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Abstract. At ASTACRYPT 2021, Liu et al. pointed out a weakness of the Rasta-like
ciphers neglected by the designers. The main strategy is to construct exploitable
equations of the n-bit x operation denoted by x,. However, these equations are all
obtained by first studying x, for small n. In this note, we demonstrate that if the
explicit formula of the inverse of x, denoted by ;' is known, all these exploitable
equations would have been quite obvious and the weakness of the Rasta-like ciphers
could have been avoided at the design phase. However, the explicit formula of x;,*
seems to be not well-known and the most relevant work was published by Biryukov
et al. at ASTACRYPT 2014. In this work, we give a very simple formula of x;,* that
can be written down in only one line and we prove its correctness in a rigorous way.
Based on its formula, the formula of exploitable equations for Rasta-like ciphers can
be easily derived and therefore more exploitable equations are found.
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1 Preliminaries

Definition 1. [3] Let K be a field, and let l1,1s, ..., 15 be polynomials in K[vy,va, ..., Upl.
Then we set

V(ll, lo, ... ,ls) = {(al, ag, . .. ,am) e K™ ‘ li(al, as, ..., an) =0Vie [1,m]}
We call V(ly,1a,...,1s) the affine variety defined by ly,ls, ..., 1.

From this definition, the affine variety V(ly,ls,...,ls) C K™ is the set of all solutions
of the system of equations

Li(ar,ag,. .. am) =la(ar,ag,...,am) = =ls(a1,a2,...,a,) =0.

Throughout this paper, we consider the field Fo, i.e. K =Fs.

The n-bit x operation. The n-bit x operation denoted by x,, : F§ — F% is defined as
follows:

Yi = T; + Tip1Ti42 for i € [0,7’L — 1],
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where X = (xg,21,...,2n—-1) and Y = (yo,¥1,-.-,Yn—1) denote the n-bit input and
output, respectively. Moreover, the indices are considered within modulo n. To ensure Yy,
is invertible, n has to be an odd number. For convenience, let

h=(n-1)/2.
Consider the ideal G = (g0, g1, .., gn—1) where g; is defined as follows:
9i = Yi + T + Tip1Tiq2.

For convenience, the affine variety defined by go, g1, - . -, gn—1 is denoted by V(G). Obviously,
V(@) represents the mapping table of x,,.

Finding the inverse of y, denoted by x.! is equivalent to finding another ideal
G ={(9,91---,9,_1) such that V(G’) = V(G) and ¢} is of the following form

g =xi+ P,

where P; is a polynomial in Fa[yo, 1, .., Yn—1]-

As far as we know, the formula of y;;! is not explicitly given in the literature. However,
algorithmic procedures to efficiently compute y;, ! for any value of Y have been given in
Daemen’s thesis [4] and Biryukov et al’s work [2] at ASTACRYPT 2014, respectively.

1.1 On Daemen’s Method to Compute X'

In Daemen'’s thesis, the method to compute x,,! is called seed-and-leap. The procedure
takes an arbitrary value Y as input and outputs X. For convenience, 0" denotes (0,0, ... ,0)
—_———

n 0
and 1" denotes (1,1,...,1). When Y = 0", simply output X = 0". When Y # 0", X is
1

n
computed in a sequential manner as described below:

1. Seed. Find an index j such that y;.1 = 1. Then, z; = y;.

2. Leap. If z; is known, z;_5 can be found. Since n is an odd number, all z; for
i € [0,n — 1] can be found by repeating this step.

We now show that the above procedure to compute x;,! is directly derived from the
definition of x,. Specifically, since

Yj—2 = Tj—2+T;1%,

Yji-1 = Tj-1+TiTj1,
Yi = T+ T,

Yj+1 = Tjt1 + Tj42Tj+43,

when y;41 = 1, we have Tj11 = Z;127,43, thus resulting ;7740 = 0 and z; = y;, i.e.
x; is known. Whatever x; is, either T;_ix; or T;x;41 will be 0, thus resulting either
Zj—1 Or Tj_2 can be uniquely computed. If it is x;_; that can be computed, i.e. z; =1,
we can then also compute z;_ since (z;,z;_1) are known. In other words, after z; is
determined, z;_5 can always be uniquely determined. One may notice that there may
exist two ways to determine some x; because we may leap back to these z; and wonder
whether contradictions will occur. This can be easily checked and no contradictions will
occur. In other words, the above procedure will always output a valid X # 0™ for any
Y #£0".

