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Abstract. Attribute-based Signatures (ABS) allow users to obtain attributes from issuing authorities,
and sign messages whilst simultaneously proving compliance of their attributes with a verification policy.
ABS demands that both the signer and the set of attributes used to satisfy a policy remain hidden to
the verifier. Hierarchical ABS (HABS) supporting roots of trust and delegation were recently proposed
to alleviate scalability issues in centralised ABS schemes.

An important yet challenging property for privacy-preserving ABS is revocation, which may be applied to
signers or some of the attributes they possess. Existing ABS schemes lack efficient revocation of either sign-
ers or their attributes, relying on generic costly proofs. Moreover, in HABS there is a further need to support
revocation of authorities on the delegation paths, which is not provided by existing HABS constructions.

This paper proposes a direct HABS scheme with a Verifier-Local Revocation (VLR) property. We extend the
original HABS security model to address revocation and develop a new attribute delegation technique with
appropriate VLR mechanism for HABS, which also implies the first ABS scheme to support VLR. Moreover,
our scheme supports inner-product signing policies, offering a wider class of attribute relations than previous
HABS schemes, and is the first to be based on lattices, which are thought to offer post-quantum security.
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1 Introduction

(Hierarchical) Attribute-based Signatures. To provide privacy-preserving authentication, Attribute-
based Signatures (ABS), introduced in [31,40], allow users to collect attributes from authorities and
produce signatures showing attribute-compliance with some signing policy. A core security property
of ABS schemes is that they are attribute-hiding, and for schemes that consider multiple users, it is
often required that they also remain anonymous. A second security property, unforgeability, prevents
users from generating signatures for policies for which they do not have a satisfying set of attributes.

Most constructions for ABS schemes [20,45,46,6,18,23,17,51] are based on bilinear groups and
make use of the flexible Groth-Sahai proof system [25] to provide anonymity guarantees. Notable
exceptions include constructions from RSA [26] and recent work in the lattice setting [19,54,57,56],
which are in the random oracle model. Originally, ABS schemes were proposed in the centralised
model, that is, one central authority is responsible for all attribute issuance, but to allow for larger
scalability, decentralised schemes [18,23] have also been developed.

More recently, Hierarchical Attribute-Based Signatures (HABS) [15,21] overcome the shortcomings
of previous schemes by allowing attribute delegation to intermediate authorities. In particular, a
central Root Authority (RA) delegates issuing rights of a subset of attributes to lower tier Intermediate
Authorities (IA) who can delegate further, or issue directly to a user. This overcomes the bottleneck
of requiring a single authority to issue all attributes in a scheme with either a large number of users
or attributes, and also allows a verifier to trust a signature without having to trust each authority
in the scheme, as is the case in decentralised constructions.
Revocation. A desirable property of any privacy-preserving signature is the support for user re-
vocation. This would enable a trusted authority to prevent users from producing signatures that
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pass verification, without compromising the anonymity of honest participants. Revocation for a
hierarchical structure of authorities would require the ability to check that a revoked authority does
not appear anywhere in the delegation path of an attribute. This brings new challenges and any
HABS construction would have to perform these additional checks when verifying the HABS signature.
Specific to attribute-based protocols, it may also be desirable to revoke an attribute itself, rather than
issuing authorities. For example, this maybe be required in the setting where attributes may depend
on the time period or changed dynamically.

Revocation techniques typically follow one of few approaches. Firstly, it can be achieved by
requiring signers to update their secret credentials in order to produce a valid signature. Another
approach is to use a public revocation list, which is updated with some information about revoked
users. When a signature is formed, the signer typically proves in zero-knowledge that its information
does not appear in the list. Finally, we have verifier-local revocation which puts the onus on the verifier
to check that signatures have not been generated by a revoked signer. This approach still requires
up-to-date revocation information but has more semblance to traditional public key infrastructure that
typically use Certificate Revocation Lists, and can allow for more efficient constructions as it bypasses
the need for costly zero-knowledge proofs when generating signatures. Previously, VLR as a means
of revocation has appeared in group signatures (introduced in [8]) but it remains an open problem for
an ABS scheme to support any revocation technique!. We note that Herranz [26] proposed a scheme
called Revocable Attribute-based Signatures, where revocation refers to the revocation of anonymity,
which in this, and many other ABS works, is called traceability.

Contribution. In this paper we improve upon security and functionality of existing HABS construc-
tions by proposing a lattice-based scheme which supports revocation and a wider range of signing
policies. Our scheme is based on the widely used LWE and SIS assumptions over integer lattices, and
supports inner-product relations which allow for conjunctive, disjunctive and threshold policies as
well as polynomial evaluations of attributes [27]. Revocation in our HABS schemes uses a novel VLR
mechanism to revoke signers and attributes as well as intermediate authorities. We model HABS
security and use an integration of techniques from identity-based encryption, trapdoor delegation and
signature schemes as well as novel techniques to realise our construction. This work also implies the
first lattice-based (non-hierarchical) ABS scheme with the aforementioned properties.

Related Work. In this section we review related works on VLR, lattice-based signatures and signing
policies in ABS schemes.

Revocation. VLR was first suggested in [3] and formalised in [7] and has been widely researched since
then, for example, improving efficiency (e.g. [58]), functionality (e.g. [14]), stronger security properties
(e.g. [44,9]) or basing on different hardness assumptions (e.g. lattices [30], bilinear groups [58,44]).
The first scheme secure in the standard model that supported VLR was a group signature scheme by
Libert and Vergnaud [32], based on the DLIN and variants of Diffie-Hellman type assumptions. In the
recent lattice-based VLR group signature scheme from Langlois et al. [30], signing requires knowledge
of a secret revocation token. We note that this technique cannot be transferred to the HABS setting
as a signature must also include tokens for intermediate authorities, which are part of the secret, thus
a new approach is needed.

Post-Quantum Security. Most ABS schemes are based on bilinear groups [20,45,46,6,18,23,17,51],
or RSA [26] and do not offer post-quantum security. As lattice-based hardness assumptions are
believed to be resistant to quantum adversaries, and also have provable security under worst-case
hardness assumptions, this area has attracted significant research interest. As a result, there have
been many privacy-preserving signature schemes constructed, such as lattice-based group signature
schemes (e.g.[24,30,35,36,37]), ring signatures (e.g.[13,5]), anonymous attribute tokens [10] and even
ABS schemes (e.g.[57,19,54,56]). However, whilst ABS have been proposed from lattices, current
literature falls short of the delegation feature offered by HABS.

Signing Policies in (H)ABS. Constructing schemes with more expressive signing policies is an active
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area of research for ABS, as it allows for a wider range of use-cases and offers signers more flexibility.
Despite this, many schemes [23,18,40], including all known HABS constructions [15,21], utilise span
programs that result in restrictive monotone boolean policies. Wang et al. [56] provide a different
construction for threshold policies but benefit from shorter private key sizes over comparable schemes.
There are notable exceptions that support non-monotone policies [45] and even unbounded circuits
[19]. In particular, [4] offers a lattice construction for a threshold scheme in a centralised setting,
and then shows how to transform this to support more expressive (A,V)-policies. ABS from lattices
supporting inner-product policies [57] have been proposed, yet without distinguishing between signers,
which prevents any meaningful definition for delegation or revocation.

2 Preliminaries

We denote vectors by lower-case bold letters (a), and use capital bold font for matrices (A). The
transpose of a matrix A (or vector) is denoted by AT, and the concatenation of matrices (or vectors)
A and B by [A|B]. We use I to denote the identity matrix, and if we wish to be clear on the
dimension then we write I,,x,,, for some naturals n and m. The interval [a,b] is used to denote all
integer values x in the range a <z <b. Sampling a random variable x from a distribution X is written
x> X. The maximum number of users in the scheme is given by N =2¢, and we denote the security
parameter by A. The number of levels in the hierarchy is [, and denote a signing policy by ¥, and
set §:=|¥|, i.e. the number of attributes that form the signing policy.

Lattices. Let n,m,q>2 be integers. For a matrix A € Zy™™, define the m-dimensional lattice
AL (A)={z€Z™ : A-z=0 mod ¢} CZ™.

For a vector u in the preimage of A, define the coset Af ={z€Z™:A-z=u mod ¢}.
Gaussian Distributions over Lattices. For a postive real o, the n-dimensional Gaussian function
is given as p,(z) =exp(—||z||/0?) for all z€R". For any n-dimensional lattice A, define the discrete

Guassian distribution over A as: D, (z)= £ :((fl)) for all z€ A.

Hardness Assumptions. We will introduce the LWE and SIS probelems and state their hardness
assumptions.

LWE. The (Decisional) Learning With Errors (LWE ,, 1, 4.,) problem is as follows. Let n,m>1, ¢>2
and x be a probability distribution over Z. Let s€ Zy, then D is a distribution obtained by sampling
a<+Z; and e<x and computing (a,a’s+e) € Zy X ZLq. Then the LWE,, 1, 4, Tequires an adversary to
distinguish m samples chosen from y and m samples chosen from a uniform distribution from Zj x Zj.
If ¢ is a prime power, 8>+/n - w(logn) and y=0O(ng//3) then there exists an efficient sample-able
B-bounded distribution ¥, usually instantiated as a discrete Gaussian Dz . That is, the distribution
x outputs samples with norm at most § with overwhelming probability. Then, x is such that the
LWE,, 1.4, Problem is as least as hard as SIVP,, (see [50]). We will also make use of a variant of LWE
called Binary-LWE, where the domain from which s is sampled is restricted to {0,1}", which incurs
an increase in parameter size by a factor of logn to maintain claimed security level [41].

SIS. The Short Integer Solution problem (SIS ;4 3), introduced in [1], requires an adversary who,
given a uniformly matrix A € Z;*™, to find a non-zero vector z€Z;" such that [|z[[-c <3 and Az=0
mod g. We define the Inhomogenous Short Integer Solution (ISIS,, ,,, 4 3) as SIS but for a non-zero
syndrome, i.e. Az=u mod q. By considering the relationship between the ls, I, norms, it is shown
that SIS,, ;. 4,5 is at least as hard as SIVP, (in ly) for y=/5-O(y/n) [43].

3 VLR-HABS Model: Entities and Definitions

We start with the description of entities for the VLR-HABS ecosystem.
Attribute Authorities. The set of Attribute Authorities (AA) comprises the Root Authority (RA)



and Intermediate Authorities (IAs). As the name suggests, the RA is the root of the hierarchy, and
upon setup defines the universe of attributes A. With its key pair (skdg,pkd,), the RA can delegate
a subset of attributes to IAs which hold their own key pairs (skd;,pkd;), i > 0. IAs can further
delegate/issue attributes to other IAs or to any end user. This allows for a dynamically expandable
VLR-HABS hierarchy to be established.

Users. With key pair (usk,upk), a user joins the scheme by being receiving issued attributes from
potentially many AAs. Then, a user can use usk to create a VLR-HABS signature, provided their
issued set of attributes A satisfies the policy, i.e. ¥(A’)=1 for some A’ C A and a signing policy ¥.
Users are prevented from delegating attributes further and thus can be viewed as the lowest tier of
the hierarchy. We realise this in our scheme by requiring users to obtain public keys in a different
space to that of authorities.

Warrants. A warrant is used to store delegated attributes for each IA or user. It contains the attribute,
the delegation information, and a list of identities that comprise the delegation path of the attribute.
Warrants are updated any time a new attribute is issued by appending a new entry. We use the notation
|warr| to denote the size of the warrant, i.e. the number of attributes stored in the warrant warr, and we
use |warr [att || to denote the length of the delegation path of the attribute att € A. During the signing
phase, the user submits uses a reduced warrant for an attribute set A’C A that satisfies (A')=1. We
fix the maximum depth of the delegation path to be [ and stress this is not a restriction on the minimum.
Tracing Authority. The tracing authority (TA), independent of the hierarchy, is responsible for
removing anonymity in the case of misuse. It can identify the signer and all authorities on the
delegation paths for attributes that the signer used to satisfy the signing policy, and proves correctness
of these identities by producing a publicly verifiable proof.

Revocation Authority. The Revocation Authority (RevA) is a trusted third party that acts
independently of the hierarchy. The role of the RevA is to publish a list of revoked IDs that cause
any signature generated with a corresponding revoked identity to fail verification. The RevA would
require input of a user or AA identity in order to execute its function, which given the anonymity
of VLR-HABS, could require extraction from a signature by the TA. In practice, it might be likely
that the TA and RevA would be instantiated as a single authority whose role covers both functions,
however, we present them as independent parties to cover a more general scheme.

Definition 1 (VLR-HABS). A VLR-HABS :=(Setup, UKGen, AKGen,
Attlssue, Revoke, Sign, Verify, Trace, Judge) consists of the following nine processes:

° Setup(l)‘ ) is the initialisation process. Based on some security parameter X\ € N, the public pa-
rameters pp of the scheme are defined. In this phase, the root, tracing and revocation authorities
independently generate their own key pairs, i.e. RA’s (skdg,pkdy), TA’s (skta,pkta) and RevA’s
(skreva,PKreva)- In addition, RA defines the universe of attributes A, and initialises an empty list
RevokeList. We stress that due to dynamic hierarchy, the system can be initialised by publishing
(pp, pkdy,pkTa,PKreva) with A and Revokelist contained in pp.

e UKGen(pp,skdy) is a key generation algorithm executed by the root authority for users and issued
to users as (usk,upk,id).

e AKGen(pp) is a key generation algorithm executed independently by intermediate authorities. Each
IA generates its own public key, i.e., pkd,,id; (i>0).

o Attlssue(warr;,att,{pkd,;|upk;}) is an algorithm that is used to delegate attributes to an authority
id; with pkd; or issue them to the user uid with upk. On input of an authority’s warrant warr;,
an attribute att from warr;, and the public key of the entity to which attributes are delegated or
issued, it outputs a new warrant warr for that entity.

o Revoke(skreya,id) is an algorithm ezecuted by the Revocation Authority. Using RevokeList from the
implicit input pp, and on input of a User or AA ID (uid,id), it outputs an updated RevokeList.

o Sign((usk,warr),m,¥) is the signing algorithm. On input of the signer’s usk and (possibly reduced)
warr, a message m and a predicate ¥ it outputs a signature o.

o Verify(pkdg,(m,¥,0)) is a deterministic algorithm that outputs 1 if a candidate signature o on a mes-
sage m is valid with respect to the predicate W and revocation list Revokelist from pp, and 0 otherwise.



o Trace(skta,pkdy,(mW,0)) is an algorithm executed by the TA on input of its private key skta and a
VLR-HABS signature o, it outputs either a triple (upk,warr, ) if the tracing is successful or L to in-
dicate its failure. Note that warr contains attributes and delegation paths that were used by the signer.

o Judge(pkya,pkdy,(mW,0), (upk,warr,)) is a deterministic algorithm that
checks a candidate triple (upk,warr, ) from the tracing algorithm and outputs 1 if the triple is valid
and O otherwise.

A VLR-HABS scheme satisfies the correctness property if any signature o generated based on an
honestly issued warrant that satisfies the signing policy, will verify and trace correctly, if and only if
identities used in the warrant have not been revoked. The output (upk,warr,7) of the tracing algorithm
on such signatures will be accepted by the public judging algorithm with overwhelming probability.
Formally, we have:

Definition 2 (Correctness). A VLR-HABS scheme is correct if the following condition holds:

{lI/(A):l (1)

Vatt€ A,Swarr|att] €warr s.t. warr[att] is valid. (2)
implies
Verify(pkdy,(m,@,Sign((usk,warr),m¥)))=1 <= Vid€warr,id ¢ RevokeList (3)
and Judge((pkya,pkdg,(m¥,0), Trace(skta,pkdy,(m¥,0))) =1 (4)

3.1 Security Properties of VLR-HABS

Our security definitions are closely related to path anonymity, path traceability, and non-frameability
from [15] but with modifications to allow for revocation functionality. We give new game-based
definitions assuming probabilistic polynomial time (PPT) adversaries interacting with VLR-HABS
entities through a set of oracles given below and formally described in Figure 1.

— ORegu : A registers new users through this registration oracle, for which a key pair will be generated
and added to List. The public key is given to the adversary. Initially, the entity is considered
honest, and so the public key is also added to the list HUList.

