
Horst Meets Fluid-SPN: Griffin for
Zero-Knowledge Applications

Lorenzo Grassi1, Yonglin Hao2, Christian Rechberger3, Markus Schofnegger,
Roman Walch3,4, and Qingju Wang5

1 Radboud University, Nijmegen (The Netherlands)
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878 (China)

3 Graz University of Technology (Austria)
4 Know-Center GmbH (Austria)

5 SnT, University of Luxembourg, Esch-sur-Alzette (Luxembourg)
lgrassi@science.ru.nl

haoyonglin@yeah.net

firstname.lastname@iaik.tugraz.at

markus.schofnegger@gmail.com

qingju.wang@uni.lu

Abstract. Zero-knowledge (ZK) applications form a large group of use
cases in modern cryptography, and recently gained in popularity due to
novel proof systems. For many of these applications, cryptographic hash
functions are used as the main building blocks, and they often dominate
the overall performance and cost of these approaches. Therefore, in the
last years several new hash functions were built in order to reduce the
cost in these scenarios, including Poseidon and Rescue among others.

These hash functions often look very different from more classical designs
such as AES or SHA-2. For example, they work natively with integer ob-
jects rather than bits. At the same time, for example Poseidon and
Rescue share some common features, such as being SPN schemes and
instantiating the nonlinear layer with invertible power maps. While this
allows the designers to provide simple and strong arguments for estab-
lishing their security, it also introduces some crucial limitations in the
design, which affects the performance in the target applications.

To overcome these limitations, we propose the Horst mode of operation,
in which the addition in a Feistel scheme (x, y) 7→ (y+F (x), x) is replaced
by a multiplication, i.e., (x, y) 7→ (y ×G(x), x).

By carefully analyzing the relevant performance metrics in SNARK and
STARK protocols, we show how to combine an expanding Horst scheme
and the strong points of existing schemes in order to provide security
and better efficiency in the target applications. We provide an extensive
security analysis for our new design Griffin and a comparison with all
current competitors.

Keywords: Sponge – Griffin – Zero-Knowledge – Horst – Fluid-SPN

1 Introduction

Use cases such as multi-party computation (MPC), homomorphic encryption
(HE), signature schemes, and zero-knowledge (ZK) proof systems have recently
grown in popularity. All these applications favor cryptographic schemes with
specific algebraic properties, for example a small number of multiplications. Con-
sidering Ftp for a prime p ≥ 3 and t ≥ 1, existing hash functions include Feistel-
MiMC [3], GMiMC [2], Poseidon [34], Rescue [4, 64], Grendel [63], Reinforced
Concrete [33], Neptune [37], and Anemoi [17], among others.

The performance metrics vary between the different use cases. While the cost
in e.g. MPC is well-studied [39, 3, 36], ZK protocols often have more sophisti-
cated optimization targets. In such a protocol, one party (the prover) proves
to another party (the verifier) that they know a value x, without conveying
any information apart from the fact that they know x. The two major classes
of ZK proof systems are zero-knowledge succinct non-interactive arguments of
knowledge (zk-SNARKs) and zero-knowledge scalable transparent arguments of
knowledge (zk-STARKs), which are also the ones we focus on in this paper.

Recent hash functions proposed for these protocols differ substantially from
each other, however their internal permutations are usually SPN constructions.
While this approach may have advantages for arguing security, it can also have
various limitations affecting the performance in ZK protocols.

1.1 Sponge Hash Functions for zk-SNARKs and zk-STARKs

Cost Metrics in ZK Protocols. In order to design a hash function for ZK
settings, it is crucial to understand the cost metrics. In these applications, the
prover uses ZK proofs to convince a verifier that they know a preimage x of
a given hash y = H(x), without revealing anything about x. The efficiency of
these protocols depends on the details of the used hash function H. Indeed,

– in zk-SNARKs, the cost of the proof is proportional to the number of non-
linear operations one has to perform, and in some cases (e.g., Plonk [31]) the
number of linear operations must also be considered, while

– in zk-STARKs, the cost is related to the degree and the depth of the circuit
that must be verified.

In both cases, it is not required to re-evaluate H in order to determine if y =
H(x). Indeed, one can verify any equivalent cheaper representation F(x, y) = 0
which is satisfied if and only if y = H(x). As an example, consider the simple
function F (x) = x1/d for a certain d ≥ 3 such that F : Fp → Fp is invertible.
Instead of verifying y = x1/d, the equivalent representation yd = x is cheaper to
verify if d� 1/d. More details are given in Section 2 and App. B.1 and C.1.

Most designs in the past focused only on a subset of cost metrics. For ex-
ample, the idea of MiMC, HadesMiMC, and Poseidon was to minimize the
number of multiplications. As a result, they can be efficient in SNARKs, but
their low-degree functions lead to comparably large round numbers and hence

2

to disadvantages in STARKs and Plonk. In contrast, Rescue has an inner struc-
ture tailored for STARKs, which results in comparably low round numbers and
decent Plonk performance. However, the efficiency in other SNARKs and the
plain performance suffer from this structure.

Strong-Arranged SPN Schemes and Power Maps. Competitive hash func-
tions for ZK protocols include Rescue and Poseidon. Both schemes are instanti-
ated via a strong-arranged SPN permutation (based on [20, Definition 4]), whose
round function R : Ftp → Ftp is defined as

R(·) = c+M × S(·) , (1)

where c is a round constant, M ∈ Ft×tp is an MDS matrix, and S : Ftp → Ftp is
an S-box layer defined as

S(x0, x1, . . . , xt−1) = S0(x0) || S1(x1) || · · · || St−1(xt−1) (2)

for invertible maps Si : Fp → Fp (the symbol || denotes concatenation). In
more details, every round of Rescue consists of two subrounds, one in which
all Si correspond to x 7→ x1/d and one in which all Si correspond to x 7→ xd.
Poseidon uses two different rounds, a full one in which Si(x) = xd and a partial
one in which S0(x) = xd and Si 6=0(x) = x (identity).

1.2 Our Contribution

Weaknesses of Strong-Arranged SPN Schemes. A strong-arranged SPN
scheme allows for simple and strong security arguments regarding statistical
attacks, including the (classical) differential [13] and linear [50] attacks. For
example, the combination of a linear layer with a high branch number (e.g., an
MDS matrix) and an S-box layer with a good maximum differential probability
(e.g., certain classes of low-degree S-boxes) allows the designer to efficiently use
the wide-trail design strategy [24].

However, strong-arranged SPN schemes over Ftp have some limitations. First,
for a permutation each Si in Eq. (2) must be invertible. Since no quadratic map
is invertible over Fp, one is forced to consider functions of degree at least 3. Sec-
ondly, no diffusion takes place among the several elements in the nonlinear layer,
and achieving diffusion in both the linear and nonlinear layer can help against
various attacks. Based on this, in Section 3.2 we conclude that a non-strong-
arranged SPN scheme is a more efficient solution in our target applications.

Horst Schemes. One way of designing a non-strong-arranged SPN scheme is
by considering a weak-arranged SPN scheme, as in the case of Neptune and
Anemoi. The hash function Neptune is inspired by Poseidon, but the power
maps in the external rounds are replaced by the concatenation of independent
S-boxes over Fp2 ≡ F2

p based on quadratic Lai–Massey functions. As shown in
[37, Section 7], such a scheme classifies as a weak-arranged SPN since the linear

layer in the external rounds does not admit an equivalent representation in Ft
′×t′
p2 ,

3

where t = t′ · 2. Similar conclusion holds for the Anemoi scheme, whose S-boxes
over Fp2 ≡ F2

p are based on a variant of the Feistel scheme called Flystel. Other
examples include Phoenix, Hermit, and Sneaky from the Marvellous family
[6], whose nonlinear layers are defined as the concatenation of S-boxes over Fp2
constructed via Feistel functions.

Another approach is to consider Feistel schemes, for example GMiMC. Given
a function F over a generic field F, a Feistel scheme is defined as the map
(x, y) 7→ (y + F (x), x) over F2

p. Several generalizations over Ftp are proposed
in the literature [68, 56, 41]. No condition is imposed on F , thus it may be
instantiated via the non-invertible quadratic power map x 7→ x2. The relation
between F (x) and y is linear, exactly as in the case of an aligned SPN scheme.

In Section 3.2 we propose a modified Feistel scheme in which the linear rela-
tion between y and F (x) is replaced by their product. To guarantee invertibility,
we require that F (x) 6= 0 for each input x. We show how to construct such a
low-degree (non-trivial) function and call this variant of the Feistel scheme the
Horst approach.6

Griffin. In Section 4 we specify a new family of sponge hash functions called
Griffin, instantiated with the internal permutation Griffin-π. It differs from
previous designs in both its nonlinear and linear layer. In particular, Griffin-
π cannot be rewritten as in Eqs. (1) and (2) since its nonlinear layer is not
defined as the concatenation of independent nonlinear S-boxes. Instead, it is
the composition of two nonlinear sublayers defined via three different nonlinear
functions. One is defined via the invertible power maps x 7→ xd and x 7→ x1/d,
which is inspired by Rescue and allows us to reach the maximum degree quickly
while still being efficient in ZK applications. The other one is defined by our
proposed Horst strategy, i.e., it uses the map (x, y) 7→ (x, y · G(x)), where G
is a quadratic function so that G(z) 6= 0 for each input z.7 To understand the
relation between Horst and the classical Feistel scheme, in Sections 3.5 and 5 we
show that Griffin instantiated with Horst requires fewer rounds for security
than Griffin instantiated with the classical Feistel scheme, achieving better
performance in terms of diffusion and multiplicative complexity.

Since the cost metrics in zk-SNARKs and zk-STARKs are mainly related to
the number of nonlinear operations, instantiating the linear layer with an MDS
matrix may be the simplest choice. However, the multiplication with such a ma-
trix over Ftp requires O(t2) multiplications with constants, which could heavily
affect the plain efficiency for large t. Hence, we propose a matrix that can be im-
plemented with a small number of additions. It is inspired by the linear layer of
AES, i.e., it can be decomposed as the multiplication of two matrices. However,

6 The name Horst (due to the cryptographer Horst Feistel) has been chosen in order to
emphasize the link between (x, y) 7→ (y+F (x), x) and (y, x) 7→ (x, y×G(x)+F (x)).

7 The griffin is a legendary creature with the body, tail, and back legs of a lion, and
the head and wings of an eagle. For this reason, the name Griffin has been chosen
since our design merges ideas of a Fluid-SPN and an unaligned construction as the
Horst one into a single round function.

4

while in AES one of these two matrices (the one corresponding to the ShiftRows
operation) only changes the position of the elements, both the matrices in the
linear layer of Griffin-π provide full diffusion. This allows to achieve this prop-
erty in each state word after a single round.

Security Analysis. A detailed security analysis of the proposed hash func-
tion is given in Section 5. From the algebraic perspective, Gröbner basis [18,
22] attacks at the round level are the most efficient attacks. We present several
strategies that take into account the details of the proposed design. From the
statistical perspective, well-known techniques like the wide-trail design strategy
do not apply since our design is unaligned. For this reason, we propose an anal-
ysis which makes use of dedicated tools that help us to provide upper bounds
for the success probability of statistical attacks.

Efficiency in Plain, zk-SNARKs, and zk-STARKs. Following the brief
introduction to the cost metrics in Section 1.1, with Griffin we aim to find
a beneficial tradeoff between all of them with a single design. We evaluate the
performance of Griffin in SNARKs using the R1CS arithmetization and com-
pare it to various other constructions in Section 6. Our evaluation shows that
Griffin is significantly better suited for these zk-SNARKs than any previously
proposed design. In the case of zk-STARKs and Plonk (a SNARK with different
arithmetization), Griffin provides similar performance as the currently best
hash functions for STARKs, the best performance for large state sizes in Plonk
and is only outclassed for smaller state sizes in Plonk by the recent followup
design Anemoi proposed in [17]. Due to the page limit, we show the compari-
son between Griffin and its competitors in zk-STARKs and Plonk in App. B
and App. C, respectively. As a result, and as was our goal, the unaligned round
functions of Griffin provide an efficient tradeoff between the plain performance
and the performance across different ZK proof systems.

2 Cost Metrics for Zero-Knowledge Proof Systems

In this section, we analyze the cost metrics for R1CS-based SNARKs. For a
similar analysis for AIR-based STARKs we refer to App. B.1 and for an analysis
in the Plonk [31] proof system we refer to App. C. We also discuss the relations
between these three cost metrics in App. B.2. We start by providing a brief
introduction to arithmetization techniques used in various ZK proof systems.
We directly focus on iterative functions to give the reader an intuition on how
to describe a hash function in this context.

2.1 Zero-Knowledge Proofs

A ZK proof system is a two-player protocol between a prover and a verifier,
allowing the prover to convince the verifier that they know a witness w to a
statement x without revealing anything about the witness beyond what can be
implied by x. For example, the prover can use ZK proofs to convince a verifier

5

that they know a preimage w of a given hash y = H(w) without revealing
anything about w. The proof system needs to be complete and sound with a
negligible soundness error ε, and must fulfill the zero-knowledge property, which
informally states that the proof is independent of the witness w.

The two major classes of ZK proof systems are zk-SNARKs and zk-STARKs,
with the main difference being that zk-SNARKs require a trusted setup and are
not post-quantum secure. In the recent years, many use cases involving ZK proofs
have emerged, with two of them mainly relying on hash functions: set membership
proofs based on Merkle tree accumulators and verifiable computation based on
recursive proofs. In both use cases one has to prove the knowledge of preimages
of (chains of) hash functions, and thus the overall performance mainly depends
on the efficiency of the hash function used in the protocol.

2.2 Arithmetization

To prove a solution of a computational problem in zero knowledge, one has to
translate the problem into an algebraic representation. This step is known as
arithmetization and it differs between the various proof systems. Many such sys-
tems and algebraic representations have been proposed in the literature, with
rank-1 constraint satisfaction systems (R1CS) and Plonk gates being the most
widely used representations in zk-SNARKs, and the algebraic intermediate rep-
resentation (AIR) being used in zk-STARKs [8].

Concretely, in applications involving preimage proofs of hash functions, the
algebraic representation describes the connection between the preimage and the
final hash. The witness of the ZK proof then captures all intermediate values (in-
cluding the preimage) required to satisfy this representation for a given instance
of the problem (i.e., a specific hash value). For this purpose, let H : Ft → Ft,
where F is a field and t ≥ 1. We focus on an iterative function H, i.e.,

H(a) = Fr−1 ◦ Fr−2 ◦ · · · ◦ F1 ◦ F0(a),

where F0,F1, . . . ,Fr−1 : Ft → Ft are functions. Given a, b ∈ Ft, the goal of a
zero-knowledge application is to prove that H(a) = b without revealing a. To ef-
ficiently determine whether H(a) = b, the prover can use the intermediate values
x0 ≡ a, x1, x2, . . . , xr−1 ≡ b such that Fi(xi)− xi+1 = 0 for i ∈ {0, 1, . . . , r− 1}.
The crucial point is that they can prove any equivalent system of equations, that
is, they can introduce functions G0,G1, . . . ,Gs−1 : (Ft)r → Ft such that the pre-
vious system of equations is satisfied if and only if Gj(x0, x1, . . . , xr−1) = 0 for
j ∈ {0, 1, . . . , s− 1}. Note that s does not need to be equal to r. This strategy is
based on the notion of non-procedural computation introduced in [4], which de-
scribes the idea of not only evaluating schemes in the plain direction, but using
intermediate relations instead.

The choice of the equivalent functions G0,G1, . . . ,Gs−1 depends on the cost
metric of the given proof system. For the following, we say that a scheme is
a Fluid-Scheme if it admits an equivalent representation which can be more

6

efficiently proven and/or verified.8 For example, the invertible function F(x) =
x1/d over Fq – where q = ps for a prime p ≥ 2 and s ≥ 1 – can be proven via the
function G : F2

q → Fq defined as G(x, y) = x−yd by imposing G(x, y) = x−yd = 0.
Similarly, given the invertible function F(x) = 1/x over Fq \{0}, one can choose
G : (Fq \ {0})2 → Fq as G(x, y) = x · y − 1.

Consider now two functions F0,F1 : Fq → Fq defined as y = F0(x) = γ + xd

and z = F1(y) = y1/d, where γ 6= 0 and where the function x 7→ xd is assumed
to be invertible. The function H = F1 ◦ F0 can be efficiently proven via two
functions G0,G1 : F2

q → Fq defined as G0(x, y) = y− γ− xd and G(y, z) = zd− y.
At the same time, it can also be proven via a single function G : F3

q → Fq defined

as G(x, y, z) = zd − (γ + xd), which is independent of the intermediate value
y. This corresponds to e.g. the arithmetization of Rescue in zk-STARKs. Both
representations are valid and require the same number of multiplications, but
they have different degrees when chained together. In this sense, Rescue is an
example of a Fluid -SPN.

A similar conclusion holds for the open Flystel construction used in Anemoi,
where e.g. (u, v) = F(x, y) :=

(
x− 2 · y · z1/d + z2/d, y − z1/d

)
over F2

p for a
prime p ≥ 3 and for z := x−y2 and gcd(d, p−1) = 1. It can be efficiently verified
by exploiting its CCZ equivalent closed Flystel defined as G(x, y, u, v) = (y2 +
(y − v)d − x, v2 + (y − v)d − u) = (0, 0) for G : (F2

p)
2 → F2

p.

Remark 1. In [17, Sect. 4.1], the authors point out that a function is arithmetization-
oriented if it is CCZ-equivalent to a function that can be verified efficiently.9

Obviously, a scheme that satisfies the condition just given is a fluid scheme.
However, we emphasize that there exist fluid schemes that do not satisfy the
previous CCZ equivalence condition. For example, consider y = F(x) = xe/d

over Fq such that d, e ≥ 3 and gcd(q−1, e) = gcd(q−1, d) = gcd(e, d) = 1. Even
though this permutation can be easily verified via G(x, y) = yd − xe = 0, we are
not aware of any CCZ-equivalent one that can be efficiently verified.

2.3 Rank-1 Constraint Satisfaction Systems (R1CS)

Many proof systems (e.g., Groth16 [40], Ligero [5], Aurora [9], Bulletproofs [19])
require to translate the computation into an R1CS first, with Groth16 being the
fastest proof system with the smallest proofs to date. A R1CS system is a set of
q equations (i.e., q constraints) on the variables a0, . . . , am ∈ F (with a0 = 1) of
the form (∑

i

ui,q · ai

)
·

(∑
i

vi,q · ai

)
=

(∑
i

wi,q · ai

)
,

where ui,q, vi,q, wi,q ∈ F are constants describing the q-th constraint. These con-
stants are derived from the hash functions when proving the knowledge of preim-
ages of hashes and are independent of the given hash value. An assignment to

8 A fluid material continuously deforms (flows) under an applied external force. In our
case, the scheme adapts its algebraic representation to the target ZK protocol.

9 Two functions F ,G : Ft → Ft are CCZ-equivalent if there exists an affine permuta-
tion A over (Ft)2 such that {(x,F(x)) | ∀x ∈ Ft} = {A ◦ (x,G(x)) | ∀x ∈ Ft}.

7

the variables a0, . . . , am is then the witness of the ZK proof and captures all in-
termediate values (including the preimage) when computing a given hash value.
The role of the zk-SNARK is to prove that the witness satisfies the R1CS system
without revealing the witness itself. The efficiency then depends on the number
of constraints q in the constraint systems, i.e., the prover complexity is in O(q).

In R1CS constraints, every statement needs to be translated into multiplica-
tions of linear combinations of the witness variables. Consequently, linear opera-
tions can be embedded into subsequent constraints and do not require additional
constraints. For nonlinear operations, the designer has to find a representation
which fully captures the relation between the input and the output of the oper-
ation, while minimizing the number of degree-2 equations.

Cost Metric. We measure the number of R1CS constraints, i.e., the minimum
number of multiplications of linear combinations of witness variables required to
fully represent any (equivalent) relation between the preimage and the hash.

3 The Birth of Griffin

3.1 SPN Schemes

Let q = ps for a prime p ≥ 2 and s ≥ 1. Let t = n · t′, where 1 < n < t and
1 < t′ < t. Many of the ZK-friendly schemes are SPN schemes, and hence their
nonlinear layer is defined as

S(x0, . . . , xt−1) = S0(x0, . . . , xn−1) || S1(xn, . . . , x2n−1) || · · · || St′−1(xt−n, . . . , xt−1) ,

where S0, . . . , St′−1 over Fqn ≡ Fnq are invertible functions. Following [20, 15],
SPNs can be divided into two non-equivalent sub-categories:

(1) strong-arranged SPNs if the linear layer defined via M ∈ Ft×tq has degree

one over Ft′qn , and weak-arranged SPNs otherwise,10 and
(2) aligned SPNs if two (or more) consecutive rounds admit a Super-Sbox struc-

ture [26] and unaligned SPNs otherwise.11

Since many designs such as SHARK [62], AES [25], and more generally AES-
like schemes are aligned and/or strong-arranged SPN schemes, several techniques
such as the wide-trail design strategy [24] have been developed in order to study
their security. For example, using the branch number of the linear layer and
the maximum differential probability of the S-boxes, we can provide a simple
and strong security argument against classical differential (and linear) attacks,
whereas in the case of unaligned schemes dedicated tools are required.

