
Horst Meets Fluid-SPN: Griffin for
Zero-Knowledge Applications

Lorenzo Grassi1, Yonglin Hao2, Christian Rechberger3, Markus Schofnegger4,
Roman Walch3,5, and Qingju Wang6

1 Radboud University, Nijmegen (The Netherlands)
2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878 (China)

3 Graz University of Technology (Austria)
4 Horizen Labs (United States)
5 Know-Center GmbH (Austria)

6 SnT, University of Luxembourg, Esch-sur-Alzette (Luxembourg)
lgrassi@science.ru.nl

haoyonglin@yeah.net

firstname.lastname@iaik.tugraz.at

mschofnegger@horizenlabs.io

qingju.wang@uni.lu

Abstract. Zero-knowledge (ZK) applications form a large group of use
cases in modern cryptography, and recently gained in popularity due to
novel proof systems. For many of these applications, cryptographic hash
functions are used as the main building blocks, and they often dominate
the overall performance and cost of these approaches. Therefore, in the
last years several new hash functions were built in order to reduce the
cost in these scenarios, including Poseidon and Rescue among others.

These hash functions often look very different from more classical designs
such as AES or SHA-2. For example, they work natively over prime
fields rather than binary ones. At the same time, for example Poseidon
and Rescue share some common features, such as being SPN schemes
and instantiating the nonlinear layer with invertible power maps. While
this allows the designers to provide simple and strong arguments for
establishing their security, it also introduces crucial limitations in the
design, which affects the performance in the target applications.

To overcome these limitations, we propose the Horst construction, in
which the addition in a Feistel scheme (x, y) 7→ (y+F (x), x) is extended
via a multiplication, i.e., (x, y) 7→ (y ×G(x) + F (x), x).

By carefully analyzing the relevant performance metrics in SNARK and
STARK protocols, we show how to combine an expanding Horst scheme
and the strong points of existing schemes in order to provide security
and better efficiency in the target applications. We provide an extensive
security analysis for our new design Griffin and a comparison with all
current competitors.

Keywords: Hash Functions – Griffin – Zero-Knowledge – Horst – Fluid -SPN

1 Introduction

Use cases such as multi-party computation (MPC), homomorphic encryption
(HE), signature schemes, and zero-knowledge (ZK) proof systems have recently
grown in popularity. All these applications favour cryptographic schemes with
specific algebraic properties, for example a small number of multiplications. Con-
sidering Ftp for a prime p ≥ 3 and t ≥ 1, existing hash functions include Feistel-
MiMC [3], GMiMC [2], Poseidon [33], Rescue [4, 60], Grendel [59], Reinforced
Concrete [32], Neptune [36], and Anemoi [17], among others.

The performance metrics vary between the different use cases. While the
cost in e.g. MPC is well-studied [38, 3, 35], ZK protocols often have more so-
phisticated optimization targets. The two major classes of ZK proof systems are
zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARKs)
and zero-knowledge scalable transparent arguments of knowledge (zk-STARKs),
which are also the ones we focus on in this paper.

Recent hash functions proposed for these protocols differ substantially from
each other, however their internal permutations are usually SPN constructions.
While this approach may have advantages for arguing security, it can also have
various limitations affecting the performance in ZK protocols.

1.1 Hash and Compression Functions in ZK Settings

Cost Metrics in ZK Protocols. In order to design a hash or compression
function for ZK settings, it is crucial to understand the cost metrics. In these
applications, the prover uses ZK proofs to convince a verifier that they know a
preimage x of a given hash or compression output y = H(x), without revealing
anything about x. The efficiency of these protocols depends on the details of H.
Indeed, in zk-SNARKs, the cost of the proof is proportional to the number of
nonlinear operations one has to perform, and in some cases (e.g., Plonk [30]) the
number of linear operations must also be considered, while in zk-STARKs, the
cost is related to the degree and the depth of the circuit that must be verified. In
both cases, it is not required to recompute H in order to determine if y = H(x).
Indeed, one can verify any equivalent cheaper representation F(x, y) = 0 which
is satisfied if and only if y = H(x).

Most previous designs focused only on a subset of cost metrics. For example,
the idea of MiMC, HadesMiMC, and Poseidon was to minimize the num-
ber of multiplications. As a result, they can be efficient in SNARKs, but their
comparably large round numbers lead to disadvantages in other proof systems.
In contrast, Rescue has an inner structure tailored for STARKs, which results
in comparably low round numbers and decent Plonk performance. However, the
efficiency in other SNARKs and the plain performance suffer from this structure.

SPN Schemes and Power Maps. Competitive hash functions for ZK proto-
cols include Rescue and Poseidon. Both schemes are instantiated via an SPN
permutation, whose round function R : Ftp → Ftp is defined as

R(·) = c+M × S(·), (1)

2

where c is a round constant, M ∈ Ft×tp is an MDS matrix, and S : Ftp → Ftp is
an S-box layer defined as

S(x0, x1, . . . , xt−1) = S0(x0) || S1(x1) || · · · || St−1(xt−1) (2)

for invertible maps Si : Fp → Fp (· || · denotes concatenation). Every round of
Rescue consists of two steps, one in which all Si correspond to x 7→ x1/d and one
in which all Si correspond to x 7→ xd. Poseidon uses two different rounds, one
in which Si(x) = xd and one in which S0(x) = xd and Si 6=0(x) = x (identity).

1.2 Our Contribution

Weaknesses of SPN Schemes. An SPN scheme usually allows for simple and
strong security arguments regarding statistical attacks, including the (classical)
differential [12] and linear [47] attacks. For example, the combination of a linear
layer with a high branch number (e.g., an MDS matrix) and an S-box layer
with a good maximum differential probability (e.g., certain classes of low-degree
S-boxes) allows to efficiently use the wide trail design strategy [23].

However, SPN schemes over Ftp have limitations. First, the invertibility fol-
lows from the invertibility of both the linear layer M and of the nonlinear S-boxes
Si over Fp. A common way in ZK use cases is to use invertible power maps x 7→ xd

(hence, gcd(d, p − 1) = 1). Since the square function is not a permutation over
Fp, one has to use a function of degree d ≥ 3 to ensure invertibility, which affects
the performance. Secondly, no diffusion takes place among the several elements
in the nonlinear layer, and achieving diffusion in both the linear and nonlinear
layer can help against various attacks. Based on this, in Section 3.2 we conclude
that a non-SPN scheme is a more efficient solution in our target applications.

Horst Schemes. Apart from SPN schemes, one may consider a Feistel scheme,
for example GMiMC. Given a function F over a generic field F, a Feistel scheme
is defined as the map (x, y) 7→ (y+F (x), x) over F2

p. Several generalizations over
Ftp are proposed in the literature [63, 53, 40].

In Section 3.2 we propose a modified Feistel scheme, called Horst, in which
the linear relation between y and F (x) is combined with a nonlinear one, i.e.,
(y, x) 7→ (x, y × G(x) + F (x)).7 To guarantee invertibility, we require that
G(x) 6= 0 for each input x. We show how to construct such a low-degree (non-
trivial) function, and we propose an initial security analysis regarding the indif-
ferentiability/indistinguishability of a generic iterated Horst construction.

Our experiments suggest that the strength against algebraic attacks is easier
to argue by using Horst instead of the classical Feistel, resulting in another
advantage of the new structure. We explore this direction in Section 6.3.

7 The name Horst (due to the cryptographer Horst Feistel) has been chosen in order to
emphasize the link between (x, y) 7→ (y+F (x), x) and (y, x) 7→ (x, y×G(x)+F (x)).

3

Griffin. In Section 5 we specify a new family of sponge hash and compression
functions called Griffin, instantiated with the internal permutation Griffin-
π. Griffin-π cannot be rewritten as in Eqs. (1) and (2) since its nonlinear layer
is not divided into independent nonlinear S-boxes. Instead, it is composed of
two nonlinear sublayers defined via three different nonlinear functions. One is
defined via the invertible power maps x 7→ xd and x 7→ x1/d, which is inspired
by Rescue. The other is defined by our proposed Horst strategy, using the map
(x, y) 7→ (x, y · G(x)) for a quadratic function G s.t. G(z) 6= 0 for each z.8

To understand the relation between Horst and the classical Feistel scheme, in
Sections 3.4 and 6 we show that Griffin instantiated with Horst achieves better
performance than Griffin instantiated with the classical Feistel scheme.

Since the cost metrics in our target use cases are mainly related to the number
of nonlinear operations, a linear layer with an MDS matrix may be the simplest
choice. However, for a t × t matrix this usually requires O(t2) multiplications,
which could heavily affect the plain efficiency for large t. Hence, we propose a
matrix that can be implemented with a small number of operations. It is inspired
by the linear layer of AES, i.e., it can be decomposed as the multiplication of
two matrices. However, while in AES one of these two matrices (the one corre-
sponding to the ShiftRows operation) only changes the position of the elements,
both the matrices in the linear layer of Griffin-π provide full diffusion. This
allows to achieve this property in each state word after a single round.

Modes of Operation. Our proposed permutation Griffin-π can be used both
in a sponge mode and in a compression mode. The former is more versatile
while the latter can be more efficient in specific settings (for example, when
only compression for small fixed-sized inputs is needed). We also compare our
construction with other compression modes used in the literature, in particular
those in Haraka [44] and Jive [17].

Security Analysis. A detailed security analysis of the proposed function is
given in Section 6. From the algebraic perspective, Gröbner basis [18, 22] attacks
at the round level are the most efficient attacks. We present several strategies
that take into account the details of the proposed design. Moreover, we compare
Griffin-π instantiated with Feistel and with Horst in Section 6.3, observing
that security is easier to argue with Horst.

From the statistical perspective, well-known techniques like the wide trail
design strategy do not apply since our design does not have an SPN structure due
to Horst. For this reason, we apply a simple bound against classical differential
and linear attacks, which is sufficient for the settings we consider. For rebound
attacks, an advanced form of a (truncated) differential attack, we propose an
analysis using dedicated tools that help us to provide the bound on the minimal
number of rounds against rebound attacks.

8 The griffin is a legendary creature with the body, tail, and back legs of a lion, and
the head and wings of an eagle. The name Griffin has been chosen since our design
merges ideas of a Fluid-SPN and an unaligned construction as the Horst one.

4

Efficiency in Plain and ZK Settings. Following the brief introduction to
the cost metrics in Section 1.1, with Griffin we aim to find a beneficial trade-
off between all of them with a single design. We evaluate the performance of
Griffin in SNARKs using the R1CS arithmetization and compare it to various
other constructions in Section 7.2. Our evaluation shows that Griffin is signifi-
cantly better suited for these zk-SNARKs than any previously proposed design.
In the case of zk-STARKs and Plonk (a SNARK with different arithmetization),
Griffin provides similar performance as the currently best hash functions for
STARKs, the best performance for many configurations in Plonk (especially
larger state sizes) and is only slightly less efficient for smaller state sizes in some
Plonk configurations compared to the recent design Anemoi proposed in [17].
We show a comparison of Griffin and similar constructions in Plonk in Sec-
tion 7.3. Due to the page limit, we show the comparison between Griffin and
its competitors in zk-STARKs in App. A. As was our goal, Griffin provides
an efficient tradeoff between the plain performance and the performance across
different ZK proof systems.

2 Cost Metrics for Zero-Knowledge Proof Systems

In this section, we analyze the cost metrics for R1CS-based SNARKs and Plonk
[30]. For a similar analysis for AIR-based STARKs we refer to App. A.1. We
also discuss the relations between these three cost metrics in App. A.2. We start
by providing a brief introduction to arithmetization techniques used in various
ZK proof systems. We directly focus on iterative functions to give the reader an
intuition on how to describe a hash function in this context.

2.1 Zero-Knowledge Proofs

A ZK proof system is a two-player protocol between a prover and a verifier,
allowing the prover to convince the verifier that they know a witness w to a
statement x without revealing anything about the witness beyond what can be
implied by x. For example, the prover can use ZK proofs to convince a verifier
that they know a preimage w of a given hash y = H(w) without revealing
anything about w. The proof system needs to be complete and sound with a
negligible soundness error ε, and must fulfill the zero-knowledge property, which
informally states that the proof is independent of the witness w.

The two major classes of ZK proof systems are zk-SNARKs and zk-STARKs,
with the main difference being that zk-SNARKs require a trusted setup and are
not post-quantum secure. In the recent years, many use cases involving ZK proofs
have emerged, with two of them mainly relying on hash functions: set membership
proofs based on Merkle tree accumulators and verifiable computation based on
recursive proofs. In both use cases one has to prove the knowledge of preimages
of (chains of) hash functions, and thus the overall performance mainly depends
on the efficiency of the hash function used in the protocol.

5

2.2 Arithmetization

To prove a solution of a computational problem, one has to translate the problem
into an algebraic representation. This step is known as arithmetization and it dif-
fers between the various proof systems. Many algebraic representations have been
proposed in the literature, with rank-1 constraint satisfaction systems (R1CS)
and Plonk gates being the most widely used representations in zk-SNARKs, and
the algebraic intermediate representation (AIR) being used in zk-STARKs [7].

Concretely, in applications involving preimage proofs of hash functions, the
algebraic representation describes the connection between the preimage and the
final hash. The witness of the ZK proof then captures all intermediate values (in-
cluding the preimage) required to satisfy this representation for a given instance
of the problem (i.e., a specific hash value). For this purpose, let H : Ftq → Ftq,
where Fq is a field and t ≥ 1. We focus on an iterative function H, i.e.,

H(a) = Fr−1 ◦ Fr−2 ◦ · · · ◦ F1 ◦ F0(a),

where F0,F1, . . . ,Fr−1 : Ftq → Ftq are functions. Given a, b ∈ Ftq, the goal is
to prove that H(a) = b without revealing a. To efficiently determine whether
H(a) = b, the prover can use the intermediate values x0 ≡ a, x1, x2, . . . , xr−1 ≡
b such that Fi(xi) − xi+1 = 0 for i ∈ {0, 1, . . . , r − 1}. In particular, they
can prove any equivalent system of equations, i.e., they can introduce functions
G0,G1, . . . ,Gs−1 : (Ftq)r → Ftq such that the previous system of equations is
satisfied if and only if Gj(x0, x1, . . . , xr−1) = 0 for j ∈ {0, 1, . . . , s− 1}.

Definition 1 (Zero-Equivalence). Let F0, . . . ,Fr−1 : Ftq → Ftq be r ≥ 1 func-
tions. Let G0, . . . ,Gs−1 : (Ftq)r → Ftq be s ≥ 1 functions. We say that G0, . . . ,Gs−1
are zero-equivalent to F0, . . . ,Fr−1 if for each x0, x1, x2, . . . , xr−1 ∈ Ftq the fol-
lowing holds:

∀i ∈ {0, 1, . . . , r − 1} : xi+1 = Fi(xi)
⇐⇒ ∀j ∈ {0, 1, . . . , s− 1} : Gj(x0, x1, . . . , xr−1) = 0.

This strategy is based on the notion of non-procedural computation intro-
duced in [4], which describes the idea of not only evaluating schemes in the plain
direction, but using intermediate relations instead.

The choice of the equivalent functions G0, . . . ,Gs−1 depends on the cost metric
of the given proof system. For the following, we say that a scheme is fluid if it
admits an equivalent representation which can be more efficiently proven and/or
verified.9 As an example for r = s, we report the ones given in [4].

Example 1. The invertible function F(x) = x1/d over Fq (where q = ps for a
prime p ≥ 2 and s ≥ 1) can be proven via the function G : F2

q → Fq defined as

G(x, y) = x− yd by imposing G(x, y) = x− yd = 0. Similarly, given F(x) = 1/x
over Fq \ {0}, one can choose G : (Fq \ {0})2 → Fq as G(x, y) = xy − 1.

9 A fluid material continuously deforms (flows) under an applied external force. In our
case, the scheme adapts its algebraic representation to the target protocol.

6

A scheme that satisfies the condition just given is a fluid scheme. In [17], the
authors noticed that y = x1/d and yd = x are CCZ-equivalent. For this reason,
in [17, Sect. 4.1] they deduce that a function is arithmetization-oriented if it is
CCZ-equivalent to a function that can be verified efficiently.

Definition 2 (CCZ Equivalence). Two functions F ,G : Ftq → Ftq are CCZ-
equivalent if there exists an affine permutation A over (Ftq)2 such that {(x,F(x)) |
∀x ∈ Ftq} = {A ◦ (x,G(x)) | ∀x ∈ Ftq}.

Here, we do not contradict this claim, but we emphasize that restricting
to CCZ equivalence is not necessary. The reason is related to the fact that
there exist fluid schemes that do not satisfy any CCZ equivalence condition. A
concrete example is given in the following.

Example 2. Consider y = F(x) = xe/d over Fq such that d, e ≥ 3 and gcd(q −
1, e) = gcd(q − 1, d) = gcd(e, d) = 1. This permutation can be easily verified via
G(x, y) = yd − xe = 0, but we are not aware of any CCZ equivalence between
y = xe/d and yd = xe.

We now propose a concrete example in which s < r.

Example 3. Let F0,F1 : Fq → Fq be two functions defined as y = F0(x) =
γ + xd and z = F1(y) = y1/d, where γ 6= 0 and where x 7→ xd is assumed to
be invertible. The function H = F1 ◦ F0 can be efficiently proven via a single
function G : F3

q → Fq defined as G(x, y, z) = zd − (γ + xd), which is independent
of the intermediate value y.

This resembles the arithmetization of Rescue in zk-STARKs. Both represen-
tations are valid and require the same number of multiplications, but they have
different degrees when chained together. In this sense, Rescue is a Fluid -SPN.

2.3 Rank-1 Constraint Satisfaction Systems (R1CS)

Many proof systems (e.g., Groth16 [39], Ligero [5], Aurora [8], Bulletproofs [19])
require to translate the computation into an R1CS first, with Groth16 being the
fastest proof system with the smallest proofs to date. An R1CS is a set of q
equations (i.e., q constraints) on the variables a0, . . . , am ∈ F (with a0 = 1) s.t.(∑

i

ui,q · ai

)
·

(∑
i

vi,q · ai

)
=

(∑
i

wi,q · ai

)
,

where ui,q, vi,q, wi,q ∈ F are constants describing the q-th constraint. These con-
stants are derived from the hash or compression functions when proving the
knowledge of an input and are independent of the given output value. An as-
signment to the variables a0, . . . , am is then the witness of the ZK proof and
captures all intermediate values (including the preimage) when computing a
given output value. The role of the zk-SNARK is to prove that the witness sat-
isfies the R1CS system without revealing the witness itself. The efficiency then

7

depends on the number of constraints q in the constraint systems, i.e., the prover
complexity is in O(q).

In R1CS constraints, every statement needs to be translated into multiplica-
tions of linear combinations of the witness variables. Consequently, linear opera-
tions can be embedded into subsequent constraints and do not require additional
constraints. For nonlinear operations, the designer has to find a representation
which fully captures the relation between the input and the output of the oper-
ation, while minimizing the number of degree-2 equations.

Cost Metric. We measure the number of R1CS constraints, i.e., the minimum
number of nonlinear operations (that is, multiplications) of linear combinations
of witness variables required to fully represent any (equivalent) relation between
the input and the corresponding output (e.g., a preimage and its corresponding
hash value). In order to perform an efficient verification, we therefore suggest to
work with the zero-equivalent functions that can be computed with the minimum
number of nonlinear operations.

2.4 Plonk Arithmetization

The Plonk [30] proof system is a zk-SNARK proof system which does not use
R1CS constraints. Its arithmetization is based on Plonk gates, more concretely,
the constraints are of the form

qLi
· aLi

+ qRi
· aRi

+ qOi
· aOi

+ qMi
· (aLi

aRi
) + qCi

= 0, (3)

where the a values are again the witness variables and the q values describe a
given constraint. Using this equation, one can either describe a 2-fan-in addition
(setting qM,i = 0) or a 2-fan-in multiplication (setting qL,i = qR,i = 0). Thus, to
use the Plonk proof system one needs to describe the given circuit using 2-fan-in
addition and multiplication gates. As a result, contrary to R1CS constraints, ad-
ditions cannot be embedded into subsequent multiplication constraints anymore
and require Plonk gates on their own.