— ORega : A registers new IAs through this registration oracle, for which an identity will be generated
and added to AList, which is given to the adversary.

— Ocorru: This oracle allows A to corrupt registered users. Upon input of a public key, the corre-
sponding private key is given as output if it exists in List. The public key is removed from HUList
so the oracle keeps track of corrupt entities.

— Ocorra : This oracle allows A to corrupt registered IAs and User attribute keys. Upon input of a
public key and an attribute, the corresponding private key is given as output the if the pair exists
in AList. The identity is removed from HAList so the oracle keeps track of corrupt delegations.

— Oatt: A uses this oracle to invoke an attribute authority to delegate attributes to either an IA or
to a user. In particular, the adversary has control over which attributes are issued and the oracle
outputs a warrant warr if both parties are registered, otherwise it outputs L. The public key and
attribute are added to a list HAList, that is initialised with {0, 1,1, | att}, Vatt€A.

— Osig: A uses this oracle to obtain a VLR-HABS signature from a registered user. The adversary
provides the warrant (and implicitly the attributes used), signing policy, message and the public
key of the signer. If the attribute set satisfies the policy, and the public key is contained in HUList
then the signature will be given to A, otherwise | is returned.

— Oxy: A uses the Trace oracle on a VLR-HABS signature (provided by the adversary) to extract
the attributes and identities. The TA does verification checks on the signature and upon failure,
will return _L, otherwise it outputs the warrant warr.

— OReviD: A uses this oracle to revoke a user. In particular, the adversary has control over which
IDs (both Users and AAs) are revoked. The oracle outputs an updated revocation list RevokeList
if the entity exists in List or AList, otherwise it outputs L.



ORegU( 7 ), Z¢ List OAm(i,Wal’ri,att,{idj|Uidj})

1:  (id,usk;,upk;) - UKGen(pp) 1: Li={(i,pkd; ,,att) |[{4,id,pkd; i

2:  List< ListU{(s,id,upk;,usk;)} 2 skd; att,att} € AList}

3: HUList<+HUListU{:} 3: if (i,warr;,att) € LAj € ListVAList then

4: return (id,upk;) 4 (skdi,att,Pkd; ) < Attlssue(skd; att,

5: warr; att,{id;|uid; })

Orega(i ), 1¢ AList 6 warr;[att] < warr; [att]U{pkd, _,,,id;,att}

1: id<—AKGen(pp) 7 AList < AListU{j,id;,pkd; .., skd; e, att}

2: Alist«AListU{(i,id, L, L, L)} 8 HAList +— HAListU{j,pkd, .., att}

3: returnid 9 return warr

. 10: return |
OCorrU( 1 )

1: HUList+HUList\ {4} Osig (i,warr,m,¥)

2: return skd; from List

A<+ {att| attewarr}
if ieHUList A ¥(A) then

1
, 2
Ocore (1:phd, e 211) 3: o < Sign((usk;,warr),m, %)
4
5

1: HAList<HAList\ {i,pkd, ,,;,att}

2: return skd; s from AList

return o

return 1

On(m¥,0) ORevip (i,id, RevokeList)

1: return Trace(skta,pkdy,(m,7,0))  1: if (i,idx,[4]) €ListVAList then
2: tok <— Revoke(skreva,id)

3: RevokelList <— RevokeListU{tok}
4: return Revokelist

Fig. 1. Oracles for VLR-HABS security experiments.

Path Anonymity. This property guarantees anonymity of the signer as well as all intermediate author-
ities involved in attribute-delegation for attributes used to satisfy the signing policy. The definition for
path anonymity for a VLR-HABS scheme is closely related to that given in [15], however we make ad-
justments to allow for the revocation feature. Our definition captures unlinkability for unrevoked signers,
without considering backwards unlinkability [44,9] which splits time into different epochs and preserves
unlinkability across them. The experiment for path anonymity, defined in Figure 2, requires a two-stage
PPT adversary (A;,A42) to distinguish which warrant and private key were used in the generation of the
challenge VLR-HABS signature o}. Initially, A; generates the authority and user hierarchy, utilising the
registration and delegation oracles. A challenge VLR-HABS signature o} according to the predefined
challenge bit b, using warrants and keys provided by the adversary. Then, with access to the tracing or-
acle, the adversary A, guesses b'. We note that the game returns 0 if A revokes the identity in either of
the warrants warrg and warr; that it provides the experiment. Since it does not have access to the revoke
oracle in the second phase of the experiment, it cannot use this to help determine the challenge bit.

Definition 3 (Path Anonymity). A VLR-HABS scheme offers path anonymity if no PPT
adversary A can distinguish between, EXP{’/EER?H ABS.A and Exp@iE}H ABs.a defined in Figure 2, i.e., the
following advantage is negligible in \:

-0 ~1
Adv{,/al‘_R-HABS,A()‘) =[P r[EXp{)/E;_R-HABS,A()‘) =1] _Pr[EXp{)/al‘_R-HABS,A(/\) =1]]

Non-frameability. Defined in Figure 3, this property captures traditional unforgeability notions, i.e.,
that no PPT adversary can create a VLR-HABS signature without having an honestly issued warrant
for a set of attributes that satisfies the policy. It also forbids an adversary from framing another user,
i.e. creating a verifiable VLR-HABS signature on behalf of a user for which the secret key is not



b
EXPEER—HABS,A(A)

1: (pp,skdo,sk-rA)eSetup(lk)
2: ((usko,warrg),(usky,warry),m¥) < A; (pp,skdo :
ORegU,0Rega ,Ocorrt,Ocorr A ,O1r,ORevID)
if |warrg|=|warr1| then
oo Sign((usko,warrg),m, ), o1 < Sign((uski,warr),m¥)
if Verify(pkdg,(m,@,00)) =1 and Verify(pkd,,(m,¥,01))=1 then
b/<—A2(ab:OTy)
return b’ A As did not query Orx(skra,(mW,00))

return 0

0 N O Ot ok W

Fig. 2. Path Anonymity Experiment for VLR-HABS

f
Exp(‘/LR—HABS,A()‘)

1: (pp,skdo,skra) ¢ Setup(1*)
2: ((Uvmvwx(upkpwarrﬂ})) <—A(pp,pkd0,skTA:

Oatt,05sig,0RegU,ORegA ,OcorrU,Ocorra ;OReviD )

3:  if Verify(pkdy,(m,¥,0)) A Judge(pkya,pkdg,(m,¥,0),(upk;,warr,)) then
4: if j€HUListAA did not query Osig((usk;,warr),m,¥) then , return 1
5: if Jatt € warr == (pkdy,pkd ,...,pkd;_;,upk;) =warr[att] A
6: V5 €[0,]]: (j,pkd;,att) € HAListV
7: ((Fe0,0-2]. A didn’t query Oas(i, -, att,pkd,, )
and Vj €[0,i]: (j,pkd, ,att) € HAList) V/

8: (A did not query Oas(I—1, - ,att,upk;)

AVj €10,i]: (j,pkd;,att) € HAList) ) then , return 1
9: if U(A)#1, where A:={att|att€warr} then , return 1

10:  if Ji s.t. id; € RevokeListNwarr then , return 1

11: return 0

Fig. 3. Non-Frameability Experiment for VLR-HABS

known. The adversary wins if either it produces a valid VLR-HABS signature, or is able to perform
delegation for at least one attribute on behalf of any honest authority that is not ‘below’ a corrupt
authority. This trivially implies that the root authority must also remain honest, unlike the definition
given in Dragan et al. [15]. We also modify the original definition to include extra winning conditions
that capture the scenario the adversary is able to produce a signature that verifies despite using an
ID that was revoked. This can be seen in line 10 of Figure 3. As in Dragan et al., A also wins if it
can generate a signature for which its attribute do not satisfy the policy.

Definition 4 (Non-Frameability). A VLR-HABS scheme is non-frameable if no PPT adversary A
wins the experiment ExpY g n ABs.A defined in Figure 3, i.e., the following advantage is negligible in A:

Adv{l g has.a(A) =Pr[Expl r_as a(N) =1]

Path Traceability. This property, defined in Figure 4, provides accountability for authorities in the
delegation path. It ensures that any valid VLR-HABS signature can be traced (by the tracing authority)
to the signer and the path of authorities that were involved in the issuance of the attributes. To win this
game, the adversary A is required to satisfy one of two conditions. Firstly, it can output a VLR-HABS
signature that verifies but cannot be traced (that is, the tracing algorithm fails), or secondly, one in
which the tracing algorithm outputs a warrant containing at least one unknown IA or user, i.e., were not



EXPULR-HABS,AO‘)

(pp,skdo,sk-rA)eSetup(lk)
((o,m, &), (upk,warr, 7)) <— A(pp,skTa : Oatt,ORegU,ORegA ;Ocorrt,Ocorra ;ORevID)
if Verify(pkd,,(m,?,0)) then ,
if Trace(skta,(m,%,0))=_L then ,return 1
if Judge(pkra,pkdy,(m,%,0),(upk,warr, 7)) A
(Fattewarr = (pkd,,pkdy,...,pkd,_,upk) =warr[att] A
( (3i€[0,1—2]. i€ HAListAi+1¢ AList) V
(I—1eHUList A ( - ,upk,usk)¢List) ) ) then ,return 1

return 0

© 00 g O Ot ks W N

Fig. 4. Path Traceability Experiment for VLR-HABS

previously registered in List or AList. To prohibit trivial attacks, we require the attribute-issuing oracle
to check that both entities are registered (are in List or AList) before returning a delegated attribute.

Definition 5 (Path Traceability). A VLR-HABS scheme offers path traceability if no PPT ad-
versary A can win the experiment Expy g ABs,A defined in Figure 4, i.e., the following advantage is
negligible in \:

AdwW) g Hags.4(A) =|Pr[Expy g pass 4 (M) =1]|

4 Building Blocks

We now recall some useful building blocks and techniques that will be used in our VLR-HABS
construction. We will use a zero-knowledge argument of knowledge to form the core of our construction,
a trapdoor delegation technique to issue attributes and an identity-based encryption scheme that will
allow the tracing authority to extract the warrant. First we recall a commitment scheme that will
be compatible with our argument of knowledge.

KTX Commitment Scheme. Kawachi et al. [28] constructed a string commitment scheme
COM:{0,1}*x{0,1}/2 —Zy, such that:

— If m>2n(1+n)logq for some positive 7, then COM is statistically hiding.

— If the SIS7%;, , 3 problem is hard, then COM is computationally binding.

We implicitly choose m sufficiently large, e.g., m = 4nloggq, to make COM statistically hiding. It
consists of 3 algorithms, Setup, COM and Open.

— Setup: Fix n,m,m€7Z and sample AHZZX(erm). Output pp:=(n,m,m,A).
— COMa (m;p): On input of a message m and randomness pHZZ”, the commitment is computed
as co:=COM4 (m;p)=A[m||p]" modg.

— Open(pp,m,co,p). To open a commitment, reveal p and m, then check co;A[me]T mod gq.

4.1 Techniques for our Zero-Knowledge Argument of Knowledge

We recall the techniques of Ling et al. [34] to create a zero-knowledge argument of knowledge that
will form the core of VLR-HABS.

Decomposition-Extension Technique. These techniques have been introduced in [34] and developed
further in [30,38]. It is a permutation-based argument of knowledge that supports a range of relations,
including for (I)SIS and LWE. In this work we rely on these techniques to achieve the strong anonymity
properties of a VLR-HABS scheme. We introduce the notation and algorithms used to construct the
argument. We start with a description of various groups and sets.



— &,: The permutation group of n elements. Let S,,x,, denote m copies Sy,. In particular, ¢p<—S,,xm
operates on matrices of dimension n xm as m column-wise n-permutations.

— Bayy, the set of all vectors in {—1,0,1}*™, that have exactly m coordinates of each —1,0 and 1. We
extend this notation to define Bs,,«x as k vectors from Bg,,,.

— Bay,. Similarly, the set of all vectors in {0,1}?™, that have exactly m coordinates of each 0 and
1, i.e. with Hamming weight m/2. We also define By, xx as k vectors from Bay,.

— Secrets(k): The set of all vectors z= (zo||2]||z}||...||20||z}) € Z™?¥) consisting of 2d+1 blocks
of size m such that ||z;|| ., </ and the d blocks, zi_k[l ,...,z;_k[d], are zero-blocks O™.

— SecretExts(k): The set of all vectors z = (zo|2}||}|.-.||z9||z}) € {—1,0,1}¥™2HD consisting of
2d+1 blocks of size 3m such that the d+1 blocks zo,z]f[l],...,zs[d] are elements of Bs,, and the
remaining blocks are zero-blocks 03™.

— SecretExtg(k): The set of all matrices such that each column, viewed as a vector
z.=(20||2)||2}|...|29)|z}) € {—1,0,1}>™241) consisting of 2d+1 blocks of size 2m such that the

d—+1 blocks zo,z]f[l],...,zs[d] are elements of Bg,, and the remaining blocks are zero-blocks 0?™.

Given a vector z= (onng)Hzgl) H...HZ&O)HZ(U) € 732441 consisting of 2d+1 blocks of size 3m, and
z2=(2||z1]|...||2?)) e Z39(2¢+1) \where 2() are potentially distinct vectors of the form z. We define
two sets of permutations:

— The set P of all permutations 7 that keep the arrangement of the blocks. Specifically, if m&P
then 7(z)= (TQ(ZQ)HT{)(Z?)HT% (ZD||---||Tl%(Z?d)||Tlld(led)) where TO,T{),Tll,...,TIOd,Tlld € S3m, and Sspy, 1s
the symmetric group of 3m elements. We further denote P to denote the restricted case that [=1.

— The set P of all permutations 7 that keep the arrangement of the blocks. Specifically, if 7 € P then
w(Z)= (T()(Z())HTP(Z?)"T%(ZDH..."Tg(ZS)HTj(Zé)), where Tg,TP,Tll,...,Tg,TC} € Somxn, and Somxn
is the symmetric group of 2m elements, sampled n times and applied to each of n columns in

the matrix.
— The set T = {T.|e € {0,1}!4}, where for e = ¢[l],...,e[ld],T, € T rearranges the blocks: T,(z) =
e[1] 1—e[l] elld] || 1—e[ld]
(zollzy [z~ l--llzg " llzg )

In particular, given t,ce {0,1}d,7r e P, and ze€ Z3 241 where @ denotes bit-wise addition mod 2,
and o is composition of permutations, it can be checked that:

z € SecretExtg(t) <= 7(z) € SecretExtg(t) <= 1. o m(z) € SecretExts(t @ c)

Decomposition. On input vector z = (21,22,...,2m) € Z™ such that ||z||, <3, the procedure VecDec
outputs p= [logB]+1 vectors wry,...,w), such that Z§:1 Bj-w;=z. This is achieved by the following:

— For each i € [1,m], write the i element of z as z; = £ w1+ P2 wio + ... + By - vy where

Vielpl:wij€{-1,0,1}, and B1=[5/2],60=[(6—51)/2].83=[(B—B1—52)/2],....0p=1.2

— For each je([l,p], let w;:= (w1 j,wa,....Wwn,;) € {—1,0,1}"™. Output {Wj}g'):r

Extension. On input of a vector w e {—1,0,1}", VecExt extends the vectors w to a vector w € Bs,,,
computed as follows:

— Let Y n© M) be the numbers of coordinates in w that equal —1,0,1.
— Pick a random vector w’ € {—1,0,1}?™ that has m — 71 coordinates equal to -1, m —n(©
coordinates equal to 0 and m—n" coordinates equal to 1. Output W= (w||w’) € Bsy,.

VecExt, is defined with input w€{0,1} and extends to w € By, of Hamming weight m, as follows.
i w((i+1)/2] if 7 is odd
1] =
1—wl[i/2] if i is even

2 Tt was noted in [34] that any set of {8;}; that allows any integer in the range [0,5] to be expressed as a subset sum
would suffice, but the choice here allows for no extraction gap, and thus is an optimal choice.



Preparing Secret Vectors. We define a process VecDE as follows:

— On input of a vector z € Secretg(s) for s a bit-string of length d, parse z as (zo||2Y||z1]|...||z)]|z}) €
7m(2d+1)

— Execute VecDec on each zf[i] for i€ [1,d] to obtain (d+1)p vectors w;.
— Execute VecExt(w;),i€[1,d] to compute the (d+1)p vectors w € Bs,,,, denoted by {{wi,j};’:l}?:o-

. < 1-sfi]
wh ;)€ Z3m 24 where W i *W is the zero

— For each je[l,p], let y; = (VAVOJHW?J- W%jHHVAV(%]

vector 03,

— Output y; €SecretExtg(s) for je[1,p].