10 Every matrix in Ft
′×t′
qn admits an equivalent representation over Ft×tq , while the

reverse is not true.
11 We point out that a scheme must be an SPN in order to be aligned. See [15, Section 3]:

“The nonlinear layer N consists of the parallel application of n S-boxes of size m to
disjoint parts of the state, indexed by Bi”.

8

However, since both the nonlinear and the linear layer are defined over the
same field Ft′qn , statistical attacks that exploit this “arrangement” may be pow-
erful. For example, a truncated differential [45] can be set up by exploiting the
fact that every element of Fqn is either active or passive. The same property is
crucial for attacks and distinguishers like the multiple-of-m [38] and the mix-
ture differential one [32]. In contrast, these strategies do not work in the case
of an unarranged scheme over Fqn , as also pointed out recently in e.g. [15].
Similar advantages also hold when considering algebraic attacks. E.g., since in
an unarranged scheme the diffusion takes place both in the linear and the non-
linear layer, the algebraic equations that describe the scheme can be more dense.

Limits of SPN: Choice of the Nonlinear Layer. Let us focus on the case
q = p ≥ 3. The invertibility of an SPN scheme follows from the invertibility
of both the linear layer M and of the nonlinear S-boxes Si : Fpn → Fpn . For
n = 1, a common way to instantiate them is to use invertible power maps x 7→ xd

(hence, gcd(d, p−1) = 1). Since the square function is not a permutation over Fp,
one has to use a function of degree d ≥ 3 to ensure invertibility. These functions
can also be used for n ≥ 2. Unfortunately, the algebraic representation over Fnp
becomes more complicated, and the number of multiplications in Fp increases
exponentially. Other invertible degree-2 functions over Fnp constructed via a local
map have recently been presented in [37], and they include e.g. the Lai–Massey
one [46] as a special case. However, many of these functions either are invertible
only for some particular values of p or they admit invariant subspaces [65, 48],
i.e., a subspace X that is invariant through the function. This may restrict the
values of p or affect the performance due to an increased number of rounds.

3.2 Non-SPN Schemes: From Feistel to Horst

To overcome these limitations, we consider non-SPN schemes. Well-known ex-
amples are the Feistel ones such as GMiMC (which was broken in [12]). Given a
function F : Fq → Fq, the nonlinear layer of a Feistel scheme over F2

q is defined
as (x, y) 7→ (x, y+F (x)), which is invertible independently of F . Instead of con-
sidering a linear relation between y and F (x), here we propose to combine y and
F (x) in a nonlinear way without losing the advantageous properties of Feistel
schemes. The simplest way is to replace the sum with a multiplication, but then
the invertibility cannot be guaranteed anymore. We solve this with a stronger
assumption on the function.

Definition 1 (Horst Scheme). Let G : Fq → Fq \ {0}, and let F : Fq → Fq.
We define the Horst scheme over F2

q as in Fig. 1a, that is, as

(y, x) 7→ (x, y ·G(x) + F (x)) .

Since Fq is a field and G(x) 6= 0 for each x ∈ F, it follows that Horst is
invertible. We point out that if G(x) = 1 for each x ∈ Fq, then Horst reduces
to a (classical) Feistel scheme. Moreover, we may use the notation Horst× to
denote a Horst scheme in which either F = 0, i.e., (y, x) 7→ (x, y ×G(x)), or F

9

and G are related by an affine equivalence, that is, there exist α, β ∈ Fq such
that F (x) = α · G(x) + β for each x ∈ Fp. Similarly, Horst+ corresponds to a
Feistel scheme, i.e., a Horst scheme with G = 1.

S-Box in Streebog and Kuznyechik. In the case F (x) = 0 for each x ∈ Fq, we
note that a Feistel scheme based on a nonlinear relation between the branches
was allegedly also used in order to set up the 8-bit S-boxes of Streebog [29] and
Kuznyechik [30], two Russian standards of a hash function and a block cipher,
respectively. This was discovered in [14], where the authors reconstructed the
design of the S-box from its lookup table definition. The nonlinear diffusion in
this case consists of multiplications in F24 between the two branches.

However, to the best of our knowledge, no generalization from F24 to larger
binary extension fields or larger prime fields is publicly available. Indeed, given
(x, y) 7→ x · G(y), while a brute-force approach may be sufficient to achieve in-
vertibility (i.e., G(y) 6= 0 for each y) and efficiency in terms of linear or nonlinear
operations for small fields, this does not seem feasible when considering larger
fields. We solve this problem in the following, by showing how to construct G in
an efficient way for the Horst approach given above.

Generalized Feistel Constructions over Groups. Various independent works dis-
cuss generalized Feistel contructions over groups [66, 61, 43]. We emphasize that
these are not compatible with our results presented here. In particular, let (G,#)
be a group with respect to an operation #. The generalized Feistel schemes stud-
ied in [66, 61, 43] are of the form (x, y) 7→ (y#F (x), x) for a function F : G→ G.
By the definition of a group: (1st) there exists an identity element ι ∈ G such
that z#ι = ι#z = z for each z ∈ G, and (2nd) for each z ∈ G, there exists
w, y ∈ G such that w#z = z#y = ι (where y = w if G is abelian). However,
(Fq,×), where q = ps and × is the multiplication, is not a group. Indeed, 0 does
not satisfy the previous condition (e.g., it does not admit any inverse). Hence,
the results proposed in [66, 61, 43] do not apply to Horst.

Initial Security Considerations. The security of Feistel schemes [49] has been
heavily analyzed both from the indistinguishable point of view [57, 58, 52, 59, 60]
and from the indifferentiable one [21, 42, 23, 27].12 We leave the problem of find-
ing the minimum number of rounds for which the Horst construction is indistin-
guishable and/or indifferentiable from a pseudo-random permutation/function
(PRP/PRF) open for future work.

Here we limit ourselves to make some initial considerations about the security
of r rounds of Horst based on the attacks on Feistel schemes presented in e.g.
[58]. In the following, F (i) : Fq → Fq and G(i) : Fq → Fq denote functions in the
i-th round for i ∈ {0, . . . , r − 1}. In App. A we show that

– if r ∈ {1, 2}, there exists a distinguisher for Feistel and for Horst, and

12 Roughly speaking, in the first case, the attacker does not have any information about
the functions Fi that define the round. In the second case, they can e.g. query such
functions, which are public available.

10

xy

G

F

(a) Horst over F2
q.

x0x1x2x3

G1

F1

G2

F2

G3

F3

(b) Generalized Horst over F4
q.

Fig. 1: The generalized Horst scheme over Ftq.

– if r ∈ {3, 4, 5}, there exists a distinguisher for Feistel and for Horst× (under
the condition that F (i) is equal to zero).

We prove the second result by working over the commutative group (G, ∗) and
by considering a generic scheme of the form (y, x) 7→ (x, y ∗H(x)), where H(i) :
G → G denotes the i-th round function for i ∈ {0, . . . , r − 1}. We also define
ζ ∈ G such that ζ ∗ x = x ∗ ζ = x for x ∈ G. The corresponding result on the
Feistel scheme is obtained by replacing ∗ with the addition operation, ζ with 0,
and H with F . The corresponding result on Horst× is obtained by replacing ∗
with the multiplication operation, ζ with 1, and H with G.

The problems of setting up distinguishers for more than 2 rounds of Horst

and for more than 6 rounds of Feistel or Horst× are open for future research.

Generalized Horst. Next, we generalize the Horst scheme over Ftq for t ≥ 2.

Definition 2 (Generalized Horst). Let t ≥ 2. For each i ∈ {0, 1, . . . , t − 2},
let Gi : Fi+1

q → Fq \ {0}, and let Fi : Fi+1
q → Fq. We define the Generalized

Horst scheme over Ftq as

(x0, x1, . . . , xt−1) 7→ (x1 ·G0(x0) + F0(x0), x2 ·G1(x0, x1) + F1(x0, x1),

. . . , xt−1 ·Gt−2(x0, x1, . . . , xt−2) + Ft−2(x0, x1, . . . , xt−2), x0) .
(3)

We refer to Fig. 1b for t = 4. Based on [68, 56, 41], we see the following.

– If Gi = 1 for i ∈ {0, . . . , t− 2}, Fj = 0 for j ∈ {1, . . . , t− 2}, and without a
condition on F0, we have Type-I Feistel. If Gi = 1, Fi = 0 for i ∈ {1, . . . , t−
2}, and without a condition on G0 and F0, we have Type-I Horst.

– If Gi = 1 for i ∈ {0, . . . , t − 2} and Fj(x0, . . . , xj−1) = F ′j(xj−1) for j ∈
{0, . . . , t − 2}, we have Type-III Feistel. If Gj(x0, . . . , xj−1) = G′j(xj) and
Fj(x0, . . . , xj−1) = F ′j(xj−1) for j ∈ {0, . . . , t− 2}, we have Type-III Horst.

The results are similar for Type-II, expanding, and contracting constructions.

11

3.3 Constructing Nonzero Functions G

One way of instantiating G is to exploit the following result.

Lemma 1. Let G : Fq → Fq such that G′(x) := G(x) · x is a permutation over
Fq and G(0) 6= 0. Then, G(x) 6= 0 for each x ∈ Fq.

Proof. By definition, G′(0) = 0 ·G(0) = 0. Since G′ is a permutation by assump-
tion, it follows that G′(x) 6= 0 for each x 6= 0. Hence, G(x) = G′(x)/x 6= 0 for
each x ∈ Fq \ {0}. Since G(0) 6= 0 by assumption, it follows that G(x) 6= 0 for
each x ∈ Fq.

Let d ≥ 3 be the smallest integer such that x 7→ xd is invertible over Fq,
hence gcd(d, q − 1) = 1. Let α ∈ Fq \ {0}. A concrete example of a function G
over Fq is

G(z) =
(z ± α)d ∓ αd

z
=

d∑
i=1

(
d

i

)
zi−1 · (±α)d−i ,

which satisfies the requirements of Lemma 1, that is, (i) G(0) = d · (±α)d−1 6= 0
by assumption on α, and (ii) z 7→ G(z) · z = (z ± α)d ∓ αd is invertible by
assumption on d.

Result for Binary Fields Only. In the case of binary fields F2n , Lemma 1 can
be exploited by noting that x 7→ x2

i

are linear operations over Fn2 . Indeed, by

defining G(x) =
∑d
i=0 αi · x2

i−1 for α0 ∈ F2n \ {0} and α1, α2, . . . , αd ∈ F2n ,
due to Lemma 1, G satisfies the required property if and only if the matrix
corresponding to G′(x) = x ·G(x) =

∑d
i=0 αi ·x2

i

rewritten over Fn2 is invertible.

Result for Prime Fields Only. In the case of a prime field Fp for p ≥ 3, we can
also exploit the fact that the quadratic map x 7→ x2 is not invertible over Fp in
order to construct G. Let α, β ∈ Fp such that α2 − 4β is a quadratic nonresidue
modulo p, that is, α2 − 4β 6= w2 for each w ∈ Fp. In this case,

G(x) = x2 + αx+ β

satisfies the required property. Indeed, the solutions of x2 + αx + β = 0 are
given by x± = −(α±

√
α2 − 4β)/2. Since α2− 4β is a quadratic nonresidue, no

solution x± exists. Note that the function G just given does in general not satisfy
the requirement of Lemma 1. Indeed, a function H(x) = ηx3 +ψx2 +ϕx over Fp
is invertible if and only if p = 2 mod 3 and ψ2 = 3ηϕ mod p (we refer to [54,
Corollary 2.9] for the proof). As a result, G′(x) = G(x) · x = x3 + αx2 + βx is
not a permutation either if (i) p = 1 mod 3 or if (ii) p = 2 mod 3 and α2 = 3β
does not satisfy the condition that α2 − 4β is a quadratic nonresidue modulo p.

3.4 Comparing SPN, P-SPN, Feistel, and Horst

Here we compare SPN, partial SPN (P-SPN), Feistel, and Horst schemes in our
target applications. For simplicity, here we assume n = 1 and t = t′.

12

P-SPN and Type-I Feistel/Horst. P-SPN schemes and Type-I Feistel designs
share many properties. 13 Comparing one round of a P-SPN scheme (with one
nonlinear function S0) and one round of a Type-I Feistel scheme [68], we get

M × (S0(x0) || x1 || · · · || xt−1) and M ′ × (x0 || x1 || · · · || xt−1 + F (x0)),

where M,M ′ ∈ Ft×tq are invertible matrices. In more detail, the j-th components
of the two schemes are respectively

Mj,0 · S0(x0) +

t−1∑
l=1

Mj,l · xl and M ′j,t−1 · F (x0) +

t−1∑
l=0

M ′j,l · xl.

The sum in the Feistel case contains x0 and F does not have to be invertible, but
in both schemes the nonlinear part depends only on x0. Hence, they have similar
advantages and disadvantages. For example, they only need a small number of
nonlinear operations per round, but at least t− 1 rounds can be skipped via e.g.
an invariant subspace trail for which the nonlinear function is not active. Since
the (nonlinear) diffusion is slow, more rounds than in an SPN or a Horst scheme
are in general needed for security. This can be a disadvantage for e.g. STARK
protocols in which one aims to minimize the depth.

For a Type-I Horst, we get

M
′′
× (x0 || x1 || · · · || G(x0) · xt−1 + F (x0)),

where M
′′ ∈ Ft×tq is an invertible matrix and F,G : Fq → Fq. Compared to

P-SPN and Type-I Feistel designs, x0 and xt−1 are mixed in a nonlinear way.
However, this round function is linear if x0 is fixed, and hence Type-I Horst

suffers from subspace problems, similar to P-SPN and Type-I Feistel schemes.

SPN and Type-III Feistel/Horst. For an SPN and a Type-III Feistel [68], we get

M × (S0(x0) || · · · || St−1(xt−1)) and

M ′ × (x0 || x1 + F1(x0) || · · · || xt−1 + Ft−1(xt−2)) ,

where M,M ′ ∈ Ft×tp are again invertible matrices and where Fi : Fp → Fp are
nonlinear functions. As before, the function describing a Feistel scheme is linear
in xt−1 and Fi does not need to be invertible. Moreover, there is no nonlinear
mixing between different xl. This is partially solved in Type-III Horst with

M
′′
× (x0 || G1(x0) · x1 + F1(x0) || · · · || Gt−1(xt−2) · xt−1 + Ft−1(xt−2)) ,

where a nonlinear mixing between xi and xi+1 takes place.

13 The results discussed in this paragraph holds also in the case in which the Type-I
Feistel scheme is replaced by an expanding or a contracting Feistel scheme.

13

Generalized Feistel and Generalized Horst. A generalized Feistel scheme uses

M × (x0 || x1 + F1(x0) || x2 + F2(x0, x1) || · · · || xt−1 + Ft−1(x0, x1, . . . , xt−2))

in its round, where M ∈ Ft×tp is again an invertible matrix and where Fi :

Fip → Fp are nonlinear functions. Compared to the previous cases, nonlinear
diffusion can take place among x0, x1, . . . , xi−1 via the function Fi. However, the
combination between xi and Fi(x0, x1, . . . , xi−1) is again linear. This problem
does not arise in a generalized Horst scheme as defined in Eq. (3), since nonlinear
diffusion takes place between xi and Gi(x0, x1, . . . , xi−1).

3.5 The Road to Griffin

A Fluid -SPN scheme whose nonlinear layer uses both x 7→ xd and x 7→ x1/d

(where d ≥ 3 is the smallest integer ensuring invertibility) can be efficiently
proven/verified in ZK protocols. Further, the overall degree of the function in-
creases quickly due to the degree-(1/d) S-boxes, while the round-level constraints
remain of degree d. This prevents attacks exploiting the degree of the entire func-
tion. However, while this representation is efficient in STARKs, such a nonlinear
layer may be too expensive for SNARKs and for the plain performance.

An unarranged scheme based on generalized Horst seems beneficial since it
provides diffusion in the nonlinear layer. To minimize the multiplicative com-
plexity, we work with quadratic functions Gj in Eq. (3), while we fix all Fi func-
tions to zero for efficiency reasons. Further, we work with Gj(x0, x1, . . . , xj−1) =

G′j(
∑j−1
l=0 λl · xl), where G′j : Fp → Fp for each j ∈ {2, . . . , t− 1}.

Nonlinear Layer. By combining a Fluid -SPN scheme and Horst in a single
nonlinear layer, we get S : Ftp → Ftp defined as S(·) = S′′ ◦ S′(·), where

(S′(x0, . . . , xt−1))i =

x0

1/d if i = 0,

x1
d if i = 1,

xi otherwise,

(S′′(x0, . . . , xt−1))i =

{
xi if i ∈ {0, 1},
xi ·

(
z2i−1 + αizi−1 + βi

)
otherwise,

where α2
i − 4βi is a quadratic nonresidue for each i and zi = λ′ · y0 + λ

′′ · y1 +∑i−1
l=0 λl ·xl is a linear combination of the inputs {x0, . . . , xi−1} and the outputs

{y0, y1}. Clearly, S′ is inspired by the nonlinear layer of Rescue, while S′′ is
based on the Horst function previously defined.

Note that this nonlinear layer is invertible. Indeed, the power maps x 7→ xd

and x 7→ x1/d are invertible if gcd(d, p − 1) = 1 due to Hermite’s criterion.
Moreover, xi = yi/(z

2
i−1 +αi · zi−1 +βi) for i ≥ 3, where w2 +αi ·w+βi 6= 0 for

each w ∈ Fp by choosing (αi, βi) such that α2
i − 4βi is a quadratic nonresidue.

14

Number of Multiplications. The number of multiplications per round for the
verification process is 2 · (hw(d) + blog2(d)c − 1) for S′ and 2 · (t− 2) for S′′, for
a total of 14

2 · t+ 2 · (hw(d) + blog2(d)c − 3),

i.e., 2t (plus a constant) multiplications per round.15 Hence, for large t, the
cost of our design is almost independent of the value of d. This advantage,
however, comes at the price that e.g. the wide-trail design strategy is not ap-
plicable anymore. For comparison, each external round of Poseidon and each
step of Rescue (remember that each Rescue round is composed of two steps)
costs t · (hw(d)+blog2(d)c−1) multiplications, while each round of Anemoi costs
t
2 · (hw(d) + blog2(d)c − 1 + 2) multiplications (where t is even). As a result, our
design requires 2 · t + 2 multiplications per round for d = 5, compared to 3 · t
multiplications for Poseidon (besides the cost of internal rounds), 6 · t for Res-
cue, and 2.5 · t for Anemoi. Finally, in Neptune (a recent variant of Poseidon),
each external full round needs only t multiplications in Fp, but the high number
of internal partial rounds instantiated with x 7→ xd makes it less competitive
with respect to Griffin, as we show in the following.

Griffin with Feistel. In order to better understand the advantages of Horst

with respect to the classical Feistel, we consider a variant of Griffin instantiated
with a classical Feistel instead of Horst, i.e., with S′′ replaced by Ŝ′′ defined as

Ŝ′′(x0, . . . , xt−1))i =

{
xi if i ∈ {0, 1},
xi +

(
z2i−1 + αi · zi−1 + βi

)
otherwise,

(4)

where as before α2
i − 4βi is a quadratic nonresidue for each i, while zi is a linear

combination of the inputs {x0, x1, . . . , xi−1} and the outputs {y0, y1}. As we
discuss in Section 5.4, the security of this variant against algebraic attacks is
smaller and more difficult to argue than in Griffin, and a higher number of
rounds is needed to provide security. Besides that, the diffusion is slower. This
has a crucial impact on the performance in the target ZK applications, as e.g. in
zk-STARKs we aim to minimize the depth of the evaluated hash function. This
concrete comparison highlights the importance and the impact of the nonlinear
combination in the Horst scheme.

Linear Layer. In many recent SNARK/STARK-friendly designs, an MDS ma-
trix is used for every state size t. Even with optimized representations e.g. for
Poseidon, the number of linear operations is an element in O(t2) in all cases.
Moreover, since our target applications mostly use large primes (e.g., p ≥ 264) for
a security level of 128 or 256 bits, an MDS matrix for large t is not required from

14 Given d =
∑blog2(d)c
i=0 di ·2i for di ∈ {0, 1}, evaluating x 7→ xd may require computing

x2
j

for j ∈ {0, 1, . . . , blog2(d)c} with blog2(d)c multiplications, plus hw(d) − 1 mul-
tiplications for x 7→ xd (where hw(·) is the Hamming weight, given in Definition 4).

15 Note that x 7→ xd costs hw(d) + blog2(d)c − 1 multiplications (see [37] for details).

15

a statistical point of view. For example, security against (classical) differential
and linear attacks can also be provided with smaller branch numbers.