Cost Metric. We measure the number of Plonk gates, i.e., the minimum num-
ber of 2-fan-in additions and multiplications of witness variables required to fully
represent any (equivalent) relation between the input and the corresponding out-
put.

Remark 1. The plonk proof system is in general very flexible and can easily be
modified to use constraints different to Eq. (3). Thus, some implementations
of the Plonk system extend Eq. (3) to allow 3-fan-in addition gates which are
beneficial in some use cases. For this implementations the cost metric changes
accordingly, i.e., the cost is then the minimum number of 2-fan-in multiplica-
tions and 3-fan-in additions of witness variables required to fully represent any
(equivalent) relation between the input and the output.

8

3 The Birth of Griffin

3.1 Weaknesses of (Strong-Arranged) SPN Schemes

One important advantage of SPN schemes is that several techniques such as
the wide trail design strategy [23] have been developed in order to study their
security. For example, using the branch number of the linear layer and the max-
imum differential probability of the S-boxes, we can provide a simple and strong
security argument against classical differential (and linear) attacks, whereas in
the case of unaligned schemes dedicated tools are required.

However, the strong alignment/structure/arrangement between the nonlin-
ear and the linear layer (which are usually defined over the same field Ftq) can
be exploited for setting up powerful statistical attacks. For example, a trun-
cated differential [43] can be set up by exploiting the fact that every element
of Fqn is either active or passive. The same property is crucial for attacks and
distinguishers like the multiple-of-m [37] and the mixture differential one [31].

A possible way to solve this problem is by considering a so-called weak-
arranged SPN scheme [20, 15], where the nonlinear layer is defined as

S(x0, . . . , xt−1) = S0(x0, . . . , xn−1) || S1(xn, . . . , x2n−1) || · · · || St′−1(xt−n, . . . , xt−1)

for a certain n ≥ 2 strictly bigger than 1 such that t = nt′, where S0, . . . , St′−1
over Fqn ≡ Fnq are invertible functions, and where the linear layer is defined
via the multiplication with a matrix M ∈ Ft×tq , whose corresponding function

over Ft′qn has degree strictly bigger than 1 (equivalently, it does not admit an

equivalent matrix representation in Ft
′×t′
qn).

Examples of weak-arranged SPN schemes are Neptune and Anemoi. The
hash function Neptune is inspired by Poseidon, but the power maps in the
external rounds are replaced by the concatenation of independent S-boxes over
Fp2 ≡ F2

p based on quadratic Lai–Massey functions. As shown in [36, Section 7],
such a scheme classifies as a weak-arranged SPN since the linear layer in the

external rounds does not admit an equivalent representation in Ft
′×t′
p2 , where

t = 2t′. A similar conclusion holds for the Anemoi scheme, whose S-boxes over
Fp2 ≡ F2

p are based on a particular instantiation of the Feistel scheme called

Flystel defined as (x, y) 7→ (u, v) :=
(
x− 2yz1/d + z2/d, y − z1/d

)
, where d ≥ 3

satisfies gcd(d, p− 1) = 1.
In the case of weak-arranged SPN schemes, the previous statistical attacks

that exploit the strong alignment/structure/arrangement between the nonlinear
and the linear layer do not work. Similar advantages also hold when considering
algebraic attacks. For example, since in an unarranged scheme the diffusion
takes place both in the linear and the nonlinear layer, the algebraic equations
that describe the scheme can be more dense.

3.2 Non-SPN Schemes: From Feistel to Horst

The S-boxes of any SPN scheme work independently from each other, and hence
no diffusion takes place among different S-boxes. To overcome this issue, here we

9

decided to consider non-SPN schemes. Well-known examples are the Feistel ones
such as GMiMC (which was broken in [11]). Given a function F : Fq → Fq, the
nonlinear layer of a Feistel scheme over F2

q is defined as (x, y) 7→ (x, y + F (x)),
which is invertible independently of F . Instead of considering a linear relation
between y and F (x), here we propose to combine y and F (x) in a nonlinear way
without losing the advantageous properties of Feistel schemes. The simplest way
is to combine the sum with a multiplication, but then the invertibility cannot be
guaranteed anymore. We solve this with a stronger assumption on the function.

Definition 3 (Horst Scheme). Let G : Fq → Fq \ {0} and F : Fq → Fq. We
define the Horst scheme over F2

q as in Fig. 1a, that is, as

(y, x) 7→ (x, y ·G(x) + F (x)) .

In particular, we call such scheme as

– Feistel or Horst+ if G is identically equal to 1, i.e., G(x) ≡ 1,
– Horst× if F (x) = α ·G(x)+β for certain α, β ∈ Fq (hence, y ·G(x)+F (x) ≡

(α+ y) ·G(x) + β).

Since Fq is a field and G(x) 6= 0 for each x ∈ F, Horst is invertible.

S-Box in Streebog and Kuznyechik. In the case F (x) = 0 for each x ∈ Fq, we
note that a Feistel scheme based on a nonlinear relation between the branches
was allegedly also used in order to set up the 8-bit S-boxes of Streebog [26] and
Kuznyechik [28], two Russian standards of a hash function and a block cipher,
respectively. This was discovered in [13], where the authors reconstructed the
design of the S-box from its lookup table definition. The nonlinear diffusion in
this case consists of multiplications in F24 between the two branches.

However, to the best of our knowledge, no generalization from F24 to larger
binary extension fields or larger prime fields is publicly available. Indeed, given
(x, y) 7→ x · G(y), while a brute-force approach may be sufficient to achieve in-
vertibility (i.e., G(y) 6= 0 for each y) and efficiency in terms of linear or nonlinear
operations for small fields, this does not seem feasible when considering larger
fields. We solve this problem in the following, by showing how to construct G in
an efficient way for the Horst approach given above.

Generalized Feistel Constructions over Groups. Various independent works dis-
cuss generalized Feistel contructions over groups [61, 56, 41]. We emphasize that
these are not compatible with our results presented here. In particular, let (G,#)
be a group with respect to an operation #. The generalized Feistel schemes stud-
ied in [61, 56, 41] are of the form (x, y) 7→ (y#F (x), x) for a function F : G→ G.
By the definition of a group, there exists an identity element ι ∈ G such that
z#ι = ι#z = z for each z ∈ G, and for each z ∈ G, there exists w, y ∈ G such
that w#z = z#y = ι (where y = w if G is abelian). However, (Fq,×), where
q = ps and × is the multiplication, is not a group. Indeed, 0 does not satisfy
the previous condition (e.g., it does not admit any inverse). Hence, the results
proposed in [61, 56, 41] do not apply to Horst.

10

xy

G

F

(a) Horst over F2
q.

x0x1x2x3

G1

F1

G2

F2

G3

F3

(b) Generalized Horst over F4
q.

Fig. 1: The generalized Horst scheme over Ftq.

Initial Security Considerations. The security of Feistel schemes [46] has
been heavily analyzed both from the indistinguishability point of view [54, 55, 49]
and from the indifferentiability one [21, 24].10 Here, we limit ourselves to make
an initial analogous security analysis for the Horst scheme. In the following,
F (i) : Fq → Fq and G(i) : Fq → Fq denote the functions in the i-th round for
i ∈ {0, . . . , r − 1}.

It is always possible to set up a distinguisher for 1 (trivial) and 2 round(s)
of the Horst scheme. Consider three inputs of the form (yi, x) ∈ F2

q and the

corresponding outputs (zi, wi) ∈ F2
q for i ∈ {0, 1, 2}, where zi := yi · G(0)(x) +

F (0)(x) and for unknown w0, w1, w2 ∈ Fq. In the case of 2-round Horst, we have
(y2 − y0) · (z1 − z0) = (z2 − z0) · (y1 − y0) with probability 1, while this occurs
with probability 1/q in the case of a Pseudo-Random Permutation (PRP).

In App. B, we present distinguishers for 3 and 4 rounds of Horst×, by adapt-
ing the analogous attacks on Feistel schemes proposed by Patarin in e.g. [55].
For the particular Horst× defined as (y, x) 7→ (x, y ·G(x)) (i.e., F is identically
equal to zero), we point out that it is possible to set up a distinguisher on an
arbitrary number of rounds, by noting that (0, x) ∈ F2

q is always mapped in
(x, 0) ∈ F2

q after one round and in (0, x) ∈ F2
q after two rounds, for each x ∈ Fq

and for each G : Fq → Fq \ {0}.
The problems of setting up distinguishers for more than 2 rounds of Horst

and for more than 6 rounds of Feistel or Horst× are open for future research.

Generalized Horst. Next, we generalize the Horst scheme over Ftq for t ≥ 2.

Definition 4 (Generalized Horst). Let t ≥ 2. For each i ∈ {0, 1, . . . , t − 2},
let Gi : Fi+1

q → Fq \ {0} and Fi : Fi+1
q → Fq. We define the Generalized Horst

10 Roughly speaking, in the first case, the attacker does not have any information about
the functions Fi that define the round. In the second case, they can e.g. query such
functions, which are publicly available.

11

scheme over Ftq as x 7→ y, where

yi :=

{
xi+1 ·Gi(x0, x1, . . . , xi) + Fi(x0, x1, . . . , xi) if i ∈ {0, 1, . . . , t− 2},
x0 otherwise (if i = t− 1).

(4)

We refer to Fig. 1b for t = 4. Based on [63, 53, 40], we see the following.

– If Gi = 1 for i ∈ {0, . . . , t− 2}, Fj = 0 for j ∈ {1, . . . , t− 2}, and without a
condition on F0, we have Type-I Feistel. If Gi = 1, Fi = 0 for i ∈ {1, . . . , t−
2}, and without a condition on G0 and F0, we have Type-I Horst.

– If Gi = 1 for i ∈ {0, . . . , t − 2} and Fj(x0, . . . , xj−1) = F ′j(xj−1) for j ∈
{0, . . . , t − 2}, we have Type-III Feistel. If Gj(x0, . . . , xj−1) = G′j(xj) and
Fj(x0, . . . , xj−1) = F ′j(xj−1) for j ∈ {0, . . . , t− 2}, we have Type-III Horst.

The results are similar for Type-II, expanding, and contracting constructions. A
generic comparison of advantages and disadvantages between Horst schemes and
SPN, partial SPN (P-SPN) and classical Feistel schemes is proposed in App. C.

3.3 Constructing Nonzero Functions G

One way of instantiating G is to exploit the following result.

Lemma 1. Let G : Fq → Fq such that G′(x) := G(x) · x is a permutation over
Fq and G(0) 6= 0. Then, G(x) 6= 0 for each x ∈ Fq.

Proof. By definition, G′(0) = 0 ·G(0) = 0. Since G′ is a permutation by assump-
tion, it follows that G′(x) 6= 0 for each x 6= 0. Hence, G(x) = G′(x)/x 6= 0 for
each x ∈ Fq \ {0}. Since G(0) 6= 0, it follows that G(x) 6= 0 for each x ∈ Fq.

Let d ≥ 3 be the smallest integer such that x 7→ xd is invertible over Fq,
hence gcd(d, q − 1) = 1. Let α ∈ Fq \ {0}. A concrete example of G over Fq is

G(z) =
(z ± α)d ∓ αd

z
=

d∑
i=1

(
d

i

)
zi−1 · (±α)d−i ,

which satisfies Lemma 1. Indeed, G(0) = d · (±α)d−1 6= 0 by assumption on α
and z 7→ G(z) · z = (z ± α)d ∓ αd is invertible by assumption on d.

Result for Binary Fields. In the case of binary fields F2n , Lemma 1 can be
exploited by noting that x 7→ x2

i

are linear operations over Fn2 . Indeed, by

defining G(x) =
∑d
i=0 αi · x2

i−1 for α0 ∈ F2n \ {0} and α1, α2, . . . , αd ∈ F2n ,
due to Lemma 1, G satisfies the required property if and only if the matrix
corresponding to G′(x) = x ·G(x) =

∑d
i=0 αi ·x2

i

rewritten over Fn2 is invertible.

12

Result for Prime Fields. In the case of a prime field Fp for p ≥ 3, we can also
exploit the fact that the quadratic map x 7→ x2 is not invertible over Fp in order
to construct G. Let α, β ∈ Fp such that α2−4β is a quadratic nonresidue modulo
p, that is, α2 − 4β 6= w2 for each w ∈ Fp. In this case,

G(x) = x2 + αx+ β

satisfies the required property. Indeed, the solutions of x2 + αx + β = 0 are
given by x± = −(α±

√
α2 − 4β)/2. Since α2− 4β is a quadratic nonresidue, no

solution x± exists. Note that the function G just given does in general not satisfy
the requirement of Lemma 1. Indeed, a function H(x) = ηx3 +ψx2 +ϕx over Fp
is invertible if and only if p = 2 mod 3 and ψ2 = 3ηϕ mod p (we refer to [51,
Corollary 2.9] for the proof). As a result, G′(x) = G(x) · x = x3 + αx2 + βx is
not a permutation either if (i) p = 1 mod 3 or if (ii) p = 2 mod 3 and α2 = 3β
does not satisfy the condition that α2 − 4β is a quadratic nonresidue modulo p.

3.4 The Road to Griffin

A Fluid -SPN scheme whose nonlinear layer uses both x 7→ xd and x 7→ x1/d

(where d ≥ 3 is the smallest integer ensuring invertibility) can be efficiently
proven/verified in ZK protocols. Further, the overall degree of the function in-
creases quickly due to the degree-(1/d) S-boxes, while the round-level constraints
remain of degree d. This prevents attacks exploiting the degree of the entire func-
tion. However, while this representation is efficient in STARKs, such a nonlinear
layer may be too expensive for SNARKs and for the plain performance.

An unarranged scheme based on generalized Horst seems beneficial since it
provides diffusion in the nonlinear layer. To minimize the multiplicative com-
plexity, we work with quadratic functions Gj in Eq. (4), while we fix all Fi func-
tions to zero for efficiency reasons. Further, we work with Gj(x0, x1, . . . , xj−1) =

G′j(
∑j−1
l=0 λl · xl), where G′j : Fp → Fp for each j ∈ {2, . . . , t− 1}.

Nonlinear Layer. By combining a Fluid -SPN scheme and Horst in a single
nonlinear layer, we get S : Ftp → Ftp defined as S(·) = S′′ ◦ S′(·), where

(S′(x0, . . . , xt−1))i =


x0

1/d if i = 0,

x1
d if i = 1,

xi otherwise,

(S′′(x0, . . . , xt−1))i =

{
xi if i ∈ {0, 1},
xi ·

(
z2i−1 + αizi−1 + βi

)
otherwise,

such that α2
i − 4βi is a quadratic nonresidue and zi is a linear combination of

the inputs and outputs {x0, . . . , xi−1} ∪ {x01/d, x1d}. Clearly, S′ is inspired by
the nonlinear layer of Rescue, while S′′ is based on the Horst function. Further,
note that both S′ and S′′ are invertible if gcd(d, p − 1) = 1 and by choosing
(αi, βi) such that α2

i − 4βi is a quadratic nonresidue.

13

Table 1: Number of multiplication per round for the verification process of several
ZK-friendly hash functions (instantiated with d = 5) proposed in the literature
over Ftp. (?The number given for Poseidon refers to the external full rounds.)

Griffin Anemoi Poseidon? Rescue

2t + 2 2.5t 3t 6t

Number of Multiplications. The number of multiplications per round for the
verification process is 2(hw(d) + blog2(d)c − 1) for S′ and 2(t− 2) for S′′, i.e.,11

2t+ 2(hw(d) + blog2(d)c − 3) ∈ O(t)

multiplications are needed per round.12 Hence, for large t, the cost of our design
is almost independent of the value of d. For comparison, each external round of
Poseidon and each step of Rescue costs t(hw(d)+blog2(d)c−1) multiplications,
while each round of Anemoi costs t

2 (hw(d) + blog2(d)c − 1 + 2) multiplications,
where t is even. A comparison of the number of multiplication for the most-used
case d = 5 is given in Table 1.

Griffin with Feistel. To highlight the advantages of Horst, we consider a
variant of Griffin instantiated with a classical Feistel, where S′′ is replaced by

(Ŝ′′(x0, . . . , xt−1))i =

{
xi if i ∈ {0, 1},
xi +

(
z2i−1 + αi · zi−1 + βi

)
otherwise,

(5)

where as before α2
i − 4βi is a quadratic nonresidue for each i, while zi is a linear

combination of the inputs and outputs {x0, . . . , xi−1}∪{y0, y1}. As we discuss in
Section 6.3, the security of this variant against algebraic attacks is smaller and
more difficult to argue than in Griffin. Moreover, the diffusion is slower, which
leads to a crucial impact on the performance in the target ZK applications. This
highlights the importance of the nonlinear combination in the Horst scheme.

Linear Layer. In many recent SNARK/STARK-friendly designs, an MDS ma-
trix is used for every state size t, and hence the number of linear operations is
an element in O(t2) in general. Since our target applications mostly use large
primes for a security level of 128 or 256 bits, an MDS matrix for large t is not
required from a statistical point of view. For example, security against (classical)
differential and linear attacks can also be provided with smaller branch numbers.

11 Given d =
∑blog2(d)c
i=0 di ·2i for di ∈ {0, 1}, evaluating x 7→ xd may require computing

x2
j

for j ∈ {0, 1, . . . , blog2(d)c} with blog2(d)c multiplications, plus hw(d) − 1 mul-
tiplications for x 7→ xd (where hw(·) is the Hamming weight, given in Definition 6).

12 Note that x 7→ xd costs hw(d) + blog2(d)c − 1 multiplications (see [36] for details).

14

In Griffin we only use an MDS matrix for t ∈ {3, 4}, and we use a more
efficient linear layer for t > 4. Still, we want to achieve full diffusion over a single
round to obtain stronger security against statistical attacks. For this goal and
for the case t = 4 · t′ ≥ 8, we reconsider the linear layer of AES written over F16

28

as the multiplication of two matrices, namely M = MMC ×MSR where

MSR = diag(I, I2, I3, I4), MMC = circ(2 · I, 3 · I, I, I),

where I is the 4 × 4 identity matrix, I2 = circ(0, 1, 0, 0), I3 = circ(0, 0, 1, 0),
and I4 = circ(0, 0, 0, 1). As is well-known, M = MMC ×MSR does not provide
full diffusion over a single round, due to the fact that each Ii is sparse. In
particular, MSR only changes the position of the input words, without mixing
them. Therefore, we replaced every Ii with an MDS matrix, and we generalize
the matrix MMC via the circulant matrix circ(2 · I, I, . . . , I).

This achieves full diffusion over a single round and efficiency. Indeed, for
t ≥ 8 (and similarly for t ∈ {3, 4}), the multiplication with M4 only needs 8
additions and 4 multiplications with small factors, resulting in 12t′ = 12(t/4) ≈
3t operations. Further, circ(2·I, I, . . . , I)·~x can be computed with 4(t/4)+t = 2t
additions. Hence, our linear layer M only requires around 5t ∈ O(t) operations.

4 Modes of Operation

For our practical use cases, we build a hash function set up via the sponge
construction and a compression function set up via the feed-forward operation
and the truncation. They are both instantiated via the Griffin-π permutation
proposed in the following section.

The generic hash function using a sponge construction can be used in all parts
of modern protocols where hash functions are needed, for example to return a
digest of a message or as a pseudo-random oracle. At the same time, these
protocols are instantiated with Merkle trees as well, where t input elements are
mapped into n < t output elements. When instantiating a Merkle tree via a
single-call sponge hash function for this purpose, the state needs to be increased
in order to include the capacity part, which negatively affects the performance.
Hence, we propose a dedicated compression function to be used in Merkle tree
constructions.