Useful Functions. We now define two functions fk:Zémd%Z?(zldH) and fk:Zgled%ngm(de),
that are indexed by a vector ke {0,1}%4.

fic(z) = (2l k[t || (1~ K[1])2a] .| [k[d]zal (1~ Kld] )za)"
FiX) = (i)l ficXi2) |- fic(Xigm)) for i€ [Lin]

Matrixz Decomposition. We define MatDE based on VecDE, except it calls VecExty instead of VecExt.
Denote B ¢ for f€[1,k] to describe the k™ column of B, and s a binary string of length d:

— Input matrix B EZZ‘X’g
— Return {B@}Y_ < [VecDE(B, 1,5)||...||[VecDE(E;,s)] € SecretExtg(s) for i€ [1,p].

We define MatDec to be {EM}P_, < [VecDec(E;1)||...|[VecDec(E; ;)] for f€[1,k].

Maitriz Extension. On input of a matrix A € ngm(zldﬂ), the procedure MatExt outputs a matrix

A* ez Parse A=[A||Aol|Adl|.-|[Adl|--|[Ag_1)all--|| Ad] and define
A= [A| Aol [0 | Agl0"2|..| | A 1ygl|--|| Aal| 072" Also define
A" =[A]|A|0™2|...[ | Agql0m*2].

Proving consistency of identities. During the argument of knowledge, we will need to show that
the same identity id is used throughout. This is particularly challenging as id is encoded differently
across different sub-relations, so we are required to do more than just reusing a single commitment,
as one might intuitively hope. In particular, we will be required to relate id to Ay in the equation
Ajqz=u by proving the relation instead showing A fi4«(z)=u and f4-(z) € Secretg(id*), that is, the
output vector of fig«(z) has the correct structure that ensures id* was used. At a high level, to argue
that id € {0,1}¢, we first extend id to id* € By (the set of all vectors in {0,1}2¢ with Hamming weight d),
and then show that a random permutation of id* belongs to the set Boy which implies that id € {0,1}d.

4.2 Signatures and Basis Delegation

We recall the notion of Bonsai Trees [12] and a natural signature scheme that follows.
Delegating a Short Basis. A trapdoor for a matrix A, for Bonsai trees, is a short basis for A+ (A).
Cash et al. [12] show how one can delegate this basis to an extended matrix A’:=[A||A] such that
the new basis T o+ is also short, but for which is is hard to recover T s. We note that the extension
matrix A EZZ}X"”/ is flexible, and in particular m’ can be any integer greater than 0. We recall some
algorithms from Cash et al. whose existence and security properties are proven in [12].

— GenBasis (n,m,q). There is a fixed constant C'>1 and a probabilistic polynomial-time algorithm
GenBasis that, for poly(n)-bounded m > Cnlogg, outputs and S € Z™*™ such that A € Zy*™, the
distribution of A is within negl (n) statistical distance of uniform, S is a basis of A+(A), and

ISl < O(v/nlogg).
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— SampleD(S,A,u,3). For given A €Z;*™, a trapdoor S for A, a parameter 3=w(nlogglogn) and
a vector u€Zy , there is a PPT algorithm SampleD that returns a z< A% (A) with distribution
statistically close to D 41 (4) «, and norm at most f.

— ExtBasis((Ta =S),A’) takes as input a short-basis T's for a lattice A-(A), and A’ which describes
a superlattice of A, i.e. A’=[A||A]. It returns an extended basis for A’ as T/ =S+ <g Y)
where W is such that AW =—A mod q.

— RandBasis(S,A.y,3) takes as input a short basis S for A with respect to a syndrome y, and
returns a randomised basis S’ with small loss in quality.

The primary function of this delegation mechanism in our scheme will be to support attribute delegation
and issuance. The matrices A will be the public key of an authority or user, the attributes will be the syn-
dromes, and delegation from authority ¢ to j will consist of extending the short basis Ta, to T(a;|a,-

Bonsai Signature [12]. The signature scheme is instantiated with the following parameters: a
message m of length k= O(logq), a bound 3= O(y/nlogg), a Gaussian parameter o= 3-w(y/logq),
a uniform matrix Ag€Z}*™, with a corresponding basis Sg of A(Ag) such that [|Sp|| <. Finally,
choose {AY}F | and b€ {0,1}. Set pk=(Ag,{A2}E_)), sk=(Sp), return (sk,pk).

— Sign(sk,m) takes as input a mess m and secret key sk==Sy, it returns the signature o computed
as follows. Define A, := [AOHATD]H...HA,T[’C]], and compute a short vector
z < SampleD(ExtBasis(Sg,Am),0,3). In the rare event that z=0 or ||z||>/3-v/m/, then resample
z. Set o =2z.

— Verify(pk,or) upon input of a candidate signature o=z, output ‘accept’ if z#0,||z| < 8-v/m’ and
A,z=0, else output ‘reject’.

This scheme offers static unforgeability [12], which requires the adversary to submit signing queries be-
fore it learns the verification key, under the SIS assumption. Using a family of chameleon hash functions,
there is a generic transformation from static to adaptive unforgeability [29]. For our construction, we
will use the lattice-based Chameleon Hash Function from Ducas and Miccancio [16], which we denote
Ho:Zy— {0,1}*. The security properties intuitively require recovery of a short basis for A given a dele-
gated basis T o/ for A’ to be hard. This is the case due to the statistical independence of T o and T as [12].
We will use Bonsai Signatures to prove attribute delegation and as a one-time signature in VLR-HABS.
Arguing in Zero-Knowledge. Proving knowledge of a valid Bonsai signature requires proving
the following two relations, |z||,, </ and Ajgz=u mod ¢. To show the latter, we use the tech-
niques of Langlois et al. [30]. We rewrite the equation so that the matrix A is independent of id,
we do this by instead showing A fiq(z) =u mod ¢, and that fi4(z) is constructed correctly, that is,
fid(z) € Secret(id). Now that only one term forms the witness, we can proceed to efficiently prove
the relation in zero-knowledge. This is done as follows:

— Extend A to A*<MatExt(A), and compute zj,...,zy < VecDE(z,id).

Since z* = Z?:l Bj-z;, and the last two columns of A* are 0, then we have the following:
P
A* Zﬁjwz;f =u mod ¢g<= Az=u mod q
j=1
In the Stern-like protocol, we will show the following:
P P
AT DB try) | —u=AT( ) Birs
=1 =1

To complete the proof, the prover is also required to show zj,...,z) € SecretExtg(id).
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4.3 Identity-based Encryption

We will use the Identity-based Encryption (IBE) scheme from Gentry, Peikert and Vaikuntanathan
(GPV-IBE) [22], which has the following parameters: a security parameter A, a message m with length [,
an integer n=0(\), a prime modulus ¢=(n?), an integer m >2nlog ¢, an integer bound 3=0O(y/n),
an efficiently sampleable distribution x over Z parametrised by a<1/v/m+1(w(y/logm-logn)) and
a hash function H:{0,1} —Z7*".

The master public-secret key pair is (sk,pk) = (Tp,D) generated via GenBasis(n,m,q). For a
identity id € {0,1}*, the extraction algorithm first hashes id to a matrix N=[g1]|...||g/] € Z}*! using
‘H and then runs s; < SampleD(D,Tp,g;,«) for i€ [1,...,[]. Finally, it defines the decryption key for
a user id as Sig=[s1|...||s;] € Z*".

— Enc(pk = D, m) outputs a ciphertext f = (f,f5,) computed as f; + D7 -s+e; € Zy* and
f <~ NT.s+ey+m-[§] €Z!, where ej,e24x, s Z7 and N="7(id).

— Dec(sk=Sig,f) outputs the plaintext m computed via m’+f, —SLf; € Zlq. For each i €[1,...,[|,m[:] =0
if m’[4] is closer to O than |4], otherwise m[i]=1. Return m=[m[1]|]...||m[l]].

This scheme in [22] is proven to be IND-CPA secure under the LWE,, ;,, 4, assumption. We will use
the CHK transform [11] to achieve a IND-CCA secure PKE.

Proving Correctness of Encryption. Here we show how to make it compatible with the Stern-like
techniques of [34]. For our scheme, the signer will be required to show that each identity that appears
in the delegation path of an attribute is correctly encrypted into a ciphertext under a one-time
identity, usings tracing authority’s public key. Using the TA’s secret key, it can recover identities from
a signature. For a plaintext m € {0,1}¢, using the Hermite Normal Form (HNF) variants of LWE, the
relation among the related objects can be expressed as:

T
Pe+ (0 lg/2]m)=Ff mod g, where P— @T D
where P eZth (for g=m-+1,h=n+m-+1) and L is the identity matrix, f=[f,||f2]T €ZJ is a ciphertext,
e = [s||e1|les)T € ZZ is the encryption randomness satisfying |le||,, < 8. To construct a verifiable
encryption protocol given (P.,f), the prover with knowledge of (e,m), can argue in zero-knowledge
that f is a correct encryption of m. Hence, we are required to show:

— To argue that m € {0,1}¢, we extend m to m* € By (the set of all vectors in {0,1}?¢ with Hamming
weight d), then use a random permutation to show m* € Bayg.

— To argue that |le|| </, we form the vectors eq,...,e, < VecDec(e), and use random permutations
¢; to hide the value of e;, and then show ¢;(e;) € Bsp,.

— Next, we define the following two extended matrices:

< O(g—d) xd ()(g—d)xd

Pl ez o= ( 0 ) eoazpe

— We then have that:
P
P*( > Bje; | + Qm*=Pe+(07|||g/2Jm)=f mod g
j=1

In Stern’s framework, we will use masking vectors to hide the true values of the wtiness, and
instead show that:

P P
P* ij(ej—i—rej) + Q(m*+ rp-) — f=P* ijrej + Qrp,+ mod g
j=1 j=1

where re, EZgh for j€[1,p] and rpy- Eng are the uniformly random masking vectors.
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Proving Correctness of Decryption. Parse a ciphertext f as [f;||f2]”, each in Zg, we aim to show
that a ciphertext correctly decrypts to a candidate message under the identity’s secret key derived
from the master key pair. That is, we show the relation m’=f; —Sj4f;. For our scheme, each of the
components will be public so we are not required to produce a proof, as knowledge of S;q is sufficient.
The Tracing Authority will perform this action part alongside producing the plaintext m, to recover
the identities contained within the signature. It is publicly verifiable only when Sy is published.

4.4 Inner-Product Signing Policies

In this work, we consider inner-product predicates, which capture disjunctive, conjunctive and threshold
policies, and polynomial evaluations. We say that a set of attributes A satisfies the policy ¥ if the
inner product of an attribute vector a and predicate vector p is 1 3. That is:

W(A)=1 <= (a,p)=1 where a=|a||...|[as]” for a;€ A, and p=[p1]|..|[ps]”

We note that for construction, if § > 1, then the policy ¥ must have a certain structure. Precisely,
this is of the form ¥ = AJ_,%;(a;). That is, it consists of a conjunction of sub-policies ¥; that are
themselves represented by inner-products, but only over single attributes. We stress this supports
Conjunctive Normal Form (CNF) formulas and therefore contains all (A,V)-policies (inc. threshold).
If we consider the case that §=1, i.e. a user submits a single attribute to the signing policy, then we
obtain the scenario considered in all existing attribute-based signatures that support inner-product
policies. Thus this seemingly restricted form for the policy ¥ is actually more general than both HABS
constructions in [15,21] and all existing IP-ABS schemes [46,57]. We do not consider this restriction
further, as we generically refer to a policy vector p and make the assumption it takes this form.

We will require a zero-knowledge argument of knowledge of this relation, and we detail how we
achieve this in the Decomposition-Extension framework as follows. Let a=bin(a) € {0,1}9"1°84] then
we have that a=G-a, i.e. the binary decomposition of a, a gadget matrix G ::H®[1,2,...,2“°gq1*1].
Then we can rewrite this as

(G-a,p)=1 mod gq.

We further transform it, a’ < VecExt(a),G* + (G| |0"*™o89) Engznlogq, which allows us to write:
(G*-a p)=(a,p)=1 mod q.

In the Stern-like protocol, we will use the linearity of the inner product to instead show the following
equivalent identity, where r, is a randomly sampled masking vector.

(G*-(a'+ra),p)— (G ra,p)=1 mod q.

5 VLR-HABS Scheme

In this section we detail the core contributions. Firstly we introduce the VLR mechanism in Section 5.1,
then the zero-knowledge protocol in Section 5.2, and present the scheme itself in Section 5.3.

5.1 New VLR Mechanism

We introduce a novel verifier-local revocation scheme that relies on the LWE and SIS hardness
assumptions. For our scheme, a central authority (RevA) maintains a list of revoked identities in a
list RevokeList. A user is required to produce and publish privacy-preserving revocation tokens during
the signing phase of the signature scheme. As part of verification, values from RevokeList are used
to check whether the revocation tokens pass or fails verification.

To create a revocation token, the user samples a uniform binary matrix B <= B™*(@+1)n and
computes the LWE instance Ciq = BR;q+E for each id in the delegation paths, where Rjq is the

3 The choice of 1 here is arbitrary, and any non-zero c€Zq can be used provided it is consistent amongst all parties.
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encoded id of the entity, and E is a small error matrix sampled from a distribution y. This is repeated
for each identity contained in the delegation paths of the obtained attributes, i.e. id €warr. In this work,
we compute Rig= [R|\Rif[1]H...HRi;[d]] where id[i] is the i bit of id and R? are uniformly sampled
matrices with elements in Z,, and are published in the public parameters. Finally, R is the public
key of the RevA, whose corresponding secret key is a trapdoor Tgr that allows RevA to solve SIS
instances with respect to R. At a high level, due to the pseudo-randomness of binary-secret LWE,
we argue that C is computationally close to a sample from a uniform distribution, thus no adversary
can learn the identity committed to in C, which more generally maintains the anonymity properties
of the VLR-HABS scheme.

To revoke an identity, RevA uses its trapdoor for R to compute an extended trapdoor for Riq, using
the ExtBasis and RandBasis algorithms. It then invokes SampleD to compute a small vector y such that
R;qy =0, i.e. solving the SIS problem for R,q. It appends y to a public revocation list RevokeList. During
the verification phase, the verifier obtains RevokeList from the revocation authority and computes
Ciqy =BR,qy+Ey for each y € RevokeList, where B is a binary matrix of size n3 xms and E is an error
matrix of size ngx k3. If id has been revoked, then R;qy =0 for some y € RevokeList and hence Cyy =
BR;yy+Ey=B0+Ey=Ey and |Cyy||=||Ey|| <n8% If ||Ciqy|| >n/3? for all y € RevokeList and Ciq
in the signature, then the verifier is assured that the signature was not generated using a revoked id.

To show the correctness of C and that it contains the IDs encrypted in the ciphertext, the signer is
required to generate a zero-knowledge proof. In the decomposition-extension framework for Stern-like
protocols, this is done by instead letting R* :=[R/|RY| ]Rgl)H...HRg)) | |R£ll)} and proving the following
relation:

Cig=fia(B)R"+E.

This is a matrix-extension of the trick we used earlier in Section 4.1 to remove the dependency of
A4 on id, which makes the resulting relation linear, and is efficiently provable. We also note that R*
is now public so the prover only needs to hide B,E and id as part of the witness.

5.2 Zero-Knowledge Protocol

We now construct a Stern-like protocol that will form the core building block of our VLR-HABS
scheme. The protocol will allow a signer to convince the verifier in zero-knowledge that:

1. The warrant contains a set of committed attributes that satisfy the policy.
2. For each attribute in the warrant, the signers possess a valid delegation path.
3. The ciphertext is a correct encryption of the IDs that appear in the warrant.
4. The signer’s revocation token is correctly committed via an LWE function.