Therefore, in Griffin we only use a cheap MDS matrix for t ∈ {3, 4}, and
we use an efficient linear layer for t > 4. Still, we want to achieve full diffusion
over a single round to resist e.g. truncated differential, impossible differential,
and rebound attacks. For this goal and for the case t = 4 · t′ ≥ 8, we consider the
linear layer of AES, which can be rewritten as the multiplication of two matrices,
namely M = MMC ×MSR where

MSR = diag(I, I2, I3, I4), MMC = circ(2 · I, 3 · I, I, I),

where I is the 4 × 4 identity matrix, I2 = circ(0, 1, 0, 0), I3 = circ(0, 0, 1, 0),
and I4 = circ(0, 0, 0, 1). As is well-known, M = MMC ×MSR does not provide
full diffusion over a single round, due to the fact that each Ii is sparse. In
particular, MSR only changes the position of the input words, without mixing
them. Therefore, we replaced every Ii with the MDS matrix circ(3, 2, 1, 1), and
we generalize the matrix MMC via the circulant matrix circ(2 ·I, I, . . . , I) (where
I ∈ F4×4

p is again the identity matrix).
This change has a considerable impact on the design. First, we can achieve

full diffusion over a single round (M contains only nonzero entries). Secondly,
regarding the plain performance, the multiplication with our matrix M is very
efficient. Indeed, for t ≥ 8 (and similarly for t ∈ {3, 4}), the multiplication with
circ(3, 2, 1, 1) only needs 15 additions (e.g., 3x0+2x1+x2+x3 = y+(x0+x0)+x1
where y = x0 + x1 + x2 + x3 is computed only once), resulting in a total of
15 · t′ = 15(t/4) ≈ 4t additions. Further, circ(2 · I, I, . . . , I) · ~x can be efficiently
computed with 4(t/4) + t = 2t additions (using the same approach proposed
for circ(3, 2, 1, 1)). Hence, our linear layer M only requires around 6t ∈ O(t)
additions.

4 Griffin and Griffin-π

Griffin is a sponge hash function over Ftp instantiated with the permutation
Griffin-π, where p > 232 (or dlog2(p)e > 32) is a prime and t ∈ {3, 4t′} for
a positive integer t′ ∈ {1, 2, . . . , 6}, i.e., t is either 3 or a multiple of 4. We
limit ourselves to t ≤ 24, since this is sufficient for the applications we have in
mind. The security level is κ bits, where 80 ≤ κ ≤ min {256, blog2(p) · t/3c}. We
assume there exists d ∈ {3, 5, 7, 11} such that gcd(d, p− 1) = 1.16

4.1 Sponge Hash Functions

The sponge construction introduced in [10, 11] builds upon an internal permuta-
tion and can be used to achieve various goals such as encryption, authentication,

16 Griffin and Griffin-π may be defined also if there exists no d ∈ {3, 5, 7, 11} such
that gcd(d, p − 1) = 1. However, the following security analysis and the number of
rounds must be adapted for this case.

16

M S M

c(0) ∈ Ftp

S M

c(1) ∈ Ftp

S M

c(2) ∈ Ftp

· · · S M

c(R−2) ∈ Ftp

IV

m1

Gπ

m2

Gπ

m3

Gπ

m4

· · ·

· · ·

· · ·

· · ·

Gπ

h1

Gπ

h2

Fig. 2: Griffin-π (top) and the Griffin sponge (bottom), where � and ⊕
denote the element-wise addition of two vectors in Ftp and Frp, respectively.

and hashing. Both the input and the output may be of arbitrary size. We use
the classical sponge construction to build a hash function using the Griffin-π
permutation. The state size is split into t = r + c, where r and c denote the
number of elements in the rate (outer) and capacity (inner) part, respectively.
As proven in [11], if the inner permutation resembles a random one, the sponge
construction is indifferentiable from a random oracle up to around min{pr, pc/2}
queries. Equivalently, in order to provide κ bits of security, pc/2 ≥ 2κ (i.e.,
c ≥

⌈
2κ · logp(2)

⌉
) and pr ≥ 2κ (i.e., r ≥

⌈
κ · logp(2)

⌉
). From now on, we impose

c ≥
⌈
2κ · logp(2)

⌉
and r ≥

⌈
κ · logp(2)

⌉
, which implies pt ≥ 23·κ. Given an input

message m, the padding rule for Griffin is equal to the one proposed for Po-
seidon in [34, Section 4.2], and consists of adding the smallest number < r of
zeros such that the size of m || 0∗ is a multiple of r and of replacing the initial
value IV ∈ Fcp instantiating the inner part with |m| || IV′ ∈ Fcp, where |m| ∈ Fp
is the size of the input message m and IV′ ∈ Fc−1p is an initial value.

4.2 Specification of Griffin-π

The Griffin-π permutation Gπ : Ftp → Ftp is defined by

Gπ(·) := FR−1 ◦ · · · ◦ F1 ◦ F0(M × ·),

where M ∈ Ft×tp is an invertible matrix and Fi : Ftp → Ftp is a round function of

the form Fi(·) = c(i) +M ×S(·) for a round constant c(i) ∈ Ftp, a nonlinear layer
S : Ftp → Ftp, and i ∈ {0, 1, . . . , R − 1}. The same matrix M is applied to the

input and in every round. We assume c(R−1) = 0. The overall design is shown in
Fig. 2, and the details of the components are provided in the following.

The Nonlinear Layer S. Let d ∈ {3, 5, 7, 11} be the smallest integer such
that gcd(d, p− 1) = 1. Let (αi, βi) ∈ F2

p \ {(0, 0)} be pairwise distinct such that

17

α2
i − 4βi is a quadratic nonresidue modulo p for 2 ≤ i ≤ t − 1. The nonlinear

layer S(x0, . . . , xt−1) = y0 || · · · || yt−1 is then defined by

yi =

x0

1/d if i = 0,

x1
d if i = 1,

x2 ·
(
(Li(y0, y1, 0))2 + α2 · Li(y0, y1, 0) + β2

)
if i = 2,

xi ·
(
(Li(y0, y1, xi−1))2 + αi · Li(y0, y1, xi−1) + βi

)
otherwise,

(5)

where Li : F3
p → Fp are linear functions of the form Li(z0, z1, z2) = γi ·z0+z1+z2

for arbitrary pairwise distinct γi ∈ Fp \ {0} (e.g., γi = i− 1).

The Linear Layer M . For t ∈ {3, 4}, the matrices are Mt=3 = circ(2, 1, 1)
and Mt=4 = circ(3, 2, 1, 1), and they are invertible and MDS for p ≥ 232. If
t = 4t′ ≥ 8, M is defined as

M = M ′′ ×M ′ ≡M ′ ×M ′′ =

2 ·Mt=4 Mt=4 . . . Mt=4

Mt=4 2 ·Mt=4 . . . Mt=4

...
...

. . .
...

Mt=4 Mt=4 . . . 2 ·Mt=4

 , (6)

where M ′,M ′′ ∈ Ft×tp are defined as

M ′ = diag(Mt=4,Mt=4, . . . ,Mt=4), M ′′ = circ(2 · I, I, . . . , I),

where Mt=4 = circ(3, 2, 1, 1) is an MDS matrix and where I is the 4× 4 identity
matrix. For t = 4t′ ≥ 8, the matrix is invertible since 17

det(M) = det(M ′)·det(M ′′) = (det (circ(3, 2, 1, 1)))t
′
·(t′+1) = 35t

′
·(t′+1) 6= 0 mod p .

Choosing the Constants. We use a pseudo-random number generator based
on SHAKE [55] in order to choose our round constants {c(i)}R−2i=0 and the con-
stants {(α2, β2)} and λ0, λ1 that define the nonlinear layer. The other constants
{(αi, βi)}t−1i=3 are defined as αi = (i − 1) · α2 and βi = (i − 1)2 · β2. Note that
Lp(α

2
i − 4 · βi) = Lp((i− 1)2 · (α2

2 − 4 · β2)) = Lp(α
2
2 − 4 · β2) = −1.

4.3 Security of Griffin-π

For κ-bit security, where 80 ≤ κ ≤ min {256, blog2(p) · t/3c}, the number of
rounds R including a security margin of 20% must satisfy

R ≥ d1.2 ·max {6, 1 +RGB}e ,
17 Note that (1, 1, . . . , 1)T is an eigenvector of M ′′ with eigenvalue t′+1. All other t−1

eigenvectors (of the form (1, 0, . . . , 0,−1, 0, . . . , 0)T) of M ′′ have eigenvalue equal to
1. Since the determinant is the product of the eigenvalues, det(M ′′) = t′ + 1.

18

Table 1: Instances of Griffin-π with security margin. We focus on the most
common cases, namely d ∈ {3, 5}, κ = 128, p ≈ 2256, and c = d2κ/ log2(p)e.

t R (d = 3) R (d = 5)

3 16 12
4 14 11
8 11 9

12, 16, 20, 24 10 9

where RGB ≥ 1 is the smallest integer such that

min

{(
RGB · (d+ t) + 1

1 + t ·RGB

)
,

(
dRGB + 1 +RGB

1 +RGB

)}
≥ 2κ/2 .

These numbers are supported by our security analysis given in Section 5. Some
instances for Griffin-π are given in Table 1.

5 Security of Griffin and Griffin-π

5.1 Sponge Hash Function Security

A hash function H : F?p → Ftp needs to fulfill certain security properties. Infor-
mally, it should be computationally hard to find

(collision resistance) x, x′ 6= x such that H(x) = H(x′),
(preimage resistance) x given y such that H(x) = y, or
(second-preimage resistance) x′ given x 6= x′ such that H(x′) = H(x).

In our context and for a κ-bit security level, we aim to guarantee a complexity of
2κ for enforcing any of them. For this purpose, we introduce the CICO problem.

Definition 3. The invertible function P : Ftp → Ftp is κ-secure against the
CICO (t1, t2)-problem (where 0 < t1, t2 < t and t1 + t2 = t) if no algorithm
with expected complexity smaller than 2κ finds I2 ∈ Ft2p and O2 ∈ Ft1p for given
I1 ∈ Ft1p and O1 ∈ Ft2p such that P(I1 || I2) = O1 || O2.

A sponge hash function built from a pseudo-random permutation can provide
min{r ·log2(p), c/2·log2(p)} bits of collision and (second-)preimage resistance. In
practice, the inner permutation P is replaced by a concrete iterated permutation.
Two possible approaches are usually taken to choose the number of rounds of this
permutation. First, as done by the designers of Keccak, it is possible to choose
the number of rounds of P in order to provide security against any (known-
/chosen-) distinguisher. This means that this number guarantees that P does
not exhibit any non-random/structural property (among the ones known in the
literature). However, more recently the designers tend to choose the number of

19

rounds with the goal of preventing only attacks on the hash function itself. In
other words, designers do not consider distinguishers on the internal permutation
that cannot be exploited in order to set up an attack on the hash function (as
the zero-sum partition one). In this paper, we use the same approach.

5.2 Statistical Attacks on Griffin-π

In this section, we present an analysis of the best statistical attacks against Grif-
fin-π, which include the differential attack [13] and the rebound attack [53, 51].
Our theoretical security analysis is supported by dedicated automatic MILP
tools which we designed in order to search for bounds on the minimal num-
ber of rounds against (truncated) differential, linear, and rebound attacks. Due
to page limitation, other attacks as linear cryptanalysis, impossible differential,
zero-correlation, integral/square, multiple-of-n, and mixture differential attacks
are analyzed in App. E and G.1 instead.

Differential Cryptanalysis. Differential cryptanalysis [13] and its variations
are the most widely used techniques to analyze symmetric-key primitives. Given
pairs of inputs with fixed input differences, differential cryptanalysis consid-
ers the probability distribution of the corresponding output differences. Let
∆I , ∆O ∈ Ftp be respectively the input and the output differences through a
permutation P over Ftp. The differential probability (DP) for the output differ-
ence ∆O given the input difference ∆I is

Prob(∆I → ∆O) = (|{x ∈ Ftp | P(x+∆I)− P(x) = ∆O}|)/pt.

Its maximum DP is DPmax = max∆I ,∆O∈Ft
p\{0} Prob(∆I → ∆O). As Griffin-π

is an iterated scheme, we search for ordered sequences of differences over any
number of rounds, i.e., differential characteristics/trails. Assuming independent
rounds, the DP of a differential trail is the product of the DPs of its one-round
differences. Our goal is to find the minimum number of rounds such that each
characteristic’s probability is smaller than 2−2.5κ. We chose this value since more
characteristics can be used simultaneously to set up a differential attack, and
hence each probability must be smaller than 2−κ for security. For this purpose,
we first compute DPmax of the components of the nonlinear layer S and the
branch number of the matrix M .

Lemma 2. Let d ≥ 3 be an integer such that gcd(d, p−1) = 1. Then, DPmax(x 7→
xd) = DPmax(x 7→ x1/d) = (min{d, 1/d} − 1)/p, where min{d, 1/d} = d.

Lemma 3. Let α, β ∈ Fp \ {0} such that α2 − 4β is a quadratic nonresidue
modulo p. Let F : F2

p → Fp be defined as F (x, `) = x · (`2 + α · `+ β). Given an
input difference ∆I = (δx, δ`) 6= (0, 0) and an output difference ∆O,

Prob(∆I → ∆O) ≤

{
2
p if δ` = 0 or δx = ∆O = 0,
p−1
p2 ≤

1
p otherwise.

In particular, if δ` = 0, then ∆O 6= 0.

20

Note that the previous probability is always smaller than (d− 1)/p for each
d ≥ 3. The proofs for Lemmas 2 and 3 are given in App. D.1.

Proposition 1. Let t = 4t′ ∈ {8, 12, . . . , 24}. Given M ∈ Ft×tp defined as in
Eq. (6), its branch number is t′ + 4.

We practically verified and proved the branch numbers for our instantiations,
and give details in App. D.2. We recall that M ∈ Ft×tp is an MDS matrix for
t ∈ {3, 4} and its branch number is equal to t+1 in these cases. Even if we cannot
directly use the wide-trail design strategy [24] since our design is weak-arranged,
each active word at the input of S activates at least one word at its output. In
particular, xt−1 affects only yt−1, xi affects yi and yi+1 for i ∈ {2, . . . , t − 2},
x0 affects all the output words except y1, and x1 affects all the output words
except y0. Further, due to the branch number of the matrix, at least #b words
are active every two rounds. Due to these facts, if t = 4 · t′ ≥ 8, the probability
of any differential characteristic over 2 rounds is at most

(d− 1)4 · 2#b−4

p#b
=

(d− 1)4 · 2t′

p4+t′
(i)

≤ (d− 1)4 · 2t′

p4 · 2(3·κ)/4
(ii)
<

26 · (d− 1)4

2κ/2+(3·κ)/4 = 2−κ · 26 · (d− 1)4

2κ/4

(iii)

≤ 2−κ · (d− 1)4

214
,

where (i) is motivated by 23·κ ≤ pt, (ii) is motivated by t′ ≤ 6 and p > 232 ≥ 2κ/8

since κ ≤ 256, and (iii) is motivated by κ ≥ 80. Similarly, for the case t ∈ {3, 4},
the probability of any differential characteristic over 2 rounds is at most

(d− 1)4 · 2t−3

p5
≤
(
d− 1

p

)5 (iv)

≤
(
d− 1

2κ

)5

= 2−3·κ ·
(

(d− 1)5

2κ

)2

≤ 2−3·κ ,

which is always satisfied for d ≤ 1+216 (for (iv), note that 23·κ ≤ pt, hence 2κ ≤ p
for t = 3 and 2κ ≤ p ≤ p4/3 for t = 4). Hence, if d ∈ {3, 5, 7, 11}, the probability
of any differential characteristic over 2 consecutive rounds is strictly smaller than
2−κ. Further, the probability of any differential characteristic over 6 consecutive
rounds is smaller than 2−2.5·κ if d ≤ 113 (equivalently, (d−1)6 ≤ 241 ≤ 221 ·2κ/4),
which we assume to be satisfied. As a result, 6 consecutive rounds are largely
sufficient for preventing (classical) differential attacks.

Truncated Differential and Rebound Attacks. Truncated differential crypt-
analysis [45] is a variant of classical differential cryptanalysis where the attacker
specifies only part of the difference between pairs of texts or specifies condi-
tions between the differences. This method is particularly efficient in the case of
aligned schemes (e.g., AES-like schemes). Considering the case of active/inactive
words, since diffusion takes place in the nonlinear layer and since the matrix M
provides full diffusion over a single round, a truncated differential with proba-
bility 1 holds for one single round only. To extend it, it would be necessary that
some differences are equal to zero. However, the probability that one word is
inactive is p−1, exactly as for a pseudo-random permutation. Hence, we do not
expect that this attack outperforms the classical differential one just proposed.

21

In a rebound attack [47, 53], the goal of the attacker is to find two (input, out-
put) pairs such that the two inputs satisfy a certain (truncated) input difference
and the corresponding outputs satisfy a certain (truncated) output difference.
The approach consists of the inbound and the outbound phase. According to
these phases, the internal permutation P of the hash function is split into three
subparts, that is, P = Pfw ◦Pin ◦Pbw. The inbound phase is placed in the middle
of the permutation and the two outbound phases are placed next to the inbound
part. In the outbound phase, two high-probability (truncated) differential trails
are constructed, which are then connected in the inbound phase. We claim that
6 rounds are sufficient against this attack. From our analysis, we know that there
exist truncated differentials with probability 1 over a single round, but they can-
not be extended over more rounds, and any classical differential characteristic
over 2 rounds has a probability smaller than 2−κ (for common d). Hence, by
using an inside-out approach, the attacker can cover less than 4 rounds in the
inbound phase. Since one round can be covered with a truncated differential
characteristic of probability 1, the attacker can cover two rounds (one in each
direction) in the outbound phase. Thus, no rebound attack on 6 rounds of Grif-
fin-π can be set up.

Verification with Dedicated Tools. Our results have been verified via a
dedicated mixed integer linear programming (MILP) tool. The results obtained
with the tools for (classical/truncated) differential attacks and rebound attacks
are presented in App. E. They support the conclusion that 6 rounds are sufficient
in order to provide security against these attacks.

5.3 Algebraic Attacks

Algebraic attacks exploit weak algebraic properties of the design (e.g., low de-
grees or low density). Our analysis suggests that interpolation attacks and Gröbner
basis attacks are the most efficient ones against Griffin. For this purpose, we
analyze the algebraic properties of the obtained equation systems and also prac-
tically implement Griffin-π to obtain better estimates.

We also claim security against higher-order differentials, which is implied by
the security against interpolation attacks. We do not claim security against zero-
sum partitions [16]. We refer to App. G.2 for more details.

Interpolation Attacks. The goal of an interpolation attack [44] is to construct
an interpolation polynomial describing the function. In the case of a hash func-
tion, an interpolation polynomial can potentially be exploited to set up collisions
or forgery attacks. The cost of the attack grows with the number of different
monomials in the interpolation polynomial, where (an upper/lower bound of)
the number of different monomials can be estimated given the degree of the
function. If the number of unknown monomials is sufficiently large, this cannot
be done faster than by exhaustive search. Roughly speaking, if the interpolation
polynomial is dense and if its degree is maximum, this attack does not work.

22

In our case, 3 rounds are sufficient to reach the maximum degree. Indeed,
due to Fermat’s little theorem, 1/d ≡ d′ where (d ·d′−1) mod (p−1) = 0. Since
d ≥ 3 is the smallest integer such that gcd(d, p − 1) = 1, this implies that d′ is
of the same order of p. In order to frustrate variants of the interpolation attack
like MitM approaches or inside-out approaches starting from the middle of the
constructions, we double the number of rounds, conjecturing that 2·3 = 6 rounds
are sufficient to prevent interpolation attacks and their variants. We further refer
to App. F.1 for a more detailed analysis about the density of Griffin-π.

Gröbner Basis Attacks. A Gröbner basis [18, 22] allows to solve the system
of equations that represent the cryptographic construction in a set of variables
depending on the attack goals. In general, a Gröbner basis attack consists of
three steps. First, the attacker needs to set up the equation system and compute
a Gröbner basis for it. Secondly, they perform a change of term ordering for the
basis, usually going to a term order which makes it easier to eliminate variables
and find the solutions. Finally, the attacker uses the system obtained in the
second step in order to start solving for the variables. As is usually done in the
literature, here we focus on the complexity of the first step (i.e., computing a
Gröbner basis), which can be estimated by

O
((

Dreg + nv
nv

)ω)
,

where Dreg is the degree of regularity, nv is the number of variables, and 2 ≤
ω < 3 is a constant representing the complexity of a matrix multiplication.
Theoretical estimations of the degree of regularity are known only for regular
and semi-regular equation systems [7, 7]. For example, in the case of a regular
system of equations with ne = nv, where ne denotes the number of polynomials
in the system, the degree of regularity is estimated by Dreg = 1 +

∑ne

i=1(di − 1),
where di is the degree of the i-th equation. Since most of our equation systems
will not exhibit the properties of regular sequences, we will compute the actual
degrees reached during the computations (i.e., the practical degree of regularity)
for reduced versions of Griffin-π, and then use the new estimates to compute
the final round numbers.

Here we focus on a preimage attack on the hash function, using the algebraic
properties of the permutation Griffin-π. This approach has also been adopted
in the literature before, e.g. for Poseidon/Neptune, Rescue, and Grendel .
Moreover, it naturally extends to the CICO problem (see Definition 3) by sim-
ply reordering the elements. The collision attack is analogous (see App. F.4).