4.1 Sponge Hash Functions

The sponge construction (Fig. 2) introduced in [9, 10] builds upon an internal
permutation and can be used to achieve various goals such as encryption, au-
thentication, and hashing. Both the input and the output may be of arbitrary
size. The state size is split into t = r + c, where r and c denote the number of
elements in the rate (outer) and capacity (inner) part, respectively. Given an
input message m, we assume the padding rule proposed for Poseidon in [33,
Section 4.2], consisting of adding the smallest number < r of zeros such that

15

M S M

c(0) ∈ Ftp

S M

c(1) ∈ Ftp

S M

c(2) ∈ Ftp

· · · S M

c(R−2) ∈ Ftp

IV

m1

Gπ

m2

Gπ

m3

Gπ

m4

· · ·

· · ·

· · ·

· · ·

Gπ

h1

Gπ

h2

Fig. 2: Griffin-π (top) and the Griffin sponge (bottom), where � and ⊕
denote the element-wise addition of two vectors in Ftp and Frp, respectively.

the size of m || 0∗ is a multiple of r and of replacing the initial value IV ∈ Fcp
instantiating the inner part with |m| || IV′ ∈ Fcp, where |m| ∈ Fp is the size of
the input message m and IV′ ∈ Fc−1p is an initial value.

Security. As proven in [10], if the inner permutation resembles a random one,
the sponge construction is indifferentiable from a random oracle up to around
pc/2 queries. Equivalently, in order to provide κ bits of security, pc/2 ≥ 2κ, that
is, c ≥

⌈
2κ · logp(2)

⌉
. For such a given sponge hash function H : F?p → F∞p , it is

computationally hard to find:

(collision resistance) x, x′ 6= x such that H(x) = H(x′),

(preimage resistance) x given y such that H(x) = y, or

(second-preimage resistance) x′ given x 6= x′ such that H(x′) = H(x).

We assume that the output consists of at least d2κ/ log2(p)e elements in order
to prevent birthday bound attacks. From now on, we impose c ≥ d2κ/ log2(p)e
for a κ-bit security level.

4.2 Compression Functions

Let p ≥ 2 be a prime, and let 1 ≤ n < t. A cryptographic compression function
C : Ftp → Fnp takes t-element inputs and compresses them to n-element outputs,
so that collision resistance and (second-)preimage resistance defined as before are
guaranteed. One possible way to set up a compression function via a permutation
is to combine the truncation function with the feed-forward operation, i.e.,

x ∈ Ftp 7→ C(x) := Trn(P(x) + x) ∈ Fnp ,

where P is a permutation over Ftp and Trn yields the first n elements (i.e.,
Trn(x0, x1, . . . , xt−1) := x0‖x1‖ . . . ‖xn−1).

16

Security. Let Ek : Ftp → Ftp be a cipher for a key k ∈ Ftp. Assume that for a
particular IV ∈ Ftp, EIV (x) = P(x) for each x ∈ Ftp. Then x 7→ P(x) + x over
Ftp corresponds to the first round of the Davies–Meyer construction (x, IV) 7→
EIV (x)+x. As shown in [58, 14], this compression function provides κ-bit security
against collision and (second-)preimage attacks if pt ≥ 22κ. The final truncation
does not decrease the security if pn ≥ 22κ (due to the birthday bound).

For the case we have in mind, we consider t = 2n in the following. From now
on, we impose n = t/2 ≥ d2κ/ log2(p)e. Note that pt−n ≥ 2κ guarantees that
the attacker cannot brute-force the truncated part via guessing it.

Related Work. A similar compression function has been used in several schemes
in the literature, including Haraka [44] and Jive [17]. With respect to the one
just defined, the compression function used in there is defined as

x ∈ Ftq 7→ Trn(M ′C × P(x) +MC × x) ∈ Fnp ,

where MC ,M
′
C ∈ Ft×tp are two invertible functions. For example, in the case of

Jive instantiated via t = 4 and n = 2,

MC = M ′C =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 .

If no condition is imposed on the inputs of the compression function, the ma-
trix multiplications via MC ,M

′
C do not affect the security. Indeed, assume the

permutation P ′ over Ftp defined as P ′(x) := M ′C × P(M−1C × x). Since

Trn(M ′C × P(x) +MC × x) = Trn(P ′(x′) + x′)

for x′ = MC × x, the security of these constructions is identical.

5 Griffin and Griffin-π

Griffin-Sponge and Griffin-Compression are respectively a sponge hash func-
tion and a compression function over Ftp instantiated with the permutation Grif-
fin-π, where p > 263 (or dlog2(p)e > 63) is a prime and t ∈ {3, 4t′} for a positive
integer t′ ∈ {1, 2, . . . , 6}, i.e., t is either 3 or a multiple of 4. We limit ourselves to
t ≤ 24, since this is sufficient for the applications we have in mind. The security
level is κ bits, where 80 ≤ κ ≤ min {256, blog2(p) · t/3c}.13 We assume there
exists d ∈ {3, 5, 7, 11} such that gcd(d, p− 1) = 1.14 In the following, we refer to
Griffin when we do not distinguish between the mode of operation.

13 The condition 2κ ≤ pt/3 follows from the analysis just given regarding the security
of the sponge hash function and of the compression one.

14 Griffin-π may be used also with d /∈ {3, 5, 7, 11}. However, the security analysis
and the number of rounds must be adapted for this case.

17

5.1 Specification of Griffin-π

The Griffin-π permutation Gπ : Ftp → Ftp is defined by

Gπ(·) := FR−1 ◦ · · · ◦ F1 ◦ F0(M × ·),

where M ∈ Ft×tp is an invertible matrix and Fi : Ftp → Ftp is a round function

of the form Fi(·) = c(i) + M × S(·) for a round constant c(i) ∈ Ftp, a nonlinear
layer S : Ftp → Ftp, and i ∈ {0, 1, . . . , R − 1}. The same matrix M is applied to

the input and in every round. We assume c(R−1) = 0.

The Nonlinear Layer S. Let d ∈ {3, 5, 7, 11} be the smallest integer such
that gcd(d, p− 1) = 1. Let (αi, βi) ∈ F2

p \ {(0, 0)} be pairwise distinct such that
α2
i − 4βi is a quadratic nonresidue modulo p for 2 ≤ i ≤ t − 1. The nonlinear

layer S(x0, . . . , xt−1) = y0 || · · · || yt−1 is then defined by

yi =


x0

1/d if i = 0,

x1
d if i = 1,

x2 ·
(
(Li(y0, y1, 0))2 + α2 · Li(y0, y1, 0) + β2

)
if i = 2,

xi ·
(
(Li(y0, y1, xi−1))2 + αi · Li(y0, y1, xi−1) + βi

)
otherwise,

(6)

where y0 = xd0, y1 = x
1/d
1 , and Li : F3

p → Fp are linear functions of the form
Li(z0, z1, z2) = γi · z0 + z1 + z2 for arbitrary pairwise distinct γi ∈ Fp \ {0} (e.g.,
γi = i− 1).

The Linear Layer M . For t ∈ {3, 4}, the matrices must be MDS. We suggest

M3 =

2 1 1
1 2 1
1 1 2

 , M4 =


5 7 1 3
4 6 1 1
1 3 5 7
1 1 4 6

 ,

where M4 corresponds to M8,4
4,4 from [27], setting α = 2.15 This allows for an

efficient implementation, as further shown in [27, Figure 13]. Indeed, the multi-
plication by M4 can be computed with only 8 additions and 4 multiplications.

For t = 4t′ ≥ 8, M is defined as

M = M ′′ ×M ′ ≡M ′ ×M ′′ =


2 ·M4 M4 . . . M4

M4 2 ·M4 . . . M4

...
...

. . .
...

M4 M4 . . . 2 ·M4

 , (7)

where M ′ = diag(M4,M4, . . . ,M4) ∈ Ft×tp and M ′′ = circ(2 · I, I, . . . , I) ∈ Ft×tp

for a 4× 4 MDS matrix M4 and the 4× 4 identity matrix I.

15 We use the smallest α such that the resulting matrix is MDS.

18

Table 2: Instances of Griffin-π with security margin. We focus on the most
common cases, namely d ∈ {3, 5}, κ = 128, p ≈ 2256, and c = d2κ/ log2(p)e.

t = 3 t = 4 t = 8 t ∈ {12, 16, 20, 24}

R (d = 3) 16 14 11 10
R (d = 5) 12 11 9 9

Choosing the Constants. We use a pseudo-random number generator based
on SHAKE [52] in order to choose our round constants {c(i)}R−2i=0 and the con-
stants {(α2, β2)} that define the nonlinear layer. The other constants {(αi, βi)}t−1i=3

are defined as αi = (i− 1) ·α2 and βi = (i− 1)2 · β2. Note that Lp(α
2
i − 4 · βi) =

Lp((i− 1)2 · (α2
2 − 4 · β2)) = Lp(α

2
2 − 4 · β2) = −1.

5.2 Number of Rounds of Griffin-π

For κ-bit security, the number of rounds R including a security margin of 20%
must satisfy

R ≥
⌈

1.2 ·max

{
6,

⌈
2.5 · κ

log2(p)− log2(d− 1)

⌉
, 1 +RGB

}⌉
,

where RGB ≥ 1 is the smallest integer such that

min

{(
RGB · (d+ t) + 1

1 + t ·RGB

)
,

(
dRGB + 1 +RGB

1 +RGB

)}
≥ 2κ/2 .

These numbers are supported by our security analysis given in Section 6. Some
instances for Griffin-π are given in Table 2.

6 Security of Griffin and Griffin-π

We aim for Griffin-π instances that prevent attacks on the hash and com-
pression function. Distinguishers on Griffin-π that cannot be exploited for an
attack on the entire construction (e.g., zero sum partitions) are not taken into
account. This approach is largely applied in the literature and similar designs.

6.1 Statistical Attacks on Griffin-π

The best statistical attacks against Griffin-π include the differential attack [12]
and the rebound attack [50, 48]. Our theoretical security analysis is supported
by dedicated automatic MILP tools which we designed in order to search for
bounds on the minimal number of rounds against rebound attacks. Due to page
limitation, other attacks as linear cryptanalysis, impossible differential, zero-
correlation, integral/square, multiple-of-n, and mixture differential attacks are
analyzed in App. G.1.

19

Differential Cryptanalysis. Differential cryptanalysis [12] and its variations
are the most widely used techniques to analyze symmetric-key primitives. Given
pairs of inputs with fixed input differences, differential cryptanalysis consid-
ers the probability distribution of the corresponding output differences. Let
∆I , ∆O ∈ Ftp be respectively the input and the output differences through a
permutation P over Ftp. The differential probability (DP) for the output differ-
ence ∆O given the input difference ∆I is

Prob(∆I → ∆O) = (|{x ∈ Ftp | P(x+∆I)− P(x) = ∆O}|)/pt.

Its maximum DP is DPmax = max∆I ,∆O∈Ft
p\{0} Prob(∆I → ∆O). As Griffin-π

is an iterated scheme, we search for ordered sequences of differences over any
number of rounds, i.e., differential characteristics/trails. Assuming independent
rounds, the DP of a differential trail is the product of the DPs of its one-round
differences. Our goal is to find the minimum number of rounds such that each
characteristic’s probability is smaller than 2−2.5κ in order to also prevent clus-
tering effects. Based on other works published in the literature, we chose this
arbitrary value since more characteristics can be used simultaneously to set up
a differential attack, and hence each probability must be significantly smaller
than 2−κ for security.

For this purpose, we first compute DPmax of the components of the nonlinear
layer S, and the branch number of the matrix M .

Lemma 2. Let d ≥ 3 be an integer such that gcd(d, p−1) = 1. Then, DPmax(x 7→
xd) = DPmax(x 7→ x1/d) = (min{d, 1/d} − 1)/p.

We remind that min{d, 1/d} = d in our case.

Lemma 3. Let α, β ∈ Fp \ {0} such that α2 − 4β is a quadratic nonresidue
modulo p. Let F : F2

p → Fp be defined as F (x, `) = x · (`2 + α · ` + β). Given
an input difference ∆I = (δx, δ`) 6= (0, 0) and an output difference ∆O, the
maximum differential probability of F is given by

Prob(∆I → ∆O) ≤


0 if δ` = 0 and ∆O 6= 0,
2
p if δ` = 0 or δx = ∆O = 0,
p−1
p2 ≤

1
p otherwise.

We emphasize that the probability is zero if δ` = 0 and ∆O 6= 0 simultaneously.

Note that the previous probabilities are always smaller than d/p for each
d ≥ 3. The proofs for Lemmas 2 and 3 are given in App. D.1.

Since a nonlinear mixing takes place between the Fp elements, it is not possi-
ble to apply the previous two lemmas directly in order to provide an estimation
of the differential probability over a single round. For example, in the case of
(xi, `i) 7→ xi ·

(
`2i + αi · `i + βi

)
, where `i := Li(y0, y1, xi−1), the value of `i

and of the corresponding difference δ`i cannot be considered as variables, since

20

they depend on the values of x0, x1, xi−1 ∈ Fp and on the corresponding differ-
ences.16 Still, the previous results imply that the differential probability over a
single round cannot be bigger than (d− 1)/p. Hence,(

d− 1

p

)R
≤ 2−2.5κ =⇒ R ≥ 2.5κ

log2(p)− log2(d− 1)

rounds are sufficient for guaranteeing that the probability over the entire per-
mutation is smaller than 2−2.5κ, where the arbitrary value 2.5 has been chosen
to prevent clustering effect.

We emphasize that we expect that every differential probability has much
smaller probability, due to the fact that the activation of many S-Boxes is further
helped by our use diffusion matrix (besides the diffusion in the nonlinear layer).
From such point of view, we prove the following result regarding the branch
number of M in App. D.2:

Proposition 1. Let t = 4t′ ∈ {8, 12, . . . , 24}. The branch number of the matrix
M ∈ Ft×tp defined as in Eq. (7) is t′ + 4.

We recall that M ∈ Ft×tp is an MDS matrix for t ∈ {3, 4} and its branch
number is equal to t+ 1 in these cases.

Rebound Attacks. In a rebound attack [45, 50], the goal of the attacker is to
find two (input, output) pairs such that the two inputs and the corresponding
outputs satisfy certain (truncated) differences. The approach consists of the in-
bound and the outbound phase. According to these phases, the internal permuta-
tion P of the hash function is split into three subparts, that is, P = Pfw◦Pin◦Pbw.
The inbound phase is placed in the middle of the permutation and the two out-
bound phases are placed next to the inbound part. In the outbound phase, two
high-probability (truncated) differential trails are constructed, which are then
connected in the inbound phase. We claim that 6 rounds are sufficient against
this attack. From our analysis, we know that there exist truncated differentials
with probability 1 over a single round, but they cannot be extended over more
rounds, and any classical differential characteristic over 2 rounds has a probabil-
ity smaller than 2−κ (for common d). Hence, by using an inside-out approach,
the attacker can cover less than 4 rounds in the inbound phase. Since one round
can be covered with a truncated differential characteristic of probability 1, the
attacker can cover two rounds (one in each direction) in the outbound phase.
Thus, no rebound attack on 6 rounds of Griffin-π can be set up.

Verification with a Dedicated Tool. Our results have been verified via a
dedicated mixed integer linear programming (MILP) tool. The results obtained
with the tool for rebound attacks are presented in App. E. They support the
conclusion that 6 rounds are sufficient against this attack.

16 An analysis for this case is in given in Lemma 4.

21

6.2 Algebraic Attacks

Algebraic attacks exploit weak algebraic properties of the design (e.g., low de-
grees or low density). Our analysis suggests that interpolation attacks and Gröbner
basis attacks are the most efficient ones against Griffin. For this purpose, we
analyze the algebraic properties of the obtained equation systems and also prac-
tically implement Griffin-π to obtain better estimates.

We also claim security against higher-order differentials, which is implied
by the security against interpolation attacks. We do not claim security against
zero-sum partitions [16]. We refer to App. G.2 for more details.

Interpolation Attacks. The goal of an interpolation attack [42] is to construct
an interpolation polynomial describing the function. In the case of a hash func-
tion, an interpolation polynomial can potentially be exploited to set up collisions
or forgery attacks. The cost of the attack grows with the number of different
monomials in the interpolation polynomial, where (an upper/lower bound of)
the number of different monomials can be estimated given the degree of the
function. If the number of unknown monomials is sufficiently large, this cannot
be done faster than by exhaustive search. Roughly speaking, if the interpolation
polynomial is dense and if its degree is maximum, this attack does not work.

In our case, 3 rounds are sufficient to reach the maximum degree. Indeed,
due to Fermat’s little theorem, 1/d ≡ d′ where (d ·d′−1) mod (p−1) = 0. Since
d ≥ 3 is the smallest integer such that gcd(d, p − 1) = 1, this implies that d′ is
of the same order of p. In order to frustrate variants of the interpolation attack
like MitM approaches or inside-out approaches starting from the middle of the
constructions, we double the number of rounds, conjecturing that 2·3 = 6 rounds
are sufficient to prevent interpolation attacks and their variants. We further refer
to App. F.1 for a more detailed analysis about the density of Griffin-π.

Gröbner Basis Attacks. A Gröbner basis [18, 22] allows to solve the system
of equations that represent the cryptographic construction in a set of variables
depending on the attack goals. In general, a Gröbner basis attack consists of
three steps. First, the attacker needs to set up the equation system and compute
a Gröbner basis for it. Secondly, they perform a change of term ordering for the
basis, usually going to a term order which makes it easier to eliminate variables
and find the solutions. Finally, the attacker uses the system obtained in the
second step in order to start solving for the variables. As is usually done in the
literature, here we focus on the complexity of the first step (i.e., computing a
Gröbner basis), which can be estimated by

O
((

Dreg + nv
nv

)ω)
,

where Dreg is the degree of regularity, nv is the number of variables, and 2 ≤
ω < 3 is a constant representing the complexity of a matrix multiplication. The-
oretical estimations of the degree of regularity are known only for regular and

22

semi-regular equation systems [6]. For example, in the case of a regular system of
equations with ne = nv, where ne denotes the number of polynomials in the sys-
tem, the degree of regularity is estimated by Dreg = 1+

∑ne

i=1(di−1), where di is
the degree of the i-th equation. Since most of our equation systems do not exhibit
the properties of regular sequences, we compute the actual degrees reached dur-
ing the computations (the “practical” degree of regularity) for reduced versions
of Griffin-π, and use these estimates for the final round numbers.

As largely done in the literature (e.g., [33, 4, 17]), here we claim that the
security of Griffin with respect to the Gröbner basis attack follows from the
infeasibility to solve the CICO problem instantiated by Griffin-π.

Definition 5. The invertible function P : Ftp → Ftp is κ-secure against the
CICO (t1, t2)-problem (where 0 < t1, t2 < t and t1 + t2 = t) if no algorithm
with expected complexity smaller than 2κ finds I2 ∈ Ft2p and O2 ∈ Ft1p for given
I1 ∈ Ft1p and O1 ∈ Ft2p such that P(I1 || I2) = O1 || O2.

To support this claim, note that e.g. a preimage attack on the sponge hash
function corresponds to solving the CICO problem (by simply reordering the
elements). Indeed, the attacker cannot control (i) the inner part of a sponge hash
function corresponding to I1 in CICO and (ii) its output O1, which depends on
the element for which we are looking the preimage, while no condition is imposed
on the message (corresponding to I2) and the truncated part (corresponding to
O2). Analogously, an attack on the CICO problem just given corresponds to a
preimage attack on the compression function P(I1 || I2) = O1 + I1 || O2 ≡ O′1 ||
O2 (where I1, O1 are fixed).

