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Abstract This paper presents benchmarking and profiling of the two
lattice-based signature scheme finalists, Dilithium and Falcon, on the
ARM Cortex M7 using the STM32F767ZI NUCLEO-144 development
board. This research is motivated by the Cortex M7 device being the
only processor in the Cortex-M family to offer a double precision (i.e.,
64-bit) floating-point unit, making Falcon’s implementations, requiring
53 bits of precision, able to fully run native floating-point operations
without any emulation. Falcon shows significant speed-ups between 6.2-
8.3x in clock cycles, 6.2-11.8x in runtime, but Dilithium does not show
much improvement other than those gained by the slightly faster proces-
sor. We then present profiling results of the two schemes on the Cortex
M7 to show their respective bottlenecks and operations where the im-
provements are and can be made, which show some operations in Falcon’s
procedures observe speed-ups by an order of magnitude. Finally, we test
the native FPU instructions on the Cortex M7, used in Falcon’s FPR
instructions, for constant runtime and find irregularities on four differ-
ent STM32 boards, as well as on the Raspberry Pi 3, used in previous
benchmarking results for Falcon.

1 Introduction
Since NIST began their Post-Quantum Cryptography (PQC) Standardization
Project [NIST15] there have been a number of instances where they have called
for benchmarking and evaluations of the candidates on differing hardware plat-
forms [NIST16; AAAS+19; AASA+20]. This prompted research into implement-
ing these schemes on a variety of platforms in software (see PQClean1, pqm42

and SUPERCOP3) and also in hardware [RBG20; HOK+18; HMO+21; BUC19;
BUC19; XL21; BUC19; RMJ+21; Mar20; KRR+20; RB20; MLR+20; EAMK20;
KAE+20].
⋆ The research in this paper was carried out while employed at PQShield.
1 https://github.com/PQClean/PQClean.
2 https://github.com/mupq/pqm4.
3 https://bench.cr.yp.to/supercop.html.

https://github.com/PQClean/PQClean
https://github.com/mupq/pqm4
https://bench.cr.yp.to/supercop.html
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Currently, there remain 4 finalist KEMs and 3 finalist signature schemes
in the project. Two of the three signature schemes are based on the hardness
of lattice problems and as such NIST [AASA+20] state that it “expects that
either Dilithium or Falcon will be standardized as the primary post-quantum
signature scheme at the conclusion of the third round”. Moreover, the same report
encourages “more scrutiny of Falcon’s implementation to determine whether the
use of floating-point arithmetic makes implementation errors more likely than
other schemes or provides an avenue for side-channel attacks”. In this paper
we look to bridge this gap by benchmarking and analysing round 3 versions
of Dilithium [LDK+20] and Falcon [PFH+20] on the ARM Cortex M7, which
to-date is the only microcontroller in the Cortex-M processor family to offer
sufficient double floating-point instructions useful to Falcon. We use publicly
available code from the Falcon submission package4 and we take the Dilithium
implementation from pqm4.

Falcon’s round 3 code, similar to the round 2 version [Por19], provides sup-
port for embedded targets (i.e., ARM Cortex M4) which can use either emu-
lated floating-point operations (FALCON_FPEMU) or native floating-point opera-
tions (FALCON_FPNATIVE). For Dilithium, we use the code available on the pqm4
repository (which performed better than the code on PQClean). Code designed
for the Cortex M3 and Cortex M4 processors is compatible with the Cortex M7
processor as long as it does not rely on bit-banding [ARM18].

1.1 Contributions
In Section 3, we benchmark Dilithium and Falcon on the ARM Cortex M7 using
the STM32F767ZI NUCLEO-144 development board, using 1,000 executions per
scheme and providing minimum, average, and maximum clock cycles, standard
deviation and standard error, and average runtime (in milliseconds). For Fal-
con, we provide benchmarks for key generation, sign dynamic, sign tree, verify,
and expand private key operations, for both native and emulated floating-point
operations and proving comparisons between this and also the results on the
Cortex M4. We also provide results for Falcon-1024 sign tree, which does not
fit on the Cortex M4. For Dilithium, we benchmark the code from the pqm4
repository and in the same manner provide comparative results of Cortex M4
vs M7 performances. We also provide results for Dilithium’s highest parameter
set, which does not fit on the Cortex M4.

In Section 4, we profile Dilithium and Falcon to find their performance bot-
tlenecks on the Cortex M7, providing averages using 1,000 executions of each
scheme. Specifically for Falcon we will be able to provide what operations and
functions benefit from using the board’s 64-bit floating-point unit (FPU) the
most. Indeed, we compare the profiling results using the Cortex M7’s FPU
against the profiling results on the same board where floating-point operations
are emulated (as it does on the ARM Cortex M4). For Dilithium, we cannot
4 See the Falcon homepage: https://falcon-sign.info/.

https://falcon-sign.info/
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compare this way (since it does not require floating points) and so we provide
plain profiling results.