Intermediate Variables. Using the inputs and outputs of Griffin-π directly is
infeasible since the degree is maximum and the polynomials are dense. A possible
strategy to overcome this problem consists of introducing intermediate variables.
This is a method to decrease the degrees in the equation system (and thus in
general also the number of appearing monomials) at the cost of more variables.
For Griffin-π, we can introduce new variables in each round in order to avoid

23

reaching a degree of 1/d. Let x = x0 || · · · || xt−1 and y = y0 || · · · || yt−1
be respectively the state before and after a nonlinear layer. Then, the relation
between x and y can be described by 2 equations of degree d and t−2 equations
of degree 3, using the fact that y1 = x1

1/d can be rewritten as yd1 = x1 and
the definition of our nonlinear layer given in Eq. (5). In order to connect two
rounds with this approach, we denote the input of the next nonlinear layer by
affine functions in y0, . . . , yt−1, depending on the linear layer matrix M and the
round constants. Hence, we add t variables in each round, except for the last
one, where we simply use the desired output values. We then have nv = r +Rt
variables (where r is the rate) and the same number of equations ne = nv. Of
these equations, 2R equations are of degree d and (t−2)R equations are of degree
3. The degree of the remaining equations depends on r. We focus on r = 1, since
by experiments this is the easiest case from the attacker’s point of view.

When implementing this system in Sage and Magma, the observed degrees

of regularity are ≥ D
(1)
est = dR for a degree-d nonlinear layer after R rounds

(see App. F.2 for details). Using D
(1)
est , we obtain an estimated complexity of(

D
(1)
est+nv

nv

)ω
=
(
dR+nv

nv

)ω
operations. By setting ω = 2 (optimistic from the at-

tacker’s point of view) and for a security level of κ bits, R must satisfy

log2

((
D

(1)
est + nv
nv

))
= log2

((
dR+ 1 + tR

1 + tR

))
≥ κ

2
. (7)

Partial Intermediate Variables. Another strategy consists in introducing only a
single intermediate variable for each round in order to avoid the high degree
growth in the second word. The other state words go through the nonlinear
layer without adding any more variables. In more detail, we introduce a single
new equation y1

d − x1 = 0 in each round, where y1 is the new variable. Hence,
we have r + R variables in total, and we again focus on r = 1. The degree of
the equations increases in each round, however not as fast as it would without
adding a variable for the second word. By practical experiments, we found that

the degree of regularity can be estimated conservatively by D
(2)
est = dR for this

strategy (see App. F.2 for details). Even if the equations here have a higher degree
than in the first strategy, the number of variables and equations is smaller, since
only one relation is added in each round (instead of t). Still, there is one crucial
difference. Adding intermediate variables for all state words leads to a complexity
which scales significantly with t. In this case, we add only one variable in each
round, regardless of t. This means that we require

log2

((
D

(2)
est + nv
nv

))
= log2

((
dR + 1 +R

1 +R

))
≥ κ

2
. (8)

Gröbner Basis Summary. Given the results just presented, we require that
Eq. (7) and Eq. (8) are fulfilled for a κ-bit security level. However, due to the
particular structure of our nonlinear layer, it is possible to choose the input such
that the degrees in the first round are lower than expected. In particular, an

24

attacker may choose the input such that y0 = x
1/d
0 = u1 and y1 = xd1 = u2,

where u1, u2 are two fixed constants chosen by the attacker. This can be done
by simply solving a linear equation system with these constraints. Consequently,
the first two words are constant, the third word is linear, and only then the
degree starts to grow. In order to protect from this attack, we add 1 round to
the final round number needed for preventing Gröbner basis attacks.

For completeness, we also describe two additional attack strategies in App. F.3.
However, they are less competitive than the ones just presented, and hence do
not determine the number of rounds.

5.4 Security of Griffin Instantiated with Feistel

We consider the security of Griffin instantiated with a Feistel scheme as in
Eq. (4) with respect to the two Gröbner basis approaches discussed in Section 5.3.

In the first Gröbner basis strategy we introduce intermediate variables for
the whole state, i.e., we add t new variables and equations per round. In our
experiments with Sage and Magma we could observe that the practical degree
of regularity was constant regardless of the number of rounds in our tests for
R ≥ 2. Indeed, we were able to compute Gröbner bases in practice for the round
numbers proposed for Griffin (with Horst). We emphasize that this does not
necessarily mean that the complexity of an attack changes only slightly with
increased round numbers, but rather that it is harder for the designer to argue
security. A similar behaviour was reported in [1, Section 6.1] for MiMC, where
computing the Gröbner basis is efficient with intermediate variables, but the
other steps in the full attack (monomial reordering, factorization) are not.

For the second strategy, where we only introduce intermediate variables to
avoid the degree-(1/d) growth in each round, it is easier to argue security. Still,
the maximum degree in each round is reduced due to the missing multiplication.
In particular, the difference is deg(Ri−1) in each round, where deg(Ri) is the
degree in the i-th round. Additionally, we could observe faster Gröbner basis
computations for the Feistel version compared to the Horst version. Concretely,
the difference is about a factor of 8 between the two versions.

Hence, even with a detailed analysis of the first strategy, the number of rounds
would have to be increased due to the second strategy. This would severely
impact the plain performance and the efficiency in the STARK use case, which
suggests that using the multiplication instead of the addition is better when
aiming for security and efficiency in the applications discussed in this paper.

6 Performance Evaluation

In this section, we evaluate the performance of Griffin and compare it to Po-
seidon, Rescue-Prime [64] (a newer variant of Rescue with less security margin),
GMiMCerf , Grendel , and Neptune. Since GMiMCerf was broken in [12], we use
the updated round numbers proposed in [28, App. G]. We further point out that

25

Grendel has recently been broken [35], leading to an adaptation of the round
numbers by the designers. Our evaluation includes the updated numbers.

First we evaluate the plain performance, then we compare the efficiency when
used in R1CS-based SNARKs. For an evaluation in STARKs and Plonk we refer
to App. B.3 and C.2. We instantiate all hash functions to provide 128 bits of
security. All benchmarks were obtained on Linux using an Intel Xeon E5-2699
v4 CPU (2.2 GHz, turboboost up to 3.6 GHz) using stable Rust version 1.59
and the target-cpu=native flag. Each of the individual benchmarks has only
access to one thread.18

We further compare Griffin to a consequent design named Anemoi [17],
more concretely to its sponge version to obtain a fair comparison. However, due
to the fact that Anemoi was only proposed very recently, we limit ourselves to a
theoretical comparison.

Remark 2. The Pedersen hash function [67, Sec. 5.4.1.7] is also relevant for ZK
proof systems. However, since it is not preimage-resistant, uses hardness assump-
tions vulnerable to quantum computers, and requires more R1CS constraints
than Poseidon and Rescue (see [33]), we do not consider it in our benchmarks.

Remark 3. As is often the case in symmetric cryptography, it is difficult to con-
sider versions with equal security margins in the comparisons. For example,
adding the same number of rounds or nonlinear functions to two designs with
different structures may affect both the security and the performance of the two
designs differently. Therefore, we focus on the original specifications given by
the designers, noting that the security margins may vary between the different
constructions.

6.1 Plain Performance

In Table 2, we compare the plain performance of the permutations when in-
stantiated with the scalar fields of the commonly used BLS12 and BN254 el-
liptic curves.19 In both of these fields d = 5 is the smallest value for which
xd is a permutation. As the table shows, the fastest permutation for t ≤ 16
is GMiMCerf . However, as we show later, it has the worst performance when
used with SNARKs and STARKs. Rescue-Prime and Grendel have the worst
plain performance due to having t high-degree x1/d or Legendre symbol evalua-
tions per round. Griffin also uses x1/d, but only once per round. Thus, Griffin
scales significantly better with larger t than the other designs. Indeed, for small t
Griffin is slower than Poseidon and Neptune, but the differences get smaller
for larger t, until Griffin is faster than Poseidon and Neptune if t ≥ 16.

As mentioned above, we do not provide an implementation of Anemoi. How-
ever, due to a larger number of expensive x1/d evaluations per round while having
a similar number of rounds, we expect that Anemoi has a slower plain evaluation
time compared to Griffin, which grows with the state size t.

18 The source code can be found in ??.
19

pBLS381 = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001,
pBN254 = 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001.

26

Table 2: Plain performance of different permutations in Rust (measured in µs).

Permutation
State size t

3 4 5 8 9 12 16 20 24

BLS12 (d = 5)

Griffin 113.97 105.45 – 89.32 – 93.76 98.19 103.78 107.96
GMiMCerf 20.14 20.70 21.65 26.07 26.44 37.72 65.94 107.45 167.75
Neptune – 19.54 – 30.87 – 60.20 93.14 128.95 171.97
Poseidon 18.61 24.36 30.60 55.52 63.10 95.84 149.61 212.85 286.75
Rescue-Prime 412.91 434.13 451.49 645.79 739.24 1005.20 1363.40 1759.10 2147.80
Grendel 822.54 959.92 1001.30 1154.60 1215.60 1283.30 1425.30 1411.90 1459.20

BN254 (d = 5)

Griffin 106.90 99.33 – 84.97 – 88.21 92.08 96.85 100.10
GMiMCerf 18.67 19.34 20.08 23.44 24.63 34.05 69.49 107.82 156.35
Neptune – 17.38 – 29.83 – 58.41 89.89 125.87 166.11
Poseidon 17.56 23.23 29.37 51.06 58.96 89.20 139.68 196.64 267.80
Rescue-Prime 379.78 400.87 411.16 598.86 683.81 929.89 1275.50 1639.30 2006.10
Grendel 703.36 808.78 849.89 994.20 1034.30 1094.20 1213.30 1196.00 1253.50

6.2 R1CS-Based SNARKs with Griffin

Here we evaluate the efficiency of Griffin when used in R1CS-based zk-SNARKs
and compare it to its competitors by giving the number of R1CS constraints, as
well as concrete runtimes for proving knowledge of preimages and membership
witnesses for Merkle tree accumulators. Our implementation is written in Rust
using the bellman ce library20 for creating Groth16 [40] proofs.21

Describing Griffin as a R1CS system is straightforward. The first two words
of the nonlinear layer (i.e., y0, y1 in Eq. (5)) each require blog2(d)c+ hw(d)− 1
constraints (2 constraints if d = 3, 3 constraints if d = 5). The squaring of each
L(·) and each word of the remaining state require an additional constraint each.
Since the linear layers can be incorporated into the constraints of the subsequent
nonlinear layers (see Section 2.3), the total number of R1CS constraints for
describing the whole Griffin-π permutation is

(2 · blog2(d)c+ 2 · hw(d) + 2 · t− 6) ·R ,

i.e., 2 ·R · t R1CS constraints if d = 3 and R · (2 · t+ 2) ones if d = 5. In Table 3
we compare the number of R1CS constraints, as well as the concrete runtime
to create a ZK proof using the bellman ce library when instantiated with two
different elliptic curves (BLS12-381, BN254) which require d to be d ≥ 5. We
compare the performance of the hash functions when (1) proving knowledge of
a preimage of a specific hash and when (2) proving membership of a Merkle tree
accumulator with 224 elements. For the latter case, we construct Merkle trees
with arity (x : 1) such that x is the largest power of two smaller than t. In

20 https://docs.rs/bellman_ce/0.3.5/bellman_ce/
21 bellman ce is used in the Zcash protocol: https://z.cash/technology/zksnarks/

27

https://docs.rs/bellman_ce/0.3.5/bellman_ce/
https://z.cash/technology/zksnarks/

Table 3: Bellman ce performance of various hash functions (one permutation
per call) for different state sizes t. Performance numbers are for proving the
knowledge of preimages of hashes (Perm) and for proving the membership of a
Merkle tree accumulator with 224 elements (MT). Proving times are given in ms.

Hash
State size t (MT arity)

3 (2 : 1) 4 (2 : 1) 5 (4 : 1) 8 (4 : 1) 9 (8 : 1) 12 (8 : 1)
Prove R1CS Prove R1CS Prove R1CS Prove R1CS Prove R1CS Prove R1CS

BLS12 (d = 5)

Griffin
Perm 39.08 96 42.46 110 – – 60.54 162 – – 82.29 234
MT 451.88 2637 495.74 2712 – – 422.50 2136 – – 424.07 2192

Neptune
Perm – – 71.53 228 – – 95.54 264 – – 120.55 306
MT – – 969.71 5544 – – 728.11 3360 – – 747.22 2768

Poseidon
Perm 75.31 240 88.29 264 93.43 288 108.40 363 114.35 387 132.54 459
MT 1013.70 5832 1093.00 6408 654.85 3648 877.17 4548 630.17 3416 719.52 3992

Rescue-Prime
Perm 75.12 252 77.55 264 78.01 270 96.71 384 106.61 432 138.93 576
MT 851.56 6120 872.26 6408 512.97 3432 726.84 4800 541.93 3776 737.59 4928

GMiMCerf
Perm 173.71 678 176.91 684 180.20 690 190.01 708 193.76 714 253.53 942
MT 3060.80 16344 2842.40 16488 1537.40 8472 1640.80 8688 1118.20 6032 1535.60 7856

Grendel
Perm 148.76 870 160.50 1000 191.33 1050 216.12 1200 223.85 1260 231.53 1320
MT 2297.70 20952 2535.40 24072 1403.20 12792 1505.40 14592 1249.70 10400 1268.00 10880

Anemoi
Perm – – n/a 120 – – n/a 200 – – n/a 300
MT – – n/a 2952 – – n/a 2592 – – n/a 2720

BN254 (d = 5)

Griffin
Perm 22.48 96 24.24 110 – – 35.08 162 – – 48.05 234
MT 266.77 2637 294.07 2712 – – 251.90 2136 – – 257.31 2192

Neptune
Perm – – 42.75 228 – – 61.30 264 – – 86.31 306
MT – – 621.76 5544 – – 512.69 3360 – – 569.48 2768

Poseidon
Perm 43.47 240 51.58 264 54.35 288 64.46 363 70.82 387 79.86 459
MT 604.91 5832 656.77 6408 391.55 3648 542.02 4548 385.03 3416 446.87 3992

Rescue-Prime
Perm 43.54 252 44.36 264 44.87 270 54.52 384 61.51 432 80.97 576
MT 510.03 6120 520.01 6408 306.12 3432 436.83 4800 323.67 3776 445.66 4928

GMiMCerf
Perm 101.81 678 104.95 684 107.36 690 115.99 708 119.02 714 164.38 942
MT 2148.60 16344 1791.20 16488 952.34 8472 1049.80 8688 717.61 6032 1046.70 7856

Grendel
Perm 86.85 870 94.12 1000 113.33 1050 127.31 1200 131.54 1260 135.80 1320
MT 1401.20 20952 1523.60 24072 854.51 12792 920.43 14592 759.53 10400 776.86 10880

Anemoi
Perm – – n/a 120 – – n/a 200 – – n/a 300
MT – – n/a 2952 – – n/a 2592 – – n/a 2720

all cases, verifying the created ZK proof took < 4 ms which is why we do not
explicitly list this runtime in Table 3.

Table 3 shows that Griffin requires the smallest number of R1CS con-
straints to prove knowledge of a preimage of a hash for several state sizes t.
However, since Griffin is defined for state sizes t = 3 or t = 4t′, it cannot be
instantiated with t = 5 or t = 9 (the smallest state sizes for Merkle trees with
arities 4 and 8, respectively). Thus, to create trees of this arity, Griffin requires
a larger state size (e.g., more words in the inner part of the sponge) compared
to its competitors. As shown in Table 3, this still results in significantly fewer
R1CS constraints and smaller proving times compared to the other hash func-

28

tions. Concretely, using Griffin results in nearly half of the required constraints
compared to Poseidon and Rescue and two third of the constraints compared
to the recently proposed Neptune. Only Anemoi comes close, however, it scales
worse than Griffin for larger t. Consequently, Griffin has the fastest proving
times which also lead to the fastest membership proving times when used as a
hash function in Merkle tree accumulators. Hence, we recommend to use Grif-
fin and Merkle tree arities 8 : 1 for the membership witness use cases, since it
provides the fastest proofs in combination with a decent plain performance (8
times faster than Rescue-Prime, and nearly as fast as Poseidon), which heavily
influences the initial Merkle tree accumulation runtime.

Acknowledgments. The authors thank the Eurocrypt’22 Reviewers for point-
ing out an attack on the previous (unpublished) version of Griffin. We took it
into account in order to design the version of Griffin presented in this paper.
We also thank them for the suggestion of the name Horst, and for pointing out
the similarity between Horst and the S-box used in Streebog. Lorenzo Grassi
is supported by the European Research Council under the ERC advanced grant
agreement under grant ERC-2017-ADG Nr. 788980 ESCADA. Roman Walch is
supported by the “DDAI” COMET Module within the COMET – Competence
Centers for Excellent Technologies Programme, funded by the Austrian Federal
Ministry for Transport, Innovation and Technology (bmvit), the Austrian Fed-
eral Ministry for Digital and Economic Affairs (bmdw), the Austrian Research
Promotion Agency (FFG), the province of Styria (SFG) and partners from in-
dustry and academia. The COMET Programme is managed by FFG. Yonglin
Hao is supported by National Natural Science Foundation of China (Grant No.
62002024), National Key Research and Development Program of China (No.
2018YFA0306404). Qingju Wang is funded by Huawei Technologies Co., Ltd
(Agreement No.: YBN2020035184).

References

[1] M. R. Albrecht, C. Cid, L. Grassi, D. Khovratovich, R. Lüftenegger, C. Rech-
berger, and M. Schofnegger. “Algebraic Cryptanalysis of STARK-Friendly De-
signs: Application to MARVELlous and MiMC”. In: ASIACRYPT 2019. Vol. 11923.
LNCS. 2019, pp. 371–397.

[2] M. R. Albrecht, L. Grassi, L. Perrin, S. Ramacher, C. Rechberger, D. Rotaru, A.
Roy, and M. Schofnegger. “Feistel Structures for MPC, and More”. In: ESORICS
2019. Vol. 11736. LNCS. 2019, pp. 151–171.

[3] M. R. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. “MiMC:
Efficient Encryption and Cryptographic Hashing with Minimal Multiplicative
Complexity”. In: ASIACRYPT 2016. Vol. 10031. LNCS. 2016, pp. 191–219.

[4] A. Aly, T. Ashur, Eli Ben-Sasson, S. Dhooghe, and A. Szepieniec. “Design of
Symmetric-Key Primitives for Advanced Cryptographic Protocols”. In: IACR
Trans. Symmetric Cryptol. 2020.3 (2020), pp. 1–45.

[5] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. “Ligero: Lightweight
Sublinear Arguments Without a Trusted Setup”. In: CCS. ACM, 2017, pp. 2087–
2104.

29

[6] T. Ashur and S. Dhooghe. “Prelude to Marvellous (With the Designers’ Commen-
tary, Two Bonus Tracks, and a Foretold Prophecy)”. In: IACR Cryptol. ePrint
Arch. (2020), p. 568.

[7] M. Bardet, J.-C. Faugére, B. Salvy, and B.-Y. Yang. “Asymptotic behaviour of
the degree of regularity of semi-regular polynomial systems”. In: Proc. of MEGA.
Vol. 5. 2005.

[8] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/46. 2018.

[9] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward.
“Aurora: Transparent Succinct Arguments for R1CS”. In: EUROCRYPT 2019.
Vol. 11476. LNCS. 2019, pp. 103–128.

[10] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge functions. In:
Ecrypt Hash Workshop 2007, http://www.csrc.nist.gov/pki/HashWorkshop/
PublicComments/2007_May.html. 2007.

[11] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. “On the Indifferentia-
bility of the Sponge Construction”. In: EUROCRYPT 2008. Vol. 4965. LNCS.
2008, pp. 181–197.

[12] T. Beyne, A. Canteaut, I. Dinur, M. Eichlseder, G. Leander, G. Leurent, M.
Naya-Plasencia, L. Perrin, Y. Sasaki, Y. Todo, and F. Wiemer. “Out of Oddity
- New Cryptanalytic Techniques Against Symmetric Primitives Optimized for
Integrity Proof Systems”. In: CRYPTO 2020. Vol. 12172. LNCS. 2020, pp. 299–
328.

[13] E. Biham and A. Shamir. “Differential Cryptanalysis of DES-like Cryptosys-
tems”. In: CRYPTO 1990. Vol. 537. LNCS. 1990, pp. 2–21.

[14] A. Biryukov, L. Perrin, and A. Udovenko. “Reverse-Engineering the S-Box of
Streebog, Kuznyechik and STRIBOBr1”. In: EUROCRYPT 2016. Vol. 9665.
LNCS. 2016, pp. 372–402.

[15] N. Bordes, J. Daemen, D. Kuijsters, and G. V. Assche. “Thinking Outside the
Superbox”. In: CRYPTO (3). Vol. 12827. LNCS. 2021, pp. 337–367.

[16] C. Boura, A. Canteaut, and C. D. Cannière. “Higher-Order Differential Prop-
erties of Keccak and Luffa”. In: FSE 2011. Vol. 6733. LNCS. 2011, pp. 252–
269.

[17] C. Bouvier, P. Briaud, P. Chaidos, L. Perrin, and V. Velichkov. Anemoi: Exploit-
ing the Link between Arithmetization-Orientation and CCZ-Equivalence. Cryp-
tology ePrint Archive, Paper 2022/840. 2022.

[18] B. Buchberger. “Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal”. PhD thesis. Univer-
sity of Innsbruck, 1965.

[19] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. “Bullet-
proofs: Short Proofs for Confidential Transactions and More”. In: IEEE Sympo-
sium on Security and Privacy. IEEE Computer Society, 2018, pp. 315–334.