The protocol is instantiated with the following parameters:

— Public parameters: A7R7{Ag}éila{Rg}g:17G*7P*7Q7{Cid }idEWarra{fi}?zlapvu'
— The prover’s witness are the vectors uid,zo,{zi,m,ei}le,{id};dEWarr and the matrices {Biq,Eid }idewarr-

The goal is prove the following relation:

Ajigy|... i) (Z:) =a;  mod q1,i€[1,0] and id; € warr[a;]
Ciu=BR,y+E mod g3 for id ewarr

Ri:
! fq=P*e+Q]idy||...|/[uid] mod g, for every id €warrla;], i €[1,0]

(a,p)=1 where a=lay||...||as] A Auid(zo)=u mod ¢
A full and detailed description of the protocol is provided in Appendix A.

Theorem 1. Let COM be a statistically hiding and computationally binding string commitment
scheme. Then the protocol given in Section 5.2 is a zero-knowledge argument of knowledge with perfect
completeness with soundness error 2/3. Explicitly, that is:
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— There exists a polynomial-time simulator that outputs an accepting transcript that is statistically
close to a transcript produced by an honest prover with a valid witness.

— There ezists a polynomial-time extractor, such that, on input of a commitment CMT and 3 responses
(RSP1,RSP2,RSP3) corresponding to each challenge {1,2,3}, outputs a valid witness for the relation
Ri.

Proof. The proof follows standard arguments for Stern-like protocols, and can be found in Appendix B.

5.3 Specification of VLR-HABS

We now give high-level description of our lattice-based VLR-HABS scheme and present the formal
algorithms in Figures 5 to 7.

Setup: The setup algorithm generates the public parameters and is executed by a trusted party
to initiate the scheme, it begins by setting a parameter d where 2¢ will be the maximum num-
ber of AAs and Users in the scheme. It samples uniformly random matrices {A 4, L™,

{R§b Go1 ¢ Zs*ks (b e {0,1}) that generate the public keys and revocation tokens respectively.
Two further matrices are computed (A,R) with corresponding trapdoors (Ta,Tr) according to
GenBasis(n1,m1,q1) and GenBasis(ns,ms,q3), respectively. The key pair (skra,pkra):=(Ta,A) is that
of RA and (skreva;Pkreva) = (R,TR) is for the RevA. The TA also generates its key pair for IBE-GPV
as (skta,pkta) = (Tp,D) - GenBasis(nz,m2,q2). Finally, it samples a vector u€Zg* that is used in
the key-issuing phase of the scheme, and defines the attribute universe as A= {a@}l 1, for N total
attributes. It outputs these under public parameters pp:=(A,R,D,u,{A; b)} * {R A), which
will be an implicit input to all algorithms.

UKGen: To join the scheme, the RA selects an identity id as a binary string of length d. It
computes the corresponding public key upk := A4 as [AHAi{j[l]H...HAﬁ[d]]. It computes Ty,
RandBasis(ExtBasis(T A ,Aid),u,/1), and then computes the user signing key as
usk=zg < SampleD(T s ;,,Ayid,u,51), which satisfies Ajqzo=u. The key pair is issued to the user.

J1’

AKGen: For an Authority joining the scheme, it is issued an identity id € {0,1}¢. The public and secret
keys for the authorities are issued during attribute delegation as they are dependent on both the
attribute and position within the hierarchy.

Attlssue: This algorithm takes as input an attribute att=a, an AA secret key ask;, a public key apk;_
for either an IA or a user, and warr containing a matrix A; with corresponding trapdoor Ty,. For
the target vector (or syndrome), the attribute a, a k™ level AA extends its public key Aigy|)...llid; =

AAT AR AR, ] to a k+1-level entity by computing A’ [A [l |AG )
and executing Ta ; att <~ RandBasis(ExtBasis(Ta,[Aig||A']),a,51). If it is issuing to an authority, it
sets skd; < T A atts if it is issuing to a user, then it first computes a Bonsai signature on A; with
respect to a. That is, a short vector z <~ SampleD(T4 att,Aj,a,41) and sets skd; = z. It appends

(id,Aj,a,skd;) the (possibly empty) warrant and returns warr.

Revoke: To revoke an identity, the algorithm Revoke takes as input a user identity, id. Using its secret
key, skreva =TR, a trapdoor for R, it sets Rig=[R| |R'd[1 []...| |Ri;[d]] and then computes the revocation
token y as a short vector that satisfies Riqy =0. It appends y to RevokeList.

Sign: The signing algorithm takes as input a set of attributes {a;}?_, with associated {Aj,, T, o =
zz-}le, the user’s secret key usk =zg, a message m and a policy ¥, and we denote the signer’s ID as uid for
clarity. Recall that for each attribute, the delegated keys are short vectors that solve Ajy,z; =a;, and sim-
ilarly the public value u proves that the signer has knowledge of usk as it solves A qzo=u. It then pre-
pares its revocation tokens by computing an LWE instance as, for each id € warr, Ciy = BR;q+E where B
is a binary matrix sampled from B™3*"3 and E is an error matrix sampled from . B must be a binary se-
cret so that the norm is small and we can use the zero-knowledge protocol described in Section 4.1. It gen-
erates keys for a one-time signature as (osk,ovk) and encrypts the identities of the AAs in the delegation
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path under the Identity-based Encryption Scheme (GPV-IBE) using ovk as a pseudo-identity. To do this,
it samples ej,e2 < and s<=Z; and computes the following: fi(l) =Ds+e £ =NTs+e,+ lg/2]id;

i
and sets f; = [fi(l)||fi(2)], for each i€[1,0]. It generates the zero-knowledge argument of knowledge T,
described in Section 5.2 for the relation R;. In particular, ZKAoK ensures that for each identity that
appears in a delegation path for an attribute also, it appears in a corresponding ciphertext and revoca-

tion token. This is done by showing that the vectors tgjz) and matrices Tjg g (as described in Section 5.2)

belong to the sets SecretExtg (dgl)) and SecretExt@(di(j )), respectively for a delegation path 7, identity id
and where the vectors d; are the message encrypted in the ciphertext. Using the Fiat-Shamir heuristic 4,
the signer turns the interactive protocol into non-interactive and binds the message to the message, pol-

icy, revocation tokens C={Ciq}idewarr, ciphertext f:= {fi}f:l and proof. It computes the challenge as:
CH= {Ch}gzl = Hl (mQafaCaOVkaPP,{CMTi}gﬂ)

Finally, it computes a one-time signature over the proof 7, ciphertext f, message m and policy
¥ as o,. Since the choice of the OTS can be generic we leave the function here unspecified. However,
for security and instantiation, we shall reuse the Bonsai signature scheme from [12], with use of a
chameleon hash function Hy : Z; —{0,1}"™ (see Section 4.2). It outputs the VLR-HABS signature:
o=(f,C,m,0,,0vk).

Verify: To verify a candidate signature o, a verifier obtains the list RevokeList from the RevA, potentially
offline and before the signature is presented. It parses o as (f,C,m,0,,0vk) and checks that 7 and o, pass
verification. It then computes Cjgy and outputs 0 if any C;dygngﬁg for any y € Revokelist, id € warr.

Trace: On input of a candidate VLR-HABS signature, the tracing algorithm parses o as

(f,C,m,04,0vk). It first verifies o, then, using its secret key, Tp it can create an identity-dependent
decryption key Sgyk for a ciphertext fiy, with which it can extract the user ID and identities of the
authorities that appear in the delegation path of any attribute. This algorithm outputs Sovk,{idi}le.

Judge: This algorithm is then able to verify the correctness of decryption of this IBE-GPV ciphertext.
It takes as input the decryption key Souk and checks that it is a valid key for f;, that is, it checks

DS = Ho(ovk) and ||S|| < B2. If this passes, it also checks the decryption is correct by evaluating

f ;P*e—i—Qid and outputs 1 if all checks hold, else it outputs 0. By using a one-time identity in our
IBE scheme, we are able to bypass expensive zero-knowledge proofs in this stage and instead only
require the Trace algorithm it output a verifiable key for the “identity” ovk.

Detailed description. We provide the complete specification of our protocol only for the Setup and
AKGen algorithms, and illustrate UKGen, Attlssue, Revoke, Sign, Verify, Trace, Judge in Figures 5 to 7.
— Setup(\). It generates the Root Authority and Revocation Authority key-pairs as (skdg,pkdg) :=
(Ta,A) < GenBasis(ni,m1,q1), and(skreva, Pkreva) = (Tr,R) < GenBasis(ng,ms,q3). Next it
samples random matrices {Af}é‘il < Zgl>™ and {R,i};-izl < Zy3*™s. During this phase, the TA
keys are also computed as (skdp,pkdy4) = (Tp,D) < GenBasis(ng,ms2,q2). Define x2 be a (2
bounded distribution Dz, ,, and similarly let x3="Dz_,, (i.e. bounded by S3).
— AKGen. Sample and output id < {0,1}¢.

6 Security, Efficiency and Extensions

In this section, we provide analysis of correctness and security followed by efficiency considerations
and parameter selection for our VLR-HABS scheme. We start by stating and proving two lemmata
that we will use in the analysis of our scheme.

4 As in [4], we choose to present the FS heuristic for simplicity. We note, however, that one could instantiate our
scheme with the Unruh transform of [55] to achieve security in the quantum random oracle model (QROM). This
follows from the fact that the transform is generic, and applies to any Sigma protocol that has the standard properties
of Honest Verifier Zero-Knowledge and Special Soundness.
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UKGen (asko) Attlssue ((warr;),att,[pkd,|upk])

0: Sample uid < {0,1}* 0: Parse (skd; aw,pkd;) as ((Ta;,a,A,id;),A;,id;)
1 Aue=[A][ATY].. A 1 A AT AT,
2: Ta~ < ExtBasis(Ta,Auia) 2:  Ta~ < RandBasis(ExtBasis(Ta,,,[Aul|A"]),a,51)
3:  zyg <+ SampleD (T, Auig,u,51) 3: if |id;|=Id then
4: return (id,skdig,pkd;) = (uid,zyid,Aid) 4 2, < SampleD(T'a-,[Ai]|A,].a,5:)

5: skdj att <25

6: else, skdjaTax

7:  return warr=warr;U{id; A skd;.a}

Fig. 5. Algorithms UKGen and Attlssue of our VLR-HABS construction.

Sign ((usk,warr),pkd,y,m, %)

Parse warr as {id; j,A; j,2:,2i}ic[1,6],5e1, With [#|=0
(ovk,osk) <~ OTS.KGen())
N:=Ho(ovk),sZ €14 X2,82 4> X2
foreach i€ [1,0]
£V =D"s+e, £ =NTs+es+|q/2]id;
£, = [fi(l)Hfi(z)]
foreach i cwarr
Ri ¢ [RI[RT™||.. RG]
B; B2V B, o\ Ci - BiRi+E;
f= {fi}?:laC:: {C.i}icwar
10: 7= ({CMT;,RSP;,CH: }'_, ) < ZKAoK (uid, o, {ids B:,E: }icwarr,
{eizi,a:}_1,(C,QP.fovk,¥,pp),R1)

S N

© o = O ot

11: 0,4 OTS.Sign(osk,Ha(m ¥, f,C))
12: return o< (m,0,,0vk,f,C)

Verify (pkd,,o, RevokeList)

0: Parse o as (ﬂ,ao,ovk,{fi}le,{Ci}iewarr)
1: if Jy € RevokeList and 3C;:i€warr s.t. C;y <nsf3, return 0
2:  if ZKAoK Verify(m,¥,m {C;}'2 ) #1,return 0

if OTS.Verify(ovk,o0,Ha(mW,m.f,C))#1,return 0

4: else return 1

Fig. 6. Algorithms Sign and Verify of our VLR-HABS construction.

Lemma 1. Let f=poly(n), ¢=(2nB%+1)? and m>2n, then for a fized y €Zg" with [ly||, <8,and
a uniformly random matriz C<—>Z’; XM we have

P1[||Cy ]|, <n5%| <negl(n)

Proof. Using the fact that Cy is uniform in Zg, we have:

(2n324+1)™ 3 1

Prf||Cyl| . <nB% < <

<(2n8°+1) 7" <negl(n)

In our scheme, as C is an LWE sample, it will only be statistically close to uniform, so one should
account for a negl(n) in the first inequality, which carries through and is absorbed in the final bound.
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Revoke (Tr,(id,RevokeList))

0: Riae [RIR|L..|[RE)
1: Tgr*<+ EXtBaSiS(TR,Rid)

2:  y<SampleD(Tg~,R",0,63)

3: return RevokeList=RevokeListU{y}

Trace (0,Tp,RevokeList)

0: Parse o as (W,W,m,{fi}le,{ci}i;)
if Verify(Ao,(m,00,0vk,{fi}2_1,{C;}}2;),RevokeList) =1 then

—_

2: Sovk < SampleD(Tp,D,Ho(ovk),52)
3: for i€[1,...,0]:

4: Parse f; = [ffl)Hfi@)}

5: lidy |]...ids 1 ||uid] = [ £ — Souc-£2]
6: warr =warrU{idy,...,uid}

7: return (warr,Soyk)

8: else return L

Judge (o,warr,Sovk,RevokelList)

0: Parse o as (W,W,m,{[fl(i)Hféi)]T}f:l,{Ci}iil)
1o if (£ —Sou- £ #wart[i] for any i€[1,..,8], return 0
2:  elseif DS #Ho(ovk), return 0

3: else return 1

Fig. 7. Algorithms Revoke, Trace and Judge of our VLR-HABS construction.

Lemma 2. Let §=poly(n), then for (R,B,C,E,y) € Zg”k X L™ X ZZXk X Zng X Z’; such that
Ry =0 with |ly|, < and C=BR+E, where B,R are uniformly random and E is drawn from

B-bounded distribution x over Zy, then

P1(|[Cyl|,, <nf*)=1
Proof. Expanding out the computation, we have:
Cy=(BR+E)y=BRy+Ey=B-0"*"+Ey=Ey
Noting that ||E|, <8 and |y, <3, we derive | Ey]|., <nB? from the Cauchy-Schwarz Inequality.
Theorem 1. Our VLR-HABS construction given in Figures 5 and 6 and 7?7 is correct.
Proof. See Appendix C.

Theorem 2. Let COM be a statistically hiding and computationally binding string commitment
scheme. Then our VLR-HABS construction given in Figures 5 to 7 offers Path Anonymity, Non-
frameability and Path Traceability in the Random Oracle Model if the L\WE,, 1y g0,x2 LWEn; ms g3,x3
and SISy, ms.gs.85:915n1 mi,q.8 01 SISk, my.qu.8. assumptions hold, Ho and Ha are collision resistant
and H1 is a random oracle.

Proof. The proof follows from Lemmas 3 to 5 found in Appendix D.

6.1 Efficiency and Parameters

We instantiate the scheme with the parameter choices given in Table 1 so that it runs in polynomial time
and such that the security and correctness properties hold. We used the estimator by Albrecht et al. [2]
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to evaluate the estimated security of each LWE and SIS instance. For the values relating to the Bonsai
signature, GPV-IBE, OTS and KTX commitment scheme COM, we directly use conditions as given in
their original works. For the ZKAoK we use the parameters of the underlying commitment scheme and
use a soundness parameter t =w(\). The values for n; are assumed to be fixed and are typically a small
polynomials in A. The VLR mechanism uses values from the trapdoor delegation in [12] restricted to the
conditions of Lemmas 1 and 2. We note that if one relaxes the perfect correctness given by Lemma 2, one
could obtain smaller values for g3 at the trade off of introducing a correctness error. According to Lindner
and Peikert [33], this error is close to an exponential exp(—m(33a3)?), where a is the Gaussian parameter
for the LWE instance of C. We briefly discuss the key sizes and algorithm complexity with respect
to the security parameters n;. Public keys are elements of Zj**"™ which is quadratic in n;. The signing
operation takes t-O(|warr|(n?+n3+n3)+n3) steps, where ¢ is the soundness parameter for ZKAoK,
and the length of produced signatures is also quadratic in the parameter n;. Signature verification
also runs in this asymptotic bound. The revocation check that completes the verification algorithm
is linear in the number of revoked users, which matches other VLR schemes such as [30] where they
note this complexity for VLR seems unavoidable. The Trace and Judge algorithms are linear in |warr|.