The code used in this paper will be available at the following link:

https://github.com/jameshoweee/falcon-fpu.

2 Background
Dilithium and Falcon are two of the three signature scheme finalists in the NIST
PQC standardisation project. Dilithium is based on the Fiat–Shamir with aborts
paradigm, with its hardness relying on the decisional module-LWE and module-
SIS problems. In the third round, Dilithium offered three parameter sets satis-
fying the NIST security levels 2, 3, and 5 for being at least as hard to break as
SHA-256, AES-192, and AES-256, respectively. Dilithium benefits from using the
same polynomial ring (Zq[X]/(Xn+1)) with a fixed degree (n = 256) and mod-
ulus (q = 8380417) and only requires sampling from the uniform distribution,
making its implementation significantly simpler than for Falcon. Dilithium’s per-
formance profile offers balance for the core operations (key generation, signing,
and verifying) and also key and signature sizes. Furthermore, Dilithium can be
implemented with a relatively small amount of RAM [GKS20].

Falcon is based on the hash-then-sign paradigm over lattices, with its hard-
ness relying on the NTRU assumption. In the third round, Falcon offered two
parameter sets (for degree n = 512 and 1024) satisfying the NIST security lev-
els 1 and 5 for being as hard to break as AES-128 and AES-256. Compared
with Dilithium, Falcon is significantly more complex; relying on sampling over
non-uniform distributions, with floating-point operations, and using tree data
structures. However, Falcon benefits from having much smaller public key and
signature sizes, while having similar signing and verification times. For more
information on the details of these schemes, the reader is pointed to the specifi-
cations of Dilithium [LDK+20] and Falcon [PFH+20].

We benchmark Dilithium and Falcon on a 32-bit ARM Cortex M7 to mainly
observe how much faster these signature schemes are on this device, compared to
the Cortex M4, and more specifically, to see the performances of Falcon using the
Cortex M7’s 64-bit FPU. NIST decided on the ARM Cortex M45 as the preferred
microcontroller target in order to make comparisons between each candidate
easier. The ARM Cortex M4 and M7 are fairly similar cores; the M7 has all the
ISA features available in the M4. However, the M7 offers additional support for
double-precision floating point, a six stage (vs. three stage on the M4) instruction
pipeline, and memory features like cache and tightly coupled memory (TCM).
More specific differences are that the M7 will have faster branch predicting, plus
it has two units for reading data from memory making it twice that of the M4.
5 See the NIST PQC forum: https://groups.google.com/a/list.nist.gov/g/pqc-
forum/c/cJxMq0_90gU/m/qbGEs3TXGwAJ

https://github.com/jameshoweee/falcon-fpu
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/cJxMq0_90gU/m/qbGEs3TXGwAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/cJxMq0_90gU/m/qbGEs3TXGwAJ
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The evaluation board we used for this paper is the STM32 Nucleo-144 de-
velopment board with STM32F767ZI MCU6 which implements the ARMv7E-M
instruction set. This is the extension of ARMv7-M that supports DSP type
instructions (e.g., SIMD). The development board has a maximum clock fre-
quency of 216 MHz, 2 MB of flash memory, 512 KB of SRAM. On the Cor-
tex M7, the floating point architecture is based on FPv5, rather than FPv4 in
Cortex-M4, so it has a few additional floating point instructions. We later utilize
three more STM32 development boards (STM32H743ZI, STM32H723ZG, and
STM32F769I-DISCO) in order to check the constant runtime of Falcon more
thoroughly.

All results reported in this paper used the GNU ARM embedded toolchain
10-2020-q4-major, i.e. GCC version 10.2.1 20201103, using optimization flags
-O2 -mcpu=cortex-m7 -march=-march=armv7e-m+fpv5+fp.dp. All clock cycle
results were obtained using the integrated clock cycle counter (DWT->CYCCNT).

3 Benchmarking Dilithium and Falcon on the
ARM Cortex M7

This section presents the results of benchmarking Dilithium (Table 1) and Fal-
con (Table 2) on the ARM Cortex M7 using the STM32F767ZI NUCLEO-144
development board. The values presented in the following tables are iterated over
1,000 runs of the operation. As noted previously, we provide results that are not
available on the Cortex M4; Falcon-1024 sign tree and Dilithium for parameter
set five.

The tables report minimum, average, and maximum clock cycles, as well as
the standard deviation and standard error of the clock cycles, and the overall
runtime in milliseconds clocked at 216 MHz. We run these benchmarks for each
scheme’s operation (e.g., verify) and for all parameter sets. Below each bench-
marking row is a metric comparing the results on the Cortex M4 via pqm4 (where
available). Specific in the Falcon benchmarking however is another comparison
metric to illustrate the performance gains of its operations using the Cortex M7’s
native 64-bit FPU.

