q is the encryption randomness satisfying ∥e∥∞ ⩽ β. To construct a verifiable

encryption protocol given (P,f), the prover with knowledge of (e,m), can argue in zero-knowledge
that f is a correct encryption of m. Hence, we are required to show:

– To argue that m∈{0,1}d, we extend m to m∗∈B2d (the set of all vectors in {0,1}2d with Hamming
weight d), then use a random permutation to show m∗∈B2d.

– To argue that ∥e∥∞⩽β, we form the vectors e1,...,ep←VecDec(e), and use random permutations
ϕj to hide the value of ej, and then show ϕj(ej)∈B3h.

– Next, we define the following two extended matrices:

P∗=[P||0g×h]∈Zg×3h
q ; Q=

(
0(g−d)×d 0(g−d)×d

⌊q/2⌋Id×d 0l×d

)
∈{0,⌊q/2⌋}g×2d

– We then have that:

P∗

 p∑
j=1

βjej

+ Qm∗=Pe+(0g−d||⌊q/2⌋m)=f mod q

In Stern’s framework, we will use masking vectors to hide the true values of the wtiness, and
instead show that:

P∗

 p∑
j=1

bj(ej+rej)

+ Q(m∗+ rm∗) − f=P∗

 p∑
j=1

bjrej

+ Qrm∗ mod q

where rej∈Z3h
q for j∈ [1,p] and rm∗∈Z2d

q are the uniformly random masking vectors.
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Proving Correctness of Decryption. Parse a ciphertext f as [f1||f2]T , each in Zd
q, we aim to show

that a ciphertext correctly decrypts to a candidate message under the identity’s secret key derived
from the master key pair. That is, we show the relation m′=f2−Sidf1. For our scheme, each of the
components will be public so we are not required to produce a proof, as knowledge of Sid is sufficient.
The Tracing Authority will perform this action part alongside producing the plaintext m, to recover
the identities contained within the signature. It is publicly verifiable only when Sid is published.

4.4 Inner-Product Signing Policies

In this work, we consider inner-product predicates, which capture disjunctive, conjunctive and threshold
policies, and polynomial evaluations. We say that a set of attributes A satisfies the policy Ψ if the
inner product of an attribute vector a and predicate vector p is 1 3. That is:

Ψ(A)=1⇐⇒⟨a,p⟩=1 where a=[a1||...||aδ]T for aj∈A, and p=[p1||..||pδ]
T

We note that for construction, if δ>1, then the policy Ψ must have a certain structure. Precisely,
this is of the form Ψ =∧δi=1Ψi(ai). That is, it consists of a conjunction of sub-policies Ψi that are
themselves represented by inner-products, but only over single attributes. We stress this supports
Conjunctive Normal Form (CNF) formulas and therefore contains all (∧,∨)-policies (inc. threshold).
If we consider the case that δ=1, i.e. a user submits a single attribute to the signing policy, then we
obtain the scenario considered in all existing attribute-based signatures that support inner-product
policies. Thus this seemingly restricted form for the policy Ψ is actually more general than both HABS
constructions in [15,21] and all existing IP-ABS schemes [46,57]. We do not consider this restriction
further, as we generically refer to a policy vector p and make the assumption it takes this form.

We will require a zero-knowledge argument of knowledge of this relation, and we detail how we
achieve this in the Decomposition-Extension framework as follows. Let ã=bin(a)∈{0,1}δn⌈logq⌉, then
we have that a=G·ã, i.e. the binary decomposition of a, a gadget matrix G :=I⊗[1,2,...,2⌈logq⌉−1].
Then we can rewrite this as

⟨G·ã,p⟩=1 mod q.

We further transform it, a′←VecExt(ã),G∗←(G||0n×nlogq)∈Zn×2nlogq
q , which allows us to write:

⟨G∗·a′,p⟩=⟨a,p⟩=1 mod q.

In the Stern-like protocol, we will use the linearity of the inner product to instead show the following
equivalent identity, where ra is a randomly sampled masking vector.

⟨G∗·
(
a′+ra′

)
,p⟩−⟨G∗·ra′,p⟩=1 mod q.

5 VLR-HABS Scheme

In this section we detail the core contributions. Firstly we introduce the VLR mechanism in Section 5.1,
then the zero-knowledge protocol in Section 5.2, and present the scheme itself in Section 5.3.

5.1 New VLR Mechanism

We introduce a novel verifier-local revocation scheme that relies on the LWE and SIS hardness
assumptions. For our scheme, a central authority (RevA) maintains a list of revoked identities in a
list RevokeList. A user is required to produce and publish privacy-preserving revocation tokens during
the signing phase of the signature scheme. As part of verification, values from RevokeList are used
to check whether the revocation tokens pass or fails verification.

To create a revocation token, the user samples a uniform binary matrix B←↩ Bm×(d+1)n and
computes the LWE instance Cid=BRid+E for each id in the delegation paths, where Rid is the

3 The choice of 1 here is arbitrary, and any non-zero c∈Zq can be used provided it is consistent amongst all parties.
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encoded id of the entity, and E is a small error matrix sampled from a distribution χ. This is repeated
for each identity contained in the delegation paths of the obtained attributes, i.e. id∈warr. In this work,

we compute Rid=[R||Rid[1]
1 ||...||Rid[d]

d ] where id[i] is the ith bit of id and Rb
i are uniformly sampled

matrices with elements in Zq, and are published in the public parameters. Finally, R is the public
key of the RevA, whose corresponding secret key is a trapdoor TR that allows RevA to solve SIS
instances with respect to R. At a high level, due to the pseudo-randomness of binary-secret LWE,
we argue that C is computationally close to a sample from a uniform distribution, thus no adversary
can learn the identity committed to in C, which more generally maintains the anonymity properties
of the VLR-HABS scheme.

To revoke an identity, RevA uses its trapdoor forR to compute an extended trapdoor forRid, using
the ExtBasis and RandBasis algorithms. It then invokes SampleD to compute a small vector y such that
Ridy=0, i.e. solving the SIS problem forRid. It appends y to a public revocation list RevokeList. During
the verification phase, the verifier obtains RevokeList from the revocation authority and computes
Cidy=BRidy+Ey for each y∈RevokeList, whereB is a binary matrix of size n3×m3 and E is an error
matrix of size n3×k3. If id has been revoked, then Ridy=0 for some y∈RevokeList and hence Cidy=
BRidy+Ey=B0+Ey=Ey and ∥Cidy∥=∥Ey∥⩽nβ2. If ∥Cidy∥>nβ2 for all y∈RevokeList and Cid

in the signature, then the verifier is assured that the signature was not generated using a revoked id.
To show the correctness of C and that it contains the IDs encrypted in the ciphertext, the signer is

required to generate a zero-knowledge proof. In the decomposition-extension framework for Stern-like

protocols, this is done by instead letting R∗ :=[R||R0
1||R

(1)
1 ||...||R

(0)
d ||R

(1)
d ] and proving the following

relation:

Cid= f̂id(B)R∗+E.

This is a matrix-extension of the trick we used earlier in Section 4.1 to remove the dependency of
Aid on id, which makes the resulting relation linear, and is efficiently provable. We also note that R∗

is now public so the prover only needs to hide B,E and id as part of the witness.

5.2 Zero-Knowledge Protocol

We now construct a Stern-like protocol that will form the core building block of our VLR-HABS
scheme. The protocol will allow a signer to convince the verifier in zero-knowledge that:

1. The warrant contains a set of committed attributes that satisfy the policy.

2. For each attribute in the warrant, the signers possess a valid delegation path.

3. The ciphertext is a correct encryption of the IDs that appear in the warrant.

4. The signer’s revocation token is correctly committed via an LWE function.

The protocol is instantiated with the following parameters:

– Public parameters: A,R,{Ab
i}ldi=1,{Rb

i}di=1,G
∗,P∗,Q,{Cid}id∈warr,{fi}δi=1,p,u.

– The prover’s witness are the vectors uid,z0,{zi,ai,ei}δi=1,{id}id∈warr and the matrices {Bid,Eid}id∈warr.

The goal is prove the following relation:

R1 :=


A[id1||...||idl](zi)=ai mod q1,i∈ [1,δ] and idj∈warr[ai]
Cid=BRid+E mod q3 for id∈warr
fid=P∗e+Q[id1||...||uid] mod q2 for every id ∈warr[ai], i∈ [1,δ]
⟨a,p⟩=1 where a=[a1||...||aδ] ∧ Auid(z0)=u mod q1

A full and detailed description of the protocol is provided in Appendix A.

Theorem 1. Let COM be a statistically hiding and computationally binding string commitment
scheme. Then the protocol given in Section 5.2 is a zero-knowledge argument of knowledge with perfect
completeness with soundness error 2/3. Explicitly, that is:
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– There exists a polynomial-time simulator that outputs an accepting transcript that is statistically
close to a transcript produced by an honest prover with a valid witness.

– There exists a polynomial-time extractor, such that, on input of a commitment CMT and 3 responses
(RSP1,RSP2,RSP3) corresponding to each challenge {1,2,3}, outputs a valid witness for the relation
R1.

Proof. The proof follows standard arguments for Stern-like protocols, and can be found in Appendix B.

5.3 Specification of VLR-HABS

We now give high-level description of our lattice-based VLR-HABS scheme and present the formal
algorithms in Figures 5 to 7.

Setup: The setup algorithm generates the public parameters and is executed by a trusted party
to initiate the scheme, it begins by setting a parameter d where 2d will be the maximum num-

ber of AAs and Users in the scheme. It samples uniformly random matrices {A(b)
i }ldj=0←↩Zn1×m1

q ,

{R(b)
j }dj=1←↩Zm3×k3

q (b∈ {0,1}) that generate the public keys and revocation tokens respectively.
Two further matrices are computed (A,R) with corresponding trapdoors (TA,TR) according to
GenBasis(n1,m1,q1) and GenBasis(n3,m3,q3), respectively. The key pair (skRA,pkRA):=(TA,A) is that
of RA and (skRevA,pkRevA):=(R,TR) is for the RevA. The TA also generates its key pair for IBE-GPV
as (skTA,pkTA) :=(TD,D)←GenBasis(n2,m2,q2). Finally, it samples a vector u∈Zn1

q that is used in

the key-issuing phase of the scheme, and defines the attribute universe as A={ai}Ni=1, for N total

attributes. It outputs these under public parameters pp :=(A,R,D,u,{A(b)
i }ldj=1,{R

(b)
i }dj=1,A), which

will be an implicit input to all algorithms.

UKGen: To join the scheme, the RA selects an identity id as a binary string of length d. It

computes the corresponding public key upk :=Auid as [A||Aid[1]
1 ||...||Aid[d]

d ]. It computes TAuid
←

RandBasis(ExtBasis(TA,Auid),u,β1), and then computes the user signing key as
usk=z0←SampleD(TAuid

,Auid,u,β1), which satisfies Auidz0=u. The key pair is issued to the user.

AKGen: For an Authority joining the scheme, it is issued an identity id∈{0,1}d. The public and secret
keys for the authorities are issued during attribute delegation as they are dependent on both the
attribute and position within the hierarchy.

AttIssue: This algorithm takes as input an attribute att=a, an AA secret key aski, a public key apki+1

for either an IA or a user, and warr containing a matrix Ai with corresponding trapdoor TAi. For
the target vector (or syndrome), the attribute a, a kth level AA extends its public key Aid1||...||idi :=

[A||Aid1[1]
1 ||...||Aidi[1]

kd+1||...||A
idi[d]
(k+1)d] to a k+1-level entity by computing A′← [A

idj[1]

(k+1)d+1||...||A
idj[d]

(k+2)d]

and executing TAj,att←RandBasis(ExtBasis(TAid
,[Aid||A′]),a,β1). If it is issuing to an authority, it

sets skdi←TAj,att, if it is issuing to a user, then it first computes a Bonsai signature on Aj with
respect to a. That is, a short vector z← SampleD(TAj,att,Aj,a,β1) and sets skdi = z. It appends
(id,Aj,a,skdi) the (possibly empty) warrant and returns warr.

Revoke: To revoke an identity, the algorithm Revoke takes as input a user identity, id. Using its secret

key, skRevA=TR, a trapdoor for R, it sets Rid=[R||Rid[1]
1 ||...||Rid[d]

d ] and then computes the revocation
token y as a short vector that satisfies Ridy=0. It appends y to RevokeList.

Sign: The signing algorithm takes as input a set of attributes {ai}δi=1 with associated {Aidi,TAidi
=

zi}δi=1, the user’s secret key usk=z0, a messagem and a policy Ψ , and we denote the signer’s ID as uid for
clarity. Recall that for each attribute, the delegated keys are short vectors that solveAidizi=ai, and sim-
ilarly the public value u proves that the signer has knowledge of usk as it solves Auidz0=u. It then pre-
pares its revocation tokens by computing an LWE instance as, for each id∈warr,Cid=BRid+EwhereB
is a binarymatrix sampled fromBm3×n3 andE is an error matrix sampled from χ.Bmust be a binary se-
cret so that the norm is small and we can use the zero-knowledge protocol described in Section 4.1. It gen-
erates keys for a one-time signature as (osk,ovk) and encrypts the identities of the AAs in the delegation
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path under the Identity-based Encryption Scheme (GPV-IBE) using ovk as a pseudo-identity. To do this,

it samples e1,e2←χ and s←↩Zn
q and computes the following: f

(1)
i =Ds+e1,f

(2)
i =NTs+e2+⌊q/2⌋idi

and sets fi=[f
(1)
i ||f

(2)
i ], for each i∈ [1,δ]. It generates the zero-knowledge argument of knowledge π,

described in Section 5.2 for the relation R1. In particular, ZKAoK ensures that for each identity that
appears in a delegation path for an attribute also, it appears in a corresponding ciphertext and revoca-

tion token. This is done by showing that the vectors t
(j)
i,z and matricesTid,B (as described in Section 5.2)

belong to the sets SecretExtβ(d
(1)
i ) and SecretExtβ(d

(1)
id ), respectively for a delegation path i, identity id

and where the vectors di are the message encrypted in the ciphertext. Using the Fiat-Shamir heuristic 4,
the signer turns the interactive protocol into non-interactive and binds the message to the message, pol-
icy, revocation tokens C={Cid}id∈warr, ciphertext f :={fi}δi=1 and proof. It computes the challenge as:

CH={Ch}ti=1=H1(m,Ψ,f,C,ovk,pp,{CMTi}ti=1)

Finally, it computes a one-time signature over the proof π, ciphertext f, message m and policy
Ψ as σo. Since the choice of the OTS can be generic we leave the function here unspecified. However,
for security and instantiation, we shall reuse the Bonsai signature scheme from [12], with use of a
chameleon hash function H2 :Z∗

q→{0,1}m̃ (see Section 4.2). It outputs the VLR-HABS signature:
σ=(f,C,π,σo,ovk).