We briefly note some final generic changes to improve upon efficiency. Firstly, the protocol benefits
from the pre-computation of offline/online signatures [52] that are naturally compatible with our
one-time signature. Here, the OTS signature is produced ahead of time (potentially batched), using
a chameleon hash function for Hj, that would allow the signer to find a corresponding randomness
to match the message it must sign when generating the VLR-HABS signature. Secondly, as noted in
[49], commitments in ZKAoK can be hashed prior to sending to minimise size of the signature, at the
expense of additional hash computations by the signer and verifier. Thirdly, our delegation techniques
consist of delegating short basis have order O(n?), per issuance. More efficient, trapdoor delegations
exist, for example the lattice trapdoor by Micciancio and Peikert [42], however it is not clear how
one might argue security for VLR-HABS as the structure of the resulting Boyen signature does not
lend itself to be embedded over multiple delegations. Finding a more efficient yet compatible trapdoor
could be viewed as an interesting open problem. Finally, we note using complexity assumptions and
tools for ideal lattices [39] instead of integral lattices reduce most of their associated operations by
about a linear factor in the security parameter. The practical suitability of the resulting schemes may
still depend on careful selection of parameters, nonetheless the techniques we have used in this paper
can be realised from such structures and do provide generic overall improvements.

Table 1. Parameter Selection for VLR-HABS based on its building blocks. We target 128-bit security, and so set the
soundness parameter t=219. We set ID bit length to be d =16, which allows the schemes to support 65536 unique
entities across a hierarchy of depth [=3. Note here that m, are the number of samples in LWE and SIS challenges.

Building Blocks i n; m ms; qi Bi ;
Bonsai Signature 1 500 618 9840 2% 31440 —
GPV-IBE 2 400 — 16800 21 — 10
VLR 3 1400 1840 29440 262 — 1073
OTS 4 500 41 656 221 31440 —
COM 5 400 — 25600 2'¢ 3200 —

6.2 Revoking Attributes

We now briefly describe how to achieve attribute revocation for our VLR-HABS scheme. We im-
mediately observe that we can apply similar techniques to those used to revoke users. In particular,
the signer, upon generating a VLR-HABS signature, also commits to the attributes used as an LWE
instance C=BA +E, where A is the binary decomposition of an attribute concatenated with R, R||a].
Revocation is then performed by the authority by computing a short vector such that Cy <n/3%. The
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argument ZKAoK would have to be modified to show that the attributes are correctly committed to.
Minor modifications to the security properties path anonymity, non-frameability and path traceability
are required. In particular, in path anonymity we prevent the adversary from revoking an attribute
used in the challenge signature, as this would allow it to trivially break path anonymity. This can
be achieved by standard bookkeeping techniques and the proofs follow a similar strategy.

This idea could be further extended to revoking an attribute for a specific user. By altering the
delegation process to delegate an attribute of the form id||att (the bit-string concatenation) and further
requiring the ZKAoK to link id to the identity used in Ajy and Rjq. This could be achieved using
the techniques already used in Section 4.1. We finally note that this would require the policy to be
encoded in a specific format that, intuitively, ignores the first d bits of the attribute id||att.

7 Conclusion

The VLR-HABS scheme proposed in this paper improves upon security and functionality of existing
HABS constructions by proposing a lattice-based scheme which supports verifier-local revocation and a
wider range of signing policies. Our scheme is based on LWE and SIS assumptions which are believed to
offer post-quantum security. It supports inner-product relations which allow for conjunctive, disjunctive
and threshold policies as well as polynomial evaluations of attributes. Revocation in our HABS schemes
uses a novel VLR mechanism that allows revocation of signers, attributes as well as intermediate authori-
ties. Our scheme also implies the first lattice-based (non-hierarchical) ABS scheme with these properties.
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Appendices

A Zero-Knowledge Protocol

The protocol is as follows:

— Public parameters: A,R,{A?}é‘il,{Ri-’};l:l,G*,P*,Q,{Cid}idewa,r,{fi}le,p,u.
— The prover’s witness are the vectors uid,zo,{zi,ai,ei}le,{id};dEWa” and the matrices {Biq,Eid }idewarr-

The goal is prove the following relation:

A[ile...Hidl] (zz):a,L mod q1,i € [1,6] and IdJ Gwarr[ai]
Cit=BR,y+E mod g3 for id €warr

f4=P*e+Qidq]|...||uid] mod ¢ for every id €warr|a;], i€ [1,d]
(a,p)=1 where a=[ay]|...]|]as] A Ayd(zo)=u mod ¢

Prior to the interaction, the prover P and the verifier V both extend the matrix

A =[AIA AP AD ALY to A* < MatExt(A’) and similarly R/ :=[R|R”|[RY][... | RO R)
to R* <+~ MatExt(R). Both parties also compute G* which is the gadget matrix defined in Section 4.4,
and also G’ which is also a gadget matrix but of size n; X nilogq;. The prover then prepares its

witness vectors with the Decomposition-Extension techniques for the values p; =logy(51),p2 =1ogy(52)

and p3=logy(f3). That is,

id* < VecExt(id),Vid € warr
{20,1,.--,20 p, } ¢ VecDE(zg,[uid"])

{Zi,ly"'7z’i,p1 } (—VeCDE(ZZ,[IdT | ‘ ‘ |IC|;;1 HUId*]),VZ € [1,5]
{€i1,....€ip, } < VecDec(e;),Vie [1,0]

Big+ MatDE(Bid,id*),Vid € warr

{Eid,17"'7Eid,p3} — MatDec(Eid),Vid e warr

The protocol follows the typical format of a X’ protocol, and is executed in 3 moves.

1. Commit. To begin, P uniformly samples randomness 1,7y and r3 for COM, but we omit
these from the equations below for readability. It should be understood that r; is an implicit
input in the commitment ¢;. It then samples the random permutations and masking vectors
as:

pi+{0,1} r;ia < {0,114 Vig[1,0]

O ) P rl) plB) i G vy (g )

QSSU (bgpl) —P rgl) r(()}n) Pngl(Qd—H)

Gia > Sony Nlogai 1> ri,a%’ng ogal for je [1,0]

Qbid,B P Rid,B <~ ZZ”P’ X2n3(2d-+1) Vid € warr
BT = Sy Ry gorr R 215733 for id € warr
it Sy, i T e 1]

Let pig = pi[kd+1:2kd], i.e. for a k' level authority for attribute a;, take the d bits from dgl) that
correspond to its position in the delegation path. This mapping links an encrypted identity’s position
in the ciphertext with its revocation token and location in the Bonsai signatures. This leaks no
information about the witness and should be assumed to be handled implicitly by the protocol. Let
Ta:=[T1al|.-|[rsa)]’ and compute:



=COM <{{¢ 9) 6 17(1502 j= 1a{¢|d B:{(Z),dE 1}|d€warr7{{¢ 2:1,¢i,a,,0i}?:1,po

. . 1)
K*< 511553)1“6],;)7{*&% 161 zz) G'r;a; P*( (]) Z]e))'i‘Q*rz } R
{R|d BR*+Z 153 id E} 7<G* -I‘a,p>>
idewarr

cchom({{Tpinf;’(rE?z) 2 T oS oY) (VD)2 | dialria) Yy,

{T},(ria),Tp, 0 B(Ria,B) ,{<Z>id,E(Rid,E)}§il}idewarr>

COM({{W @ 1IN, Tpo00d) @) 418y,
({0 (e 412 | i a(@ +1ia) Yy T, (i} +rija),

TPid O¢id,B< id +R|d B) {¢|d E ]) +R,(d )E 1}|d€warr>

It sends the commitment CMT = (1, ¢, c3) to V.

2. Challenge. The verifier sends a challenge CH <= {1,2,3} to the prover.

3. Response. P replies as follows.
If CH=1, let d\") =id;®p; then:

For i€[1,8],j €[Lp]: t¥) = O%(l ) = o¢(j>(rj)

Pt a):
For je[Lpi): t9) =T oeboz(Zé))Véz Ty oo )(xl).

For 26[1 (5] tia ¢za( )Vla_¢§ja( E;z)

For i €[1,0].j € [Lpa]: tﬁje) d>§§( D) = ¢§e)(r1(2)

For 26[1 (5] tiid= (ld )Vud sz(ri,id)

For idewarr: T.dB Tplo¢.dB( )VldB Tp,odiaB(RiaB)

For idewarr,j€[1,p3]: T |d E ¢.d E( )) Vl(d E— ¢.d E( .(j)E)

It sends the response

RSP:= ({t0z>V0;}] 17{{tlza i,z S j= 17{tzev ze j= 17t'La7Vzaatz|d7Vzld}z 1
{{Tl(cji)E7V|(j)E §)5 1s Id,B?Vid,B}idewarr)

If CH=2,let dl@) =p; then:

For i€ [La]j € [1p1]: 0 =) w) =2 420)
For je[Lpi]: o) = oZ,wéi—zé”HSi
For i€ [1,0]: Yia=0ia,Wia=a,+T;a

For i€ [1,5],5 € [1,po]: w(] Ze),wg’]e)— §)+r§,§

For i€[1,0]: WUd—Id +Tiid,
For idewarr: ¢.dB <25.d B,W.dB Biy+RiyB
For idewarr,j € [Lps]: 65— 00 g W —EL +RY,
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It sends the response

RSP: ({woz7w(()‘7; fl 1 {{wzz’ sz J 1?{¢1e7 J) p2 1¢’La7wl a7W’L Id}z 19
{{1/1.(5)137‘7‘7.(;)13 17w|d B, Wld B}ldewarr)

If CH =3, let d* = p; then:

For i€ (18] €[1p]: 0 =) ayz(,;) )
For j€[1,p1]: ; wé z:yOz_ gi
For i€[1,0]: 6;a ¢za,}’za Tia
For i €[1.6].j € [Lp2]: 6) <Z>§Je),>qe Eje)
For i€[1,0]: ¥iid=Trijd,
For id ewarr: Q,d B =¢idB,YidB=RidB

For idewarr,j €[1,ps]: 6 |d E gblj)E,Yld E= Ri(i)E

It sends the response

RSP ({9 z?yOJ; ?1 1?{{07,z7y'bz _7 1’{9 e’y'le ] 191aaY'Laay“d}z 1

{{HldE7 |d')E j= lﬁldB’ id,B}id€warr>

Verification. Depending on the challenge, the verifier computes the following.
If CH=1, then:

Parse RSP as ({tOZ,VOZ = 17{{t7,z? Z(J) Ay {t vine ¢ Viabijd Vijd o1,

ze’ e Sj=1"nan
{{Tld B |d E}j 1 T B |d,B}|dEWarr)-
Let di(d) —dz(l)[kd—i—l.de}, i.e. for a k™ level authority for attribute a;, take the d bits from dl(l) that

correspond to its position in the delegation path. This mapping is assumed to be sent by the prover.
Then, check that:

For all je[l,...,pm]: t((]{; € SecretExtﬂ(d((Jl))
For all j € [L,...p1),i€[i,0]: tY)) € SecretExts(d. )
For all idewarr: Ty B GM((ZS))
For all i € [|1,0]: t;q=d."”
For all j € [1,....p2)i € [i,0]: tY) € By,
For all j €[L,...ps]id €warr: T € By sk,
For all i € [i,0]: t; a € Bon,logg

and the following holds:
COM({{sza 5 j j= 1a{{ 1Vz a}l ]_){Vldv id Ba{Vid,E}gil}idEWarr)

COM({{t ) i= lvt(();+ (()z Jj= 17{{tze+vz(e) j= 17 za+vi,a}z§:17
{tz,ld+Vz,ld7Tld,B+Vld,Ba{Tld,E+Vid,E}§3:1}id6warr)

If CH =2, then:
Parse RSP gs ({¢OZ,W(()J; 5’1 1 {{%z, lz = 1,{1/)“;, J) p2 2 ViaWiaid, Wiid o1
{{zb,d Es |d E j= 1a¢|d Bawld,B}ld€warr)a and build Wq = [Wl,a||~~||w6,a] and Wid —[ idi,lH“HWidi’l]T-

Let di(d) —dZ@) [kd+1:2kd], i.e. for a k' level authority for attribute a;, take the d bits from dZ(Q) that
correspond to its position in the delegation path. This mapping is assumed to be sent by the prover.
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Check that
COM l) 5 d(2 d(2)
{{@Z} 1ﬂj} 1 {¢|da¢|d B»{w,d E 1}|dewarra{{wl e 1,71% ay =140

)

2»81 W(()j; - {A* 251 zz ~G wiaP Zﬁ Zje) +Q*Wi,d—fi} ;

i=1

{Wid,BR*'f‘Z,B;(),j)Wi(i)E_Cid} ,<G*'Wa,p>—1)
],1 idewarr

CSZCOM({{Td£2)0¢EQ( )}z 1s d(Q)osz(WOZ) Jj= 17{{{w ( )] 1
Via(Wia)}1,{ d£2)(wi,id)7 di(d2)owid,B( idB); {%dE(W.(j)E) ? 1 Videwarr)

If CH =3, then:
Parse RSP as ({00 Z’yOZ Jj= 17{{91z’yzz Jj= 17{0ze7yz]e) ?ilei,aa}'i,aneid“yi id}g_l?

{{HS)E;Y@ EJj= 176|d B |d,B}|d€warr>- Build the vectors Yao= [yl,a‘ ’| bﬂs a] and Yid [Y|dz 1 H Hyldz l]
accordmg to the mapping. Check that

=COM <{{‘91 z) z—l) 1 {eld) id Ba{H,dE j= 1}|d€warr»{{91e j=1> za}?:l,
> 8y, ,{A* > 87y | - GlyiaiP? Zﬂg 'y +Q*Yi,d} :
j=1 j=1 J=1 =1

{ |dBR*+Z/8 .dE Cid} 7<G*'Ya,P>>
idEwarr
¢ =COM({{T, 000} (v}t T d<z>oe<”<yoz>] WD I whia(yia) Yo,

{r e (Yi,id)aTdi(j)Oeid,B(Yid,B)a{¢id,E(Yi(o]|,)}3) "2 | idewarr)

The verifier outputs 1 if and only if all the conditions hold, else output 0.

B Proof of Theorem 1

We first recall the theorem.

Theorem 1. Let COM be a statistically hiding and computationally binding string commitment
scheme. Then the protocol given in Section 5.2 is a zero-knowledge argument of knowledge with perfect
completeness with soundness error 2/3. Explicitly, that is:

— There exists a polynomial-time simulator that outputs an accepting transcript that is statistically
close to a transcript produced by an honest prover with a valid witness.

— There ezists a polynomial-time extractor, such that, on input of a commitment CMT and 8 responses
(RSP1,RSP2,RSP3) corresponding to each challenge {1,2,3}, outputs a valid witness for the relation
Ri.

Proof. The proof consists of 4 parts and utilises standard techniques for Stern-like protocols.

Soundness. As with typical Stern-like protocols, our protocol has soundness of 2/3. This can be seen
by analysing a dishonest prover attempting to produce a valid script. Before the protocol is run, the
dishonest prover will guess which challenge from {1,2,3} the verifier will not ask for. If the adversary
guesses correctly, it is able to simulate the protocol without knowledge of a valid witness and wrongly
convince the verifier to accept the transcript. If the adversary guesses incorrectly, the verifier is able
to identify the cheating behaviour. Therefore, the protocol has soundness of 2/3. By repeating the
protocol t=w(logn,) times in parallel, this error can be made negligibly small.
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Perfect Completeness. We note that, using the Decomposition-Extension technique, an honest prover
following the protocol with a valid witness will always be able to produce a script that is accepted

by the verifier. Therefore, the protocol has perfect completeness.

Zero-Knowledge. We will show that if COM is a statistically hiding commitment scheme, then ZKAoK
has the Zero-Knowledge property. In particular, we construct a polynomial time simulator Sim that
is able to produce a transcript that is statistically close to a real protocol run with an possibly
malicious verifier. This simulator will fail with probability negligibly close to 2/3. The public param-
eters are A,R,{A2}d {RV}Y | .G* P*,Q,{Cid}idewarr,{ i }\_,P,ut. Sim starts by selecting a challenge

CH €{1,2,3} that it guesses the verifier will not choose.

If CH=1, then: In this case, Sim computes the following vectors and matrices via standard linear

algebra:

L. a;€Zy" st. a=[ay||...||as] satisfies (G*-bin(a),p)=1 mod ¢

2. Zgl) (pl) €B3pyy (21a41) 8.t AT Zﬂ ) =G’-a; modg for i€[1,]

(pQ

3. e(l),...,e )

€ B3hl(2d+2)7 and Idz S {0,1}ld

p2 ) )
st. P* Zﬂgﬂ)-e?)) +Qid; =fq, modqy for i€ [1,0]
=1

EY BT €B,, ks 5.