[20] C. Cid, L. Grassi, A. Gunsing, R. Lüftenegger, C. Rechberger, and M. Schofneg-
ger. “Influence of the Linear Layer on the Algebraic Degree in SP-Networks”. In:
IACR Trans. Symmetric Cryptol. 2022.1 (2022), pp. 110–137.

[21] J.-S. Coron, J. Patarin, and Y. Seurin. “The Random Oracle Model and the Ideal
Cipher Model Are Equivalent”. In: CRYPTO 2008. Vol. 5157. LNCS. 2008, pp. 1–
20.

30

http://www.csrc.nist.gov/pki/HashWorkshop/Public Comments/2007_May.html
http://www.csrc.nist.gov/pki/HashWorkshop/Public Comments/2007_May.html

[22] D. A. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms – An
Introduction to Computational Algebraic Geometry and Commutative Algebra.
2nd ed. Undergraduate Texts in Mathematics. Springer, 1997.

[23] D. Dachman-Soled, J. Katz, and A. Thiruvengadam. “10-Round Feistel is In-
differentiable from an Ideal Cipher”. In: EUROCRYPT 2016. Vol. 9666. LNCS.
2016, pp. 649–678.

[24] J. Daemen and V. Rijmen. “The Wide Trail Design Strategy”. In: Cryptogra-
phy and Coding - IMA International Conference 2001. Vol. 2260. LNCS. 2001,
pp. 222–238.

[25] J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced En-
cryption Standard. Information Security and Cryptography. Springer, 2002.

[26] J. Daemen and V. Rijmen. “Understanding Two-Round Differentials in AES”.
In: SCN 2006. Vol. 4116. LNCS. 2006, pp. 78–94.

[27] Y. Dai and J. P. Steinberger. “Indifferentiability of 8-Round Feistel Networks”.
In: Advances in Cryptology - CRYPTO 2016. Vol. 9814. LNCS. 2016, pp. 95–120.

[28] C. Dobraunig, L. Grassi, A. Guinet, and D. Kuijsters. “Ciminion: Symmetric
Encryption Based on Toffoli-Gates over Large Finite Fields”. In: EUROCRYPT
2021. Vol. 12697. LNCS. 2021, pp. 3–34.

[29] V. Dolmatov and A. Degtyarev. “GOST R 34.11-2012: Hash Function”. In: RFC
6986 (2013), pp. 1–40.

[30] Federal Agency on Technical Regulation and Metrology. GOST R 34.12-2015:
Block Cipher. 2015.

[31] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: Permutations over
Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge. Cryp-
tology ePrint Archive, Report 2019/953. 2019.

[32] L. Grassi. “Mixture Differential Cryptanalysis: a New Approach to Distinguishers
and Attacks on round-reduced AES”. In: IACR Trans. Symmetric Cryptol. 2018.2
(2018), pp. 133–160.

[33] L. Grassi, D. Khovratovich, R. Lüftenegger, C. Rechberger, M. Schofnegger, and
R. Walch. Reinforced Concrete: Fast Hash Function for Zero Knowledge Proofs
and Verifiable Computation. Cryptology ePrint Archive, Report 2021/1038. ac-
cpted at ACM CCS 2022. 2021.

[34] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger. “Po-
seidon: A New Hash Function for Zero-Knowledge Proof Systems”. In: USENIX
Security Symposium. USENIX Association, 2021, pp. 519–535.

[35] L. Grassi, D. Khovratovich, S. Rønjom, and M. Schofnegger. “The Legendre
Symbol and the Modulo-2 Operator in Symmetric Schemes over Fnp Preimage
Attack on Full Grendel”. In: IACR Trans. Symmetric Cryptol. 2022.1 (2022),
pp. 5–37.

[36] L. Grassi, R. Lüftenegger, C. Rechberger, D. Rotaru, and M. Schofnegger. “On
a Generalization of Substitution-Permutation Networks: The HADES Design
Strategy”. In: EUROCRYPT 2020. Vol. 12106. LNCS. 2020, pp. 674–704.

[37] L. Grassi, S. Onofri, M. Pedicini, and L. Sozzi. “Invertible Quadratic Non-Linear
Layers for MPC-/FHE-/ZK-Friendly Schemes over Fnp : Application to Poseidon”.
In: IACR Transactions on Symmetric Cryptology 2022.3 (2022), pp. 20–72.

[38] L. Grassi, C. Rechberger, and S. Rønjom. “A New Structural-Differential Prop-
erty of 5-Round AES”. In: EUROCRYPT 2017. Vol. 10211. LNCS. 2017, pp. 289–
317.

[39] L. Grassi, C. Rechberger, D. Rotaru, P. Scholl, and N. P. Smart. “MPC-Friendly
Symmetric Key Primitives”. In: CCS. ACM, 2016, pp. 430–443.

31

[40] J. Groth. “On the Size of Pairing-Based Non-interactive Arguments”. In: EU-
ROCRYPT 2016. Vol. 9666. LNCS. 2016, pp. 305–326.

[41] V. T. Hoang and P. Rogaway. “On Generalized Feistel Networks”. In: CRYPTO.
Vol. 6223. LNCS. 2010, pp. 613–630.

[42] T. Holenstein, R. Künzler, and S. Tessaro. “The equivalence of the random oracle
model and the ideal cipher model, revisited”. In: STOC 2011. ACM, 2011, pp. 89–
98.

[43] H. B. Hougaard. “3-round Feistel is Not Superpseudorandom Over Any Group”.
In: IACR Cryptol. ePrint Arch. (2021), p. 675.

[44] T. Jakobsen and L. R. Knudsen. “The Interpolation Attack on Block Ciphers”.
In: FSE 1997. Vol. 1267. LNCS. 1997, pp. 28–40.

[45] L. R. Knudsen. “Truncated and Higher Order Differentials”. In: FSE 1994.
Vol. 1008. LNCS. 1994, pp. 196–211.

[46] X. Lai and J. L. Massey. “A Proposal for a New Block Encryption Standard”.
In: EUROCRYPT 1990. Vol. 473. LNCS. 1990, pp. 389–404.

[47] M. Lamberger, F. Mendel, C. Rechberger, V. Rijmen, and M. Schläffer. “Re-
bound Distinguishers: Results on the Full Whirlpool Compression Function”. In:
ASIACRYPT 2009. Vol. 5912. LNCS. 2009, pp. 126–143.

[48] G. Leander, M. A. Abdelraheem, H. AlKhzaimi, and E. Zenner. “A Cryptanalysis
of PRINTcipher: The Invariant Subspace Attack”. In: CRYPTO 2011. Vol. 6841.
LNCS. 2011, pp. 206–221.

[49] M. Luby and C. Rackoff. “How to Construct Pseudorandom Permutations from
Pseudorandom Functions”. In: SIAM J. Comput. 17.2 (1988), pp. 373–386.

[50] M. Matsui. “Linear Cryptanalysis Method for DES Cipher”. In: EUROCRYPT
1993. Vol. 765. LNCS. 1993, pp. 386–397.

[51] K. Matusiewicz, M. Naya-Plasencia, I. Nikolic, Y. Sasaki, and M. Schläffer. “Re-
bound Attack on the Full Lane Compression Function”. In: ASIACRYPT 2009.
Vol. 5912. LNCS. 2009, pp. 106–125.

[52] U. M. Maurer and K. Pietrzak. “The Security of Many-Round Luby-Rackoff
Pseudo-Random Permutations”. In: EUROCRYPT 2003. Vol. 2656. LNCS. 2003,
pp. 544–561.

[53] F. Mendel, C. Rechberger, M. Schläffer, and S. S. Thomsen. “The Rebound At-
tack: Cryptanalysis of Reduced Whirlpool and Grøstl”. In: FSE 2009. Vol. 5665.
LNCS. 2009, pp. 260–276.

[54] R. Mollin and S. C. “On Permutation Polynomials Over Finite Fields”. In: In-
ternational Journal of Mathematics and Mathematical Sciences 10 (Jan. 1987).

[55] National Institute of Standards and Technology. “SHA-3 Standard: Permutation-
Based Hash and Extendable-Output Functions”. In: Federal Information Process-
ing Standards Publication (FIPS) (202 2015).

[56] K. Nyberg. “Generalized Feistel Networks”. In: ASIACRYPT. Vol. 1163. LNCS.
1996, pp. 91–104.

[57] J. Patarin. “About Feistel Schemes with Six (or More) Rounds”. In: FSE 1998.
Vol. 1372. LNCS. 1998, pp. 103–121.

[58] J. Patarin. “Generic Attacks on Feistel Schemes”. In: ASIACRYPT 2001. Vol. 2248.
LNCS. 2001, pp. 222–238.

[59] J. Patarin. “Luby-Rackoff: 7 Rounds Are Enough for 2n(1−ε) Security”. In: CRYPTO
2003. Vol. 2729. LNCS. 2003, pp. 513–529.

[60] J. Patarin. “Security of Random Feistel Schemes with 5 or More Rounds”. In:
CRYPTO 2004. Vol. 3152. LNCS. 2004, pp. 106–122.

32

[61] S. Patel, Z. Ramzan, and G. S. Sundaram. “Luby-Rackoff Ciphers: Why XOR Is
Not So Exclusive”. In: Selected Areas in Cryptography. Vol. 2595. Lecture Notes
in Computer Science. Springer, 2002, pp. 271–290.

[62] V. Rijmen, J. Daemen, B. Preneel, A. Bosselaers, and E. D. Win. “The Cipher
SHARK”. In: FSE 1996. Vol. 1039. LNCS. 1996, pp. 99–111.

[63] A. Szepieniec. “On the Use of the Legendre Symbol in Symmetric Cipher Design”.
In: IACR Cryptol. ePrint Arch. (2021), p. 984.

[64] A. Szepieniec, T. Ashur, and S. Dhooghe. Rescue-Prime: a Standard Specification
(SoK). Cryptology ePrint Archive, Report 2020/1143. 2020.

[65] S. Vaudenay. “On the Lai-Massey Scheme”. In: ASIACRYPT 1999. Vol. 1716.
LNCS. 1999, pp. 8–19.

[66] S. Vaudenay. “Decorrelation: A Theory for Block Cipher Security”. In: J. Cryp-
tol. 16.4 (2003), pp. 249–286.

[67] ZCash protocol specification. https://github.com/zcash/zips/blob/master/
protocol/protocol.pdf. 2021.

[68] Y. Zheng, T. Matsumoto, and H. Imai. “On the Construction of Block Ciphers
Provably Secure and Not Relying on Any Unproved Hypotheses”. In: CRYPTO.
Vol. 435. LNCS. 1989, pp. 461–480.

Source Code

The source code used in our evaluations is publicly available at https://extgit.
iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/tree/master/bellman [21].

A Security of Horst Schemes

As we mention in Section 3.2, here we show that

– if r ∈ {1, 2}, there exists a distinguisher for (i) Feistel and (ii) Horst, and
– if r ∈ {3, 4, 5}, there exists a distinguisher for (i) Feistel and (ii) Horst×

(under the condition that F (i) are equal to zero).

We prove the second result by working over the commutative group (G, ∗) and
by considering a generic scheme of the form

(y, x) 7→ (x, y ∗H(x)),

where H(i) : G → G denotes the i-th round function for i ∈ {0, . . . , r − 1}. We
also define ζ ∈ G such that ζ ∗ x = x ∗ ζ = x for x ∈ G.

1 to 2 Rounds. First of all, 1 or 2 rounds of Horst and/or Feistel can always be
distinguished from a PRP. Starting with a difference (δ, 0) ∈ F2

q we get an output
difference of the form (δ, δ′) ∈ F2

q in the case of 2-round Feistel (for an unknown
δ′ ∈ Fq). In the case of Horst, consider three inputs of the form (yi, x) ∈ F2

q for
i ∈ {0, 1, 2} and the corresponding outputs (zi, wi) ∈ F2

q for i ∈ {0, 1, 2}, where

33

https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/tree/master/bellman
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/tree/master/bellman

zi := yi ·G(0)(x) + F (0)(x) and for unknown w0, w1, w2 ∈ Fq. Hence, in the case
of 2-round Horst, we have

(y2 − y0) · (z1 − z0) = (z2 − z0) · (y1 − y0)

with probability 1, while this occurs with probability 1/q in the case of a PRP.

3 Rounds. In the case of Feistel/Horst×, we can consider inputs of the form
(ζ, xi) ∈ G2 for several i ∈ N and the corresponding outputs (zi, wi) ∈ G2. We
then have that zi = xi ∗ H(1)(H(0)(xi)). Since H(0) and H(1) are PRFs, the
probability to have a collision of the form zi ∗xj = zj ∗xi for j 6= i is around 2/q
in the case of Feistel/Horst× and around 1/q in the case of a PRP. Indeed, note
that zi∗xj = zj∗xi can occur if eitherH(0)(xi) = H(0)(xj) (which happens with a
probability of 1/q) or H(0)(xi) 6= H(0)(xj) and H(1)(H(0)(xi)) = H(1)(H(0)(xj))
(which happens with a probability of (1− 1/q) · 1/q ≈ 1/q). In the generic case
of a Horst scheme in which G(i) and F (i) are unrelated, the problem to set up
a distinguisher for 3 rounds is open for future research.

4 Rounds. The previous 3-round distinguisher can easily be extended to 4 rounds.
Indeed, it is sufficient to start with inputs of the form (yi, ζ) ∈ G2, and to reuse
the previous distinguisher, by noting that the outputs of the first rounds are of
the form (ζ, xi) ∈ G2.

5 Rounds. Finally, it is possible to set up a distinguisher on 5-round Feis-
tel/Horst×. Let |G| be the cardinality of the group G. The idea is to con-
sider |G|7/4 inputs of the form (xi, yi) ∈ G2, and the corresponding outputs
(zi, wi) ∈ G2 after 5 rounds. If there exist {(xi, yi), (zi, wi)}i∈{1,2,3,4} such that
x1 6= x3, y1 6= y2 and

y1 = y3, y2 = y4, x1 ∗ x4 = x2 ∗ x3, z1 = z3, z2 = z4,

z1 ∗ y2 = y1 ∗ z2, w1 ∗ x3 = x1 ∗ w3, w1 ∗ w4 = w2 ∗ w3,

we can conclude that the analyzed scheme is a 5-round Feistel/Horst×. Other-
wise, the outputs have been generated by a PRF. This result can be proven by
(easily) adapting the proof proposed in [27, Section 4].

B STARKs with Griffin

We first analyze the cost metric in STARKs, and then the performance of Grif-
fin compared to various competitors.

B.1 Algebraic Intermediate Representation (AIR)

zk-STARKs [3] require to translate the computational problem into an algebraic
intermediate representation (AIR). The AIR consists of a sequence of machine

34

states (the algebraic execution trace (AET)) and multivariate polynomials de-
scribing the transition between those states. The machine states consist of w
registers each, and the sequence has a length of T machine states. Thus, the
AET is a T × w matrix, where the i-th row describes the machine state at
timestep i. With dmax being the maximum degree of all multivariate transition
polynomials, the efficiency of the proof system (i.e., proof size, prover/verification
time) depends on w, T , and dmax, where smaller values lead to more efficient
proofs. In the literature, several different performance metrics have been pro-
posed to compare the efficiency of different AIRs, such as w · T · dmax in [2],

8 ·w · T · dmax · log2(w · T) in [18], or
⌈
log2(|F|)

64

⌉2
· (dmax +w) · T · log2(T) in [4].

There exist many different ways to design an AIR from a given circuit. For
arithmetic hash functions purely built with additions and multiplications, an
AIR can be built as follows. (1) The AET consists of a machine with a state size
of w, which is equal to the state size t of the hash function, and represents the
state after each round. (2) The length T of the AET sequence equals the num-
ber of rounds r of the hash function. (3) The multivariate update polynomials
correspond to the applied round function, which is why dmax corresponds to the
maximum degree of the representation of the nonlinear layers.

One can also consider various tradeoffs, e.g., increasing the state size w of the
AIR by adding intermediate variables to reduce the maximum degree dmax of
the update polynomials. The designer must find an optimal AIR representation
which minimizes the cost. In many cases, though, starting with the straightfor-
ward AIR described in this section will give the best result. Indeed, the designers
of Poseidon and Rescue propose such AIRs with slight modifications.22

Cost Metric. We approximate the cost metric to be in O(dmax · T), i.e., the
number of rounds times the degree of the round function representation.

B.2 Relations Between SNARK and STARK Cost Metrics

Similar to e.g. HE or MPC use cases, the performance of the proof systems
scales with the number of nonlinear operations. However, the metrics can differ
significantly. While for HE it is important to minimize the multiplicative depth,
for MPC it is crucial to minimize the total number of multiplications. In ZK
proof systems, on the other hand, it is important to find an efficient equivalent
representation which minimizes the degree and/or the number of multiplications.
Thus, while having to compute y = x1/d for small d is inefficient in MPC due
to the large number of multiplications, it is efficient in SNARKs/STARKs by
switching the representation to yd = x. Further, observe that the degree of a
nonlinear relation differs from the number of multiplications. The relations y3 =
x3 and y4 = x4 have a different degree (i.e., y3 is more beneficial in STARKs),
however, they require the same number of multiplications to compute, which

22 Poseidon uses heavy preprocessing to combine t partial rounds into one to reduce
the effective number of partial rounds.

35

make them equivalent in MPC and SNARKs. Similarly, the relations y5 = x5

and y′5 =
∑5
i=0 x

i have the same degree and are equally beneficial in STARKs,
but y′5 requires more multiplications, making it worse for MPC and SNARKs.

B.3 STARK Performance of Griffin

Here we analyze the efficiency of Griffin and its competitors in zk-STARKs by
comparing the AIR representations of the different hash functions. For this pur-
pose, we transform Griffin into an efficient AIR representation: We construct
a straightforward AIR, where the machine size w equals the state size t and rep-
resents the state of Griffin after each round. Thus, the length of the AET se-
quence T corresponds to the number of rounds R. Describing the nonlinear layer
as yd0 = x0, y1 = xd1, y2 = x2 ·

(
(γ2 · y0 + y1)2 + α2(γ2 · y0 + y1) + β2

)
, and yi =

xi ·
(
(γi · y0 + y1 + xi−1)2 + αi(γi · y0 + y1 + xi−1) + βi

)
for i ∈ {3, . . . , t − 1},

one can observe that the maximum degree of the multivariate update polynomi-
als is given by d, since per definition d ≥ 3. As before, the linear layers can be
included into the description of the nonlinear layers.

Compared to the AIR representation of Poseidon, Rescue/Rescue-Prime,
and Grendel , the structure of the Griffin AIR constraints is simpler. Indeed,
Poseidon requires heavy precomputations to combine its partial rounds for a
more compact AIR representation, the AIR of Rescue needs to combine the two
nonlinear layers per round with a meet-in-the-middle approach, and Grendel
requires to prove the Legendre symbol via introducing additional witness vari-
ables. However, the AIR of Griffin is just a straightforward translation, and is
therefore easier to use in practice.

In Table 4 we compare the AIRs of the six different permutations when
instantiated with 128-bit security, a 256-bit prime field, four different state sizes
t, and for the most common cases where d = 3 and d = 5. For some prime fields,
Grendel can be instantiated with d = 2 which is why we also give numbers for
this case. We give the AIR numbers by first listing the values for w, T , and dmax,
and then use their product as metric as in [2].

The optimized AIR representations of all hash functions, with the exception
of Grendel and GMiMCerf , use a machine state with a size w equal to the state
size t. Moreover, the maximum degree dmax equals the degree of the nonlinear
layers d. Consequently, the length of the AET sequence T , which is equal to the
number of rounds in Rescue and Griffin and depends on the number of rounds
and the state size t in Poseidon and Neptune, constitutes the performance
difference between these four designs, with smaller T yielding a more efficient
AIR. In any case, Poseidon and Neptune have the largest T , i.e., a worse
AIR compared to Griffin, Rescue, and the very recently proposed Anemoi.
The difference between the number of rounds of Griffin, Rescue, and Anemoi
depends on both t and d. Thus, there are cases, where Griffin has a better AIR
(e.g., t = 3), cases where Rescue has fewer rounds (e.g., t ∈ {8, 12}) and cases
for which Anemoi produces the cheapest AIR (e.g., t = 4). In all cases, though,
Griffin has significantly better plain performance than Rescue (and we expect

36

faster plain performance compared to Anemoi), reducing the time to build the
AET.

Even though Grendel can be instantiated with d = 2 in some prime fields,
the resulting round numbers, in addition to dmax ≥ 4, lead to a significantly
worse AIR compared to Griffin and Rescue. Further, even though GMiMCerf

can be represented with w = 1 [4] in an AIR, the large number of rounds make
it less efficient than the other designs.