Verify: To verify a candidate signature σ, a verifier obtains the list RevokeList from the RevA, potentially
offline and before the signature is presented. It parses σ as (f,C,π,σo,ovk) and checks that π and σo pass
verification. It then computes Cidy and outputs 0 if any Cidy⩽n3β23 for any y∈RevokeList, id∈warr.
Trace: On input of a candidate VLR-HABS signature, the tracing algorithm parses σ as
(f,C,π,σo,ovk). It first verifies σ, then, using its secret key, TD it can create an identity-dependent
decryption key Sovk for a ciphertext fid, with which it can extract the user ID and identities of the
authorities that appear in the delegation path of any attribute. This algorithm outputs Sovk,{idi}δi=1.

Judge: This algorithm is then able to verify the correctness of decryption of this IBE-GPV ciphertext.
It takes as input the decryption key Sovk and checks that it is a valid key for fi, that is, it checks

DS
?
=H0(ovk) and ∥S∥⩽ β2. If this passes, it also checks the decryption is correct by evaluating

f
?
=P∗e+Qid and outputs 1 if all checks hold, else it outputs 0. By using a one-time identity in our

IBE scheme, we are able to bypass expensive zero-knowledge proofs in this stage and instead only
require the Trace algorithm it output a verifiable key for the “identity” ovk.

Detailed description. We provide the complete specification of our protocol only for the Setup and
AKGen algorithms, and illustrate UKGen, AttIssue, Revoke, Sign, Verify, Trace, Judge in Figures 5 to 7.

– Setup(λ). It generates the Root Authority and Revocation Authority key-pairs as (skd0,pkd0):=
(TA,A)← GenBasis(n1,m1,q1), and(skRevA,pkRevA) := (TR,R)← GenBasis(n3,m3,q3). Next it
samples random matrices {Ab

i}ldi=1←↩Zn1×m1
q1 and {Ri}di=1←↩Zn3×m3

q3 . During this phase, the TA
keys are also computed as (skdTA,pkdTA)= (TD,D)←GenBasis(n2,m2,q2). Define χ2 be a β2
bounded distribution DZ,α2, and similarly let χ3=DZ,α3 (i.e. bounded by β3).

– AKGen. Sample and output id←↩{0,1}d.

6 Security, Efficiency and Extensions

In this section, we provide analysis of correctness and security followed by efficiency considerations
and parameter selection for our VLR-HABS scheme. We start by stating and proving two lemmata
that we will use in the analysis of our scheme.

4 As in [4], we choose to present the FS heuristic for simplicity. We note, however, that one could instantiate our
scheme with the Unruh transform of [55] to achieve security in the quantum random oracle model (QROM). This
follows from the fact that the transform is generic, and applies to any Sigma protocol that has the standard properties
of Honest Verifier Zero-Knowledge and Special Soundness.
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UKGen (ask0)

0 : Sample uid←↩{0,1}d

1 : Auid=[A||Aid[1]
1 ||...||Aid[d]

d ]

2 : TA∗←ExtBasis(TA,Auid)

3 : zuid←SampleD(T′
A∗ ,Auid,u,β1)

4 : return (id,skdid,pkdid)=(uid,zuid,Auid)

AttIssue ((warri),att,[pkdj|upk])

0 : Parse (skdi,att,pkdj) as ((TAi,a,Ai,idi),Aj,idj)

1 : A′← [A
idj[1]

(k+1)d+1||...||A
idj[d]

(k+2)d]

2 : T′
A∗←RandBasis(ExtBasis(TAid ,[Aid||A′]),a,β1)

3 : if |idj|=ld then

4 : zj←SampleD(T′
A∗ ,[Ai||Aj],a,β1)

5 : skdj,att←zj

6 : else , skdj,att←TA∗

7 : return warr=warri∪{idj,Aj,skdj,att,a}

Fig. 5. Algorithms UKGen and AttIssue of our VLR-HABS construction.

Sign ((usk,warr),pkdid,m,Ψ)

0 : Parse warr as {idi,j,Ai,j,zi,ai}i∈[1,δ],j∈[1,l] with |Ψ|=δ

1 : (ovk,osk)←OTS.KGen(λ)

2 : N :=H0(ovk),s←↩Zn
q ,e1←↩χ2,e2←↩χ2

3 : foreach i∈ [1,δ]

4 : f
(1)
i =DTs+e1,f

(2)
i =NTs+e2+⌊q/2⌋idi

5 : fi=[f
(1)
i ||f

(2)
i ]

6 : foreach i∈warr

7 : Ri← [R||Rid[1]
1 ||...||Rid[d]

d ]

8 : Bi←↩Bk2×(d+1)n2 ,Ei←↩χm
3 ,Ci←BiRi+Ei

9 : f :={fi}δi=1,C :={Ci}i∈warr

10 : π :=({CMTi,RSPi,CHi}ti=1)←ZKAoK(uid,z0,{idi,Bi,Ei}i∈warr,

{ei,zi,ai}δi=1,(C,Q,P,f,ovk,Ψ,pp),R1)

11 : σo←OTS.Sign(osk,H2(m,Ψ,π,f,C))

12 : return σ←(π,σo,ovk,f,C)

Verify (pkd0,σ, RevokeList)

0 : Parse σ as (π,σo,ovk,{fi}δi=1,{Ci}i∈warr)

1 : if ∃y∈RevokeList and ∃Ci :i∈warr s.t. Ciy⩽n3β
2
3, return 0

2 : if ZKAoK.Verify(π,Ψ,m,{Ci}lδi=1)≠1,return 0

3 : if OTS.Verify(ovk,σo,H2(m,Ψ,π,f,C))≠1,return 0

4 : else return 1

Fig. 6. Algorithms Sign and Verify of our VLR-HABS construction.

Lemma 1. Let β=poly(n), q⩾(2nβ2+1)2 and m⩾2n, then for a fixed y∈Zm
q with ∥y∥∞⩽β,and

a uniformly random matrix C←↩Zk×m
q , we have

Pr[∥Cy∥∞⩽nβ2]⩽negl(n)

Proof. Using the fact that Cy is uniform in Zn
q , we have:

Pr[∥Cy∥∞⩽nβ2]⩽
(2nβ2+1)m

qm
⩽

1

(2nβ2+1)m
⩽(2nβ2+1)−n⩽negl(n)

In our scheme, as C is an LWE sample, it will only be statistically close to uniform, so one should
account for a negl(n) in the first inequality, which carries through and is absorbed in the final bound.
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Revoke (TR,(id,RevokeList))

0 : Rid← [R||Rid[1]
1 ||...||Rid[d]

d ]

1 : TR∗←ExtBasis(TR,Rid)

2 : y←SampleD(T′
R∗ ,R∗,0,β3)

3 : return RevokeList=RevokeList∪{y}

Trace (σ,TD,RevokeList)

0 : Parse σ as (π,Ψ,m,{fi}δi=1,{Ci}lδi=1)

1 : if Verify(A0,(π,σo,ovk,{fi}δi=1,{Ci}lδi=1),RevokeList)=1 then

2 : Sovk←SampleD(TD,D,H0(ovk),β2)

3 : for i∈ [1,...,δ] :

4 : Parse fi=[f
(1)
i ||f

(2)
i ]

5 : [id1||...idl−1||uid]=⌊f(1)i −Sovk ·f(2)i ⌉
6 : warr=warr∪{id1,...,uid}
7 : return (warr,Sovk)

8 : else return ⊥

Judge (σ,warr,Sovk,RevokeList)

0 : Parse σ as (π,Ψ,m,{[f(i)1 ||f
(i)
2 ]T}δi=1,{Ci}lδi=1)

1 : if ⌊f(i)2 −Sovk ·f(i)1 ⌉≠warr[i] for any i∈ [1,..,δ], return 0

2 : elseif DSovk ≠H0(ovk), return 0

3 : else return 1

Fig. 7. Algorithms Revoke, Trace and Judge of our VLR-HABS construction.

Lemma 2. Let β = poly(n), then for (R,B,C,E,y)∈Zm×k
q ×Zn×m

q ×Zn×k
q ×Zn×k

q ×Zk
q such that

Ry=0 with ∥y∥∞⩽β and C=BR+E, where B,R are uniformly random and E is drawn from
β-bounded distribution χ over Zn

q , then

Pr[∥Cy∥∞⩽nβ2]=1

Proof. Expanding out the computation, we have:

Cy=(BR+E)y=BRy+Ey=B·0m×k+Ey=Ey

Noting that ∥E∥∞⩽β and ∥y∥∞⩽β, we derive ∥Ey∥∞⩽nβ2 from the Cauchy-Schwarz Inequality.

Theorem 1. Our VLR-HABS construction given in Figures 5 and 6 and ?? is correct.

Proof. See Appendix C.

Theorem 2. Let COM be a statistically hiding and computationally binding string commitment
scheme. Then our VLR-HABS construction given in Figures 5 to 7 offers Path Anonymity, Non-
frameability and Path Traceability in the Random Oracle Model if the LWEn2,m2,q2,χ2,LWEn3,m3,q3,χ3

and SISn5,m5,q5,β5,SISn1,m1,q1,β1 and SISn4,m4,q4,β4 assumptions hold, H0 and H2 are collision resistant
and H1 is a random oracle.

Proof. The proof follows from Lemmas 3 to 5 found in Appendix D.

6.1 Efficiency and Parameters

We instantiate the scheme with the parameter choices given in Table 1 so that it runs in polynomial time
and such that the security and correctness properties hold. We used the estimator by Albrecht et al. [2]
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to evaluate the estimated security of each LWE and SIS instance. For the values relating to the Bonsai
signature, GPV-IBE, OTS and KTX commitment scheme COM, we directly use conditions as given in
their original works. For the ZKAoK we use the parameters of the underlying commitment scheme and
use a soundness parameter t=ω(λ). The values for ni are assumed to be fixed and are typically a small
polynomials in λ. The VLRmechanism uses values from the trapdoor delegation in [12] restricted to the
conditions of Lemmas 1 and 2.We note that if one relaxes the perfect correctness given by Lemma 2, one
could obtain smaller values for q3 at the trade off of introducing a correctness error. According to Lindner
and Peikert [33], this error is close to an exponential exp(−π(β3α3)2), where α is the Gaussian parameter
for the LWE instance of C. We briefly discuss the key sizes and algorithm complexity with respect
to the security parameters ni. Public keys are elements of Zn1×m1

q which is quadratic in n1. The signing
operation takes t·O(|warr|(n21+n22+n23)+n24) steps, where t is the soundness parameter for ZKAoK,
and the length of produced signatures is also quadratic in the parameter n1. Signature verification
also runs in this asymptotic bound. The revocation check that completes the verification algorithm
is linear in the number of revoked users, which matches other VLR schemes such as [30] where they
note this complexity for VLR seems unavoidable. The Trace and Judge algorithms are linear in |warr|.

We briefly note some final generic changes to improve upon efficiency. Firstly, the protocol benefits
from the pre-computation of offline/online signatures [52] that are naturally compatible with our
one-time signature. Here, the OTS signature is produced ahead of time (potentially batched), using
a chameleon hash function for H3, that would allow the signer to find a corresponding randomness
to match the message it must sign when generating the VLR-HABS signature. Secondly, as noted in
[49], commitments in ZKAoK can be hashed prior to sending to minimise size of the signature, at the
expense of additional hash computations by the signer and verifier. Thirdly, our delegation techniques
consist of delegating short basis have order O(n2), per issuance. More efficient trapdoor delegations
exist, for example the lattice trapdoor by Micciancio and Peikert [42], however it is not clear how
one might argue security for VLR-HABS as the structure of the resulting Boyen signature does not
lend itself to be embedded over multiple delegations. Finding a more efficient yet compatible trapdoor
could be viewed as an interesting open problem. Finally, we note using complexity assumptions and
tools for ideal lattices [39] instead of integral lattices reduce most of their associated operations by
about a linear factor in the security parameter. The practical suitability of the resulting schemes may
still depend on careful selection of parameters, nonetheless the techniques we have used in this paper
can be realised from such structures and do provide generic overall improvements.

Table 1. Parameter Selection for VLR-HABS based on its building blocks. We target 128-bit security, and so set the
soundness parameter t=219. We set ID bit length to be d=16, which allows the schemes to support 65536 unique
entities across a hierarchy of depth l=3. Note here that m′

i are the number of samples in LWE and SIS challenges.