Intermediate Variables. Using the inputs and outputs of Griffin-π directly is
infeasible since the degree is maximum and the polynomials are dense. A possible
strategy to overcome this problem consists of introducing intermediate variables.
This is a method to decrease the degrees in the equation system (and thus in
general also the number of appearing monomials) at the cost of more variables.
For Griffin-π, we can introduce new variables in each round in order to avoid
reaching a degree of 1/d. Let x = x0 || · · · || xt−1 and y = y0 || · · · || yt−1
be respectively the state before and after a nonlinear layer. Then, the relation
between x and y can be described by 2 equations of degree d and t−2 equations
of degree 3, using the fact that y1 = x1

1/d can be rewritten as yd1 = x1 and
the definition of our nonlinear layer given in Eq. (6). In order to connect two
rounds with this approach, we denote the input of the next nonlinear layer by
affine functions in y0, . . . , yt−1, depending on the linear layer matrix M and the
round constants. Hence, we add t variables in each round, except for the last
one, where we simply use the desired output values. We then have nv = r +Rt
variables (where r is the rate) and the same number of equations ne = nv. Of
these equations, 2R equations are of degree d and (t−2)R equations are of degree
3. The degree of the remaining equations depends on r. We focus on r = 1, since
by experiments this is the easiest case from the attacker’s point of view.

When implementing this system in Sage and Magma, the observed degrees

of regularity are ≥ D
(1)
est = dR for a degree-d nonlinear layer after R rounds

23

(see App. F.2 for details). Using D
(1)
est , we obtain an estimated complexity of(

D
(1)
est+nv

nv

)ω
=
(
dR+nv

nv

)ω
operations. By setting ω = 2 (optimistic from the at-

tacker’s point of view) and for a security level of κ bits, R must satisfy

log2

((
D

(1)
est + nv
nv

))
= log2

((
dR+ 1 + tR

1 + tR

))
≥ κ

2
. (8)

Partial Intermediate Variables. Another strategy consists in introducing only a
single intermediate variable for each round in order to avoid the high degree
growth in the second word. The other state words go through the nonlinear
layer without adding any more variables. In more detail, we introduce a single
new equation y1

d − x1 = 0 in each round, where y1 is the new variable. Hence,
we have r + R variables in total, and we again focus on r = 1. The degree of
the equations increases in each round, however not as fast as it would without
adding a variable for the second word. By practical experiments, we found that

the degree of regularity can be estimated conservatively by D
(2)
est = dR for this

strategy (see App. F.2 for details). Even if the equations here have a higher degree
than in the first strategy, the number of variables and equations is smaller, since
only one relation is added in each round (instead of t). Still, there is one crucial
difference. Adding intermediate variables for all state words leads to a complexity
which scales significantly with t. In this case, we add only one variable in each
round, regardless of t. This means that we require

log2

((
D

(2)
est + nv
nv

))
= log2

((
dR + 1 +R

1 +R

))
≥ κ

2
. (9)

Gröbner Basis Summary. Given the results just presented, we require that
Eq. (8) and Eq. (9) are fulfilled for a κ-bit security level. However, due to the
particular structure of our nonlinear layer, it is possible to choose the input such
that the degrees in the first round are lower than expected. In particular, an

attacker may choose the input such that y0 = x
1/d
0 = u1 and y1 = xd1 = u2,

where u1, u2 are two fixed constants chosen by the attacker. This can be done
by simply solving a linear equation system with these constraints. Consequently,
the first two words are constant, the third word is linear, and only then the
degree starts to grow. In order to protect from this attack, we add 1 round to
the final round number needed for preventing Gröbner basis attacks.

For completeness, we also describe two additional attack strategies in App. F.3.
They are both less efficient than the ones just presented.

6.3 Security of Griffin Instantiated with Feistel

We consider the security of Griffin instantiated with a Feistel scheme as in
Eq. (5) with respect to the two Gröbner basis approaches discussed in Section 6.2.

In the first Gröbner basis strategy we introduce intermediate variables for
the whole state, i.e., we add t new variables and equations per round. In our

24

experiments with Sage and Magma we could observe that the practical degree
of regularity was constant regardless of the number of rounds in our tests for
R ≥ 2. Indeed, we were able to compute Gröbner bases in practice for the round
numbers proposed for Griffin (with Horst). We emphasize that this does not
necessarily mean that the complexity of an attack changes only slightly with
increased round numbers, but rather that it is harder for the designer to argue
security. A similar behaviour was reported in [1, Section 6.1] for MiMC, where
computing the Gröbner basis is efficient with intermediate variables, but the
other steps in the full attack (monomial reordering, factorization) are not.

For the second strategy, where we only introduce intermediate variables to
avoid the degree-(1/d) growth in each round, it is easier to argue security. Still,
the maximum degree in each round is reduced due to the missing multiplication.
In particular, the difference is deg(Ri−1) in each round, where deg(Ri) is the
degree in the i-th round. Additionally, we could observe faster Gröbner basis
computations for the Feistel version compared to the Horst version. Concretely,
the difference is about a factor of 8 between the two versions.

Hence, even with a detailed analysis of the first strategy, the number of
rounds would have to be increased due to the second strategy. This suggests
that using the multiplication instead of the addition is better when aiming for
security and efficiency in the applications discussed in this paper.

7 Performance Evaluation

In this section, we evaluate the performance of Griffin and compare it to Po-
seidon, Rescue-Prime [60] (a newer variant of Rescue with less security margin),
GMiMCerf , Grendel , and Neptune. Since GMiMCerf was broken in [11], we use
the updated round numbers proposed in [25, App. G]. Grendel has been broken
too [34], leading to an adaptation of the round numbers by the designers. Our
evaluation includes the updated numbers. Finally, we further compare Griffin
to the follow-up design Anemoi [17].

First we evaluate the plain performance, then we compare the efficiency when
used in R1CS-based SNARKs and Plonk. For an evaluation in STARKs we refer
to App. A.3. We instantiate all hash functions to provide 128 bits of security.
All benchmarks were obtained on Linux using an Intel Xeon E5-2699 v4 CPU
(2.2 GHz, turboboost up to 3.6 GHz) using stable Rust version 1.59 and the
target-cpu=native flag. Each of the individual benchmarks has only access to
one thread (we refer to Section 7.3 for the source code).

Remark 2. The target use case plays a crucial role for the state size t. Indeed,
while large primes are used in SNARK-based proof systems (and hence t can be
small for a certain desired level of security), smaller primes are often preferred
in STARK-based proof systems due to efficiency. For example, in plonky2 [57]
a 64-bit prime is used. Therefore, we emphasize that the efficiency with larger
state sizes (e.g., t ≥ 12) is as important as the efficiency with smaller ones.

25

Table 3: Plain performance of different permutations in Rust (measured in µs).

Permutation
State size t

3 4 5 8 9 12 16 20 24

BLS12 (d = 5)

Griffin 113.97 105.45 – 89.32 – 93.76 98.19 103.78 107.96
GMiMCerf 20.14 20.70 21.65 26.07 26.44 37.72 65.94 107.45 167.75
Neptune – 19.54 – 30.87 – 60.20 93.14 128.95 171.97
Poseidon 18.61 24.36 30.60 55.52 63.10 95.84 149.61 212.85 286.75
Rescue-Prime 412.91 434.13 451.49 645.79 739.24 1005.20 1363.40 1759.10 2147.80
Grendel 822.54 959.92 1001.30 1154.60 1215.60 1283.30 1425.30 1411.90 1459.20

BN254 (d = 5)

Griffin 106.90 99.33 – 84.97 – 88.21 92.08 96.85 100.10
GMiMCerf 18.67 19.34 20.08 23.44 24.63 34.05 69.49 107.82 156.35
Neptune – 17.38 – 29.83 – 58.41 89.89 125.87 166.11
Poseidon 17.56 23.23 29.37 51.06 58.96 89.20 139.68 196.64 267.80
Rescue-Prime 379.78 400.87 411.16 598.86 683.81 929.89 1275.50 1639.30 2006.10
Grendel 703.36 808.78 849.89 994.20 1034.30 1094.20 1213.30 1196.00 1253.50

Remark 3. The Pedersen hash function [62, Sec. 5.4.1.7] is also relevant for ZK
proof systems. However, since it is not preimage-resistant, uses hardness assump-
tions vulnerable to quantum computers, and requires more R1CS constraints
than Poseidon and Rescue (see [32]), we do not consider it in our benchmarks.

Remark 4. As is often the case in symmetric cryptography, it is difficult to con-
sider versions with equal security margins in the comparisons. For example,
adding the same number of rounds or nonlinear functions to two designs with
different structures may affect both the security and the performance of the two
designs differently. Therefore, we focus on the original specifications given by
the designers, noting that the security margins may vary between the different
constructions.

7.1 Plain Performance

In Table 3, we compare the plain performance of the permutations when in-
stantiated with the scalar fields of the commonly used BLS12 and BN254 el-
liptic curves.17 In both of these fields d = 5 is the smallest value for which
xd is a permutation. As the table shows, the fastest permutation for t ≤ 16
is GMiMCerf . However, as we show later, it has the worst performance when
used with SNARKs and STARKs. Rescue-Prime and Grendel have the worst
plain performance due to having t high-degree x1/d or Legendre symbol evalua-
tions per round. Griffin also uses x1/d, but only once per round. Thus, Griffin
scales significantly better with larger t than the other designs. Indeed, for small t
Griffin is slower than Poseidon and Neptune, but the differences get smaller
for larger t, until Griffin is faster than Poseidon and Neptune if t ≥ 16.

17
pBLS381 = 0x73eda753299d7d483339d80809a1d80553bda402fffe5bfeffffffff00000001,
pBN254 = 0x30644e72e131a029b85045b68181585d2833e84879b9709143e1f593f0000001.

26

As mentioned above, we do not provide an implementation of Anemoi. How-
ever, due to a larger number of expensive x1/d evaluations per round while having
a similar number of rounds, we expect that Anemoi has a slower plain evaluation
time compared to Griffin, which grows with the state size t.

7.2 R1CS-Based SNARKs with Griffin

Here we evaluate the efficiency of Griffin when used in R1CS-based zk-SNARKs
and compare it to its competitors by giving the number of R1CS constraints, as
well as concrete runtimes for proving knowledge of preimages and membership
witnesses for Merkle tree accumulators. Our implementation is written in Rust
using the bellman ce library18 for creating Groth16 [39] proofs.19

Describing Griffin as a R1CS system is straightforward. The first two words
of the nonlinear layer (i.e., y0, y1 in Eq. (6)) each require blog2(d)c+ hw(d)− 1
constraints (2 constraints if d = 3, 3 constraints if d = 5). The squaring of each
L(·) and each word of the remaining state require an additional constraint each.
Since the linear layers can be incorporated into the constraints of the subsequent
nonlinear layers (see Section 2.3), the total number of R1CS constraints for
describing the whole Griffin-π permutation is

(2 · blog2(d)c+ 2 · hw(d) + 2 · t− 6) ·R ,

i.e., 2 ·R · t R1CS constraints if d = 3 and R · (2 · t+ 2) ones if d = 5. In Table 4
we compare the number of R1CS constraints, as well as the concrete runtime
to create a ZK proof using the bellman ce library when instantiated with two
different elliptic curves (BLS12-381, BN254) which require d to be d ≥ 5. We
compare the performance of the hash functions when (1) proving knowledge of
a preimage of a specific hash and when (2) proving membership of a Merkle
tree accumulator with 224 elements. For these benchmarks we instantiate all
permutations in a sponge mode of operations. Consequently, when constructing
Merkle trees with arity (x : 1) we requre a statesize t which is at least one word
larger than x. In all cases, verifying the created ZK proof took < 4 ms which is
why we do not explicitly list this runtime in Table 4.

Remark 5. As mentioned above, the hash functions in Table 4 are instantiated
using the sponge mode of operation. One can, however, also read the benchmarks
from Table 4 when using the compression function from Section 4.2. For a (x : 1)
compression we require a state size of t = x. As an example, the Griffin
benchmark with t = 8 is a valid benchmark for a (4 : 1) compression using
the sponge mode of operation and a (8 : 1) compression using the compression
function from Section 4.2. Or, when considering 64-bit field elements and 128-
bit security, a (2 : 1) compression with Griffin can be achieved either with a
sponge and t = 12 or with a compression function and t = 8.

18 https://docs.rs/bellman_ce/0.3.5/bellman_ce/
19 bellman ce is used in the Zcash protocol: https://z.cash/technology/zksnarks/

27

https://docs.rs/bellman_ce/0.3.5/bellman_ce/
https://z.cash/technology/zksnarks/

Table 4: Bellman ce performance of various hash functions in the sponge mode
of operation (one permutation per call) for different state sizes t. Performance
numbers are for proving the knowledge of preimages of hashes (Perm) and for
proving the membership of a Merkle tree accumulator with 224 elements (MT).
Proving times are given in ms.

Hash
State size t (MT arity)

3 (2 : 1) 4 (2 : 1) 5 (4 : 1) 8 (4 : 1) 9 (8 : 1) 12 (8 : 1)
Prove R1CS Prove R1CS Prove R1CS Prove R1CS Prove R1CS Prove R1CS

BLS12 (d = 5)

Griffin
Perm 39.08 96 42.46 110 – – 60.54 162 – – 82.29 234
MT 451.88 2637 495.74 2712 – – 422.50 2136 – – 424.07 2192

Neptune
Perm – – 71.53 228 – – 95.54 264 – – 120.55 306
MT – – 969.71 5544 – – 728.11 3360 – – 747.22 2768

Poseidon
Perm 75.31 240 88.29 264 93.43 288 108.40 363 114.35 387 132.54 459
MT 1013.70 5832 1093.00 6408 654.85 3648 877.17 4548 630.17 3416 719.52 3992

Rescue-Prime
Perm 75.12 252 77.55 264 78.01 270 96.71 384 106.61 432 138.93 576
MT 851.56 6120 872.26 6408 512.97 3432 726.84 4800 541.93 3776 737.59 4928

GMiMCerf
Perm 173.71 678 176.91 684 180.20 690 190.01 708 193.76 714 253.53 942
MT 3060.80 16344 2842.40 16488 1537.40 8472 1640.80 8688 1118.20 6032 1535.60 7856

Grendel
Perm 148.76 870 160.50 1000 191.33 1050 216.12 1200 223.85 1260 231.53 1320
MT 2297.70 20952 2535.40 24072 1403.20 12792 1505.40 14592 1249.70 10400 1268.00 10880

Anemoi
Perm – – n/a 120 – – n/a 200 – – n/a 300
MT – – n/a 2952 – – n/a 2592 – – n/a 2720

BN254 (d = 5)

Griffin
Perm 22.48 96 24.24 110 – – 35.08 162 – – 48.05 234
MT 266.77 2637 294.07 2712 – – 251.90 2136 – – 257.31 2192

Neptune
Perm – – 42.75 228 – – 61.30 264 – – 86.31 306
MT – – 621.76 5544 – – 512.69 3360 – – 569.48 2768

Poseidon
Perm 43.47 240 51.58 264 54.35 288 64.46 363 70.82 387 79.86 459
MT 604.91 5832 656.77 6408 391.55 3648 542.02 4548 385.03 3416 446.87 3992

Rescue-Prime
Perm 43.54 252 44.36 264 44.87 270 54.52 384 61.51 432 80.97 576
MT 510.03 6120 520.01 6408 306.12 3432 436.83 4800 323.67 3776 445.66 4928

GMiMCerf
Perm 101.81 678 104.95 684 107.36 690 115.99 708 119.02 714 164.38 942
MT 2148.60 16344 1791.20 16488 952.34 8472 1049.80 8688 717.61 6032 1046.70 7856

Grendel
Perm 86.85 870 94.12 1000 113.33 1050 127.31 1200 131.54 1260 135.80 1320
MT 1401.20 20952 1523.60 24072 854.51 12792 920.43 14592 759.53 10400 776.86 10880

Anemoi
Perm – – n/a 120 – – n/a 200 – – n/a 300
MT – – n/a 2952 – – n/a 2592 – – n/a 2720

Table 4 shows that Griffin requires the smallest number of R1CS con-
straints to prove knowledge of a preimage of a hash for several state sizes t.
However, since Griffin is defined for t ∈ {3, 4t′}, it cannot be instantiated with
t = 5 or t = 9 (the smallest state sizes for Merkle trees with arities 4 and 8,
respectively). Thus, to create trees of this arity, Griffin either requires a larger
state size with a sponge compared to its competitors (e.g., more words in the
inner part of the sponge), or it has to be used together with the compression
function from Section 4.2. As shown in Table 4, even the first approach results
in significantly fewer R1CS constraints and smaller proving times compared to
the other hash functions. Concretely, using Griffin results in nearly half of the
required constraints compared to Poseidon and Rescue and two third of the
constraints compared to the recently proposed Neptune. Only Anemoi comes

28

close, however, it scales worse than Griffin for larger t. Consequently, Griffin
has the fastest proving times which also lead to the fastest membership proving
times when used as a hash function in Merkle tree accumulators.

7.3 Plonk Performance of Griffin

Describing Griffin as Plonk gates can be done as follows. Each affine layer
usually requires t · (t− 1) addition gates. However, due to the special structure
of our linear layers which are optimized for a low number of additions, the
number gets significantly reduced (similar to Poseidon and Neptune where the
affine layers can be represented with fewer addition gates as well). Regarding the
nonlinear layer, the first two words require blog2(d)c+ hw(d)− 1 multiplication
gates. Computing L(·) requires one addition gate for i = 2 and two gates for
i > 2. Computing zi = Li(·)2 +αiLi(·) + βi requires one gate plus an additional
multiplication gate for yi = xi · zi. Summing up, Griffin requires

(R+ 1) ·#mat +R · (2 · blog2(d)c+ 2 · hw(d) + 4t− 11)

Plonk gates, i.e., (R + 1) · #mat + R · (4t − 5) gates if d = 3 and (R + 1) ·
#mat + R · (4t − 3) gates if d = 5. Depending on t, the gates per linear layer
#mat varies: #mat = 5 for t = 3, #mat = 8 for t = 4, #mat = 24 for t = 8,
and #mat = 8t

4 + 2t − 4 otherwise. Further, an intermediate constraint from
the nonlinear layer can be reused in the following linear layer calculations, and
hence the total number of constraints gets reduced by R for t ≥ 4.

Remark 6. When 3-fan-in addition gates are available in the Plonk implementa-
tion (see Remark 1), then Griffin requires (R+ 1) ·#mat +R · (2 · blog2(d)c+
2 · hw(d) + 3t − 8) Plonk gates, with #mat = 3 for t = 3, #mat = 6 for t = 4,

#mat = 20 for t = 8, and #mat = 6t
4 + 4 ·

⌊
t/4−1

2

⌋
+ t otherwise. As above, one

intermediate constraint from the nonlinear layer can be reused in the following
linear layer calculations, and hence the total number of constraints gets reduced
by R for t ≥ 4.

In Table 5, we compare the efficiency of the different hash functions when
used in the Plonk proof system by comparing the number of Plonk gates required
to represent one permutation. One can observe that compared to Poseidon and
Rescue, Griffin always requires the smallest number of Plonk gates due to hav-
ing a small number of multiplications (Section 7.2) and a small number of rounds
implying a small number of linear layers. Only Anemoi requires a smaller number
of gates in some configurations for small state sizes, due to having the advantage
of cheaper linear layers which require less addition gates. However, Griffin’s lin-
ear layer becomes cheaper with larger state sizes until Griffin is more efficient
then Anemoi in these configurations as well at around t ≥ 12. We also compare
Griffin to Reinforced Concrete [32], a hash function with a fixed state size
t = 3 introducing novel techniques to use lookup tables in Fp designs. These
lookup tables lead to fast plain performances, but potentially also introduce the

29

Table 5: Number of Plonk gates to describe various hash functions when instan-
tiated with a 256-bit prime field. Numbers are given for Plonk implementations
using either 2-fan-in addition gates or 3-fan-in addition gates.

