
Counting Vampires: From Univariate Sumcheck
to Updatable ZK-SNARK?

Tuesday 29th March, 2022, 18:46

Helger Lipmaa1, Janno Siim1, and Michał Zając2

1 Simula UiB, Bergen, Norway
2 Nethermind, London, UK

Abstract. We propose a univariate sumcheck argument Count of es-
sentially optimal communication efficiency of one group element. While
the previously most efficient univariate sumcheck argument of Aurora is
based on polynomial commitments, Count is based on inner-product com-
mitments. We use Count to construct a new pairing-based updatable and
universal zk-SNARK Vampire with the shortest known argument length
(five group elements and two integers) for NP. In addition, Vampire uses
the aggregated polynomial commitment scheme of Boneh et al. Differ-
ently from the previous (efficient) work, both Count and Vampire have
an updatable SRS that consists of non-consequent monomials.

Keywords: Aggregatable polynomial commitment, inner-product com-
mitment, univariate sumcheck, updatable and universal zk-SNARK

1 Introduction

Zero-knowledge succinct non-interactive arguments of knowledge (zk-SNARKs)
[Gro10,Lip12,GGPR13,PHGR13] are zero-knowledge argument systems for NP
with succinct argument length and efficient verification. In many applications,
one can describe the desired NP language instance as an instance R of the rank-1
constraint system (R1CS) [GGPR13], and the task of the verifier is to check that
R is satisfied on the partially-public input. Zk-SNARKs are immensely popular
due to applications in verifiable computation and cryptocurrencies [BCG+14].

Non-interactive zero-knowledge (NIZK) arguments, and thus also zk-
SNARKs, are impossible in the plain model. To overcome this, one gives all
parties access to a trusted common reference string (CRS). The most efficient
zk-SNARKs have a relation-specific structured CRS (SRS). That is, they assume
that there exists a trusted third party who, given the description ofR as an input,
generates an SRS srsR. The most efficient zk-SNARK by Groth [Gro16] for R1CS
with relation-specific SRS has an argument that consists of only three group el-
ements. This value is close to the lower bound of two group elements [Gro16].

? Most of the work has been done when Janno Siim was employed by the University
of Tartu and Michał Zając was employed by Clearmatics Technologies.

2 Helger Lipmaa, Janno Siim, and Michał Zając

A significant practical downside of such “non-universal” SNARKs is that
one has to construct and use a new SRS for every instance of the constraint
system. It has spurred a large amount of effort to design universal zk-SNARKs,
i.e., zk-SNARKs with an SRS that only depends on an upper bound on R’s
size. In addition, it is vitally important to decrease the amount of trust in the
trusted third party. To this end, one strives to design updatable and universal zk-
SNARKs [GKM+18,MBKM19], where the universal SRS is updated sequentially
by several parties such that the soundness holds if at least one of the updaters is
honest. For brevity, from now on, by “updatable” we will mean “updatable and
universal”.

Plonk [GWC19] and Marlin [CHM+20] are the first genuinely efficient uni-
versal zk-SNARKs. Marlin (and most of the subsequent updatable zk-SNARKs)
works for sparse R1CS instances, where the underlying matrices contain a linear
(instead of quadratic) number of non-zero elements. Chiesa et al. [CHM+20] first
defines an information-theoretic model, algebraic holographic proof (AHP). An
AHP is an interactive protocol, where at each step, the prover forwards oracles
to some polynomials, and the verifier sends to the prover random field elements.
In the end, the verifier queries the polynomial oracles at some chosen points and
performs some low-degree tests. Polynomial oracles are usually implemented us-
ing polynomial commitments [KZG10]. After that, [CHM+20] proposes a new
AHP for sparse R1CS, and then compiles it to a zk-SNARK named Marlin.

The construction of Marlin relies crucially on a univariate sumcheck. A sum-
check argument aims to prove that the given polynomial sums to the given value
over the given domain. The first sumcheck arguments [LFKN90] were for mul-
tivariate polynomials but small domains. Ben-Sasson et al. [BCR+19] proposed
a univariate sumcheck argument for large domains3 and used it to construct a
new zk-SNARK Aurora. Suppose the domain is a multiplicative subgroup of the
given finite field. In that case, Aurora’s sumcheck argument requires the prover
to forward two different polynomial oracles and use a low-degree test on one of
the polynomials.

Lunar [CFF+21] improves on Marlin in several aspects. First, they define
PHPs, a generalized version of AHPs. In particular, they note that instead
of opening all polynomial commitments, one can often operate directly on the
polynomial commitments, thus obtaining better efficiency. Second, they define a
simpler version of R1CS called R1CSLite, with one of the three characterizing
matrices being the identity matrix. Moreover, they provide a more fine-grained
analysis of the zero-knowledge property and implement several additional opti-
mizations.

Finally, Basilisk [RZ21a] gains additional efficiency by using a different tech-
nique to obtain zero-knowledge and constructing a “free” low-degree test. In
addition, [RZ21a] constructs even more efficient zk-SNARKs for somewhat more
limited constraint systems. Both Lunar and Basilisk introduce new theoretical

3 In fact, they constructed two different univariate sumchecks, for affine subspaces and
multiplicative subgroups. As in Marlin, Lunar, and Basilisk, we refer to the latter
sumcheck since it is more efficient.

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 3

Table 1. Argument length comparison of some known updatable zk-SNARKs.

Scheme Argument length Arithmetization

Elements Bits

Updatable, universal zk-SNARKs

Sonic [MBKM19] 20|G1|+ 16|F| 11776 [BCC+16] constraints
Marlin [CHM+20] 13|G1|+ 8|F| 7040 R1CS, sparse matrices
Plonk [GWC19] 7|G1|+ 7|F| 4480 Plonk constraints
LunarLite [CFF+21] 10|G1|+ 2|F| 4352 R1CSLite, sparse matrices
Basilisk [RZ21a] 10|G1|+ 3|F| 4608 R1CSLite, sparse matrices
Basilisk [RZ21a] 8|G1|+ 4|F| 4096 Plonk constraints
Basilisk (full version, [RZ21b]) 6|G1|+ 2|F| 2816 Weighted R1CS with bounded fan-out
Vampire (this work) 5|G1|+ 2|F| 2432 R1CSLite, sparse matrices

Non-universal zk-SNARKs (relation-specific SRS)

Groth16 [Gro16] 2|G1|+ 1|G2| 1536 R1CS

frameworks; e.g., Basilisk introduces checkable sumcheck sampling (CSS) argu-
ments as a separate primitive. For simplicity (of reading), we opted not to use
such frameworks in the context of the current paper.

In Table 1, we overview the argument lengths of most efficient updatable zk-
SNARKs. Here, |X| denotes the representation length of an element from X in
bits, given the BLS12-381 curve [Bow17], with |G1| = 384, |G2| = 768, and |F| =
256. Thus, even the most efficient updatable zk-SNARK has an approximately
two times longer argument than the non-universal zk-SNARK of [Gro16].

Moreover, Groth16 works for QAP [GGPR13] (i.e., full R1CS), while the most
efficient variant of Basilisk works for instances of R1CSLite where the relation-
defining matrices are limited to have a small constant number of elements per
row (this corresponds to arithmetic circuits of bounded fan-out).

1.1 Our Contributions

The current paper has four related contributions of independent interest:
(1) The use of SRSs that consist of non-consequent monomials. Such a setting

does not run against the impossibility result of [GKM+18] yet allows us to
construct more efficient updatable arguments. In particular, the inefficient
zk-SNARK of [GKM+18] used a non-consequent monomial SRS, while all
efficient updatable zk-SNARKs seem to use consequent monomial SRSs.

(2) The combined use of polynomial commitments and inner-product commit-
ments in the sumcheck and updatable zk-SNARK design. The use of polyno-
mial commitment schemes in zk-SNARKs has dramatically increased their
popularity, and we hope the same will happen with inner-product commit-

4 Helger Lipmaa, Janno Siim, and Michał Zając

ments. In particular, ILV inner-product commitments [ILV11] use a SRS
made of non-consequent monomials.4

(3) A new updatable univariate sumcheck argument Count that uses inner-
product commitments to achieve optimal computation complexity of a single
group element. Since sumchecks are used in many different zk-SNARKs (and
elsewhere, [BCS21]), we believe Count will have wider interest.

(4) A new updatable and universal zk-SNARK Vampire for sparse R1CSLite
with the smallest argument length among all known updatable zk-SNARKs
for NP-complete languages. (See Table 1.)Vampire uses Count and thus SRSs
of non-consequent monomials.

1.2 Our Techniques

Non-Consequent Monomial SRSs. Groth et al. [GKM+18] proved that the
SRS of an updatable zk-SNARK cannot contain non-monomial polynomials.
Moreover, the SRS’s correctness must be verifiable. For example, if the SRS
contains5 [1, σ, σ3, σ4]1 ∈ G4

1, it must also contain [σ, σ2]2 ∈ G2
2, so that one

can verify the consistency of the SRS elements by using pairing operations. We
observe that [σ2]1 does not have to belong to the SRS, and thus, an updatable
SRS may contain holes. Similarly, the SRS can have multivariate monomials. On
the other hand, most of the known updatable zk-SNARKs ([GKM+18] being an
exception, but their zk-SNARK is inefficient) use SRSs that consist of consequent
univariate monomials only, i.e., are of the shape ([σi]1, [σ

i]2)
m
i=0 for some m.

One reason why efficient updatable zk-SNARKs use a consequent monomial
SRS is their reliance on polynomial commitment schemes like KZG [KZG10] that
have such SRSs. While other polynomial commitment schemes are known, up
to our knowledge, no efficient one relies on non-consequent monomials SRSs. In
particular, AHP [CHM+20] and PHP [CFF+21] model polynomial commitments
as polynomial oracles and allow the parties to perform operations (e.g., queries
to committed oracles and low-degree tests) related explicitly to such oracles.
Low-degree tests model consequent monomial SRSs: a committed polynomial is
a degree-≤ m polynomial iff it belongs to the span of Xi for i ≤ m.