Since an algorithmic procedure to compute x,! is given, the invertibility of x,, is
proved, which is how Daemen proved the invertibility of x,. It is now clear that the
invertibility is not proved by giving a general formula of x,,! and that deducing this general
formula from the above seed-and-leap procedure is as difficult as deducing it from the
definition of x,,.



1.2 On Biryukov et al's Method to Compute X’

The algorithm to compute x;; ! is placed in Appendix D! of [1] and no specific proof for
its correctness is given. In addition, they also gave the explicit expression of x3 for xg !
which has a nice structure, as shown below:

r3 = y3 + (Y5 + (Y7 (Yo + ¥2U1)¥=)V6)Va- (1)

As far as we can understand, the algorithm described in Appendix D of [1] is unclear
and there seem to be typos. Consequently, we will interpret it with our own description.
Specifically, the original algorithm to compute x;,! in [1] is shown in Algorithm 1, while
our new interpretation is shown in Algorithm 2.

Algorithm 1 Given (yo,y1,---,Yn—1), ind X, (Y0, Y1, -+ Yn—1) [1]

(20, 15y Tn1) < (Y0,Y1s -+ Yn—1)

2: f0r0§i<3("72_1)d0

3: —T(n—2)i  T(n—2)i T Y(n—2)i+2 * Y(n—2)i+1
4: return (g, T1,. .., Tp-1)

Algorithm 2 Given (yo,y1,---,Yn_1), ind X5, ' (¥0,¥1,- - -, Yn_1) [Our interpretation]

1: ($0,£L'1, o ,.In_l) — (yo, Yiyenns yn—l)

2: for0§i<3("T_1)do

3: T(n-2)i < T(n-2)i + T(n—2)i+2  T(n—2)it1
4: return (g, T1,...,Tp-1)

We show that with Algorithm 2, the expression of x3 for xg L can be simply derived, as
shown below:

i=0: To = Yo + Y2U1,
1=1: 7 = Y7 + ZoYs,
i=2: 5 = Y5 + T7Ys,
1=3: T3 = Ys + T5Ys.

Hence, we have

z3 =ys+ (ys5 + (y7 + (Yo + Y2U1)¥8)¥6)Va-

As a result, we believe our interpretation is clearer and what the authors of [1] wanted to
express should be Algorithm 2.

Again, we take xg ! for example to see how the algorithm ends. Let us continue the
above procedure, as shown below:

1=4: x1 = yY1 + x3Yz,
1=5: Tg = Ys + T1Zo,
i=6: T = Yo + TsT7,
1=7: T4 = Y4 + T6Ts,
1 =28: To = Y2 + T4T3,
1=9: To = Yo + T21,

1The eprint version.



1=10: T7 = Y7 + ToTsg,
1=11: Ts = Y5 + T7T6.

In this way, it is possible to deduce the expressions of z; for all ¢ € [0,8] in terms of
(Y0, Y1, - - -,ys) and they are found in the order:

r3 —> 1 —>Ig —>Tg —> " —>T7 — Ts.

More generally, with Algorithm 2, the expressions of z; for ;! for all i € [0,n — 1] can be
found in the order:

Th—1 7 Tp—3 —> " > Th43 —> Thyl-

How to find Algorithm 2 and prove its correctness? In [1], only this algorithm and
the expression of z3 for xq 1 are given, while how this algorithm is obtained and how to
prove its correctness are missing. Different from Daemen’s seed-and-leap method whose
correctness can be easily verified, it is not intuitive to prove the correctness of Algorithm 2.

The following is our understanding. Specifically, let us slightly explain why the
expression of zz for xg 1is correct. Based on the definition of yg, there are

T3+ Y3 = Tavs = (Ya + T5T6)T5 = YaTs,
r5 +Ys = Tewr = (Yo + Tras)T7 = Yo7,
T7 +yr = Tgwo = (Ys + ToT1)To = YsTo,
To +yo = T1w2 = (Y1 + T2w3)T2 = Y122,
T2 + Y2 = T3wq = (Y3 + TaZ5)T4 = Y3Ta.

Therefore, we have

x3 =y3 + (ys + (y7 + (yo + (y2 + U324)71)Vs)¥6)Va-

Based on Algorithm 2, we indeed have

z3 =ys+ (y5 + (y7 + (Yo + v2U1)¥8)¥6)Va-

that the above procedure can also be generalized for x;, ! of any valid n. We leave this
observation here, and it can be found later that we will prove the same problem for our
formula of x;, 1.