Hash
State size t

2-fan-in addition gates 3-fan-in addition gates
3 4 5 8 9 12 3 4 5 8 9 12

d = 3

Griffin 197 260 – 574 – 904 163 216 – 471 – 704
Reinforced Concrete 372 – – – – – 270 – – – – –
Rescue-Prime 432 560 720 1152 1440 2496 324 448 480 768 864 1536
Poseidon 600 844 1100 1976 2304 3420 407 640 674 1256 1308 2030
Neptune – 687 – 1435 – 2451 – 534 – 1074 – 1812
Grendel 1485 1792 2040 2560 2835 3456 1386 1680 1800 2176 2295 2736
GMiMCerf 1312 1650 1992 3042 3400 4498 984 1320 1328 2028 2040 2768
Anemoi – 220 – 456 – 1080 – 172 – 332 – 696

d = 5

Griffin 173 222 – 492 – 836 147 193 – 407 – 655
Reinforced Concrete 378 – – – – – 276 – – – – –
Rescue-Prime 420 528 630 1280 1584 2688 336 440 450 896 1008 1728
Poseidon 518 708 916 1665 1947 2901 379 560 602 1107 1167 1791
Neptune – 755 – 1507 – 2529 – 602 – 1146 – 1890
Grendel 1392 1700 1890 2520 2772 3300 1305 1600 1680 2160 2268 2640
GMiMCerf 1130 1368 1610 2360 2618 4396 904 1140 1150 1652 1666 2826
Anemoi – 244 – 496 – 1140 – 196 – 372 – 756

risk of side-channel attacks. Further, they prevent Reinforced Concrete from
(efficiently) being used in R1CS-based SNARKs or AIR-based STARKs. It is,
however, usable and specifically designed for Plookup [29], an extension to Plonk
allowing lookup tables. Interestingly though, Griffin requires fewer Plonk gates
than Reinforced Concrete when using Plonk with the Plookup extension.

Acknowledgments. The authors thank all reviewers for their suggestions on
how to improve the quality of the paper. We also thank them for the suggestion
of the name Horst, for pointing out the similarity between Horst and the S-box
used in Streebog, and for pointing out a mistake in the differential security analy-
sis of Griffin. We thank Danny Willems for pointing out an optimization in the
Plonk arithmetization for Griffin. Lorenzo Grassi is supported by the European
Research Council under the ERC advanced grant agreement under grant ERC-
2017-ADG Nr. 788980 ESCADA. Roman Walch is supported by the “DDAI”
COMET Module within the COMET – Competence Centers for Excellent Tech-
nologies Programme, funded by the Austrian Federal Ministry for Transport, In-
novation and Technology (bmvit), the Austrian Federal Ministry for Digital and
Economic Affairs (bmdw), the Austrian Research Promotion Agency (FFG), the
province of Styria (SFG) and partners from industry and academia. The COMET
Programme is managed by FFG. Yonglin Hao is supported by National Natural
Science Foundation of China (Grant No. 62002024), National Key Research and

30

Development Program of China (No. 2018YFA0306404). Qingju Wang is funded
by Huawei Technologies Co., Ltd (Agreement No.: YBN2020035184).

References

[1] M. R. Albrecht, C. Cid, L. Grassi, D. Khovratovich, R. Lüftenegger, C. Rech-
berger, and M. Schofnegger. “Algebraic Cryptanalysis of STARK-Friendly De-
signs: Application to MARVELlous and MiMC”. In: ASIACRYPT 2019. Vol. 11923.
LNCS. 2019, pp. 371–397.

[2] M. R. Albrecht, L. Grassi, L. Perrin, S. Ramacher, C. Rechberger, D. Rotaru, A.
Roy, and M. Schofnegger. “Feistel Structures for MPC, and More”. In: ESORICS
2019. Vol. 11736. LNCS. 2019, pp. 151–171.

[3] M. R. Albrecht, L. Grassi, C. Rechberger, A. Roy, and T. Tiessen. “MiMC:
Efficient Encryption and Cryptographic Hashing with Minimal Multiplicative
Complexity”. In: ASIACRYPT 2016. Vol. 10031. LNCS. 2016, pp. 191–219.

[4] A. Aly, T. Ashur, Eli Ben-Sasson, S. Dhooghe, and A. Szepieniec. “Design of
Symmetric-Key Primitives for Advanced Cryptographic Protocols”. In: IACR
Trans. Symmetric Cryptol. 2020.3 (2020), pp. 1–45.

[5] S. Ames, C. Hazay, Y. Ishai, and M. Venkitasubramaniam. “Ligero: Lightweight
Sublinear Arguments Without a Trusted Setup”. In: CCS. ACM, 2017, pp. 2087–
2104.

[6] M. Bardet, J.-C. Faugére, B. Salvy, and B.-Y. Yang. “Asymptotic behaviour of
the degree of regularity of semi-regular polynomial systems”. In: Proc. of MEGA.
Vol. 5. 2005.

[7] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/46. 2018.

[8] E. Ben-Sasson, A. Chiesa, M. Riabzev, N. Spooner, M. Virza, and N. P. Ward.
“Aurora: Transparent Succinct Arguments for R1CS”. In: EUROCRYPT 2019.
Vol. 11476. LNCS. 2019, pp. 103–128.

[9] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. Sponge functions. In:
Ecrypt Hash Workshop 2007, http://www.csrc.nist.gov/pki/HashWorkshop/
PublicComments/2007_May.html. 2007.

[10] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche. “On the Indifferentia-
bility of the Sponge Construction”. In: EUROCRYPT 2008. Vol. 4965. LNCS.
2008, pp. 181–197.

[11] T. Beyne, A. Canteaut, I. Dinur, M. Eichlseder, G. Leander, G. Leurent, M.
Naya-Plasencia, L. Perrin, Y. Sasaki, Y. Todo, and F. Wiemer. “Out of Oddity
- New Cryptanalytic Techniques Against Symmetric Primitives Optimized for
Integrity Proof Systems”. In: CRYPTO 2020. Vol. 12172. LNCS. 2020, pp. 299–
328.

[12] E. Biham and A. Shamir. “Differential Cryptanalysis of DES-like Cryptosys-
tems”. In: CRYPTO 1990. Vol. 537. LNCS. 1990, pp. 2–21.

[13] A. Biryukov, L. Perrin, and A. Udovenko. “Reverse-Engineering the S-Box of
Streebog, Kuznyechik and STRIBOBr1”. In: EUROCRYPT 2016. Vol. 9665.
LNCS. 2016, pp. 372–402.

[14] J. Black, P. Rogaway, and T. Shrimpton. “Black-Box Analysis of the Block-
Cipher-Based Hash-Function Constructions from PGV”. In: CRYPTO. Vol. 2442.
Lecture Notes in Computer Science. Springer, 2002, pp. 320–335.

31

http://www.csrc.nist.gov/pki/HashWorkshop/Public Comments/2007_May.html
http://www.csrc.nist.gov/pki/HashWorkshop/Public Comments/2007_May.html

[15] N. Bordes, J. Daemen, D. Kuijsters, and G. V. Assche. “Thinking Outside the
Superbox”. In: CRYPTO (3). Vol. 12827. LNCS. 2021, pp. 337–367.

[16] C. Boura, A. Canteaut, and C. D. Cannière. “Higher-Order Differential Prop-
erties of Keccak and Luffa”. In: FSE 2011. Vol. 6733. LNCS. 2011, pp. 252–
269.

[17] C. Bouvier, P. Briaud, P. Chaidos, L. Perrin, R. Salen, V. Velichkov, and D.
Willems. “New Design Techniques for Efficient Arithmetization-Oriented Hash
Functions: Anemoi Permutations and Jive Compression Mode”. In: IACR Cryp-
tol. ePrint Arch. (2022), p. 840.

[18] B. Buchberger. “Ein Algorithmus zum Auffinden der Basiselemente des Restk-
lassenringes nach einem nulldimensionalen Polynomideal”. PhD thesis. Univer-
sity of Innsbruck, 1965.

[19] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. “Bullet-
proofs: Short Proofs for Confidential Transactions and More”. In: IEEE Sympo-
sium on Security and Privacy. IEEE Computer Society, 2018, pp. 315–334.

[20] C. Cid, L. Grassi, A. Gunsing, R. Lüftenegger, C. Rechberger, and M. Schofneg-
ger. “Influence of the Linear Layer on the Algebraic Degree in SP-Networks”. In:
IACR Trans. Symmetric Cryptol. 2022.1 (2022), pp. 110–137.

[21] J.-S. Coron, J. Patarin, and Y. Seurin. “The Random Oracle Model and the Ideal
Cipher Model Are Equivalent”. In: CRYPTO 2008. Vol. 5157. LNCS. 2008, pp. 1–
20.

[22] D. A. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms – An
Introduction to Computational Algebraic Geometry and Commutative Algebra.
2nd ed. Undergraduate Texts in Mathematics. Springer, 1997.

[23] J. Daemen and V. Rijmen. “The Wide Trail Design Strategy”. In: Cryptogra-
phy and Coding - IMA International Conference 2001. Vol. 2260. LNCS. 2001,
pp. 222–238.

[24] Y. Dai and J. P. Steinberger. “Indifferentiability of 8-Round Feistel Networks”.
In: Advances in Cryptology - CRYPTO 2016. Vol. 9814. LNCS. 2016, pp. 95–120.

[25] C. Dobraunig, L. Grassi, A. Guinet, and D. Kuijsters. “Ciminion: Symmetric
Encryption Based on Toffoli-Gates over Large Finite Fields”. In: EUROCRYPT
2021. Vol. 12697. LNCS. 2021, pp. 3–34.

[26] V. Dolmatov and A. Degtyarev. “GOST R 34.11-2012: Hash Function”. In: RFC
6986 (2013), pp. 1–40.

[27] S. Duval and G. Leurent. “MDS Matrices with Lightweight Circuits”. In: IACR
Trans. Symmetric Cryptol. 2018.2 (2018), pp. 48–78.

[28] Federal Agency on Technical Regulation and Metrology. GOST R 34.12-2015:
Block Cipher. 2015.

[29] A. Gabizon and Z. J. Williamson. “plookup: A simplified polynomial protocol
for lookup tables”. In: IACR Cryptol. ePrint Arch. (2020), p. 315.

[30] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: Permutations over
Lagrange-bases for Oecumenical Noninteractive arguments of Knowledge. Cryp-
tology ePrint Archive, Report 2019/953. 2019.

[31] L. Grassi. “Mixture Differential Cryptanalysis: a New Approach to Distinguishers
and Attacks on round-reduced AES”. In: IACR Trans. Symmetric Cryptol. 2018.2
(2018), pp. 133–160.

[32] L. Grassi, D. Khovratovich, R. Lüftenegger, C. Rechberger, M. Schofnegger, and
R. Walch. Reinforced Concrete: Fast Hash Function for Zero Knowledge Proofs
and Verifiable Computation. Cryptology ePrint Archive, Report 2021/1038. ac-
cpted at ACM CCS 2022. 2021.

32

[33] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger. “Po-
seidon: A New Hash Function for Zero-Knowledge Proof Systems”. In: USENIX
Security Symposium. USENIX Association, 2021, pp. 519–535.

[34] L. Grassi, D. Khovratovich, S. Rønjom, and M. Schofnegger. “The Legendre
Symbol and the Modulo-2 Operator in Symmetric Schemes over Fnp Preimage
Attack on Full Grendel”. In: IACR Trans. Symmetric Cryptol. 2022.1 (2022),
pp. 5–37.

[35] L. Grassi, R. Lüftenegger, C. Rechberger, D. Rotaru, and M. Schofnegger. “On
a Generalization of Substitution-Permutation Networks: The HADES Design
Strategy”. In: EUROCRYPT 2020. Vol. 12106. LNCS. 2020, pp. 674–704.

[36] L. Grassi, S. Onofri, M. Pedicini, and L. Sozzi. “Invertible Quadratic Non-Linear
Layers for MPC-/FHE-/ZK-Friendly Schemes over Fnp : Application to Poseidon”.
In: IACR Transactions on Symmetric Cryptology 2022.3 (2022), pp. 20–72.

[37] L. Grassi, C. Rechberger, and S. Rønjom. “A New Structural-Differential Prop-
erty of 5-Round AES”. In: EUROCRYPT 2017. Vol. 10211. LNCS. 2017, pp. 289–
317.

[38] L. Grassi, C. Rechberger, D. Rotaru, P. Scholl, and N. P. Smart. “MPC-Friendly
Symmetric Key Primitives”. In: CCS. ACM, 2016, pp. 430–443.

[39] J. Groth. “On the Size of Pairing-Based Non-interactive Arguments”. In: EU-
ROCRYPT 2016. Vol. 9666. LNCS. 2016, pp. 305–326.

[40] V. T. Hoang and P. Rogaway. “On Generalized Feistel Networks”. In: CRYPTO.
Vol. 6223. LNCS. 2010, pp. 613–630.

[41] H. B. Hougaard. “3-round Feistel is Not Superpseudorandom Over Any Group”.
In: IACR Cryptol. ePrint Arch. (2021), p. 675.

[42] T. Jakobsen and L. R. Knudsen. “The Interpolation Attack on Block Ciphers”.
In: FSE 1997. Vol. 1267. LNCS. 1997, pp. 28–40.

[43] L. R. Knudsen. “Truncated and Higher Order Differentials”. In: FSE 1994.
Vol. 1008. LNCS. 1994, pp. 196–211.

[44] S. Kölbl, M. M. Lauridsen, F. Mendel, and C. Rechberger. “Haraka v2 - Ef-
ficient Short-Input Hashing for Post-Quantum Applications”. In: IACR Trans.
Symmetric Cryptol. 2016.2 (2016), pp. 1–29.

[45] M. Lamberger, F. Mendel, C. Rechberger, V. Rijmen, and M. Schläffer. “Re-
bound Distinguishers: Results on the Full Whirlpool Compression Function”. In:
ASIACRYPT 2009. Vol. 5912. LNCS. 2009, pp. 126–143.

[46] M. Luby and C. Rackoff. “How to Construct Pseudorandom Permutations from
Pseudorandom Functions”. In: SIAM J. Comput. 17.2 (1988), pp. 373–386.

[47] M. Matsui. “Linear Cryptanalysis Method for DES Cipher”. In: EUROCRYPT
1993. Vol. 765. LNCS. 1993, pp. 386–397.

[48] K. Matusiewicz, M. Naya-Plasencia, I. Nikolic, Y. Sasaki, and M. Schläffer. “Re-
bound Attack on the Full Lane Compression Function”. In: ASIACRYPT 2009.
Vol. 5912. LNCS. 2009, pp. 106–125.

[49] U. M. Maurer and K. Pietrzak. “The Security of Many-Round Luby-Rackoff
Pseudo-Random Permutations”. In: EUROCRYPT 2003. Vol. 2656. LNCS. 2003,
pp. 544–561.

[50] F. Mendel, C. Rechberger, M. Schläffer, and S. S. Thomsen. “The Rebound At-
tack: Cryptanalysis of Reduced Whirlpool and Grøstl”. In: FSE 2009. Vol. 5665.
LNCS. 2009, pp. 260–276.

[51] R. Mollin and S. C. “On Permutation Polynomials Over Finite Fields”. In: In-
ternational Journal of Mathematics and Mathematical Sciences 10 (Jan. 1987).

33

[52] National Institute of Standards and Technology. “SHA-3 Standard: Permutation-
Based Hash and Extendable-Output Functions”. In: Federal Information Process-
ing Standards Publication (FIPS) (202 2015).

[53] K. Nyberg. “Generalized Feistel Networks”. In: ASIACRYPT. Vol. 1163. LNCS.
1996, pp. 91–104.

[54] J. Patarin. “About Feistel Schemes with Six (or More) Rounds”. In: FSE 1998.
Vol. 1372. LNCS. 1998, pp. 103–121.

[55] J. Patarin. “Generic Attacks on Feistel Schemes”. In: ASIACRYPT 2001. Vol. 2248.
LNCS. 2001, pp. 222–238.

[56] S. Patel, Z. Ramzan, and G. S. Sundaram. “Luby-Rackoff Ciphers: Why XOR Is
Not So Exclusive”. In: Selected Areas in Cryptography. Vol. 2595. Lecture Notes
in Computer Science. Springer, 2002, pp. 271–290.

[57] Polygon. Introducing Plonky2. 2022.
[58] B. Preneel, R. Govaerts, and J. Vandewalle. “Hash Functions Based on Block

Ciphers: A Synthetic Approach”. In: CRYPTO. Vol. 773. Lecture Notes in Com-
puter Science. Springer, 1993, pp. 368–378.

[59] A. Szepieniec. “On the Use of the Legendre Symbol in Symmetric Cipher Design”.
In: IACR Cryptol. ePrint Arch. (2021), p. 984.

[60] A. Szepieniec, T. Ashur, and S. Dhooghe. Rescue-Prime: a Standard Specification
(SoK). Cryptology ePrint Archive, Report 2020/1143. 2020.

[61] S. Vaudenay. “Decorrelation: A Theory for Block Cipher Security”. In: J. Cryp-
tol. 16.4 (2003), pp. 249–286.

[62] ZCash protocol specification. https://github.com/zcash/zips/blob/master/
protocol/protocol.pdf. 2021.

[63] Y. Zheng, T. Matsumoto, and H. Imai. “On the Construction of Block Ciphers
Provably Secure and Not Relying on Any Unproved Hypotheses”. In: CRYPTO.
Vol. 435. LNCS. 1989, pp. 461–480.

Source Code

The source code used in our evaluations is publicly available at https://extgit.
iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/tree/master/bellman [19].

A STARKs with Griffin

We first analyze the cost metric in STARKs and then the performance of Grif-
fin compared to various competitors.

A.1 Algebraic Intermediate Representation (AIR)

zk-STARKs [5] require to translate the computational problem into an algebraic
intermediate representation (AIR). The AIR consists of a sequence of machine
states (the algebraic execution trace (AET)) and multivariate polynomials de-
scribing the transition between those states. The machine states consist of w
registers each, and the sequence has a length of T machine states. Thus, the
AET is a T × w matrix, where the i-th row describes the machine state at

34

https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/tree/master/bellman
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo/-/tree/master/bellman

timestep i. With dmax being the maximum degree of all multivariate transition
polynomials, the efficiency of the proof system (i.e., proof size, prover/verification
time) depends on w, T , and dmax, where smaller values lead to more efficient
proofs. In the literature, several different performance metrics have been pro-
posed to compare the efficiency of different AIRs, such as w · T · dmax in [1],

8 ·w · T · dmax · log2(w · T) in [16], or
⌈
log2(|F|)

64

⌉2
· (dmax +w) · T · log2(T) in [6].

There exist many different ways to design an AIR from a given circuit. For
arithmetic hash functions purely built with additions and multiplications, an
AIR can be built as follows. (1) The AET consists of a machine with a state size
of w, which is equal to the state size t of the hash function, and represents the
state after each round. (2) The length T of the AET sequence equals the num-
ber of rounds r of the hash function. (3) The multivariate update polynomials
correspond to the applied round function, which is why dmax corresponds to the
maximum degree of the representation of the nonlinear layers.

One can also consider various tradeoffs, e.g., increasing the state size w of the
AIR by adding intermediate variables to reduce the maximum degree dmax of
the update polynomials. The designer must find an optimal AIR representation
which minimizes the cost. In many cases, though, starting with the straightfor-
ward AIR described in this section will give the best result. Indeed, the designers
of Poseidon and Rescue propose such AIRs with slight modifications.20

Cost Metric. We approximate the cost metric to be in O(dmax · T), i.e., the
number of rounds times the degree of the round function representation. In
order to perform an efficient verification, we therefore suggest to work with the
zero-equivalent functions that minimize O(dmax · T).