It is known how to use non-consequent monomial SRSs to efficiently con-
struct protocols like broadcast encryption [BGW05] and inner-product com-
mitments [ILV11]. We use non-consequent monomial SRSs in the context of
sumchecks and updatable zk-SNARKs. For simplicity, we will not define an
information-theoretic model. We only mention two possible approaches that both
have their limitations. First, the pairing-based setting can be modeled as linear
interactive proofs (LIPs, [BCI+13]) or non-interactive LIPs (NILPs, [Gro16]).
However, either model has to be tweaked to our setting: namely, we allow the
generation of updatable SRS for multi-round protocols, with the restrictions
4 Inner-product commitments and arguments are commonly used in the zk-SNARK
design. However, the way we use them is markedly different from the prior work.

5 We rely on the pairing-based setting and use the by now standard additive bracket
notation, see Section 2 for more details.

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 5

natural in such a setting (e.g., one can efficiently “span test” that a commit-
ted element is in the span of the SRS). Such a model is tailor-fit to pairings
and might not be suitable in other algebraic settings. Second, one can general-
ize PHPs [CFF+21] by adding an abstract model of inner-product commitment
schemes and allowing for span tests. Such a model is independent of the algebraic
setting but would restrict one a priori to a limited number of cryptographic tools
(polynomial and inner-product commitment schemes), with a need to redefine
the model when more tools are discovered to be helpful.

We have chosen to remain agnostic on this issue by defining new arguments
without an intermediate information-theoretic model.
New Univariate Sumcheck Argument Count. Let F be a finite field and
let H ⊂ F be a fixed multiplicative subgroup H. In a univariate sumcheck argu-
ment (for multiplicative subgroups), the prover convinces the verifier that the
committed polynomial f(X) ∈ F[X] sums to the given integer value vM over H.

Let nh := |H|, ZH(X) :=
∏
χ∈H(X − χ) be the vanishing polynomial of H,

and f ∈ F≤nh−1[X] be any polynomial with deg f ≤ nh − 1. Aurora’s sum-
check [BCR+19] relies on the simple fact that

∑
χ∈H f(χ) = nhf(0). Thus,

for any f ∈ F[X] of arbitrarily large degree,
∑
χ∈H f(χ) = vf iff there ex-

ist polynomials R,Q ∈ F[X], such that (1) degR ≤ nh − 2, and (2) f(X) =
XR(X)+Q(X)ZH(X). In a cryptographic implementation of Aurora’s sumcheck
argument, the prover uses the KZG polynomial commitment scheme [KZG10]
to commit to R and Q; this means the communication of two group elements.
In addition, the prover uses a low-degree test to convince the verifier that (1)
holds.

We construct a new sumcheck argument Count based on the ILV inner-
product commitment [ILV11]. Let us first recall (non-randomized) ILV. In ILV,
the non-consequent monomial SRS contains ([(σi)2ni=0:i6=n+1]1, [(σ

i)ni=0]2), where
σ is a trapdoor and n is a large integer. The prover commits to a vector µ ∈ Znp
as [µ(σ)]1 ←

∑n
j=1 µj [σ

j]1. When the verifier outputs a vector ν ∈ Znp , the
prover returns the inner product v ← µ>ν together with a short argument (a
single group element [op]1) that v is correctly computed. ILV’s security relies on
the fact that [σn]1 is not in the SRS.

We present an alternative extension of the equality
∑
χ∈H f(χ) = nhf(0), for

small-degree f , to the case when d = deg f is arbitrarily large. Namely, we prove
that if f(X) =

∑d
i=0 fiX

i ∈ F≤d[X], then
∑
χ∈H f(χ) = nh · (

∑bd/nhc
i=0 fnhi).

(See Lemma 1.) Alternatively,
∑
χ∈H f(χ) = vf iff f>s = vf , where f = (fi)

and s is a Boolean vector that has ones in positions nhi for i ≤ bn/nhc.
In the new univariate sumcheck argument Count for f ∈ F≤d[X], the prover

first ILV-commits to f and then ILV-opens the commitment to f>s. Thus, the
prover has to output one ILV commitment (one group element) instead of two
polynomial commitments (two group elements). Moreover, there is no need for a
low-degree test, making Count even more efficient. In addition, in our case s has
a small constant number of non-zero elements; thus, the prover’s computation
is linear in both field operations and group operations. An explicit cost of this
technique is that the SRS becomes larger: if the SRS, without Count, contains

6 Helger Lipmaa, Janno Siim, and Michał Zając

[(σi)di=0]1 (where d is some constant, resulting from the techniques used in the
rest of the zk-SNARK), it now has to contain also [(σi)2di=d+2]1 and [(σi)di=0]2.

Since sumchecks have ubiquitous applications [BCS21], Count is of indepen-
dent interest. In particular, sumcheck is used in both updatable zk-SNARKs
and transparent zk-SNARKs. As an important application, we will design a new
updatable zk-SNARK. We leave it an interesting open question to apply Count
in transparent zk-SNARKs.

New Updatable zk-SNARK. We use Count to design a new pairing-based
updatable zk-SNARK Vampire for the R1CSLite [CFF+21] constraint system,
given the R1CS matrices are sparse as in [CHM+20,RZ21a,CFF+21]. The argu-
ment length of Vampire is five elements of G1 and two elements of F, which is
less than in any known updatable zk-SNARK. It is almost twice smaller than in
the previously best updatable zk-SNARK (LunarLite) for the same arithmetiza-
tion. While Basilisk [RZ21a] (as improved in their full version, [RZ21b]) has just
slightly larger communication than Vampire, it works for a version of R1CSLite
with additional restrictions on the underlying matrices; the version of Basilisk
for the same arithmetization handled by Vampire is less communication-efficient
than LunarLite. (It might be because this version of Basilisk was not optimized
for communication efficiency.)

Let us now describe Vampire. Let m be the number of constraints. Following
Lunar and Basilisk, we use the R1CSLite constraint system, where an instance
consists of two parameter matrices L and R (the left and right inputs to all
constraints) instead of three in the case of R1CS. Following Marlin, Lunar, and
Basilisk, we use the setting of sparse matrices, where L and R have together at
most |K| = Θ(m) non-zero entries. Here, K is a multiplicative subgroup of F.

Vampire is based on the underlying ideas of Marlin (e.g., we use the same
arithmetization of sparse matrices), but it uses optimizations of both Lu-
nar [CFF+21] and Basilisk [RZ21a]. These optimizations (together with an ap-
parently novel combination of the full witness to a single commitment) result in
the argument length of 7 elements of G1 and 2 integers, which is already better
than any prior updatable zk-SNARK for any NP-complete constraint system
except Basilisk’s version for bounded fan-out matrices.

Count helps to remove one more group element from the argument ofVampire.
This step in Vampire is not trivial: the sumcheck argument requires that the
polynomial f is committed to, which is not the case in Vampire. We solve this
issue using a batching technique similar to Lunar and Basilisk, asking the prover
to open two polynomial commitments. The second committed polynomial is a
linear combination of other polynomial commitments with coefficients known to
the prover and the verifier after opening the first polynomial.

Our second innovation is the use of polynomial commitment aggregation at
different points from [BDFG20]. Intuitively, we commit to a single polynomial
that encodes both the left and right inputs of all constraints; this allows us to save
one more group element. When combining the result with the batching technique
of the previous paragraph, we need to open two polynomials at different points.

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 7

For this, we use a technique of Boneh et al. [BDFG20]. However, our batching
is not randomized since the two opening points are different.

More precisely, the prover starts Vampire by committing to z̃, a polynomial
related to the witness-encoding polynomial z. Committing to z̃ helps one check
efficiently that the prover used the correct public input. The verifier replies
with a random field element α. We reformulate the check that z̃ satisfies the
R1CSLite instance as a univariate sumcheck argument for

∑
y∈H ψα(y) = 0, for

a well-chosen polynomial ψα. We then run Count, letting the prover send an
ILV-opening [ψipc(σ)]1 to the verifier. The verifier replies with another random
field element β. The prover’s final message consists of two field elements and
three group elements. These elements are needed to batch-open two polynomial
commitments; it also involves a complicated but by now standard step of proving
the correctness of the arithmetization of a sparse matrix. We will omit further
details here and refer to Section 4 for more details.

We prove that Vampire is knowledge-sound in the Algebraic Group Model
(AGM) [FKL18]. We construct a reduction to the Power Discrete Logarithm
(PDL) assumption, where the adversary gets as an input ([(σi)d1i=0]1, [(σ

i)d2i=1]2)
and has to compute σ. Here, d1 and d2 are parameters related to the SRS size.
Although the proof is technically challenging, the high-level approach we use
is standard, [FKL18,BFL20,KMSV21]. In AGM, when the adversary outputs
a group element [a]ι in Gι, one can extract coefficients x1, . . . , xt, such that
[a]ι =

∑t
i=1 xi[fi(σ)]ι, where [fi(σ)]ι are SRS elements and σ is a secret trapdoor.

Essentially, we extract a polynomial a(X) =
∑t
i=1 xifi(X) such that a = a(σ).

The SNARK verification equation can also be expressed as a polynomial V(X)
(where coefficients depend on the coefficients extracted from the argument) such
that V(σ) = 0 when the verifier accepts. Now, the proof proceeds in two branches.
If V(X) = 0, we reconstruct the witness from the coefficients extracted from the
prover. However, if V(X) 6= 0, it is possible to embed a PDL challenge into the
SRS, and the reduction algorithm can efficiently find roots V, one of which is
the discrete logarithm σ. The actual proof is more complicated since we have
two trapdoors (the challenge needs to be embedded in both of them such that
trapdoors still look uniformly random and independent) and more than one
verification equation.