The remaining details provide stack usage (Tables 3 and 4) and RAM usage
(Tables 5 and 6) of the two signature schemes.

6 https://www.st.com/en/evaluation-tools/nucleo-f767zi.html.

https://www.st.com/en/evaluation-tools/nucleo-f767zi.html
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Table 1: Benchmarking performances of Dilithium on the ARM Cortex M7 using
the STM32F767ZI NUCLEO-144 development board.

Parameter
Set

Opera-
tion

FPU/
EMU

Min
(KCyc)

Avg
(KCyc)

Max
(KCyc)

SDev/Err
(KCyc)

Avg
(ms)

Dilithium-2 Key Gen N/A 1,390 1,437 1,479 81/3 6.7
M7 vs M4 Key Gen - 1.13x 1.10x 1.06x -/- 1.40x
Dilithium-2 Sign N/A 1,835 3,658 16,440 604/17 16.9
M7 vs M4 Sign - 1.19x 1.09x 0.64x -/- 1.40x
Dilithium-2 Verify N/A 1,428 1,429 1,432 27.8/0.9 6.6
M7 vs M4 Verify - 1.12x 1.12x 1.12x -/- 1.42x
Dilithium-3 Key Gen N/A 2,563 2,566 2,569 37.6/1.2 11.9
M7 vs M4 Key Gen - 1.12x 1.13x 1.12x -/- 1.44x
Dilithium-3 Sign N/A 2,981 6,009 26,208 65/9 20.7
M7 vs M4 Sign - 1.12x 1.19x 0.78x -/- 2.06x
Dilithium-3 Verify N/A 2,452 2,453 2,456 26.5/0.8 11.4
M7 vs M4 Verify - 1.12x 1.12x 1.11x -/- 1.43x
Dilithium-5 Key Gen N/A 4,312 4,368 4,436 54.4/1.7 20.2
Dilithium-5 Sign N/A 5,020 8,157 35,653 99k/3k 37.8
Dilithium-5 Verify N/A 4,282 4,287 4,292 46.5/1.5 19.8
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Table 2: Benchmarking performances of Falcon on the ARM Cortex M7 using
the STM32F767ZI NUCLEO-144 development board.

Parameter
Set

Opera-
tion

FPU/
EMU

Min
(KCyc)

Avg
(KCyc)

Max
(KCyc)

SDev/Err
(KCyc)

Avg
(ms)

Falcon-512 Key Gen FPU 44,196 77,475 256,115 226k/7k 358.7
Falcon-512 Key Gen EMU 76,809 128,960 407,855 303k/9k 597.0
FPU vs EMU Key Gen - 1.74x 1.66x 1.59x -/- 1.66x
M7 vs M4 Key Gen - 2.32x 2.21x 2.26x -/- 2.84x
Falcon-1024 Key Gen FPU 127,602 193,707 807,321 921k/29k 896.8
Falcon-1024 Key Gen EMU 202,216 342,533 1,669,083 2.4m/76k 1585.8
FPU vs EMU Key Gen - 1.58x 1.76x 2.07x -/- 1.77x
M7 vs M4 Key Gen - 2.14x 2.56x 1.71x -/- 3.41x
Falcon-512 Sign Dyn FPU 4,705 4,778 4,863 149/4 22.1
Falcon-512 Sign Dyn EMU 29,278 29,447 29,640 188/6 136.3
FPU vs EMU Sign Dyn - 6.22x 6.16x 6.10x -/- 6.17x
M7 vs M4 Sign Dyn - 8.24x 8.16x 8.07x -/- 11.66x
Falcon-1024 Sign Dyn FPU 10,144 10,243 10,361 1408/44 47.4
Falcon-1024 Sign Dyn EMU 64,445 64,681 64,957 3k/101 299.5
FPU vs EMU Sign Dyn - 6.35x 6.31x 6.27x -/- 6.32x
M7 vs M4 Sign Dyn - 8.36x 8.31x 8.19x -/- 11.80x
Falcon-512 Sign Tree FPU 2,756 2,836 2,927 6/.2 13.1
Falcon-512 Sign Tree EMU 13,122 13,298 13,506 126/4 61.6
FPU vs EMU Sign Tree - 4.76x 4.69x 4.61x -/- 4.70x
M7 vs M4 Sign Tree - 6.33x 6.23x 6.10x -/- 9.61x
Falcon-1024 Sign Tree FPU 5,707 5,812 5,919 1422/45 26.9
Falcon-1024 Sign Tree EMU 28,384 28,621 28,877 3k/115 132.5
FPU vs EMU Sign Tree - 4.97x 4.92x 4.88x -/- 4.93x
Falcon-512 Exp SK FPU 1,406 1,407 1,410 8.6/0.3 6.5
Falcon-512 Exp SK EMU 11,779 11,781 11,788 7/0.2 54.5
FPU vs EMU Exp SK - 8.38x 8.37x 8.36x -/- 8.38x
Falcon-1024 Exp SK FPU 3,071 3,075 3,080 39/1.3 14.2
Falcon-1024 Exp SK EMU 26,095 26,101 26,120 109/3.5 120.8
FPU vs EMU Exp SK - 8.50x 8.49x 8.48x -/- 8.51x
Falcon-512 Verify FPU 558 559 561 2.9/0.1 2.6
Falcon-512 Verify EMU 561 565 570 98/3 2.6
FPU vs EMU Verify - 1.01x 1.01x 1.02x -/- 1.0x
M7 vs M4 Verify - 0.83x 0.85x 0.86x -/- 1.16x
Falcon-1024 Verify FPU 1,135 1,136 1,141 23/0.7 5.3
Falcon-1024 Verify EMU 1,129 1,130 1,135 6.4/0.2 5.2
FPU vs EMU Verify - 0.99x 0.99x 0.99x -/- 0.98x
M7 vs M4 Verify - 0.85x 0.86x 0.87x -/- 1.16x
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3.1 Stack Usage and RAM Size
Tables 3 and 4 show stack usage of Dilithium and Falcon and Tables 5 and 6
show the RAM usage of Dilithium and Falcon on ARM Cortex M7. We calculate
the stack usage by using the avstack.pl7 tool, adapted to the ARM toolchain,
and RAM was calculated using meminfo. Note that the implementations we
benchmarked weren’t optimized for low memory usage. Dilithium, for one, can
be used in much more memory constrained environments than these numbers
here suggest [GKS20].