A.2 Relations Between SNARK and STARK Cost Metrics

Similar to e.g. HE or MPC use cases, the performance of the proof systems
scales with the number of nonlinear operations. However, the metrics can differ
significantly. While for HE it is important to minimize the multiplicative depth,
for MPC it is crucial to minimize the total number of multiplications. In ZK
proof systems, on the other hand, it is important to find an efficient equivalent
representation which minimizes the degree and/or the number of multiplications.
Thus, while having to compute y = x1/d for small d is inefficient in MPC due
to the large number of multiplications, it is efficient in SNARKs/STARKs by
switching the representation to yd = x. Further, observe that the degree of a
nonlinear relation differs from the number of multiplications. The relations y3 =
x3 and y4 = x4 have a different degree (i.e., y3 is more beneficial in STARKs),
however, they require the same number of multiplications to compute, which
make them equivalent in MPC and SNARKs. Similarly, the relations y5 = x5

and y′5 =
∑5
i=0 x

i have the same degree and are equally beneficial in STARKs,
but y′5 requires more multiplications, making it worse for MPC and SNARKs.

20 Poseidon uses heavy preprocessing to combine t partial rounds into one to reduce
the effective number of partial rounds.

35

A.3 STARK Performance of Griffin

Here we analyze the efficiency of Griffin and its competitors in zk-STARKs by
comparing the AIR representations of the different hash functions. For this pur-
pose, we transform Griffin into an efficient AIR representation: We construct
a straightforward AIR, where the machine size w equals the state size t and rep-
resents the state of Griffin after each round. Thus, the length of the AET se-
quence T corresponds to the number of rounds R. Describing the nonlinear layer
as yd0 = x0, y1 = xd1, y2 = x2 ·

(
(γ2 · y0 + y1)2 + α2(γ2 · y0 + y1) + β2

)
, and yi =

xi ·
(
(γi · y0 + y1 + xi−1)2 + αi(γi · y0 + y1 + xi−1) + βi

)
for i ∈ {3, . . . , t − 1},

one can observe that the maximum degree of the multivariate update polynomi-
als is given by d, since per definition d ≥ 3. As before, the linear layers can be
included into the description of the nonlinear layers.

Compared to the AIR representation of Poseidon, Rescue/Rescue-Prime,
and Grendel , the structure of the Griffin AIR constraints is simpler. Indeed,
Poseidon requires heavy precomputations to combine its partial rounds for a
more compact AIR representation, the AIR of Rescue needs to combine the two
nonlinear layers per round with a meet-in-the-middle approach, and Grendel
requires to prove the Legendre symbol via introducing additional witness vari-
ables. However, the AIR of Griffin is just a straightforward translation, and is
therefore easier to use in practice.

In Table 6 we compare the AIRs of the six different permutations when
instantiated with 128-bit security, a 256-bit prime field, four different state sizes
t, and for the most common cases where d = 3 and d = 5. For some prime fields,
Grendel can be instantiated with d = 2 which is why we also give numbers for
this case. We give the AIR numbers by first listing the values for w, T , and dmax,
and then use their product as metric as in [1].

The optimized AIR representations of all hash functions, with the exception
of Grendel and GMiMCerf , use a machine state with a size w equal to the state
size t. Moreover, the maximum degree dmax equals the degree of the nonlinear
layers d. Consequently, the length of the AET sequence T , which is equal to the
number of rounds in Rescue and Griffin and depends on the number of rounds
and the state size t in Poseidon and Neptune, constitutes the performance
difference between these four designs, with smaller T yielding a more efficient
AIR. In any case, Poseidon and Neptune have the largest T , i.e., a worse AIR
compared to Griffin, Rescue, and Anemoi. The difference between the number
of rounds of Griffin, Rescue, and Anemoi depends on both t and d. Thus, there
are cases, where Griffin has a better AIR (e.g., t = 3), cases where Rescue has
fewer rounds (e.g., t ∈ {8, 12}) and cases for which Anemoi produces the cheapest
AIR (e.g., t = 4). In all cases, though, Griffin has significantly better plain
performance than Rescue (and we expect faster plain performance compared to
Anemoi), reducing the time to build the AET.

Even though Grendel can be instantiated with d = 2 in some prime fields,
the resulting round numbers, in addition to dmax ≥ 4, lead to a significantly
worse AIR compared to Griffin and Rescue. Further, even though GMiMCerf

36

Table 6: Comparison of AIR cost for different permutations instantaited with a
256-bit prime field. The total AIR cost is given as the product of w · T · dmax.

d = 2 d = 3 d = 5
R w T dmax AIR RF RP R w T dmax AIR RF RP R w T dmax AIR

t = 3:

Griffin – – – – – – – 16 3 16 3 144 – – 12 3 12 5 180
Rescue-Prime – – – – – – – 18 3 18 3 162 – – 14 3 14 5 210
Poseidon – – – – – 8 83 – 3 36 3 324 8 56 – 3 27 5 405
GMiMCerf – – – – – – – 328 1 328 3 984 – – 256 1 256 5 1280
Grendel 38 9 38 4 1368 – – 33 9 33 4 1188 – – 29 9 29 6 1566

t = 4:

Griffin – – – – – – – 14 4 14 3 168 – – 11 4 11 5 220
Rescue-Prime – – – – – – – 14 4 14 3 168 – – 11 4 11 5 220
Poseidon – – – – – 8 84 – 4 29 3 348 8 56 – 4 22 5 440
Neptune – – – – – 6 68 – 4 23 4 368 6 68 – 4 23 5 460
GMiMCerf – – – – – – – 330 1 330 3 990 – – 228 1 288 5 1440
Grendel 31 12 31 4 1488 – – 28 12 28 4 1344 – – 25 12 25 6 1800
Anemoi – – – – – – – 12 4 12 3 144 – – 12 4 12 5 240

t = 8:

Griffin – – – – – – – 11 8 11 3 264 – – 9 8 9 5 360
Rescue-Prime – – – – – – – 8 8 8 3 192 – – 8 8 8 5 320
Neptune – – – – – 6 72 – 8 15 4 480 6 72 – 8 15 5 600
Poseidon – – – – – 8 84 – 8 19 3 456 8 57 – 8 16 5 640
GMiMCerf – – – – – – – 338 1 338 3 1014 – – 236 1 236 5 1180
Grendel 17 24 17 4 1632 – – 16 24 16 4 1536 – – 15 24 15 6 2160
Anemoi – – – – – – – 10 8 10 3 240 – – 10 8 10 5 400

t = 12:

Griffin – – – – – – – 10 12 10 3 360 – – 9 12 9 5 540
Rescue-Prime – – – – – – – 8 12 8 3 288 – – 8 12 8 5 480
Poseidon – – – – – 8 85 – 12 16 3 576 8 57 – 12 13 5 780
Neptune – – – – – 6 78 – 12 13 4 624 6 78 – 12 13 5 780
GMiMCerf – – – – – – – 346 1 346 3 1038 – – 314 1 314 5 1570
Grendel 12 36 12 4 1728 – – 12 36 12 4 1728 – – 11 36 11 6 2376
Anemoi – – – – – – – 10 12 10 3 360 – – 10 12 10 5 600

can be represented with w = 1 [6] in an AIR, the large number of rounds make
it less efficient than the other designs.

B Security of Horst Schemes

In [26], Patarin proposed distinguishers for 3-/4-round of Feistel. In this section,
we propose similar distinguisher for {3, 4, 5} rounds of Horst×, where each
round is defined as

(y, x) 7→ (x, (y + αi) ·H(x) + βi),

37

where H(i) : Fq → Fq denotes the i-th round function for each i ∈ {0, . . . , r−1},
and where αi, βi ∈ Fq for each i ∈ {0, . . . , r−1}. We expect that the distinguisher
proposed for 5-/6-round Feistel in [26] can be adapted to 5-round Horst× as well
and leave it as an open problem for future research.

3 Rounds. In the case of Feistel/Horst×, we can consider inputs of the form
(ŷ, xi) ∈ G2 for several i ∈ N and the corresponding outputs (zi, wi) ∈ G2. We
then have that

zi = (xi + α1) ·H(1)((ŷ + α0) ·H(0)(xi) + β0) + β1.

Since H(0) and H(1) are PRFs, the probability to have a collision of the form

(zi − β1) · xj = (zj − β1) · xi

for j 6= i is around 2/q in the case of Feistel/Horst× and around 1/q in the case
of a PRP. Indeed, note that (zi − β1) · xj = (zj − β1) · xi can occur either if

– (ŷ+α0)·H(0)(xi)+β0 = (ŷ+α0)·H(0)(xj)+β0, that is, H(0)(xi) = H(0)(xj),
which happens with a probability of 1/q, or

– (xi+α1)·H(1)((ŷ+α0)·H(0)(xi)+β0) = (xj+α1)·H(1)((ŷ+α0)·H(0)(xj)+β0)
and H(0)(xi) 6= H(0)(xj), for which the probability is (1− 1/q) · 1/q ≈ 1/q.

In the generic case of a Horst scheme in which G(i) and F (i) are unrelated, the
problem to set up a distinguisher for 3 rounds is open for future research.

4 Rounds. The previous 3-round distinguisher can easily be extended to 4 rounds.
Indeed, it is sufficient to start with inputs of the form (yi, ŷ) ∈ F2

q, and to reuse
the previous distinguisher, by noting that the outputs of the first rounds are of
the form (ŷ, xi) ∈ F2

q.

C Comparing SPN, P-SPN, Feistel, and Horst

Here we compare SPN, partial SPN (P-SPN), Feistel, and Horst schemes in our
target applications. For simplicity, here we assume n = 1 and t = t′.

P-SPN and Type-I Feistel/Horst. P-SPN schemes and Type-I Feistel designs
share many properties.21 Comparing one round of a P-SPN scheme (with one
nonlinear function S0) and one round of a Type-I Feistel scheme [31], we get

M × (S0(x0) || x1 || · · · || xt−1) and M ′ × (x0 || x1 || · · · || xt−1 + F (x0)),

21 The results discussed in this paragraph holds also in the case in which the Type-I
Feistel scheme is replaced by an expanding or a contracting Feistel scheme.

38

where M,M ′ ∈ Ft×tq are invertible matrices. In more detail, the j-th components
of the two schemes are respectively

Mj,0 · S0(x0) +

t−1∑
l=1

Mj,l · xl and M ′j,t−1 · F (x0) +

t−1∑
l=0

M ′j,l · xl.

The sum in the Feistel case contains x0 and F does not have to be invertible, but
in both schemes the nonlinear part depends only on x0. Hence, they have similar
advantages and disadvantages. For example, they only need a small number of
nonlinear operations per round, but at least t− 1 rounds can be skipped via e.g.
an invariant subspace trail for which the nonlinear function is not active. Since
the (nonlinear) diffusion is slow, more rounds than in an SPN or a Horst scheme
are in general needed for security. This can be a disadvantage for e.g. STARK
protocols in which one aims to minimize the depth.

For a Type-I Horst, we get

M
′′
× (x0 || x1 || · · · || G(x0) · xt−1 + F (x0)),

where M
′′ ∈ Ft×tq is an invertible matrix and F,G : Fq → Fq. Compared to

P-SPN and Type-I Feistel designs, x0 and xt−1 are mixed in a nonlinear way.
However, this round function is linear if x0 is fixed, and hence Type-I Horst

suffers from subspace problems, similar to P-SPN and Type-I Feistel schemes.

SPN and Type-III Feistel/Horst. For an SPN and a Type-III Feistel [31],
we get

M × (S0(x0) || · · · || St−1(xt−1)) and

M ′ × (x0 || x1 + F1(x0) || · · · || xt−1 + Ft−1(xt−2)) ,

where M,M ′ ∈ Ft×tp are again invertible matrices and where Fi : Fp → Fp are
nonlinear functions. As before, the function describing a Feistel scheme is linear
in xt−1 and Fi does not need to be invertible. Moreover, there is no nonlinear
mixing between different xl. This is partially solved in Type-III Horst with

M
′′
× (x0 || G1(x0) · x1 + F1(x0) || · · · || Gt−1(xt−2) · xt−1 + Ft−1(xt−2)) ,

where a nonlinear mixing between xi and xi+1 takes place.

Generalized Feistel and Generalized Horst. A generalized Feistel scheme
uses

M × (x0 || x1 + F1(x0) || x2 + F2(x0, x1) || · · · || xt−1 + Ft−1(x0, x1, . . . , xt−2))

in its round, where M ∈ Ft×tp is again an invertible matrix and where Fi :

Fip → Fp are nonlinear functions. Compared to the previous cases, nonlinear
diffusion can take place among x0, x1, . . . , xi−1 via the function Fi. However, the
combination between xi and Fi(x0, x1, . . . , xi−1) is again linear. This problem
does not arise in a generalized Horst scheme as defined in Eq. (4), since nonlinear
diffusion takes place between xi and Gi(x0, x1, . . . , xi−1).

39

D Proofs – Differential Cryptanalysis

D.1 Maximum Differential Probability of S

Proof of Lemma 2 – Maximum Differential Probability of x 7→ x1/d.
First we prove that DPmax(x 7→ xd) = DPmax(x 7→ x1/d). Given the input
and output differences δI and δO, we want to analyze the maximal number of

solutions x of (x+ δI)
1/d − x1/d = δO, or equivalently of

(x+ δI)
1/d

= x1/d + δO.

Computing the power of d of both sides, we have

x+ δI = (x1/d + δO)d =⇒ (x1/d + δO)d − x = δI .

By making use of the change of variable y = x1/d or x = yd in the above
equation, we get

(y + δO)d − yd = δI .

Since every step is invertible, we have that the number of solutions of (x+ δI)
1/d−

x1/d = δO for y = xd corresponds to the number of solutions of (y+δO)d−yd = δI
for y = x1/d. That is, DPmax(x 7→ xd) = DPmax(x 7→ x1/d) for each d such that
gcd(d, p− 1) = 1.

We then prove that DPmax(x 7→ xd
′
) = d′−1

p for a generic d′ such that

gcd(d′, p− 1) = 1. The equation (x+ δI)
d′ − xd′ = δO equals to

∑d′−1
i=0

(
d′

i

)
· xi ·

δd
′−i
I = δO. The maximal degree of the left-hand side with respect to x is d′− 1,

hence the maximal number of solutions x is d′− 1, therefore DPmax(x 7→ xd
′
) =

(d′ − 1)/p. This completes the proof.

Proof of Lemma 3 – Maximum Differential Probability of (x, `) 7→ y =
x · (`2 + α` + β). Given ∆I = (δx, δ`) and ∆O = δy, we look for the number
of solutions of

δy = (δx + x) ·
(
(δ` + `)2 + α(δ` + `) + β

)
− x · (`2 + α`+ β)

= δx ·
(
δ2` + δ` · (2`+ α) + (`2 + α · `+ β)

)
+ x · δ` · (δ` + (2`+ α)) .

We analyze the following cases independently.

– If δ` = 0 and δx 6= 0, then

δx ·
(
`2 + α · `+ β

)
= δy =⇒ `2 + α · `+ (β − δy/δx) = 0,

which admits at most two different solutions in ` (independently of x) if
δy 6= 0, i.e., DPmax((δ` = 0, δx) 7→ δy) ≤ 2/p. If δy = 0, then no solution is
possible (since `2 +α · `+β 6= 0 for each ` ∈ Fp), thus DPmax((δ` = 0, δx) 7→
δy = 0) = 0.

40

– If δ` 6= 0 and δx = 0, we have

x · δ` · (δ` + (2`+ α)) = δy.

If δy = 0, this equation admits x = 0 or ` = −(α+δ`)/2 as possible solutions,
which means that DPmax((δ`, δx = 0) 7→ δy = 0) ≤ (2p − 1)/p2 ≤ 2/p.
Otherwise, if δy 6= 0 and ` 6= −(α+ δ`)/2,

x =
δy

δ` · (δ` + (2`+ α))
.

As a result, DPmax((δ`, δx = 0) 7→ δy) ≤ (p− 1)/p2 ≤ 1/p.
– If δ` 6= 0 and δx 6= 0, the solutions are given by

x =
δy − δx ·

(
δ2` + δ` · (2`+ α) + (`2 + α · `+ β)

)
δ` · (δ` + (2`+ α))

if ` 6= −(α + δ`)/2. Hence, again DPmax((δx, δ`) 7→ δy) ≤ (p − 1)/p2 ≤ 1/p.
This result also holds for δy = 0.

Maximum Differential Probability of (x, `) 7→ y = x · (`2 + α` + β)
with Fixed `, δ`. We assume that ` and δ` are fixed and work as before.

– If δ` = 0 and δx 6= 0, then the equality `2 + α · `+ (β − δy/δx) = 0 depends
on the values of ` and/or δy, but is independent of the values of x.

– If δ` 6= 0 and δx = 0, then the equality x · δ` · (δ` + (2`+ α)) = δy admits at
most 1 solution if δ` + (2`+α) 6= 0. If δ` + (2`+α) = 0, it is satisfied by any
x if δy = 0, and never if δy 6= 0.

– If δ` 6= 0 and δx 6= 0, then there is at most one solution if ` 6= −(α + δ`)/2.
Otherwise, the equality for any x depends on `, δy, δx (that is, if δy = δx ·
(`2 + α · `+ β)).

As a result, the following holds.

Lemma 4. Let α, β ∈ Fp \ {0} such that α2 − 4β is a quadratic nonresidue
modulo p. Let `, δ` ∈ Fp be arbitrary and fixed. For each δx, δy ∈ Fp, the number
of solutions #sol`,δ` of F`+δ`(x+δx)−F`(x) = δy where Fz(x) = x·(z2+α·z+β)
is given by

#sol`,δ` =



0 if (1st) δ` = 0, δx 6= 0, `2 + α · `+ (β − δy/δx) 6= 0,

or (2nd) δ` 6= 0, δx = 0, δy 6= 0, δ` + (2`+ α) = 0,

or (3rd) δ` 6= 0, δx 6= 0, ` = −(α+ δ`)/2, δy 6= δx · (`2 + α · `+ β),

p if (1st) δ` = 0, δx 6= 0, `2 + α · `+ (β − δy/δx) = 0,

or (2nd) δ` 6= 0, δx = 0, δy = 0, δ` + (2`+ α) = 0,

or (3rd) δ` 6= 0, δx 6= 0, ` = −(α+ δ`)/2, δy = δx · (`2 + α · `+ β),

1 otherwise.

41

D.2 Branch Number of M

The quality of a linear diffusion layer can be reflected by its branch number.
For a vector ~x over the field Fp, its hamming weight hw(~x) is defined in the
following.

Definition 6. The Hamming weight of a vector, denoted as hw(·), is defined as
the number of nonzero elements.

For an arbitrary matrix M ∈ Fn×mp , the branch number #b of M is

#b(M) := min
~x∈Fm

p \{~0}
{hw(~x) + hw(M~x)} . (10)

According to Section 5.1, for t = 8, 12, . . . , 24, we have M ∈ Ft×tp and t′ = t/4 ∈
{2, . . . , 6}. Denoting the column vectors of I as ~e0, . . . , ~e3, where I ∈ F4×4

p is the
4× 4 identity matrix, we have I = (~e0, . . . , ~e3). We also express a random 4× 4
MDS matrix A with its column vectors as ~a0, . . . ,~a3 such that A = (~a0, . . . ,~a3),
or express A = (ai,j), with its element ai,j ∈ Fp for 0 ≤ i, j < 4. Then, the t× t
matrix M ∈ Ft×tp can be represented as

M =


2A A . . . A
A 2A . . . A
...

. . .
...

A A . . . 2A

 .

With the column vectors

~x = (x0,0, . . . , x0,3, x1,0, . . . , x1,3, . . . , xt′−1,0, . . . , xt′−1,3)T , (11)

~y = (y0,0, . . . , y0,3, y1,0, . . . , y1,3, . . . , yt′−1,0, . . . , yt′−1,3)T (12)

over F4t′

p , according to the definition of the branch number in Eq. (10), there
must be vectors ~x, ~y ∈ Ftp satisfying

M~x = ~y, (13)

hw(~x) + hw(~y) = #b(M). (14)

In the remainder of this part, without specific instructions, we constantly use
~x, ~y to represent the vectors satisfying Eq. (13) and Eq. (14) simultaneously so
as to prove #b(M) = hw(~x) + hw(~y) = t′ + 4 when t′ = 2, . . . , 6.