We prove that Vampire is perfectly zero-knowledge by constructing a simu-
lator that utilizes the knowledge of trapdoor to work around the soundness of
Count and makes the sumcheck argument acceptable for any, even all-zero wit-
ness. For the simulated argument to be indistinguishable from a real one, we add
random terms to polynomial z̃(X) which, in the case of real argument, encodes
witness at its coefficients, and, in the case of a simulated argument, encodes a
(mostly) zero vector. This assures that even an unbounded adversary who knows
the instance and witness cannot tell a commitment to z̃(X) from a real argument
from a commitment to a simulated z̃(X).

We prove that Vampire is Sub-ZK (i.e., zero-knowledge even if the SRS gen-
eration is compromised, [BFS16,ABLZ17,Fuc18,ALSZ21]) under the BDH-KE
knowledge assumption [ABLZ17]. We first define Sub-ZK for interactive pro-

8 Helger Lipmaa, Janno Siim, and Michał Zając

tocols. [ALSZ21] proved that a perfectly zero-knowledge argument system is
statistically Sub-ZK if (1) there exists a PPT SRS-verifying algorithm SrsVer
that certifies the correctness of the SRS (given only publicly available data);
and (2) for every subverter Z, that produces the SRS, there exists an extractor
ExtZ that outputs the corresponding trapdoor. We construct SrsVer and ExtZ
(given the BDH-KE extractor). Next, we conclude that given the trapdoor ex-
tracted by the extractor and SRS verified by SrsVer, the simulator produces an
argument indistinguishable from the real one.

On Efficiency. We study how much the argument length (i.e., the communi-
cation complexity) can be reduced in updatable and universal SNARKs while
only allowing minimal relaxations in other efficiency parameters. We achieve the
shortest argument so far, and in particular, among zk-SNARKs for the sparse
R1CS(Lite) constraint system, the argument size is significantly smaller than the
previous work. The SRS size of our zk-SNARK is at most a small constant factor
larger than in the previous work, which we believe is a reasonable compromise
as the SRS needs to be delivered only once. Vampire is especially advantageous
when the R1CSLite instance is not super sparse. As a function of the number
of non-zero elements in R1CSLite matrices only, Vampire has the best prover’s
computation and the same SRS length and SRS generation time as any previous
updatable zk-SNARK. See Appendix A for a thorough efficiency comparison.

2 Preliminaries

Let F be a finite field of order p, and let F≤d[X] ⊂ F[X] be the set of degree ≤ d
polynomials. (We always have F = Zp.) Define the set of (d, dgap)-punctured uni-
variate polynomials over F as PolyPuncF(d, dgap, X) := {f(X) =

∑dgap+d
i=0 fiX

i ∈
F≤dgap+d[X] : fdgap = 0}. Let x ◦ y be the elementwise product of vectors x and
y, ∀i.(x ◦ y)i = xiyi. Let In ∈ Fn×n be the n-dimensional identity matrix. We
denote matrix and vector elements by using square brackets as in A[i, j] and a[i].

Interpolation. Let ω be the nh-th primitive root of unity in F and let H =
{ωj : 0 ≤ j < nh} be a multiplicative subgroup of F. Then,
– The vanishing polynomial ZH(Y) :=

∏nh
i=1(Y −ωi−1) = Y nh−1 is the unique

degree nh monic polynomial, such that ZH(ω
i−1) = 0 for all i ∈ [1, nh].

– For i ∈ [1, nh], `Hi (Y) is the ith Lagrange polynomial, i.e., the unique de-
gree nh − 1 polynomial, such that `Hi (ωi−1) = 1 and `Hi (ω

j−1) = 0 for
i 6= j. It is well known that `Hi (Y) = ZH(Y)/(Z′H(ω

i−1) · (Y − ωi−1)) =
ZH(Y)ωi−1/(nh(Y − ωi−1)) when Y 6= ωi−1. (Here, Z′H(X) = dZH(X)/dX.)

– LX(Y) := ZH(Y)X/(nh(Y −X)) ∈ F(X,Y) (a lifted Lagrange polynomial),
with Lωi−1(Y) = `Hi (Y) for i ∈ [1, nh].

For f ∈ F[X], let f̂H(X) :=
∑nh
i=1 f(ω

i−1)`Hi (X) be its low-degree extension. To
simplify notation, we often omit the accent ·̂ and the superscript H.

R1CSLite. R1CSLite [CFF+21,RZ21a] is a variant of the well-known Rank
1 Constraint System [GGPR13,CHM+20]. An R1CSLite instance Ir1cslite =

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 9

(F,m,m0,L,R) consists of a field F, instance size m, input size m0, and ma-
trices L,R ∈ Fm×m. An R1CSLite instance is sparse if L and R have nk = O(m)
non-zero elements.
Ir1cslite = (F,m,m0,L,R) defines the following relation R = RIr1cslite :

R :=

(x,w) : x = (z1, . . . , zm0)
> ∧ w = (za

zb
) ∧ za, zb ∈ Fm−m0−1 ∧

zl =
(

1
x

za

)
∧ zr =

(
1m0+1

zb

)
∧ zl = L(zl ◦ zr) ∧ zr = R(zl ◦ zr)

 .

Equivalently, Wz∗ = 0, where

W =
(
Im 0 −L
0 Im −R

)
∈ F2m×3m , z∗ =

(
zl
zr

z=zl◦zr

)
. (1)

Basic Cryptography. We denote the security parameter by λ. For any al-
gorithm A, r←$RND(A) samples random coins of sufficient length for A. By
y ← A(x; r), we denote that A outputs y on input x and random coins r. PPT
means probabilistic polynomial time.

Pairings.A bilinear group generator Pgen(1λ) returns p = (p,G1,G2,GT , ê, [1]1,
[1]2), where p is a prime such thatG1,G2, andGT are three additive cyclic groups
of order p, ê : G1×G2 → GT is a non-degenerate efficiently computable bilinear
pairing, and [1]ι is a generator of Gι for ι ∈ {1, 2, T} with [1]T = ê([1]1, [1]2).
In the context of this work, F = Zp must always have two large multiplicative
subgroups H and K. Thus, we assume implicitly that |H|, |K| | (p−1). We require
the bilinear pairing to be Type-3, that is, not to have an efficient isomorphism
between G1 and G2. In practice, one uses a fixed pairing-friendly curve like
BLS-381; in this case, also K and H have a fixed order.

We use the by now standard additive bracket notation, by writing [a]ι to
denote a[1]ι for ι ∈ {1, 2, T}. We denote ê([x]1, [y]2) by [x]1 • [y]2. Thus, [x]1 •
[y]2 = [xy]T . We freely use the bracket notation together with matrix notation;
for example, if A · B = C then [A]1 • [B]2 = [C]T .

Polynomial Commitment Schemes. In a polynomial commitment
scheme [KZG10], the prover commits to a polynomial f ∈ F≤d[X] and later opens
it to f(β) for β ∈ F chosen by the verifier. The (non-randomized) KZG [KZG10]
polynomial commitment scheme consists of the following algorithms:
Setup: Given 1λ, return p← Pgen(1λ).
Commitment key generation: Given the system parameter p and an upper-

bound d on the polynomial degrees, compute the trapdoor tk = σ←$Z∗p and
the commitment key ck← (p, [(σi)di=0]1, [1, σ]2). Return (ck, tk).

Commitment: Given a commitment key ck and a polynomial f ∈ F≤d[X],
return the commitment [f(σ)]1 ←

∑d
j=0 fj [σ

j]1.
Opening: Given a commitment key ck, a commitment [f(σ)]1, an evaluation

point β ∈ F, and a polynomial f ∈ F≤d[X], set v ← f(β) and fpc(X) ←
(f(X)−v)/(X−β). Let the evaluation proof be [fpc(σ)]1 ←

∑d−1
j=0(fpc)j [σ

j]1.
Return (v, [fpc(σ)]1).

10 Helger Lipmaa, Janno Siim, and Michał Zając

Verification: Given a commitment key ck, a commitment [f(σ)]1, an evaluation
point β, a purported evaluation v = f(β), and an evaluation proof [fpc(σ)]1,
check [f(σ)− v]1 • [1]2 = [fpc(σ)]1 • [σ − β]2.

Its security is based on the fact that (X − β) | (f(X)− v)⇔ f(β) = v.

Inner-Product Commitment Schemes. In an inner-product commitment
scheme [LY10,ILV11], the prover commits to a vector µ ∈ Fn and later opens it to
the inner product µ>ν for ν ∈ Fn chosen by the verifier. The (non-randomized)
ILV [ILV11] inner-product commitment scheme consists of the following algo-
rithms:
Setup: Given 1λ, return p← Pgen(1λ).
Commitment key generation: Given system parameters p and a vector di-

mension n, compute the trapdoor tk = σ←$Z∗p and the commitment key
ck← ([(σi)2ni=0:i 6=n+1]1, [(σ

i)ni=0]2). Return (ck, tk).
Commitment: Given a commitment key ck and a vector µ ∈ Fn, compute

the coefficients of µ(X) ←
∑n
j=1 µjX

j ∈ F≤n[X]; [µ(σ)]1 =
∑n
j=1 µj [σ

j]1.
Return the commitment [µ(σ)]1.

Opening: Given a commitment key ck, a commitment [µ(σ)]1, the original vec-
tor µ, and a vector ν, let v ← µ>ν. Set ν∗(X)←

∑n
j=1 νjX

n+1−j ∈ F≤n[X],
and µipc(X) ← µ(X)ν∗(X) − vXn+1 ∈ PolyPuncF(n − 1, n + 1, X). Let the
evaluation proof be [µipc(σ)]1 ←

∑2n
i=1,i6=n+1 µipc[σ

i]1. Return (v, [µipc(σ)]1).
Verification: Given a commitment key ck, a commitment [µ(σ)]1, a vector

ν, a purported value v = µ>ν, and an evaluation proof [µipc(σ)]1, check
[µipc(σ)]1 • [1]2 = [µ(σ)]1 •

∑n
j=1 νj [σ

n+1−j]2 − v[σn]1 • [σ]2.
The security of ILV relies on the fact that the coefficient of Xn+1 in µipc(X) is
µ>ν− v, which is zero iff v is correctly computed. In our application, the vector
ν is known in advance and public. In this case, the verifier only has to compute
two pairings and no exponentiations.