Table 3: Dilithium stack usage in bytes.
Parameter Set Key Gen Sign Verify
Dilithium-2 38,444 52,052 36,332
Dilithium-3 60,972 79,728 57,836
Dilithium-5 97,836 122,708 92,908

Table 4: Falcon stack usage in bytes.
Parameter Set Key

Gen
Sign
Dyn

Sign
Tree

Verify

Falcon-512-FPU 1,156 1,920 1,872 556
Falcon-1024-FPU 1,156 1,920 1,872 556
Falcon-512-EMU 1,068 1,880 1,824 556
Falcon-1024-EMU 1,068 1,880 1,872 556

Table 5: Dilithium RAM usage in bytes.
Parameter Set Key Gen Sign Verify Overall
Dilithium-2 9,627 13,035 9,107 13,035
Dilithium-3 15,259 19,947 14,483 19,947
Dilithium-5 24,475 30,699 23,251 30,699

Table 6: Falcon RAM usage in bytes.
Parameter Set Key

Gen
Sign
Dyn

Sign
Tree

Verify Overall
(Dyn)

Overall
(Tree)

Falcon-512-FPU 18,512 42,488 85,512 6,256 63,384 133,048
Falcon-1024-FPU 36,304 84,216 178,440 12,016 125,976 273,464
Falcon-512-EMU 18,512 42,488 85,512 6,256 63,384 133,048
Falcon-1024-EMU 36,304 84,216 178,440 12,016 125,976 273,464

7 https://dlbeer.co.nz/oss/avstack.html.

https://dlbeer.co.nz/oss/avstack.html


8

4 Profiling Dilithium and Falcon on the ARM
Cortex M7

This section presents the profiling results of Dilithium and Falcon on the ARM
Cortex M7 using the STM32F767ZI NUCLEO-144 development board. Firstly,
we provide Figures 1 and 2 profiling the acceptance rates of Dilithium’s sign
and Falcon’s key generation procedures. Next, we profile the inner workings of
Dilithium (Table 7) and Falcon (Table 8).

4.1 Rate of Acceptence in Dilithium and Falcon
The following figures illustrate the effective ‘rejection rates’ or ‘restart rates’ of
Dilithium’s signing (Figure 1) and Falcon’s key generation (Figure 2) procedures.
Restart/rejection rates are shown in the figures’ x-axis, with probabilities shown
in the y-axis.

Figure 1: Dilithium’s signing. Figure 2: Falcon’s key generation.

4.2 Profiling Results of Dilithium and Falcon
The values presented in the following tables are iterated over 1,000 runs of the
main operation (e.g., verify). As noted previously, for comparison we provide
profiling results for Falcon both with and without use of the FPU, and also note
the improvements over the results on the Cortex M4 via pqm4. For Dilithium,
we only provide comparisons with pqm4 as it does not benefit at all from the
FPU. Some lines of the tables will appear incomplete due to the fact that either
that operation did not fit on the Cortex M4 (i.e., Falcon-1024 sign tree) or those
results were not reported by pqm4 (i.e., Falcon’s expand private key).
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Table 7: Profiling Dilithium on the ARM Cortex M7 using the STM32F767ZI
NUCLEO-144 development board. All values reported are in KCycles.