1.3 Motivation to Study x*

For the stream cipher Rasta [5], the trivial algebraic attack is to solve a system of equations
of degree 2% where R denotes the number of rounds. However, it has been shown in [6]
that the last nonlinear layer can almost be peeled off by finding exploitable equations in
terms of (X,Y) of the following form:

n—1
PY)+ Y a;L;(Y)+c=0,
=0

where ¢ € Fy is a constant, P(Y) € Fa[yo, y1,- .., Yn—1] with Deg(P) < 2871 + 1, and
Li(Y) €Falyo,y1,--.,Yn—1] with Deg(L;) < 1. In this way, the algebraic attack is reduced
to solving a system of equations of degree 2%~! + 1 because the degree of the expressions
of X and Y in terms of the key bits is upper bounded by 2%~! and 1, respectively. The
data complexity of this algebraic attack is related to the number of exploitable equations,
the length of the key and the degree of the constructed equations. Increasing the number
of exploitable equations by a factor of ¢ can reduce the data complexity by a factor of q.



2 Main Results

It has been observed in [6] that the found exploitable equations belong to the ideal
F = <f07 f17 FE) fn71> where

fi=x; +yi + Yir1wiqo fori € [07?’L — 1].
In the following, we will study the affine variety defined by fo, f1,..., fn_1 denoted by
V(F).

2.1 The Formula of x*!
Lemma 1. V(G) and V(F) satisfy V(G) = V(F)\{(1™,0™)}.
Proof. First, we prove V(G) C V(F). For any (X,Y) € V(G), we have

Yi = T+ Tip1Tit2,
Yitl = Tipl + Tit2Ti43,
Hence,
fi=2i+¥i +Yit1Tive = Tix1Tiv2 + Tit1Tit2 = 0,
which implies V(G) C V(F). As the point (X,Y) = (1",0™) does not satisfy g; = 0 for
i€[0,n—1], V(G) € V(F)\{(1",0")}.
Next, we prove V(F)\{(1",0")} C V(G). For any (X,Y) € V(F)\{(1",0™)}, we have

Yi = Ti+tYitr1Tit2,

Yit1 = Tit1 T Yir2Tiy3,
Hence,
Gi = Yi + i + Titi®ip2 = Tig2(Tig1 + Yig1)-
As x; + y; = 242711, we have

9i = Ti42Ti43Yi42

Li4-2Ti4+3Li4+4Yi+3

= .. = Ti42Ti43 .- - TitkYitk—1

e = X542T543 - - TiYi—1

Ti42Ti43 - - TiTit1Yi
= Ti42Ti43 - - Li+1Ti+2Yi+1,

which implies g; = 0 always holds when Y # 0™. Thus, we are left to prove V(F)\{(1",0™)} C
V(G) for Y =0™.

When Y = 0", we immediately obtain a system of linear equations in terms of
(0,21, ...,Zn—1), as shown below:
0 = x;+migo forie[0,n—1].

There are only 2 solutions to this equation system, which are X = 0™ and X = 1". When
X =0" ¢, =0fori € [0,n—1]. When X = 1", we obtain the point (X,Y") = (1™, 0™), thus
proving V(F)\{(1",0™)} C V(G). In other words, V(G) = V(F)\{(1",0™)} is proved. O



Theorem 1. The expression of x,,*

h h
Ty = Y+ Zyi—2j+l H Yi—2k- (2)
i=1 k=j
Proof. Let
wg = Tityit+ Z Yi—2j+1 H Yi—2k-

Denote the affine variety defined by wyg, w1, ..., w,—1 by V(W). If we can prove V(W) =
V(G), Theorem 1 is proved.
First, we prove V(W) C V(G) = V(F) \ {(1",0™)}. For any (X,Y) € V(W), there are

h h
yi + Zyi72j+1 H Yi—2ks
Tiv2 = Ytz t Zyz 2(j—1)+1 Hyz 2(k—1) = Yit2 T Zyz 2j+1 H Yi—2k-

L4

Since
h—1 h—1
Tiv2¥it1 = Yi+2¥i+1 + Yir1 Z Yi—25+1 H Yi—2k
=0 k=j
h—1 h—1
= Yi—2n+1¥i—2h + Yi—2n 2h2yz 2j+1 Hyz 2k
J=0 k=j
h h
= Z Yi—2j+1 H Yi—2k
=0 k=j
h h h
= Y H Yi—2k t Z Yi—2j+1 H Yi—2k
k=0 j=1 k=j
h h
= Zyi72j+1 H Yi—2k <= (Yi—2n = Yi+1),
j=1 k=j
we have

