
Benchmarking and Analysing the NIST PQC
Lattice-Based Signature Schemes Standards on

the ARM Cortex M7

James Howe1 and Bas Westerbaan2⋆

1 SandboxAQ, Palo Alto, USA.
james.howe@sandboxaq.com

2 Cloudflare, Amsterdam, The Netherlands.
bas@westerbaan.name

Abstract. This paper presents an analysis of the two lattice-based dig-
ital signature schemes, Dilithium and Falcon, which have been cho-
sen by NIST for standardization, on the ARM Cortex M7 using the
STM32F767ZI NUCLEO-144 development board. This research is mo-
tivated by the ARM Cortex M7 device being the only processor in the
Cortex-M family to offer a double precision (i.e., 64-bit) floating-point
unit, making Falcon’s implementations, requiring 53 bits of double preci-
sion, able to fully run native floating-point operations without any emu-
lation. When benchmarking natively, Falcon shows significant speed-ups
between 6.2–8.3x in clock cycles, 6.2-11.8x in runtime, and Dilithium
does not show much improvement other than those gained by the slightly
faster processor. We then present profiling results of the two schemes on
the ARM Cortex M7 to show their respective bottlenecks and operations
where the improvements are and can be made. This demonstrates, for
example, that some operations in Falcon’s procedures observe speed-ups
by an order of magnitude. Finally, since Falcon’s use of floating points
is so rare in cryptography, we test the native FPU instructions on 4 dif-
ferent STM32 development boards with the ARM Cortex M7 and also a
Raspberry Pi 3 which is used in some of Falcon’s official benchmarking
results. We find constant-time irregularities in all of these devices, which
makes Falcon insecure on these devices for applications where signature
generation can be timed by an attacker.

1 Introduction
Since NIST began their Post-Quantum Cryptography (PQC) Standardization
Project [NIST15] there have been a number of instances where they have called
for benchmarking and evaluations of the candidates on differing hardware plat-
forms [NIST16; AAAS+19; AASA+20]. This prompted research into implement-
ing these schemes on a variety of platforms in software, for example see PQ-
Clean [PQClean], SUPERCOP [SupCop], liboqs [liboqs], and pqm4 [pqm4], and
⋆ The research in this paper was carried out while employed at PQShield.

https://orcid.org/0000-0002-6498-3099
https://orcid.org/0000-0002-3195-6238

2 James Howe and Bas Westerbaan

also in hardware [RBG20; HOK+18; HMO+21; BUC19; BUC19; XL21; BUC19;
RMJ+21; Mar20; KRR+20; RB20].

In July 2022, NIST announced in their Round 3 status report [AAC+22]
that their first set of PQC standards; one Key Encapsulation Mechanism (KEM)
called CRYSTALS-Kyber [SAB+20], and three digital signature schemes called
CRYSTALS-Dilithium [LDK+20], Falcon [PFH+20], and SPHINCS+ [HBD+20],
with three of the four of these being from the family of lattice-based cryptogra-
phy.

In their Round 2 status report, NIST [AASA+20] encouraged “more scrutiny
of Falcon’s implementation to determine whether the use of floating-point arith-
metic makes implementation errors more likely than other schemes or provides
an avenue for side-channel attacks”. In this paper we look to bridge this gap
by adding benchmarking, profiling, and analysing Falcon and Dilithium on the
ARM Cortex M7. We choose this specific microcontroller for two reasons. Firstly,
as it is very similar to the ARM Cortex M4, which was chosen by NIST as the
preferred benchmarking target to enable fair comparisons. Secondly, the ARM
Cortex M7 is the only processor in the Cortex-M family to offer sufficient double
floating-point instructions, via a 64-bit floating-point unit (FPU), useful to Fal-
con’s key generation and signing procedures. This adds another important eval-
uation criteria to comparisons between the two lattice-based signature schemes,
especially when considering Falcon using a FPU, and investigating whether or
not it is safe to use this for constant run-time. We use publicly available3 code
from the Falcon submission package and we take the Dilithium implementation
from pqm4.

Falcon’s round 3 code, similar to the round 2 version [Por19], provides sup-
port for embedded targets (i.e., the ARM Cortex M4) which can use either
custom emulated floating-point operations (FALCON_FPEMU) or native floating-
point operations (FALCON_FPNATIVE). For Dilithium, we use the code available
on the pqm4 repository (which performed better than the code on PQClean).
Code designed for the Cortex M3 and Cortex M4 processors is compatible with
the Cortex M7 processor as long as it does not rely on bit-banding [ARM18].

1.1 Contributions
In Section 3, we benchmark Dilithium and Falcon on the ARM Cortex M7 using
the STM32F767ZI NUCLEO-144 development board, using 1,000 executions per
scheme and providing minimum, average, and maximum clock cycles, standard
deviation and standard error, and average runtime (in milliseconds). For Falcon,
we provide benchmarks for key generation, sign dynamic, sign tree, verify, and
expand private key operations. We provide these results for both native (dou-
ble precision) and emulated floating-point operations and proving comparisons
between these and those results publicly available on the ARM Cortex M4. We
3 See https://falcon-sign.info/

https://orcid.org/0000-0002-6498-3099
https://orcid.org/0000-0002-3195-6238
https://falcon-sign.info/

Dilithium and Falcon on the ARM Cortex M7 3

also provide results for Falcon-1024 sign tree, which does not fit on the Cortex
M4.

For Dilithium, we benchmark the code from the pqm4 repository and in the
same manner provide comparative results of Cortex M4 vs M7 performances.
We also provide results for Dilithium’s highest parameter set, which does not fit
on the Cortex M4.

In Section 4, we profile Dilithium and Falcon to find their performance bot-
tlenecks on the ARM Cortex M7, providing averages using 1,000 executions of
each scheme. Specifically for Falcon, we provide what operations and functions
benefit from using the board’s 64-bit FPU the most. Indeed, we compare the
profiling results using the Cortex M7’s FPU against the profiling results on the
same board where floating-point operations are emulated (as it does on the ARM
Cortex M4). For Dilithium, we cannot compare this way (since it does not require
floating points) and so we provide plain profiling results.

The link to code used in this paper has been removed to maintain anonymity.
The code will be made publicly available after publication.

2 Background
Dilithium and Falcon are the two lattice-based signature schemes selected by
NIST as PQC standards, and two of the three overall signatures selected for
standardization.

Dilithium is the primary signature scheme and is based on the Fiat–Shamir
with aborts paradigm, with its hardness relying on the decisional module-LWE
and module-SIS problems. Algorithm 1 in Appendix A shows Dilithium’s key
generation, sign, and verify algorithms. In the third round, Dilithium offered
three parameter sets satisfying the NIST security levels 2, 3, and 5 for being
at least as hard to break as SHA-256, AES-192, and AES-256, respectively.
Dilithium benefits from using the same polynomial ring (Zq[X]/(Xn + 1)) with
a fixed degree (n = 256) and modulus (q = 8380417) and only requires sampling
from the uniform distribution, making its implementation significantly simpler
than for Falcon. Dilithium’s performance profile offers balance for the core oper-
ations (key generation, signing, and verifying) and also key and signature sizes.
Furthermore, Dilithium can be implemented with a relatively small amount of
RAM [GKS20].