Key Generation param2 param3 param5
get randomness 13 (0.9%) 13 (0.5%) 13 (0.30%)
expand matrix 971 (68%) 1,826 (71%) 3,417 (78%)
sample vector 182 (13%) 317 (12%) 343 (8%)
matrix/vector mult 124 (9%) 190 (7%) 300 (7%)
add error 45 (0.34%) 7 (0.28%) 10 (0.23%)
expand/write pub key 16 (1%) 25 (1%) 33 (0.76%)
get h/comp priv key 125 (9%) 188 (7%) 247 (6%)
Signing param2 param3 param5
compute crh 13 (0.39%) 13 (0.24%) 14 (0.17%)
exp mat/transf vecs 1,092 (32%) 1,993 (35%) 3,656 (47%)
sample y vector 1,001 (29%) 1,538 (27%) 1,688 (22%)
matrix/vector mult 516 (15%) 946 (17%) 1,178 (15%)
decomp w/ call RO 547 (16%) 710 (13%) 693 (9%)
compute z 137 (4%) 233 (4%) 269 (3%)
check cs2 62 (2%) 91 (2%) 123 (2%)
compute hint 70 (2%) 110 (2%) 149 (2%)
Verifying param2 param3 param5
compute crh 124 (9%) 181 (8%) 235 (6%)
matrix/vector mult 1,174 (84%) 2,119 (88%) 3,859 (91%)
reconstruct w1 24 (2%) 28 (1%) 38 (0.90%)
call ro verify chall 78 (6%) 78 (3%) 100 (2%)
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Table 8: Profiling Falcon on the ARM Cortex M7 using the STM32F767ZI
NUCLEO-144 development board. All values reported are in KCycles.

Key Generation 512-FPU 512-EMU Vs. 1024-FPU 1024-EMU Vs.
total ntru gen 77,095 (99%) 127,828 (100%) 1.66x 186,120 (100%) 332,876 (100%) 1.79x
—poly small mkgauss 34,733 (45%) 34,805 (27%) 1.00x 56,509 (30%) 57,033 (17%) 1.00x
—poly small sqnorm 28 (0.04%) 29 (0.02%) 1.04x 94 (0.05%) 94 (0.03%) 1.00x
—poly small to fp 40 (0.05%) 306 (0.24%) 7.65x 132 (0.07%) 989 (0.30%) 7.50x
—fft multiply 609 (0.80%) 10,496 (8%) 17.2x 2,277 (1%) 38,681 (12%) 17.00x
—poly invnorm2 fft 110 (0.14%) 1,446 (1%) 13.2x 421 (0.22%) 4,777 (1%) 11.00x
—poly adj fft 23 (0.03%) 12 (0.01%) 0.52x 70 (0.04%) 43 (0.01%) 0.60x
—poly mulconst 69 (0.09%) 354 (0.28%) 5.13x 218 (0.12%) 1,168 (0.35%) 5.36x
—poly mul autoadj fft 63 (0.08%) 383 (0.30%) 6.08x 237 (0.13%) 1272 (0.38%) 5.37x
—ifft multiply 683 (0.90%) 10,666 (8%) 15.6x 2,544 (1.36%) 39,071 (12%) 15.4x
—bnorm/fpr add 14 (0.02%) 184 (0.14%) 13.1x 35 (0.02%) 424 (0.13%) 12.1x
—compute public key 383 (0.49%) 383 (0.30%) 1.00x 887 (0.50%) 887 (0.27%) 1.00x
—solve ntru: 40,337 (52%) 68,764 (54%) 1.70x 122,696 (66%) 188,438 (56%) 1.54x
encode priv key 26 (0.03%) 26 (0.02%) 1.00x 52 (0.03%) 52 (0.02%) 1.00x
recomp sk and encode 384 (0.50%) 385 (0.3%) 1.00x 815 (0.44%) 815 (0.24%) 1.00x
Signing Dynamic 512-FPU 512-EMU Vs. 1024-FPU 1024-EMU Vs.
sign start 4 (0.08%) 4 (0.01%) 1.00x 4 (0.04%) 4 (0.01%) 1.00x
decode/comp priv key 488 (11%) 489 (1.69%) 1.00x 1,040 (11%) 1,040 (2%) 1.00x
hash mess to point <1 (0.01%) <1 (0.00%) 0.10x <1 (0.00%) <1 (0.00%) 1.00x
signature encode 11 (0.26%) 11 (0.04%) 1.00x 22 (0.24%) 22 (0.03%) 1.00x
convert basis to fft 241 (6%) 3,885 (13%) 16.1x 549 (6%) 8,751 (14%) 15.9x
comp gram matrix 67 (2%) 628 (2%) 9.37x 167 (2%) 1,290 (2%) 7.72x
apply lattice basis 89 (2%) 1,250 (4%) 14.0x 207 (2%) 2,756 (4%) 13.3x
ffsampling 2,814 (66%) 16,190 (56%) 5.75x 6,009 (65%) 35,324 (56%) 5.88x
recomp matrix basis 258 (6%) 3,900 (14%) 15.1x 586 (6%) 8,787 (14%) 15.0x
get lattice point 314 (7%) 2,527 (9%) 8.05x 706 (8%) 5,564 (8%) 7.88x
Signing Tree 512-FPU 512-EMU Vs. 1024-FPU 1024-EMU Vs.
sign start 4 (0.08%) 4 (0.03%) 1.00x 4 (0.07%) 4 (0.07%) 1.0x
get deg/check params <1 (0.00%) <1 (0.00%) 1.00x <1 (0.00%) <1 (0.00%) 1.0x
hash mess to point <1 (0.01%) <1 (0.00%) 1.00x <1 (0.00%) <1 (0.00%) 1.0x
sig encode 11 (0.46%) 11 (0.09%) 1.00x 22 (0.44%) 22 (0.08%) 1.00x
apply lattice basis 89 (3.70%) 1,255 (10%) 14.1x 194 (4%) 2,746 (9.87%) 14.1x
apply ff sampling 1,975 (82%) 9,081 (70%) 4.60x 406 (82%) 4,094 (82%) 10.1x
get lattice point 314 (13%) 2,527 (20%) 8.05x 706 (14%) 5,564 (14%) 7.88x
compute signature 135 (6%) 23 (0.18%) 0.17x 272 (5%) 46 (0.17%) 0.17x
Verifying 512-FPU 512-EMU Vs. 1024-FPU 1024-EMU Vs.
verf start <1 (0.06%) <1 (0.06%) 1.00x <1 (0.03%) <1 (0.00%) 1.00x
get degree via pk <1 (0.01%) <1 (0.01%) 1.00x <1 (0.00%) <1 (0.00%) 1.00x
decode pub key 9 (1.6%) 9 (2%) 1.00x 18 (2%) 18 (2%) 1.00x
decode sign 12 (2%) 12 (2%) 1.00x 24 (2%) 24 (2%) 1.00x
hash mess to point 312 (55%) 311 (55%) 1.00x 595 (52%) 595 (52%) 1.00x
verify sign 231 (41%) 231 (41%) 1.00x 501 (44%) 501 (44%) 1.00x
Expand Private Key 512-FPU 512-EMU Vs. 1024-FPU 1024-EMU Vs.
get priv deg <1 (0.00%) <1 (0.00%) 1.00x <1 (0.00%) <1 (0.00%) 1.00x
decode priv 494 (35%) 494 (4%) 1.00x 1,040 (34%) 1,040 (34%) 1.00x
expand priv key 905 (65%) 11,281 (96%) 12.5x 2,018 (66%) 25,010 (96%) 12.3x
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5 Constant-Time Validation of Falcon’s Floating-
Point Operations