Inequality: #b(M) ≤ t′+4. For arbitrary t′, we can easily prove that #b ≤ t′+4.
Indeed, it is sufficient to set x0,0 = 1, x1,0 = · · · = xt′−1,0 = −1

t′ , (y0,0, . . . , y0,3) =
(a0,0(1− 1

t′), a1,0(1− 1
t′), a2,0(1− 1

t′), a3,0(1− 1
t′)) and other entries of ~x, ~y equal

to 0 so as to satisfy Eq. (13). Therefore, we have #b(M) ≤ t′ + 4.

42

Equality: #b(M) = t′ + 4. For j = 0, . . . , 3, let us define the summation sj and
column vectors ~xj , ~x

′
j as

sj =

t′−1∑
i=0

xi,j , (15)

~xj = (x0,j , . . . , xt′−1,j)
T , (16)

~x′j = (x0,j + sj , . . . , xt′−1,j + sj)
T . (17)

We prove the following lemma.

Lemma 5. For ~xj , ~x
′
j (j = 0, . . . , 3) in Eq. (16) and Eq. (17), when hw(~x′j) ≤ t′

2 ,
there is hw(~xj) ≥ hw(~x′j).

Proof. Without loss of generality, we let xi,j +sj = 0 for i = b t
′

2 c, . . . , t
′−1, and

(x0,j + sj , . . . , xb t′2 c−1,j
+ sj) 6= ~0.

– If sj = 0, clearly ~xj = ~x′j and hw(~xj) = hw(~x′j).

– If sj 6= 0, we have xi,j = −sj 6= 0 for i = b t
′

2 c, . . . , t
′−1. Therefore, hw(~xj) ≥

b t
′

2 c+ 1 ≥ t′

2 ≥ hw(~x′j).

Note that Eq. (13) can be rewritten as
x0,0 + s0 x0,1 + s1 x0,2 + s2 x0,3 + s3
x1,0 + s0 x1,1 + s1 x1,2 + s2 x1,3 + s3

...
...

...
...

xt′−1,0 + s0 xt′−1,1 + s1 xt′−1,2 + s2 xt′−1,3 + s3

×

~a0
~a1
~a2
~a3



=


y0,0 y0,1 y0,2 y0,3
y0,0 y0,1 y1,2 y1,3

...
...

...
...

yt′−1,0 yt′−1,1 yt′−1,2 yt′−1,3

×

~e0
~e1
~e2
~e3

 .

For j = 0, . . . , t′−1, we define ~αj = (xj,0+s0, . . . , xj,3+s3) and ~βj = (yj,0, . . . , yj,3).

Since A = (~a0, . . . ,~a3), ~αj ·A = ~βj . Following that A is an MDS matrix and its
branch number is 5, we have

hw(~αj) + hw(~βj) =

{
0 if hw(~αj) = 0,

5 otherwise.

Combining the definition of ~βj and ~y in Eq. (12), we can deduce

hw(~y) =

t′−1∑
j=0

hw(~βj). (18)

43

Moreover, from Eq. (16) and Eq. (11), ~x0, . . . , ~x3 form a partition of ~x such that

hw(~x) =

3∑
j=0

hw(~xj). (19)

Lemma 6. If there is only one k = 0, . . . , t′ − 1 s.t. ~βk 6= ~0, then hw(~βk) = 4.

Proof. Without loss of generality, we let ~β0 6= ~0. In this situation, for arbitrary
j = 0, . . . , 3 and x0,j + sj 6= 0, we can prove that xi,j 6= 0 for all i = 0, . . . , t′− 1.

– If sj = 0, there must be x1,j = · · · = xt′−1,j = 0. However, x0,j 6= 0
contradicts the definition of sj in Eq. (15).

– If sj 6= 0, there must be x1,j = · · · = xt′−1,j = −sj 6= 0 and x0,j = t′sj 6= 0
according to Eq. (15). Therefore, hw(~x) can be computed as hw(~x) = t′ ·
hw(~α0). There is also hw(~β0) + hw(~α0) ≥ 5. Therefore, we have

#b(M) = hw(~x) + hw(~y) = t′ · hw(~α0) + hw(~β0) ≥ (t′ − 1) · hw(~α0) + 5.

Since #b(M) ≤ t′+4, hw(~α0) = 1 is the only solution when t′ ≥ 2. It follows

that hw(~β0) = 4.

Theorem 1. For 2 ≤ t′ ≤ 6, the branch number of M is #b(M) = t′ + 4.

Proof. Let η be the number of nonzero ~βj ’s (j = 0, 1, . . . , t′ − 1).

– If 1 ≤ t′

2 < η ≤ t′, there must be some 0 ≤ j ≤ 3 such that hw(~xj) > 0.

Without loss of generality, let ~β0, . . . , ~βη−1 be the η nonzero vectors. In the
following we consider four cases depending on the number of nonzero ~xj ’s.
1. There is just one j such that ~xj 6= 0. There must be ~x′j 6= 0 and hw(~y) =

4η. If sj = 0, we have hw(~xj) = hw(~x′j) = η ≥ t′ − η + 1 and that
hw(~x) + hw(~y) = #b(M) = 5η ≥ 10, contradicting #b(M) ≤ t′ + 4. If
sj 6= 0, we have aη,j = · · · = at′−1,j = −sj 6= 0, a0,j 6= 0. We have
hw(~x) + hw(~y) ≥ t′ + 3η + 1 > t′ + 4, contradicting #b(M) ≤ t′ + 4.

2. There exist two j’s such that ~xj 6= 0. Then there must be ~x′j 6= 0 and
hw(~y) ≥ 3η. Moreover, there is constantly hw(~xj) ≥ t′ − η + 1. We have

hw(~x) + hw(~y) ≥ 2t′ + η + 2 ≥ 5t′

2 + 2, contradicting #b(M) ≤ t′ + 4.
3. There exist three j’s such that ~xj 6= 0. Then there must be ~x′j 6= 0 and

hw(~y) ≥ 2η. Moreover, there is constantly hw(~xj) ≥ t′ − η + 1. We have
hw(~x) + hw(~y) ≥ 3t′ − η + 3 ≥ 2t′ + 3, contradicting #b(M) ≤ t′ + 4.

4. For all j = 0, 1, 2, 3, ~xj 6= 0. There must be ~x′j 6= 0 and hw(~y) ≥ η.
Moreover, there is constantly hw(~xj) ≥ t′ − η + 1. We have hw(~x) +
hw(~y) ≥ 4t′ − 3η + 4 ≥ t′ + 4. Adding the constraint that #b(M) =
hw(~x) + hw(~y) ≤ t′ + 4, the only solution is #b(M) = t′ + 4 and it
can only be acquired when η = t′, hw(~y) = t′, and hw(~xj) = 1 are all
satisfied.

44

Therefore, for η > t′

2 , the branch number can only be #b(M) = t′ + 4.

– If η ≤ t′

2 , we have hw(~x′j) ≤ η ≤ t′

2 for all j = 0, . . . , 3. It can be deduced
from Lemma 5 that hw(~xj) ≥ hw(~x′j) and according to Eq. (18) and Eq. (19),
there is #b ≥ 5η. Adding the constraint that #b(M) ≤ t′ + 4, all possible
solutions are the following.
1. For t′ = 6, we have η = 1 and η = 2. For η = 1 and t′ = 6, with

Lemma 6, we have hw(~x) + hw(~y) = t′ + 4 = 10. For η = 2 and t′ = 6,
we have hw(~x) + hw(~y) ≥ 5η = 10. Therefore, there is #b(M) = t′ + 4
for t′ = 6.

2. For 2 ≤ t′ < 6, there is only one satisfying value η = 1. So #b(M) = t′+4
is the direct application of Lemma 6.

To sum up, #b(M) = t′ + 4 for all 2 ≤ t′ ≤ 6.

E Dedicated MILP Tool for Rebound Attacks on
Griffin-π

To verify the result of rebound attacks on Griffin-π in Section 6.1, we set
up a dedicated mixed integer linear programming (MILP) tool to look for the
maximal number of rounds that rebound attack can mount based on truncated
differentials [20].

MILP approach is widely used to derive differential and linear bounds for
symmetric primitives [25, 23, 4, 3, 30]. For example, in truncated differential
MILP models, a model M is constructed to model the truncated differential
patterns with the highest probability. First, truncated word differences are rep-
resented inM as binary variables denoted asM.var: 0 for zero differences (also
known as inactive) and 1 for nonzero ones (also known as active). Then, the
truncated differential propagation rules are described as the linear constraints
denoted as M.con. Finally, the objective function M.obj is set so as to upper-
bound the propagation probability. In the context of rebound attacks, theM.obj
is set differently, as we show in details here.

The rebound attacks we considered for Griffin-π are based on the truncated
differentials, therefore the core of our dedicated tool is the construction of MILP
modelsM capturing the truncated differential propagation of Griffin-π. In the
round function Fi(·) = c(i) + M × S(·), the round constant addition operation
with c(i) does not change the difference propagation, so we omit it in the MILP
model to simplify the differential propagation of the i-th round as follows:

∆X(i) S−→ ∆Y (i) M−→ ∆Z(i) , ∆X(i+1).

The truncated differences of ∆X(i), ∆Y (i) and ∆Z(i) are represented in the
model M as follows:

∆X(i) = (δ
x
(i)
0

, . . . , δ
x
(i)
t−1

)
S−→ ∆Y (i) = (δ

y
(i)
0

, . . . , δ
y
(i)
t−1

)
M−→ ∆Z(i) = (δ

z
(i)
0

, . . . , δ
z
(i)
t−1

),

where δ’s ∈ M.var are binary variables: δ = 1 for nonzero difference and δ = 0
for zero ones. When the context allows, we omit the index.

45

Common MILP Constraints on Linear Components. Before explaining
the dedicated tool for the rebound attacks, we first introduce our method of mod-
eling the truncated differential propagation for the linear layer M of Griffin-π,
which is commonly used in constructing truncated differential MILP models.

MILP Models for Linear Combinations. Let the linear step be z = x+ y. It fol-
lows exactly the truncated differential propagation rule of ordinary linear com-
binations, so the available values for (δz, δx, δy) can be easily deduced in Table 7
and can be captured by the MILP model as Eq. (20) originated in [27].

Table 7: All possible truncated difference values for the linear step z = x+ y.

δz δx δy

0 0 0
1 0 1
0 1 1
1 1 0
1 1 1

M.var←δx, δy, δz are binary,

M.con←


δx + δy − δz ≥ 0,

δx − δy + δz ≥ 0,

−δx + δy + δz ≥ 0.

(20)

Note that Eq. (20) is the classical MILP description of the truncated differen-
tial propagation rule of the ordinary linear combinations. For simplicity, we use
Eq. (21) to represent the constraints in Eq. (20):

M.con← (δx, δy, δz)+. (21)

MILP Models for Matrix M . Assume the truncated input and output differences
of M in the r-th round are ∆Y (r) = (δy0 , . . . , δyt−1

) and ∆X(r+1) = ∆Z(r) =
(δz0 , . . . , δzt−1). For t ∈ {3, 4}, the corresponding M are MDS matrices, so the

relationship between ∆Y (r) and ∆Z(r) can be described simply with the knowl-
edge of the branch number #b(M) = t+ 1. The description of the MILP model
in this situation is as Eq. (22), where dM is a dummy binary variable.

M.var←δyi , δzi , dM as binaries,

M.con←


dM ≤

t−1∑
i=0

δyi ,

t−1∑
i=0

δzi ≤ t · dM ,

M.con←
t−1∑
i=0

δyi +

t−1∑
i=0

δzi ≥ #b(M) · dM .

(22)

46

For t = 4t′ ≥ 8, according to Eq. (7), the linear layer M has branch number
#b(M) = t′ + 4 and can be decomposed as M ′′ × M ′. The branch number
property of M can easily be captured by Eq. (22). However, we introduce a new
method of describing the decomposition property of M , aiming at deriving more
accurate bounds. First, We use an additional variable ∆W (r) to represent the
output truncated difference of M ′:

∆Y (r) M ′−−→ ∆W (r) M ′′−−→ ∆Z(r).

According to the definition of M ′, the transformation from ∆Y (r) to ∆W (r) can
be regarded as t′ parallel 4 × 4 linear layers, each of which can be described as
Eq. (22) with branch number #b(M) = 5. Next, we introduce and combine two
methods to describe the truncated differential propagation of M ′′.

– Assume ∆W (r) = (δw0
, . . . , δwt−1

). The transformation ∆W (r) → ∆Z(r) is
additions of words over Fp, so the truncated differential propagation of each
word addition can be described by equations in Eq. (20) directly:

M.con← (δwi , δwi+4 , . . . , δwi+t−4 , δzj)+, i = 0, 1, 2, 3; j = i+4·k, k = 0, . . . , t/4−1.

– In order to get the tighter bounds, we further decompose M ′′ as M ′′ =
circ(2 · I, I, . . . , I) = circ(I, I, · · · , I) + circ(I, 0, · · · , 0) = M1 + M2. We
express the truncated differential propagation of M1 and M2 in two steps.
Note they follow the propagation rules of ordinary linear combinations, after
defining four dummy binary variables δtmpi

for i = 0, 1, 2, 3, we can use the
two MILP descriptions in Eq. (20) to respectively describe them:

M.con←

{
(δwi , δwi+4 , . . . , δwt−4 , δtmpi

)+, i = 0, 1, 2, 3

(δwj , δtmp(j mod 4)
, δzj)+, j = 0, 1, . . . , t− 1

Finally, we take the maximal value of the objective function of the models using
two descriptions. In this way, the differential bound of Griffin-π can be derived
in a more precise manner than simply considering the branch number #b(M) =
t′ + 4 of M .

Word Conditions in Inbound and Outbound Phases. Unlike in differ-
ential attacks where only the nonlinear operations contribute to the DP of dif-
ferentials, in rebound attacks, the complexities are decided by the number of
word conditions which can be imposed by both nonlinear and linear operations.
Word conditions are actually equations of words or word differences because par-
ticular differential propagations can only happen when the corresponding word
conditions are satisfied. The word conditions lying in the inbound phase can be
satisfied manually with the message modification technique for free while those
in the outbound phase can only be satisfied randomly with probability p−1.22

In our model, for any operation f : Fmp → Fp, a word condition is imposed when

22 Such a technique is widely used in collision attacks of hash functions [29].

47

such differential propagation ~0 6= ∆I
f−→ ∆O = 0 appears. Such a word condition

is tracked inM with a binary variable. If the word condition lies in the inbound
phase, the binary variable has the value 0. Otherwise, it has the value 1. Further-
more, the inbound-outbound manner of rebound attacks considers both forward
and backward directions, so the corresponding word condition deduction should
involve not only S and M , but their inverses S−1 and M−1 as well. For clear
interpretation, we use binary variables τ ’s to track the word conditions in the
nonlinear layer S, S−1 and µ’s for those in the linear layer M,M−1. Details are
provided in the following.

MILP Models for Conditions in S. The nonlinear layer S of Griffin-π is
composed of four nonlinear operations, namely

x0 7→ x0
1/d = y0, x1 7→ x1

d = y1, (`, xi) 7→ xi·(`2+α`+β) = yi for 2 ≤ i ≤ t−1,

where ` is a linear function of the first two words y0 and y1 for i = 2, and another
linear function of three words y0, y1 and xi−1 for 3 ≤ i ≤ t− 1.

For i = 0, 1, there is constantly δyi = δxi
and no word condition is introduced,

so we set τi = 0 ∈ M.con. For i = 2, . . . , t − 1, we discuss cases depending on
values of (δ`, δxi

, δyi).

– (δ`, δxi , δyi) ∈ {(1, 1, 1), (0, 0, 0), (0, 1, 1)}: no word condition is introduced,
so we set τi = 0.

– (δ`, δxi
, δyi) = (1, 0, 0): one word condition is introduced as xi = 0, so we set

τi = 1.

– (δ`, δxi
, δyi) = (1, 1, 0): one word condition is introduced from δyi = 0 as

(xi + δxi
)[(`+ δ`)

2 + αi(`+ δ`) + βi]− xi(`2 + αi`+ βi) = 0,

so we set τi = 1.

We summarize all possible values for (δ`, δxi
, δyi , τi) in Table 8. The relations of

Table 8: All possible values of (δ`, δxi , δyi , τi) for S and (δ`, δyi , δxi , τi) for S−1.

δ` δxi , δyi τi

0 0 0 0
1 0 1 0
1 0 0 1
0 1 1 0
1 1 0 1
1 1 1 0

48

δ`, δxi
, δyi , τi can be represented in a MILP model as

M.var←δ`, δxi
, δyi , τi as binaries,

M.con←− δyi − τi + 1 ≥ 0,

M.con←− δ` + δyi + τi ≥ 0,

M.con←δ` + δxi
− δyi − τi ≥ 0,

M.con←δ` − τi ≥ 0,

M.con←− δxi
+ δyi + τi ≥ 0.

MILP Models for Conditions in S−1. Since x0 = y0
d and x1 = y1

1/d,
there is constantly δyi = δxi , no condition is introduced for i = 0, 1. For i =
2, . . . , t − 1, similarly to the situation for S, several cases of word conditions
can be identified depending on (δ`, δyi , δxi

). An additional binary variable τi is
also used to represent the number of word conditions for the tuple (δ`, δyi , δxi

).
We find that values of (δ`, δyi , δxi

, τi) for S−1 are exactly the same as those of
(δ`, δxi , δyi , τi) for S, and they are already given in Table 8.

MILP Models for Conditions in M . We recall the MILP description of

the differential propagation of M as ∆Y (i) M−→ ∆Z(i). Omitting the index of the

round, we have (δy0 , . . . , δyt−1
)
M−→ (δz0 , . . . , δzt−1

). The extra word conditions for
M are introduced when cancellation happens. Let the matrix of M be (ai,j)t×t.
If δzi = 0, one word condition is introduced as

t−1∑
j=0

(ai,j · δyj) = 0.

We use a binary variable µi to represent the number of word conditions intro-
duced by δzi as follows.

1. We add two variables M.var← µi, dM as binaries.
2. For j = 0, . . . , t− 1, if ai,j 6= 0, we add a constraint M.con← dM ≥ δyj .
3. We add a constraint M.con← µi = dM − δzi .

MILP Models for Conditions in M−1. For M−1, we denote the correspond-
ing matrix as (bi,j)t×t. If δyi = 0, one word condition is introduced as

t−1∑
j=0

(bi,j · δzj) = 0.

The number of word condition introduced by δyi can be modeled as follows.

1. We add two variables M.var← µi, dM as binaries.
2. For j = 0, . . . , t− 1, if bi,j 6= 0 we add a constraint M.con← dM ≥ δzj .
3. We add a constraint M.con← µi = dM − δyi .

49

Secure Bounds against Rebound Attacks. In rebound attacks, the adver-
sary aims at constructing a pair of intermediate states at round rm (1 ≤ rm ≤
R− 1), denoted as (Y (rm), Ŷ (rm)), having nonzero truncated difference ∆Y (rm)

whose truncated differential propagation follows some predefined characteristic

∆X(0) F
R

−−→ ∆XR, where FR represent R-round of F .
According to the parameters in Table 2, we require c words in ∆X(0) and⌊
κ

log2 p

⌋
words in ∆X(R) are 0. Reflected to the MILP model M, we add the

following constraints:

M.con←
t−1∑
i=0

δ
x
(0)
i
≤ t− c,

M.con←
t−1∑
i=0

δ
x
(R)
i
≤ t−

⌊
κ

log2 p

⌋
.