Falcon is based on the hash-then-sign paradigm over lattices, with its hard-
ness relying on the NTRU assumption. Algorithm 2 in Appendix B shows Fal-
con’s key generation, sign, and verify algorithms. In the third round, Falcon
offered two parameter sets (for degree n = 512 and 1024) satisfying the NIST
security levels 1 and 5 for being as hard to break as AES-128 and AES-256.
Compared with Dilithium, Falcon is significantly more complex; relying on sam-
pling over non-uniform distributions, with floating-point operations, and using
tree data structures. However, Falcon benefits from having much smaller public
key and signature sizes, while having similar signing and verification times. For

4 James Howe and Bas Westerbaan

more information on the details of these schemes, the reader is pointed to the
specifications of Dilithium [LDK+20] and Falcon [PFH+20].

We benchmark Dilithium and Falcon on a 32-bit ARM Cortex M7 to mainly
observe how much faster these signature schemes are on this device, compared
to the ARM Cortex M4, and more specifically, to see the performances of Falcon
using the ARM Cortex M7’s 64-bit FPU. NIST decided on the ARM Cortex M44

as the preferred microcontroller target in order to make comparisons between
each candidate easier. The ARM Cortex M4 and M7 are fairly similar cores; the
M7 has all the ISA features available in the M4. However, the M7 offers additional
support for double-precision floating point, a six stage (vs. three stage on the
M4) instruction pipeline, and memory features like cache and tightly coupled
memory (TCM). More specific differences are that the M7 will have faster branch
predicting, plus it has two units for reading data from memory making it twice
that of the M4.

The evaluation board we used for the benchmarking and profiling in this pa-
per is the STM32 Nucleo-144 development board with STM32F767ZI MCU5

which implements the ARMv7E-M instruction set. This is the extension of
ARMv7-M that supports DSP type instructions (e.g., SIMD). The development
board has a maximum clock frequency of 216 MHz, 2 MB of flash memory,
512 KB of SRAM. On the Cortex M7, the floating point architecture is based
on FPv5, rather than FPv4 in Cortex-M4, so it has a few additional float-
ing point instructions. We later utilize three more STM32 development boards
(STM32H743ZI, STM32H723ZG, and STM32F769I-DISCO) and a Raspberry
Pi 3 in order to check the constant runtime of Falcon more thoroughly.

All results reported in this paper used the GNU ARM embedded toolchain
10-2020-q4-major, i.e. GCC version 10.2.1 20201103, using optimization flags
-O2 -mcpu=cortex-m7 -march= -march=armv7e-m+fpv5+fp.dp. All clock cycle
results were obtained using the integrated clock cycle counter (DWT->CYCCNT).

3 Benchmarking on ARM Cortex M7
This section presents the results of benchmarking Dilithium (Table 1) and Fal-
con (Table 2) on the ARM Cortex M7 using the STM32F767ZI NUCLEO-144
development board. The values presented in the following tables are iterated over
1,000 runs of the operation. As noted previously, we provide results that are not
available on the Cortex M4; Falcon-1024 sign tree and Dilithium for parameter
set five.

The tables report minimum, average, and maximum clock cycles, as well as
the standard deviation and standard error of the clock cycles, and the overall
runtime in milliseconds clocked at 216 MHz. We run these benchmarks for each
4 See the NIST PQC forum: https://groups.google.com/a/list.nist.gov/g/pqc-
forum/c/cJxMq0_90gU/m/qbGEs3TXGwAJ

5 https://www.st.com/en/evaluation-tools/nucleo-f767zi.html.

https://orcid.org/0000-0002-6498-3099
https://orcid.org/0000-0002-3195-6238
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/cJxMq0_90gU/m/qbGEs3TXGwAJ
https://groups.google.com/a/list.nist.gov/g/pqc-forum/c/cJxMq0_90gU/m/qbGEs3TXGwAJ
https://www.st.com/en/evaluation-tools/nucleo-f767zi.html

Dilithium and Falcon on the ARM Cortex M7 5

scheme’s operation (e.g., verify) and for all parameter sets. Below each bench-
marking row is a metric comparing the results on the Cortex M4 via pqm4 (where
available). Specific in the Falcon benchmarking however is another comparison
metric to illustrate the performance gains of its operations using the Cortex M7’s
native 64-bit FPU.

We summarize clock cycle benchmarks of Dilithium and Falcon on the ARM
Cortex M4 in Figure 1 and on the ARM Cortex M7 in Figure 2. The former
figure copies Figure 7 in the NIST third round report, showing that signing and
verifying times for Dilithium require significantly less clock cycles than Falcon’s
tree signing and verify. When we replicate this figure for the ARM Cortex M7
we see a different story; Falcon requires less clock cycles than Dilithium where
floating points are run natively, although emulated floats are still much slower.

The remaining details provide stack usage (Tables 3 and 5) and RAM usage
(Tables 4 and 6) of the two signature schemes.

Fa
lco

n-5
12

-E
MU

Dilit
hiu

m2

Dilit
hiu

m3
0

5,000

10,000

15,000

20,000

C
lo

ck
C

yc
le

s
(x

10
00

)

Sign
Verify

Fig. 1: Signature benchmarks of Dilithium and Falcon (tree) on ARM Cortex
M4, results taken from Figure 7 in [AAC+22].

6 James Howe and Bas Westerbaan

Fa
lco

n-5
12

-E
MU

Fa
lco

n-1
02

4-E
MU

Fa
lco

n-5
12

-F
PU

Fa
lco

n-1
02

4-F
PU

Dilit
hiu

m2

Dilit
hiu

m3

Dilit
hiu

m5
0

5,000

10,000

15,000

20,000

25,000

30,000

C
lo

ck
C

yc
le

s
(x

10
00

)

Sign
Verify

Fig. 2: Signature benchmarks of Dilithium and Falcon (tree) on the ARM Cortex
M7, replicating Figure 7 in [AAC+22].

3.1 Stack Usage and RAM Size
Tables 3 and 5 show stack usage of Dilithium and Falcon and Tables 4 and 6
show the RAM usage of Dilithium and Falcon on ARM Cortex M7. We calculate
the stack usage by using the avstack.pl6 tool, adapted to the ARM toolchain,
and RAM was calculated using meminfo. Note that the implementations we
benchmarked weren’t optimized for low memory usage. Dilithium, for one, can
be used in much more memory constrained environments than these numbers
here suggest [GKS20].

