
Auditable, Available and Resilient Private
Computation on the Blockchain via MPC⋆

Christopher Cordi1, Michael P. Frank1, Kasimir Gabert1, Carollan Helinski1,
Ryan C. Kao1, Vladimir Kolesnikov2, Abrahim Ladha2, and Nicholas

Pattengale1

1 Sandia National Laboratories, Albuquerque, NM, USA
2 Georgia Institute of Technology, Atlanta, GA, USA

Abstract. Simple but mission-critical internet-based applications
that require extremely high reliability, availability, and verifiability
(e.g., auditability) could benefit from running on robust public pro-
grammable blockchain platforms such as Ethereum. Unfortunately,
program code running on such blockchains is normally publicly view-
able, rendering these platforms unsuitable for applications requiring
strict privacy of application code, data, and results.

In this work, we investigate using MPC techniques to protect the
privacy of a blockchain computation. While our main goal is to hide
both the data and the computed function itself, we also consider the
standard MPC setting where the function is public.

We describe GABLE (Garbled Autonomous Bots Leveraging Eth-
ereum), a blockchain MPC architecture and system. The GABLE ar-
chitecture specifies the roles and capabilities of the players. GABLE
includes two approaches for implementing MPC over blockchain:
Garbled Circuits (GC), evaluating universal circuits, and Garbled
Finite State Automata (GFSA).

We formally model and prove the security of GABLE im-
plemented over garbling schemes, a popular abstraction of GC and
GFSA from (Bellare et al, CCS 2012).

We analyze in detail the performance (including Ethereum gas
costs) of both approaches and discuss the trade-offs. We implement
a simple prototype of GABLE and report on the implementation
issues and experience.

⋆ This work was supported by the Laboratory Directed Research and Development
program at Sandia National Laboratories. Sandia National Laboratories is a multi-
mission laboratory managed and operated by National Technology and Engineering
Solutions of Sandia, LLC., a wholly owned subsi-diary of Honeywell International,
Inc., for NNSA under contract DE-NA0003525. This report describes objective tech-
nical results and analysis. Any subjective views or opinions that might be expressed
in this report do not necessarily represent the views of the U.S. Department of En-
ergy or the United States Government. Approved for public release SAND2022-3529
O.

1 Introduction

Current programmable blockchain platforms such as Ethereum provide a “global
computer,” an always-on public computing resource. They guarantee reliability,
availability and auditability for computations implemented as smart contracts,
which are posted to the blockchain and subsequently executed. Even in the event
of a widespread disaster, any still-functioning part of the Ethereum network
renders this computing resource available. Organizations can take advantage
of such a robustly available computing facility to execute particularly mission-
critical computational tasks, if this computation can be done privately.

We note that the performance of secure multiparty computation (MPC) has
been steadily improving and is practical today even for large functions/inputs.

In this work, we explore the motivation, use cases, architectures, and con-
structions for securing (i.e. ensuring privacy of) a sensitive computation done on
sensitive inputs on a public blockchain network using MPC techniques.

We present GABLE (Garbled Autonomous Bots Leveraging Ethereum), an
architecture and a system for running MPC on the Ethereum blockchain. We
consider two different base approaches, garbled finite state machines/automata
(GFSA), and garbled circuits (GC); we present both in a unified manner as
garbling schemes. We show how functions can be computed privately. At a high
level, in our architecture there are four types of players, or participant roles:

1. Garbler is a player who generates encrypted function and input encodings,
publishes the former on Ethereum, and distributes the latter to other players.
Garbler may be a single trusted entity or run distributedly, e.g., by an MPC
over a private chain.

2. Input Provider or Writer is a player who contributes (encrypted) inputs to
the computation.

3. Input Unlocker or just Unlocker is a designated player that manages en-
crypted inputs, preventing input providers from learning unauthorized in-
formation about the computation and adapting their input based on it.

4. Output Recipient or Reader is a player who may obtain a designated output
from the computation.

We emphasize that players may play several of these logical roles simultane-
ously (with some exceptions; cf trust model Section 2.3). For example, an input
provider may also be an output recipient.

1.1 Motivation

Existing public programmable smart-contract blockchains such as Ethereum pro-
vide a highly robust and accessible computing platform. An entity whose opera-
tions may require execution of business or strategic logic that needs to function
(using inputs from various sources) with a high degree of assurance of its re-
liability and availability may implement that functionality as a smart contract
running on a blockchain. Another desirable blockchain property is auditability,
due to the generally immutable nature of data committed to a consensus chain.

2

However, the deploying entity may wish to keep private the following com-
putation data and metadata:

– Input values provided to the computation, including their semantics.
– The nature of the computation that is being performed on the inputs. Most

generally, we may wish for all information about the structure and function
of the computation to be obscured.

– Any internal data within the computation.
– Semantics of any intermediate or final outputs produced by the computation.

Most of these features are implied by standard MPC properties, while hiding
the computed function is the goal of Private Function Evaluation (PFE).

Use cases. We outline two use-case scenarios which illustrate the potential
usefulness and practicality of our system. Of course, many others are possible.

Sealed-bid auctions: auditability and security. Consider a simple sealed-bid auc-
tion with simultaneous bidding, where the soundness of the computation may be
fully audited after the fact, if needed. This may be useful, e.g., in public-interest
auctions, such as auctioning airwaves to cellular providers, or electricity delivery
contracts to utilities. Other cases (e.g., auctioning of a privately-held company
to a select set of bidders) may demand strict privacy.

While such auctions may be easily run via an MPC, running them on a block-
chain offers a much higher level of transparency and trust (and user engagement)
than more traditional means of execution. We report some analysis of costs for
our methods on simple multi-bidder auctions in Sec. 5.

Transactive energy refers to market-based mechanisms for managing the ex-
change of energy in a wide-area electrical grid [30]. Participants in such a market,
e.g., utility companies, may wish to engage in automatic electronic negotiation
without revealing their strategies. A capability such as GABLE could provide
a solution. Each participant deploys their own garbled bot expressing their pri-
vate negotiation strategy; these bots then negotiate with each other on the public
blockchain, while hiding their internal negotiation strategies.

Private-public chain integration. The encrypted function may be generated (gar-
bled) by an MPC executed over a private network. This assures trust in the gar-
bling, facilitates future opening of the secure computation (auditing) if needed
(cf Section 2.3), and integrates public and private chains.

1.2 Contribution

Blockchain and MPC technologies provide essentially complementary features to
a computation. A blockchain assures availability (ability to provide input, com-
pute, and retrieve the output when needed) and reliability (including assurance
that only authorized players can submit input and that the output of the com-
putation is correct), even if direct communication channels among the parties

3

are cut. MPC ensures privacy and correctness, guaranteeing partial reliability
(output correctness) but nothing about availability.

Our system, GABLE (Garbled Autonomous Bots Leveraging Ethereum) com-
bines the best of the two technologies. In our security model, we require not only
the data, but, optionally, also the computed function to be private (standard
MPC evaluates publicly known functions). In this work, we:

– Design a general architecture for available and resilient MPC over the Ethe-
reum blockchain. It allows authorized players to submit inputs at any time,
and to retrieve outputs as soon as they are available. Our design specifies
the roles and capabilities of the players.

– Design two approaches for implementing MPC on the blockchain: Garbled
Circuits (GC), including GC evaluating universal circuits, and Garbled Fi-
nite State Automata (GFSA).

– Formally state and prove the security of our system against malicious players.
Note, we do not formally define the properties of auditability, availability
and resilience of the computation. They are derived from the corresponding
intuitive properties of the underlying Ethereum blockchain. We specifically
discuss achieving auditability in Section 2.3.