4. For each id ewarr,Big €B,,, (2441 e

N3

p1 ) )
,Z(()pl) S BSm1(2ld+1) s.t. A* Zﬂﬁj) .Z(()])
7j=1

5. z() =u modg

id

ps
Ciy=BuR" +Zﬁ§])E

j=1

It then samples the random permutations and masking vector as in the honest protocol, namely:

pi {0, 1}“ v 4 ¢ ZI4 Vi € [1,0]

3 i) P .., ( 21 s z3mi Gt v e [1,)
O D

Bia = Sony [loggr ] ria o Z2 18 for i [1,6]

bid,B <—’ﬁ Rigp<Zq" X232 i € warr

¢|(d Ea a¢,d E <—’S3k3 xms Ri(o},)Ev"?Rfd ]% <—’Zm3X3k3 for id € warr
qble, ,qb ) S, rgg,...,rgfj)HZgh,We[1,5]

The snnulator Sim then computes the following commitments CMT =

the verifier. Let pig = p;[kd+1:2kd).
Then, let ra:=[r1al|..|[rs5a]”

=COM <{{¢Z z 17¢0 z 1 {led Ba{¢,d E 1}|d€warra{{
x( ?1_1/39)1‘82),{A*< ) -G P
P8y R

{Rid,BR*—F

26

( o Ze)+Q* }

)
E

(¢),ch,¢%5) and sends them to

and computes the following commitments:

¢ ilagbi,a)pi}?:l’po

)

)

=1

} 7<G* 'ra,p>>
idewarr



CQ:COM <{{ d)'gjz( 1,2 ) = 17 o(bOz(rOz) Jj= 17{{¢ze( i,e ) ?2:17¢iva(ri:a)}?:17

{1 (ria),Tp, 00 B(RiaB) {dae(Rid ) 12 }idewarr>

03:c0M<{{ oqﬁlz( 2 +r( ST, O%Z(Zo)ﬂéi) =1
{{¢(J)( ])+r(j) 17¢Za( é—i_ri:a)}?:l?TPi(id:—i_rivid)’

T 00 B(Bid+RidB),{ P e(E ,d)+R.(d)E) ‘31}idewarr>

Upon receiving the challenge from the verifier, it proceeds as follows:
If CH=1, output L and abort.
If CH =2, send response

RSP: ({{¢zz7 gj +rzz 17¢(()Jl7z())+r0z j= 17{{¢2e7 € —i—I‘]) =D
¢za,az+rza}z,1,{{¢,dE, .d)+R.dE}J 1id; 414,04 B,Bid +Rid B }idewarr)
If CH =3, send response

RSP:= ({{Cblzv i, 17¢0z7 Oz ] 1’{{¢ze’ 19 2:1>¢iaaria}?:1>

{{QsidyEa id,E j= 17rld7¢ldB7 |dB}|dewarr)

If CH =2, then: The simulator samples random bit strings, permutations and masking vectors as
follows: .
uid,idljl,...,idl,lytgH{O,l}d 29,2 > SecretExty(idy ... |[id)_1 | uid)

Biq < SecretExt;(id) Ey <—>Z’”5Xkd for id € warr
51)7 -€ ( )<_)B3h7 aiPan fOI‘iE[l (5]
pl<—>{0 1}ld Tid, 7l Vie[1,0]
qﬁm b =P RO 27 I v g
¢o 2 ,¢(p1 r(()ll, ,r(()p 1) <—>ng1(2‘”1>
¢z,a <_’5"2n1 [loggi]» Tja< ZZm [logd] for i€ [1,(5]
bid.B <—’73 RiuB <—>Zm3X2n3(2d+1) Vid € warr
¢|(d Ev 7¢|d E = S3kg xms R,(dl)E,---,Rl(d ]% <—’Zm3X3k3 for id e warr
O st o S, fle), r??) <—>Zgh,w € [1,0]

Sim proceeds by computing the commitments as in the case that C H =1. Upon receiving the commit-
ment, the verifier issues a challenge to Sim. If CH =1, build id; =[id}]|...|id;_; ||uid] and send response

RSP ({{szo¢ ( )szo¢zz( zz)'L 17TPOO¢OZ( EJ )TPOO(Z)Oz(rOz) ?1:17
{2 (e). 0% (x) 122 dialan) 00 ()Y, {0 B () o R )1,
pi(ldi)7 T}, (rig;), p.d°¢|dB( d): Ly 0Pid B(Rid B) Yidewarr)

If CH=2, output L and abort.
If CH =3, send response as given in (CH=1,CH=3).
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If CH = 3, then: The simulator samples the permutations and vectors as in CH = 2. It sends
the commitment as in C'H =1, with the exception of ¢; which it computes as follows. First, build
ai=[as | las]T, ¥a:=r1.al]-Irsal”, Then compute

ClZCOM <{{¢z(7]z)7}f=17¢g)]’z J 17{¢Id7¢ld B7{¢|dE J 1}Id€Warr7{{¢ 2:17¢i,37ﬂi}?:17p07

Zﬁl Z0 +r0z {A* Zﬁ (] +r )

j=1
19

~G(a+Tia); 252 (el +r)) +Q*<idi+ridi>} ,

i=1

{( d+R.dBR*+ZBS (EY +R.(3)E)} ,<G*-(a+ra),p>>
j=1 idewarr

After receving the challenge, Sim responds as follows:
If CH =1, send response as given in CH=2,C H=1.
If CH =2, send response as given in CH=1,CH =2.
If CH=3, output L and abort.

The commitment scheme COM is statistically hiding, therefore the distribution of the commitments
are statistically close to those in a real running of the protocol. We note the protocol only aborts
when CH=CH and thus probability the simulation fails is 1/3. When the protocol does not fail, we
see that we have an accepting transcript obtained by Sim and V that is statistically close to that of
an honest prover. Thus, we have constructed a simulator that successfully emulates honest P that
succeeds with probability 2/3, which proves our protocol has the zero-knowledge property.

Argument of Knowledge. We will show that, if COM is a computationally binding commitment scheme,
then the protocol is an argument of knowledge. To show this, it suffices to show that it has the special
soundness property, that is, given a commitment CMT and 3 valid responses RSP1,RSP, and RSP3
(to each of the 3 challenges respectively), then there exists an extractor that can output a witness
in polynomial time. Since all 3 responses satisfy the verification equations, we have that:

Viel,...p1]i€[1,9] tgjz) € SecretExtg(id;) A t(()]; € SecretExtg(uid)

Vjie(l,...,pa] i € [1,6] tl(”e) €B3),

Vj€(l,...,ps),Vid € warr: Tl(j)E €Bngxis

Vi €[1,0] it g =d\") Tiq p € SecretExt(id)

1= COM <{{T/}Z(7]z)7 fzpwé,z j= 17{1/}|d B,‘W.d E} 1}|dewarr7

{2 iad? Y, d5) A" Zﬁ wi) | —u,

p2 ) ] é
{A* ZB wi) | -G wiaP* [ Y 5w +Q*wi,d—fz} ,
=1 =1
{WIdBR*+Z/8 |dE Cid} ,<G*Wa,p>—1>
idewarr
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3)
:COM({{G }2 1,(9(()jz j= 17{6IdB7{6|dE 1}|d€warra{{ zz’ ze? j= 170237d }2 17d((] )

A (Zﬂ?’y&{i) ,{A* (Zﬁl y,z) ~G'y;aiP" (Zﬂéﬁyﬁi) +Q*yz-,d}
.7 j=1

{ id BR*JFZB:J, id E}

=COM({{viz}z_1,véJ; AN viad via, Vias I Via e} Faewar)
= COM({{T, 062 (i) Yot T 205y Yy A {02 (DY i (i) Y

{ di(j)(Yi,id)v di<dS)oaid,B(Yid,B);{eid,E(Yi(i)E) "2 1 Yidewarr)

,<G*ya,p>)

idewarr

C3:COM({{t§?z)+vz(,Jz) 16 l’té;+v0z j= 1’{{t(] +V7,Je) ?21’ za"’vi,a}?:l,
{tia+via, Tia B+ Vi BATia e+ Vi £ };2 1 fdewar)
= COM({{T2) 0w (WD Yoy Ty owly (Wil Yoy LD (Wi

Via(Wia) o1 ,{ d§2)(Wz‘,id)7 d§2)OTf)iOLB(Wid,B)7{¢id,E(Wi(d'7) )}, Yidewarr)

The computational binding property of COM implies that:

'we[ et
U =0T 0w (W) =t v Ty oty =vE)
VJEL ,pﬂze[w]

@Z}z(z)— ZJZ),T (2)0?/1 2(W 7Z) t§?2+vl<72’Td§2)OW,Z(Y@(Q):VEQ
Vji€(L,....p2] ZG[l (5]

w( Ze’wl@e( Ze) t( )+V(J) 9(3)( ()):v(j)

ie ie’ ie
Vie[l,0]:
'Qbi,a = ei,aﬂp’i,a(wi,a) = ti,a+vi,a70i,a (yi,a) =Via
Vid e warr:

Wiid =biid+Viid:Yiid = Vi,id

Vid ewarr,j € [1,ps]:

zﬂi(éjj)}a Hl(gE’wld E(W.(j)E) .(aj)E"‘V.(j)Evel(j)E( Z(Ju)i):Vi(i)E

Vid B =bia,B,1 2 °%ia, 8B(Wia,B) =Tia B+ Via B, ;2 ©ViaB(Yie ) = Vie,B
A (A (wi) - yfﬁ))—u modq;

vie[1d: A" (3 151”( )~y)) =G’ (Wa,—y,) moday
vie[1L3]: P (S A (wil —y1) ) +Q° (Wi, —yia) =Fia,  modas
(G"(w a—ya)vp>*1 mod ql,forya%[yal\|~-~|\ya5]7Wa:[Wa1\|~-~|\Wa5]
Vid €warr: (Wid,B _Yid,B)R*+Z§3:1 :(f)(Wid,E—Yid,E) =Ciqy modgs

We now observe that:

T2 (Wijd—Yijd) =tijd= d)

Ty od ) (Wil —y ) =t4) € SecretExts(d))
Td(g) O¢£‘7z)( (j) yl(]z)) (]) S SecretExtg(dE ))
: (

Ty odum (Wiap—Yian) = Tia s € SecretExtz(d.])
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Then, it follows that:
Wid —Yid —dfd)@d( )
qS((]]) (w(() ; y(()]i) € SecretExtg (dl(“d) @d%)
oL (w fz—ny)eSecretExw‘”esd(”)
Gan(Wign —Yign) € Secretbxts (dL md?)

Let id"=wiia—yiiaz) =W, —yiy2  =w) -y Bly=Wip—Yip and idi=d}) @dy id; =
dl(-Q)EBdE ) and, since the permutations ¢ preserve structure, we see that:
id =dy odly)
z(()j) € SecretExtg(id})
27" € SecretExt(id?)
*)

B, € SecretExtg(id
Moreover;
(— ?;ﬁ@-z(()j) —u modg
A (2 1/3@- §j> =G'a; modq for i€[1,6]
( 162 € )—i—Q*le—f modg for i€ [1,0]

(G*-a*,p ) 1 mod ¢

B.R*+ (J)El(j) =Ciy modgs, Vid € warr
For z§= ?1:159 ()= EZ?’ml(QdH) then we have that ||zg]| glzlﬁy)‘ z(()j)* N <p1 and A*zi=u

modg; . Since, z(()j Je SecretExtg(uid) then so is z;. Now let zg be obtained from zj by removing the last
2my rows of each of the 2d+1 blocks of size 3m; that comprise zj. Then, we note that ||zg||,, <51

and [A||AP A |AD APz =u modg,.

For z} = Pl lﬂfj)z(.j)* eZglm(zldH), then we have that ||z7|| < ?;lﬁgj) Hzl(j)*

<pB1 and A%z =a;
modg;. Since, z( D e SecretExtg(id;) then so is z. Now let z; be obtained from zz‘o’;y removing the last
2m; rows of each of the 2ld+1 blocks of size 3m, that comprise z;. Then, we note that ||z, <51
and [A]|[A?AD)|ADIAMZ0=a; modqg,.
2;2 . é )e(a) EZ3h(2d+1)
Hegj)Hoogl, which implies ||e] || < j:i62 ‘ e

Similarly, we now let e := and we use the fact that egj ) e Bsin(2d+1) to bound

(”)

‘ < B2+1=[3. Substituting in e;, we also have:
oo
P*e; +Q"id; =fiq, modgq for i€[1,)]

Now obtain e; by dropping the last 2h coordinates from e, and the last d coordinates from
id*, then we conclude that |le;||,, < (2 and Pe; + Qid; = fiy, mod ¢,Vi € [1,9], as required.

Next, since B € SecretExtﬁ(id) obtain Big from B* by dropping the last ng columns in each of the 2d+1
blocks. Let Ejy =32 ﬂ3 E(] ). Note that 1Byl Zz;ilﬂéj ) Ei(g)Hoog Ps-1=fs. Finally, let E;4 be
obtained from EZ by removing the final 2m columns. Thus, for each id € warr, we have constructed an
(Big,Eig) such that Byg is a binary matrix, |Eig||, <85 and Cig=Bia[R|R” RV R IRV + Eg
modgs.
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We obtain id from id* by removing the last d elements of the vector. Finally, obtain a; from

al = Wy, — ¥4, by removing the final nj[logqi| elements and construct a’ == [ay||...||as]. Since

(G*-a',;p)=1 mod ¢y, then a:=G*a’ satisfies (a,p)=1.

Thus, upon receiving 3 correct responses, an extractor is able to output an accepting witness
({zi,ei,ai}le,{B;d,Eid,id}idewarr) in polynomial time for the relation Rs5, hence we have shown the
protocol is an argument of knowledge. a

C Proof of Correctness

Theorem 3. Our VLR-HABS construction given in Figures 5 to 7 is correct.

Proof. With overwhelming probability and honest signer is able to obtain a valid witness for ZKAoK.
Then, due to the perfect completeness property of this protocol, conditions (1) and (2) are true (see
defn. of Correctness). Next, we note similarly that the correctness of the encryption scheme ensures
that the tracing authority is able to compute a valid decryption key for IBE-GPV. Again, perfect
completeness of this protocol ensures that conditions (4) also holds.

Then, Lemma 1 shows that it is probabilistically negligible that there 3C s.t. Cy <nf3? for any
y € RevokelList and any C sampled at random from a uniform distribution. Since the revocation tokens
are statistically close to uniform, a mild adaptation to the proof allows us to conclude that a revocation
token generated by an honest user (i.e. not in RevokeList) does not yield a small vector that would
fail verification when post-multiplied by a y € RevokeList, provided |RevokeList| < poly(n). O

D Security Proofs of VLR-HABS

D.1 Proof of Path Anonymity

Lemma 3. Our VLR-HABS construction satisfies Path Anonymity if the SISy, ma.q..8-
SISy iy g 15 WWEy s goxe @A LWE ;s 455 assumptions hold and Ho is collision resistant.