Succinct Zero-Knowledge Arguments. The following definition is closely
based on [CFF+21]. Groth et al. [GKM+18] introduced the notion of (preprocess-
ing) zk-SNARKs with specializable universal structured reference string (SRS).
This notion formalizes the idea that key generation for R ∈ UR can be seen
as the sequential combination of two steps: first, a probabilistic algorithm that
generates an SRS for the universal relation UR and second, a deterministic al-
gorithm that specializes this universal SRS into one for a specific R.

We consider relation families (Pgen, {URp,N}p∈range(Pgen),N∈N) parametrized
by p ∈ Pgen(1λ) and a size bound N ∈ poly(λ).6 A succinct zero-knowledge
argument Π = (Pgen,KGen,Derive,P,V) with specializable universal SRS for a
relation family (Pgen, {URp,N}p∈{0,1}∗,N∈N) works as follows.
Setup: Given 1λ, return p← Pgen(1λ).
Universal SRS Generation: a probabilistic algorithm KGen(p, N)→ (srs, td)

that takes as input public parameters p, an upper bound N on the relation

6 In the case of Count and Vampire, we actually have several size bounds. The defini-
tions generalize naturally.

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 11

size, and outputs srs = (ek, vk) together with a trapdoor. We assume implic-
itly that srs, and other elements like ek, and vk contain p.

SRS Specialization: a deterministic algorithm Derive(srs,R) → (ekR, vkR)
that takes as input a universal SRS srs and a relation R ∈ URp,N , and
outputs specialized SRS srsR := (ekR, vkR).

Prover/Verifier: a pair of interactive algorithms 〈P(ekR,x,w),V(vkR,x)〉 →
b, where P takes a proving key ekR for a relation R, a statement x, and a
witness w such that (x,w) ∈ R, and V takes a verification key for a relation
R, a statement x, and either accepts (b = 1) or rejects (b = 0) the proof.

Π must satisfy the following four requirements.
Completeness. For all p ∈ range(Pgen), N ∈ N, R ∈ URp,N , and (x,w) ∈ R,

Pr

[
〈P(ekR,x,w),V(vkR,x)〉 = 1

∣∣∣∣ (srs, td)← KGen(p, N);
(ekR, vkR)← Derive(srs,R)

]
= 1 .

Succinctness. Π is succinct if the running time of V is poly(λ+ |x|+ log |w|)
and the communication size is poly(λ+ log |w|).
Knowledge-Soundness. Π has knowledge-soundness for an auxiliary input distri-
bution C, if for every non-uniform PPT adversary A = (A1,A2), there exists a
non-uniform PPT extractor ExtA, such that

Pr

 〈A2 (st; r) ,V(vkR,x)〉 = 1
∧¬R(x,w)

∣∣∣∣∣∣∣∣∣∣
p← Pgen(1λ); (srs, td)← KGen(p, N);

aux← C(srs); r←$RND(A);
(R,x, st)← A1(srs, aux; r);
w← ExtA(srs, aux; r);

(ekR, vkR)← Derive(srs,R)


is negl(λ). Π is knowledge-sound if there exists benign C such that Π is
knowledge-sound for C.
Zero-Knowledge.Π is (statistical) zero-knowledge if there exists a PPT simulator
Sim, s.t. for all unbound A = (A1,A2), all p ∈ range(Pgen), all N ∈ poly(λ),

Pr

 〈P (ekR,x,w) ,A2(st)〉 = 1∧
R(x,w) ∧ R ∈ URp,N

∣∣∣∣∣∣
(srs, td)← KGen(p, N);
(R,x,w, st)← A1(srs);

(ekR, vkR)← Derive(srs,R)

 ≈s
Pr

 〈Sim (srs, td,R,x) ,A2(st)〉 = 1∧
R(x,w) ∧ R ∈ URp,N

∣∣∣∣∣∣
(srs, td)← KGen(p, N);
(R,x,w, st)← A1(srs);

(ekR, vkR)← Derive(srs,R)

 .

Here, ≈s denotes the statistical distance as a function of λ. Π is perfect zero-
knowledge if the above probabilities are equal.

Π is subversion zero-knowledge (Sub-ZK, [BFS16]), if it is zero-knowledge
even in the case the SRS is maliciously generated. For perfect zero-knowledge
arguments, Sub-ZK follows from the usual zero-knowledge (with trusted SRS),
the SRS verifiability (there exists a PPT algorithm that checks that the
SRS belongs to range(KGen)), and a SNARK-specific knowledge assump-
tion, [ABLZ17,ALSZ21]. We will provide the formal definition in Section 5.2.

Π is updatable [GKM+18], if the SRS can be sequentially updated by many
updaters, such that knowledge-soundness holds if either the original SRS creator

12 Helger Lipmaa, Janno Siim, and Michał Zając

or one of the updaters is honest. [GKM+18] showed that an updatable SRS
cannot contain non-monomial polynomial evaluations. Moreover, an updatable
SRS must be verifiable in the same sense as in the case of Sub-ZK.

Since Vampire is public-coin and has a constant number of rounds, we can
apply the Fiat-Shamir heuristic [FS87] to obtain a zk-SNARK.
Sumcheck Arguments. In a sumcheck argument [LFKN90] over F, the prover
convinces the verifier that for H ⊆ F, f ∈ F[X1, . . . , Xc], and vf ∈ F, it holds that∑

(x1,...,xc)∈Hc f(x1, . . . , xc) = vf . Multivariate sumcheck has many applications
in both complexity theory and cryptography, [BCS21], with usually relatively
small |H| but large c. In the context of efficient updatable zk-SNARKs, one is
often interested in univariate sumcheck, where c = 1 but |H| is large. Univariate
sumcheck arguments are most efficient when H is either an affine subspace or a
multiplicative subgroup [BCR+19]; see [RZ21a] for a generalization to arbitrary
H.

The univariate sumcheck relation for multiplicative subgroups is the set of
all pairs Rsum := ((F, d,H, vf), f), where F is a finite field, d is a positive integer,
H is a multiplicative subgroup of F, vf ∈ F, f ∈ F≤d[X], and

∑
χ∈H f(χ) = vf .

Aurora’s Sumcheck. As a part of the zk-SNARK Aurora, Ben-Sasson et
al. [BCR+19] proposed an efficient univariate sumcheck (“Aurora’s sumcheck”)
for multiplicative subgroups. Since the new univariate sumcheck relies on similar
techniques, we next recall Aurora’s sumcheck.

As before, let H = 〈ω〉 = {ωi : i ∈ [0, nh − 1]} be a cyclic multiplicative
subgroup of order nh = |H|. Fact 1 underlies Aurora’s sumcheck. (See, e.g., Fact
9.1, [Tha21] for the proof.)

Fact 1 Let f ∈ F[X] with deg f ≤ nh − 1. Then
∑
χ∈H f(χ) = nhf(0).

In the case of a large-degree f , Aurora’s sumcheck uses the following result
that follows from Fact 1 and polynomial division (namely, that f(X) = R(X)+
Q(X)ZH(X) for R ∈ F≤nh−1[X]).

Fact 2 (Core Lemma of Aurora’s Sumcheck) Let f ∈ F[X] with d =
deg f . Then,

∑
χ∈H f(χ) = vf iff there exist R ∈ F≤nh−2[X] and Q ∈

F≤d−nh [X], such that f(X) = vf/nh +R(X)X +Q(X)ZH(X).

Ben-Sasson et al. [BCR+19] used Fact 2 to construct a sumcheck argument
for proving that

∑
χ∈H f(χ) = vf . In Aurora’s sumcheck argument, the prover

sends to the verifier polynomial commitments to f , R, and Q. Assume that
d = deg f = poly(λ) while p = 2Θ(λ). The verifier accepts if (1) R has a low
degree ≤ nh − 2 and (2) f(X) = vf/nh +R(X)X +Q(X)ZH(X).

On top of two polynomial commitments (two group elements), one has to
implement a low-degree test to check that the degree of R is at most nh − 2. As
the low-degree test, Aurora used an interactive oracle proof for testing proximity
to the Reed–Solomon code [BBHR18], resulting in additional costs. Recently,
the full version of Basilisk [RZ21b] implemented a low-degree test in a partially
costless way (namely, without added argument size or verifier’s computation);

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 13

however, one may need to add a large number of elements to the SRS of the
resulting zk-SNARK for their low-degree test to succeed.
Assumptions. Let d1(λ), d2(λ) ∈ poly(λ). Then, Pgen is (d1, d2)-PDL (Power
Discrete Logarithm) secure if for any non-uniform PPT A, Advpdld1,d2,Pgen,A(λ) :=

Pr
[
A
(
p, [(xi)d1i=0]1, [(x

i)d2i=0]2

)
= x

∣∣∣ p← Pgen(1λ);x←$F∗
]
= negl(λ) .

Algebraic Group Model (AGM). AGM is an idealized model [FKL18] for
security proofs. In the AGM, adversaries are restricted to be algebraic in the
following sense: if A inputs some group elements and outputs a group element,
it can provide an algebraic representation of the latter in terms of the former.

A PPT algorithm A is algebraic (in p) if there exists an efficient extractor
ExtA, such that for any PPT-sampleable distribution D, Advagmp,D,A,ExtA(λ) :=

Pr

[
y1 6= Γ 1x1 ∨
y2 6= Γ 2x2

x = ([x1]1, [x2]2)←$D; r←$RND(A);
([y1]1, [y2]2)←$A(x; r); (Γ 1,Γ 2)← ExtA(x; r)

]
= negl(λ) .