– Analyze in detail the performance characteristics (including gas costs) of
both approaches and discuss the trade-offs.

– Implement a simple prototype and several demonstration applications, and
report on the implementation issues and experience. (A reference implemen-
tation of our initial prototype has already been publicly released, and wider
licensing/availability of a more complete code base is under consideration.)

1.3 Results and evaluation

We prototyped GABLE using GFSA and experimented on an Ethereum testnet.
See Section 5 for details of our experiments and results; here, we summarize our
findings. First, a simple provenance-tracking application scenario was modeled
using 5 cycles of reactive functionality in a simple 6-state FSA; the cost to run
this demo on the Ethereum mainnet would have been less than US$3.00 on the
day of the test. Next, we demonstrated a 5-state machine implementing MPC for
the classic 2-party “Millionaire’s Problem” for configurable input lengths based
on a bit-serial comparison algorithm; the cost of that demo would have been
about $0.50 per bit of input, and can be further reduced. Finally, we compared
costs for GFSA versus a garbled universal circuit (GUC) implementation on a
multi-bit auction problem, showing that the cost of GUC grows only modestly
(polylogarithmically) with the number of bidders, as expected, and becomes less
expensive than GFSA for B > 7 bidders, at which point the cost is about $20
per bit of price data. Note, GC without functional privacy would cost far less.

1.4 Outline of the Paper

We presented the motivation and several use cases above in Section 1.1, and pre-
viewed our contribution and results in Section 1.2 and Section 1.3. We present

4

preliminaries in Section 1.5 and discuss related work in Section 1.6. We provide
a high-level overview of our approach in Section 2, including defining the logical
players, the trust model, and security intuition. A generic security statement
and proof are outlined in Section 3, and specialized for our main GC-based pro-
tocol in Section 4. We discuss our prototype and demo implementations and
present results and cost analysis in Section 5 and conclude in Section 6. Ap-
pendix presents some technical details of the GFSA approach used in our early
implementations.

A much more detailed report on the implementation and demos, including
reference source code for the prototype, is available as a Sandia National Labo-
ratories technical report [19].

1.5 Preliminaries

Blockchain technology. Bitcoin [26] is a stunningly successful technology, which
generalizes public timestamping (ledger) and smart contracts work and uses
proof-of-work, concepts considered before [22,17,27]. Bitcoin has limited support
for programming digital smart contracts, i.e. it is not Turing-complete. This is in
part due to the possibility of intentional or accidental resource overuse or even
exhaustion as a result of programming issues. The need for a rich programming
language for contracts was nevertheless recognized, and in 2013, the Ethereum
blockchain was proposed [13]. Ethereum addressed the issues stemming from
language Turing-completeness by putting the onus on the programmer/contract
creator, and requiring payment per storage unit and execution step. We imple-
ment our system for Ethereum; our higher-level design is general and will fit
most natural blockchain architectures.

MPC (including Two-Party Computation, 2PC, and the general p-Party Com-
putation), is an area of cryptography that studies protocols which compute
functions over players’ private inputs while revealing nothing except the func-
tion output. MPC has improved dramatically over the past 15 years. The first
proof-of-concept 2PC implementation, Fairplay [25], evaluated only 200 Boolean
gates per second. Today, 2PC implementations can process up to 2–5 million
gates/sec [34]. Improvements in the malicious model and in 3PC and MPC are
even more impressive. Recent work reports 3PC techniques that can evaluate
as many as seven billion Boolean gates/second [6]. Research on algorithms and
implementations has firmly transitioned MPC from a theoretical curiosity to a
subject of practical engineering.

We note that 2PC protocols, and specifically Yao’s garbed circuit (GC) tech-
niques [32], are most suitable for use in our setting, because the blockchain itself
can naturally serve as the GC evaluator.

FSA (finite-state automata) comprise a standard but simple model of computa-
tion that differs from Boolean circuits. The FSA model is weaker (some functions
require exponentially larger representation in FSA as compared to circuits). The
primary benefit of GFSA, in the case of sufficiently low-complexity applications,

5

is simply that obscuring the structure of the computation becomes relatively
trivial, since all computations reduce to a linear sequence of state transition ta-
ble lookups, and relatively simple techniques suffice to obscure the topology of
the state graph. As a result, the overhead to achieve functional privacy in GFSA
becomes less than that of garbled (universal) circuits for computations operating
on sufficiently small numbers of bits.

Garbling schemes and Garbled Functions (GF). We build our approach around
GC and GFSA. They are special cases of garbling schemes, as defined by Bel-
lare et al. [9]. Informally, we will refer to garbling schemes as garbled functions
(GF), similarly to how “GC” refers to both the GC garbling scheme and the
GC approach. We will use the terms “garbled” and “encrypted” function inter-
changeably in this work. The BHR framework defines a garbling scheme as a
tuple of algorithms G = (ev,Gb,En,Ev,De)3 and requires that they satisfy the
following properties:

In addition to the correctness property, BHR define relevant notions of secu-
rity for garbled functions: privacy, obliviousness and authenticity. We refer the
reader to [9] for precise definitions of these standard notions. Here, we informally
summarize these notions.

GF correctness guarantees correct evaluation if all players behave honestly.
GF privacy guarantees that an adversary Adv who sees the garbled function

(e.g. the GC), the encoded inputs and the output decoding information, does
not learn anything beyond the result of the computation.

GF obliviousness guarantees that an Adv who sees the garbled function and
the encoded inputs, does not learn anything. This notion is different from privacy,
which gives Adv the decoding information and allows it to obtain the output of
the computation (and nothing else).

GF authenticity captures Adv’s inability to create from a GF F and its garbled
input X a garbled output Y ̸= F (X) that will be deemed authentic.

Note, we only need correctness and privacy. The authenticity requirement
can be avoided if we choose to rely on the blockchain to honestly evaluate GF.
Obliviousness becomes unnecessary if the output decoding information d is al-
ways published (e.g., d is provided to output receivers, who may be corrupted
by Adv), in which case we are never in the setting without d available to Adv.

MPC from GF. Bellare et al. [9] do not systematize the ways one can obtain an
MPC protocol from GF. However, the following (informally presented) natural
2PC construction works, and is proven secure against semi-honest adversaries
in [9], assuming GF is private:

Construction 1 (2PC from GF, informal). Gen generates GF F , encoding in-
formation e, and decoding information d by running Gb. Gen sends F, d to Eval.
Gen and Eval securely (e.g. via Oblivious Transfer (OT)), deliver to Eval the

3 In the BHR notation, ev is a reference evaluator for plaintext functions, Gb is the
Garbler, En is the input encoder, Ev is the garbled function evaluator, and De is the
output decoder.

6

labels of e corresponding to players’ inputs. Eval evaluates GF by running Ev,
and obtains the plaintext output from garbled output labels and d by running De.

We note that the above construction is secure against malicious Eval, as
long as label delivery remains secure against a malicious Eval. We will use this
property in our security argument.

1.6 Related Work

We briefly discussed relevant MPC and FSA preliminaries in Section 1.5. In
this section, we review several systems addressing privacy on the blockchain and
compare them to our approach.