4 Profiling on ARM Cortex M7
This section presents the profiling results of Dilithium and Falcon on the ARM
Cortex M7 using the STM32F767ZI NUCLEO-144 development board. Firstly,
we provide Figures 3 and 4 profiling the acceptance rates of Dilithium’s sign

6 https://dlbeer.co.nz/oss/avstack.html.

https://orcid.org/0000-0002-6498-3099
https://orcid.org/0000-0002-3195-6238
https://dlbeer.co.nz/oss/avstack.html

Dilithium and Falcon on the ARM Cortex M7 7

Table 1: Benchmarking results of Dilithium on the ARM Cortex M7 using the
STM32F767ZI NUCLEO-144 development board. Results in KCycles.
Parameter Set Opera-

tion
Min Avg Max SDev/

SErr
Avg

(ms)
Dilithium-2 Key Gen 1,390 1,437 1,479 81/3 6.7
M7 vs M4 Key Gen 1.13x 1.10x 1.06x -/- 1.40x
Dilithium-2 Sign 1,835 3,658 16,440 604/17 16.9
M7 vs M4 Sign 1.19x 1.09x 0.64x -/- 1.40x
Dilithium-2 Verify 1,428 1,429 1,432 27.8/0.9 6.6
M7 vs M4 Verify 1.12x 1.12x 1.12x -/- 1.42x
Dilithium-3 Key Gen 2,563 2,566 2,569 37.6/1.2 11.9
M7 vs M4 Key Gen 1.12x 1.13x 1.12x -/- 1.44x
Dilithium-3 Sign 2,981 6,009 26,208 65/9 20.7
M7 vs M4 Sign 1.12x 1.19x 0.78x -/- 2.06x
Dilithium-3 Verify 2,452 2,453 2,456 26.5/0.8 11.4
M7 vs M4 Verify 1.12x 1.12x 1.11x -/- 1.43x
Dilithium-5 KeyGen 4,312 4,368 4,436 54.4/1.7 20.2
Dilithium-5 Sign 5,020 8,157 35,653 99k/3k 37.8
Dilithium-5 Verify 4,282 4,287 4,292 46.5/1.5 19.8

and Falcon’s key generation procedures. Next, we profile the inner workings of
Dilithium (Table 7) and Falcon (Table 8).

4.1 Rate of Acceptance in Dilithium and Falcon
The following figures illustrate the effective rejection rates of Dilithium’s signing
(Figure 3) and Falcon’s key generation (Figure 4) procedures. Restart or rejection
rates are shown in the figures’ x-axis, with probabilities of acceptance shown in
the y-axis.

4.2 Profiling Results of Dilithium and Falcon
The values presented in the following tables are iterated over 1,000 runs of the
main operation (e.g., verify). As noted previously, for comparison, we provide
profiling results for Falcon both with and without use of the FPU, and also
provide the improvements over the results on the Cortex M4 provided in pqm4.
For Dilithium, we only provide comparisons with pqm4 as it does not benefit at
all from the FPU. Some lines of the tables will appear incomplete due to the fact
that either that operation did not fit on the Cortex M4 (i.e., Falcon-1024 sign
tree) or those results were not reported by pqm4 (i.e., Falcon’s expand private
key).

8 James Howe and Bas Westerbaan

Table 2: Benchmarking results of Falcon on the ARM Cortex M7 using the
STM32F767ZI NUCLEO-144 development board. Results in KCycles.
Parameter Set Opera-

tion
Min Avg Max SDev/

SErr
Avg

(ms)
Falcon-512-FPU Key Gen 44,196 77,475 256,115 226k/7k 358.7
Falcon-512-EMU Key Gen 76,809 128,960 407,855 303k/9k 597.0
FPU vs EMU Key Gen 1.74x 1.66x 1.59x -/- 1.66x
Falcon-1024-FPU Key Gen 127,602 193,707 807,321 921k/29k 896.8
Falcon-1024-EMU Key Gen 202,216 342,533 1,669,083 2.4m/76k 1585.8
FPU vs EMU Key Gen 1.58x 1.76x 2.07x -/- 1.77x
Falcon-512-FPU Sign Dyn 4,705 4,778 4,863 149/4 22.1
Falcon-512-EMU Sign Dyn 29,278 29,447 29,640 188/6 136.3
FPU vs EMU Sign Dyn 6.22x 6.16x 6.10x -/- 6.17x
Falcon-1024-FPU Sign Dyn 10,144 10,243 10,361 1408/44 47.4
Falcon-1024-EMU Sign Dyn 64,445 64,681 64,957 3k/101 299.5
FPU vs EMU Sign Dyn 6.35x 6.31x 6.27x -/- 6.32x
Falcon-512-FPU Sign Tree 2,756 2,836 2,927 6/.2 13.1
Falcon-512-EMU Sign Tree 13,122 13,298 13,506 126/4 61.6
FPU vs EMU Sign Tree 4.76x 4.69x 4.61x -/- 4.70x
Falcon-1024-FPU Sign Tree 5,707 5,812 5,919 1422/45 26.9
Falcon-1024-EMU Sign Tree 28,384 28,621 28,877 3k/115 132.5
FPU vs EMU Sign Tree 4.97x 4.92x 4.88x -/- 4.93x
Falcon-512-FPU Exp SK 1,406 1,407 1,410 8.6/0.3 6.5
Falcon-512-EMU Exp SK 11,779 11,781 11,788 7/0.2 54.5
FPU vs EMU Exp SK 8.38x 8.37x 8.36x -/- 8.38x
Falcon-1024-FPU Exp SK 3,071 3,075 3,080 39/1.3 14.2
Falcon-1024-EMU Exp SK 26,095 26,101 26,120 109/3.5 120.8
FPU vs EMU Exp SK 8.50x 8.49x 8.48x -/- 8.51x

Table 3: Dilithium stack usage in bytes.
Parameter Set Key

Gen
Sign Verify

Dilithium-2 38,444 52,052 36,332
Dilithium-3 60,972 79,728 57,836
Dilithium-5 97,836 122,708 92,908

https://orcid.org/0000-0002-6498-3099
https://orcid.org/0000-0002-3195-6238

Dilithium and Falcon on the ARM Cortex M7 9

Table 4: Dilithium RAM usage in bytes.
Parameter Set Key

Gen
Sign Verify Overall

Dilithium-2 9,627 13,035 9,107 13,035
Dilithium-3 15,259 19,947 14,483 19,947
Dilithium-5 24,475 30,699 23,251 30,699

Table 5: Falcon stack usage in bytes.
Parameter Set Key

Gen
Sign
Dyn

Sign
Tree

Verify

Falcon-512-FPU 1,156 1,920 1,872 556
Falcon-1024-FPU 1,156 1,920 1,872 556
Falcon-512-EMU 1,068 1,880 1,824 556
Falcon-1024-EMU 1,068 1,880 1,872 556

Table 6: Falcon RAM usage in bytes.
Parameter Set Key

Gen
Sign
Dyn

Sign
Tree

Verify Overall
(Dyn)

Overall
(Tree)

Falcon-512-FPU 18,512 42,488 85,512 6,256 63,384 133,048
Falcon-1024-FPU 36,304 84,216 178,440 12,016 125,976 273,464
Falcon-512-EMU 18,512 42,488 85,512 6,256 63,384 133,048
Falcon-1024-EMU 36,304 84,216 178,440 12,016 125,976 273,464

10 James Howe and Bas Westerbaan

Fig. 3: The rejection rate in Dilithium’s signing procedure.

Fig. 4: The rejection rate in Falcon’s key generation procedure.

https://orcid.org/0000-0002-6498-3099
https://orcid.org/0000-0002-3195-6238

Dilithium and Falcon on the ARM Cortex M7 11

As expected, a significant amount of time is spent on the generation of uni-
form randomness in both scheme’s key generation and signing procedures. In
Dilithium, we see this in the expand matrix and in sample vector type oper-
ations, slightly increasing, as expected, as the parameter sets increase.