Proof. Gy: Let this be defined by the experiment defined in Figure 2. The success probabilities of the
adversaries are equal.

b
Pr[Gy=1]=P r[EXp{)/T_R-HABS,A =1]

Gi: Define this game as Gy, with the only difference that we move the check “As did

not query Oy (skta,(m,¥,03))” to the trace oracle. In particular, it aborts if o =0}, where oy, is the
challenge signature and ¢ is a signature the adversary submits to the oracle. The success probability
of the adversay is unaffected by this change, thus we have:

Pr[gl = 1] :Pr{go = 1]

Go: This game is identical to G; with the exception that we replace ZKAoK with its simulator
constructed in the proof of Theorem 1, and programming the random oracle H; accordingly. That is,
any call to the signing oracle receives simulated proofs as part of the signature. The adversary cannot
distinguish Gs from G; unless it can break the zero-knowledge property of ZKAoK as proven in Theorem
1. To see this, the challenger for the path anonymity experiment B, sets up the game according to G;. It
challenges an adversary A to determine the challenge bit b from the VLR-HABS experiment, and must
use this to construct a polynomial-time attack against the zero-knowledge property of ZKAoK. After
it invokes the experiment, B waits for A to return on line 2. By programming the random oracle H,
it can successfully execute the ZKAoK simulator. The simulated proof is independent of the witness, is
therefore independent of b. If the difference is success probability between G; and Ga is non-negligible,
then B can build a distinguisher against the zero-knowledge simulator for ZKAoK. However, this
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property is implied by the statistically hiding property of the underlying commitment scheme, which
in turn is implied by the SIS, ;. o g assumption. Thus, we can bound the winning probabilities as:

|Pr[g2 = 1} _Pr[gl = 1” < AdVS|Sn/’m/

a8

Gs: We now further restrict the check made by the trace oracle. Precisely, the trace oracle aborts
if (f,C,ovk) = (£,,Cp,ovkp). The adversary can distinguish between the two games if and only if it is
able to produce a forgery of the one-time signatures with respect to ovk. To create a forgery against
the chosen-message attack game, BB invokes its own game and challenges A against path anonymity
according to Gs. It is able to answer all oracle queries. B waits for A to invoke the challenge phase
of the experiment, when instead of creating the VLR-HABS signature itself, it does all the steps
in algorithm Sign except it calls its EUF-CMA game for a challenge key pair, uses these values for
(osk,ovk), regardless of b. It submits the message m, := (osk,Ha(mW,m,{£;}2_,,{C;}))) to its single-use
signing oracle, and uses the output to complete the VLR-HABS signature which it forwards to A. It
then waits for A to submit a forgery to the tracing oracle. It is only able to win if it did not query the
challenge signature. Thus, for some component of the message, m,=#m,. Hence 5 submits the one-time
signature from the forgery, g, along with message m, as a forgery to the one-time unforgeability and
wins its game if .4 won Gs. The Bonsai signature we use for OTS in this construction of VLR-HABS
is EUF-CMA under the SIS, 1, 4.3, @ssumption, thus we have:

|Pr[Gs=1]—Pr[Go=1]| < Advgg

ng,my4.,d4,84

Ga: We restrict once more and check that (f,C)# (f;,Cp), that is, we have removed the equality check
on the one-time verification key ovk. However, the trace oracle aborts if ovk from the IBE ciphertext C,
does not match that which was submitted to the oracle anyway so the success probabilities are preserved.

Pr[g4 = 1] :Pr[gg = 1]

Gs: In this hop, we use the pseudorandomness of LWE to replace the revocation tokens {Ci}?:l with
samples from a uniform distribution via a series of hybrid games gé", where Qéz) = gé’*l) except that
in the " revocation token is replaced with a uniformly sampled random matrix C;. We construct
an adversary against decisional binary LWE by initiating a challenger B for Qéz) who plays the role
of adversary against the LWE challenge. In game *, B creates the challenge VLR-HABS signature
according to the changes made up to G4, except that instead of creating revocation tokens C; in the
range i € [1,7* —1], it uniformly samples a random matrix C<>Zg3*™3. For i € [i*,l6] it creates the
revocation tokens honestly as described in the Sign algorithm. For the special case that i=1*, it uses
its LWE challenge matrix. Note that if C;« is a random sample, then gél*) :gé’) and if C;+ is a proper
LWE sample then we have that gLSf*) :géH). Thus, any difference in the success probabilities for an
adversary against Qé%l) and gé’) can be used by B to build a distinguisher against the LWE property
for binary secrets (recall that B €B*3*"3). This has been shown is at least as hard as standard LWE
problem for appropriate parameters (see [41]). In particular, we stress that A cannot compute a
trapdoor for R as doing so would allow an adversary to build an LWE inverter as described in [2]
and thus win game Qéi). Finally, we observe that géo) = G4, and conclude that the probability of
distinguishing each successive hybrid game is bound by an adversary against LWE;,; 1,5 ¢5,x5- Thus;

‘Pr[géi) —1] _Pr[géi—l) =1]|< AdVIWE,, g a5 20 Pr[géo) =1]=Pr[G4=1].

Now for sake of conciseness, denote Gg:= QE()M) and assume H is collision resistant. We note that we have
reduced the indistinguishability of the challenge signatures for VLR-HABS to indistinguishability of
the IBE ciphertexts f(%) := {fi(o) ¢ and f):= {f(l) 9_, with respect to the tag Ho(ovk). We here on out

1
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assume Ho(ovk) is collision resistant, and thus cannot submit ovk’ovk such that Hg(ovk’)=Hq(ovk).
This is exactly the IND-CCA2 property that the GPV-IBE scheme has after we utilise the CHK trans-
form. To build this adversary, we again consider a series of hybrid games G for i € [1,d]. Set G, 0 _ Gg and
g((f) = gé"” with the exception that on the i ciphertext in the challenge signature, it encrypts the mes-
sage mg=idY irrespective of the challenge bit. We argue that if A can distinguish between gé’) and gé"l)
the it breaks the IND-CCA2 property of GPV-IBE. To see this, B challenges A to game Qél) and invokes
its own IND-CCA2 game. During the setup, B sets (skta,pkta) = (L,pkene). That is, the key pair for
the Tracing Authority is replaced with the challenge key pk,,,. from the IND-CCA2 game. Any Tracing
query from A is forwarded to the IBE decryption oracle by B, who also returns the result to .A. Then, it
waits for A to invoke the challenge phase of the game. Upon doing so, on the i ciphertext, B submits
two messages to the challenge oracle of the indistinguishability game as mé?)c = idg and mSBC = id%, that
is the delegation paths of the it" attribute in . It receives back a challenge ciphertext £*. It simulates the
proof system ZKAoK and computes o, to complete the VLR-HABS signature, which it gives to .A. Since
the proof is simulated, and the message and policy are the same regardless of the challenge bit b, then any
advantage that A has in winning this game allows B to win its IND-CCA2 game with at least equal ad-
vantage. The GPV-IBE scheme is IND-CCA2 secure under the LWE,,, 1, ¢o.v» assumption. We conclude

by noting that Qéé) is independent of the challenge bit, so any A has advantage negligibly close to 1/2.

(i) _ (i-1) _ @-b_q_1
|Pr[Gs’ =1]-Pr[Gy ~=1]|< AVIWE, o0, A0 Pr[Gs" "=1]= 3 +ep
Since the LWE problem is assumed to be hard, the probability of the adversary winning the experiment

is negligibly close to 1/2. From the sequence of games Gy to Qég), we conclude that the advantage
of an adversary is bounded by e, which is negligible in the security parameter A.

-1 -0
Adv'\D/aLR-HABS,A(/\) = ’PT[EXP{)/aLR-HABS,A()Q =1] _PY[EXP{)/aLR-HABs,A(/\) =1]

—(14 L)<
—281 262\6

D.2 Proof of Non-frameability

Lemma 4. Our VLR-HABS construction satisfies Non-frameability if H1:{0,1}* —{1,2,3}! is a ran-
dom oracle, Ha:Z, —{0,1}™ is collision-resistant, and the SISpy mf 1,81 and SISny iy qu,8, asSUMptions
hold.

Proof. We consider 4 winning conditions of the experiment:

— &1: The adversary forges the signature (given on line 4 of Figure 3).

— &;: The adversary forges a delegation (given on lines 5-8 of Figure 3)

— &3: The adversary produces a signature using attributes that do not satisfy ¥ (given on line 9
of Figure 3)

— &;: The adversary produces a fake revocation token (given on line 10 of Figure 3)

Thus we have:

Pr[Exp{',fLR_HABsyA =1]<Pr[& =1]4+Pr[&=1]+Pr[&=1]+Pr[&4=1]

Winning Condition 1: We start with the first experiment & that we aim to show has a negligible
probability of success. Following the direction for the previous constructions in this thesis we intuitively
want to argue over the values (upk’ warr’, m’W’) (¢! C' £ 7’ ovk’) that correspond to the input and
output of the Og;y oracle. We show that they are not sufficient for the adversary A to create valid
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proofs and signatures (c,,C,f,m,0vk) for the values (upk,warr,m,¥) different from (upk’,warr’,;m’,¥’).
More precisely, we take each element of the tuple (upkj ,warr, m,¥) and reason about their relation
with their prime counterpart from (upk’,warr’,m’ ¥’).

The first step considers if “there has been any Og;g request that contains upk,”, which sets the
direction for the A of the proof. Next, argue that that the values warr’,m’ %’ and ovk’ have to coincide
with warr,m, ¥ ovk for A to actually produce valid proofs and signatures that pass the verification
conditions in &1, which contradicts the requirement that the forgery is not an output of the signing
oracle. For simplicity, we consider the probability of any adversary to guess which oracle constructs
the keys for a particular user is 1/¢,, given ¢, user registration oracle calls.

Go: The game Gy is defined exactly as €1 except on line “A did not query Os;g((upk; warr),m,¥)” that
is replaced with a membership check (upk;,warr,m,¥) ¢ Siglist for a list SigList initialised empty at
the beginning of the experiment, and gets updated with the inputs of the Og;, oracle. Additionally,
we introduce the list SiglOList that stores the input and output of the Os;, oracle. We have that &
and Gy have the same probability.

PI‘[go == ]_] :Pr[51 == 1]

The games G; and G are obtained from Gy by conditioning (pkd
SigList respectively.

*,k,x) ¢ SiglList and (pkd ; ,x,%) €

7’ 7

Pr[Go=1]=Pr[Go =1 (upk %,x,%) & SigList] A\Pr[Go = 1 A (upk,x,%,x) € SigList|

G1: Let Gy be defined as Gy with the restriction that (upk;,x%,x) & SigList. The success probability of
the adversary in Gy is bound by the probability it is able to forge a signature on behalf of upk;. This is
bound by the advantage of SIS, m, ¢,,5 adversary B against A* fiq(z) = Ayigz=u that appears in the
relation R, where (A*,u) is the SIS challenge, and u is the syndrome reserved for the user signature. We
claim that the Argument of Knowledge property of ZKAoK ensures that A must have knowledge of uid.

We now construct such an adversary B against the SIS assumption, closely following the proof of
static unforgebaility of the Bonsai signature [12]. It begins by receiving an SIS challenge of the form
(A" = (AU UV 1UD ()l ... lan],0) € ZgH <2 DN 7m - Since we are using
the multi-syndrome variant of the Bonsai signatures, we require N =|A| syndromes, and one more to
account for u. it also receives the attribute syndromes a;,i € [1,|A|] for the same parameters. Precisely,
during the setup of the game (line 1 of Figure 2) the challenger B creates a list of ¢.—1 top-level
identities of length d as id; < {0,1}¢, where ¢, is the maximum number of registration queries made
by the adversary A.

First, it creates a set, P, that contains all of the binary strings of length p€ {0,1}¢ such that p
is not a prefix for any of the sampled IDs {id;}{" ;. One can think of this as a maximal tree that does
not contain a precomputed identity. It has size at most ¢,d and can be computed efficiently (see [12]
for a description of an algorithm). B selects some challenge prefix id* € P of length d. Next, B creates
the matrices A,{Aé’}gzl that comprise the verification key for the VLR-HABS signature as follows:

— For each i€ [1,d], let A =U" For ic[d+11d) and be{0,1}, let AP =UY.

— For each i€[1,d], compute A}_id*m <+ GenBasis(n1,m1,q1) with corresponding short basis S;.

To begin, B invokes G; against the non-frameability adversary A. It publishes the public parameters
as described by the experiment, except for A,{Ai-’}gl:1 which is computed as described. The challenger
B must be able to answer oracle queries. Since we are concerned with a forgery on Ajqzg=mu, let’s
start here. A may make corrupt queries of the form (4,id). If i #4*, then B is able to construction
Ay= [AHA'{ij..HA';[d]] such that for some i€ [1,d], id[i]#id*[i], by construction of P. For this i, B
knows the corresponding short basis S;. In particular, this means 55 can run ExtBasis(S;,A4) to obtain
Sid, a short basis for the matrix Ajy. Thus it can use SampleD(Si4,Ai4,u,31) to obtain a secret key
z( in response to the corrupt query. Actually, delegation is handled identically but for the syndrome
a;. If issuing to an authority, it instead executes RandBasis which we note is also possible on input
Siq- This means B can answer any Attlssue, signing and corruption oracles for any identity other than
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the challenge id*. If A queries the challenge then the game aborts, but in this case it had already lost
the experiment and thus the winning probability is preserved.

It is now possible to construct a solution for the SIS challenge as follows. If A produced a forgery
z§ for Ajg~ w.r.t u*, then Ay is the concatenation of Id blocks U? and one of a; or a. Therefore,
by inserting zero vectors in z;, B can generate a non-zero z such that Az=u modg;, which solves
the SIS challenge. What remains is to extract z; from the VLR-HABS signature.

To extract the SIS challenge from the forgery, we make use of a Forking Lemma of [48] to receive
3 accepting transcripts (RSP1,RSP2,RSP3) of ZKAoK. It rewinds the adversary and plays the same
random tape to build an extractor as detailed in Section 5.2 in the proof of Theorem 1 to extract a
witness to the statement. One can argue that .4 must have queried #; on input (m,.f,C,pp,{CMT,}'_,)
otherwise, the probability that (Chy,...,Chy) =Hi(mP.£,C,pp,{CMT;}._,) is at most 37* . Therefore,
with probability at least & —37¢, there exists certain x* < g, such that the x* oracle query uses
(mW.£,C,pp,{CMT;}!_,). B picks x* as the forking point. It replays .4 with the same random tape and
input as in the original run. In each rerun, 4 is given the same 71,...,7+_1 but from r,~ is is given random
values 7yx,...,rq, < {1,2,3}!. Precisely, the Improved Forking Lemma by Pointcheval and Vaudenay says
that, with probability larger than %, the adversary B can obtain a 3-fork involving the tuple after less
than 32-¢,/(¢'—37) executions of .A. Now, let the answers of B with respect to the 3-fork branches be

rD=cnV,..cn?), r@=cn?...cn?), 1P =ccn?...cn?)
Then, the probability we obtain a valid challenge set, that is
Pr(3j € {Lgo} :{ORS OB CHP Y = {128} =1 (7/9)

Conditioned on the existence of such an index j, it parses the 3 forgeries corresponding to the fork
(RSng ),RSPg ),RSng )) branches to obtain. They turn out to be 3 valid responses with respect to 3
different challenges for the same commitment CMTV). Since COM is assumed to be computationally-
binding, we can use the knowledge extractor of the underlying argument system to extract a witness
for the relation R5, and thus extract the SIS solution created by A, using the strategy detailed in [42].

AdVS|Sn17m1vq1»31
PriG =1]=Prld =1/ (pkjx:%) € Siglist] < 55— 01035

Go: This game uses the exact steps performed by game Gy, but in the setting where A requested at
least one signature that contains user upk;. There exists an adversary query
((upk;,wart’,m" W) (07, C’ 7’ ovk')) € SiglOList with (warr,m,W¥) (warr’,m’,¥’). Hence,

Pr[Ga=1] =Pr[Go=1A(upk;,x*x) € SigList|
=Pr[Go= 1A (upk;,warr’,m" ) (o/,,C’ f' ;' ovk’)) € SiglOList].

Using the method applied on G;, we reason on the relation between the OTS public keys ovk and
ovk’. We split game Go based on ovk=ovk’ and ovk=£ovk'.

Pr[Go =1] =Pr[Ga=1Aovk=o0vk']+Pr[Gy =1 Aovk#ovK].

Gs: We define Gs as the game Gs where ovk £ ovk’. In this case, the adversary A is once again able to
provide a forgery for upk; without knowledge of usk;. The reduction argument is almost identical to the
method of computing the bound for Gy, except that now A asks signature queries for uid. By program-
ming the random oracle H;, the game is able to simulate the proof ZKAoK without knowledge of the
witness for uid, namely (upk;,usk;), that passes verification as described in the proof of Theorem 3. Since
ovk=£ovk/, the call to the random oracle will result in a different challenge and thus A cannot reply 7 and
must generate a new proof. Since any query to the signing oracle on behalf of uid included a simulated
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proof, it cannot extract a valid witness and thus must produce a fresh forgery for the Boyen signature
on behalf of uid. We bind the capabilities of the adversary in this game by constructing an adversary
B against an SIS, 1, ¢, instance. Again there is a polynomial loss in the reduction as the game is
required to guess for which user A will attempt to create a forgery, and further loss as the extractor (by
using the Improved Forking Lemma) only succeeds with probability 1/2(1—(7/9)*). Thus we have:

AdVSls

n1,my,d1,81

Pr[Gs=1]=Pr[Gz =1Aovk#ovk/]| < — LA
(G4=1]=Px{ 7RIS S T=(7/9) 1

Gs: The game G4 uses the steps of Go with the additional restriction ovk’ =ovk. With the upkj =upk’

restriction from Gy we further transform this game in the view of G;.