3 New Univariate Sumcheck Argument

In this section, we propose Count, a new sumcheck argument that has improved
online efficiency (including the argument size) but a larger SRS size than Au-
rora’s univariate sumcheck. We first prove the following generalization of Fact 1,
an alternative to Fact 2 in the case f has degree larger than nh − 1.

Lemma 1. Let f(X) =
∑d
i=0 fiX

i for d ≥ 0. Then,∑
χ∈H f(χ) = nh ·

∑bd/nhc
i=0 fnhi .

Proof. Write f(X) = R(X)+Q(X)ZH(X) for degR ≤ nh− 1. Based on Fact 1,∑
χ∈H f(χ) =

∑
χ∈HR(χ) = nhR(0). Since Xnh ≡ 1 (mod ZH(X)), f(X) =∑d

i=0 fiX
i ≡

∑nh−1
j=0 (

∑d
i=0:nh|(i−j) fi)X

j (mod ZH(X)). Since f(X) ≡ R(X)

(mod ZH(X)), R(0) =
∑bd/nhc
i=0 fnhi. Thus,

∑
χ∈H f(χ) = nh ·

∑bd/nhc
i=0 fnhi. ut

Count is based on the following result.

Lemma 2 (Core Lemma of Count). Let nh > 1, dgap, d > 0 with dgap ≥
nh · bd/nhc, and f ∈ PolyPuncF(d, dgap, X). Let H be an order-nh multiplicative
subgroup of F. Define

S(X) :=
∑bd/nhc
i=0 Xdgap−nhi ∈ F≤dgap [X] .

Then,
∑
χ∈H f(χ) = vf and deg f ≤ d iff there exists fipc ∈

PolyPuncF(d, dgap, X), such that

f(X)S(X)− fipc(X) =
vf
nh
·Xdgap . (2)

14 Helger Lipmaa, Janno Siim, and Michał Zając

Pgen(p): generate p as usually. We implicitly assume nh | (p− 1).

KGen(p, nh, d, dgap): S1 ← {(Xi)
dgap+d

i=0:i6=dgap}; S2 ← {1, X, (X
dgap−nhi)

bd/nhc
i=0 };

σ←$F∗; td← σ; srs← (p, nh, d, dgap, [g(σ) : g ∈ S1]1, [g(σ) : g ∈ S2]2)

Derive(srs): S(X)←
∑bd/nhc
i=0 Xdgap−nhi ∈ F≤dgap [X]; ekR ← srs;

vkR ← (srs, [S(σ)]2, [σ
dgap]T); return (ekR, vkR);

P(ekR,x,w = f) /* x = ([f(σ)]1, vf) */ V(vkR,x)

. .Online phase .
S(X)←

∑bd/nhc
i=0 Xdgap−nhi ∈ F≤dgap [X]; fipc(X)← f(X)S(X)− vf/nh ·Xdgap

[fipc(σ)]1

Check [f(σ)]1 • [S(σ)]2 − [fipc(σ)]1 • [1]2 = vf/nh · [σdgap]T

Fig. 1. The new univariate sumcheck zk-SNARK Count for
∑
χ∈H f(χ) = vf .

Here, dgap is a parameter fixed by the master protocol (in our case, Vampire)
that uses Count as a subroutine.

Proof. Clearly, we need dgap ≥ nh · bd/nhc for S to be a polynomial.
(⇒) Define fipc(X) := f(X)S(X) − vf/nh · Xdgap . We must only show that

fipc ∈ PolyPuncF(d, dgap, X). Since deg f ≤ d and degS = dgap, we have deg fipc ≤
dgap + d. Since f(X)S(X) = (

∑d
i=0 fiX

i)(
∑bd/nhc
i=0 Xdgap−nhi), the coefficient of

Xdgap in f(X)S(X) is
∑bd/nhc
i=0 fnhi. By Lemma 1,

∑bd/nhc
i=0 fnhi = vf/nh. Thus,

the coefficient of Xdgap in fipc is 0 and fipc ∈ PolyPuncF(d, dgap, X).
(⇐) Suppose Eq. (2) holds for fipc ∈ PolyPuncF(d, dgap, X). Since degS = dgap

and deg fipc ≤ dgap + d, we have deg f ≤ d. As in (⇒), the coefficient of Xdgap in
f(X)S(X) is

∑bd/nhc
i=0 fnhi, which is equal to (

∑
χ∈H f(χ))/nh due to Lemma 1.

Since fipc is missing the monomial Xdgap , we get that vf =
∑
χ∈H f(χ). ut

It is important that fipc has degree ≤ dgap + d. Thus, one cannot add elements
[σi]1 for i > dgap + d to the SRS of a master argument that uses Count.
Description of Count. In Count, the common input is ([f(σ)]1, vf). The prover
sends to the verifier a polynomial commitment to [fipc(σ)]1, and the verifier
accepts that

∑
χ∈H f(χ) = vf iff a naturally modified version of Eq. (2) holds

on committed polynomials. See Fig. 1 for the full argument.
Since we only use Count as a sub-argument of Vampire, we do not formally

have to prove that it is knowledge-sound or zero-knowledge. Nevertheless, we
provide proof sketches for the sake of completeness.

Lemma 3. The new sumcheck zk-SNARK Count in Eq. (2) is complete and
perfectly zero-knowledge. Additionally, the probability that any algebraic A can
break knowledge soundness is bounded by Advpdld1,d2,Pgen,B(λ) where B is some PPT
adversary, d1 = dgap + d, and d2 = dgap.

Proof. Completeness follows from Lemma 2.

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 15

We sketch a knowledge-soundness proof in the AGM [FKL18]. Since A is
algebraic, we get f(X), fipc(X) are in the span of Xi for i ∈ S1, i.e., f, fipc ∈
PolyPuncF(d, dgap, X). If Eq. (2) holds, then by Lemma 2, the prover is honest.
Otherwise, we have a known non-zero polynomial V(X) := f(X)S(X)−fipc(X)−
vf/nh · Xdgap (its coefficients are known since the adversary is algebraic), such
that (since the verifier accepts) σ is a root of V. Thus, we can construct a (d1, d2)-
PDL adversary B that gets (p, [(σi)d1i=0]1, [(σ

i)d2i=0]2) as an input. B constructs srs
from the challenge input, and runs A and its extractor ExtA to obtain V(X).
Whenever, V(X) 6= 0, B can find the root σ and break the PDL assumption.

We now construct a simulator Sim that on input (srs, td, ([f(σ)]1, vf)) outputs
an argument indistinguishable from a real argument. The simulator just com-
putes [fipc(σ)]1, such that the verification equation holds. That is, [fipc(σ)]1 ←
S(σ)[f(σ)]1− vf/nh ·σdgap [1]1. Since in the real argument, [fipc(σ)]1 is computed
the same way, the simulated and real argument are indistinguishable. ut

SRS Verifiability. As noted in Section 2, for both Sub-ZK and updatability,
it is required that the SRS is verifiable, i.e., that there exists a PPT algorithm
that checks that the SRS belongs to the span of KGen. One can verify Count’s
SRS by checking that [σ]1 • [1]2 = [1]1 • [σ]2, [σi]1 • [1]2 = [σi−1]1 • [σ]2 for
i ∈ [1, dgap+d]\{dgap, dgap+1}, [σdgap+1]1 • [1]2 = [σ]1 • [σdgap]2, [σdgap−1]1 • [σ]2 =
[1]1 • [σdgap]2, and [σnhi]1 • [σdgap−nhi]2 = [1]1 • [σdgap]2 for i ∈ [1, bd/nhc]. Since,
in addition, Count’s SRS consists of monomials only, Count is updatable.
Efficiency. In Count, the prover outputs a single group element instead of two
in Aurora’s univariate sumcheck argument. The latter also requires one to im-
plement a low-degree test, while there is no need for a low-degree test in Count.

Another important aspect of Count is the prover’s computation. In Aurora’s
univariate sumcheck, the prover computes polynomials R and Q, such that
f(X) = vf/nh+XR(X)+Q(X)ZH(X); this can be done in quasilinear number
of F operations. On the other hand, since in Vampire, S only has a small num-
ber of non-zero coefficients, the prover of Count only executes a linear number
of F operations, Both univariate sumchecks however require the prover to use a
linear number of G1 operations. Note that linear-time multivariate sumchecks
are well-known, [Tha13] and important in applications.

We emphasize that dgap needs to satisfy dgap ≥ nh · bd/nhc, but it can be
bigger. Iin Vampire, dgap = d.

As a drawback, the SRS contains more elements than in Aurora’s sumcheck.
This is a consequence of using the ILV inner-product commitment scheme.

4 Vampire: New Updatable Zk-SNARK

In this section, we will use Count to construct an efficient zk-SNARK Vampire,
with non-consequent monomial SRS, for the sparse R1CSLite constraint system.
At a very high level, we use the general approach as Marlin [CHM+20], taking
into account optimizations of Lunar [CFF+21] and Basilisk [RZ21a]. On top of
already aggressive optimization, we use three novel techniques.

16 Helger Lipmaa, Janno Siim, and Michał Zając

First, Marlin uses Aurora’s univariate sumcheck twice. We replace the latter
with Count in one of the instantiations (in the second instantiation, Aurora’s
univariate sumcheck is actually more efficient). Second, we use a variant of the
aggregated polynomial commitment scheme of [BDFG20] to batch together the
opening of two different polynomials at different points. While [BDFG20] pro-
posed only a randomized batch-opening protocol, we observe that in our case,
it can be deterministic. Third, we use a single commitment to commit to left
and right inputs of each constraint. Each techniques shaves one group element
from the communication. As the end result,Vampire is the most communication-
efficient known updatable zk-SNARK Vampire for any NP-complete constraint
system. (See Table 1 for an efficiency comparison.)