MPC+blockchain. As we discuss next, many works explore the interplay of
blockchain and MPC. To our knowledge, only YOSO (You Only Speak Once)
MPC [10,20] formally models a public blockchain executing MPC. YOSO de-
viates from the typical blockchain architecture (e.g., of Ethereum) of all nodes
sharing the same view. Instead, YOSO nodes have private data and are selected
to perform MPC subtasks. If sufficiently large fraction of selected players are
honest, MPC is secure. To protect against adversarial corruption, these players
are hidden: they are unpredictably self-selected (e.g., via mining-like process),
and each MPC subtask consists of computing and sending a single message, af-
ter which they erase their relevant private state. The main technical challenge of
YOSO MPC is sending encrypted messages (e.g. containing internal state and
subtask computation output) to unidentified players who are self-selected in the
future. While YOSO MPC has attractive asymptotic complexity, unfortunately,
it is concretely prohibitively expensive due to the cost of its building blocks. Our
solution, at the cost of much stronger corruption and trust model (e.g., we only
handle non-adaptive corruptions, while YOSO supports adaptive), is far more
efficient and aligns with Ethereum architecture.

On the other hand, permissioned networks, such as Hyperledger, may be run
by a small number of semi-trusted servers, and MPC can naturally be executed
among the servers to achieve full privacy of transactions and contracts. This
direction is explored in [11]. Their approach does not extend to public block-
chains, since an arbitrary number of adversarial nodes may participate in the
public network. Our work can be seen as general MPC on a public ledger for a
restricted use case, where the encrypted function is generated by an organization
trusted by the participants (and whose honesty can be later audited).

Hawk [24] is an architecture for a blockchain that can support private data. It
handles private data using a trusted manager, realized using trusted hardware,
such as Intel SGX. The trusted enclave may be implemented via MPC. It is not
clear who would be the MPC principals to achieve a reasonable trust model;
further (and [24] acknowledges this) this would cause an impractical overhead.

The Enigma system [35] uses MPC protocols to implement support for private
data on a blockchain. They use MPC off-chain to perform computation on shares

7

of data. We aim to run MPC on-chain for resilience, availability and auditability;
Enigma’s techniques will not achieve these properties.

A line of work explores the interplay of blockchain and (separately executed)
MPC to achieve fairness in MPC or connect MPC to financial mechanisms di-
rectly [5,12,16]. Works such as [31] use blockchain to manage encrypted inputs to
MPC perfomed by a separate trusted network. Ref. [15] considers a blockchain-
hybrid MPC model (plain model with available ledger), and addresses foun-
dational issues of MPC, such as concurrent composability, in this model. In
contrast, in our work, the blockchain itself executes MPC.

Zero-knowledge proofs (ZKP) are widely used both in MPC and in blockchain.
We note that public ledger nodes never prove anything (indeed, the underlying
secret would then be known to everyone). Instead, ZKPs are used by off-chain
entities, such as wallets, to prove correctness of their actions. Several ledgers,
such as ZCash, provide transaction privacy based on ZKPs. This line of work is
ortohogonal to the privacy protection work we consider.

Solidus [14] uses a publicly verifiable ORAM machine to generalize and scale
up the ZKPs for the use case where financial institutions representing many
accounts interact with a ledger.

Blockstream CA [29] use simple ZKPs in conjunction with additive homo-
morphic commitments to manipulate secret data on the ledger. Partial privacy
can be achieved for very simple functionalities (for efficiency, we are constrained
by additively-homomorphic encryption).

In contrast to the above approaches, our solution is general MPC.

Trusted enclaves. As in the Hawk example above, privacy can be achieved if
one is willing to entrust hardware enclaves, such as SGX. Nodes of the block-
chain network may be equipped with enclaves, which would execute encrypted
contracts on encrypted data. Several other systems, such as Secret Network [4],
also implement this approach. We note that enclave security is a cat-and-mouse
game; in this work, we do not rely on secure enclaves.

2 Overview: Approach and Trust Model

As discussed in Sec. 1, we wish to add privacy of both computations and data to
the process of contract execution on the Ethereum network. Data and function
privacy is normally achieved using an appropriate secure computation protocol.
However, in the public blockchain setting, the number of network nodes is un-
specified, and MPC privacy guarantees cannot be achieved. Instead, we take the
following approach:

2.1 Logical players and evaluation pattern

We consider several logical players:

8

– The Contract creator or Garbler sets up encryptions of functions and inputs.
It initializes the contract and sends encrypted labels to corresponding input
providers. Garbler can be run by an MPC, e.g. over a private chain.

– Input provider or writer. This player is authorized to interact with a pub-
lished contract (which implements a GF) and provide (garbled) input into
the contract based on the plaintext input it has.

– (Input) unlocker. This player facilitates secure input provision by establish-
ing an extra decryption step (performed by the unlocker) of the submitted
garbled input. This prevents input providers, who posses both input labels on
each input wire, from decrypting the internals of the encrypted computation.
Effectively, use of the unlocker (who we assume does not collude with input
providers) implements a secure OT of the input label based on the input.

– Evaluator. This player (implemented by the blockchain itself) evaluates the
GF by executing the contract created by the contract creator on garbled
inputs provided by the input providers. (By its nature, the blockchain also
generates an indelible public archive of the contract’s execution, including
garbled inputs and outputs.)

– Output recipient or reader. This player is authorized to receive the output
of the computation. It is also possible to make the output available to all.

2.2 Approach

In our approach, the blockchain network itself plays the role of the Evaluator
Eval of the GF (either a garbled circuit or a garbled FSA, in this work).

GF generation and contract publishing. The computed function is first rep-
resented as a Boolean circuit or FSA. Then it is garbled within the BHR frame-
work [9], resulting in a GF (e.g., GC or GFSA).

The GF is assumed to be honestly generated by an agent of a contract creator,
Gen. We note that Gen possesses all secrets of the encrypted function and there-
fore is able to infer the internal state of the (plaintext) computation, should
it ever gain access to the encrypted evaluation. Therefore we assume that all
the secrets of the (small and self-contained) computation performed by Gen are
securely deleted4. That is, we assume that Gen produces GF F , encoding infor-
mation e and decoding information d. Upon delivery (as we discuss next) of e
and d to the blockchain network players, and of F to the contract, Gen securely
erases all its state (perhaps except F and d). We note that secure deletion of
Gen’s state is not needed if audit may be desired or it is allowable for Gen to
inspect the details of the evaluation, such as inputs, intermediate states, etc.

Input provision. As plaintext input becomes available to input providers, they
may enter the corresponding garbled input labels into the contract. To do this, in
the GC case, they must have access to both garbled labels for each Boolean input.
This would present a serious security problem if not addressed. A player who

4 If we require auditability of MPC, this information must be securely stored instead
of being deleted. Then, upon audit, the generated GC can be reconstructed, and its
correctness and correctness of MPC execution verified. See Section 2.3 for details.

9

knows more than one label of a wire may infer unallowed plaintext information.
In addition to passively learning private information, the attacker may adaptively
substitute its input, thereby affecting the correctness of the computation as well.

We address this issue by introducing and using unlockers, logical players
who help manage input labels. Thus, the process of input provision proceeds as
follows (we specify it for the case of GC; the GFSA case is analogous):

1. Gen generates GF and corresponding input labels, w0
i and w1

i , representing
two labels for each Boolean input wire Wi. Gen encrypts these labels with
unlocker key ku. For each input wire Wi, Gen gives the two encryptions
Encku(w

0
i), Encku(w

1
i) to the input provider responsible for the wire Wi.

Gen gives the unlocker key ku to the unlocker associated with Wi.

2. When the input provider is ready to submit the (encrypted) input b ∈ {0, 1}
on wire Wi, it publishes to the contract Encku(w

b
i), the encrypted label

corresponding to its input b, received from Gen.

3. When notified (e.g., off-chain or by the blockchain, or in response to moni-
toring the blockchain), the unlocker retrieves Encku

(wb
i) from the contract,

decrypts it with the key ku received from Gen, and publishes wb
i to the con-

tract.