37

Table 4: Comparison of AIR cost for different permutations instantaited with a
256-bit prime field. The total AIR cost is given as the product of w · T · dmax.

d = 2 d = 3 d = 5
R w T dmax AIR RF RP R w T dmax AIR RF RP R w T dmax AIR

t = 3:

Griffin – – – – – – – 16 3 16 3 144 – – 12 3 12 5 180
Rescue-Prime – – – – – – – 18 3 18 3 162 – – 14 3 14 5 210
Poseidon – – – – – 8 83 – 3 36 3 324 8 56 – 3 27 5 405
GMiMCerf – – – – – – – 328 1 328 3 984 – – 256 1 256 5 1280
Grendel 38 9 38 4 1368 – – 33 9 33 4 1188 – – 29 9 29 6 1566

t = 4:

Griffin – – – – – – – 14 4 14 3 168 – – 11 4 11 5 220
Rescue-Prime – – – – – – – 14 4 14 3 168 – – 11 4 11 5 220
Poseidon – – – – – 8 84 – 4 29 3 348 8 56 – 4 22 5 440
Neptune – – – – – 6 68 – 4 23 4 368 6 68 – 4 23 5 460
GMiMCerf – – – – – – – 330 1 330 3 990 – – 228 1 288 5 1440
Grendel 31 12 31 4 1488 – – 28 12 28 4 1344 – – 25 12 25 6 1800
Anemoi – – – – – – – 12 4 12 3 144 – – 12 4 12 5 240

t = 8:

Griffin – – – – – – – 11 8 11 3 264 – – 9 8 9 5 360
Rescue-Prime – – – – – – – 8 8 8 3 192 – – 8 8 8 5 320
Neptune – – – – – 6 72 – 8 15 4 480 6 72 – 8 15 5 600
Poseidon – – – – – 8 84 – 8 19 3 456 8 57 – 8 16 5 640
GMiMCerf – – – – – – – 338 1 338 3 1014 – – 236 1 236 5 1180
Grendel 17 24 17 4 1632 – – 16 24 16 4 1536 – – 15 24 15 6 2160
Anemoi – – – – – – – 10 8 10 3 240 – – 10 8 10 5 400

t = 12:

Griffin – – – – – – – 10 12 10 3 360 – – 9 12 9 5 540
Rescue-Prime – – – – – – – 8 12 8 3 288 – – 8 12 8 5 480
Poseidon – – – – – 8 85 – 12 16 3 576 8 57 – 12 13 5 780
Neptune – – – – – 6 78 – 12 13 4 624 6 78 – 12 13 5 780
GMiMCerf – – – – – – – 346 1 346 3 1038 – – 314 1 314 5 1570
Grendel 12 36 12 4 1728 – – 12 36 12 4 1728 – – 11 36 11 6 2376
Anemoi – – – – – – – 10 12 10 3 360 – – 10 12 10 5 600

38

C Plonk with Griffin

In this section we first analyze the cost metric in the Plonk proof system, and
then the performance of Griffin compared to different competitors.

C.1 Plonk Arithmetization

The Plonk [15] proof system is a zk-SNARK proof system which does not use
R1CS constraints. Its arithmetization is based on Plonk gates, more concretely,
the constraints are of the form

qLi · aLi + qRi · aRi + qOi · aOi + qMi · (aLiaRi) + qCi = 0, (9)

where the a values are again the witness variables and the q values describe a
given constraint. Using this equation, one can either describe a 2-fan-in addition
(setting qM,i = 0) or a 2-fan-in multiplication (setting qL,i = qR,i = 0). Thus, to
use the Plonk proof system one needs to describe the given circuit using 2-fan-in
addition and multiplication gates. As a result, contrary to R1CS constraints, ad-
ditions cannot be embedded into subsequent multiplication constraints anymore
and require Plonk gates on their own.

Cost Metric. We measure the number of Plonk gates, i.e., the minimum num-
ber of 2-fan-in additions and multiplications of witness variables required to fully
represent any (equivalent) relation between the preimage and the hash.

Remark 4. The plonk proof system is in general very flexible and can easily be
modified to use constraints different to Eq. (9). Thus, some implementations
of the Plonk system extend Eq. (9) to allow 3-fan-in addition gates which are
beneficial in some use cases. For this implementations the cost metric changes
accordingly, i.e., the cost is then the minimum number of 2-fan-in multiplica-
tions and 3-fan-in additions of witness variables required to fully represent any
(equivalent) relation between the preimage and the hash.

C.2 Plonk Performance of Griffin

Describing Griffin as Plonk gates can be done as follows. Each affine layer
usually requires t · (t− 1) addition gates. However, due to the special structure
of our linear layers which are optimized for a low number of additions, the
number gets significantly reduced (similar to Poseidon and Neptune where
the affine layers can be represented with less number of addition gates as well).
Regarding the nonlinear layer, the first two words require blog2(d)c+ hw(d)− 1
multiplication gates. Computing L(·) requires one addition gate for i = 2 and
two gates for i > 2. Computing zi = Li(·)2 +αiLi(·) +βi requires one gate, plus
an additional multiplication gate for yi = xi · zi. Summing up, Griffin requires

(R+ 1) ·#mat +R · (2 · blog2(d)c+ 2 · hw(d) + 4t− 11)

39

Table 5: Number of Plonk gates to describe various hash functions when instan-
tiated with a 256-bit prime field. Numbers are given for Plonk implementations
using either 2-fan-in addition gates or 3-fan-in addition gates.

Hash
State size t

2-fan-in addition gates 3-fan-in addition gates
3 4 5 8 9 12 3 4 5 8 9 12

d = 3

Griffin 197 319 – 705 – 1013 163 230 – 482 – 714
Reinforced Concrete 372 – – – – – 270 – – – – –
Rescue-Prime 432 560 720 1152 1440 2496 324 448 480 768 864 1536
Poseidon 600 844 1100 1976 2304 3420 407 640 674 1256 1308 2030
Neptune – 687 – 1435 – 2451 – 534 – 1074 – 1812
Grendel 1485 1792 2040 2560 2835 3456 1386 1680 1800 2176 2295 2736
GMiMCerf 1312 1650 1992 3042 3400 4498 984 1320 1328 2028 2040 2768
Anemoi – 220 – 544 – 1080 – 172 – 376 – 696

d = 5

Griffin 173 275 – 601 – 935 147 204 – 416 – 664
Reinforced Concrete 378 – – – – – 276 – – – – –
Rescue-Prime 420 528 630 1280 1584 2688 336 440 450 896 1008 1728
Poseidon 518 708 916 1665 1947 2901 379 560 602 1107 1167 1791
Neptune – 755 – 1507 – 2529 – 602 – 1146 – 1890
Grendel 1392 1700 1890 2520 2772 3300 1305 1600 1680 2160 2268 2640
GMiMCerf 1130 1368 1610 2360 2618 4396 904 1140 1150 1652 1666 2826
Anemoi – 244 – 584 – 1140 – 196 – 416 – 756

Plonk gates, i.e., (R+ 1) ·#mat +R · (4t−5) gates if d = 3 and (R+ 1) ·#mat +
R ·(4t−3) gates if d = 5. Depending on t, the gates per linaer layer #mat varies:
#mat = 5 for t = 3, #mat = 11 for t = 4, and #mat = 11t

4 + 2t− 4 otherwise.

Remark 5. When 3-fan-in addition gates are available in the Plonk implementa-
tion (see Remark 4), then Griffin requires (R+ 1) ·#mat +R · (2 · blog2(d)c+
2 · hw(d) + 3t − 8) Plonk gates, with #mat = 3 for t = 3, #mat = 6 for t = 4,

and #mat = 6t
4 + 4 ·

⌊
t/4−1

2

⌋
+ t otherwise.

In Table 5, we compare the efficiency of the different hash function when used
in the Plonk proof system by comparing the number of Plonk gates required to
represent one permutation. One can observe that compared to Poseidon and
Rescue, Griffin always requires the smallest number of Plonk gates due to
having a small number of multiplications (Section 6.2) and a small number of
rounds implying a small number of linear layers. Only the consequent design
Anemoi requires a smaller number of gates for small state sizes, due to having
the advantage of cheaper linear layers which require less addition gates. However,
Griffin’s linear layer becomes cheaper with larger state sizes until Griffin be-
ing more efficient then Anemoi at around t ≥ 12. We also compare Griffin to
Reinforced Concrete [17], a hash function with a fixed state size t = 3 intro-
ducing novel techniques to use lookup tables in Fp designs. These lookup tables
lead to fast plain performances, but potentially also introduce the risk of side-

40

channel attacks. Further, they prevent Reinforced Concrete from (efficiently)
being used in R1CS-based SNARKs or AIR-based STARKs. It is, however, us-
able and specifically designed for Plookup [14], an extension to Plonk allowing
lookup tables. Interestingly though, Griffin requires fewer Plonk gates than
Reinforced Concrete when using Plonk with the Plookup extension.

D Proofs – Differential Cryptanalysis

D.1 Maximum Differential Probability of S

Proof of Lemma 2 – Maximum Differential Probability of x 7→ x1/d.
First we prove that DPmax(x 7→ xd) = DPmax(x 7→ x1/d). Given the input
and output differences δI and δO, we want to analyze the maximal number of

solutions x of (x+ δI)
1/d − x1/d = δO, or equivalently of

(x+ δI)
1/d

= x1/d + δO.

Computing the power of d of both sides, we have

x+ δI = (x1/d + δO)d =⇒ (x1/d + δO)d − x = δI .

By making use of the change of variable y = x1/d or x = yd in the above
equation, we get

(y + δO)d − yd = δI .

Since every step is invertible, we have that the number of solutions of (x+ δI)
1/d−

x1/d = δO for y = xd corresponds to the number of solutions of (y+δO)d−yd = δI
for y = x1/d. That is, DPmax(x 7→ xd) = DPmax(x 7→ x1/d) for each d such that
gcd(d, p− 1) = 1.

We then prove that DPmax(x 7→ xd
′
) = d′−1

p for a generic d′ such that

gcd(d′, p− 1) = 1. The equation (x+ δI)
d′ − xd′ = δO equals to

∑d′−1
i=0

(
d′

i

)
· xi ·

δd
′−i
I = δO. The maximal degree of the left-hand side with respect to x is d′− 1,

hence the maximal number of solutions x is d′− 1, therefore DPmax(x 7→ xd
′
) =

(d′ − 1)/p. This completes the proof.

Proof of Lemma 3 – Maximum Differential Probability of (x, `) 7→ y =
x · (`2 + α` + β). Given ∆I = (δx, δ`) and ∆O = δy, we look for the number
of solutions of

δy = (δx + x) ·
(
(δ` + `)2 + α(δ` + `) + β

)
− x · (`2 + α`+ β)

= δx ·
(
δ2` + δ` · (2`+ α) + (`2 + α · `+ β)

)
+ x · δ` · (δ` + (2`+ α)) .

We distinguish the cases δ = 0 and δ 6= 0.

41

– If δ` = 0 and δx 6= 0, then

δx ·
(
`2 + α · `+ β

)
= δy =⇒ `2 + α · `+ (β − δy/δx) = 0,

which admits at most two different solutions in ` (independently of x) if
δy 6= 0, i.e., DPmax((δ` = 0, δx) 7→ δy) ≤ 2/p. If δy = 0, then no solution is
possible (since `2 +α · `+β 6= 0 for each ` ∈ Fp), thus DPmax((δ` = 0, δx) 7→
δy = 0) = 0.

– If δ` 6= 0 and δx = 0, we have

x · δ` · (δ` + (2`+ α)) = δy.

If δy = 0, this equation admits x = 0 or ` = −(α+δ`)/2 as possible solutions,
which means that DPmax((δ`, δx = 0) 7→ δy = 0) ≤ (2p − 1)/p2 ≤ 2/p.
Otherwise, if δy 6= 0 and ` 6= −(α+ δ`)/2,

x =
δy

δ` · (δ` + (2`+ α))
.

As a result, DPmax((δ`, δx = 0) 7→ δy) ≤ (p− 1)/p2 ≤ 1/p.
– If δ` 6= 0 and δx 6= 0, the solutions are given by

x =
δy − δx ·

(
δ2` + δ` · (2`+ α) + (`2 + α · `+ β)

)
δ` · (δ` + (2`+ α))

if ` 6= −(α + δ`)/2. Hence, again DPmax((δx, δ`) 7→ δy) ≤ (p − 1)/p2 ≤ 1/p.
This result also holds for δy = 0.

D.2 Branch Number of M

Practical Tests for the Branch Number of M . We practically test the
branch number of M = M

′′ ×M ′
with M

′
= diag(M0,M1, . . . ,Mt′−1), where

Mi = circ(3, 2, 1, 1) and M
′′

= circ(2I, I, . . . , I) over Fp, for p = 11, 13, . . . , 31
and p ≈ 280. The results are given in Table 6. We observe that for our applica-
tions with large p (e.g., p ≥ 232), and 8 ≤ t ≤ 24, the branch number of M is
t′ + 4, and for t > 24 the branch number can be smaller. Next, we prove that
the branch number of M is t′ + 4 for 2 ≤ t′ ≤ 6.

Proof of the Branch Number of M . The quality of a linear diffusion layer
can be reflected by its branch number. For a vector ~a over the field Fp, its
hamming weight hw(~a) is defined in the following.

Definition 4. The Hamming weight of a vector, denoted as hw(·), is defined as
the number of nonzero elements.

For an arbitrary matrix M ∈ Fn×mp , the branch number #b of M is

#b := min
~a∈Fm

p \{~0}
{hw(~a) + hw(M~a)} . (10)

42

Table 6: Branch numbers of M with t = 4t′ ≥ 8 over Fp found in our tests.

t t′
log2 p

11 13 17 19 23 29 31 ≈ 280

8 2 5 6 5 6 6 6 6 6
12 3 6 7 6 7 7 7 7 7
16 4 7 8 7 8 8 8 8 8
20 5 8 9 8 9 9 9 9 9
24 6 8 10 8 10 10 10 10 10

According to Section 4.2, for t = 8, 12, . . . , 24, we have M ∈ Ft×tp and t′ = t/4 ∈
{2, . . . , 6}. Denote the column vectors of I as ~e0, . . . , ~e3, where I ∈ F4×4

p is the
4× 4 identity matrix, we have I = (~e0, . . . , ~e3). We also define a 4× 4 circulant
matrix A = circ(3, 2, 1, 1) which is an MDS matrix having branch number 5.
Then, the t× t matrix M ∈ Ft×tp can be represented as

M =

2A A . . . A
A 2A . . . A
...

. . .
...

A A . . . 2A

 .

The column vectors of A are denoted as ~h0, . . . ,~h3 such that A = (~h0, . . . ,~h3).
With the column vectors

~a = (a0,0, . . . , a0,3, a1,0, . . . , a1,3, . . . , at′−1,0, . . . , at′−1,3)T , (11)

~b = (b0,0, . . . , b0,3, b1,0, . . . , b1,3, . . . , bt′−1,0, . . . , bt′−1,3)T (12)

∈ F4t′

p , according to the definition of the branch number in Eq. (10), there must

be vectors ~a,~b ∈ Ftp satisfying

M~a = ~b, (13)

hw(~a) + hw(~b) = #b. (14)

In the remainder of this part, without specific instructions, we constantly use
~a,~b to represent the vectors satisfying Eq. (13) and Eq. (14) simultaneously so

as to prove #b = hw(~a) + hw(~b) = t′ + 4 when t′ = 2, . . . , 6.

Inequality: #b ≤ t′ + 4. For arbitrary t′, we can easily prove that #b ≤ t′ +
4. Indeed, it is sufficient to set a0,0 = 1 + t′−1

t′ , a1,0 = · · · = at′−1,0 = −1
t′ ,

(b0,0, . . . , b0,3) = (−3,−1,−1,−2) and other entries of ~a,~b equal to 0 so as to
satisfy Eq. (13). Therefore, we have #b ≤ t′ + 4.

43

Equality: #b = t′ + 4. For j = 0, . . . , 3, let us define the summation sj and
column vectors ~aj ,~a

′
j as

sj =

t′−1∑
i=0

ai,j , (15)

~aj = (a0,j , . . . , at′−1,j)
T , (16)

~a′j = (a0,j + sj , . . . , at′−1,j + sj)
T . (17)

We prove the following lemma.

Lemma 4. For ~aj ,~a
′
j (j = 0, . . . , 3) in Eq. (16) and Eq. (17), when hw(~a′j) ≤ t′

2 ,
there is hw(~aj) ≥ hw(~a′j).

Proof. Without loss of generality, we let ai,j + sj = 0 for i = b t
′

2 c, . . . , t
′−1, and

(a0,j + sj , . . . , ab t′2 c−1,j
+ sj) 6= ~0.

– If sj = 0, clearly ~aj = ~a′j and hw(~aj) = hw(~a′j).

– If sj 6= 0, we have ai,j = −sj 6= 0 for i = b t
′

2 c, . . . , t
′−1. Therefore, hw(~aj) ≥

b t
′

2 c+ 1 ≥ t′

2 ≥ hw(~a′j).

Note that Eq. (13) can be rewritten as
a0,0 + s0 a0,1 + s1 a0,2 + s2 a0,3 + s3
a1,0 + s0 a1,1 + s1 a1,2 + s2 a1,3 + s3

...
...

...
...

at′−1,0 + s0 at′−1,1 + s1 at′−1,2 + s2 at′−1,3 + s3

×

~h0

~h1

~h2

~h3

=

b0,0 b0,1 b0,2 b0,3
b0,0 b0,1 b1,2 b1,3

...
...

...
...

bt′−1,0 bt′−1,1 bt′−1,2 bt′−1,3

×

~e0
~e1
~e2
~e3

 .

For j = 0, . . . , t′−1, we define ~αj = (aj,0+s0, . . . , aj,3+s3) and ~βj = (bj,0, . . . , bj,3).

Since A = (~h0, . . . ,~h3), A~αj = ~βj . Since the branch number of A is 5,

hw(~αj) + hw(~βj) =

{
0 if hw(~αj) = 0,

5 otherwise,

and combining the definition of ~βj and ~b in App. D.2, we can deduce

hw(~b) =

t′−1∑
j=0

hw(~βj). (18)

Moreover, from Eq. (16) and App. D.2, ~a0, . . . ,~a3 form a partition of ~a such that

hw(~a) =

3∑
j=0

hw(~aj). (19)

44

Lemma 5. If there is only one j = 0, . . . , 3 such that ~βj 6= ~0, then hw(~βj) = 4.

Proof. Without loss of generality, we let ~β0 6= ~0. In this situation, for arbitrary
j = 0, . . . , 3 and a0,j + sj 6= 0, we can prove that ai,j 6= 0 for all i = 0, . . . , t′− 1.

– If sj = 0, there must be a1,j = · · · = at′−1,j = 0. But a0,j 6= 0 contradicts
the definition of sj in Eq. (15).

– If sj 6= 0, there must be a1,j = · · · = at′−1,j = −sj 6= 0 and a0,j = t′sj 6= 0
according to Eq. (15). Therefore, hw(~a) can be computed as hw(~a) = t′ ·
hw(~α0). There is also hw(~β0) + hw(~α0) ≥ 5. Therefore, we have

#b = hw(~a) + hw(~b) = t′ · hw(~α0) + hw(~β0) ≥ (t′ − 1) · hw(~α0) + 5.

Since #b ≤ t′ + 4, hw(~α0) = 1 is the only solution when t′ ≥ 2.

Theorem 1. For 2 ≤ t′ ≤ 6, the branch number of M is #b = t′ + 4.

Proof. Let η be the number of nonzero ~βj ’s.

– If 1 ≤ t′

2 < η ≤ t′, there must be some 0 ≤ j ≤ 3 such that hw(~aj) > 0.

Without loss of generality, let ~β0, . . . , ~βη−1 be the η nonzero vectors.

1. There is just one j such that ~aj 6= 0. There must be ~a′j 6= 0 and hw(~b) =
4η. If sj = 0, we have hw(~aj) = hw(~a′j) = η ≥ t′ − η + 1 and that

hw(~a) + hw(~b) = #b = 5η ≥ 10, contradicting #b ≤ t′ + 4. If sj 6= 0, we

have aη,j = · · · = at′−1,j = −sj 6= 0, a0,j 6= 0. We have hw(~a) + hw(~b) ≥
t′ + 3η + 1 > t′ + 4, contradicting #b ≤ t′ + 4.

2. There exist two j’s such that ~aj 6= 0. Then there must be ~a′j 6= 0 and

hw(~b) ≥ 3η. Moreover, there is constantly hw(~aj) ≥ t′ − η + 1. We have

hw(~a) + hw(~b) ≥ 2t′ + η + 2 ≥ 5t′

2 + 2, contradicting #b ≤ t′ + 4.
3. There exist three j’s such that ~aj 6= 0. Then there must be ~a′j 6= 0 and

hw(~b) ≥ 2η. Moreover, there is constantly hw(~aj) ≥ t′ − η + 1. We have

hw(~a) + hw(~b) ≥ 3t′ − η + 3 ≥ 2t′ + 3, contradicting #b ≤ t′ + 4.

4. For j = 0, 1, 2, 3, ~aj 6= 0. There must be ~a′j 6= 0 and hw(~b) ≥ η. Moreover,

there is constantly hw(~aj) ≥ t′ − η + 1. We have hw(~a) + hw(~b) ≥ 4t′ −
3η+ 4 ≥ t′+ 4. Adding the constraint that #b = hw(~a) + hw(~b) ≤ t′+ 4,
the only solution is #b = t′+ 4 and it can only be acquired when η = t′,
hw(~b) = t′, and hw(~aj) = 1 are all satisfied.

Therefore, for η > t′

2 , the branch number can only be #b = t′ + 4.