Tit2l¥it1 = Ti+ Y-

Hence, V(W) C V(F). As the point (X,Y) = (1,0™) ¢ V(W), we have V(W) C

)-
V(F)\{(1",0m)} = V(G).
Next, we prove V(G) C V(W). For any (X,Y) € V(G), there is
Yi = Ti+ Tit1Tiy2.
To prove
T +yi + Z Yi-2j+1 H Yi2k = 0, (3)



we first study

h h
Vi1 (xi +yi + Zyi72j+1 H Vi—2k)
i=1 k=j
h h
= (Tim%ir2) (Tit1 + Tir2®ivs) + Vi Z Yi—2j+1 H Yi—2k
j=1 k=j

h h
= Yit1 g Yi—2j+1 Hyi—2k~
Jj=1 k=j

Since i — 2h =4+ 1 mod n, ;11 is a factor of HZ:j TUi—2k- In other words,

h h h h
Yir1(xi +yi + Z Yi—2j+1 H Vi—2k) = Yi+1 Z Yi—2j+1 H Yi—2k =0
=1 k=j =1 k=

holds for any (X,Y) € V(G). Therefore, for any 7 € [0,n — 1] and (X,Y) € V(G), when
yi+1 = 1, Equation 3 always holds. Thus, we are left to prove Equation 3 for y; 1 = 0.

We now prove by induction that if Equation 3 holds for any (X,Y) € V(G) with
(Yit1, Yit3s -« s Yiratr1) 7 (0,0,...,0) where t € [0, h — 1], Equation 3 also holds for any
(X,Y) € V(G) with (Yis1,Yi+3,- - s Yit2tt1, Yiror1)+1) 7 (0,0,...,0).

We have proved above that Equation 3 holds for y;11 # 0. Assuming Equation 3 holds
for the case t = b, we now prove that it also holds for t = b+ 1. In other words, we now
prove Equation 3 for y;1op41)41 = 1 and (Yiy1,Yits, - - -, Yir2v+1) = (0,0,...,0). In this
case, Equation 3 can be rewritten as

h h
i + Y + Z Yi—2j+1 H Yi—2k
=1 k=j

h h—(b+1) h—(b+1)
= Xty + Z Yi—2j+1 + Z Yi—2j+1 H Yi—2k
j=h—b j=1 k=j
h
= Tty + Z Yi—2j+1
j=h—b

due to (Yi—2n,Yi—2(h-1)s-- - Yi-2(h—b)) = (Yi+1,Yit3s--->Yir2o+1) = (0,0,...,0) and
Yi—2(h—(b+1)) = Yir2(b+1)+1 = 0.
For any (X,Y) € V(G) with (yi+1, Yit3, - -, Yir2nr1) = (0,0,...,0), we also have

Titod T Yit2d = Tit2d+2Yit2d+1 = Tit2d+2

for d € [0,b] due to V(G) C V(F).

Therefore,
h h h
T, + Y + Zyi—zj-i-l H Yi—2k = X+ Y+ Z Yi—2j+1
j=1 k=j Jj=h—b
h—1
= Zit2 t Yiro + Z Yi—2j+1
j=h—b

= = Ti2(h—b)+1 T Yi—2(h—b)+1 = Tit2(b+1) T Yit2(b+1)-



Yita(b+1)+1(Titab+1) T Yir2(b+1)) =0
holds for any (X,Y) € V(G),

h h

Yitab+1)+1(Ti T ¥i + Z Yi—2j+1 H Yi—2k) =0
i=1 k=3

holds for any (X,Y’) € V/(G) with (yit1, ¥it+3, - -+ Yitr2e+1, Yire+1)+1) = (0,0,...,0,1). In
other words, the case when t = b+ 1 is proved.

Based on the above proof, for any (X,Y) € V(G) with (Yi+1,Yi+3,-- - Yit2nt1) #
(0,0,...,0), Equation 3 always holds. Thus, we are only left with the case when
(Yit1:Yit3s -+ s Yir2nt1) = (Yit1,Yits, - - Yiran—1,¥i) = (0,0,...,0). In this case,

h h h
Ti+yi+ Z Yi-2j+1 H Yi2k = Tityit Z Yi2j41 = Tio1 + Yi-1 = TiTit1
=1 k=j =1
We prove by contradiction that when (y;+1, Yi+3, - - -, Yiront1) = (0,0,...,0), Tiziy1 =

0 holds for any (X,Y) € V(G).
If E'(X, Y) S V(g) with (yi+17yi+3, fea ,yz) = (0, O7 RPN ,0) such that TiTiy1 = 1, we
immediately obtain

Tr; = 0,$¢+1 =1. (4)

Since (Yit1, Yits,---»¥i) = (0,0,...,0), we have

0 = ¥it1 =Tip1 +TifaTiy3,
0 = ¥it+3 =Ti43 +TiraTiys,
0 = Yiton-1=mi_2+Ti17;,
0 = yi=x+T1Tiq2.