Secure evaluation and output delivery. Once all inputs are provided to the con-
tract, the contract is evaluated by the blockchain and the (encrypted) output is
produced. Anyone may inspect the encrypted output, and only authorized play-
ers (those who received d, or corresponding portions of d from Gen) may decrypt
and obtain the plaintext output.

Reactive functionalities. We stress that the computation need not be one-shot.
It is natural to consider multi-staged evaluation, where intermediate outputs
may be provided to output recipients, and function state propagated across the
stages. This is easy to achieve with obvious variations of GF evaluation. One
approach to this is illustrated in Fig. 1. We prove security only for one-shot
functionalities. Proofs can be naturally extended to the reactive case.

2.3 Trust model

After having described the players and their actions, we are now ready to specify
the trust model. There are two main assumptions:

– We assume that the contract generator acts honestly and securely erases
its state after completion of its task. Note, this is immediately achieved if
garbler is implemented as MPC e.g., run on a private chain.

– Input providers do not collude with corresponding unlockers. That is, we
allow arbitrary collusions of players, but a set of colluding parties may not
include an input provider and an unlocker for the same wire/GFSA step).

10

Fig. 1. Reactive execution of garbled machines by blockchain contracts. The
gray region represents the full machine execution, which may require one or several
contracts. The green sub-region represents operation within one application cycle, each
of which may accept new inputs and produce new intermediate outputs. The blue
rectangle represents a garbled state-update function that maps (old state, input) to
(new state, output); this block can be implemented either using a (monolithic) gar-
bled FSA transition table, or as a traditional GC (the latter requiring a projective or
bit-vectorized state encoding). It must be garbled separately for each cycle. In this
conception, S denotes a set of players called Starters authorized to configure the initial
state, and each cycle t may have its own sets of authorized input providers W(t), un-
lockers U(t), and output recipients R(t). The Finishers F and Final Readers Rfin are
only required if there is a final output that is supposed to be visible to a broad audi-
ence including the other players, but where the other players may have a disincentive
to reveal the specific output value to that audience.

Security against cheating Gen: audits, covert [8] and PVC [7,23] security. We
assume that Gen behaves honestly and, further, erases its state. In some scenar-
ios, it may be desired to open the computation at a later stage, e.g., for audit
purposes. This can increase trust in Gen and the transparency of the process. Of
course, the auditor (or the public, if the computation is opened to the public)
will learn the inputs of all players. Release of this information may be acceptable,
e.g., in situations where inputs are sensitive only for a certain duration of time.

Auditing of Gen is easily achieved by requiring Gen to generate everything
from a PRG seed and to securely store the seed. During audit, the seed is revealed
and the auditor verifies that all actions of Gen are consistent with the seed
(this may require participation of unlockers and input providers). Because GC is
secure against a malicious evaluator, honest generation of GC implies correctness
and security against malicious players in the collusion model described above.

In the case when the function is public, we can also easily achieve covert [8] or
even publicly verifiable covert (PVC) [7,23] security. Following the ideas on [8],

11

covert security can be achieved by requiring Gen to produce two GFs and sets
of inputs; the blockchain network, e.g. via a randomness beacon, challenges to
open one of them, verifies its correctness, and evaluates the unopened GF. PVC,
a strengthening of the covert model introduced by [7], requires the ability to
prove cheating, in case a cheater was caught. Because the GF and all inputs are
published on the chain, it is easy to collect evidence of cheating. Firstly, we can
require Gen to publish a seed (failure to do so will automatically imply guilt).
Further, it is easy to verify that Gen’s actions are consistent with the seed and
punish it (e.g. via funds slashing) if a violation is detected.

3 Generic Security Statement and Proof

We state the general security theorem for functions implemented as garbled func-
tions and present the proof. The security of our specific construction presented
next in Section 4 is an immediate corollary of this general theorem.

Let G = (ev,Gb,En,Ev,De) be a garbling scheme, satisfying correctness and
privacy as defined by [9] (as noted in Section 1.5, obliviousness and authentic-
ity are not needed). We additionally require that the decoding information d
is projective5, and decoding each bit calls a hash function, modeled as a Ran-
dom Oracle (RO). Note, standard GC constructions in fact do implement d this
way: output wire’s plaintext value, for example, can be obtained by computing
low bit[H(wi)], where wi is the output label

6. Similarly, other garbling schemes,
such as GFSA, can have a decoding function d incorporate a call to RO. We will
use the RO programmability [18] in our simulation.

Theorem 1. Let G = (ev,Gb,En,Ev,De) be a garbling scheme as above.
Let (y0, ..., yp) = f(x0, ..., xq) be the function desired to be computed, such that
each bit of the function output depends on all inputs7. Let Gen be the con-
tract generator, IP1, ..., IPn be the input providers, U1, ..., Um be the unlock-
ers, and R1, ..., Rℓ be the output receivers. Assume Gen is honest and gener-
ates (F, e, d) = G.Gb and distributes (F, e, d) to players as described above. Let
I ⊂ {IPi, Uj , Rk} be the set of colluding malicious players, such that for no input
wire Wi both its input provider and unlocker are in I.

5 As defined in [9], in a projective garbling scheme, the encoding information is rep-
resented as a list of tokens, one denoting 0, and one denoting 1, for each bit of the
input; an encoding of a player’s input is a collection of the tokens corresponding to
its plaintext input. Similarly, for the output decoding, we say it is projective if the
plaintext output is decoded bitwise in a similar manner.

6 To use low bit[H(wi)] as the decoding function, Gen needs to ensure that
low bit[H(wb

i)] = b. This is easy to do by choosing the output labels from corre-
sponding domains. We stress that this is but one way of implementing d with these
properties.

7 While some functions of interest do not meet this requirement, the functions we
consider in this work will: indeed, universal circuit and FSA function outputs depend
on all their inputs.

12

Then blockchain evaluation of f which computes G.ev as described above, is
secure against a malicous adversary corrupting I.

Proof. For lack of space, we present the full proof in Appendix E.

Remark 1. If an unlocker Uj colludes with a reader Rk, together they can learn
the output of the computation and abort based on it. This is not a vulnerability
in the standard notion of simulation-based security. Note, if we wish to avoid
such adaptive abort, we can require that no unlocker colludes with any reader.

4 Instantiations and Security Proofs

Construction 2 (UC GC-based). Our main construction is the instantiation
of the generic GF-based construction described above in Section 2 based on the
following choice of underlying primitives/schemes:

Let f be a function to be computed on the blockchain. Let C be a Univer-
sal Circuit computing f . Let G be the classic Yao GC garbling scheme with
point-and-permute and projective decoding function as specified in assumptions
of Theorem 1.

Having proven a generic security theorem (Theorem 1) for computing func-
tions represented by arbitrary garbled functions, the proof of security of our
main protocol, which is GC-based, is an immediate corollary of Theorem 1.

Theorem 2. Assume all assumptuions of Theorem 1 hold, including the collu-
sion assumptions. Then Construction 2 is secure in the malicious model against
collusions specified in Theorem 1.

Proof. Proof is an immediate corollary of Theorem 1 and the fact that the under-
lying GC scheme used in 2 satisfies the required assumptions of Theorem 1.

Other instantiations and proofs are analogous. In particular, GC-based
instantiation is the same as UC GC with the exception of garbling the circuit
C, and not necessarily a UC. A garbled FSA offers a reasonable performance
for simple functions compared to UC GC. In Appendix C we cast a one-shot
evaluation of GFSA as a GF in the [9] notation. A GFSA-based GF satisfying
privacy and correctness can be used as a basis of our general construction.