This section presents the constant runtime analysis of Falcon on the ARM Cortex
M7. Technical manuals for ARM development boards often report cycle counts
for FPU instructions8, however ARM does not appear to make this information
public for the Cortex M7 core.

We are specifically interested in Falcon’s use of double precision floating
points and how it exploits the devices’ 64-bit floating point unit (FPU). This
has not been investigated before since the primary evaluation target used for
post-quantum schemes, the ARM Cortex M4, only has a 32-bit FPU, which is
not sufficient for the 53-bit floating-point precision required by Falcon.

The double precision FPU on the ARM Cortex M7 is compliant with the
IEEE-754 standard as thus supports the binary64 type. The IEEE-754 standard
defines all aspects of floating-point numbers (i.e., their sign, exponent, and man-
tissa) so that hardware/software interoperability can be ensured. Thus, most if
not all modern CPUs offer compliance with this standard within their dedicated
FPUs used to speed-up floating-point operations.

We investigate the timings on the device used in the previous sections, the
STM32F767ZI NUCLEO-144 development board, and due to the issues found
we extended this to three other STM32 development boards (the STM32H743ZI,
STM32H723ZG, and STM32F769I-DISCO) in order to see if this issue affected
other development boards. We found the same issues occured in all four de-
velopment boards. We are aware of a similar experiment being run on the
STM32H7309. We also further investigate timing issues on the Raspberry Pi
3, due to its use in evaluating the constant-time code of Falcon [Por19].

5.1 STM32 Development Boards
The issue discovered with the STM32 development boards was that the FPU
operations were not fully constant time. We did not pursue ways to exploit this
into an attack, but we felt this was worth reporting nonetheless. The code for
testing this constant timeness is available on repository already provided.