4.1 Formulating R1CSLite as Sumcheck

Let F = Zp. As in [CHM+20,RZ21a,CFF+21], let H = 〈ω〉 and K be two multi-
plicative subgroups of F. We use H to index the rows (and columns) and K to
index the non-zero elements of specific matrices. From now on, we assume that
Ir1cslite = (F,H,K,m,m0,L,R) includes the description of H and K.

We want to demonstrate the satisfiability of an R1CSLite instance Ir1cslite.
Recall from Eq. (1) that for this we need to show that W · z∗ = 0, where
W = (I2m‖ −M), M =

(
L
R

)
, and z∗ = (zl

>‖zr>‖(zl ◦ zr)>)>, where zl and zr
are the vectors of all left and right inputs of all R1CSLite constraints.
Zero-Knowledge. To obtain zero-knowledge, we use a technique motivated
by [RZ21b]. Let |H| = nh := 2m+ b, for a randomizing parameter b ∈ N (to be
fixed to b = 4 in Theorem 2) that helps us to achieve zero knowledge. We add
new random elements to z∗ and zero elements to W; the latter are needed not
to disturb the knowledge-soundness proof. More precisely, for rz ←$Fb, let

zl :=
(

1
x

za

)
∈ Fm , zr :=

(
1m0+1

zb

)
∈ Fm , and z :=

(
zl
zr
rz

)
.

Let Ib :=
(

Im 0 0
0 Im 0
0 0 0

)
and Mb :=

(
L 0
R 0
0 0

)
be nh × nh matrices. Let z′ :=

(zr
0nh−m

)
.

Our goal is to show
Wb · (z

z◦z′) = 0 , (3)

where Wb =
(
Ib‖ −Mb

)
. Clearly, Eq. (3) is equivalent to W · z∗ = 0.

Next, Eq. (3) holds iff Ibz −Mb(z ◦ z′) = 0, i.e.,

∀x ∈ H.P [x] :=
∑
y∈H

(
Ib[x, y]−Mb[x, y]z′[y]

)
z[y] = 0 .

Language of Polynomials. Next, we replace vectors with their low-degree
encodings, with say

z(Y) :=
∑
χ∈H z[χ]L

H
χ(Y) ∈ F≤nh−1[Y] .

Let ΛbH(X,Y) and M b be polynomials, fixed later, that interpolate the ma-
trices Ib and Mb. That is, ΛbH(x, y) = Ib[x, y] and M b(x, y) = Mb[x, y] for

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 17

x, y ∈ H. Thus, Ib[x, y]z[y] = ΛbH(x, y)z(y) for any x, y ∈ H. Moreover,
Mb[x, y]z′[y]z[y] = M b(X,Y)z(Y ωm)z(Y). Really, z(yωm) = z[yωm] = z′[y]
for y ∈ {ω0, . . . , ωm−1}. Notably, for x ∈ H and y ∈ {ωm, . . . , ωnh−1}, the value
of z[yωm] does not matter since it is multiplied by M b(x, y) = 0.

Thus, Eq. (3) is equivalent to ∀x ∈ H.P (x) = 0, where

ψ(X,Y) :=
(
ΛbH(X,Y)−M b(X,Y)z(Y ωm)

)
z(Y) , (4)

P (X) :=
∑
y∈H ψ(X, y) . (5)

To simplify this further, ΛbH(X,Y) and M b(X,Y) have to satisfy additional con-
ditions that we define in the rest of this subsection.
Interpolating Ib. Following [CFF+21], we interpolate I with the function

ΛH(X,Y) := ZH(X)Y−ZH(Y)X
nh(X−Y) . (6)

ΛH satisfies the following properties: (1) ΛH(x, y) is PPT computable, (2) ΛH is
a polynomial, (3) ΛH is symmetric, ΛH(X,Y) = ΛH(Y,X), (4) ΛH(x, y) interpo-
lates I over H2, i.e., ∀x, y ∈ H.ΛH(x, y) = I[x, y]. (5) ΛH(x, y) = LH

x (y) for any
x ∈ H, y ∈ F. Thus, {ΛH(x, Y)}x∈H is a basis of F≤|H|−1[Y].

It is natural to define the interpolating polynomial of Ib as

ΛbH(X,Y) := ΛH(X,Y)−
∑b
i=1 `

H
nh−b+i(X)`Hnh−b+i(Y) .

Clearly, if b is small, then ΛbH(X,Y) is efficiently computable. Moreover,
ΛbH(X,Y) is symmetric since ΛH(X,Y) is symmetric.
InterpolatingMb.We use the sparse encoding ofMb from [CHM+20] that keeps
track of the matrix’s non-zero entries. Let NZ :=

{
(i, j) ∈ H×H : Mb[i, j] 6= 0

}
be the set of indices where Mb is non-zero. Let K be the minimal-size multiplica-
tive subgroup of F such that nk := |K| ≥ |NZ|.7

We encode Mb by using polynomials row and col to keep track of the in-
dices of its non-zero entries while using a polynomial val for the values of
these entries. That is, ∀κ ∈ K, row(κ) ∈ H is the row index of the κth ele-
ment of NZ, col(κ) ∈ H is the column index of the κth element of NZ, and
val(κ) = Mb[row(κ), col(κ)] ∈ F is the corresponding matrix entry. Let

row(Z) :=
∑
κ∈K row(κ)LK

κ (Z) ∈ F≤nk−1[Z]

be the low-degree extension of the vector (row(κ))κ∈K. Let col(Z) and val(Z)
be the low-degree extensions of (col(κ))κ∈K and (val(κ))κ∈K. Let zcv(Z),
rcv(Z), zrow(Z), zcol(Z), rc(Z), and zrc(Z) be the low-degree encodings
of Zcol(Z)val(Z), row(Z)col(Z)val(Z), Zrow(Z), Zcol(Z), row(Z)col(Z), and
Zrow(Z)col(Z). For example,

rcv(Z) :=
∑
κ∈K row(κ)col(κ)val(κ)LK

κ (Z) ∈ F≤nk−1[Z] .
7 H and K can be arbitrary subsets of F, but the most efficient algorithms are known
when they are multiplicative subgroups. One can assume K = H by adding all-zero
rows and columns to the matrix, but we generally do not need that K = H. Keeping
|K| and |H| flexible allows us to achieve different trade-offs.

18 Helger Lipmaa, Janno Siim, and Michał Zając

We define M b ∈ F[X,Y], so that

∀x, y ∈ H.M b(x, y) =
∑
κ∈K val(κ)ΛH(row(κ), x)ΛH(col(κ), y) .

From the definition of ΛH, ΛH(row(κ), x) = (ZH(row(κ))x −
ZH(x)row(κ))/(nh(row(κ) − x)). Since ZH(row(κ)) = 0, ΛH(row(κ), x) =
ZH(x)row(κ)/(nh(x − row(κ))). Similarly, ΛH(col(κ), y) = ZH(y)col(κ)/(nh(y −
col(κ))). Thus,

∀x, y ∈ H.M b(x, y) =
∑
κ∈K val(κ) · ZH(x)row(κ)

nh(x−row(κ)) ·
ZH(y)col(κ)
nh(y−col(κ))

=ZH(x)ZH(y)
n2
h

∑
κ∈K

rcv(κ)
(x−row(κ))(y−col(κ))

(∗)
= ZH(x)ZH(y)

n2
h

∑
κ∈K

rcv(κ)
xy−xcol(κ)−yrow(κ)+rc(κ) ,

where say (*) follows from ∀κ ∈ K.rc(κ) = col(κ)row(κ). Thus, we define

M b(X,Y) := ZH(X)ZH(Y)
n2
h

∑
κ∈K

rcv(κ)
XY−Xcol(κ)−Y row(κ)+rc(κ) . (7)

Since degXM
b(X,Y) ≤ |H| − 1, ∀y ∈ H.M b(X, y) =

∑
χ∈HM

b(χ, y)ΛH(χ,X).
Getting to Sumcheck. Next, we show that, under mild conditions on inter-
polating matrices satisfied by the above encodings, ∀x ∈ H.P (x) = 0 (and thus
also Eq. (3)) is equivalent to

∑
y∈H ψ(X, y) = 0.

Lemma 4. Assume degX ΛH(X,Y),degXM
b(X,Y) ≤ |H| − 1. Then, ∀x ∈

H.P (x) = 0 iff
∑
y∈H ψ(X, y) = 0.

Proof. (⇒) Assume ∀x ∈ H.P (x) = 0. Then,∑
y∈H ψ(X, y)

4
=
∑
y∈H(Λ

b
H(X, y)−M b(X, y)z(yωm))z(y)

(∗)
=
∑
x∈H

∑
y∈H(Λ

b
H(x, y)−M b(x, y)z(yωm))z(y)Lx(X)

4
=
∑
x∈H

∑
y∈H ψ(x, y)Lx(X)

5
=
∑
x∈H P (x)Lx(X)

(∗∗)
= 0 ,

where (*) follows from the low degree of ΛbH(X,Y) and M b(X,Y), and (**)
follows from ∀x ∈ H.P (x) = 0.
(⇐) Let

∑
y∈H ψ(X, y) = 0. By Eq. (5), ∀x ∈ H.P (x) =

∑
y∈H ψ(x, y) = 0. ut

To enable efficient verification that the public input was correctly computed,
the prover transmits [z̃(σ)]1, for the polynomial z̃(Y) defined as follows. Let

Zinp(Y) :=
∏m0+1
i=1 (Y − ωi−1)(Y − ωm+i−1) ∈ F≤2(m0+1)[Y] ,

inp(Y) :=`H1 (Y) +
∑m0

i=1 xi`
H
i+1(Y) +

∑m0+1
i=1 `Hm+i(Y) ∈ F≤nh−1[Y] ,

z̃(Y) :=
∑m−m0−1
i=1 za[i]

`Hm0+1+i(Y)

Zinp(Y) +
∑m−m0−1
i=1 zb[i]

`Hm+m0+1+i(Y)

Zinp(Y) +∑b
i=1 rz[i]

`H2m+i(Y)

Zinp(Y) .