5 Prototype Implementations and Test Results

To illustrate our approach and assess its real-world cost, we implemented a
simple prototype and several demonstration applications. Specifically, an imple-
mentation of the GFSA approach (see Appendix) was developed, for simplicity,
and applied to several demo applications represented as finite state automata.

The prototype Garbler, implemented in Python, takes a simple JSON-format
description of an FSA transition function and translates it to a sequence of gar-
bled tables, one for each state update cycle (time step). After garbling, another

13

Fig. 2. Base FSA used in Millionaire’s Problem demo. In this version, players AB
supply bits of their input values simultaneously, least-significant bit first, on successive
cycles. In the final cycle, after L time steps have passed, a Finisher (as in Fig. 1)
supplies a special “Finish” symbol ⊖ which makes the final result readable by both
parties.

Python script translates the garbled machine data to source code in the Solid-
ity programming language for a smart contract for the Ethereum platform; this
contract includes the garbled tables as static data, together with a generic Ex-
ecutor which accepts garbled input values from input providers and evaluates
the garbled machine, producing garbled outputs which can then be interpreted
by authorized output recipients.

We used the popular Truffle tool suite, which provides a framework for Eth-
ereum development, to develop, test and deploy (on a private test network, and
later on the Ethereum mainnet) several prototypes and demonstrations, which
we now discuss.

We implemented a provenance tracking demo (presented in detail in Ap-
pendix F for lack of space). Next we discuss our implementation of the million-
aires problem.

5.1 Millionaires’ Problem Demo

This demo executed a 5-state machine (Fig. 2) implementing MPC for Yao’s clas-
sic 2-party “Millionaires’ Problem” [33] with bit-serial inputs. Here, to achieve
MPC fairness (the last player to move possesses an informational advantage due
to his ability to look ahead at final outputs), we invoke a special extra player
“Finisher” (separate from the 2 normal parties) that acts to reveal the result.
(See also Fig. 1.)

Extending this line of argument, we observe that every step (input provision
and corresponding GFSA state update) of the GFSA execution may exhibit the
following similar vulnerability: the input provider may see the immediate effect
of its input, such as such as whether the next FSA state depends on its input.

14

This issue can be resolved by state-graph transformations, which increase the
size of the state machine. In one version that we tested, each additional bit
of input length cost almost exactly 2 million gas units to store the additional
garbled machine data (since each time step has to be garbled separately), which
was about $0.50 worth of Ethereum on the day of that test. With some overhead,
the total cost to run an FSA for a 32-bit, two-party Millionaire’s Problem was
75 million gas, corresponding to roughly US$75 or so at typical prices. That
demo required spreading out the GFSA data over multiple smart contracts,
due to Ethereum contract size limits.8 Reimplementing this same demo using
Unlockers for each input and an optimized 2-state FSA allowed us to reduce the
cost to ∼$12.

5.2 Configurable Garbled Universal Circuit (GUC) Method

To let us handle applications of a complexity beyond the reach of the GFSA
approach in future implementations of GABLE, a simple approach was designed
to implement a garbled circuit (GC) for (configurable) universal circuits (UCs).
Fig. 3 illustrates our basic UC approach. Input values here are activated using
Unlockers (not shown), as we described earlier in the paper.

Although implementation of this method is still in progress, careful analysis
of the approach allowed us to already compare its costs to those of the exist-
ing GFSA technique for an example problem, a multi-party auction (generalized
from the Millionaire’s Problem). Fig. 4 shows comparison results. As we ex-
pected, cost scales up exponentially with the number of bidders B for GFSA,
but only as Θ(B log2 B) for the GUC. (Circuit width scales as Θ(B), circuit
depth scales as Θ(logB), and the depth of the Thompson network for each ap-
plication circuit layer also scales as Θ(logB).) The break-even point with our
implementation falls at B = 7 bidders, where the cost of both approaches is
roughly $20 per input bit.

6 Conclusion

In this paper, we described a novel approach to performing secure computa-
tion (including functional privacy) on a blockchain. The general approach has
two basic embodiments that we discuss, based on the garbling of finite-state
automata (FSA) and Boolean circuits, respectively. We gave an overview of the
basic structure of the approach, including its participant roles and high-level
procedures, outlined a proof of its basic security properties, and discussed early
implementations and test results.

We found that simple FSA-based applications can be executed privately at
moderate dollar costs on the Ethereum blockchain. For more complex applica-
tions, a simple approach based on a construction we call configurable Garbled

8 Per EIP-170 (https://github.com/ethereum/EIPs/blob/master/EIPS/eip-170.
md), a contract’s deployed bytecode size cannot exceed 24,576 bytes.

15

Fig. 3. Concept for configurable universal circuits in multi-step computations.
In this approach, for each layer of application logic, a generalized connection network
such as a Thompson network [28] obscures the interconnect topology. The elements
of that network, together with generic application gates for computing new values of
internal state variables (i.s.v.’s), are configured via truth tables during the garbling
process. Thus, no separate programming input is required for this type of UC, yet the
function of the network remains obscured.

Universal Circuits (GUC) achieves complete functional privacy with costs that
scale as Θ(wd logw) in the width w and depth d of the application circuit, with
reasonable constant factors. We carried out a detailed cost comparison for a
multi-bidder auction application, for which GUC outperforms garbled FSA for
B > 7 bidders, and remains arguably feasible to perform on-chain with full
functional privacy for up to hundreds or even thousands of bidders.

We deployed and executed two GABLE demos on the Ethereum mainnet
in late July and mid-September of 2020. The purpose of these tests was to 1)
ensure that there were no unforeseen difficulties with real-world deployment,
and 2) validate our cost estimation methodology. Both purposes were realized,
with no surprises. The first deployment [2,3] (July) was a very simple four-state
machine, similar to the supply-chain example of Fig. 6. The second deployment
([1], Sep.) was for a GFSA implementation of a two-party auction as in Fig. 4.

References

1. Auction contract. Ethereum address 0x98ccd7e190ac28a36d4f065a4f14dc5e0b67-
f5c7.

16

Fig. 4. Cost comparison for GFSA vs. configurable universal GCs for multi-
party auctions. The break-even point occurs for B = 7 bidders, where the cost of
both techniques is about 800 million gas per bit of input length. Prices here assumed
optimistically that we are paying only 1 mETH (or in the ballpark of $0.20) per million
gas; however, in recent months, the average gas price has been substantially higher.

2. Simple executor contract. Ethereum address 0xc8a54a72f187ec444ed0896890128-
4bbd6d2ec06.

3. Simple storage contract. Ethereum address 0x57f1c190982d0a9ecdf7c4703e134d-
9eaf347de0.

4. The Secret Network. https://scrt.network/. Retrieved June 25, 2020.

5. M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek. Secure multi-
party computations on bitcoin. In 2014 IEEE Symposium on Security and Privacy,
pages 443–458. IEEE Computer Society Press, May 2014.

6. T. Araki, J. Furukawa, Y. Lindell, A. Nof, and K. Ohara. High-throughput semi-
honest secure three-party computation with an honest majority. In E. R. Weippl,
S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi, editors, ACM CCS 2016,
pages 805–817. ACM Press, Oct. 2016.

7. G. Asharov and C. Orlandi. Calling out cheaters: Covert security with public
verifiability. In X. Wang and K. Sako, editors, ASIACRYPT 2012, volume 7658 of
LNCS, pages 681–698. Springer, Heidelberg, Dec. 2012.

8. Y. Aumann and Y. Lindell. Security against covert adversaries: Efficient protocols
for realistic adversaries. In S. P. Vadhan, editor, TCC 2007, volume 4392 of LNCS,
pages 137–156. Springer, Heidelberg, Feb. 2007.