– If η ≤ t′

2 , we have hw(~a′j) ≤ η ≤ t′

2 for all j = 0, . . . , 3. It can be deduced from
Lemma 4 that hw(~aj) ≥ hw(~a′j) and according to Eq. (18) and Eq. (19), there
is #b ≥ 5η. Adding the constraint that #b ≤ t′+4, all possible solutions are
the following.

45

1. For t′ = 6, we have η = 1 and η = 2. For η = 1 and t′ = 6, with Lemma 5,
we have hw(~a) + hw(~b) = t′ + 4 = 10. For η = 2 and t′ = 6, we have

hw(~a) + hw(~b) ≥ 5η = 10. Therefore, there is #b = t′ + 4 for t′ = 6.
2. For 2 ≤ t′ < 6, there is only one satisfying value η = 1. So #b = t′ + 4

is the direct application of Lemma 5.

To sum up, #b = t′ + 4 for all 2 ≤ t′ ≤ 6.

E Dedicated Automatic Tools for Differential
Propagations of Griffin-π – Differential Attack and
Rebound Attack

To verify the differential bound in Section 5.2, we set up a dedicated mixed
integer linear programming (MILP) tool to look for upper bounds of the prob-
abilities of the (classical) differential characteristics given in Section 5.2. Let
us denote this upper bound for the probability by DP. With the tool, a MILP
modelM is constructed to find the truncated differential patterns with the high-
est probability. First, truncated word differences are represented inM as binary
variables denoted as M.var: 0 for zero differences (also known as inactive) and
1 for nonzero ones (also known as active). Then, the truncated differential prop-
agation rules are described as the linear constraints denoted as M.con. Finally,
the objective functionM.obj is set so as to upper bound the propagation prob-
ability. In the case of an aligned scheme [26, 29],M.obj aims at minimizing the
summation of the binary variables corresponding to all S-box inputs, since the
highest probability corresponds to the fewest active (having nonzero input and
output difference) S-boxes. Hence, in the case of a strong-arranged scheme, DP
can be computed as DP = (DPmax(S))#a, where #a is the solution of M.obj
and the DPmax(S) corresponding to each S-box can be acquired with its differ-
ential distribution table (DDT).

In our weak-arranged design Horst, structural nonlinear operations in S take
2 input words and produce 1 output word. For each nonlinear operation in Grif-
fin-π, we add an additional binary variable τ ∈ M.var so as to describe the
corresponding differential propagation probabilities. Hence, the objective func-
tion is simply minimizing the summation of all τ ’s as M.obj = min

∑
τ . With

the solutionM.obj = #a, DP can be computed as (d/p)#a where the DPmax of
the 3 kinds of nonlinear functions composing S are bounded as DPmax(S) ≤ d

p

(see Lemma 2 and Lemma 3).

Constructing the MILP Models. The core of our dedicated tools is the con-
struction of MILP model M’s capturing the truncated differential propaga-
tion and the corresponding probabilities of Griffin-π. In the round function
Fi(·) = c(i) +M ×S(·), the round constant addition operation with c(i) does not
change the difference propagation, so we omit it in the MILP model to simplify
the differential propagation of the i-th round as follows:

∆Xi S−→ ∆Y i
M−→ ∆Xi+1.

46

The truncated differences ∆Xi and ∆Y i are represented in the model M as
follows:

∆Xi = (δxi
0
, . . . , δxi

t−1
)
S−→ ∆Y i = (δyi0 , . . . , δyit−1

),

where δ ∈ M.var are binary variables: δ = 1 for nonzero difference and δ = 0
for zero ones. When the context allows, we omit the index. In strong-aligned
S-box based primitives, the summation of δx has strong correlation with the
propagation probability [26, 29, 1, 28, 12]. However, for Griffin-π, the diffusion
also takes place in the nonlinear layer where the first two words affect the other
(t− 2) words. Therefore, in our dedicated tools, additional binary variables τ ∈
M.var are introduced for tracking the probability.23 Such τ ’s correspond to
the nonlinear operation in S in differential attacks and the word condition in
rebound attacks.

E.1 MILP Models for Differential Propagation of Griffin-π

R-round Griffin-π can resist differential attacks only if the corresponding prob-
ability upper bound DP satisfies DP ≤ 2−2κ. The computation of DP correlates
to the maximum differential propagation probability of the 3 kinds of nonlinear
operations in the S layer. Such a probability is denoted as DPmax and is analyzed
in detail as follows.

The DPmax for S. The nonlinear layer S of Griffin-π is composed of four
nonlinear operations, namely x0 7→ x0

1/d = y0, x1 7→ x1
d = y1, (`, xi) 7→

xi · (`2 + α` + β) for 2 ≤ i ≤ t − 1, where ` is a linear function of the first two
words y0 and y1 for i = 2, and another function of three words y0, y1 and xi−1
for 3 ≤ i ≤ t − 1. Since the outputs of the first two words are independent of
the others, the corresponding differential propagation probability is bounded by
d−1
p (see Lemma 2 and the proofs in App. D.1).

MILP Model for S. We now detail the truncated differential propagation
of the three nonlinear operations of S as well as the assignment of the cor-
responding τ variables. The nonlinear operations corresponding to the first two
words, namely y0 = x0

1/d and y1 = x1
d, are strong-aligned so there is constantly

δxi
= δyi = τi ∈M.con for i = 0, 1.
The nonlinear operation for computing the remaining yi’s (i = 2, . . . , t − 1)

can be divided into three kinds of steps: the two linear steps ` = L(y0, y1) =
γ · y0 + y1 and `′ = L(y0, y1, x) = ` + x, where γ 6= 0, the nonlinear steps
yi = S(`, xi) = xi · (`2 +α`+β) for i = 2, and the nonlinear step yi = S(`′, xi) =

xi · (`′2 + α`′ + β) for 3 ≤ i ≤ t− 1, where α2 − 4β 6= 0 mod p. The three steps
are modeled separately.

23 Additional probability correlated binary variables are also used in [13] for describing
the differential and linear propagation probabilities of the unaligned modular add
operation.

47

Table 7: The truncated differential propagation rules for computing yi where
i = 2, . . . , t− 1. We list all possible truncated input and output difference values
for the linear step `′i = L(y0, y1, xi−1), i = 3, . . . , t− 1 on the left side, and those
of the nonlinear step yi = S(`, xi) for i = 2 and yi = S(`′, δxi

) for i = 3, . . . , t−1
on the right side.

(a) The linear step `′i = `i + xi−1

δ`i δxi−1
δ`′

0 0 0
1 0 1
0 1 1
1 1 0
1 1 1

(b) The nonlinear step yi = S(`, xi) or S(`′, xi)

δ`/δ`′ δxi
δyi τi

0 0 0 0
1 0 1 1
1 0 0 1
0 1 1 1
1 1 0 1
1 1 1 1

The linear step `′i = `i+xi−1 for i = 3, . . . , t−1 follows exactly the truncated
differential propagation rule of ordinary linear combinations, so the available
values for (δ`i , δxi−1

, δ`′i)’s can be easily deduced in Table 7a and captured by
the MILP model as Eq. (20) originated in [29].

M.var←δ`i , δxi−1
, δ`′i are binary,

M.con←

δ`i + δxi−1

− δ`′i ≥ 0,

δ`i − δxi−1 + δ`′i ≥ 0,

−δ`i + δxi−1 + δ`′i ≥ 0.

(20)

Note that Eq. (20) is the classical MILP description of the truncated differen-
tial propagation rule of the ordinary linear combinations. For simplicity, we use
Eq. (21) to represent the constraints in Eq. (20):

M.con← (δxi−1
, δ`′i , δ`i)+. (21)

The linear step `i = γi · y0 + y1 for i = 2, . . . , t− 1 also follows the truncated
differential propagation rule of ordinary linear combinations, so we can use in-
equalities as in Eq. (20) to express the constraints, i.e.,M.con← (δy0 , δy1 , δ`i)+
for i = 2, . . . , t−1. Besides, for (δy0 , δy1) = (1, 1), since γi’s are pairwise distinct,
the number of non-zero δ`i ’s (i = 2, . . . , t − 1) is at least t − 3: there can be at
most one i ∈ {2, . . . , t− 2} satisfying δ`i = 0. Taking this condition in consider-
ation, the available values for (δy0 , δy1 , δ`2 , . . . , δ`t−1

)’s can be captured with the

48

MILP model in Eq. (22) after introducing a dummy variable d`:

M.var←δy0 , δy1 , δ`2 , . . . , δ`t−1
, d` are binary,

M.con←(δy0 , δy1 , δ`i)+, i = 2, . . . , t− 1,

M.con←

d` ≥ δy0 , δy1 ,
δy0 + δy1 ≤ 2 · d`,

(t− 3) · d` ≤
t−1∑
i=2

δ`i ≤ (t− 2) · d`.

(22)

Next, we consider the nonlinear step yi = S(`, xi) for i = 2. The differential
probabilities DPmax((δ`, δxi

) 7→ δyi) can be deduced by Lemma 3 as follows.

– If (δ`, δxi
) = (0, 0), we must have δyi = 0, so DPmax[(0, 0) 7→ 0] = 1 = p0.

– If δ` 6= 0
∧
δxi
6= 0, the probability for a static δyi is p−1.

– If δ` 6= 0
∧
δxi

= 0, the probability for a static δyi is p−1 (there is also δyi = 0
when xi = 0).

– If δ` = 0
∧
δxi 6= 0, there must be δyi 6= 0 and the probability for a static δyi

is 2p−1 = 2
p .

Note that for the linear steps yi = S(`′, xi) (3 ≤ i ≤ t − 1), the differen-
tial probabilities DP((δ`′ , δxi

) 7→ δyi) can be deduced in exactly the same way.
Therefore, the binary variable τi for 2 ≤ i ≤ t − 1 tracks the probability such
that

DPmax((δ`, δxi
) 7→ δyi) ≤ (2/p)τi .

The possible values for (δ`, δxi , δyi , τi) or (δ`′ , δxi , δyi , τi), are given in Table 7b.
In the following, we express (δ`, δxi , δyi , τi) (for the case (δ`′ , δxi , δyi , τi), re-

place δ` with δ`′) in the MILP language as follows [29]:

M.var←δ`, δxi , δyi , τi are binary,

M.con←

− δ` + τi ≥ 0,

− δxi
+ τi ≥ 0,

− δyi + τi ≥ 0,

δ` + δxi
− τi ≥ 0,

δ` + δyi − τi ≥ 0.

Note that d > 2, so the differential probability for ∆X 7→ ∆Y can be uni-
formly upper-bounded by

DPmax(∆X 7→ ∆Y) ≤ (d/p)τ0+τ1 × (2/p)
∑t−1

i=2 τi ≤ (d/p)
∑t−1

i=0 τi . (23)

MILP Model for M . Assume the truncated input and output differences
of M are ∆Y r = (δy0 , . . . , δyt−1

) and ∆Xr+1 = (δx0
, . . . , δxt−1

). For t = 3, 4,
the corresponding M are MDS matrices, so the relationship between ∆Y r and

49

∆Xr+1 can be described simply with the knowledge of the branch number #b =
t+ 1. The description of the MILP model in this situation is as Eq. (24), where
dM is a dummy variable.

M.var←δyi , δxi
, dM as binaries,

M.con←

dM ≤

t−1∑
i=0

δyi ,

t−1∑
i=0

δxi ≤ t · dM ,

M.con←
t−1∑
i=0

δyi +

t−1∑
i=0

δxi ≥ #b · dM .

(24)

For t = 4t′ ≥ 8, according to Eq. (6), the linear layer M has branch number
#b = t′ + 4 and can be decomposed as M ′′ ×M ′. The branch number property
of M can easily be captured by Eq. (24). However, we introduce a new method
of describing the decomposition property of M , aiming at deriving more accu-
rate bounds. First, We use an additional variable ∆W r to represent the output
truncated difference of M ′:

∆Y r
M ′−−→ ∆W r M ′′−−→ ∆Xr+1.

According to the definition of M ′, the transformation from ∆Y r to ∆W r can
be regarded as t′ parallel 4 × 4 linear layers, each of which can be described
as Eq. (24) with branch number #b = 5. Next, we introduce and combine two
methods to describe the truncated differential propagation of M ′′.

– Assume ∆W r = (δw0
, . . . , δwt−1

). The transformation ∆W r → ∆Xr+1 is
additions of words over Fp, so the truncated differential propagation of each
word addition can be described by equations in Eq. (20) directly:

M.con← (δwi , δwi+4 , . . . , δwi+t−4 , δxj)+, i = 0, 1, 2, 3; j = i+4·k, k = 0, . . . , t/4−1.

– In order to get the tighter bounds, we further decompose M ′′ as M ′′ =
circ(2 · I, I, . . . , I) = circ(I, I, · · · , I) + circ(I, 0, · · · , 0) = M1 + M2. We
express the truncated differential propagation of M1 and M2 in two steps.
Note they follow the propagation rules of ordinary linear combinations, after
defining four dummy binary variables δtmpi

for i = 0, 1, 2, 3, we can use the
two MILP descriptions in Eq. (20) to respectively describe them:

M.con←

{
(δwi

, δwi+4
, . . . , δwt−4

, δtmpi
)+, i = 0, 1, 2, 3

(δwj
, δtmp(j mod 4)

, δxj
)+, j = 0, 1, . . . , t− 1

Finally, we take the maximal value of the objective function of the models using
two descriptions. In this way, the differential bound of Griffin-π can be derived
in a more precise manner than simply considering the branch number #b = t′+4
of M .

50

Objective Function of the MILP Model. As has been analyzed in Sec-
tion 5.2, in order to acquire DP of R-round Griffin-π, the objective function
of the MILP model should be set to minimize the summation of all τ ’s as

M.obj = min

R−1∑
j=0

t−1∑
i=0

τ ji ,

where τ ji corresponds to the τi in Eq. (23) at the j-th round. The solution to
such an objective function is denoted as #a =M.obj.

DP for R = 5. For t = 3, 4, 8, . . . , 24, our MILP-based dedicated tool can
construct models for R-round Griffin-π, where R = 4, 5, 6. The solutions #a’s
are given in Table 8.

Table 8: The MILP model solution #a’s corresponding to different R and t
settings. The maximal differential propagation probability DP’s can be bounded
as DP ≤ (d/p)#a.

R\t 3 4 8 12 16 20 24

3 5 6 8 9 11 13 13
4 8 10 12 14 16 19 20
5 9 11 15 17 21 24 24

Since the maximal DP of the S layer is bounded as DPmax ≤ d
p , and 3 ≤ t ≤

24 for Griffin-π, the DP’s for R = 5 rounds and for the most relevant p are

DP ≤ (d/p)17 ≈ d17 · 2−544 for p ≈ 232, t ≥ 12,

DP ≤ (d/p)15 ≈ d15 · 2−960 for p ≈ 264, t ≥ 8,

DP ≤ (d/p)9 ≤ d9 · 2−1152 for p ≥ 2128, t ≥ 3.

For all d ∈ {3, 5, 7, 11}, there is constantly DP < 2−544+17·3.5 ≤ (2−128)2,
which is smaller than our security claim of κ = min{256, log2(p) × t/3} = 128
bits. Therefore, we conclude that 5 rounds are sufficient for providing security
against differential attacks. The relevant truncated differential characteristics
are demonstrated in Table 9.

E.2 MILP Models for Griffin-π in Rebound Attacks

In differential attacks, since only the nonlinear operations can contribute to
DP, τ ’s only appear in the description of the S layer. In rebound attacks, the
complexities are decided by the number of word conditions which can be im-
posed by both nonlinear and linear operations. Word conditions are actually

51

Table 9: 5-round differential paths deduced from the MILP model.

t Interm. R = 0 R = 1 R = 2 R = 3 R = 4 R = 5
∑5

R=0 τ
R

3 ∆XR 2 0∼2 2 0∼2 2 0∼2 9

∆Y R 2 0∼2 2 0∼2 2 –

4 ∆XR 3 0∼3 3 0∼3 3 0∼3 11

∆Y R 3 0∼3 3 0∼3 3 –

8 ∆XR 3 0,2,4,6 2,7 0,1,3,5,6 7 0∼7 15

∆Y R 3,4 0,2,4,6 2,7 0,1,3,5,6 7 –

∆WR 0∼7 0∼7 0∼7 1∼3,5∼7 4∼7 –

12 ∆XR 7 0,2,4,6,8,10 3 0,2,4,6,8,10 11 0∼11 17

∆Y R 7,8 0,2,4,6,8,10 3,4 0,2,4,6,8,10 11 –

∆ZR 4∼11 0,2∼4,6∼8,10,11 0∼7 0∼11 8∼11 –

16 ∆XR 3,11 3,9,14,15 3,15 3,8∼11 15 0∼15 21

∆Y R 3,4,11,12 3,4,9,10,14,15 3,4,15 3,4,8∼12 15 –

∆ZR 0∼15 0∼15 0∼15 0∼15 12∼15 –

20 ∆XR 15 12∼19 15,19 12∼19 15,19 0,3,4,7,8,11∼19 24

∆Y R 15,16 12∼19 15,16,19 12∼19 15,16,19 –

∆ZR 12∼19 15,19 12∼19 15,19 12∼18 –

24 ∆XR 19 16∼23 19,23 16∼23 19,23 2,6,10,14,16∼23 24

∆Y R 19,20 16∼23 19,20,23 16∼23 19,23 –

∆WR 16∼23 19,23 16∼23 19,23 16∼23 –

equations of words or word differences because particular differential propaga-
tion can only happen when the corresponding word conditions are satisfied. The
word conditions lying in the inbound phase can be satisfied manually with the
message modification technique for free while those in the outbound phase can
only be satisfied randomly with probability p−1.24 In our model, for an operation
f : Fmp → Fp, a word condition is imposed when there is a differential propaga-

tion ~0 6= ∆X
f−→ ∆Y = 0. Such a word condition is tracked in M with a binary

variable. If the word condition lies in the inbound phase, the binary variable has
the value 0. Otherwise, it has the value 1. Furthermore, the inbound-outbound
manner of rebound attacks considers both forward and backward directions, so
the corresponding word condition deduction should involve not only S and M ,
but their inverses S−1 and M−1 as well. For clear interpretation, we still use bi-
nary variables τ ’s to track the word conditions in the nonlinear layer S, S−1 and
µ’s for those in the linear layer M,M−1. Details are provided in the following.

MILP Models for Conditions in S. For i = 0, 1, there is constantly δyi =
δxi and no word condition is introduced, so we have τi = 0 ∈ M.con. For
i = 2, . . . , t− 1, since yi = xi(`

2 + αi`+ βi) where ` = λ0 · y0 + λ1 · y1, we only
discuss cases depending on values of (δ`, δxi

, δyi):

– (δ`, δxi
, δyi) ∈ {(1, 1, 1), (0, 0, 0), (0, 1, 1)}: no word condition is introduced,

so we set τi = 0.

24 Such a technique is widely used in collision attacks of hash functions [31].

52

Table 10: All possible values of (δ`, δxi , δyi , τi) for S and (δ`, δyi , δxi , τi) for S−1.

(δ`, δxi , δyi , τi)

(0, 0, 0, 0)
(1, 0, 1, 0)
(1, 0, 0, 1)
(0, 1, 1, 0)
(1, 1, 0, 1)
(1, 1, 1, 0)

– (δ`, δxi , δyi) = (1, 0, 0): one word condition is introduced as xi = 0, so we set
τi = 1.

– (δ`, δxi , δyi) = (1, 1, 0): one word condition is introduced from δyi = 0 as

(xi + δxi)[(`+ δ`)
2 + αi(`+ δ`) + βi]− xi(`2 + αi`+ βi) = 0, (25)

so we set τi = 1.

We summarize all possible values for (δ`, δxi
, δyi , τi) in Table 10. The relations

of δ`, δxi
, δyi , τi can be represented in a MILP model as

M.var←δ`, δxi
, δyi , τi as binaries,

M.con←− δyi − τi + 1 ≥ 0,

M.con←− δ` + δyi + τi ≥ 0,

M.con←δ` + δxi
− δyi − τi ≥ 0,

M.con←δ` − τi ≥ 0,

M.con←− δxi
+ δyi + τi ≥ 0.

(26)

MILP Models for Conditions in S−1. Since x0 = y0
1/d and x1 = y1

d,
there is constantly δyi = δxi , no condition is introduced for i = 0, 1. For i =
2, . . . , t−1, similarly, several cases of word conditions can be identified depending
on (δ`, δyi , δxi

). An additional binary variable τi is also used to represent the
number of word conditions for the tuple (δ`, δyi , δxi

). We find that values of
(δ`, δyi , δxi

, τi) for S−1 are exactly the same as those of (δ`, δxi
, δyi , τi) for S, and

they are given in Table 10.

MILP Models for Conditions in M . We retain the MILP description of the

differential propagation ∆Y
M−→ ∆Z in App. E.1. The extra word conditions for

M are introduced when cancellation happens. Let the matrix of M be (ai,j)t×t.
If δzi = 0, one word condition is introduced as

t−1∑
j=0

(ai,j · δyj) = 0.

53

We use a binary variable µi to represent the number of word conditions intro-
duced by δzi as follows.

1. We add two variables M.var← µi, dM as binaryies.

2. For j = 0, . . . , t− 1, if ai,j 6= 0, we add a constraint M.con← dM ≥ δyj .

3. We add a constraint M.con← µi = dM − δzi .

MILP Models for Conditions in M−1. For M−1, we denote the correspond-
ing matrix as (bi,j)t×t. If δyi = 0, one word condition is introduced as

t−1∑
j=0

(bi,j · δzj) = 0.