For each floating-point instruction (e.g., vmul.f64), we wrote inline assem-
bly of ten consecutive operations, given two random inputs, which we then aver-
aged to find the required clock cycles. We used inline assembly to minimize the
unwanted optimizations from the compiler, and clobbered registers where nec-
essary. Using this approach minimizes the effect of surrounding instructions on
the operations of interest, which for example would occur using C, and ensures
that all execution is from cache. An example of this is shown in Listing 1.1 for
the 64-bit floating point multiplication operation vmul.f64.
8 For example, see the ARM Cortex-M4 Technical Reference Manual https://
developer.arm.com/documentation/ddi0439/b/BEHJADED

9 https://www.quinapalus.com/cm7cycles.html

https://developer.arm.com/documentation/ddi0439/b/BEHJADED
https://developer.arm.com/documentation/ddi0439/b/BEHJADED
https://www.quinapalus.com/cm7cycles.html
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1 asm volatile (
2 "vldr d5, %2\n"
3 "vldr d6, %3\n"
4 "dmb\n"
5 "isb\n"
6 "ldr r1, %1\n"
7 "vmul.f64 d4, d5, d6\n"
8 "vmul.f64 d4, d5, d6\n"
9 "vmul.f64 d4, d5, d6\n"

10 "vmul.f64 d4, d5, d6\n"
11 "vmul.f64 d4, d5, d6\n"
12 "vmul.f64 d4, d5, d6\n"
13 "vmul.f64 d4, d5, d6\n"
14 "vmul.f64 d4, d5, d6\n"
15 "vmul.f64 d4, d5, d6\n"
16 "vmul.f64 d4, d5, d6\n"
17 "ldr r2, %1\n"
18 "subs %0, r2, r1\n"
19 : "=r"(cycles) : "m"(DWT->CYCCNT), "m"(r1), "m"(r2) : "r1", "

r2", "d4", "d5", "d6");

Listing 1.1: Code snippet of the testing framework we used to test the constant
timeness of the double precision FPU on the STM32 development boards.

The FPUs on the development boards typically provide two functions for each
floating-point function; a 32-bit version (e.g., vadd.f32) and a 64-bit version
(e.g., vadd.f64). Since we are concerned with Falcon which requires 53 bits
of floating-point precision, we focus on the 64-bit (double-precision) floating-
point functions. The IEEE 754 standard for floating-point binary representation
is shown in Table 9 for float and double types. The double-precision binary
floating-point format (binary64) expresses floating point numbers using a 1-bit
sign value in the most significant position, 11 bits for the exponent in positions
62-to-52, and 52 bits for the significand in positions 51-to-0.

Table 9: IEEE 754 standard format for single (32-bit) and double precision (64-
bit).

Type/Precision Sign Exponent Significand
float (32 bits) 31 (1 bit) 30:23 (8 bits) 22:0 (23 bits)
double (64 bits) 63 (1 bit) 62:52 (11 bits) 51:0 (52 bits)

We discovered variable timing behaviour in all double-precision floating-point
functions on all the development boards we used in the experiments. We now
focus on the double-precision floating-point addition (vadd.f64) function to il-
lustrate and explain lower level timing irregularities.
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The non-constant timeness was clearly observed when generating two random
double-precision values for addition, with an average runtime of 16 clock cycles
and standard deviation of 4.1. However, when we generated random values in
the same range such they had the same exponents, the runtimes were constant
and consistant at 10 clock cycles. Moreover, when we mixed randomness from
two fixed exponent ranges we observed constant and consistant runtimes of 19
clock cycles.

5.2 Raspberry Pi 3

We also discovered a subtle issue with constant timeness on the Raspberry Pi
3, which itself has an ARM Cortex A53 core. This issue involves type casting,
specifically, when casting a double to an int64_t, the operation rounds towards
zero. There is no native instruction to do such a truncation on ARMv7. Thus
instead, the compiler calls the runtime symbol __fixdfi, that is, __aeabi_d2lz.
This may or may not be implemented in constant time. In LLVM it is not10 and
importantly it leaks the sign. This is the case for the Raspberry Pi 3 which they
targeted in [Por19]. We reported this issue to the Falcon team and moreover
proposed a constant time fix, which we show in Listing 1.2.

1 int64_t cast(double a) {
2 union {
3 double d;
4 uint64_t u;
5 int64_t i;
6 } x;
7 uint64_t mask;
8 uint32_t high, low;
9

10 x.d = a;
11

12 mask = x.i >> 63;
13 x.u &= 0x7fffffffffffffffL;
14

15 high = x.d / 4294967296.f; // a / 0x1p32f;
16 low = x.d - (double)high * 4294967296.f; // high * 0x1p32f;
17 x.u = ((int64_t)high << 32) | low;
18

19 return (x.u & ((uint64_t)-1 - mask)) | ((-x.u) & mask);
20 }

Listing 1.2: The proposed fix for casting a double to an int64_t in LLVM.