For Falcon, the poly small mkgauss and ffsampling similarly consume
significant amounts of clock cycles for generating randomness. However, for
ffsampling we see significant improvements using the FPU as this operation
intensively uses floating-points for Gaussian sampling [HPR+20] used for ran-
domization. The FPU also enables significant speedups in the FFT multiplier
used in key generation and signing.

We discuss these results in more detail in Section 6.

Table 7: Profiling Dilithium on the ARM Cortex M7 using the STM32F767ZI
NUCLEO-144 development board. All values reported are in KCycles.

Key Generation param2 param3 param5
get randomness 13 (0.9%) 13 (0.5%) 13 (0.30%)
expand matrix 971 (68%) 1,826 (71%) 3,417 (78%)
sample vector 182 (13%) 317 (12%) 343 (8%)
matrix/vector mult 124 (9%) 190 (7%) 300 (7%)
add error 45 (0.34%) 7 (0.28%) 10 (0.23%)
expand/write pub key 16 (1%) 25 (1%) 33 (0.76%)
get h/comp priv key 125 (9%) 188 (7%) 247 (6%)
Signing param2 param3 param5
compute crh 13 (0.39%) 13 (0.24%) 14 (0.17%)
exp mat/transf vecs 1,092 (32%) 1,993 (35%) 3,656 (47%)
sample y vector 1,001 (29%) 1,538 (27%) 1,688 (22%)
matrix/vector mult 516 (15%) 946 (17%) 1,178 (15%)
decomp w/ call RO 547 (16%) 710 (13%) 693 (9%)
compute z 137 (4%) 233 (4%) 269 (3%)
check cs2 62 (2%) 91 (2%) 123 (2%)
compute hint 70 (2%) 110 (2%) 149 (2%)
Verifying param2 param3 param5
compute crh 124 (9%) 181 (8%) 235 (6%)
matrix/vector mult 1,174 (84%) 2,119 (88%) 3,859 (91%)
reconstruct w1 24 (2%) 28 (1%) 38 (0.90%)
call ro verify chall 78 (6%) 78 (3%) 100 (2%)

12 James Howe and Bas Westerbaan

Table 8: Profiling Falcon on the ARM Cortex M7 using the STM32F767ZI
NUCLEO-144 development board. All values reported are in KCycles.

Key Generation 512-FPU 512-EMU Vs. 1024-FPU 1024-EMU Vs.
total ntru gen 77,095 (99%) 127,828 (100%) 1.66x 186,120 (100%) 332,876 (100%) 1.79x
—poly small mkgauss 34,733 (45%) 34,805 (27%) 1.00x 56,509 (30%) 57,033 (17%) 1.00x
—poly small sqnorm 28 (0.04%) 29 (0.02%) 1.04x 94 (0.05%) 94 (0.03%) 1.00x
—poly small to fp 40 (0.05%) 306 (0.24%) 7.65x 132 (0.07%) 989 (0.30%) 7.50x
—fft multiply 609 (0.80%) 10,496 (8%) 17.2x 2,277 (1%) 38,681 (12%) 17.00x
—poly invnorm2 fft 110 (0.14%) 1,446 (1%) 13.2x 421 (0.22%) 4,777 (1%) 11.00x
—poly adj fft 23 (0.03%) 12 (0.01%) 0.52x 70 (0.04%) 43 (0.01%) 0.60x
—poly mulconst 69 (0.09%) 354 (0.28%) 5.13x 218 (0.12%) 1,168 (0.35%) 5.36x
—poly mul autoadj fft 63 (0.08%) 383 (0.30%) 6.08x 237 (0.13%) 1272 (0.38%) 5.37x
—ifft multiply 683 (0.90%) 10,666 (8%) 15.6x 2,544 (1.36%) 39,071 (12%) 15.4x
—bnorm/fpr add 14 (0.02%) 184 (0.14%) 13.1x 35 (0.02%) 424 (0.13%) 12.1x
—compute public key 383 (0.49%) 383 (0.30%) 1.00x 887 (0.50%) 887 (0.27%) 1.00x
—solve ntru: 40,337 (52%) 68,764 (54%) 1.70x 122,696 (66%) 188,438 (56%) 1.54x
encode priv key 26 (0.03%) 26 (0.02%) 1.00x 52 (0.03%) 52 (0.02%) 1.00x
recomp sk and encode 384 (0.50%) 385 (0.3%) 1.00x 815 (0.44%) 815 (0.24%) 1.00x
Signing Dynamic 512-FPU 512-EMU Vs. 1024-FPU 1024-EMU Vs.
sign start 4 (0.08%) 4 (0.01%) 1.00x 4 (0.04%) 4 (0.01%) 1.00x
decode/comp priv key 488 (11%) 489 (1.69%) 1.00x 1,040 (11%) 1,040 (2%) 1.00x
hash mess to point <1 (0.01%) <1 (0.00%) 0.10x <1 (0.00%) <1 (0.00%) 1.00x
signature encode 11 (0.26%) 11 (0.04%) 1.00x 22 (0.24%) 22 (0.03%) 1.00x
convert basis to fft 241 (6%) 3,885 (13%) 16.1x 549 (6%) 8,751 (14%) 15.9x
comp gram matrix 67 (2%) 628 (2%) 9.37x 167 (2%) 1,290 (2%) 7.72x
apply lattice basis 89 (2%) 1,250 (4%) 14.0x 207 (2%) 2,756 (4%) 13.3x
ffsampling 2,814 (66%) 16,190 (56%) 5.75x 6,009 (65%) 35,324 (56%) 5.88x
recomp matrix basis 258 (6%) 3,900 (14%) 15.1x 586 (6%) 8,787 (14%) 15.0x
get lattice point 314 (7%) 2,527 (9%) 8.05x 706 (8%) 5,564 (8%) 7.88x
Signing Tree 512-FPU 512-EMU Vs. 1024-FPU 1024-EMU Vs.
sign start 4 (0.08%) 4 (0.03%) 1.00x 4 (0.07%) 4 (0.07%) 1.0x
get deg/check params <1 (0.00%) <1 (0.00%) 1.00x <1 (0.00%) <1 (0.00%) 1.0x
hash mess to point <1 (0.01%) <1 (0.00%) 1.00x <1 (0.00%) <1 (0.00%) 1.0x
sig encode 11 (0.46%) 11 (0.09%) 1.00x 22 (0.44%) 22 (0.08%) 1.00x
apply lattice basis 89 (3.70%) 1,255 (10%) 14.1x 194 (4%) 2,746 (9.87%) 14.1x
apply ff sampling 1,975 (82%) 9,081 (70%) 4.60x 406 (82%) 4,094 (82%) 10.1x
get lattice point 314 (13%) 2,527 (20%) 8.05x 706 (14%) 5,564 (14%) 7.88x
compute signature 135 (6%) 23 (0.18%) 0.17x 272 (5%) 46 (0.17%) 0.17x
Verifying 512-FPU 512-EMU Vs. 1024-FPU 1024-EMU Vs.
verf start <1 (0.06%) <1 (0.06%) 1.00x <1 (0.03%) <1 (0.00%) 1.00x
get degree via pk <1 (0.01%) <1 (0.01%) 1.00x <1 (0.00%) <1 (0.00%) 1.00x
decode pub key 9 (1.6%) 9 (2%) 1.00x 18 (2%) 18 (2%) 1.00x
decode sign 12 (2%) 12 (2%) 1.00x 24 (2%) 24 (2%) 1.00x
hash mess to point 312 (55%) 311 (55%) 1.00x 595 (52%) 595 (52%) 1.00x
verify sign 231 (41%) 231 (41%) 1.00x 501 (44%) 501 (44%) 1.00x
Expand Private Key 512-FPU 512-EMU Vs. 1024-FPU 1024-EMU Vs.
get priv deg <1 (0.00%) <1 (0.00%) 1.00x <1 (0.00%) <1 (0.00%) 1.00x
decode priv 494 (35%) 494 (4%) 1.00x 1,040 (34%) 1,040 (34%) 1.00x
expand priv key 905 (65%) 11,281 (96%) 12.5x 2,018 (66%) 25,010 (96%) 12.3x