Building Blocks i ni m′
i mi qi βi αi

Bonsai Signature 1 500 618 9840 221 31440 —

GPV-IBE 2 400 — 16800 216 — 10−4

VLR 3 1400 1840 29440 262 — 10−3

OTS 4 500 41 656 221 31440 —

COM 5 400 — 25600 216 3200 —

6.2 Revoking Attributes

We now briefly describe how to achieve attribute revocation for our VLR-HABS scheme. We im-
mediately observe that we can apply similar techniques to those used to revoke users. In particular,
the signer, upon generating a VLR-HABS signature, also commits to the attributes used as an LWE
instanceC=BÃ+E, where Ã is the binary decomposition of an attribute concatenated withR, [R||a].
Revocation is then performed by the authority by computing a short vector such that Cy⩽nβ2. The
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argument ZKAoK would have to be modified to show that the attributes are correctly committed to.
Minor modifications to the security properties path anonymity, non-frameability and path traceability
are required. In particular, in path anonymity we prevent the adversary from revoking an attribute
used in the challenge signature, as this would allow it to trivially break path anonymity. This can
be achieved by standard bookkeeping techniques and the proofs follow a similar strategy.

This idea could be further extended to revoking an attribute for a specific user. By altering the
delegation process to delegate an attribute of the form id||att (the bit-string concatenation) and further
requiring the ZKAoK to link id to the identity used in Aid and Rid. This could be achieved using
the techniques already used in Section 4.1. We finally note that this would require the policy to be
encoded in a specific format that, intuitively, ignores the first d bits of the attribute id||att.

7 Conclusion

The VLR-HABS scheme proposed in this paper improves upon security and functionality of existing
HABS constructions by proposing a lattice-based scheme which supports verifier-local revocation and a
wider range of signing policies. Our scheme is based on LWE and SIS assumptions which are believed to
offer post-quantum security. It supports inner-product relations which allow for conjunctive, disjunctive
and threshold policies as well as polynomial evaluations of attributes. Revocation in our HABS schemes
uses a novel VLRmechanism that allows revocation of signers, attributes as well as intermediate authori-
ties. Our scheme also implies the first lattice-based (non-hierarchical) ABS scheme with these properties.

References

1. M. Ajtai. Generating hard instances of lattice problems. STOC ’96. ACM, 1996.
2. M. R. Albrecht, R. Player, and S. Scott. On the concrete hardness of learning with errors. Journal of Mathematical

Cryptology, 9:169 – 203, 2015.
3. G. Ateniese, D. Song, and G. Tsudik. Quasi-efficient revocation of group signatures. In Proceedings of the 6th

International Conference on Financial Cryptography, FC’02, 2002.
4. R. E. Bansarkhani and A. E. Kaafarani. Post-quantum attribute-based signatures from lattice assumptions.

Cryptology ePrint Archive, Report 2016/823, 2016. https://eprint.iacr.org/2016/823.
5. C. Baum, H. Lin, and S. Oechsner. Towards practical lattice-based one-time linkable ring signatures. In Information

and Communications Security, 2018.
6. M. Bellare and G. Fuchsbauer. Policy-based signatures. In PKC 2014, pages 520–537, 2014.
7. D. Boneh and H. Shacham. Group signatures with verifier-local revocation. CCS ’04. ACM, 2004.
8. E. Brickell. An effcient protocol for anonymously providing assurance of the container of a private key. 2003.
9. J. Bringer and A. Patey. Backward unlinkability for a vlr group signature scheme with efficient revocation check.

In SECRYPT, volume 2012, 2011.
10. J. Camenisch, G. Neven, and M. Rückert. Fully anonymous attribute tokens from lattices. In Security and

Cryptography for Networks, pages 57–75. Springer Berlin Heidelberg, 2012.
11. R. Canetti, S. Halevi, and J. Katz. Chosen-ciphertext security from identity-based encryption. In EUROCRYPT

2004, 2004.
12. D. Cash, D. Hofheinz, E. Kiltz, and C. Peikert. Bonsai trees, or how to delegate a lattice basis. J. Cryptol.,

25(4):601–639, Oct. 2012.
13. P.-L. Cayrel, R. Lindner, M. Rückert, and R. Silva. A lattice-based threshold ring signature scheme. In M. Abdalla

and P. S. L. M. Barreto, editors, LATINCRYPT, 2010.
14. C.-K. Chu, J. K. Liu, X. Huang, and J. Zhou. Verifier-local revocation group signatures with time-bound keys.

In ASIACCS. ACM, 2012.
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Appendices

A Zero-Knowledge Protocol

The protocol is as follows:

– Public parameters: A,R,{Ab
i}ldi=1,{Rb

i}di=1,G
∗,P∗,Q,{Cid}id∈warr,{fi}δi=1,p,u.

– The prover’s witness are the vectors uid,z0,{zi,ai,ei}δi=1,{id}id∈warr and the matrices {Bid,Eid}id∈warr.

The goal is prove the following relation:

R1 :=


A[id1||...||idl](zi)=ai mod q1,i∈ [1,δ] and idj∈warr[ai]
Cid=BRid+E mod q3 for id∈warr
fid=P∗e+Q[id1||...||uid] mod q2 for every id ∈warr[ai], i∈ [1,δ]
⟨a,p⟩=1 where a=[a1||...||aδ] ∧ Auid(z0)=u mod q1

Prior to the interaction, the prover P and the verifier V both extend the matrix

A′ :=[A||A(0)
1 ||A

(1)
1 ||...||A

(0)
ld ||A

(1)
ld ] toA∗←MatExt(A′) and similarlyR′ :=[R||R(0)

1 ||R
(1)
1 ||...||R

(0)
d ||R

(1)
d ]

to R∗←MatExt(R). Both parties also compute G∗ which is the gadget matrix defined in Section 4.4,
and also G′ which is also a gadget matrix but of size n1×n1logq1. The prover then prepares its
witness vectors with the Decomposition-Extension techniques for the values p1=log2(β1),p2=log2(β2)
and p3=log2(β3). That is,

id∗←VecExt2(id),∀id∈warr
{z0,1,...,z0,p1}←VecDE(z0,[uid

∗])
{zi,1,...,zi,p1}←VecDE(zi,[id

∗
1||...||id∗l−1||uid∗]),∀i∈ [1,δ]

{ei,1,...,ei,p2}←VecDec(ei),∀i∈ [1,δ]
Bid←MatDE(Bid,id

∗),∀id∈warr
{Eid,1,...,Eid,p3}←MatDec(Eid),∀id∈warr

The protocol follows the typical format of a Σ protocol, and is executed in 3 moves.
1. Commit. To begin, P uniformly samples randomness r1, r2 and r3 for COM, but we omit
these from the equations below for readability. It should be understood that ri is an implicit
input in the commitment ci. It then samples the random permutations and masking vectors
as:
ρi←↩{0,1}ld ri,id←↩{0,1}ld,∀i∈ [1,δ]
ϕ
(1)
i,z ,...,ϕ

(p1)
i,z ←↩P r

(1)
i,z ,...,r

(p1)
i,z ←↩Z

3m1(2ld+1)
q ,∀i∈ [1,δ]

ϕ
(1)
0,z,...,ϕ

(p1)
0,z ←↩P̂, r

(1)
0,z,...,r

(p1)
0,z ←↩Z

3m1(2d+1)
q

ϕi,a←↩S2n1⌈logq1⌉, ri,a←↩Z2n1⌈logq⌉
q for i∈ [1,δ]

ϕid,B←↩P Rid,B←↩Z
m3×2n3(2d+1)
q ∀id∈warr

ϕ
(1)
id,E,..,ϕ

(p3)
id,E←↩S3k3×m3 R

(1)
id,E,...,R

(p3)
id,E←↩Z

m3×3k3
q for id∈warr

ϕ
(1)
i,e ,...,ϕ

(p2)
i,e ←↩S3h, r

(1)
i,e ,...,r

(p2)
i,e ←↩Z3h

q ,∀i∈ [1,δ]
Let ρid=ρi[kd+1:2kd], i.e. for a kth level authority for attribute ai, take the d bits from d

(1)
i that

correspond to its position in the delegation path. This mapping links an encrypted identity’s position
in the ciphertext with its revocation token and location in the Bonsai signatures. This leaks no
information about the witness and should be assumed to be handled implicitly by the protocol. Let
ra :=[r1,a||..||rδ,a]T and compute:



c1=COM

(
{{ϕ(j)i,z}δi=1,ϕ

(j)
0,z}

p1
j=1,{ϕid,B,{ϕ

(j)
id,E}

p3
j=1}id∈warr,{{ϕ

(j)
i,e}

p2
j=1,ϕi,a,ρi}δi=1,ρ0

A
∗
(∑p1

j=1β
(j)
1 r

(j)
0,z

)
,

{
A∗

(∑p1
j=1β

(j)
1 ·r

(j)
i,z

)
−G′ri,a; P∗

(∑p2
j=1β

(j)
2 r

(j)
i,e

)
+Q∗ri,d

}δ

i=1

,

{
Rid,BR

∗+
∑p3

j=1β
(j)
3 R

(j)
id,E

}
id∈warr

,⟨G∗·ra,p⟩
)

c2=COM

(
{{Tρi◦ϕ

(j)
i,z(r

(j)
i,z)}δi=1,Tρ0◦ϕ

(j)
0,z(r

(j)
0,z)}

p1
j=1,{{ϕ

(j)
i,e(r

(j)
i,e)}

p2
j=1,ϕi,a(ri,a)}δi=1,

{Tρi(ri,d),Tρi◦ϕid,B(Rid,B),{ϕid,E(Rid,E)}p3j=1}id∈warr
)

c3=COM

(
{{Tρi◦ϕ

(j)
i,z(z

(j)
i +r

(j)
i,z)}δi=1,Tρ0◦ϕ

(j)
0,z(z

(j)
0 +r

(j)
0,z)}

p1
j=1,

{{ϕ(j)i,e(e
(j)
i +r

(j)
i,e)}

p2
j=1,ϕi,a(a

′
i+ri,a)}δi=1,Tρi(id

∗
i+ri,id),

Tρid◦ϕid,B(Bid+Rid,B),{ϕid,E(E
(j)
id +R

(j)
id,E)}

p3
j=1}id∈warr

)
It sends the commitment CMT = (c1, c2, c3) to V.

2. Challenge. The verifier sends a challenge CH←↩{1,2,3} to the prover.

3. Response. P replies as follows.

If CH=1, let d
(1)
i = idi⊕ρi then:

For i∈ [1,δ],j∈ [1,p1] : t(j)i,z =Tρi◦ϕ
(j)
i,z(z

(j)
i ),v

(j)
i,z =Tρi◦ϕ

(j)
i,z(r

(j)
i,z).

For j∈ [1,p1] : t(j)0,z=Tρ0◦ϕ
(j)
0,z(z

(j)
0 ),v

(j)
0,z=Tρ0◦ϕ

(j)
0,z(r

(j)
0,z).

For i∈ [1,δ] : ti,a=ϕi,a(ai),vi,a=ϕ
(j)
i,a(r

(j)
i,a).

For i∈ [1,δ],j∈ [1,p2] : t(j)i,e=ϕ
(j)
i,e(e

(j)
i ),v

(j)
i,e =ϕ

(j)
i,e(r

(j)
i,e).

For i∈ [1,δ] : ti,id=Tρi(id∗i ),vi,id=Tρi(ri,id)

For id∈warr :Tid,B= Tρi◦ϕ
(j)
id,B(Bid),Vid,B=Tρi◦ϕid,B(Rid,B)

For id∈warr,j∈ [1,p3] :T(j)
id,E=ϕ

(j)
id,E(E

(j)
id ),V

(j)
id,E=ϕ

(j)
id,E(R

(j)
id,E).

It sends the response

RSP :=({t(j)0,z,v
(j)
0,z}

p1
j=1,{{t

(j)
i,z ,v

(j)
i,z}

p1
j=1,{t

(j)
i,e ,v

(j)
i,e}

p2
j=1,ti,a,vi,a,ti,id,vi,id}δi=1,

{{T(j)
id,E,V

(j)
id,E}

p3
j=1,Tid,B,Vid,B}id∈warr)

If CH=2, let d
(2)
i =ρi then:

For i∈ [1,δ],j∈ [1,p1] : ψ(j)
i,z =ϕ

(j)
i,z ,w

(j)
i,z =z

(j)
i +r

(j)
i,z

For j∈ [1,p1] : ψ(j)
0,z=ϕ

(j)
0,z,w

(j)
0,z=z

(j)
0 +r

(j)
0,z

For i∈ [1,δ] : ψi,a=ϕi,a,wi,a=a′i+ri,a

For i∈ [1,δ],j∈ [1,p2] : ψ(j)
i,e =ϕ

(j)
i,e ,w

(j)
i,e =e

(j)
i +r

(j)
i,e

For i∈ [1,δ] :wi,id= id∗i+ri,id,
For id∈warr : ψid,B=ϕid,B,Wid,B=Bid+Rid,B

For id∈warr,j∈ [1,p3] : ψ(j)
id,E=ϕ

(j)
id,E,W

(j)
id,E=E

(j)
id +R

(j)
id,E

23



It sends the response

RSP :=({ψ(j)
0,z,w

(j)
0,z}

p1
j=1,{{ψ

(j)
i,z ,w

(j)
i,z}

p1
j=1,{ψ

(j)
i,e ,w

(j)
i,e}

p2
j=1ψi,a,wi,a,wi,id}δi=1,

{{ψ(j)
id,E,W

(j)
id,E}

p3
j=1,ψid,B,Wid,B}id∈warr)

If CH=3, let d
(3)
i =ρi then:

For i∈ [1,δ],j∈ [1,p1] : θ(j)i,z =ϕ
(j)
i,z ,y

(j)
i,z =r

(j)
i,z

For j∈ [1,p1] : θ(j)0,z=ψ
(j)
0,z,y

(j)
0,z=r

(j)
0,z

For i∈ [1,δ] : θi,a=ϕi,a,yi,a=ri,a

For i∈ [1,δ],j∈ [1,p2] : θ(j)i,e =ϕ
(j)
i,e ,y

(j)
i,e =r

(j)
i,e

For i∈ [1,δ] : yi,id=ri,id,
For id∈warr : θid,B=ϕid,B,Yid,B=Rid,B

For id∈warr,j∈ [1,p3] : θ(j)id,E=ϕ
(j)
id,E,Y

(j)
id,E=R

(j)
id,E

It sends the response

RSP :=({θ(j)0,z,y
(j)
0,z}

p1
j=1,{{θ

(j)
i,z ,y

(j)
i,z}

p1
j=1,{θ

(j)
i,e ,y

(j)
i,e}

p2
j=1θi,a,yi,a,yi,id}δi=1,

{{θ(j)id,E,Y
(j)
id,E}

p3
j=1,θid,B,Yid,B}id∈warr)

Verification. Depending on the challenge, the verifier computes the following.
If CH=1, then:

Parse RSP as ({t(j)0,z,v
(j)
0,z}

p1
j=1,{{t

(j)
i,z ,v

(j)
i,z}

p1
j=1,{t

(j)
i,e ,v

(j)
i,e}

p2
j=1,ti,a,vi,a,ti,id,vi,id}δi=1,

{{T(j)
id,E,V

(j)
id,E}

p3
j=1,Tid,B,Vid,B}id∈warr).