Taking Equation 4 into account, we immediately obtain

Tiyo = 0,mi43 =1,

Tiya = 0,245 =1,
.

Ti—1=0,z; =1,

Tiy1 = 0,40 = L.

Therefore, contradictions occur in (z;,x;11). Hence, Z;x;11 = 0 holds for any (X,Y) €
V(G) with (Yit1,Yit3,- -, Yit2nt1) = (0,0,...,0). In other words, Equation 3 holds for
any (X,Y) € V(G), thus implying V(G) C V(W) and completing the proof. O

Corollary 1. For any t € [0,h] and i € [0,n — 1], we have
Yit2e1yi if t =0,
TilYi+2t+1 =

h h
Yivorr1(Ui + Y Yimzjer | | Ticaw) if ¢ € [1,1].
j=h—t+1 k=j



Proof. Based on Theorem 1,

h h
Ti =Yi+ Zyi—Zj—i-l H Yi—2k-
j=1 k=j

Hence,
TilYit+2t+1 = TilYi—2(h—t)
h h
= YiYit2t+1 T Yi-2(h—t) Zyi72j+1 H Yi—2k-
j=1 k=j
When t = 0, we have
TilYit+2t+1 = TilYi—2h
h h
= YilYir2er1 T Yi-2n Z Yi-2j+1 H Yi—2k
Jj=1 k=j
= YilYi+2t+1-
When ¢t € [1, h], we have
TiYi+2t+1 = TilYi—2h
h h
= YiYit2t+1 T Yi-2(h—t) Z Yi—2j+1 H Yi—2k
Jj=1 k=j
h h
= YiVit+2u+1 T Yi—2(h—t) Z Yi—2j+1 H Yi—2k
j=h—t+1 k=j
h h
= Yiraer1(yi + Z Yi—25+1 H Yi—2k)-
j=h—t+1 k=3
O
Corollary 2. The degree of the equation
h h
Yivor+1(2i +yi + Z Yi—2j+1 H Vi—2r) = Oforte[l,h]
j=h—t+1 k=3

in terms of (X,Y) ist +2.

Proof. The monomial of the highest degree in this equation is y;yo;41Yi+2t+2 szh_ﬂ_l Yi_2k-
Moreover, neither y;4 ;41 nor y; 1242 is a factor of HZ:h_t 41 Yi—2k- Therefore, the degree
of this equation is 2 + ¢. O

Corollary 3. For R > 2 rounds of Rasta of block size n, there are at least n(2871 4+ 1)
exploitable equations, as specified below:
Ty +Yir1Tiv2 + i = 0,

Yir1(wi +yi) =0,
h h

Yirort1(Ti +yi + Z Yi—2j+1 H Ticor) = 0 for t € [1,2871 — 1],
j=h—t+1 k=3

where i € [0,n — 1J.
Proof. This is directly from V(G) C V(F) (Lemma 1), Corollary 1 and Corollary 2. O



Application to Rasta. Based on Corollary 3, for attacks on » > 3 rounds of Rasta of
2" 141
5

block size n, we can improve the data complexity by a factor of as we now can
construct n(2"~! + 1) rather than 5n equations in terms of the key bits to describe r
rounds of Rasta. These equations are obviously linear independent as there is at least one
monomial in each equation that does not appear in other equations. Moreover, it can be
found that all the 5n exploitable equations found in [6] correspond to the cases t € [1, 3],
as shown below:

0 = z+Viti%it2 + Vi,
0 = yirr(zi +ui),
0 = yits(Ti + i + Yir2lir1)s
0 = Yirs(®i + Tivo + ¥i + Yit1Yit2 + Yit1Yitali+a),
0 = Yirr(®i + Vi + Yir6Yits Yits Yir1 + Yi+a¥its Yit1 + YitoYit1)-
The only equation that does not seem to follow our formula is
0 = Yirs(wi + Tiva +Yi + Yir1Vite + Yir1Virsyiva)- (6)
Indeed, based on our formula, we have
0 = Yirs(@i + i + YitaTirs Vir1 + Yir2Tit1),
0 = Yits(Tit2 + Yiv2 + Yiralivs)-
Hence,
0 = Wirs(®i +¥i + Yiralits Viet T Yir2lirt + Titz + Yir + YiraVies)

= Yips(@i + Tigo + Yi + Vit 1Yit2 + Vir1Yir3Yita)-

In other words, Equation 6 is just a linear combination of the exploitable equations derived
based on our formula.
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