9. M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of garbled circuits. In
T. Yu, G. Danezis, and V. D. Gligor, editors, ACM CCS 2012, pages 784–796.
ACM Press, Oct. 2012.

10. F. Benhamouda, C. Gentry, S. Gorbunov, S. Halevi, H. Krawczyk, C. Lin, T. Ra-
bin, and L. Reyzin. Can a public blockchain keep a secret? In R. Pass and
K. Pietrzak, editors, TCC 2020, Part I, volume 12550 of LNCS, pages 260–290.
Springer, Heidelberg, Nov. 2020.

11. F. Benhamouda, S. Halevi, and T. Halevi. Supporting private data on hyperledger
fabric with secure multiparty computation. In 2018 IEEE International Conference
on Cloud Engineering (IC2E), pages 357–363, 2018.

17

12. I. Bentov and R. Kumaresan. How to use bitcoin to design fair protocols. In J. A.
Garay and R. Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS,
pages 421–439. Springer, Heidelberg, Aug. 2014.

13. V. Buterin. Ethereum Whitepaper. ethereum.org/en/whitepaper, 2013.
14. E. Cecchetti, F. Zhang, Y. Ji, A. E. Kosba, A. Juels, and E. Shi. Solidus: Con-

fidential distributed ledger transactions via PVORM. In B. M. Thuraisingham,
D. Evans, T. Malkin, and D. Xu, editors, ACM CCS 2017, pages 701–717. ACM
Press, Oct. / Nov. 2017.

15. A. R. Choudhuri, V. Goyal, and A. Jain. Founding secure computation on block-
chains. In Y. Ishai and V. Rijmen, editors, EUROCRYPT 2019, Part II, volume
11477 of LNCS, pages 351–380. Springer, Heidelberg, May 2019.

16. A. R. Choudhuri, M. Green, A. Jain, G. Kaptchuk, and I. Miers. Fairness in an
unfair world: Fair multiparty computation from public bulletin boards. In B. M.
Thuraisingham, D. Evans, T. Malkin, and D. Xu, editors, ACM CCS 2017, pages
719–728. ACM Press, Oct. / Nov. 2017.

17. C. Dwork and M. Naor. Pricing via processing or combatting junk mail. In
E. F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 139–147. Springer,
Heidelberg, Aug. 1993.

18. M. Fischlin, A. Lehmann, T. Ristenpart, T. Shrimpton, M. Stam, and S. Tessaro.
Random oracles with(out) programmability. In M. Abe, editor, ASIACRYPT 2010,
volume 6477 of LNCS, pages 303–320. Springer, Heidelberg, Dec. 2010.

19. M. P. Frank, C. N. Cordi, K. G. Gabert, C. B. Helinski, R. C. Kao, V. Kolesnikov,
A. K. Ladha, and N. D. Pattengale. The GABLE report: Garbled autonomous
bots leveraging Ethereum. Technical report SAND2020-5413, Sandia National
Laboratories, 2020. https://www.osti.gov/biblio/1763537.

20. C. Gentry, S. Halevi, H. Krawczyk, B. Magri, J. B. Nielsen, T. Rabin, and S. Yak-
oubov. YOSO: You only speak once - secure MPC with stateless ephemeral roles.
In T. Malkin and C. Peikert, editors, CRYPTO 2021, Part II, volume 12826 of
LNCS, pages 64–93, Virtual Event, Aug. 2021. Springer, Heidelberg.

21. O. Goldreich. Foundations of Cryptography: Volume 2, Basic Applications. Cam-
bridge University Press, New York, NY, USA, 2004.

22. S. Haber and W. S. Stornetta. How to time-stamp a digital document. Journal of
Cryptology, 3(2):99–111, Jan. 1991.

23. V. Kolesnikov and A. J. Malozemoff. Public verifiability in the covert model (al-
most) for free. In T. Iwata and J. H. Cheon, editors, ASIACRYPT 2015, Part II,
volume 9453 of LNCS, pages 210–235. Springer, Heidelberg, Nov. / Dec. 2015.

24. A. E. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The block-
chain model of cryptography and privacy-preserving smart contracts. In 2016
IEEE Symposium on Security and Privacy, pages 839–858. IEEE Computer Soci-
ety Press, May 2016.

25. D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay - secure two-party computa-
tion system. In M. Blaze, editor, USENIX Security 2004, pages 287–302. USENIX
Association, Aug. 2004.

26. S. Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. https://bitcoin.
org/bitcoin.pdf, 2008. Retrieved June 25, 2020.

27. N. Szabo. Secure Property Titles with Owner Authority. nakamotoinstitute.

org/secure-property-titles/, 1998. Retrieved 06/25/2020.
28. C. Thompson. Generalized connection networks for parallel processor intercom-

munication. Technical report, Carnegie-Mellon University, Pittsburgh, PA, 1977.
29. A. van Wirdum. “Confidential assets” brings privacy to all blockchain assets:

Blockstream. Bitcoin Magazine, April 2017, 2017. Retrieved June 25, 2020.

18

30. Wikipedia. Transactive Energy. en.wikipedia.org/wiki/Transactive_energy.
31. Y. Yang, L. Wei, J. Wu, and C. Long. Block-smpc: A blockchain-based secure

multi-party computation for privacy-protected data sharing. In Proceedings of
the 2020 The 2nd International Conference on Blockchain Technology, ICBCT’20,
page 46–51, New York, NY, USA, 2020. Association for Computing Machinery.

32. A. Yao. How to generate and exchange secrets. In Proceedings of the 27th Annual
Symposium on Foundations of Computer Science, pages 162–167. IEEE, 1986.

33. A. C. Yao. Protocols for secure computations. In 23rd Annual Symposium on
Foundations of Computer Science (SFCS 1982), pages 160–164, Chicago, IL, USA,
1982. doi:10.1109/SFCS.1982.38.

34. S. Zahur, M. Rosulek, and D. Evans. Two halves make a whole - reducing data
transfer in garbled circuits using half gates. In E. Oswald and M. Fischlin, editors,
EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 220–250. Springer,
Heidelberg, Apr. 2015.

35. G. Zyskind, O. Nathan, and A. Pentland. Decentralizing privacy: Using blockchain
to protect personal data. In IEEE Symposium on Security and Privacy Workshops,,
pages 180–184, 2015.

19

Appendix

Here we describe in additional detail the methods, algorithms and encodings
used in our GFSA-based prototype and demo implementations. We cast GFSA
as a BHR GF, and sketch the intuition behind proofs of correctness, privacy and
obliviousness. We also give additional details of our prototype implementations
and early test results.

A FSA Formalism

First, we briefly introduce some formalism for discussing finite state machines,
or finite state automata (abbreviated FSA in this document). For our purposes,
a finite state automaton A can be defined as a tuple

A = (Σ,S,T) (1)

where Σ is an alphabet or set of possible input symbols, S is a set of (monolithic)
states, and T is a transition function, defined (for Moore-type state machines)
as a function

T : S×Σ → S, (2)

that is, mapping a pair (so, σ) of an origin state so ∈ S and input symbol σ to
a destination state sd ∈ S. Note that in this definition, we are not explicitly de-
scribing outputs; they can be inferred from the states in a separate construction.

To facilitate multi-party computation, we can write the input symbol al-
phabet as a Cartesian product of separate symbol alphabets Σi for each input
provider i; thus, an input symbol σ is actually a tuple (σ1, σ2, . . . , σn) of symbols
provided by different input providers. In such a case we write σ = v⃗ and call it
an input vector.