https://orcid.org/0000-0002-6498-3099
https://orcid.org/0000-0002-3195-6238

Dilithium and Falcon on the ARM Cortex M7 13

5 Constant-Time Validation of Falcon’s Floating-
Point Operations

This section presents the constant runtime analysis of Falcon on the ARM Cortex
M7. Technical manuals for ARM development boards often report cycle counts
for FPU instructions7, however ARM does not appear to make this information
public for the Cortex M7 core.

We are specifically interested in Falcon’s use of double precision floating
points and how it exploits the devices’ 64-bit floating point unit (FPU). This
has not been investigated before since the primary evaluation target used for
post-quantum schemes, the ARM Cortex M4, only has a 32-bit FPU, which is
not sufficient for the 53-bit floating-point precision required by Falcon.

The double precision FPU on the ARM Cortex M7 is compliant with the
IEEE-754 standard as thus supports the binary64 type. The IEEE-754 standard
defines all aspects of floating-point numbers (i.e., their sign, exponent, and man-
tissa) so that hardware/software interoperability can be ensured. Thus, most if
not all modern CPUs offer compliance with this standard within their dedicated
FPUs used to speed-up floating-point operations.

We investigate the timings on the device used in the previous sections, the
STM32F767ZI NUCLEO-144 development board, and due to the issues found
we extended this to three other STM32 development boards (the STM32H743ZI,
STM32H723ZG, and STM32F769I-DISCO) in order to see if this issue affected
other development boards. We found the same issues occurred in all four de-
velopment boards. We are aware of a similar experiment being run on the
STM32H7308. We also further investigate timing issues on the Raspberry Pi
3, due to its use in evaluating the constant-time code of Falcon [Por19].

5.1 STM32 Development Boards
The issue discovered with the STM32 development boards was that the FPU
operations were not fully constant time. We did not pursue ways to exploit this
into an attack, but we felt this was worth reporting nonetheless. The code for
testing this constant run-time is available on repository already provided.

For each floating-point instruction (e.g., vmul.f64), we wrote inline assem-
bly of ten consecutive operations, given two random inputs, which we then aver-
aged to find the required clock cycles. We used inline assembly to minimize the
unwanted optimizations from the compiler, and clobbered registers where nec-
essary. Using this approach minimizes the effect of surrounding instructions on
the operations of interest, which for example would occur using C, and ensures
that all execution is from cache. An example of this is shown in Listing 1.1 for
the 64-bit floating point multiplication operation vmul.f64.
7 For example, see the ARM Cortex-M4 Technical Reference Manual https://
developer.arm.com/documentation/ddi0439/b/BEHJADED

8 https://www.quinapalus.com/cm7cycles.html

https://developer.arm.com/documentation/ddi0439/b/BEHJADED
https://developer.arm.com/documentation/ddi0439/b/BEHJADED
https://www.quinapalus.com/cm7cycles.html

14 James Howe and Bas Westerbaan

The FPUs on the development boards typically provide two functions for each
floating-point function; a 32-bit version (e.g., vadd.f32) and a 64-bit version
(e.g., vadd.f64). Since we are concerned with Falcon which requires 53 bits
of floating-point precision, we focus on the 64-bit (double-precision) floating-
point functions. The IEEE 754 standard for floating-point binary representation
is shown in Table 9 for float and double types. The double-precision binary
floating-point format (binary64) expresses floating point numbers using a 1-bit
sign value in the most significant position, 11 bits for the exponent in positions
62-to-52, and 52 bits for the significand in positions 51-to-0.

1 asm volatile (
2 "vldr d5, %2\n"
3 "vldr d6, %3\n"
4 "dmb\n"
5 "isb\n"
6 "ldr r1, %1\n"
7 "vmul.f64 d4, d5, d6\n"
8 "vmul.f64 d4, d5, d6\n"
9 "vmul.f64 d4, d5, d6\n"

10 "vmul.f64 d4, d5, d6\n"
11 "vmul.f64 d4, d5, d6\n"
12 "vmul.f64 d4, d5, d6\n"
13 "vmul.f64 d4, d5, d6\n"
14 "vmul.f64 d4, d5, d6\n"
15 "vmul.f64 d4, d5, d6\n"
16 "vmul.f64 d4, d5, d6\n"
17 "ldr r2, %1\n"
18 "subs %0, r2, r1\n"
19 : "=r"(cycles) : "m"(DWT->CYCCNT),
20 "m"(r1), "m"(r2) : "r1", "r2",
21 "d4", "d5", "d6");

Listing 1.1: Code snippet of the testing framework we used to test the constant
timeness of the double precision FPU on the STM32 development boards.

https://orcid.org/0000-0002-6498-3099
https://orcid.org/0000-0002-3195-6238

Dilithium and Falcon on the ARM Cortex M7 15

Table 9: IEEE 754 standard format for single (32-bit) and double precision (64-
bit).

Type/
Precision

Sign Exponent Significand

float (32 bits) 31 (1 bit) 30:23 (8 bits) 22:0 (23 bits)
double (64 bits) 63 (1 bit) 62:52 (11 bits) 51:0 (52 bits)

We discovered variable timing behaviour in all double-precision floating-point
functions on all the development boards we used in the experiments. We now
focus on the double-precision floating-point addition (vadd.f64) function to il-
lustrate and explain lower level timing irregularities.

The non-constant run-time was clearly observed when generating two random
double-precision values for addition, with an average run-time of 16 clock cycles
and standard deviation of 4.1. However, when we generated random values in
the same range such they had the same exponents, the run-times were constant
and consistent at 10 clock cycles. Moreover, when we mixed randomness from
two fixed exponent ranges we observed constant and consistent run-times of 19
clock cycles.

5.2 Raspberry Pi 3

We also discovered a subtle issue with constant run-time on the Raspberry Pi
3, which itself has an ARM Cortex A53 core. This issue involves type casting,
specifically, when casting a double to an int64_t, the operation rounds towards
zero. There is no native instruction to do such a truncation on ARMv7. Thus
instead, the compiler calls the runtime symbol __fixdfi, that is, __aeabi_d2lz.
This may or may not be implemented in constant time. In LLVM it is not9 and
importantly it leaks the sign. This is the case for the Raspberry Pi 3 which they
targeted in [Por19]. We reported this issue to the Falcon team and moreover
proposed a constant time fix, which we show in Listing 1.2.