(8)

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 19

Since `Hi (Y) =
∏
j 6=i(Y − ωj−i)/(ωi−i − ωj−i), z̃(Y) ∈ F≤nh−2m0−3[Y]. Thus,

Zinp(Y)z̃(Y) =
∑m−m0−1
i=1 za[i]`

H
m0+1+i(Y) +

∑m−m0−1
i=1 zb[i]`

H
m+m0+1+i(Y) +∑b

i=1 rz[i]`
H
2m+i(Y) interpolates (0>m0+1‖z>a ‖0>m0+1‖z>b ‖r>z)>. Moreover,

z(Y) = Zinp(Y)z̃(Y) + inp(Y) ∈ F≤nh−1[Y] . (9)

Thus, the existence of z̃(Y), such that Eq. (9) holds, guarantees that z(Y) in-
terpolates (1‖x>‖z>a ‖1>m0+1‖z>b ‖r>z)> for some za, zb, and rz.

4.2 From Sumcheck to Vampire

According to the preceding discussion, one can handle R1CSLite by having a
zk-SNARK that proves that

∑
y∈H ψ(X, y) = 0. We will do construct the latter

in the current subsection. We replace X with a random α chosen by the ver-
ifier, obtaining the polynomial ψα(Y) := ψ(α, Y). We use Count to show that∑
y∈H ψα(y) = 0. For this, as in Section 3, the prover computes a polynomial

ψipc and the verifier checks ϕ(Y) := ψα(Y)S(Y) − ψipc(Y) is a zero polyno-
mial. The latter can be checked by KZG-opening all involved polynomials (e.g.,
z̃(Y); see Eq. (4)), but this is inefficient. Instead, the prover KZG-opens z̃(Y) at
Y = βωm and Φ(Y), M b(α, Y) at Y = β, where (1) Φ is a polynomial defined so
that Φ(β) = ϕ(β) = 0, and (2) one can verify efficiently the correctness, given
z̃(βωm) and vM = M b(α, β). This requires one to open a polynomial related
to the ILV-opening of ψα(Y). We aggregate KZG-openings by using the tech-
nique of [BDFG20]. Finally, we use another sumcheck to check the correctness
of vM ; this step is complicated, but it follows closely Marlin [CHM+20] and
Lunar [CFF+21].

To simplify some formulas, we assume always nh > 3. This is w.l.o.g., since
nh = 2m+ b, m ≥ 1, and b ≥ 2.

Details. Let α ∈ F\H be a random value chosen by the verifier. (We will explain
later why α /∈ H.) To test that

∑
y∈H ψ(X, y) = 0, we define

ψα(Y) := ψ(α, Y) ∈ F≤d[Y] .

From Eqs. (4) and (9), we get

ψα(Y) =
(
ΛbH(α, Y)−M b(α, Y)z(Y ωm)

)
· (Zinp(Y)z̃(Y) + inp(Y)) .

Clearly,
d := degψα = 3(nh − 1) . (10)

We use Count to prove that
∑
y∈H ψα(y) = 0. As in Lemma 2, we define

S(Y) :=
∑bd/nhc
i=0 Y dgap−nhi ∈ F≤dgap [Y] ,

ψipc(Y) := ψα(Y)S(Y) ∈ PolyPuncF(d, dgap, Y) . (11)

20 Helger Lipmaa, Janno Siim, and Michał Zając

Here, dgap ∈ N is an integer, such that S(Y) and ψipc(Y) are polynomials, i.e.,
dgap ≥ nh ·bd/nhc. Thus, we need dgap ≥ nh ·bd/nhc = nh ·b3(nh − 1)/nhc = 2nh.
(This holds for nh ≥ 3.) Taking into account later considerations, we set

dgap :=3(nh − 1) . (12)

Clearly, dgap ≥ 2nh if nh ≥ 3. Hence, S(Y) = Y dgap + Y dgap−nh − Y dgap−2nh .
According to Lemma 2, we need to check that the coefficient of Y dgap in

ψα(Y)S(Y) is 0. We do it by checking that
(i) ψipc(Y) ∈ PolyPuncF(d, dgap, Y), and
(ii) ψipc(Y) is the correct ILV-opening polynomial, i.e.,

ϕ(Y) :=ψα(Y)S(Y)− ψipc(Y)

=
(
ΛbH(α, Y)−Mb(α, Y)z(Y ωm)

)
(Zinp(Y)z̃(Y) + inp(Y)) · S(Y)− ψipc(Y)

is a zero polynomial.
The prover sends to the verifier commitments to z̃(Y) and ψipc(Y). Checking i
is free in the pairing-based setting. To check ii, we verify that ϕ(β) = 0, where
β ∈ F \ H is a random point chosen by the verifier. (We will explain later why
β /∈ H; in fact, β is even more restricted.) More precisely, we verify that ϕ(β) = 0,
where M b(α, β) is substituted by a value vM computed by the prover. We first
describe how to check that ϕ(β) = 0, assuming vM is correct. After that, we use
another sumcheck instantiation to prove that vM is correctly computed.

First: checking ϕ(β) = 0. A straightforward check that ϕ(β) = 0 requires, on
top of sending vM , the prover to KZG-open z̃(Y) both at Y = β and Y = βωm

and ψipc(Y) at Y = β. (The verifier can efficiently evaluate other polynomials
like ΛbH(X,Y), Zinp(Y), and S(Y) at (X,Y) = (α, β) herself.) To improve on
efficiency, we implicitly KZG-commit to the polynomial Φ, where

Ψ(Y) :=
(
ΛbH(α, β)− vM · z(βωm)

)
(Zinp(β)z̃(Y) + inp(β)) ∈ F≤nh−2m0−3[Y] ,

Φ(Y) :=(Ψ(Y)S(Y)− ψipc(Y))/S(Y) = Ψ(Y)− ψα(Y) ∈ F≤d[Y] .

Here, Ψ(Y) is obtained from ψα(Y) by replacing all but one occurrences of Y
with β, and Φ is a (low-degree) polynomial that satisfies Φ(β) = ϕ(β) = 0.

We open KZG-commitments to z̃(Y) at Y = βωm (needed to compute
z(βωm)) and Φ(Y) at Y = β. Here, one can open and verify a commitment
to Φ since we have KZG-commitments to z̃ and ψipc, KZG is homomorphic, and
the verifier knows all other information present in Φ like inp(β) and vM . More
precisely, the prover batch-opens the two KZG-commitments by computing the
KZG-opening polynomials

z̃pc(Y) := z̃(Y)−z̃(βωm)
Y−βωm ∈ F≤nh−2m0−4[Y] ,

Φpc(Y) :=Φ(Y)−Φ(β)
Y−β = Ψ(Y)−ψα(Y)

Y−β ∈ F≤d−1[Y] .

The prover batches the openings as [Bpc(σ)]1 ← [z̃pc(σ) + Φpc(σ)]1. Notably,
since the two polynomial openings are at different locations β and βωm, one

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 21

does not have to randomize this check. (We motivate it in Section 5.1.) The
latter is a general fact, not mentioned in [BDFG20] and is thus an independent
contribution.

The prover also sends vz ← z̃(βωm) ∈ F. Since Φ(β) = 0, Φ(β) is not
transferred. The verifier checks that [z̃(σ)−vz]1• [σ−β]2+[Φ(σ)]1• [σ−βωm]2 =
[Bpc(σ)]1•[(σ−β)(σ−βωm)]2, where [Φ(σ)]1[Ψ(σ)]1−[ψα(σ)]1. Since the verifier
does not know [ψα(σ)]1 but knows [ψipc(σ)]1 = [ψα(σ)S(σ)]1, we multiply each
term of the verification equation by S(σ), obtaining the check (]]) in Fig. 2.

Thus, instead of KZG-opening three polynomials, we do a single KZG-
commitment and batch-opening. It reduces the communication from three G1

elements and three field elements (three openings and (z̃(β), z̃(βωm), ψipc(β)))
to one G1 element and one field element ([Bpc(σ)]1 and vz).

Note that the prover has to compute [Φpc(σ)]1 ← [(Φ(σ)−ψα(σ))/(σ− β)]1,
where Φpc ∈ F≤d−1[Y] and σ is a trapdoor. For Count to be secure, the SRS
cannot contain [σdgap]1. Hence, we need to assume d ≤ dgap. This motivates the
choice of dgap = 3(nh − 1) in Eq. (10).

Second (correctness of vM). Here, we use a technique
from [CHM+20,CFF+21]. Recall that M b satisfies Eq. (7). Moreover,
degXM

b(X,Y),degY M
b(X,Y) ≤ nh − 1. Thus, M b(α, β) =

∑
κ∈K T (κ) ∈

F[X,Y], where

num(Z) :=ZH(α)ZH(β)
n2
h

· rcv(Z) ∈ F≤nk−1[Z] ,

den(Z) :=αβ − α · col(Z)− β · row(Z) + rc(Z) ∈ F≤nk−1[Z] ,

T (Z) := num(Z)
den(Z) ∈ F(Z) .

(13)

Here, we need den(κ) = (α−row(κ))(β−col(κ)) 6= 0 for any κ ∈ K. This explains
the choice of α, β /∈ H.

We use a sumcheck to check that vM =M b(α, β). We use Aurora’s sumcheck
since here, it is otherwise as efficient as Count but results in a shorter SRS. Let
T̂ (Z) :=

∑
κ∈K T (κ)L

K
κ (Z) ∈ F≤nk−1[Z]. Clearly, num(Z) − T̂ (Z)den(Z) ≡ 0

(mod ZK(Z)). Since
∑
κ∈K T̂ (κ) = vM , by Aurora’s sumcheck, T̂ (Z) = ZR(Z)+

vM/nk for some R ∈ F≤nk−2[Z]. Thus, num(Z)− (ZR(Z) + vM/nk)den(Z) ≡ 0
(mod ZK(Z)). Since this equality has to hold only when Z ∈ K, we modify it as
follows. For some Q ∈ F≤nk−3[Z], let

num(Z)−R(Z) · zden(Z)− vM/nk · den(Z) = Q(Z)ZK(Z) , (14)

where zden(Z) := αβZ − αzcol(Z) − βzrow(Z) + zrc(Z) ∈ F≤nk−1[Z]. Thus,
zden(Z) = Zden(Z) for Z ∈ K. This rewriting minimizes the degree of polyno-
mials (e.g., zcol(Z) ∈ F≤nk−1[Z] while Zcol(Z) ∈ F≤nk [Z]).