B State Machine Garbling

A simple method for garbling an FSA, as defined above, is as follows. For sim-
plicity, we present the method without unlockers. (Unlockers are easily added in
a manner analogous to GC: Gen encrypts and sends FSA garbled labels to input
providers, and unlockers are given the corresponding decryption keys.)

We will garble each time step (state-update cycle) separately. We assume
that a prespecified maximum number ℓ of state-update cycles will be supported.
Individual time steps or state-update cycles are indexed t ∈ {1, . . . , ℓ}. Variable
St ∈ S identifies the state resulting from time step t (with S0 being the initial

state), and variable V⃗ (t) ∈ Σ gives the vector of input symbols supplied to step
t.

Garbling each time step works as follows. For each time step t, the (compos-

ite) input variable V⃗t and origin state variable St−1 can each be identified with a
corresponding multi-valued signal line Li, with an associated set of possible line

20

values lji , corresponding to possible input vectors v⃗ ∈ Σ or states s ∈ S respec-
tively. These lines can be considered akin to the bit wires of a GC construction,
but are multi-valued. Line values lji can be encoded using corresponding en-

crypted labels eji . In our implementation, in the case of input variables V i
t for

individual providers, and state variables St, we assign their labels using (cryp-
tographically securely generated) 256-bit random strings; labels for composite

input variables V⃗t are computed from those for their component variables V i
t .

For a composite input vector v⃗ and state s, we write e(v⃗) and e(s) for the corre-
sponding encoded labels eji . The label e(v⃗) is computed by combining the labels
e(σi) supplied by individual input providers as follows,

e(v⃗) =

n∑
i=1

e(σi), (3)

where recall σi is the plain-text input value (symbol) whose encoding is being
provided by an individual input provider. The sum operation is implicitly modulo
2256, or may alternatively be replaced by bitwise exclusive-or (⊕).

The garbled representation of the state-transition function for time step t,
G = Gt, is then constructed as follows. It suffices to store it in a hash table or
mapping structure G[·], supported by most programming languages. For each
pair (v⃗, s) of a possible input vector and origin state, we construct an arc identi-
fier I by combining their labels, for example, using I = e(v⃗)⊕e(s). Now, assume
we have available an indexed family hi(·) of hash functions, which may be de-
rived from a base hash function h(·) by, for example, hi(x) = h(x + i). Now,
we can encode the particular state transition (s, v⃗) → T(s, v⃗) by extending the
mapping structure G[·] by assigning:

G[h0(I)] := h1(I)⊕ e(T(s, v⃗)). (4)

(Here, square brackets denote accessing an entry of the map structure G.) The
right-hand side is simply encrypting the next-state label e(T(s, v⃗)) using an en-
cryption function that consists of simply XOR-masking it with h1(I). Meanwhile,
h0(I) is just being used here as a key that indexes into the mapping, which will
allow the entry to be rapidly retrieved later. (This method for hash table keying
can be considered a generalization of the point-and-permute method that allows
fast lookup of garbled table values.) This therefore comprises a fairly prosaic
implementation of the well-known garbled table abstraction.

It is clear that, at execution time, given the tables G1, . . . ,Gℓ, the circuit
evaluator can, as input labels are received for successive time steps, simply per-
form the necessary hash table lookups, decrypt the (outer layer of encryption
on the doubly-) encrypted next-state labels, and proceed to correctly traverse
the entire garbled state sequence (assuming there are no collisions between our
256-bit hash table keys).

21

Fig. 5. An ℓ-step FSA computation as a circuit with multivalued lines. For
each time step t ∈ {1, 2, . . . ℓ} we have an input line V⃗t which will deliver the vector
v⃗ = (σ1, . . . , σn) of symbols from input providers for time step t, and a state line St

which holds the new state after update step t. S0 is the initial state, which can be
considered to be another input or held constant. Assuming the input alphabets Σi are
all binary,Σi = {0, 1}, we can think of each input line V⃗t as a single input line having 2n

possible values. Meanwhile, St can be viewed as an input line with |S| possible values.
Tt is simply the FSA transition function T, which is normally the same for each t but
can also be allowed to vary. Each Tt block can be thought of as a single large two-input
gate with multi-valued input and output lines. The entire FSA computation can then
be viewed as a single circuit, simply one whose ‘wires’ have many possible values, and
(apart from its multi-valued-ness) is garbled in the same manner as a Boolean circuit.

C Casting GFSA as a BHR Garbled Function (GF)

This will follow the same general structure as for GCs. We must specify how the
elements of the GFSA construction map to the components of the BHR model
(see Fig. 1 of [9]), and prove that they have the required security properties.

First, ignoring reactive functionalities for now, we describe how to view an
entire FSA-based computation (over any fixed number of steps ℓ) as a single
circuit. This helps to clarify why GC-based security proofs apply to it.

The correspondence between BHR GF and the GFSA method goes as follows.
We focus here on consideration of the entire state-machine execution over all
ℓ update steps as a single garbled function. (As mentioned in the main text,
extension of the proof construction to the reactive case is not covered in this
paper.)

The following two lists refer specifically to the block diagram for a generic
garbling scheme shown in Fig. 1 of [9], which should be inspected by the reader.

Correspondence for blocks of a generic garbling scheme:

– ev evaluates the circuit in Fig. 5 given a list s0, v⃗1, . . . , v⃗ℓ of input values
for the input lines (S0, V⃗1, . . . , V⃗ℓ), respectively, and lookup tables for the
functions (T1, . . . ,Tℓ). It returns a plaintext identifier for the final state sℓ.

– Gb: is the procedure for garbling FSAs, which produces (F, e, d), where F is
a collection of garbled transition tables Gt[·] for each time step t.

22

– En generates the encoding of the entire FSA input x, given x and the encod-
ing information e. En is evaluated by unlockers decrypting encrypted labels
published by input providers.

– Ev evlauates GF F by evaluating the garbled gates Gt in sequence using the
process described above where we combine the labels on the two input lines
V⃗t, St−1 and use that as the key to retrieve and decode the garbled table row
corresponding to the arc identifier I to retrieve each garbled state e(st); the
final one of these, e(sℓ), is then the garbled output.

– De decodes the output label. In our system, De applies a hash function H.

Correspondence for lines of a generic garbling scheme:

– Function f to be garbled: This is a representation of the transition function
T of the application FSA as an explicit state transition graph (list of arcs).

– Garbled function F : This is our list of garbled transition tables for all the
time steps, (G1, . . . ,Gℓ).

– Encoding information e: This includes the garbled labels e(v⃗t) for all ℓ input
lines, as well as all of the needed unlocker key(s).

– Plaintext input x: A list of plaintext input vectors (v⃗1, . . . , v⃗t), specifying
the input values that all the of input providers want to provide for all of the
time steps. Also, the initial state s0 can optionally be part of the input (or
it can be assigned to a predetermined constant).

– Encoded input X: This is a list (e(v⃗1), . . . , e(v⃗ℓ)) of encoded input identifiers
obtained by unlocking and combining the input labels provided by individual
input providers.

– Encoded output Y : This is just the result of evaluating the garbled circuit;
i.e., it is the final state label e(sℓ).

– Output decryption information d: This could just be a table mapping hashes
of garbled state labels to plaintext identifiers.

– Plaintext output y: This is a plaintext interpretation of the final state, read-
able by an output recipient.

D GFSA correctness and security properties

Correctness of the GFSA construction is immediate due to the straightforward
encoding of the FSA transition function T as a corresponding garbled table G[·].