9 see for example https://github.com/llvm-mirror/compiler-rt/blob/
69445f095c22aac2388f939bedebf224a6efcdaf/lib/builtins/fixdfdi.c#L18

https://github.com/llvm-mirror/compiler-rt/blob/69445f095c22aac2388f939bedebf224a6efcdaf/lib/builtins/fixdfdi.c#L18
https://github.com/llvm-mirror/compiler-rt/blob/69445f095c22aac2388f939bedebf224a6efcdaf/lib/builtins/fixdfdi.c#L18

16 James Howe and Bas Westerbaan

1 int64_t cast(double a) {
2 union {
3 double d;
4 uint64_t u;
5 int64_t i;
6 } x;
7 uint64_t mask;
8 uint32_t high, low;
9

10 x.d = a;
11

12 mask = x.i >> 63;
13 x.u &= 0x7fffffffffffffffL;
14

15 // a / 0x1p32f;
16 high = x.d / 4294967296.f;
17

18 // high * 0x1p32f;
19 low = x.d - (double)high * 4294967296.f;
20 x.u = ((int64_t)high << 32) | low;
21

22 return (x.u & ((uint64_t)-1 - mask))
23 | ((-x.u) & mask);
24 }

Listing 1.2: The proposed fix for casting a double to an int64_t in LLVM.

6 Results and Discussions
In Section 3, we observe from the benchmarking of Dilithium in Table 1 that all
procedures show a slight improvement, but not many of significance in compari-
son to those reported on the ARM Cortex M4 in the pqm4 repository. The per-
formance improvements seen range from 1.09–1.19x which essentially accounts
for the slightly better performance of the Cortex M7 vs the Cortex M4 in general.

For Falcon, however, we see a lot of significant improvements from the bench-
marking in Table 2, in particular we see that:

– Key generation does somewhat benefit from the FPU, showing a 1.66–1.76x
improvement in comparison to emulated floating points. We also see similar
results compared to the Cortex M4, with improvements between 2.21–2.56x.

– Sign dynamic has a significant improvement using the FPU; showing an
increase between 6.16–6.31x between the emulated code and between 8.16–
8.31x compared to the Cortex M4.

– Sign tree also has a significant improvement using the FPU; showing an
increase between 4.69–4.92x between the emulated code and 6.23x compared
to the Cortex M4 for Falcon-512 parameters. As already stated, Falcon-1024

https://orcid.org/0000-0002-6498-3099
https://orcid.org/0000-0002-3195-6238

Dilithium and Falcon on the ARM Cortex M7 17

sign tree cannot fit on the Cortex M4, but has been implemented in this
research on the Cortex M7.

– Expanding the private key also has a significant improvement using the FPU;
showing an increase between 8.37–8.49x between the emulated code.

– Verify shows little to know changes by using the FPU, due to it not requiring
floating-point operations, and the slight decrease is probably due to the larger
instruction pipeline on the M7.

In Section 3.1 we provided stack and RAM usage for Dilithium and Falcon.
The most notable results are for Falcon which has a small increase (at most, 88
Bytes) in stack usage when the FPU is used.

In Section 4, we provide profiling results of the two signature schemes, which
can point to areas in which these schemes could be optimised in the future.
The profiling results of Dilithium in Table 7 perhaps offer little novel insights
into the bottlenecks of its implementation on the Cortex M7. Dilithium has
a much simpler implementation complexity in comparison to Falcon and this
can be observed by the much more compact table of results. However, we can
observe the elegance of its design and performance when comparing the results
across parameter sets; seeing that some values change a little, and some increase
proportional to the added computations required by the small change in each
parameter set, afforded by fixing the polynomial ring and modulus.

We observe from the profiling of Falcon in Table 8 that the FPU improves,
in comparison to emulation, floating-point operations in key generation by an
order of magnitude, specifically in the following operations.

– Converting a small vector to floating point (poly_small_to_fp) improves by
7.5–7.65x, multiplying polynomials by a constant (poly_mulconst) and an
adjoint (poly_mul_autoadj_fft) improves by 5.13–5.36x and 5.37–6.08x,
respectively.

– Polynomial inversion to FFT format (poly_invnorm2_fft) saves between
11–13.2x.

– The normalisation step alongside FPR addition saves between 12.1–13.1x.
– FFT and iFFT operations improve by 15.4–17.2x, making this the biggest

improvement of all operations in Falcon.

The FPU improves upon emulating floating-point operations in sign dynamic
by an order of magnitude, specifically in the following operations.

– ffSampling improves by 5.75–5.88x, get lattice point and computing the
Gram matrix (G) improves by 7.88–8.05x and 7.72–9.37x, respectively.

– Applying the lattice basis, recomputing the matrix basis, and converting the
basis to FFT format save 13.3–14x, 15–15.1x, and 15.9–16.1x, respectively.

– Similar savings are noted for sign tree for applying the lattice basis, applying
ffSampling, and getting the lattice point.

– Expanding the private key saves between 12.3–12.5x.

18 James Howe and Bas Westerbaan

The FPU does not have any effect on Falcon’s verification operation, this is
essentially because it does not require floating-point operations and is a relatively
computationally light procedure.

In Section 5, we find constant time issues with Falcon on four different STM32
development boards using the ARM Cortex M7 and the Raspberry Pi 3 using the
ARM Cortex A53. The issues we found on the STM32 development boards were
where the devices’ dedicated floating-point unit was used (which can significantly
speed-up Falcon), specifically the double-precision functions, were all shown to
be non-constant-time. Specifically analysing the double-precision addition, we
discovered the size of the significand influenced the runtime of this function.

We further investigated constant timeness on the Raspberry Pi 3, which uses
the ARM Cortex A53, where we also found timing issues when casting from a
double to an int64_t, and when implemented in LLVM, it is not constant time
and leaks the sign of the value.

We reported these issues and our proposed fix to the Falcon team, but we
did not investigate how to exploit this for a timing attack.

Overall, this research shows that when implementing Falcon the platform
and/or situation it is used in should play a major consideration. At the very
least, the processor should be checked for constant timeness if the FPU is being
used. A recent Cloudflare blog10 took note of our results and is currently only
considering uses for Falcon in an offline manner, as they “feel it’s too early to
deploy Falcon where the timing of signature minting can be measured”.

References
[AAAS+19] G. Alagic, G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang,

Y.-K. Liu, C. Miller, D. Moody, R. Peralta, et al. Status report on
the first round of the NIST post-quantum cryptography standardization
process. US Department of Commerce, National Institute of Standards
and Technology …, 2019 (cited on page 1).

[AAC+22] G. Alagic, D. Apon, D. Cooper, Q. Dang, T. Dang, J. Kelsey, J. Lichtinger,
C. Miller, D. Moody, R. Peralta, et al. Status Report on the Third
Round of the NIST Post-Quantum Cryptography Standardization Pro-
cess. Technical report, National Institute of Standards and Technology
Gaithersburg, MD, 2022 (cited on pages 2, 5, 6).