10 see for example https://github.com/llvm-mirror/compiler-rt/blob/
69445f095c22aac2388f939bedebf224a6efcdaf/lib/builtins/fixdfdi.c#L18

https://github.com/llvm-mirror/compiler-rt/blob/69445f095c22aac2388f939bedebf224a6efcdaf/lib/builtins/fixdfdi.c#L18
https://github.com/llvm-mirror/compiler-rt/blob/69445f095c22aac2388f939bedebf224a6efcdaf/lib/builtins/fixdfdi.c#L18
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6 Results and Discussions
In Section 3, we observe from the benchmarking of Dilithium in Table 1 that
all procedures show a slight improvement, but not many of significance in com-
parison to those reported by pqm4. The performance improvements seen range
from 1.09-1.19x which essential accounts for the slightly better performance of
the Cortex M7 vs the Cortex M4 in general.

However, from the benchmarking of Falcon in Table 2 we observe that:
– Key generation does not drastically benefit from the FPU, showing a 1.66-

1.76x improvement in compared to emulated floating points. We also see
similar results compared to the Cortex M4, with improvements between 2.21-
2.56x.

– Sign dynamic has a significant improvement using the FPU; showing an
increase between 6.16-6.31x between the emulated code and between 8.16-
8.31x compared to the Cortex M4.

– Sign tree also has a significant improvement using the FPU; showing an
increase between 4.69-4.92x between the emulated code and 6.23x compared
to the Cortex M4 for Falcon-512 parameters. As already stated, Falcon-1024
sign tree cannot fit on the Cortex M4, but has been implemented in this
research on the Cortex M7.

– Expanding the private key also has a significant improvement using the FPU;
showing an increase between 8.37-8.49x between the emulated code.

– Verify shows little to know changes by using the FPU, due to it not requiring
floating-point operations, and the slight decrease is probably due to the larger
instruction pipeline on the M7.
In Section 4, we provide profiling results of the two signature schemes, which

can point to areas in which these schemes could be optimised in the future.
The profiling results of Dilithium in Table 7 perhaps offer little novel insights
into the bottlenecks of its implementation on the Cortex M7. Dilithium has
a much simpler implementation complexity in comparison to Falcon and this
can be observed by the much more compact table of results. However, we can
observe the elegance of its design and performance when comparing the results
across parameter sets; seeing that some values change little, and some increase
proportional to the added computations required by the small change in each
parameter set, afforded by fixing the polynomial ring and modulus.

In Section 3.1 we provided stack and RAM usage for Dilithium and Falcon.
The most notable results are for Falcon which has a small increase (at most, 88
Bytes) in stack usage when the FPU is used.

We observe from the profiling of Falcon in Table 8 the following. The FPU
improves upon emulating floating-point operations in key generation by an order
of magnitude, specifically in the following operations.

– Converting a small vector to floating point (poly_small_to_fp) improves
by 7.5-7.65x, multiplying polynomials by a constant (poly_mulconst) and
an adjoint (poly_mul_autoadj_fft) improves by 5.13-5.36x and 5.37-6.08x,
respectively.
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– Polynomial inversion to FFT format (poly_invnorm2_fft) saves between
11-13.2x.

– The normalisation step alongside FPR addition saves between 12.1-13.1x.
– FFT and iFFT operations improve by 15.4-17.2x, making this the biggest

improvement of all operations in Falcon.

The FPU improves upon emulating floating-point operations in sign dynamic
by an order of magnitude, specifically in the following operations.

– ffSampling improves by 5.75-5.88x, get lattice point and computing the Gram
matrix (G) improves by 7.88-8.05x and 7.72-9.37x, respectively.

– Applying the lattice basis, recomputing the matrix basis, and converting the
basis to FFT format save 13.3-14x, 15-15.1x, and 15.9-16.1x, respectively.

– Similar savings are noted for signing tree for applying the lattice basis, ap-
plying ffSampling, and getting the lattice point.to the tiny vector.

– Expanding the private key saves between 12.3-12.5x.

The FPU does not have any affect on Falcon’s verification operation, this is
essentially because it does not require floating-point operations and is a relatively
computationally light procedure.

In Section 5, we find constant time issues with Falcon on four different STM32
development boards using the ARM Cortex M7 and the Raspberry Pi 3. The
issues we found on the STM32 development boards were where the devices’ ded-
icated floating-point unit was used (which can significantly speed-up Falcon),
specifically the double-precision functions, where all were shown to be non con-
stant time. Analysing the double-preicision addition, we discovered the size of
the significand influenced the runtime of this function.

We further investigated constant timeness on the Raspberry Pi 3, which uses
the ARM Cortex A53, where we also found timing issues when casting from a
double to an int64_t, and when implemented in LLVM, it is not constant time
and leaks the sign of the value.

We reported these issues to the Falcon team but we did not investigate how
to exploit this for a timing attack. Overall, this research shows that when imple-
menting Falcon one should check the constant timesness of the device’s floating-
point functions before real-world deployment.
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