Let d
(1)
id =d

(1)
i [kd+1:2kd], i.e. for a kth level authority for attribute ai, take the d bits from d

(1)
i that

correspond to its position in the delegation path. This mapping is assumed to be sent by the prover.
Then, check that:

For all j∈ [1,...,p1] : t(j)0,z∈SecretExtβ(d
(1)
0 )

For all j∈ [1,...,p1],i∈ [i,δ] : t(j)i,z ∈SecretExtβ(d
(1)
i )

For all id∈warr:Tid,B∈SecretExtβ(d
(1)
id )

For all i∈ []1,δ]: ti,id=d
(1)
i

For all j∈ [1,...,p2],i∈ [i,δ] : t(j)i,e ∈B3h

For all j∈ [1,...,p3],id∈warr :T(j)
id,E∈Bm3×3k3

For all i∈ [i,δ] : ti,a∈B2n1logq1

and the following holds:
c2=COM({{v(j)

i,z ,}δi=1v
(j)
0,z}

p1
j=1,{{v

(j)
i,e}

p2
j=1vi,a}δi=1,{vid,Vid,B,{Vid,E}p3j=1}id∈warr)

c3=COM({{t(j)i,z+v
(j)
i,z}

δ
i=1,t

(j)
0,z+v

(j)
0,z}

p1
j=1,{{t

(j)
i,e+v

(j)
i,e}

p2
j=1,ti,a+vi,a}δi=1,

{ti,id+vi,id,Tid,B+Vid,B,{Tid,E+Vid,E}p3j=1}id∈warr)

If CH=2, then:

Parse RSP as ({ψ(j)
0,z,w

(j)
0,z}

p1
j=1,{{ψ

(j)
i,z ,w

(j)
i,z}

p1
j=1,{ψ

(j)
i,e ,w

(j)
i,e}

p2
j=1ψi,a,wi,a,ψidi,wi,id}δi=1,

{{ψ(j)
id,E,W

(j)
id,E}

p3
j=1,ψid,B,Wid,B}id∈warr), and build wa :=[w1,a||..||wδ,a]

T and wi,d :=[widi,1||..||widi,l]
T .

Let d
(2)
id =d

(2)
i [kd+1:2kd], i.e. for a kth level authority for attribute ai, take the d bits from d

(2)
i that

correspond to its position in the delegation path. This mapping is assumed to be sent by the prover.
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Check that

c1=COM

(
{{ψ(i)

i,z}
δ
i=1,ψ

(j)
0,z}

p1
j=1,{ψid,ψid,B,{ψ

(j)
id,E}

p3
j=1}id∈warr,{{ψ

(i)
i,e}

p2
j=1,ψi,a,d

(2)
i }

δ
i=1,d

(2)
0

A
∗

 p1∑
j=1

β
(j)
1 w

(j)
0,z

−u,{A∗

 p1∑
j=1

β
(j)
1 ·w

(j)
i,z

−G∗
wi,a;P

∗

 p2∑
j=1

β
(j)
2 w

(j)
i,e

+Q∗wi,d−fi
}δ

i=1

,

{
Wid,BR

∗+

p3∑
j=1

β
(j)
3 W

(j)
id,E−Cid

}
id∈warr

,⟨G∗·wa,p⟩−1
)

c3=COM({{T
d
(2)
i

◦ψ(j)
i,z (w

(j)
i,z )}

δ
i=1,Td(2)0

◦ψ(j)
0,z(w

(j)
0,z)}

p1
j=1,{{{ψ

(j)
i,e (w

(j)
i,e)}

p2
j=1,

ψi,a(wi,a)}δi=1,{Td(2)i

(wi,id),Td(2)id

◦ψid,B(Wid,B),{ψid,E(W
(j)
id,E)}

p3
j=1}id∈warr)

If CH=3, then:

Parse RSP as ({θ(j)0,z,y
(j)
0,z}

p1
j=1,{{θ

(j)
i,z ,y

(j)
i,z}

p1
j=1,{θ

(j)
i,e ,y

(j)
i,e}

p2
j=1θi,a,yi,a,,θidi,yi,id}δi=1,

{{θ(j)id,E,Y
(j)
id,E}

p3
j=1,θid,B,Yid,B}id∈warr). Build the vectors ya :=[y1,a||..||yδ,a]T and yi,d :=[yidi,1||..||yidi,l]T

according to the mapping. Check that

c1=COM

(
{{θ(i)i,z,}

δ
i=1,θ

(j)
0,z}

p1
j=1,{θid,θid,B,{θ

(j)
id,E}

p3
j=1}id∈warr,{{θ

(i)
i,e}

p2
j=1,θi,a}

δ
i=1,

A
∗

 p1∑
j=1

β
(j)
1 y

(j)
0,z

,{A∗

 p1∑
j=1

β
(j)
1 ·y

(j)
i,z

−G′yi,a;P
∗

 p2∑
j=1

β
(j)
2 y

(j)
i,e

+Q∗yi,d

}δ

i=1

,

{
Yid,BR

∗+

p3∑
j=1

β
(j)
3 Y

(j)
id,E−Cid

}
id∈warr

,⟨G∗·ya,p⟩
)

c2=COM({{T
d
(2)
id

◦θ(j)i,z (y
(j)
i,z )}

δ
i=1,Td

(2)
id

◦θ(j)0,z(y
(j)
0,z)}

p1
j=1,{{{ψ

(j)
i,e (y

(j)
i,e)}

p2
j=1,ψi,a(yi,a)}δi=1,

{T
d
(2)
i

(yi,id),Td(2)id

◦θid,B(Yid,B),{ψid,E(Y
(j)
id,E)}

p3
j=1}id∈warr)

The verifier outputs 1 if and only if all the conditions hold, else output 0.

B Proof of Theorem 1

We first recall the theorem.

Theorem 1. Let COM be a statistically hiding and computationally binding string commitment
scheme. Then the protocol given in Section 5.2 is a zero-knowledge argument of knowledge with perfect
completeness with soundness error 2/3. Explicitly, that is:

– There exists a polynomial-time simulator that outputs an accepting transcript that is statistically
close to a transcript produced by an honest prover with a valid witness.

– There exists a polynomial-time extractor, such that, on input of a commitment CMT and 3 responses
(RSP1,RSP2,RSP3) corresponding to each challenge {1,2,3}, outputs a valid witness for the relation
R1.

Proof. The proof consists of 4 parts and utilises standard techniques for Stern-like protocols.

Soundness. As with typical Stern-like protocols, our protocol has soundness of 2/3. This can be seen
by analysing a dishonest prover attempting to produce a valid script. Before the protocol is run, the
dishonest prover will guess which challenge from {1,2,3} the verifier will not ask for. If the adversary
guesses correctly, it is able to simulate the protocol without knowledge of a valid witness and wrongly
convince the verifier to accept the transcript. If the adversary guesses incorrectly, the verifier is able
to identify the cheating behaviour. Therefore, the protocol has soundness of 2/3. By repeating the
protocol t=ω(logn1) times in parallel, this error can be made negligibly small.
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Perfect Completeness. We note that, using the Decomposition-Extension technique, an honest prover
following the protocol with a valid witness will always be able to produce a script that is accepted
by the verifier. Therefore, the protocol has perfect completeness.

Zero-Knowledge. We will show that if COM is a statistically hiding commitment scheme, then ZKAoK
has the Zero-Knowledge property. In particular, we construct a polynomial time simulator Sim that
is able to produce a transcript that is statistically close to a real protocol run with an possibly
malicious verifier. This simulator will fail with probability negligibly close to 2/3. The public param-
eters are A,R,{Ab

i}ldi=1{Rb
i}di=1,G

∗,P∗,Q,{Cid}id∈warr,{fi}δi=1,p,u. Sim starts by selecting a challenge
CH∈{1,2,3} that it guesses the verifier will not choose.

If CH=1, then: In this case, Sim computes the following vectors and matrices via standard linear
algebra:

1. ai∈Zn1
q s.t. a :=[a1||...||aδ] satisfies ⟨G∗·bin(a),p⟩=1 mod q

2. z
(1)
i ,...,z

(p1)
i ∈B3m1(2ld+1) s.t. A

∗

 p1∑
j=1

β
(j)
1 ·z

(j)
i

=G′·ai modq1 for i∈ [1,δ]

3. e
(1)
i ,...,e

(p2)
i ∈B3hl(2d+2), and idi∈{0,1}ld

s.t. P∗

 p2∑
j=1

β
(j)
2 ·e

(j)
i

+Qidi=fidi modq2 for i∈ [1,δ]

4. For each id∈warr,Bid∈Bm3×(2d+1)n3
,E

(1)
id ,...,E

(p3)
id ∈Bm3×k3 s.t. Cid=BidR

∗+

p3∑
j=1

β
(j)
3 Eid

5. z
(1)
0 ,...,z

(p1)
0 ∈B3m1(2ld+1) s.t. A

∗

 p1∑
j=1

β
(j)
1 ·z

(j)
0

=u modq1

It then samples the random permutations and masking vector as in the honest protocol, namely:
ρi←↩{0,1}ld ri,id←↩Zld

q ,∀i∈ [1,δ]
ϕ
(1)
i,z ,...,ϕ

(p1)
i,z ←↩P r

(1)
i,z ,...,r

(p1)
i,z ←↩Z

3m1(2ld+1)
q ,∀i∈ [1,δ]

ϕ
(1)
0,z,...,ϕ

(p1)
0,z ←↩P̂, r

(1)
0,z,...,r

(p1)
0,z ←↩Z

3m1(2d+1)
q

ϕi,a←↩S2n1⌈logq1⌉, ri,a←↩Z2n1⌈logq⌉
q for i∈ [1,δ]

ϕid,B←↩P Rid,B←↩Z
m3×2n3(2d+1)
q ∀id∈warr

ϕ
(1)
id,E,..,ϕ

(p3)
id,E←↩S3k3×m3 R

(1)
id,E,...,R

(p3)
id,E←↩Z

m3×3k3
q for id∈warr

ϕ
(1)
i,e ,...,ϕ

(p2)
i,e ←↩S3h, r

(1)
i,e ,...,r

(p2)
i,e ←↩Z3h

q ,∀i∈ [1,δ]
The simulator Sim then computes the following commitments CMT=(c′1,c

′
2,c

′
3) and sends them to

the verifier. Let ρid=ρi[kd+1:2kd].
Then, let ra :=[r1,a||..||rδ,a]T and computes the following commitments:

c1=COM

(
{{ϕ(j)i,z}δi=1,ϕ

(j)
0,z}

p1
j=1,{ϕid,B,{ϕ

(j)
id,E}

p3
j=1}id∈warr,{{ϕ

(j)
i,e}

p2
j=1,ϕi,a,ρi}δi=1,ρ0

A
∗
(∑p1

j=1β
(j)
1 r

(j)
0,z

)
,

{
A∗

(∑p1
j=1β

(j)
1 ·r

(j)
i,z

)
−G′ri,a; P∗

(∑p2
j=1β

(j)
2 r

(j)
i,e

)
+Q∗ri,d

}δ

i=1

,

{
Rid,BR

∗+
∑p3

j=1β
(j)
3 R

(j)
id,E

}
id∈warr

,⟨G∗·ra,p⟩
)
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c2=COM

(
{{Tρi◦ϕ

(j)
i,z(r

(j)
i,z)}δi=1,Tρ0◦ϕ

(j)
0,z(r

(j)
0,z)}

p1
j=1,{{ϕ

(j)
i,e(r

(j)
i,e)}

p2
j=1,ϕi,a(ri,a)}δi=1,

{Tρi(ri,d),Tρi◦ϕid,B(Rid,B),{ϕid,E(Rid,E)}p3j=1}id∈warr
)

c3=COM

(
{{Tρi◦ϕ

(j)
i,z(z

(j)
i +r

(j)
i,z)}δi=1,Tρ0◦ϕ

(j)
0,z(z

(j)
0 +r

(j)
0,z)}

p1
j=1,

{{ϕ(j)i,e(e
(j)
i +r

(j)
i,e)}

p2
j=1,ϕi,a(a

′
i+ri,a)}δi=1,Tρi(id

∗
i+ri,id),

Tρid◦ϕid,B(Bid+Rid,B),{ϕid,E(E
(j)
id +R

(j)
id,E)}

p3
j=1}id∈warr

)

Upon receiving the challenge from the verifier, it proceeds as follows:
If CH=1, output ⊥ and abort.
If CH=2, send response

RSP :=({{ϕ(j)i,z ,z
(j)
i +r

(j)
i,z}

δ
i=1,ϕ

(j)
0,z,z

(j)
0 +r

(j)
0,z}

p1
j=1,{{ϕ

(j)
i,e ,e

(j)
i +r

(j)
i,e}

p2
j=1,

ϕi,a,ai+ri,a}δi=1,{{ϕ
(j)
id,E,E

(j)
id +R

(j)
id,E}

p
j=1,id

∗
i+ri,id,ϕid,B,Bid+Rid,B}id∈warr)