[AASA+20] G. Alagic, J. Alperin-Sheriff, D. Apon, D. Cooper, Q. Dang, J. Kelsey,
Y.-K. Liu, C. Miller, D. Moody, R. Peralta, et al. Status Report on the
Second Round of the NIST Post-Quantum Cryptography Standardiza-
tion Process. NIST, Tech. Rep., July, 2020 (cited on pages 1, 2).

[ARM18] ARM. ARM Cortex-M7 Processor: Technical Reference Manual. Re-
vision r1p2, 2018. https : / / developer . arm . com / documentation /
ddi0489/f/programmers-model/instruction-set-summary/binary-
compatibility-with-other-cortex-processors (cited on page 2).

10 https://blog.cloudflare.com/nist-post-quantum-surprise/

https://orcid.org/0000-0002-6498-3099
https://orcid.org/0000-0002-3195-6238
https://developer.arm.com/documentation/ddi0489/f/programmers-model/instruction-set-summary/binary-compatibility-with-other-cortex-processors
https://developer.arm.com/documentation/ddi0489/f/programmers-model/instruction-set-summary/binary-compatibility-with-other-cortex-processors
https://developer.arm.com/documentation/ddi0489/f/programmers-model/instruction-set-summary/binary-compatibility-with-other-cortex-processors
https://blog.cloudflare.com/nist-post-quantum-surprise/

Dilithium and Falcon on the ARM Cortex M7 19

[BUC19] U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan. Sapphire: a config-
urable crypto-processor for post-quantum lattice-based protocols. IACR
TCHES, 2019(4):17–61, 2019. issn: 2569-2925. doi: 10.13154/tches.
v2019.i4.17- 61. https://tches.iacr.org/index.php/TCHES/
article/view/8344 (cited on page 2).

[GKS20] D. O. C. Greconici, M. J. Kannwischer, and D. Sprenkels. Compact
dilithium implementations on cortex-M3 and cortex-M4. Cryptology
ePrint Archive, Report 2020/1278, 2020. https://eprint.iacr.org/
2020/1278 (cited on pages 3, 6).

[HBD+20] A. Hulsing, D. J. Bernstein, C. Dobraunig, M. Eichlseder, S. Fluhrer,
S.-L. Gazdag, P. Kampanakis, S. Kolbl, T. Lange, M. M. Lauridsen, F.
Mendel, R. Niederhagen, C. Rechberger, J. Rijneveld, P. Schwabe, J.-P.
Aumasson, B. Westerbaan, and W. Beullens. SPHINCS+. Technical
report, National Institute of Standards and Technology, 2020. available
at https://csrc.nist.gov/projects/post-quantum-cryptography/
round-3-submissions (cited on page 2).

[HMO+21] J. Howe, M. Martinoli, E. Oswald, and F. Regazzoni. Exploring paral-
lelism to improve the performance of FrodoKEM in hardware. Journal
of Cryptographic Engineering, 11(4):317–327, 2021 (cited on page 2).

[HOK+18] J. Howe, T. Oder, M. Krausz, and T. Güneysu. Standard lattice-based
key encapsulation on embedded devices. IACR TCHES, 2018(3):372–
393, 2018. issn: 2569-2925. doi: 10.13154/tches.v2018.i3.372-393.
https://tches.iacr.org/index.php/TCHES/article/view/7279
(cited on page 2).

[HPR+20] J. Howe, T. Prest, T. Ricosset, and M. Rossi. Isochronous gaussian
sampling: from inception to implementation. In J. Ding and J.-P. Tillich,
editors, Post-Quantum Cryptography - 11th International Conference,
PQCrypto 2020, pages 53–71. Springer, Heidelberg, 2020. doi: 10.1007/
978-3-030-44223-1_5 (cited on page 11).

[KRR+20] D. Kales, S. Ramacher, C. Rechberger, R. Walch, and M. Werner. Ef-
ficient FPGA implementations of LowMC and Picnic. In S. Jarecki,
editor, CT-RSA 2020, volume 12006 of LNCS, pages 417–441. Springer,
Heidelberg, February 2020. doi: 10.1007/978- 3- 030- 40186- 3_18
(cited on page 2).

[LDK+20] V. Lyubashevsky, L. Ducas, E. Kiltz, T. Lepoint, P. Schwabe, G. Seiler,
D. Stehlé, and S. Bai. CRYSTALS-DILITHIUM. Technical report, Na-
tional Institute of Standards and Technology, 2020. available at https:
//csrc.nist.gov/projects/post-quantum-cryptography/round-3-
submissions (cited on pages 2, 4, 21).

[liboqs] liboqs: C library for prototyping and experimenting with quantum-
resistant cryptography. https://github.com/open- quantum- safe/
liboqs (cited on page 1).

[Mar20] A. Marotzke. A constant time full hardware implementation of stream-
lined ntru prime. In International Conference on Smart Card Research
and Advanced Applications, pages 3–17. Springer, 2020 (cited on page 2).

[NIST15] NIST. Post-quantum cryptography. https://csrc.nist.gov/projects/
post-quantum-cryptography, 2015. Accessed: July 14, 2023 (cited on
page 1).

[NIST16] NIST. Submission requirements and evaluation criteria for the post-
quantum cryptography standardization process, 2016. https://csrc.

https://doi.org/10.13154/tches.v2019.i4.17-61
https://doi.org/10.13154/tches.v2019.i4.17-61
https://tches.iacr.org/index.php/TCHES/article/view/8344
https://tches.iacr.org/index.php/TCHES/article/view/8344
https://eprint.iacr.org/2020/1278
https://eprint.iacr.org/2020/1278
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.13154/tches.v2018.i3.372-393
https://tches.iacr.org/index.php/TCHES/article/view/7279
https://doi.org/10.1007/978-3-030-44223-1_5
https://doi.org/10.1007/978-3-030-44223-1_5
https://doi.org/10.1007/978-3-030-40186-3_18
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://github.com/open-quantum-safe/liboqs
https://github.com/open-quantum-safe/liboqs
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf

20 James Howe and Bas Westerbaan

nist . gov / CSRC / media / Projects / Post - Quantum - Cryptography /
documents / call - for - proposals - final - dec - 2016 . pdf (cited on
page 1).

[PFH+20] T. Prest, P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky,
T. Pornin, T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang. FALCON.
Technical report, National Institute of Standards and Technology, 2020.
available at https : / / csrc . nist . gov / projects / post - quantum -
cryptography/round-3-submissions (cited on pages 2, 4, 22).

[Por19] T. Pornin. New efficient, constant-time implementations of Falcon. Cryp-
tology ePrint Archive, Report 2019/893, 2019. https://eprint.iacr.
org/2019/893 (cited on pages 2, 13, 15).

[PQClean] PQClean: clean, portable, tested implementations of post-quantum cryp-
tography. https://github.com/PQClean/PQClean (cited on page 1).

[pqm4] PQM4: post-quantum crypto library for the ARM Cortex-M4. https:
//github.com/mupq/pqm4 (cited on page 1).