Privacy, obliviousness and authenticity can be shown analogously to that of
standard Yao GC, as above we presented our GFSA construction as a (slight
generalization of) GC. We mention the following relevant observations.

1. Information needed to decode line values in the circuit picture of Fig. 5 is
not available to any party (except the Garbler,9 if this is allowed and the
information is retained), except that the final (output) line may be decoded
by the designated output recipient(s);

9 Generally speaking, we assume that the Garbler is not an adversary.

23

2. Alternate input values cannot be probed by input providers, since the Un-
locker(s) will only accept/unlock a single value for each input.

3. The encoding of the garbled table G[·] ensures that the only path through
the state graph that can be decrypted is the one that gets decrypted (while
still garbled) by the sequence of input vectors actually provided; thus, no
information about the state graph topology can be inferred (other than that
it includes at least one path of length ℓ).

E Proof of Security of Theorem 1

Proof. (Sketch.)

We prove malicious security by simulation using standard ideal-real simula-
tion definition (see e.g., [21]). Let I be the set of corrupted players. We build a
simulator SimI by interacting with players in I. SimI starts the game (i.e. starts
all interactive Turing machines implementing players in I). Then SimI runs G.Gb
and distributes F, e, d to players in I appropriately. This includes adding F and d
to the views of players in I, since F, d are published on the blockchain (the proof
for the case when d is distributed only to the readers is analogous). Then SimI

listens to the messages/events from players who are members of I, and responds
to them. SimI also emulates the actions of the honest players, such as submitting
encrypted input when a plaintext input becomes available, or unlocking another
player’s input (whether honest or malicious) as needed. Consider the following
possibilities for player P ∈ I that SimI needs to respond to:

1. P is input provider. The only message expected from P is the encrypted la-
bel. SimI records the encrypted label provided by P . Because, by assumption,
the unlocker for that wire is not corrupted, SimI simulates the correspond-
ing action of the unlocker by publishing the decrypted label (and notifying
I appropriately). However, if the decryption fails, SimI follows the protocol
specification (e.g. simply ignores the invalid input encryption or publishes it
anyway.)

2. P is unlocker. Then P can only provide the unlocked wire label. SimI records
the unlocked label.

3. P is output receiver. No messages are expected from P , and they are ignored
by SimI .

Further, SimI emulates the actions of honest players as follows:

1. Input submission by honest player. SimI publishes arbitrary encrypted label
for the corresponding input (e.g. the zero label for the case of GC). Note,
even though Adv may have the unlocking key for this, it won’t be able to
distinguish any two labels that may be submitted, by the privacy property
of G.

2. Unlocking by the honest player. SimI knows all the decryption keys as it
generated them, and can perfectly emulate this action.

24

As the recorded inputs are submitted and published, no information is re-
vealed to Adv (or to any player) until the last input is submitted. This is because
even though Adv may have access to (unencrypted) labels corresponding to the
inputs, by theorem assumption, every output bit depends on all function input
bits, and hence cannot be computed. Further, because of the privacy guarantee
of the underlying garbling scheme, Adv learns nothing from its view at this point.

Consider the submission of the last input and subsequent unlocks by all
honest players. At this point, Adv is able to compute the output of the function,
if it submitted valid inputs. Adv at this point may choose to:

1. abort (or, equivalently, submit at least one invalid unlock). In this case,
SimI will simulate abort, which may include delivering the output of the
computation to I. We discuss the output simulation below.

2. submit valid unlocks. In this case, the function output is obtained. We discuss
the output simulation next.

Finalizing the simulation. In case Adv obtains the output by opening all
input labels, we simulate this by querying the trusted party and giving it all the
inputs of I. Because all communication is performed via the blockchain, SimI

recorded all messages of players in I. Given that SimI generated the GF itself,
it trivially extracts inputs of malicious players (including provisioning of invalid
inputs or invalid decryptions), and submits the input to the Ideal Trusted Party.
In response, SimI receives the true output. It then programs the RO such that
the output decoding information d implements the correct output. SimI outputs
the view it had so far provided to I, as well as whatever players in I output.
This completes the simulation.

It is easy to see that this view is indistinguishable from the real view due
to the privacy and correctness properties of the underlying garbling scheme and
the programmability of RO.

F Prototype Implementations and Test Results:
Provenance Tracking

F.1 Initial Prototype

A simple, arbitrary 4-state FSA (not shown) was used for an initial test of our
method on a development chain.

After testing the prototype, we proceeded to implement more meaningful
demonstration applications and test them on a private testnet to verify their
Ethereum “gas” (resource) costs. Our early GFSA demos did not yet include
unlockers, and utilized more expensive methods (not discussed in this paper) to
attain functional privacy; thus, the measured costs reported below overestimate
what the true costs of our present method would be in some cases. Selected
demos were also tested on the Ethereum mainnet, and worked as expected.

25

Fig. 6. Simple 6-state FSA used in supply-chain demo The states swi , s
h
i here

represent “waiting” and “holding” conditions for vendors i = 1, 2, 3 as an item is
passed along a supply chain. Vendor i can input a respective symbol Ri to denote that
they have received the item, and Tj

i to denote that they have shipped the item to
vendor j. Output state visibilities here are arranged in such a way that each vendor
only has visibility on its respective states.

F.2 Provenance Tracking Demo

Our first “real” application demonstration to run on an active, multi-node (al-
beit sandboxed) Ethereum test network was a simple 6-state FSA for a simple
supply-chain provenance tracking application (Fig. 6). Although still a “toy”
demonstration, this one is at least suggestive of potential real-world applica-
tions; also, it exercised our capability to have limited visibility of outputs.

In the demo, three different hosts each run a “vendor client” and a local
Ethereum node. A fourth host runs the Garbler, deploys the garbled machine
contract to the blockchain, and distributes selected input encryption/output de-
cryption data e, d to respective vendor nodes. Each node’s vendor client watches
for its ‘w’ state (denoting that it should expect to receive the item), then sim-
ulates receiving the item, then transmits its ‘R’ symbol to notify the machine
of this, then simulates processing the item and shipping it to the next vendor,
then transmits its ‘T’ symbol to notify the machine of this, at which point the
next vendor in the supply chain takes over. Fig. 7 shows a brief excerpt of demo
output.

Fig. 8 shows a breakdown of costs, calculated based on “gas,” which is the
unit of computational resource usage in Ethereum. The real-world price of Eth-
ereum gas varies substantially, but, during the period of our experiments (Mar.-
Sep. 2020), frequently fell within a range of 10–50 mETH (milli-ether) per million
gas units.10 The price of ether (the native cryptocurrency of the Ethereum block-
chain) also varies substantially, but fell in the range of US$0.10–$0.40 per mETH
during that period.

We note that, of the total resource cost, the lion’s share (73%) was the storage
cost for the GFSA data. This test taught us that storage costs dominate the total
cost of executing garbled computations on the Ethereum blockchain using our
approach; thus, we focused primarily on storage costs in our later experiments.

10 A historical chart of Ethereum gas prices can be found at https://etherscan.io/
chart/gasprice.

26

Fig. 7. Excerpt from one vendor client’s diagnostic output in the supply chain
demo. The actual garbled encodings (256-bit labels) for machine states and input
symbols are shown. The narrative flavor of most of the text here is merely intended to
be suggestive of a real application.

Fig. 8. Breakdown of costs for the supply chain demo. Although real-world prices
of Ethereum gas units vary substantially, one million gas (Mgas) typically corresponded
to at least about US$1 worth of Ether (the base cryptocurrency of the Ethereum
network) at the time of our experiments. However, at the time of this writing (Feb. 19,
2021) the cost per Mgas is far higher (nearly US$400).

27