If CH=3, send response

RSP :=({{ϕ(j)i,z ,r
(j)
i,z}

δ
i=1,ϕ

(j)
0,z,r

(j)
0,z}

p1
j=1,{{ϕ

(j)
i,e ,r

(j)
i,e}

p2
j=1,ϕi,a,ri,a}

δ
i=1,

{{ϕ(j)id,E,R
(j)
id,E}

p3
j=1,rid,ϕid,B,Rid,B}id∈warr)

If CH=2, then: The simulator samples random bit strings, permutations and masking vectors as
follows:

uid,id1,1,...,idl−1,δ←↩{0,1}d z
(j)
1 ,...,z

(j)
δ ←↩SecretExtβ(id1,i||...||idl−1,i||uid)

Bid←SecretExtβ(id) Eid←↩Zm3×k3
q for id∈warr

e
(1)
i ,...,e

(p)
i ←↩B3h, ai←↩Zn1

q for i∈ [1,δ]
ρi←↩{0,1}ld ridi←↩Zld

q ,∀i∈ [1,δ]
ϕ
(1)
i,z ,...,ϕ

(p1)
i,z ←↩P r

(1)
i,z ,...,r

(p1)
i,z ←↩Z

3m1(2ld+1)
q ,∀i∈ [1,δ]

ϕ
(1)
0,z,...,ϕ

(p1)
0,z ←↩P, r

(1)
0,z,...,r

(p1)
0,z ←↩Z

3m1(2d+1)
q

ϕi,a←↩S2n1⌈logq1⌉, ri,a←↩Z2n1⌈logq⌉
q for i∈ [1,δ]

ϕid,B←↩P′ Rid,B←↩Z
m3×2n3(2d+1)
q ∀id∈warr

ϕ
(1)
id,E,..,ϕ

(p3)
id,E←↩S3k3×m3 R

(1)
id,E,...,R

(p3)
id,E←↩Z

m3×3k3
q for id∈warr

ϕ
(1)
i,e ,...,ϕ

(p2)
i,e ←↩S3h, r

(1)
i,e ,...,r

(p2)
i,e ←↩Z3h

q ,∀i∈ [1,δ]

Sim proceeds by computing the commitments as in the case that CH=1. Upon receiving the commit-
ment, the verifier issues a challenge to Sim. If CH=1, build id∗i =[id∗1||...|id∗l−1||uid] and send response

RSP :=({{Tρi◦ϕ
(j)
i,z(z

(j)
i ),Tρi◦ϕ

(j)
i,z(r

(j)
i,z)

δ
i=1,Tρ0◦ϕ

(j)
0,z(z

(j)
i ),Tρ0◦ϕ

(j)
0,z(r

(j)
0,z)}

p1
j=1,

{{ϕ(j)i,e(e
(j)
i ),ϕ

(j)
i,e(r

(j)
i,e),}

p2
j=1,ϕi,a(ai),ϕ

(j)
i,a(r

(j)
i,a)}

δ
i=1,{{ϕ

(j)
id,E(E

(j)
id ),ϕ

(j)
id,E(R

(j)
id,E)}

p3
j=1,

Tρi(idi),Tρi(ridi),Tρid◦ϕid,B(Bid),Tρid◦ϕid,B(Rid,B)}id∈warr)

If CH=2, output ⊥ and abort.
If CH=3, send response as given in (CH=1,CH=3).
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If CH = 3, then: The simulator samples the permutations and vectors as in CH = 2. It sends
the commitment as in CH=1, with the exception of c1 which it computes as follows. First, build
a :=[a1||..||aδ]T , ra :=[r1,a||..||rδ,a]T , Then compute

c1=COM

(
{{ϕ(j)i,z ,}

δ
i=1,ϕ

(j)
0,z}

p1
j=1,{ϕid,ϕid,B,{ϕ

(j)
id,E}

p3
j=1}id∈warr,{{ϕ

(j)
i,e}

p2
j=1,ϕi,a,ρi}

δ
i=1,ρ0,

A
∗·

 p1∑
j=1

β
(j)
1 (z

(j)
0 +r

(j)
0,z)

,{A∗

 p1∑
j=1

β
(j)
1 ·(z

(j)
i +r

(j)
i,z)


−G′(ai+ri,a); P∗

 p2∑
j=1

β
(j)
2 (e

(j)
i +r

(j)
i,e)

+Q∗(idi+ridi)

}δ

i=1

,

{
(Bid+Rid,B)R

∗+

p3∑
j=1

β
(j)
3 (E

(j)
id +R

(j)
id,E)

}
id∈warr

,⟨G∗·(a+ra),p⟩
)

After receving the challenge, Sim responds as follows:
If CH=1, send response as given in CH=2,CH=1.
If CH=2, send response as given in CH=1,CH=2.
If CH=3, output ⊥ and abort.

The commitment scheme COM is statistically hiding, therefore the distribution of the commitments
are statistically close to those in a real running of the protocol. We note the protocol only aborts
when CH=CH and thus probability the simulation fails is 1/3. When the protocol does not fail, we
see that we have an accepting transcript obtained by Sim and V that is statistically close to that of
an honest prover. Thus, we have constructed a simulator that successfully emulates honest P that
succeeds with probability 2/3, which proves our protocol has the zero-knowledge property.

Argument of Knowledge. We will show that, if COM is a computationally binding commitment scheme,
then the protocol is an argument of knowledge. To show this, it suffices to show that it has the special
soundness property, that is, given a commitment CMT and 3 valid responses RSP1,RSP2 and RSP3

(to each of the 3 challenges respectively), then there exists an extractor that can output a witness
in polynomial time. Since all 3 responses satisfy the verification equations, we have that:

∀j∈ [1,...,p1],i∈ [1,δ] :t(j)i,z ∈SecretExtβ(idi) ∧ t
(j)
0,z∈SecretExtβ(uid)

∀j∈ [1,...,p2],i∈ [1,δ] :t(j)i,e ∈B3h

∀j∈ [1,...,p3],∀id∈warr :T(j)
id,E∈Bm3×k3

∀i∈ [1,δ] :ti,id=d
(1)
i ,Tid,B∈SecretExtβ(id)

c1=COM

(
{{ψ(j)

i,z ,}
δ
i=1,ψ

(j)
0,z}

p1
j=1,{ψid,B,{ψ

(j)
id,E}

p3
j=1}id∈warr,

{{ψ(i)
i,e}

p2
j=1,ψi,a,d

(2)
i }

δ
i=1,d

(2)
0 ,A

∗

 p1∑
j=1

β
(j)
1 w

(j)
0,z

−u,
{
A∗

 p1∑
j=1

β
(j)
1 ·w

(j)
i,z

−G∗
wi,a;P

∗

 p2∑
j=1

β
(j)
2 w

(j)
i,e

+Q∗wi,d−fi
}δ

i=1

,

{
Wid,BR

∗+

p3∑
j=1

β
(j)
3 W

(j)
id,E−Cid

}
id∈warr

,⟨G∗wa,p⟩−1
)
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=COM

(
{{θ(j)i,z}

δ
i=1,θ

(j)
0,z}

p1
j=1,{θid,B,{θ

(j)
id,E}

p3
j=1}id∈warr,{{θ

(j)
i,z ,θ

(j)
i,e}

p2
j=1,θi,a,d

(3)
i }

δ
i=1,d

(3)
0 ,

A
∗

 p1∑
j=1

β
(j)
1 y

(j)
0,z

,{A∗

 p1∑
j=1

β
(j)
1 y

(j)
i,z

−G′yi,a;P
∗

 p2∑
j=1

β
(j)
2 y

(j)
i,e

+Q∗yi,d

}δ

i=1

,

{
Yid,BR

∗+

p3∑
j=1

β
(j)
3 Y

(j)
id,E

}
id∈warr

,⟨G∗ya,p⟩
)

c2=COM({{v(j)
i,z}

δ
i=1,v

(j)
0,z}

p1
j=1,{{v

(j)
i,e}

p2
j=1,vi,a}δi=1,{vid,Vid,B,{Vid,E}p3j=1}id∈warr)

=COM({{T
d
(3)
i

◦θ(j)i,z (y
(j)
i,z )}

δ
i=1,Td(3)0

◦θ(j)0,z(y
(j)
0,z)}

p1
j=1,{{{θ

(j)
i,e (y

(j)
i,e)}

p2
j=1,θi,a(yi,a)}δi=1,

{T
d
(3)
id

(yi,id),Td(3)id

◦θid,B(Yid,B),{θid,E(Y
(j)
id,E)}

p3
j=1}id∈warr)

c3=COM({{t(j)i,z+v
(j)
i,z}

δ
i=1,t

(j)
0,z+v

(j)
0,z}

p1
j=1,{{t

(j)
i,e+v

(j)
i,e}

p2
j=1,ti,a+vi,a}δi=1,

{tid+vid,Tid,B+Vid,B,{Tid,E+Vid,E}p3j=1}id∈warr)

=COM({{T
d
(2)
i

◦ψ(j)
i,z (w

(j)
i,z )}

δ
i=1,Td(2)i

◦ψ(j)
0,z(w

(j)
0,z)}

p1
j=1,{{ψ

(j)
i,e (w

(j)
i,e)}

p2
j=1,

ψi,a(wi,a)}δi=1,{Td(2)i

(wi,id),Td(2)i

◦ψ(j)
id,B(Wid,B),{ψid,E(W

(j)
id,E)}

p3
j=1}id∈warr)

The computational binding property of COM implies that:

∀j∈ [1,...,p1],
ψ
(j)
0,z=θ

(j)
0,z,Td(2)0

◦ψ0,z(w
(j)
0,z)=t

(j)
0,z+v

(j)
0,z,Td(2)0

◦ψ0,z(y
(j)
0,z)=v

(j)
0,z

∀j∈ [1,...,p1],i∈ [1,δ] :
ψ
(j)
i,z =θ

(j)
i,z ,Td(2)i

◦ψi,z(w
(j)
i,z )=t

(j)
i,z+v

(j)
i,z ,Td(2)i

◦ψi,z(y
(j)
i,z )=v

(j)
i,z

∀j∈ [1,...,p2],i∈ [1,δ] :
ψ
(j)
i,e =θ

(j)
i,e ,ψ

(j)
i,e (w

(j)
i,e)=t

(j)
i,e+v

(j)
i,e ,θ

(j)
i,e (y

(j)
i,e)=v

(j)
i,e

∀i∈ [1,δ] :
ψi,a=θi,a,ψi,a(wi,a)=ti,a+vi,a,θi,a(yi,a)=vi,a

∀id∈warr :
wi,id=ti,id+vi,id,yi,id=vi,id

∀id∈warr,j∈ [1,p3] :
ψ
(j)
id,E=θ

(j)
id,E,ψ

(j)
id,E(W

(j)
id,E)=T

(j)
id,E+V

(j)
id,E,θ

(j)
id,E(Y

(j)
i,id)=V

(j)
id,E

ψid,B=θid,B,Td(2)i

◦ψid,B(Wid,B)=Tid,B+Vid,B,Td(2)i

◦ψid,B(Yid,B)=Vid,B

A
∗
(∑p1

j=1β
(j)
1 (w

(j)
0,z−y

(j)
0,z)

)
=u modq1

∀i∈ [1,δ] :A∗
(∑p1

j=1β
(j)
1 (w

(j)
i,z−y

(j)
i,z )

)
=G′·(wai−yai) modq1

∀i∈ [1,δ] :P∗
(∑p2

j=1β
(j)
2 (w

(j)
i,e−y

(j)
i,e)

)
+Q∗(widi−yidi)=fidi modq2

⟨G∗·(wa−ya),p⟩=1 mod q1, for ya=[ya1||...||yaδ ],wa=[wa1||...||waδ ]

∀id∈warr :(Wid,B−Yid,B)R
∗+

∑p3
j=1β

(j)
3 (Wid,E−Yid,E)=Cid modq3

We now observe that:

T
d
(2)
i

(wi,id−yi,id)=ti,id=d
(1)
i

T
d
(1)
uid

◦ϕ(j)0,z(w
(j)
0,z−y

(j)
0,z)=t

(j)
0,z∈SecretExtβ(d

(1)
uid)

T
d
(2)
i

◦ϕ(j)i,z(w
(j)
i,z−y

(j)
i,z )=t

(j)
i,z ∈SecretExtβ(d

(1)
i )

T
d
(2)
id

◦ϕid,B(wid,B−Yid,B)=Tid,B∈SecretExtβ(d
(1)
id )
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Then, it follows that:

wid−yid=d
(2)
id ⊕d

(1)
id

ϕ
(j)
0,z(w

(j)
0,z−y

(j)
0,z)∈SecretExtβ(d

(1)
uid⊕d

(1)
uid)

ϕ
(j)
i,z(w

(j)
i,z−y

(j)
i,z )∈SecretExtβ(d

(1)
i ⊕d

(2)
i )

ϕid,B(Wid,B−Yid,B)∈SecretExtβ(d
(1)
id ⊕d

(2)
id )

Let id∗ :=wi,id−yi,id,z
(j)∗
0 :=w

(j)
0,z−y

(j)
0,z,z

(j)∗
i :=w

(j)
i,z−y

(j)
i,z ,B

∗
id :=Wid,B−Yid,B and id :=d

(2)
id ⊕d

(1)
id ,idi :=

d
(2)
i ⊕d

(1)
i and, since the permutations ϕ preserve structure, we see that:

id∗i =d
(2)
id ⊕d

(1)
id

z
(j)∗
0 ∈SecretExtβ(id∗i )
z
(j)∗
i ∈SecretExtβ(id∗i )
B∗

id∈SecretExtβ(id
∗)

Moreover; 

A
∗
(∑p1

j=1β
(j)
1 ·z

(j)
0

)
=u modq1

A∗
(∑p1

j=1β
(j)
1 ·z

(j)
i

)
=G′ai modq1 for i∈ [1,δ]

P∗
(∑p2

j=1β
(j)
2 ·e

(j)
i

)
+Q∗idi=fi modq2 for i∈ [1,δ]

⟨G∗·a∗,p⟩=1 mod q1

BidR
∗+

∑p3
j=1β

(j)
3 E

(j)
id =Cid modq3, ∀id∈warr

For z∗0=
∑p1

j=1β
(j)
1 z

(j)∗
0 ∈Z3m1(2d+1)

q1 , then we have that ∥z∗0∥∞⩽
∑p1

j=1β
(j)
1

∥∥∥z(j)∗0

∥∥∥
∞
⩽β1 and A∗z∗0=u

modq1. Since, z
(j)
0 ∈SecretExtβ(uid) then so is z∗0. Now let z0 be obtained from z∗0 by removing the last

2m1 rows of each of the 2d+1 blocks of size 3m1 that comprise z∗0. Then, we note that ∥z0∥∞⩽β1
and [A||A(0)

1 ||A
(1)
1 ||...||A

(0)
d ||A

(1)
d ]z0=u modq1.