[RB20] S. S. Roy and A. Basso. High-speed instruction-set coprocessor for lattice-
based key encapsulation mechanism: Saber in hardware. IACR TCHES,
2020(4):443–466, 2020. issn: 2569-2925. doi: 10.13154/tches.v2020.
i4.443-466. https://tches.iacr.org/index.php/TCHES/article/
view/8690 (cited on page 2).

[RBG20] J. Richter-Brockmann and T. Güneysu. Folding BIKE: Scalable Hard-
ware Implementation for Reconfigurable Devices. Cryptology ePrint
Archive, Report 2020/897, 2020. https://eprint.iacr.org/2020/897
(cited on page 2).

[RMJ+21] S. Ricci, L. Malina, P. Jedlicka, D. Smekal, J. Hajny, P. Cibik, and
P. Dobias. Implementing crystals-dilithium signature scheme on fpgas.
Cryptology ePrint Archive, Report 2021/108, 2021 (cited on page 2).

[SAB+20] P. Schwabe, R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyuba-
shevsky, J. M. Schanck, G. Seiler, and D. Stehlé. CRYSTALS-KYBER.
Technical report, National Institute of Standards and Technology, 2020.
available at https : / / csrc . nist . gov / projects / post - quantum -
cryptography/round-3-submissions (cited on page 2).

[SupCop] SUPERCOP: system for unified performance evaluation related to cryp-
tographic operations and primitives. https : / / bench . cr . yp . to /
supercop.html (cited on page 1).

[XL21] Y. Xing and S. Li. A Compact Hardware Implementation of CCA-Secure
Key Exchange Mechanism CRYSTALS-KYBER on FPGA. IACR Trans-
actions on Cryptographic Hardware and Embedded Systems:328–356,
2021 (cited on page 2).

https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf
https://orcid.org/0000-0002-3195-6238
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://eprint.iacr.org/2019/893
https://eprint.iacr.org/2019/893
https://github.com/PQClean/PQClean
https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://doi.org/10.13154/tches.v2020.i4.443-466
https://doi.org/10.13154/tches.v2020.i4.443-466
https://tches.iacr.org/index.php/TCHES/article/view/8690
https://tches.iacr.org/index.php/TCHES/article/view/8690
https://eprint.iacr.org/2020/897
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://bench.cr.yp.to/supercop.html
https://bench.cr.yp.to/supercop.html

Dilithium and Falcon on the ARM Cortex M7 21

A The Dilithium signature scheme

The Dilithium signature scheme is provided in Algorithm 1. The algorithms
inside these procedures have been omitted for space, but the reader can refer to
the specifications for more details [LDK+20].

Algorithm 1: The CRYSTALS-Dilithium signature scheme [LDK+20].
1 Procedure KeyGen()
2 ζ ← {0, 1}256
3 (ρ, ρ′,K)← {0, 1}256 × {0, 1}512 × {0, 1}256 := H(ζ)

4 A ∈ Rk×ℓ
q = ExpandA(ρ′)

5 t = A · s1 + s2
6 (t1, t0) = Power2Roundq(t, d)
7 tr ∈ {0, 1}256 := H(ρ||t1)
8 return pk = (ρ, t1), sk = (ρ,K, tr, s1, s2, t0)

9
1 Procedure Sign(sk,M)
2 A ∈ Rk×ℓ

q := ExpandA(ρ)
3 µ ∈ {0, 1}512 := H(tr∥M)
4 κ := 0, (z,h) = ⊥
5 while (z,h) = ⊥ do
6 y ∈ Sℓ

γ1
:= ExpandMask(ρ′, κ)

7 w := Ay
8 w1 := HighBitsq(w, 2γ2)

9 c̃ ∈ {0, 1}256 := H(µ∥w1)
10 c ∈ Bτ := SampleInBall(c̃)
11 z := y + cs1
12 r0 := LowBitsq(w − c · s2, 2γ2)
13 if ∥z∥∞ ≥ γ1 − β or ∥r0∥∞ ≥ γ2 − β then
14 (z,h) := ⊥
15 else
16 h := MakeHintq(−ct0,w − c · s2 + c · t0, 2γ2)
17 if ∥ct0∥∞ ≥ γ2 or wt(h) > ω then
18 (z,h) = ⊥
19 end
20 κ = κ+ ℓ

21 end
22 return σ = (c̃, z,h)

23
1 Procedure Verify(pk,M, σ = (c̃, z,h)))
2 A ∈ Rk×ℓ

q := ExpandA(ρ)
3 µ ∈ {0, 1}512 := H(H(ρ∥t1)∥M)
4 c ∈ Bτ := SampleInBall(c̃)

5 w1 := UseHintq(h,A · z− ct1 · 2d, 2γ2)
6 return J∥z∥∞ < γ1 − βK and Jc̃ = H(µ∥w′

1) and Jwt(h) ≤ ωK

22 James Howe and Bas Westerbaan

B The Falcon signature scheme

The Falcon signature scheme is provided in Algorithm 2. The algorithms inside
these procedures have been omitted for space, but the reader can refer to the
specifications for more details [PFH+20].

Algorithm 2: The Falcon signature scheme [PFH+20].
1 Procedure KeyGen(ϕ,q)
2 f, g, F,G← NTRUGen(ϕ, q)

3 B←
[

g −f
G −F

]
4 B̂← FFT(B)

5 G← B̂× B̂∗

6 T← ffLDL∗(G)
7 for each leaf of T do
8 leaf.value← σ/

√
leaf.value

9 end
10 sk ← (B̂,T)
11 h← gf−1 mod q
12 pk ← h
13 return (sk, pk)

14
1 Procedure Sign(m, sk, ⌊β2⌋)
2 r← {0, 1}320 uniformly
3 c← HashToPoint(r∥m, q, n)
4 t← (− 1

q
FFT(c)⊙ FFT(F),− 1

q
FFT(c)⊙ FFT(f))

5 do
6 do
7 z← ffSamplingn(t,T)

8 s = (t− z)B̂

9 while ∥s∥2 > ⌊β2⌋
10 (s1, s2)← invFFT(s)
11 s← Compress(s2, 8 · sbytelen− 328)

12 while s = ⊥
13 return sig = (r, s)

14
1 Procedure Verify(m, sig, pk, ⌊β2⌋))
2 c← HashToPoint(r∥m, q, n)
3 s2 ← Decompress(s, 8 · sbytelen− 328)
4 if (s2 = ⊥) then
5 Reject
6 s1 ← c− s2h mod q
7 if ∥(s1, s2)∥2 ≤ ⌊β2⌋ then
8 Accept
9 else

10 Reject

https://orcid.org/0000-0002-6498-3099
https://orcid.org/0000-0002-3195-6238

	Benchmarking and Analysing the NIST PQC Lattice-Based Signature Schemes Standards on the ARM Cortex M7
	Introduction
	Contributions

	Background
	Benchmarking on ARM Cortex M7
	Stack Usage and RAM Size

	Profiling on ARM Cortex M7
	Rate of Acceptance in Dilithium and Falcon
	Profiling Results of Dilithium and Falcon

	Constant-Time Validation of Falcon's Floating-Point Operations
	STM32 Development Boards
	Raspberry Pi 3

	Results and Discussions
	The Dilithium signature scheme
	The Falcon signature scheme