We further assume that all the word conditions between∆Y (rm−1) and∆Y (rm+1)

can manually be satisfied by modifying words in Y (rm). This has upper-bounded
the power of the message modification technique [29] because each word can
only be used once and can hardly modify words after S layers. Therefore, the
objective function of the MILP model can be defined as follows:

M.obj← min

 ∑
i≤rm−1

∨
i>rm+1

t−1∑
j=1

τ
(i)
j +

∑
i<rm−1

∨
i≥rm+1

t−1∑
j=0

µ
(i)
j

 .

For rm = 1, . . . , R − 1, we construct the model for the rm-th round, and the
solution is the minimum number of unfixed word conditions, denoted as θR,rm =
M.obj. If the condition ⌊

κ

log2 p

⌋
≤ min

1≤rm≤R−1
θR,rm

holds for all rm settings, we know that R rounds are sufficient to resist rebound
attacks. Otherwise, we may update R ← R + 1 to the model and repeat the
process. In this way, we are able to acquire the secure bound.

The number of rounds required to resist rebound attacks for values of p we
focus on are listed in Table 9. We claim that it is not possible to mount a rebound
attack on more than 3 rounds of Griffin-π. Equivalently, 4 rounds are sufficient
for providing security against this attack.

F Algebraic Attacks – Details

F.1 Density of Griffin-π

Since the only high-degree nonlinear function of Griffin-π is x 7→ x1/d, it is
important to analyze the density of the construction, and in particular the den-
sity of the polynomials in each word. First, note that we apply a linear layer in

50

Table 9: Secure instances of Griffin-π considering only rebound attacks. The
best setting corresponding to R is always rm = 1, which indicates that any start-
from-the-middle strategy (rm > 1) cannot provide a result better than a pure
random search.

dlog2 pe κ c t R

32 128 8 ≥ 12 3
32 256 16 ≥ 20 3

64 128 4 ≥ 8 3
64 256 8 ≥ 12 3

128 128 2 3, 4,≥ 8 3
128 256 4 ≥ 8 3

256 128 1 3, 4,≥ 8 3
256 256 2 3, 4,≥ 8 3

the beginning, in order to ensure that the variables are mixed before the first
nonlinear operation in the sponge setting.23 Hence, the input x1 to the nonlin-
ear function in the second word is a linear combination of all input variables. In
practice, we evaluated x 7→ x1/d and found that it provides (almost) full density
over Fp. This behaviour was also observed after a small number of rounds in
multiple words for different t due to the mixing. Moreover, we compared Grif-
fin-π to the Rescue permutation and could not find any significant differences
regarding the polynomial density. Thus, we claim that the polynomial represen-
tation of our construction is dense after 3 rounds, and in particular with the
round numbers we propose (e.g., R ≥ 6 for statistical attacks).

F.2 Practical Results for Gröbner Bases

Intermediate Variables. Concrete data points for practical Gröbner basis
computations when introducing t intermediate variables in each round are shown
in Fig. 3 for d = 3 and in Fig. 4 for d = 5. The theoretical estimation for the
degree of regularity is given by

Dreg = 1 +

ne∑
i=1

(deg(fi)− 1) = 1 +R(2(d− 1)) + 2(t− 2)) .

Partial Intermediate Variables. Concrete data points for practical Gröbner
basis computations when introducing 1 intermediate variable in each round in
order to avoid the high-degree growth are shown in Fig. 5 for d = 3 and in Fig. 6
for d = 5. Since the degree of the equation in the (i− 1)-th round is deg(Ri−1)

23 Skipping this linear layer would only delay the variable mixing for one single round.

51

0 1 2 3 4 5 6 7 8

20

40

Number of rounds R

D
eg

re
e

Dreg

Practical D
(1)
est estimate

Concrete data points

Fig. 3: Comparison of the theoretical estimation Dreg for d = 3, t = 3, the

adapted estimation D
(1)
est using the practical results, and concrete data points

from our practical tests with Sage (degree growth is the same in Magma).

0 1 2 3 4 5 6 7 8

20

40

60

80

Number of rounds R

D
eg

re
e

Dreg

Practical D
(1)
est estimate

Concrete data points

Fig. 4: Comparison of the theoretical estimation Dreg for d = 5, t = 3, the

adapted estimation D
(1)
est using the practical results, and concrete data points

from our practical tests with Sage (degree growth is the same in Magma).

for R ≥ 2 and the degree of the equation in the next round is 2d · deg(Ri−1) +
deg(Ri−1), we have that

D(2)
reg = 1 +

ne∑
i=1

(deg(fi)− 1)

= 1 + ((2d+ 1)− 1) + (2d(2d+ 1) + 2d+ 1− 1) + · · ·
= 1 + (2d+ 1)− 1 + (2d+ 1)2 − 1 + (2d+ 1)3 − 1 + · · ·

= 1 +

(
R∑
i=1

(2d+ 1)i

)
−R.

F.3 Additional Strategies for Gröbner Bases

Apart from the main strategies given in Section 6.2, there also exist other ap-
proaches which we briefly describe here. However, they are in general weaker,
and hence we do not use them to determine the final number of rounds.

52

0 1 2 3 4 5 6

200

400

599.99

799.99

999.98

Number of rounds R

D
eg

re
e

Dreg

Practical D
(1)
est estimate

Concrete data points

Fig. 5: Comparison of the theoretical estimation Dreg for d = 3, t = 3, the

adapted estimation D
(2)
est using the practical results, and concrete data points

from our practical tests with Sage.

0 1 2 3 4

200

400

600

Number of rounds R

D
eg

re
e

Dreg

Practical D
(1)
est estimate

Concrete data points

Fig. 6: Comparison of the theoretical estimation Dreg for d = 5, t = 3, the

adapted estimation D
(2)
est using the practical results, and concrete data points

from our practical tests with Sage.

Full-Round Equation System. When considering the nonlinear layer de-
scribed in Section 5.1 and given in Eq. (6), we see that y1 = x1

1/d, and hence
the round function exhibits a high degree for low d. However, the starting vari-
ables may be chosen such that x1 is constant. Hence, we need full diffusion in
order to inrease the degree of a polynomial containing at least one input variable
significantly. Since full diffusion is achieved after only one round and our repre-
sentation is dense, we conclude that dκ/ log2(p)e + 1 rounds of Griffin-π are
sufficient against this attack. Note that using more than a single input variable
increases the complexity in this case.

Adding an Intermediate Variable for L. A technique that can be combined
with both main strategies described in Section 6.2 is to add an additional variable
for the degree-2 function L. This increases the number of equations and variables
by R, while only slightly reducing the overall degrees of the equations. Indeed,
in our practical evaluations, we found that combining this technique with any
of the above strategies leads to higher solving complexities.

53

G Security Analysis – Other Attacks

G.1 Other Statistical Attacks

Linear Attack. Linear cryptanalysis [24] is often used to deduce distinguishers
against the underlying permutation of sponge-based hash functions. It has been
introduced by Matsui at EUROCRYPT 1993 for the case of symmetric primitives
defined over binary fields, and later on generalized to symmetric primitives over
prime fields in [2, 13]. The natural extension of linear cryptanalysis to the case
of elements in Fp regards the search of a linear combination of input, output,
and key words that is unbalanced, i.e., biased towards an element of Fp with
probability higher than 1/p.

Due to the same analysis proposed for differential attacks in Section 6.1,
linear attacks pose no threat to both the hash function Griffin and the per-
mutation Griffin-π instantiated with the same number of rounds previously
defined for classical differential cryptanalysis.

Impossible Differential and Zero-correlation Attacks. According to the
definition of M , the difference of one word can affect the whole t-word state
only by one round function call. Therefore, the impossible differential [8, 21] and
zero-correlation [9] attacks can hardly be mounted on 3 or more rounds.

Boomerang Attack. The boomerang attack [28] is a variant of a differential
attack. Instead of constructing pairs satisfying differential paths, boomerang
attacks look for quartets satisfying two differential paths simultaneously. For
hash functions using compression functions, where message blocks are involved
in the computation of intermediate internal states, the boomerang attack can be
effective since the difference in the whole state can be eliminated with specifically
designed message block differences. As studied in Section 6.1, differential trails
with high probability are rather unlikely to occur for more than 6 rounds. Hence,
the number of rounds necessary to prevent the differential attacks and/or the
rebound attacks are sufficient to prevent the boomerang attack as well.

Integral/Square Attack, Multiple-of-n & Mixture Differential Crypt-
analysis. As a scheme working natively on larger field elements, Griffin could
be potentially attacked by all attacks vectors that exploit the strong alignment on
symmetric schemes, as the integral and square attacks [12], or more recently the
multiple-of-n differential cryptanalysis [17] and the mixture differential one [15].
However, we claim that such attacks become quickly infeasible, since the nonlin-
ear layer S is not aligned and the matrix M provides full diffusion after a single
round.

54

G.2 Higher-Order Differentials and Zero-Sum Partitions

Given a vectorial Boolean function F over Fn2 of degree d, the higher-order
differential attack [22, 20] exploits the fact that∑

x∈V+v

x =
∑

x∈V+v

F(x) = 0

for any affine subspace V + v ⊆ Fn2 of dimension strictly larger than d (i.e.,
dim(V) ≥ d+ 1). In a binary field F2n , such an approach has recently been used
for MiMC [14, 11].

The corresponding attack in the case of a prime field Fp has been recently
proposed in [7]. Since this result is related to the degree of the polynomial that
describes the permutation, we claim that the number of rounds necessary to
guarantee security against the interpolation attack provides security against this
attack as well.

A possible variant of higher-order sums in the case of permutations is the
zero-sum partition attack/distinguisher.

Definition 7 (Zero-Sum Partition [10]). Let P be a permutation over Ftq
for a prime q ≥ 2. A zero-sum partition for P of size l < t is a collection of l
disjoint sets {X1, . . . , Xl} with the following properties:

– Xi ⊂ Ft for each i ∈ {1, . . . , l} &
⋃l
i=1Xi = Ft,

– ∀i ∈ {1, . . . , l} :
∑
x∈Xi

x =
∑
x∈Xi

P(x) = 0.

This direction has been investigated e.g. in [10] for two SHA-3 candidates,
Luffa and Keccak. Since it is expected that a randomly chosen function does
not have many zero sums, the existence of several such sets can be seen as a
distinguishing property of the internal function. Here we explicitly state that we
do not make claims about the security of Griffin against zero-sum partitions.
This choice is motivated by the gap present in the literature between the num-
ber of rounds of the internal permutation that can be covered by a zero-sum
partition and by the number of rounds in the corresponding sponge hash func-
tion that can be broken e.g. via a preimage or a collision attack. As a concrete
example, consider the case of Keccak. While 24 rounds of Keccak-f can be
distinguished from a random permutation using a zero-sum partition [10] (that
is, full Keccak-f), preimage/collision attacks on Keccak can only be set up
for up to 6 rounds of Keccak-f [18]. This suggests that zero-sum partitions
should be largely ignored for practical applications.

References for Supplementary Material

[1] A. Aly, T. Ashur, Eli Ben-Sasson, S. Dhooghe, and A. Szepieniec. “Design of
Symmetric-Key Primitives for Advanced Cryptographic Protocols”. In: IACR
Trans. Symmetric Cryptol. 2020.3 (2020), pp. 1–45.

[2] T. Baignères, J. Stern, and S. Vaudenay. “Linear Cryptanalysis of Non Binary
Ciphers”. In: SAC 2007. Vol. 4876. LNCS. 2007, pp. 184–211.

55

[3] S. Banik, S. K. Pandey, T. Peyrin, Y. Sasaki, S. M. Sim, and Y. Todo. “GIFT:
A Small Present - Towards Reaching the Limit of Lightweight Encryption”. In:
CHES 2017. Ed. by W. Fischer and N. Homma. Vol. 10529. LNCS. Springer,
2017, pp. 321–345.

[4] C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki, P.
Sasdrich, and S. M. Sim. “The SKINNY Family of Block Ciphers and Its Low-
Latency Variant MANTIS”. In: CRYPTO 2016. Ed. by M. Robshaw and J. Katz.
Vol. 9815. LNCS. 2016, pp. 123–153.

[5] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transparent, and
post-quantum secure computational integrity. Cryptology ePrint Archive, Report
2018/46. 2018.

[6] E. Ben-Sasson, L. Goldberg, and D. Levit. STARK Friendly Hash - Survey and
Recommendation. Cryptology ePrint Archive, Report 2020/948. 2020.

[7] T. Beyne, A. Canteaut, I. Dinur, M. Eichlseder, G. Leander, G. Leurent, M.
Naya-Plasencia, L. Perrin, Y. Sasaki, Y. Todo, and F. Wiemer. “Out of Oddity
- New Cryptanalytic Techniques Against Symmetric Primitives Optimized for
Integrity Proof Systems”. In: CRYPTO 2020. Vol. 12172. LNCS. 2020, pp. 299–
328.

[8] E. Biham, A. Biryukov, and A. Shamir. “Cryptanalysis of Skipjack Reduced to
31 Rounds Using Impossible Differentials”. In: EUROCRYPT 1999. Vol. 1592.
LNCS. 1999, pp. 12–23.

[9] A. Bogdanov and M. Wang. “Zero Correlation Linear Cryptanalysis with Re-
duced Data Complexity”. In: FSE 2012. Vol. 7549. LNCS. 2012, pp. 29–48.

[10] C. Boura, A. Canteaut, and C. D. Cannière. “Higher-Order Differential Prop-
erties of Keccak and Luffa”. In: FSE 2011. Vol. 6733. LNCS. 2011, pp. 252–
269.

[11] C. Bouvier, A. Canteaut, and L. Perrin. “On the Algebraic Degree of Iterated
Power Functions”. In: IACR Cryptol. ePrint Arch. (2022), p. 366.

[12] J. Daemen, L. R. Knudsen, and V. Rijmen. “The Block Cipher Square”. In: FSE.
Vol. 1267. LNCS. 1997, pp. 149–165.

[13] C. Dobraunig, L. Grassi, A. Guinet, and D. Kuijsters. “Ciminion: Symmetric
Encryption Based on Toffoli-Gates over Large Finite Fields”. In: EUROCRYPT
2021. Vol. 12697. LNCS. 2021, pp. 3–34.

[14] M. Eichlseder, L. Grassi, R. Lüftenegger, M. Øygarden, C. Rechberger, M. Schofneg-
ger, and Q. Wang. “An Algebraic Attack on Ciphers with Low-Degree Round
Functions: Application to Full MiMC”. In: ASIACRYPT 2020. Vol. 12491. LNCS.
2020, pp. 477–506.

[15] L. Grassi. “Mixture Differential Cryptanalysis: a New Approach to Distinguishers
and Attacks on round-reduced AES”. In: IACR Trans. Symmetric Cryptol. 2018.2
(2018), pp. 133–160.

[16] L. Grassi, D. Khovratovich, C. Rechberger, A. Roy, and M. Schofnegger. “Po-
seidon: A New Hash Function for Zero-Knowledge Proof Systems”. In: USENIX
Security Symposium. USENIX Association, 2021, pp. 519–535.

[17] L. Grassi, C. Rechberger, and S. Rønjom. “A New Structural-Differential Prop-
erty of 5-Round AES”. In: EUROCRYPT 2017. Vol. 10211. LNCS. 2017, pp. 289–
317.

[18] J. Guo, G. Liao, G. Liu, M. Liu, K. Qiao, and L. Song. “Practical Collision
Attacks against Round-Reduced SHA-3”. In: J. Cryptol. 33.1 (2020), pp. 228–
270.

56

[19] Hash functions for Zero-Knowledge applications Zoo. https://extgit.iaik.

tugraz.at/krypto/zkfriendlyhashzoo. IAIK, Graz University of Technology.
Aug. 2021.

[20] L. R. Knudsen. “Truncated and Higher Order Differentials”. In: FSE 1994.
Vol. 1008. LNCS. 1994, pp. 196–211.

[21] L. R. Knudsen. DEAL – A 128-bit Block Cipher. 1998.
[22] X. Lai. “Higher Order Derivatives and Differential Cryptanalysis”. In: Com-

munications and Cryptography: Two Sides of One Tapestry. Springer US, 1994,
pp. 227–233.

[23] X. Ma, L. Hu, S. Sun, K. Qiao, and J. Shan. “Tighter Security Bound of MIBS
Block Cipher against Differential Attack”. In: Network and System Security -
NSS 2014. Vol. 8792. LNCS. 2014, pp. 518–525.

[24] M. Matsui. “Linear Cryptanalysis Method for DES Cipher”. In: EUROCRYPT
1993. Vol. 765. LNCS. 1993, pp. 386–397.

[25] N. Mouha, Q. Wang, D. Gu, and B. Preneel. “Differential and Linear Cryptanal-
ysis Using Mixed-Integer Linear Programming”. In: Inscrypt 2011. Vol. 7537.
LNCS. 2011, pp. 57–76.

[26] J. Patarin. “Generic Attacks on Feistel Schemes”. In: ASIACRYPT 2001. Vol. 2248.
LNCS. 2001, pp. 222–238.

[27] S. Sun, L. Hu, P. Wang, K. Qiao, X. Ma, and L. Song. “Automatic Security
Evaluation and (Related-key) Differential Characteristic Search: Application to
SIMON, PRESENT, LBlock, DES(L) and Other Bit-Oriented Block Ciphers”.
In: ASIACRYPT 2014. Vol. 8873. LNCS. 2014, pp. 158–178.

[28] D. A. Wagner. “The Boomerang Attack”. In: FSE. Vol. 1636. LNCS. 1999,
pp. 156–170.

[29] X. Wang, Y. L. Yin, and H. Yu. “Finding Collisions in the Full SHA-1”. In:
CRYPTO 2005. Vol. 3621. LNCS. 2005, pp. 17–36.

[30] H. Wu and T. Huang. TinyJAMBU: A Family of Lightweight Authenticated En-
cryption Algorithms. Submission to the NIST lightweight cryptographic stan-
dardization process (Finalist). 2021.

[31] Y. Zheng, T. Matsumoto, and H. Imai. “On the Construction of Block Ciphers
Provably Secure and Not Relying on Any Unproved Hypotheses”. In: CRYPTO.
Vol. 435. LNCS. 1989, pp. 461–480.

57

https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo
https://extgit.iaik.tugraz.at/krypto/zkfriendlyhashzoo

	Horst Meets Fluid-SPN: Griffin for Zero-Knowledge Applications
	Introduction
	Hash and Compression Functions in ZK Settings
	Our Contribution

	Cost Metrics for Zero-Knowledge Proof Systems
	Zero-Knowledge Proofs
	Arithmetization
	Rank-1 Constraint Satisfaction Systems (R1CS)
	Plonk Arithmetization

	The Birth of Griffin
	Weaknesses of (Strong-Arranged) SPN Schemes
	Non-SPN Schemes: From Feistel to Horst
	Constructing Nonzero Functions G
	The Road to Griffin

	Modes of Operation
	Sponge Hash Functions
	Compression Functions

	Griffin and Griffin-
	Specification of Griffin-
	Number of Rounds of Griffin-

	Security of Griffin and Griffin-
	Statistical Attacks on Griffin-
	Algebraic Attacks
	Security of Griffin Instantiated with Feistel

	Performance Evaluation
	Plain Performance
	R1CS-Based SNARKs with Griffin
	Plonk Performance of Griffin

	STARKs with Griffin
	Algebraic Intermediate Representation (AIR)
	Relations Between SNARK and STARK Cost Metrics
	STARK Performance of Griffin

	Security of Horst Schemes
	Comparing SPN, P-SPN, Feistel, and Horst
	Proofs – Differential Cryptanalysis
	Maximum Differential Probability of S
	Branch Number of M

	Dedicated MILP Tool for Rebound Attacks on Griffin-
	Algebraic Attacks – Details
	Density of Griffin-
	Practical Results for Gröbner Bases
	Additional Strategies for Gröbner Bases

	Security Analysis – Other Attacks
	Other Statistical Attacks
	Higher-Order Differentials and Zero-Sum Partitions