For z∗i =
∑p1

j=1β
(j)
1 z

(j)∗
i ∈Z3m1(2ld+1)

q1 , then we have that ∥z∗i∥∞⩽
∑p1

j=1β
(j)
1

∥∥∥z(j)∗i

∥∥∥
∞
⩽β1 andA∗z∗i =ai

modq1. Since, z
(j)
i ∈SecretExtβ(idi) then so is z∗i . Now let zi be obtained from z∗i by removing the last

2m1 rows of each of the 2ld+1 blocks of size 3m1 that comprise z∗l . Then, we note that ∥zl∥∞⩽β1
and [A||A(0)

1 ||A
(1)
1 ||...||A

(0)
ld ||A

(1)
ld ]z0=ai modq1.

Similarly, we now let e∗i :=
∑p2

j=iβ
(j)
2 e

(j)
i ∈Z

3h(2d+1)
q , and we use the fact that e

(j)
i ∈B3lh(2d+1) to bound∥∥∥e(j)i

∥∥∥
∞
⩽1, which implies ∥e∗i∥∞⩽

∑p2
j=iβ

(j)
2

∥∥∥e(j)i

∥∥∥
∞
⩽β2·1=β2. Substituting in ei, we also have:

P∗e∗i+Q∗id∗i =fidi modq for i∈ [1,δ]

Now obtain ei by dropping the last 2h coordinates from e∗i , and the last d coordinates from
id∗, then we conclude that ∥ei∥∞ ⩽ β2 and Pei + Qidi = fidi mod q, ∀i ∈ [1, δ], as required.

Next, sinceB∗
id∈SecretExtβ(id), obtainBid fromB∗ by dropping the last n3 columns in each of the 2d+1

blocks. Let E∗
id=

∑p3
j=1β

(j)
3 E

(j)
id . Note that ∥E∗

id∥∞⩽
∑p3

j=1β
(j)
3

∥∥∥E(j)
id

∥∥∥
∞
⩽β3·1=β3. Finally, let Eid be

obtained from E∗
id by removing the final 2m columns. Thus, for each id∈warr, we have constructed an

(Bid,Eid) such thatBid is a binary matrix, ∥Eid∥∞⩽β3 andCid=Bid[R||R
(0)
1 ||R

(1)
1 ||...||R

(0)
d ||R

(1)
d ]+Eid

modq3.
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We obtain id from id∗ by removing the last d elements of the vector. Finally, obtain ai from
a∗i := wai − yai by removing the final n1⌈logq1⌉ elements and construct a′ := [a1||...||aδ]. Since
⟨G∗·a′,p⟩=1 mod q1, then a :=G∗a′ satisfies ⟨a,p⟩=1.

Thus, upon receiving 3 correct responses, an extractor is able to output an accepting witness
({zi,ei,ai}δi=1,{Bid,Eid,id}id∈warr) in polynomial time for the relation R5, hence we have shown the
protocol is an argument of knowledge. ⊓⊔

C Proof of Correctness

Theorem 3. Our VLR-HABS construction given in Figures 5 to 7 is correct.

Proof. With overwhelming probability and honest signer is able to obtain a valid witness for ZKAoK.
Then, due to the perfect completeness property of this protocol, conditions (1) and (2) are true (see
defn. of Correctness). Next, we note similarly that the correctness of the encryption scheme ensures
that the tracing authority is able to compute a valid decryption key for IBE-GPV. Again, perfect
completeness of this protocol ensures that conditions (4) also holds.

Then, Lemma 1 shows that it is probabilistically negligible that there ∃C s.t. Cy⩽nβ2 for any
y∈RevokeList and any C sampled at random from a uniform distribution. Since the revocation tokens
are statistically close to uniform, a mild adaptation to the proof allows us to conclude that a revocation
token generated by an honest user (i.e. not in RevokeList) does not yield a small vector that would
fail verification when post-multiplied by a y∈RevokeList, provided |RevokeList|⩽poly(n). ⊓⊔

D Security Proofs of VLR-HABS

D.1 Proof of Path Anonymity

Lemma 3. Our VLR-HABS construction satisfies Path Anonymity if the SISn4,m4,q4,β4,
SISn′,m′,q′,1, LWEn2,m2,q2,χ2 and LWEn3,m3,q3,χ3 assumptions hold and H0 is collision resistant.

Proof. G0: Let this be defined by the experiment defined in Figure 2. The success probabilities of the
adversaries are equal.

Pr[G0=1]=Pr[Exppa-bVLR-HABS,A=1]

G1: Define this game as G0, with the only difference that we move the check “A2 did
not query OTr(skTA,(m,Ψ,σb))” to the trace oracle. In particular, it aborts if σ=σb, where σb is the
challenge signature and σ is a signature the adversary submits to the oracle. The success probability
of the adversay is unaffected by this change, thus we have:

Pr[G1=1]=Pr[G0=1]

G2: This game is identical to G1 with the exception that we replace ZKAoK with its simulator
constructed in the proof of Theorem 1, and programming the random oracle H1 accordingly. That is,
any call to the signing oracle receives simulated proofs as part of the signature. The adversary cannot
distinguish G2 from G1 unless it can break the zero-knowledge property of ZKAoK as proven in Theorem
1. To see this, the challenger for the path anonymity experiment B, sets up the game according to G1. It
challenges an adversary A to determine the challenge bit b from the VLR-HABS experiment, and must
use this to construct a polynomial-time attack against the zero-knowledge property of ZKAoK. After
it invokes the experiment, B waits for A to return on line 2. By programming the random oracle H1,
it can successfully execute the ZKAoK simulator. The simulated proof is independent of the witness, is
therefore independent of b. If the difference is success probability between G1 and G2 is non-negligible,
then B can build a distinguisher against the zero-knowledge simulator for ZKAoK. However, this
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property is implied by the statistically hiding property of the underlying commitment scheme, which
in turn is implied by the SISn′,m′,q′,β′ assumption. Thus, we can bound the winning probabilities as:

|Pr[G2=1]−Pr[G1=1]|⩽AdvSISn′,m′,q′,β′

G3: We now further restrict the check made by the trace oracle. Precisely, the trace oracle aborts
if (f,C,ovk)=(fb,Cb,ovkb). The adversary can distinguish between the two games if and only if it is
able to produce a forgery of the one-time signatures with respect to ovk. To create a forgery against
the chosen-message attack game, B invokes its own game and challenges A against path anonymity
according to G3. It is able to answer all oracle queries. B waits for A to invoke the challenge phase
of the experiment, when instead of creating the VLR-HABS signature itself, it does all the steps
in algorithm Sign except it calls its EUF-CMA game for a challenge key pair, uses these values for
(osk,ovk), regardless of b. It submits the messagemo :=(osk,H2(m,Ψ,π,{fi}δi=1,{Ci}lδi=1)) to its single-use
signing oracle, and uses the output to complete the VLR-HABS signature which it forwards to A. It
then waits for A to submit a forgery to the tracing oracle. It is only able to win if it did not query the
challenge signature. Thus, for some component of the message, mo≠m̃o. Hence B submits the one-time
signature from the forgery, σ̃o along with message m̃o as a forgery to the one-time unforgeability and
wins its game if A won G3. The Bonsai signature we use for OTS in this construction of VLR-HABS
is EUF-CMA under the SISn4,m4,q4,β4 assumption, thus we have:

|Pr[G3=1]−Pr[G2=1]|⩽AdvSISn4,m4,q4,β4

G4: We restrict once more and check that (f,C)≠(fb,Cb), that is, we have removed the equality check
on the one-time verification key ovk. However, the trace oracle aborts if ovk from the IBE ciphertextCb

does not match that which was submitted to the oracle anyway so the success probabilities are preserved.

Pr[G4=1]=Pr[G3=1]

G5: In this hop, we use the pseudorandomness of LWE to replace the revocation tokens {Ci}lδi=1 with

samples from a uniform distribution via a series of hybrid games G(i)5 , where G(i)5 :=G(i−1)
5 except that

in the ith revocation token is replaced with a uniformly sampled random matrix Ci. We construct

an adversary against decisional binary LWE by initiating a challenger B for G(i)5 who plays the role
of adversary against the LWE challenge. In game i∗, B creates the challenge VLR-HABS signature
according to the changes made up to G4, except that instead of creating revocation tokens Ci in the
range i∈ [1,i∗−1], it uniformly samples a random matrix C←↩Zn3×m3

q . For i∈ [i∗,lδ] it creates the
revocation tokens honestly as described in the Sign algorithm. For the special case that i=i∗, it uses

its LWE challenge matrix. Note that if Ci∗ is a random sample, then G(i
∗)

5 =G(i)5 and if Ci∗ is a proper

LWE sample then we have that G(i
∗)

5 =G(i−1)
5 . Thus, any difference in the success probabilities for an

adversary against G(i−1)
5 and G(i)5 can be used by B to build a distinguisher against the LWE property

for binary secrets (recall that B∈Bk3×n3). This has been shown is at least as hard as standard LWE
problem for appropriate parameters (see [41]). In particular, we stress that A cannot compute a
trapdoor for R as doing so would allow an adversary to build an LWE inverter as described in [2]

and thus win game G(i)5 . Finally, we observe that G(0)5 = G4, and conclude that the probability of
distinguishing each successive hybrid game is bound by an adversary against LWEn3,m3,q3,χ3. Thus;

|Pr[G(i)5 =1]−Pr[G(i−1)
5 =1]|⩽AdvLWEn3,m3,q3,χ3

and Pr[G(0)5 =1]=Pr[G4=1].

Now for sake of conciseness, denote G6 :=G(lδ)5 and assumeH0 is collision resistant. We note that we have
reduced the indistinguishability of the challenge signatures for VLR-HABS to indistinguishability of

the IBE ciphertexts f(0) :={f(0)i }δi=1 and f1 :={f(1)i }δi=1 with respect to the tagH0(ovk). We here on out
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assume H0(ovk) is collision resistant, and thus cannot submit ovk′≠ovk such that H0(ovk
′)=H0(ovk).

This is exactly the IND-CCA2 property that the GPV-IBE scheme has after we utilise the CHK trans-

form. To build this adversary, we again consider a series of hybrid games Gi6 for i∈ [1,δ]. Set G
(0)
6 =G6 and

G(i)6 =G(i−1)
6 with the exception that on the ith ciphertext in the challenge signature, it encrypts the mes-

sagem0= id0i irrespective of the challenge bit. We argue that ifA can distinguish between G(i)6 and G(i−1)
6

the it breaks the IND-CCA2 property of GPV-IBE. To see this, B challengesA to game G(i)6 and invokes
its own IND-CCA2 game. During the setup, B sets (skTA,pkTA):=(⊥,pkenc). That is, the key pair for
the Tracing Authority is replaced with the challenge key pkenc from the IND-CCA2 game. Any Tracing
query fromA is forwarded to the IBE decryption oracle by B, who also returns the result toA. Then, it
waits for A to invoke the challenge phase of the game. Upon doing so, on the ith ciphertext, B submits

two messages to the challenge oracle of the indistinguishability game as m
(0)
enc := id0i and m

(1)
enc := id1i , that

is the delegation paths of the ith attribute in Ψ . It receives back a challenge ciphertext f∗. It simulates the
proof system ZKAoK and computes σo to complete the VLR-HABS signature, which it gives toA. Since
the proof is simulated, and the message and policy are the same regardless of the challenge bit b, then any
advantage that A has in winning this game allows B to win its IND-CCA2 game with at least equal ad-
vantage. The GPV-IBE scheme is IND-CCA2 secure under the LWEn2,m2,q2,χ2 assumption. We conclude

by noting that G(δ)6 is independent of the challenge bit, so any A has advantage negligibly close to 1/2.

|Pr[G(i)6 =1]−Pr[G(i−1)
6 =1]|⩽AdvLWEn2,m2,q2,χ2

and Pr[G(δ)−b
6 =1]=

1

2
+εb

Since the LWE problem is assumed to be hard, the probability of the adversary winning the experiment

is negligibly close to 1/2. From the sequence of games G0 to G(δ)6 , we conclude that the advantage
of an adversary is bounded by ε, which is negligible in the security parameter λ.

AdvpaVLR-HABS,A(λ)= |Pr[Exp
pa-1
VLR-HABS,A(λ)=1]−Pr[Exppa-0VLR-HABS,A(λ)=1]

=

(
1

2
+ε1

)
−
(
1

2
+ε2

)
⩽ε

⊓⊔

D.2 Proof of Non-frameability

Lemma 4. Our VLR-HABS construction satisfies Non-frameability if H1 :{0,1}∗→{1,2,3}t is a ran-
dom oracle, H2 :Z∗

q→{0,1}m̃ is collision-resistant, and the SISn1,m′
1,q1,β1

and SISn4,m4,q4,β4 assumptions
hold.