Pr[G,=1] =Pr[Go=1A0ovk =ovk]
=Pr[G1 =1 (upk;,warr’,m" "), (ar,,C" ;7' ,ovk)) € SiglOList].

Currently, we have deduced that A has made a Ogjy query for (upk;,warr’,m’, ') different from
(upkj,warr,m,W), but with the same OTS signature public key ovk. We split the probability in G5
based on the equality test between (m,%) and (m’%’).

Pr[Gy=1]=Pr[Gy = LA (m¥) = (m' @)+ Pr[Gs = 1A (m,F) £ (" F)].

Gs: We define game G5 as the game G4 where (m,%)= (m’,@’). That is, the adversary A is able to
provide a forgery for the OTS scheme by signing a message that contains (m’,¥’) without knowledge
of osk. In this argument we will assume that Hs offers collision resistance.

The capabilities of adversary A in this case, are bounded by the advantage of the unforgeability
adversary Bots for the OTS signature scheme that uses osk as the secret key. There is a slight loss
of accuracy as Bots needs to identify which is the Ogje query that uses (m’,¥’) among all Ogi, queries
for upk;. As always, it is able to do this with probability 1/gs if A makes g5 sign queries for the same
upk; value. The factor 1 /qr is given by the guess Bots makes on which is the user registration oracle
with upk. To build the adversary Bgs against the the EUF-sSCMA property of Bonsai signatures, it
follows the exact strategy used to show static unforgeability (EUF-sCMA) in [12], however, instead
it does not receive a list of messages before generating the challenge verification key for A. Instead,
B selects a random message policy pair (m*W*) (we stress these can be entirely random and do not
have to be meaningful choices) and computes the chameleon hash h<—Ha(m* W* £* 7* C*;r*). Using
the notation of Gy, the set P for which By can simulate signatures will contain precisely h. When
A finally makes the oracle query that Bgis guesses A will use to compute the forgery, it receives the
pair (rﬁ,lj/) and using the trapdoor for the chameleon hash function it can computes 7 such that
Ho (M, f,70,C;7) = h = Hao(m* * £* m* C*;r*). We briefly note that f,7,C are honestly computed
according to the experiment. By design, Bots can compute a simulated Bonsai signature on message
h and thus it is able to answer A’s signing query. It then waits for A to output a forgery. If the forged
signature verifies, then A was able to create a forged Bonsai signature, which means it was able to
break the the SIS, 1m,.4,,8, assumption according to the proof of static unforgeability in [12]. To win
its game, B uses the Improved Forking Lemma and the extractor from the proof of Theorem 1 in the
way described in G; to extract the SIS,,, 5., 44,3, Solution. Thus we bind the success probabilities as:

Pr[Gs =1]=Pr[Gy=1A(m, &) # (m",&)] x Advgys

ng,Mg,94,584

S 2.0, (1 (7/9) 1)

Ges: We define game Gg as the game G4 where (m W)= (m’,W’). Because of the (warr,m W)= (warr’,m’ @)
restriction, this leads to warr’ £warr. If we include the condition added by game G5 with respect to
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game G, we have

Pr[Gs=1] =Pr[Gs=1A(mW)=(m’¥")]
=Pr[G; =1A(upk;,warr’,m¥),(o,,C" f',7’ ovk)) € SiglOList]

We proceed by splitting the probability of Gg based on the equality of f and f'.
Pr[Gs=1]=Pr[Gs=1Af =f']+Pr[Gs = 1A f A ']

Gr: Let G7 be the game defined by Gg with f#f’. In such a case, the adversary A is able to create

a forgery without knowledge of osk, that passed the verification in the body of experiment Gg.

The probability of success for adversary A in this game, is once again bounded by the advantage
of the OTS forger B, which behaves exactly as Bos from game Gs. The difference in this case is
given by the output of the adversary. Here, A provides an OTS signature that satisfies f#f’, while
in G5 we made the requirement that the forged one-time signature is for (m,¥)=(m’,¥’). We set up
the reduction under the assumption that Hs is collision-resistant. As before, Bys must guess which
uid and which signature query A will atempt to forge and follows a similar strategy to Gg. During
the setup phase of the experiment, in addition to the rest of the setup, it computes a chameleon
hash value h <+ Ho(m*,W* £* 7% C*;r*) which comprises the set P of all “messages” for which Bots
can simulate. Since it has access to the trapdoor for the chameleon hash function, it can build f,7,C
based on the adversarial inputs m,¥ and computes a value 7 such that h=Hy(m, ¥ f,7,C;7), thus
it can produce a valid VLR-HABS signature for the target uid. It waits until .A submits its forgery. In
particular, it was able to produce a forgery for the EUF-CMA property of the Bonsai signature, which
is implied by the SIS;,, ., 4.,8, assumption. As before, By uses the Improved Forking Lemma and
the extractor from Theorem 1 to extract the SIS solution with probability 1/2(1—(7/9)~"). Hence,

Pr[gg = 1] :Pr[gﬁ = 1/\f7’£f’] <

AdVS|S

ng,My,44,064

quT(l - (7/9>_t)

Gs: The game Gg is defined as Gg where f=f". Given warr#warr’, we now show that f=f’. According
to the correctness of GPV-IBE, f’ must decrypt with overwhelming probability to one of the two
message. In such a case, the adversary A has managed to produce a ciphertext f that decrypts to
two different messages mg= (upk;,warr,ovk) and m; = (upk;,warr’,ovk). We build Bipe that performs
the steps in Gg and waits for A to provide an output (((oo,C,f,m,0vk),m,¥),(upk;,warr,(7))). Then,
it uses that output to construct message mg, and looks through the list SiglOList for the query the
adversary A has made that produced the same ciphertext f and builds m;. Bipe outputs the message
that does not appears when it does a decryption using the TA’s key skta. For simplicity, this adversary
also provides the randomness needed to produce the same ciphertext in the body of the correctness
experiment. For our choice of GPV-IBE, this happens with all but negligible probability. We have,

Pr(Gs = 1] =Pr[Ge = IAf =] <E())

Gy: Defined as Gg but with the condition that C= C’. The parameter mg is chosen large enough
(=nasloggs) to ensure secret vectors in the LWE,,; 1, 45, Problem are uniquely defined (see [47]). Hence,
the adversary A cannot find warr=warr’, or more precisely, id#id’ s.t. C=C’. Thus,

[Pr[Go =1]| = [Pr[Gs =1]|

Finally, if C#C’ then once more the adversary was able to forge an OTS signature, this time over the
C component of the OTS message. Again this argument follows with the implicit assumption that Ho
enjoys collision-resistance. The extraction of the SIS challenge follows the same process as before; B
must guess which uid and which signature query A will attempt to forge and follows a similar strategy
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to G5 and G7. During the setup phase of the experiment, in addition to the rest of the setup, it computes
a chameleon hash value h<—Ha(m*,W* £* 7% C*;r*) which comprises the set P of all “messages” for
which B can simulate. Since B has access to the trapdoor for the chameleon hash function, it can build
£,7,C based on the adversarial inputs m,¥ and computes a value 7 such that h:’Hg(rﬁ,@,f ,m,CiT),
thus it can produce a valid VLR-HABS signature for the target uid. It waits until A submits its
forgery. In particular, it was able to produce a forgery for the EUF-sCMA property of the Boyen
signature, which is implied by the SIS, ,.4,,8, assumption. As before, B uses the Improved Forking
Lemma and the extractor from Theorem 1 to extract the SIS solution with probability (1—(7/9)7%).
The probability of success is bounded an adversary against the SIS, 1, 4,8, @ssumption. Hence

Pr[gg = ]_] < AdVSISn4,m4,q4,,B4
From the sequence of games starting Gy,...,Gg, it follows that the probability of £ is bounded by the
SIS hardness assumption, and the soundness property of ZKAoK which holds with probability 3.
Thus the advantage of the adversary, €1, is negligible in the security parameter.

Winning Condition 2: The experiment & deals with the case where the adversary A is able to provide
a forged delegation for an honest authority pkd; and some attribute att=a. Recall that the experiment
prevents the adversary from winning if any authority in the delegation path has been corrupted, which
trivially prevents A extending the corrupt authority Ay, |..ijid, t0 Aid,|]...|jidy]fid; 41> for an uncorrupted
authority id;y1. The challenger B embeds the SIS challenge a delegation path, A4+, this time of length
ld. We argue that if the adversary is able to forge a delegation, that it was able to solve an SIS instance.
Again, we must carefully prepare the experiment & so that B is able to extract the solution. It is
identical to the preparation for £ :G; with the exception that the forgery is created with respect to any
syndrome a;. The argument presented previously is actually general enough to deploy directly, however,
the set P now contains all delegation paths that B guesses A will query. The set P is still computable
since the size of the space is only polynomially larger. We note that B cannot answer corruption
queries for which id=id*[1:kd] i.e. a prefix to the challenge. However, this corresponds to A corrupting
an authority above the guessed forgery target, in which case the game aborts. Thus there is no loss in
winning probability. In the event A queries Attlssue for such an id, then B outputs the corresponding id,
warr and att but does not compute skd; att. This is undetectable by .4 unless it once again tries to corrupt
an authority above id*. It can, however, delegate further once i s.t. id[:] #id*[¢], which is required by the
game since the adversary can ask for delegation and corruption queries for any other delegation path. We
stress the only time it cannot answer oracle queries coincide with the loss conditions of the experiment.
With these adaptations, the argument is similar to that presented in & :Gp, and we claim the result.

Advgg
Pr[&=1]< ———marf
r[&=1] 2¢,(1—(7/9)71)

Winning Condition 3: Next we will consider a PPT adversary A against the winning condition &3.
That is, it is able to produce a signature that verifiers with respect to a policy for which the attributes
contained in the warrant do not satisfy.

We directly argue that the advantage of an adversary against &£ is bounded by an adversary
Bikaok against the soundness property of ZKAoK. To build Bk, it invokes the soundness experiment
and executes &3 against A. It can answer all oracle queries and simply waits for A to output o that
wins against &s. It sets the witness as w= (uid,zo,{zi,ai,ei}le,{id}idewa,r,{Bid,Eid Videwarr) from the
output of A, the statement as r=(A,R,{A;R;}L,,G* P*,Q*,C,f,p,u) for the relation R;. To win
&z then W(A)#1, but ZKAoK Verify(z,m)=1 = (a,p) =1 then A was able to create a false proof
for Ri(w,z). Then, Baok forwards (w,xz,R1) as a response to its soundness game against ZKAoK
and wins if A also won against £3. We note that soundness only fails with probability 37 for some
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soundness parameter ¢. Thus, we have:
Pr[&3=1]<37"

Winning Condition 4: Next we will consider the case the adversary wins by creating a signature
that passes verification yet contains a revoked identity.

Go: Defined as &, but with the addition of an additional check “Vid € warr,3C; € {C}é‘il s.t. C; =
B;Riq+E;”, where warr is obtained by decrypting C in the VLR-HABS signature using the TA’s key.
The difference in success probability of the adversary between £4 and G is bound by the advantage
of an adversary against the soundness property of ZKAoK. To build this adversary, B sets up the
game according to Figure 2. It can answer all queries made by A and waits for it to output a
forgery. From the VLR-HABS signature, it forwards on the proof 7 ( for the public statement x=
(AR,{A; R;}% | ,G* P*,Q*,C,f,p,u)) to its soundness game. It wins if A was able to produce a forgery
against £;. We note that soundness only fails with probability 37! for some soundness parameter .

|Pr[€4=1]—-Pr[Gy=1]|<37".

Now, since for each id € warr,3C;y = B;Riq+E; € {Ci}?:p then if we also have id € RevokelList, then
Lemma 2 implies that Ciqyiq gngﬁg with probability 1, that is, a signature is falsely accepted with
probability 0. Thus we have:

|Pr[Go=1]|=0<e3

It follows that the success probability of an adversary against &, is bound by 37¢, where ¢t =w(logn)
and thus is negligible.

Recalling that each winning condition for the non-frameability experiment is bound by a negligibly
small function in the security parameter, we conclude that our scheme is non-frameable.

Pr[Exp{}fLR_HAB&A =1]<Pr[& =1]4Pr[&=1]4+Pr[&=1]+Pr[&s=1]<e())

D.3 Proof of Path Traceability

Lemma 5. Our VLR-HABS construction satisfies Path Traceability if Hy : {0,1}* — {1,2,3}! is a
random oracle and the SISy, . 4,8, assumption holds.

Proof. We divide the advantage of the path traceability adversary A for the experiment Expt/ g 1y ABS, A
in Figure 4 by the two winning conditions for the adversary:

1. &;: Trace fails for a valid VLR-HABS signature
2. &y: There exists a signature in the warrant, for some attribute introduced for a ‘rogue’ entity, that
is not registered, by an honest authority.

We have,
Pr[Expyi g ags 4 (V)] <Pr[€1 =1]+Pr[&=1].

Winning Condition 1: We start with experiment &£, where we use the soundness of ZKAoK to

show that decryption of an GPV-IBE ciphertext cannot fail.
Go: The game G is defined exactly as From this, it immediately follows that

Pr[go = 1] :Pr[é'l = 1]
G1: We define game Gy as Gy, except that we add the line
“i,3s s.t. £ =Ps+e £ =NTs+ey+ | q/2]id; where £;=[f"||[£*]A”

)
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between lines 3 and 4. This new check performed by G; is one of the conditions encoded in the relation
for ZKAoK, and A is able to notice the difference between Gy and Gy if it can produce a valid ZKAoK
proof for a false statement (that does not have a witness s). We bind the probability of A to distinguish
this games, by the advantage of the soundness adversary Baok for ZKAoK. To build the adversary, B
follows the experiment as defined in G; and we note it is able to answer all oracle queries. It waits for A
to output a VLR-HABS signature o. If o wins Gy but fails G; then it was able to produce a proof over
a false witness and therefore the proof 7 contained in o breaks soundness of ZKAoK. B extracts 7 from
o, builds the statement (A, R,{A;R;}¢,,G*P*,Q*,C,f,p,u) for the relation R5, and submits this as
a false proof. We have seen that soundness for ZKAoK fails with probability 37, see Theorem 1. Hence,

|Pr[Go=1]—Pr[G; =1]|<37*

We now argue that an adversary against G; is bound by the correctness property of GPV-IBE. The
ability to output a ciphertext that decrypts to a different warr is bound by the probability of an
decryption to fail after an encryption, even on adversarial valid inputs. We construct adversary Bipe
for the correctness property of IBE that runs the experiment as described in G; and invokes A. It
waits for A to submit a VLR-HABS signature o that wins against G;. In this case, B extracts the
ciphertext component C of ¢ and forwards this as a response to its correctness game. The GPV-IBE
scheme is correct with overwhelming probability [22], thus, for & € poly(\) we have:

[Pr[Gi=1][<E())

Winning Condition 2: The experiment & deals with the case where the adversary A is able to
provide a forged delegation for an honest authority pkd, and some attribute att=a, to an unknown
registered identity. Recall that the experiment prevents the adversary from winning if any authority in
the path has been corrupted, which trivially prevents A extending the corrupt authority Aiq|..jid, to
Aigy||...icyfidy, » for an uncorrupted authority id;4;. If the adversary is able to forge a delegation, that
it was able to compute a solution to an SIS challenge. Again, we must carefully prepare the experiment
& so that B is able to extract an SIS challnge. It is identical to the preparation for non-frameability
&1:G1 with the adaptations detailed in non-frameability £. Thus we claim the result:

PI'[SQ = 1] X AdVS|S

ny,my,q1,81

1
S 2, (1 (7/9))

Recalling that both winning conditions are bound by functions that are negligible in the security
parameter, we conclude that our scheme satisfies path traceability.

Pr[ExpVi r Hags 4 =1] <Pr&1=1]+Pr[&=1]<e(})
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