The number of word condition introduced by δyi can be modeled as follows.

1. We add two variables M.var← µi, dM as binaries.

2. For j = 0, . . . , t− 1, if bi,j 6= 0 we add a constraint M.con← dM ≥ δzj .

3. We add a constraint M.con← µi = dM − δyi .

Secure Bounds against Rebound Attacks. In rebound attacks, the ad-
versary aims at constructing a pair of intermediate states at round rm (1 ≤
rm ≤ R−1), denoted as (Y rm , Ŷ rm), having nonzero truncated difference ∆Y rm

whose truncated differential propagation follows some predefined characteristic

∆X0 F
R

−−→ ∆XR.

According to the parameters in Table 1, we require c words in ∆X0 and⌊
κ

log2 p

⌋
words in ∆XR are 0. Reflected to the MILP model M, we add the

following constraints:

M.con←
t−1∑
i=0

δx0
i
≤ t− c,

M.con←
t−1∑
i=0

δxR
i
≤ t−

⌊
κ

log2 p

⌋
.

We further assume that all the word conditions between ∆Y rm−1 and ∆Y rm+1

can manually be satisfied by modifying words in Y rm . This has upper-bounded
the power of the message modification technique [31] because each word can
only be used once and can hardly modify words after S layers. Therefore, the
objective function of the MILP model can be defined as follows:

M.obj← min

 ∑
i≤rm−1

∨
i>rm+1

t−1∑
j=1

τ ij +
∑

i<rm−1
∨
i≥rm+1

t−1∑
j=0

µij

 .

54

Table 11: Secure instances of Griffin considering only rebound attacks. The
best setting corresponding to R is always rm = 1: such rm = 1 indicates that
any start-from-the-middle strategy (rm > 1) cannot provide a result better than
a pure random search.

dlog2 pe κ c t R

32 128 8 ≥ 12 3
32 256 16 ≥ 20 3

64 128 4 ≥ 8 3
64 256 8 ≥ 12 3

128 128 2 3, 4,≥ 8 3
128 256 4 ≥ 8 3

256 128 1 3, 4,≥ 8 3
256 256 2 3, 4,≥ 8 3

For rm = 1, . . . , R − 1, we construct the model for the rm-th round, and the
solution is the minimum number of unfixed word conditions, denoted as θR,rm =
M.obj. If the condition ⌊

κ

log2 p

⌋
≤ min

1≤rm≤R−1
θR,rm

holds for all rm settings, we know that R rounds are sufficient to resist rebound
attacks. Otherwise, we may update R ← R + 1 to the model and repeat the
process. In this way, we are able to acquire the secure bound.

The number of rounds required to resist rebound attacks for values of p we
focus on are listed in Table 11. We claim that it is not possible to mount a
rebound attack on more than 3 rounds of Griffin-π. Equivalently, 4 rounds are
sufficient for providing security against this attack.

F Algebraic Attacks – Details

F.1 Density of Griffin-π

Since the only high-degree nonlinear function of Griffin-π is x 7→ x1/d, it is
important to analyze the density of the construction, and in particular the den-
sity of the polynomials in each word. First, note that we apply a linear layer in
the beginning, in order to ensure that the variables are mixed before the first
nonlinear operation in the sponge setting.25 Hence, the input x1 to the nonlin-
ear function in the second word is a linear combination of all input variables. In
practice, we evaluated x 7→ x1/d and found that it provides (almost) full density
over Fp. This behaviour was also observed after a small number of rounds in

25 Skipping this linear layer would only delay the variable mixing for one single round.

55

0 1 2 3 4 5 6 7 8

20

40

Number of rounds R

D
eg

re
e

Dreg

Practical D
(1)
est estimate

Concrete data points

Fig. 3: Comparison of the theoretical estimation Dreg for d = 3, t = 3, the

adapted estimation D
(1)
est using the practical results, and concrete data points

from our practical tests with Sage (degree growth is the same in Magma).

0 1 2 3 4 5 6 7 8

20

40

60

80

Number of rounds R

D
eg

re
e

Dreg

Practical D
(1)
est estimate

Concrete data points

Fig. 4: Comparison of the theoretical estimation Dreg for d = 5, t = 3, the

adapted estimation D
(1)
est using the practical results, and concrete data points

from our practical tests with Sage (degree growth is the same in Magma).

multiple words for different t due to the mixing. Moreover, we compared Grif-
fin-π to the Rescue permutation and could not find any significant differences
regarding the polynomial density. Thus, we claim that the polynomial represen-
tation of our construction is dense after 3 rounds, and in particular with the
round numbers we propose (e.g., R ≥ 6 for statistical attacks).

F.2 Practical Results for Gröbner Bases

Intermediate Variables. Concrete data points for practical Gröbner basis
computations when introducing t intermediate variables in each round are shown
in Fig. 3 for d = 3 and in Fig. 4 for d = 5. The theoretical estimation for the
degree of regularity is given by

D(1)
reg = 1 +

ne∑
i=1

(deg(fi)− 1) = 1 +R(2(d− 1)) + 2(t− 2)) .

Partial Intermediate Variables. Concrete data points for practical Gröbner
basis computations when introducing 1 intermediate variable in each round in

56

0 1 2 3 4 5 6

200

400

599.99

799.99

999.98

Number of rounds R

D
eg

re
e

Dreg

Practical D
(1)
est estimate

Concrete data points

Fig. 5: Comparison of the theoretical estimation Dreg for d = 3, t = 3, the

adapted estimation D
(2)
est using the practical results, and concrete data points

from our practical tests with Sage.

0 1 2 3 4

200

400

600

Number of rounds R

D
eg

re
e

Dreg

Practical D
(1)
est estimate

Concrete data points

Fig. 6: Comparison of the theoretical estimation Dreg for d = 5, t = 3, the

adapted estimation D
(2)
est using the practical results, and concrete data points

from our practical tests with Sage.

order to avoid the high-degree growth are shown in Fig. 5 for d = 3 and in Fig. 6
for d = 5. Since the degree of the equation in the (i− 1)-th round is deg(Ri−1)
for R ≥ 2 and the degree of the equation in the next round is 2d · deg(Ri−1) +
deg(Ri−1), we have that

D(2)
reg = 1 +

ne∑
i=1

(deg(fi)− 1)

= 1 + ((2d+ 1)− 1) + (2d(2d+ 1) + 2d+ 1− 1) + · · ·
= 1 + (2d+ 1)− 1 + (2d+ 1)2 − 1 + (2d+ 1)3 − 1 + · · ·

= 1 +

(
R∑
i=1

(2d+ 1)i

)
−R.

F.3 Additional Strategies for Gröbner Bases

Apart from the main strategies given in Section 5.3, there also exist other ap-
proaches which we briefly describe here. However, they are in general weaker,
and hence we do not use them to determine the final number of rounds.

57

Full-Round Equation System. When considering the nonlinear layer de-
scribed in Section 4.2 and given in Eq. (5), we see that y1 = x1

1/d, and hence
the round function exhibits a high degree for low d. However, the starting vari-
ables may be chosen such that x1 is constant. Hence, we need full diffusion in
order to inrease the degree of a polynomial containing at least one input variable
significantly. Since full diffusion is achieved after only one round and our repre-
sentation is dense, we conclude that dκ/ log2(p)e + 1 rounds of Griffin-π are
sufficient against this attack. Note that using more than a single input variable
increases the complexity in this case.

Adding an Intermediate Variable for L. A technique that can be combined
with both main strategies described in Section 5.3 is to add an additional variable
for the degree-2 function L. This increases the number of equations and variables
by R, while only slightly reducing the overall degrees of the equations. Indeed,
in our practical evaluations, we found that combining this technique with any
of the above strategies leads to higher solving complexities.

F.4 Collisions via Gröbner Bases

The attacker can also directly write down the equation system for a collision.
That is, they can use two different inputs to the permutation (with at least two
different variables) and set the output difference to zero. The resulting system of
equations has more variables than equations, also when considering the different
attack strategies discussed before. Consequently, it may be possible to exploit
the additional degree of freedom and fix specific variables in order to reduce the
number of appearing monomials and make the system easier to solve. However,
we conjecture that (1) no such degenerate cases exist which can be observed after
the entire permutation and that (2) the collision attack is not cheaper compared
to the preimage attack for the algebraic approaches described before, since the
cost is essentially doubled when considering two absorption descriptions for the
collision attack. This is also confirmed by practical experiments.

G Security Analysis – Other Attacks

G.1 Other Statistical Attacks

Linear Attack. Linear cryptanalysis [25] is often used to deduce distinguishers
against the underlying permutation of sponge-based hash functions. Similar to
the differential attacks, we are also able to construct MILP-model-based dedi-
cated tools so as to search for optimal linear characteristics upper-bounding the
probability. According to the analysis with the tools, we are able to conclude
that, for both the hash function Griffin and the permutation Griffin-π, 5
rounds are well enough for resisting linear attacks.

58

Impossible Differential and Zero-correlation Attacks. According to the
definition of M , the difference of one word can affect the whole t-word state
only by one round function call. Therefore, the impossible differential [6, 23] and
zero-correlation [7] attacks can hardly be mounted on 3 or more rounds.

Boomerang Attack. The boomerang attack [30] is a variant of differential
attacks. Instead of constructing pairs satisfying differential paths, boomerang
attacks look for quartets satisfying two differential paths simultaneously. For
hash functions using compression functions, where message blocks are involved
in the computation of intermediate internal states, the boomerang attack can be
effective since the difference in the whole state can be eliminated with specifically
designed message block differences. As studied in Section 5.2, differential trails
with high probability are rather unlikely to occur for more than 6 rounds. Hence,
the number of rounds necessary to prevent the differential attacks and/or the
rebound attacks are sufficient to prevent the boomerang attack as well.

Integral/Square Attack, Multiple-of-n & Mixture Differential Crypt-
analysis. As a scheme working natively on larger field elements, Griffin could
be potentially attacked by all attacks vectors that exploit the strong alignment on
symmetric schemes, as the integral and square attacks [10], or more recently the
multiple-of-n differential cryptanalysis [19] and the mixture differential one [16].
However, we claim that such attacks become quickly infeasible, since the nonlin-
ear layer S is not aligned and the matrix M provides full diffusion after a single
round.

G.2 Higher-Order Differentials and Zero-Sum Partitions

Given a vectorial Boolean function F over Fn2 of degree d, the higher-order
differential attack [24, 22] exploits the fact that∑

x∈V+v

x =
∑

x∈V+v

F(x) = 0

for each affine subspace V + v ⊆ Fn2 of dimension strictly larger than d (i.e.,
dim(V) ≥ d+ 1). In a binary field F2n , such an approach has recently been used
for MiMC [11, 9].

The corresponding attack in the case of a prime field Fp has been recently
proposed in [5]. Since this result is related to the degree of the polynomial that
describes the permutation, we claim that the number of rounds necessary to
guarantee security against the interpolation attack provides security against this
attack as well.

A possible variant of higher-order sums in the case of permutations is the
zero-sum partition attack/distinguisher.

Definition 5 (Zero-Sum Partition [8]). Let P be a permutation over Ftq for
a prime q ≥ 2. A zero-sum partition for P of size l < t is a collection of l disjoint
sets {X1, . . . , Xl} with the following properties:

59

– Xi ⊂ Ft for each i ∈ {1, . . . , l} &
⋃l
i=1Xi = Ft,

– ∀i ∈ {1, . . . , l} :
∑
x∈Xi

x =
∑
x∈Xi

P(x) = 0.

This direction has been investigated e.g. in [8] for two SHA-3 candidates,
Luffa and Keccak. Since it is expected that a randomly chosen function does
not have many zero sums, the existence of several such sets can be seen as a
distinguishing property of the internal function. Here we explicitly state that we
do not make claims about the security of Griffin against zero-sum partitions.
This choice is motivated by the gap present in the literature between the num-
ber of rounds of the internal permutation that can be covered by a zero-sum
partition and by the number of rounds in the corresponding sponge hash func-
tion that can be broken e.g. via a preimage or a collision attack. As a concrete
example, consider the case of Keccak. While 24 rounds of Keccak-f can be
distinguished from a random permutation using a zero-sum partition [8] (that
is, full Keccak-f), preimage/collision attacks on Keccak can only be set up
for up to 6 rounds of Keccak-f [20]. This suggests that zero-sum partitions
should be largely ignored for practical applications.

References for Supplementary Material

[1] A. Abdelkhalek, Y. Sasaki, Y. Todo, M. Tolba, and A. M. Youssef. “MILP Mod-
eling for (Large) S-boxes to Optimize Probability of Differential Characteristics”.
In: IACR Trans. Symmetric Cryptol. 2017.4 (2017), pp. 99–129.

[2] A. Aly, T. Ashur, Eli Ben-Sasson, S. Dhooghe, and A. Szepieniec. “Design of
Symmetric-Key Primitives for Advanced Cryptographic Protocols”. In: IACR
Trans. Symmetric Cryptol. 2020.3 (2020), pp. 1–45.

[3] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/46. 2018.

[4] E. Ben-Sasson, L. Goldberg, and D. Levit. STARK Friendly Hash - Survey and
Recommendation. Cryptology ePrint Archive, Report 2020/948. 2020.

[5] T. Beyne, A. Canteaut, I. Dinur, M. Eichlseder, G. Leander, G. Leurent, M.
Naya-Plasencia, L. Perrin, Y. Sasaki, Y. Todo, and F. Wiemer. “Out of Oddity
- New Cryptanalytic Techniques Against Symmetric Primitives Optimized for
Integrity Proof Systems”. In: CRYPTO 2020. Vol. 12172. LNCS. 2020, pp. 299–
328.

[6] E. Biham, A. Biryukov, and A. Shamir. “Cryptanalysis of Skipjack Reduced to
31 Rounds Using Impossible Differentials”. In: EUROCRYPT 1999. Vol. 1592.
LNCS. 1999, pp. 12–23.

[7] A. Bogdanov and M. Wang. “Zero Correlation Linear Cryptanalysis with Re-
duced Data Complexity”. In: FSE 2012. Vol. 7549. LNCS. 2012, pp. 29–48.

[8] C. Boura, A. Canteaut, and C. D. Cannière. “Higher-Order Differential Prop-
erties of Keccak and Luffa”. In: FSE 2011. Vol. 6733. LNCS. 2011, pp. 252–
269.

[9] C. Bouvier, A. Canteaut, and L. Perrin. “On the Algebraic Degree of Iterated
Power Functions”. In: IACR Cryptol. ePrint Arch. (2022), p. 366.

[10] J. Daemen, L. R. Knudsen, and V. Rijmen. “The Block Cipher Square”. In: FSE.
Vol. 1267. LNCS. 1997, pp. 149–165.

60

[11] M. Eichlseder, L. Grassi, R. Lüftenegger, M. Øygarden, C. Rechberger, M. Schofneg-
ger, and Q. Wang. “An Algebraic Attack on Ciphers with Low-Degree Round
Functions: Application to Full MiMC”. In: ASIACRYPT 2020. Vol. 12491. LNCS.
2020, pp. 477–506.

[12] M. Eichlseder, M. Nageler, and R. Primas. “Analyzing the Linear Keystream
Biases in AEGIS”. In: IACR Trans. Symmetric Cryptol. 2019.4 (2019), pp. 348–
368.

[13] K. Fu, M. Wang, Y. Guo, S. Sun, and L. Hu. “MILP-Based Automatic Search
Algorithms for Differential and Linear Trails for Speck”. In: FSE 2016. Vol. 9783.
LNCS. 2016, pp. 268–288.

[14] A. Gabizon and Z. J. Williamson. “plookup: A simplified polynomial protocol
for lookup tables”. In: IACR Cryptol. ePrint Arch. (2020), p. 315.

[15] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: Permutations over
Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge. Cryp-
tology ePrint Archive, Report 2019/953. 2019.

[16] L. Grassi. “Mixture Differential Cryptanalysis: a New Approach to Distinguishers
and Attacks on round-reduced AES”. In: IACR Trans. Symmetric Cryptol. 2018.2
(2018), pp. 133–160.

[17] L. Grassi, D. Khovratovich, R. Lüftenegger, C. Rechberger, M. Schofnegger, and
R. Walch. Reinforced Concrete: Fast Hash Function for Zero Knowledge Proofs
and Verifiable Computation. Cryptology ePrint Archive, Report 2021/1038. ac-
cpted at ACM CCS 2022. 2021.

[18] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger. “Po-
seidon: A New Hash Function for Zero-Knowledge Proof Systems”. In: USENIX
Security Symposium. USENIX Association, 2021, pp. 519–535.

[19] L. Grassi, C. Rechberger, and S. Rønjom. “A New Structural-Differential Prop-
erty of 5-Round AES”. In: EUROCRYPT 2017. Vol. 10211. LNCS. 2017, pp. 289–
317.

[20] J. Guo, G. Liao, G. Liu, M. Liu, K. Qiao, and L. Song. “Practical Collision
Attacks against Round-Reduced SHA-3”. In: J. Cryptol. 33.1 (2020), pp. 228–
270.

[21] Hash functions for Zero-Knowledge applications Zoo. https://extgit.iaik.

tugraz.at/krypto/zkfriendlyhashzoo. IAIK, Graz University of Technology.
Aug. 2021.

[22] L. R. Knudsen. “Truncated and Higher Order Differentials”. In: FSE 1994.
Vol. 1008. LNCS. 1994, pp. 196–211.

[23] L. R. Knudsen. DEAL – A 128-bit Block Cipher. 1998.
[24] X. Lai. “Higher Order Derivatives and Differential Cryptanalysis”. In: Com-

munications and Cryptography: Two Sides of One Tapestry. Springer US, 1994,
pp. 227–233.

[25] M. Matsui. “Linear Cryptanalysis Method for DES Cipher”. In: EUROCRYPT
1993. Vol. 765. LNCS. 1993, pp. 386–397.

[26] N. Mouha, Q. Wang, D. Gu, and B. Preneel. “Differential and Linear Cryptanal-
ysis Using Mixed-Integer Linear Programming”. In: Inscrypt 2011. Vol. 7537.
LNCS. 2011, pp. 57–76.

[27] J. Patarin. “Generic Attacks on Feistel Schemes”. In: ASIACRYPT 2001. Vol. 2248.
LNCS. 2001, pp. 222–238.

[28] S. Sun, D. Gérault, P. Lafourcade, Q. Yang, Y. Todo, K. Qiao, and L. Hu.
“Analysis of AES, SKINNY, and Others with Constraint Programming”. In:
IACR Trans. Symmetric Cryptol. 2017.1 (2017), pp. 281–306.

61

https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo

[29] S. Sun, L. Hu, P. Wang, K. Qiao, X. Ma, and L. Song. “Automatic Security
Evaluation and (Related-key) Differential Characteristic Search: Application to
SIMON, PRESENT, LBlock, DES(L) and Other Bit-Oriented Block Ciphers”.
In: ASIACRYPT 2014. Vol. 8873. LNCS. 2014, pp. 158–178.

[30] D. A. Wagner. “The Boomerang Attack”. In: FSE. Vol. 1636. LNCS. 1999,
pp. 156–170.

[31] X. Wang, Y. L. Yin, and H. Yu. “Finding Collisions in the Full SHA-1”. In:
CRYPTO 2005. Vol. 3621. LNCS. 2005, pp. 17–36.

62

	Horst Meets Fluid-SPN: Griffin for Zero-Knowledge Applications
	Introduction
	Sponge Hash Functions for zk-SNARKs and zk-STARKs
	Our Contribution

	Cost Metrics for Zero-Knowledge Proof Systems
	Zero-Knowledge Proofs
	Arithmetization
	Rank-1 Constraint Satisfaction Systems (R1CS)

	The Birth of Griffin
	SPN Schemes
	Non-SPN Schemes: From Feistel to Horst
	Constructing Nonzero Functions G
	Comparing SPN, P-SPN, Feistel, and Horst
	The Road to Griffin

	Griffin and Griffin-
	Sponge Hash Functions
	Specification of Griffin-
	Security of Griffin-

	Security of Griffin and Griffin-
	Sponge Hash Function Security
	Statistical Attacks on Griffin-
	Algebraic Attacks
	Security of Griffin Instantiated with Feistel

	Performance Evaluation
	Plain Performance
	R1CS-Based SNARKs with Griffin

	Security of Horst Schemes
	STARKs with Griffin
	Algebraic Intermediate Representation (AIR)
	Relations Between SNARK and STARK Cost Metrics
	STARK Performance of Griffin

	Plonk with Griffin
	Plonk Arithmetization
	Plonk Performance of Griffin

	Proofs – Differential Cryptanalysis
	Maximum Differential Probability of S
	Branch Number of M

	Dedicated Automatic Tools for Differential Propagations of Griffin- – Differential Attack and Rebound Attack
	MILP Models for Differential Propagation of Griffin-
	MILP Models for Griffin- in Rebound Attacks

	Algebraic Attacks – Details
	Density of Griffin-
	Practical Results for Gröbner Bases
	Additional Strategies for Gröbner Bases
	Collisions via Gröbner Bases

	Security Analysis – Other Attacks
	Other Statistical Attacks
	Higher-Order Differentials and Zero-Sum Partitions