Proof. We consider 4 winning conditions of the experiment:

– E1: The adversary forges the signature (given on line 4 of Figure 3).
– E2: The adversary forges a delegation (given on lines 5-8 of Figure 3)
– E3: The adversary produces a signature using attributes that do not satisfy Ψ (given on line 9

of Figure 3)
– E4: The adversary produces a fake revocation token (given on line 10 of Figure 3)

Thus we have:

Pr[ExpnfVLR-HABS,A=1]⩽Pr[E1=1]+Pr[E2=1]+Pr[E3=1]+Pr[E4=1]

Winning Condition 1: We start with the first experiment E1 that we aim to show has a negligible
probability of success. Following the direction for the previous constructions in this thesis we intuitively
want to argue over the values (upk′,warr′, m′,Ψ ′),(σ′o,C

′,f ′,π′,ovk′) that correspond to the input and
output of the OSig oracle. We show that they are not sufficient for the adversary A to create valid
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proofs and signatures (σo,C,f,π,ovk) for the values (upk,warr,m,Ψ) different from (upk′,warr′,m′,Ψ ′).
More precisely, we take each element of the tuple (upkj,warr, m,Ψ) and reason about their relation
with their prime counterpart from (upk′,warr′,m′,Ψ ′).

The first step considers if “there has been any OSig request that contains upkj”, which sets the
direction for the A of the proof. Next, argue that that the values warr′,m′,Ψ ′ and ovk′ have to coincide
with warr,m,Ψ,ovk for A to actually produce valid proofs and signatures that pass the verification
conditions in E1, which contradicts the requirement that the forgery is not an output of the signing
oracle. For simplicity, we consider the probability of any adversary to guess which oracle constructs
the keys for a particular user is 1/qr, given qr user registration oracle calls.

G0: The game G0 is defined exactly as E1 except on line “A did not query OSig((upkj warr),m,Ψ)” that
is replaced with a membership check (upkj,warr,m,Ψ) /∈SigList for a list SigList initialised empty at
the beginning of the experiment, and gets updated with the inputs of the OSig oracle. Additionally,
we introduce the list SigIOList that stores the input and output of the OSig oracle. We have that E1
and G0 have the same probability.

Pr[G0=1]=Pr[E1=1]

The games G1 and G2 are obtained from G0 by conditioning (pkdj,⋆,⋆,⋆) /∈SigList and (pkdj,⋆,⋆,⋆)∈
SigList respectively.

Pr[G0=1]=Pr[G0=1∧(upkj,⋆,⋆,⋆) /∈SigList]∧Pr[G0=1∧(upkj,⋆,⋆,⋆)∈SigList]

G1: Let G1 be defined as G0 with the restriction that (upkj,⋆,⋆,⋆) /∈SigList. The success probability of
the adversary in G1 is bound by the probability it is able to forge a signature on behalf of upkj. This is
bound by the advantage of SISn1,m1,q1,β1 adversary B against A∗fuid(z)=Auidz=u that appears in the
relationR1, where (A

∗,u) is the SIS challenge, and u is the syndrome reserved for the user signature. We
claim that the Argument of Knowledge property of ZKAoK ensures that Amust have knowledge of uid.

We now construct such an adversary B against the SIS assumption, closely following the proof of
static unforgebaility of the Bonsai signature [12]. It begins by receiving an SIS challenge of the form

(A∗ = [A||U(0)
1 ||U

(1)
1 ||...||U

(0)
ld ||U

(1)
ld ||u||a1||...||aN ],0)∈Z

n1×m2(2ld+1)+N+1
q1 ×Zn1

q1 . Since we are using
the multi-syndrome variant of the Bonsai signatures, we require N= |A| syndromes, and one more to
account for u. it also receives the attribute syndromes ai,i∈ [1,|A|] for the same parameters. Precisely,
during the setup of the game (line 1 of Figure 2) the challenger B creates a list of qr−1 top-level
identities of length d as idi←↩{0,1}d, where qr is the maximum number of registration queries made
by the adversary A.

First, it creates a set, P, that contains all of the binary strings of length p∈{0,1}d such that p
is not a prefix for any of the sampled IDs {idi}qri=1. One can think of this as a maximal tree that does
not contain a precomputed identity. It has size at most qrd and can be computed efficiently (see [12]
for a description of an algorithm). B selects some challenge prefix id∗∈P of length d. Next, B creates
the matrices A,{Ab

i}di=1 that comprise the verification key for the VLR-HABS signature as follows:

– For each i∈ [1,d], let Aid∗[i]
i =U

(0)
i For i∈ [d+1,ld] and b∈{0,1}, let A(b)

i =U
(b)
i .

– For each i∈ [1,d], compute A
1−id∗[i]
i ←GenBasis(n1,m1,q1) with corresponding short basis Si.

To begin, B invokes G1 against the non-frameability adversaryA. It publishes the public parameters
as described by the experiment, except for A,{Ab

i}di=1 which is computed as described. The challenger
B must be able to answer oracle queries. Since we are concerned with a forgery on Aidz0=u, let’s
start here. A may make corrupt queries of the form (i,id). If i≠ i∗, then B is able to construction

Aid=[A||Aid[1]
1 ||..||Aid[d]

d ] such that for some i∈ [1,d], id[i]≠ id∗[i], by construction of P . For this i, B
knows the corresponding short basis Si. In particular, this means B can run ExtBasis(Si,Aid) to obtain
Sid, a short basis for the matrix Aid. Thus it can use SampleD(Sid,Aid,u,β1) to obtain a secret key
z0 in response to the corrupt query. Actually, delegation is handled identically but for the syndrome
ai. If issuing to an authority, it instead executes RandBasis which we note is also possible on input
Sid. This means B can answer any AttIssue, signing and corruption oracles for any identity other than
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the challenge id∗. If A queries the challenge then the game aborts, but in this case it had already lost
the experiment and thus the winning probability is preserved.

It is now possible to construct a solution for the SIS challenge as follows. If A produced a forgery
z∗0 for Aid∗ w.r.t u∗, then Aid∗ is the concatenation of ld blocks Ub

i and one of ai or a. Therefore,
by inserting zero vectors in z∗0, B can generate a non-zero z such that Az=u modq1, which solves
the SIS challenge. What remains is to extract z∗0 from the VLR-HABS signature.

To extract the SIS challenge from the forgery, we make use of a Forking Lemma of [48] to receive
3 accepting transcripts (RSP1,RSP2,RSP3) of ZKAoK. It rewinds the adversary and plays the same
random tape to build an extractor as detailed in Section 5.2 in the proof of Theorem 1 to extract a
witness to the statement. One can argue thatAmust have queriedH1 on input (m,Ψ,f,C,pp,{CMTi}ti=1)
otherwise, the probability that (Ch1,...,Cht)=H1(m,Ψ,f,C,pp,{CMTi}ti=1) is at most 3−t . Therefore,
with probability at least ε′−3−t, there exists certain κ∗ ⩽ qo such that the κ∗ oracle query uses
(m,Ψ,f,C,pp,{CMTi}ti=1). B picks κ∗ as the forking point. It replays A with the same random tape and
input as in the original run. In each rerun,A is given the same r1,...,rκ∗−1 but from rκ∗ is is given random
values rκ∗,...,rqo←↩{1,2,3}t. Precisely, the Improved Forking Lemma by Pointcheval and Vaudenay says
that, with probability larger than 1

2 , the adversary B can obtain a 3-fork involving the tuple after less
than 32·qo/(ε′−3−t) executions of A. Now, let the answers of B with respect to the 3-fork branches be

r
(1)
κ∗ =(Ch

(1)
1 ,...,Ch

(1)
t ), r

(2)
κ∗ =(Ch

(2)
1 ,...,Ch

(2)
t ), r

(3)
κ∗ =(Ch

(3)
1 ,...,Ch

(3)
t )

Then, the probability we obtain a valid challenge set, that is

Pr[∃j∈{1,...,qo} :{Ch(1)j ,Ch
(2)
j ,Ch

(3)
j }={1,2,3}]=1−(7/9)−t.

Conditioned on the existence of such an index j, it parses the 3 forgeries corresponding to the fork

(RSP
(j)
1 ,RSP

(j)
2 ,RSP

(j)
3 ) branches to obtain. They turn out to be 3 valid responses with respect to 3

different challenges for the same commitment CMT (j). Since COM is assumed to be computationally-
binding, we can use the knowledge extractor of the underlying argument system to extract a witness
for the relation R5, and thus extract the SIS solution created by A, using the strategy detailed in [42].

Pr[G1=1]=Pr[G0=1∧(pkj,⋆,⋆,⋆) /∈SigList]⩽
AdvSISn1,m1,q1,β1

2qr(1−(7/9)−t)

G2: This game uses the exact steps performed by game G1, but in the setting where A requested at
least one signature that contains user upkj. There exists an adversary query
((upkj,warr

′,m′,Ψ ′),(σ′o,C
′,π′,ovk′))∈SigIOList with (warr,m,Ψ)≠(warr′,m′,Ψ ′). Hence,

Pr[G2=1] =Pr[G0=1∧(upkj,⋆,⋆,⋆)∈SigList]
=Pr[G0=1∧(upkj,warr′,m′,Ψ ′),(σ′o,C

′,f ′,π′,ovk′))∈SigIOList].

Using the method applied on G1, we reason on the relation between the OTS public keys ovk and
ovk′. We split game G2 based on ovk=ovk′ and ovk≠ovk′.

Pr[G2=1]=Pr[G2=1∧ovk=ovk′]+Pr[G2=1∧ovk≠ovk′].

G3: We define G3 as the game G2 where ovk≠ovk′. In this case, the adversary A is once again able to
provide a forgery for upkj without knowledge of uskj. The reduction argument is almost identical to the
method of computing the bound for G1, except that now A asks signature queries for uid. By program-
ming the random oracle H1, the game is able to simulate the proof ZKAoK without knowledge of the
witness for uid, namely (upkj,uskj), that passes verification as described in the proof of Theorem 3. Since
ovk≠ovk′, the call to the random oracle will result in a different challenge and thusA cannot reply π and
must generate a new proof. Since any query to the signing oracle on behalf of uid included a simulated
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proof, it cannot extract a valid witness and thus must produce a fresh forgery for the Boyen signature
on behalf of uid. We bind the capabilities of the adversary in this game by constructing an adversary
B against an SISn1,m1,q1,β1 instance. Again there is a polynomial loss in the reduction as the game is
required to guess for which user A will attempt to create a forgery, and further loss as the extractor (by
using the Improved Forking Lemma) only succeeds with probability 1/2(1−(7/9)−t). Thus we have:

Pr[G4=1]=Pr[G3=1∧ovk≠ovk′]⩽
AdvSISn1,m1,q1,β1

2qr(1−(7/9)−t)

G4: The game G4 uses the steps of G2 with the additional restriction ovk′=ovk. With the upkj=upk′

restriction from G2 we further transform this game in the view of G1.

Pr[G4=1] =Pr[G2=1∧ovk′=ovk]
=Pr[G1=1∧(upkj,warr′,m′,Ψ ′),(σ′o,C

′,f ′,π′,ovk))∈SigIOList].

Currently, we have deduced that A has made a OSig query for (upkj,warr
′,m′,Ψ ′) different from

(upkj,warr,m,Ψ), but with the same OTS signature public key ovk. We split the probability in G5
based on the equality test between (m,Ψ) and (m′,Ψ ′).

Pr[G4=1]=Pr[G4=1∧(m,Ψ)=(m′,Ψ ′)]+Pr[G4=1∧(m,Ψ)≠(m′,Ψ ′)].

G5: We define game G5 as the game G4 where (m,Ψ)≠ (m′,Ψ ′). That is, the adversary A is able to
provide a forgery for the OTS scheme by signing a message that contains (m′,Ψ ′) without knowledge
of osk. In this argument we will assume that H2 offers collision resistance.

The capabilities of adversary A in this case, are bounded by the advantage of the unforgeability
adversary Bots for the OTS signature scheme that uses osk as the secret key. There is a slight loss
of accuracy as Bots needs to identify which is the OSig query that uses (m′,Ψ ′) among all OSig queries
for upkj. As always, it is able to do this with probability 1/qs if A makes qs sign queries for the same
upkj value. The factor 1/qr is given by the guess Bots makes on which is the user registration oracle
with upk. To build the adversary Bots against the the EUF-sCMA property of Bonsai signatures, it
follows the exact strategy used to show static unforgeability (EUF-sCMA) in [12], however, instead
it does not receive a list of messages before generating the challenge verification key for A. Instead,
B selects a random message policy pair (m∗,Ψ∗) (we stress these can be entirely random and do not
have to be meaningful choices) and computes the chameleon hash h←H2(m

∗,Ψ∗,f∗,π∗,C∗;r∗). Using
the notation of G1, the set P for which Bots can simulate signatures will contain precisely h. When
A finally makes the oracle query that Bots guesses A will use to compute the forgery, it receives the
pair (m̃,Ψ̃) and using the trapdoor for the chameleon hash function it can computes r̃ such that
H2(m̃,Ψ̃,f,π,C;r̃)=h=H2(m

∗,Ψ∗,f∗,π∗,C∗;r∗). We briefly note that f,π,C are honestly computed
according to the experiment. By design, Bots can compute a simulated Bonsai signature on message
h and thus it is able to answer A’s signing query. It then waits for A to output a forgery. If the forged
signature verifies, then A was able to create a forged Bonsai signature, which means it was able to
break the the SISn4,m4,q4,β4 assumption according to the proof of static unforgeability in [12]. To win
its game, B uses the Improved Forking Lemma and the extractor from the proof of Theorem 1 in the
way described in G1 to extract the SISn4,m4,q4,β4 solution. Thus we bind the success probabilities as:

Pr[G5=1]=Pr[G4=1∧(m,Ψ)≠(m′,Ψ ′)]⩽
1

2qsqr(1−(7/9)−t)
×AdvSISn4,m4,q4,β4

G6: We define game G6 as the game G4 where (m,Ψ)=(m′,Ψ ′). Because of the (warr,m,Ψ)≠(warr′,m′,Ψ ′)
restriction, this leads to warr′≠warr. If we include the condition added by game G5 with respect to
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game G1, we have

Pr[G6=1] =Pr[G4=1∧(m,Ψ)=(m′,Ψ ′)]
=Pr[G1=1∧(upkj,warr′,m,Ψ),(σ′o,C′,f ′,π′,ovk))∈SigIOList]

We proceed by splitting the probability of G6 based on the equality of f and f ′.

Pr[G6=1]=Pr[G6=1∧f=f ′]+Pr[G6=1∧f ≠f ′]

G7: Let G7 be the game defined by G6 with f ≠f ′. In such a case, the adversary A is able to create

a forgery without knowledge of osk, that passed the verification in the body of experiment G6.
The probability of success for adversary A in this game, is once again bounded by the advantage

of the OTS forger B′ots which behaves exactly as Bots from game G5. The difference in this case is
given by the output of the adversary. Here, A provides an OTS signature that satisfies f ≠f ′, while
in G5 we made the requirement that the forged one-time signature is for (m,Ψ)≠(m′,Ψ ′). We set up
the reduction under the assumption that H2 is collision-resistant. As before, Bots must guess which
uid and which signature query A will atempt to forge and follows a similar strategy to G6. During
the setup phase of the experiment, in addition to the rest of the setup, it computes a chameleon
hash value h←H2(m

∗,Ψ∗,f∗,π∗,C∗;r∗) which comprises the set P of all “messages” for which Bots
can simulate. Since it has access to the trapdoor for the chameleon hash function, it can build f,π,C
based on the adversarial inputs m̃,Ψ̃ and computes a value r̃ such that h=H2(m̃,Ψ̃,f,π,C;r̃), thus
it can produce a valid VLR-HABS signature for the target uid. It waits until A submits its forgery. In
particular, it was able to produce a forgery for the EUF-CMA property of the Bonsai signature, which
is implied by the SISn4,m4,q4,β4 assumption. As before, Bots uses the Improved Forking Lemma and
the extractor from Theorem 1 to extract the SIS solution with probability 1/2(1−(7/9)−t). Hence,

Pr[G8=1]=Pr[G6=1∧f ≠f ′]⩽
1

qsqr(1−(7/9)−t)
AdvSISn4,m4,q4,β4

G8: The game G8 is defined as G6 where f=f ′. Given warr≠warr′, we now show that f ≠f ′. According
to the correctness of GPV-IBE, f ′ must decrypt with overwhelming probability to one of the two
message. In such a case, the adversary A has managed to produce a ciphertext f that decrypts to
two different messages m0=(upkj,warr,ovk) and m1=(upkj,warr

′,ovk). We build Bibe that performs
the steps in G6 and waits for A to provide an output (((σo,C,f,π,ovk),m,Ψ),(upkj,warr,(π̂))). Then,
it uses that output to construct message m0, and looks through the list SigIOList for the query the
adversary A has made that produced the same ciphertext f and builds m1. Bibe outputs the message
that does not appears when it does a decryption using the TA’s key skTA. For simplicity, this adversary
also provides the randomness needed to produce the same ciphertext in the body of the correctness
experiment. For our choice of GPV-IBE, this happens with all but negligible probability. We have,

Pr[G8=1]=Pr[G6=1∧f=f ′]⩽ ε̃(λ)

G9: Defined as G8 but with the condition that C=C′. The parameter m3 is chosen large enough
(⩾n3logq3) to ensure secret vectors in the LWEn3,m3,q3,χ problem are uniquely defined (see [47]). Hence,
the adversary A cannot find warr≠warr′, or more precisely, id≠ id′ s.t. C=C′. Thus,

|Pr[G9=1]|= |Pr[G8=1]|

Finally, if C≠C′ then once more the adversary was able to forge an OTS signature, this time over the
C component of the OTS message. Again this argument follows with the implicit assumption that H2

enjoys collision-resistance. The extraction of the SIS challenge follows the same process as before; B
must guess which uid and which signature query A will attempt to forge and follows a similar strategy
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to G5 and G7. During the setup phase of the experiment, in addition to the rest of the setup, it computes
a chameleon hash value h←H2(m

∗,Ψ∗,f∗,π∗,C∗;r∗) which comprises the set P of all “messages” for
which B can simulate. Since B has access to the trapdoor for the chameleon hash function, it can build
f,π,C based on the adversarial inputs m̃,Ψ̃ and computes a value r̃ such that h=H2(m̃,Ψ̃,f,π,C;r̃),
thus it can produce a valid VLR-HABS signature for the target uid. It waits until A submits its
forgery. In particular, it was able to produce a forgery for the EUF-sCMA property of the Boyen
signature, which is implied by the SISn4,m4,q4,β4 assumption. As before, B uses the Improved Forking
Lemma and the extractor from Theorem 1 to extract the SIS solution with probability (1−(7/9)−t).
The probability of success is bounded an adversary against the SISn4,m4,q4,β4 assumption. Hence

Pr[G9=1]⩽AdvSISn4,m4,q4,β4

From the sequence of games starting G0,...,G9, it follows that the probability of E1 is bounded by the
SIS hardness assumption, and the soundness property of ZKAoK which holds with probability 3−t.
Thus the advantage of the adversary, ε1, is negligible in the security parameter.

Winning Condition 2: The experiment E2 deals with the case where the adversaryA is able to provide
a forged delegation for an honest authority pkdi and some attribute att=a. Recall that the experiment
prevents the adversary from winning if any authority in the delegation path has been corrupted, which
trivially prevents A extending the corrupt authority Aid1||...||idl to Aid1||...||idl||idl+1

, for an uncorrupted
authority idl+1. The challenger B embeds the SIS challenge a delegation path, Aid∗, this time of length
ld. We argue that if the adversary is able to forge a delegation, that it was able to solve an SIS instance.
Again, we must carefully prepare the experiment E2 so that B is able to extract the solution. It is
identical to the preparation for E1 :G1 with the exception that the forgery is created with respect to any
syndrome ai. The argument presented previously is actually general enough to deploy directly, however,
the set P now contains all delegation paths that B guesses A will query. The set P is still computable
since the size of the space is only polynomially larger. We note that B cannot answer corruption
queries for which id= id∗[1:kd] i.e. a prefix to the challenge. However, this corresponds to A corrupting
an authority above the guessed forgery target, in which case the game aborts. Thus there is no loss in
winning probability. In the eventA queries AttIssue for such an id, then B outputs the corresponding id,
warr and att but does not compute skdi,att. This is undetectable byA unless it once again tries to corrupt
an authority above id∗. It can, however, delegate further once ∃i s.t. id[i]≠ id∗[i], which is required by the
game since the adversary can ask for delegation and corruption queries for any other delegation path.We
stress the only time it cannot answer oracle queries coincide with the loss conditions of the experiment.
With these adaptations, the argument is similar to that presented in E1 :G1, and we claim the result.

Pr[E2=1]⩽
AdvSISn1,m1,q1,β1

2qr(1−(7/9)−t)

Winning Condition 3: Next we will consider a PPT adversary A against the winning condition E3.
That is, it is able to produce a signature that verifiers with respect to a policy for which the attributes
contained in the warrant do not satisfy.

We directly argue that the advantage of an adversary against E3 is bounded by an adversary
Bzkaok against the soundness property of ZKAoK. To build Bzkaok, it invokes the soundness experiment
and executes E3 against A. It can answer all oracle queries and simply waits for A to output σ that
wins against E3. It sets the witness as w=(uid,z0,{zi,ai,ei}δi=1,{id}id∈warr,{Bid,Eid}id∈warr) from the
output of A, the statement as x=(A,R,{Ai,Ri}di=1,G

∗,P∗,Q∗,C,f,p,u) for the relation R1. To win
E3 then Ψ(A)≠1, but ZKAoK.Verify(x,π)=1 =⇒ ⟨a,p⟩=1 then A was able to create a false proof
for R1(w,x). Then, Bzkaok forwards (w,x,R1) as a response to its soundness game against ZKAoK
and wins if A also won against E3. We note that soundness only fails with probability 3−t for some
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soundness parameter t. Thus, we have:

Pr[E3=1]⩽3−t

Winning Condition 4: Next we will consider the case the adversary wins by creating a signature
that passes verification yet contains a revoked identity.
G0: Defined as E4 but with the addition of an additional check “∀id∈warr,∃Ci ∈{C}lδi=1 s.t. Ci=
BiRid+Ei”, where warr is obtained by decrypting C in the VLR-HABS signature using the TA’s key.
The difference in success probability of the adversary between E4 and G1 is bound by the advantage
of an adversary against the soundness property of ZKAoK. To build this adversary, B sets up the
game according to Figure 2. It can answer all queries made by A and waits for it to output a
forgery. From the VLR-HABS signature, it forwards on the proof π ( for the public statement x=
(A,R,{Ai,Ri}di=1,G

∗,P∗,Q∗,C,f,p,u)) to its soundness game. It wins ifA was able to produce a forgery
against E4. We note that soundness only fails with probability 3−t for some soundness parameter t.

|Pr[E4=1]−Pr[G0=1]|⩽3−t.

Now, since for each id∈warr,∃Cid=BiRid+Ei∈{Ci}lδi=1, then if we also have id∈RevokeList, then
Lemma 2 implies that Cidyid⩽n3β23 with probability 1, that is, a signature is falsely accepted with
probability 0. Thus we have:

|Pr[G0=1]|=0⩽ε3

It follows that the success probability of an adversary against E4 is bound by 3−t, where t=ω(logn)
and thus is negligible.

Recalling that each winning condition for the non-frameability experiment is bound by a negligibly
small function in the security parameter, we conclude that our scheme is non-frameable.

Pr[ExpnfVLR-HABS,A=1]⩽Pr[E1=1]+Pr[E2=1]+Pr[E3=1]+Pr[E4=1]⩽ε(λ)

⊓⊔

D.3 Proof of Path Traceability

Lemma 5. Our VLR-HABS construction satisfies Path Traceability if H1 : {0,1}∗→{1,2,3}t is a
random oracle and the SISn1,m1,q1,β1 assumption holds.

Proof. We divide the advantage of the path traceability adversary A for the experiment ExptrVLR-HABS,A
in Figure 4 by the two winning conditions for the adversary:

1. E1: Trace fails for a valid VLR-HABS signature
2. E2: There exists a signature in the warrant, for some attribute introduced for a ‘rogue’ entity, that

is not registered, by an honest authority.

We have,
Pr[ExptrVLR-HABS,A(λ)]⩽Pr[E1=1]+Pr[E2=1].

Winning Condition 1: We start with experiment E1, where we use the soundness of ZKAoK to

show that decryption of an GPV-IBE ciphertext cannot fail.
G0: The game G0 is defined exactly as From this, it immediately follows that

Pr[G0=1]=Pr[E1=1].

G1: We define game G1 as G0, except that we add the line

“∀i,∃s s.t. f
(1)
i =Ps+e1,f

(2)
i =NTs+e2+⌊q/2⌋idi where fi=[f

(1)
i ||f

(2)
i ]∧”
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between lines 3 and 4. This new check performed by G1 is one of the conditions encoded in the relation
for ZKAoK, and A is able to notice the difference between G0 and G1 if it can produce a valid ZKAoK
proof for a false statement (that does not have a witness s). We bind the probability of A to distinguish
this games, by the advantage of the soundness adversary Bzkaok for ZKAoK. To build the adversary, B
follows the experiment as defined in G1 and we note it is able to answer all oracle queries. It waits for A
to output a VLR-HABS signature σ. If σ wins G0 but fails G1 then it was able to produce a proof over
a false witness and therefore the proof π contained in σ breaks soundness of ZKAoK. B extracts π from
σ, builds the statement (A,R,{Ai,Ri}di=1,G

∗,P∗,Q∗,C,f,p,u) for the relation R5, and submits this as
a false proof. We have seen that soundness for ZKAoK fails with probability 3−t, see Theorem 1. Hence,

|Pr[G0=1]−Pr[G1=1]|⩽3−t

We now argue that an adversary against G1 is bound by the correctness property of GPV-IBE. The
ability to output a ciphertext that decrypts to a different warr is bound by the probability of an
decryption to fail after an encryption, even on adversarial valid inputs. We construct adversary Bibe
for the correctness property of IBE that runs the experiment as described in G1 and invokes A. It
waits for A to submit a VLR-HABS signature σ that wins against G1. In this case, B extracts the
ciphertext component C of σ and forwards this as a response to its correctness game. The GPV-IBE
scheme is correct with overwhelming probability [22], thus, for ε̃∈poly(λ) we have:

|Pr[G1=1]|⩽ ε̃(λ)

Winning Condition 2: The experiment E2 deals with the case where the adversary A is able to
provide a forged delegation for an honest authority pkdi and some attribute att=a, to an unknown
registered identity. Recall that the experiment prevents the adversary from winning if any authority in
the path has been corrupted, which trivially prevents A extending the corrupt authority Aid1||...||idl to
Aid1||...||idl||idl+1

, for an uncorrupted authority idl+1. If the adversary is able to forge a delegation, that
it was able to compute a solution to an SIS challenge. Again, we must carefully prepare the experiment
E2 so that B is able to extract an SIS challnge. It is identical to the preparation for non-frameability
E1 :G1 with the adaptations detailed in non-frameability E2. Thus we claim the result:

Pr[E2=1]⩽
1

2qr(1−(7/9)−t)
×AdvSISn1,m1,q1,β1

.

Recalling that both winning conditions are bound by functions that are negligible in the security
parameter, we conclude that our scheme satisfies path traceability.

Pr[ExptrVLR-HABS,A =1]⩽Pr[E1=1]+Pr[E2=1]⩽ε(λ)

⊓⊔
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