The prover commits to R and Q. The verifier can check that Eq. (14) holds
on KZG-commitments without opening them, checking that [1]1 • ([num(σ)]2 −
vM/nk · [den(σ)]2) = [R(σ)]1 • [zden(σ)]2 + [Q(σ)]1 • [ZK(σ)]2. When we add to
srsR elements like [rcv(σ), col(σ)]2, the verifier can compute the elements of G2

in the last equation since he knows α and β. Thus, polynomials like [rcv(σ)]2

22 Helger Lipmaa, Janno Siim, and Michał Zając

need to be in srsR while monomials, needed for the V to be able to compute
srsR, need to be in srs. This explains the definition of srsR in Fig. 2.

Finally, one needs to check that degR ≤ nk − 2. To perform this low-
degree test without increasing the argument size, we use a second trapdoor
τ ←$F∗. We add [(σiτ)nk−2i=0]2 to the SRS and transfer [R(σ)τ,Q(σ)τ]1 in-
stead of [R(σ), Q(σ)]1. This also modifies the verification equations. The idea
behind it is that if the SRS contains [(σi)i∈S , (σ

iτ)i∈S′]1, then a verification
[a]1 • [1]2 = [b]1 • [τ]2 guarantees in the AGM that a ∈ span(σiτ)i∈S′ .

4.3 Description of Vampire

In Fig. 2, we describe interactive Vampire, the new succinct interactive zero-
knowledge argument with a specializable universal SRS. Since this argument is
public-coin and has a constant number of rounds, we can apply the Fiat-Shamir
heuristic ([FS87], we omit the details) to obtain the zk-SNARK Vampire.

We sample the challenge β from the set

Cβ := {β ∈ F | β /∈ (H ∪ {0, σ, σ/ωm}) ∧ S(β) 6= 0 ∧ S(βωm) 6= 0} .

We need that β /∈ {σ, σ/ωm} since otherwise the prover cannot open polynomial
commitments. One can efficiently verify that β /∈ {σ, σ/ωm} , given [σ]1 from the
SRS. In addition, in the knowledge-soundness proof we need that S(Y), (Y −β),
and (Y − βωm) are coprime. Hence, we need that S(β) 6= 0, S(βωm) 6= 0, and
β 6= 0. As mentioned previously, α, β /∈ H since otherwise den(κ) = 0 for any
κ ∈ K. Note that if nh and dgap are much smaller than |F| (which is typically the
case), then β←$F is contained in Cβ with an overwhelming probability. Hence,
in practice β can be sampled from F, resulting in only a negligible security risk.

Vampire’s updatability follows from the facts that S1 and S2 consist of mono-
mials and moreover, one can verify the correctness of a SRS efficiently. We will
prove the latter in Theorem 3.

4.4 Efficiency

P sends to V five G1 elements and two field elements. When using the Fiat-
Shamir heuristic, the verifier’s output elements can be replaced with the output
of the random oracle. Thus, the total communication of Vampire is 5|G1|+ 2|F|
bits. Assuming that an element of G1 is 384 bits and and element of F is 256
bits, the total communication is 2432 bits or 304 bytes.

We primarily optimized the argument size of Vampire, even if it resulted in
worsening other parameters. Still, each parameter, like prover’s computation or
SRS length, is within a small constant factor of the corresponding parameter in
the case of the most efficient known zk-SNARKs. Vampire is especially advan-
tageous when nk � m. As a function of nk only, Vampire has the best prover’s
computation and the same SRS length and SRS generation time as any previous
updatable zk-SNARK. See Appendix A for a thorough efficiency comparison.

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 23

Pgen(1λ): generate p as usually, assuming that nh, nk | (p− 1)

KGen(p, nh, nk): S1 ={(Xi)dgap+di=0:i6=dgap
, (XiXτ)

nk−2

i=0 }; S2 = {(Xi)nki=0, ((X
dgap+j−nhi)2j=0)

bd/nhc
i=0 };

σ, τ ←$F∗; td← (σ, τ); srs← (p, nh, nk, [g(σ, τ) : g ∈ S1]1, [g(σ, τ) : g ∈ S2]2)

Derive(srs, Ir1cslite): ekR ← (p, Ir1cslite, [g(σ, τ) : g ∈ S1]1);
srsR ← [rcv(σ), col(σ), row(σ), rc(σ), zcol(σ), zrow(σ), zrc(σ), S(σ), σS(σ), σ2S(σ),ZK(σ)]2

vkR ← (p, Ir1cslite, [1, τ]1, [1, σ]2, srsR)

P(ekR,x,w) V(vkR,x)

. Init .
Both do: Zinp(Y)←

∏m0+1
i=1 (Y − ωi−1)(Y − ωm+i−1); rz ←$Fb;

Both do: inp(Y)← `H1 (Y) +
∑m0
i=1 xi`

H
i+1(Y) +

∑m0+1
i=1 `Hm+i(Y) ∈ F≤nh−1[Y]

rz ←$ Fb; z̃(Y)←
m−m0−1∑

i=1

za[i]
`Hm0+1+i(Y)

Zinp(Y)
+

m−m0−1∑
i=1

zb[i]
`Hm+m0+1+i(Y)

Zinp(Y)
+

b∑
i=1

rz[i]
`H2m+i(Y)

Zinp(Y)

z(Y)← Zinp(Y)z̃(Y) + inp(Y); // z̃(Y) ∈ F≤nh−2m0−3[Y]; z(Y) ∈ F≤nh−1[Y]

[z̃(σ)]1

α←$F \Hα

Abort if α /∈ F \H
. Count:

∑
y∈H ψα(y) = 0 for ψα(Y) =

(
ΛbH(α, Y)−Mb(α, Y)z(Y ωm)

)
z(Y)

S(Y)←
∑bd/nhc
i=0 Y dgap−nhi ∈ F≤dgap [Y]; ψipc(Y)← ψα(Y)S(Y) ∈ PolyPuncF(d, dgap, Y)

[ψipc(σ)]1

β←$Cββ

. Aurora’s sumcheck for
∑
κ∈K(num(κ)/den(κ)) = vM =Mb(α, β)

Abort if β /∈ Cβ ; vM ←Mb(α, β) ∈ F; vz ← z̃(βωm) ∈ F
Compute R ∈ F≤nk−2[Z], Q ∈ F≤nk−3[Z], such that

num(Z)−R(Z)zden(Z)− vM/nk · den(Z) = Q(Z)ZK(Z)

z(βωm)← Zinp(βω
m)vz + inp(βωm)

Ψ(Y)←
(
ΛbH(α, β)− vM · z(βωm)

)
(Zinp(β)z̃(Y) + inp(β)) ∈ F≤nh−m0−3[Y]

z̃pc(Y)← (z̃(Y)− vz)/(Y − βωm) ∈ F≤nh−2m0−4[Y]

Φpc(Y)← (Ψ(Y)− ψα(Y))/(Y − β) ∈ F≤d−1[Y]

Bpc(Y)← z̃pc(Y) + Φpc(Y) ∈ F≤d−1[Y]

vz, vM , [R(σ)τ,Q(σ)τ,Bpc(σ)]1

[num(σ)]2 ← ZH(α)ZH(β)/n
2
h · [rcv(σ)]2

[den(σ)]2 ← αβ[1]2 − α[col(σ)]2 − β[row(σ)]2 + [rc(σ)]2
[zden(σ)]2 ← αβ[σ]2 − α[zcol(σ)]2 − β[zrow(σ)]2 + [zrc(σ)]2

(]) Check [τ]1 • ([num(σ)]2 − vM
nk

[den(σ)]2) = [R(σ)τ]1 • [zden(σ)]2 + [Q(σ)τ]1 • [ZK(σ)]2
. Sumcheck end .

z(βωm)← Zinp(βω
m)vz + inp(βωm)

[Ψ(σ)]1 ←
(
ΛbH(α, β)− vM · z(βωm)

)
(Zinp(β)[z̃(σ)]1 + inp(β)[1]1)

(]]) Check [z̃(σ)− vz]1 • [(σ − β)S(σ)]2+(
[Ψ(σ)]1 • [(σ − βωm)S(σ)]2 − [ψipc(σ)]1 • [σ − βωm]2

)
= [Bpc(σ)]1 • [(σ − β)(σ − βωm)S(σ)]2

. Sumcheck end .

Fig. 2. Interactive Vampire. Ir1cslite = (F,H,K,m,m0,L,R), w = (za
zb

) ∈ F2(m−m0−1).

24 Helger Lipmaa, Janno Siim, and Michał Zając

5 Security Proofs

We provide some additional preliminaries, needed to prove Vampire’s security.

Fact 3 (Schwartz-Zippel Lemma) Let f(X1, . . . , Xc) 6= 0 be a total degree-d
polynomial over a field F and let S ⊆ Fc. Then, Pr[x←$S : f(x) = 0] ≤ d/|S|.

Fact 4 (Bauer et al. [BFL20]) Let V(X1, . . . , Xc) ∈ F[X1, . . . , Xc] be a non-
zero polynomial of total degree d. Define P(Z) ∈ (F[S1, . . . , Sc, R1, . . . , Rc])[Z]
as P(Z) := V(S1Z +R1, . . . , ScZ +Rc). Then the coefficient of the leading term
in P(Z) is a polynomial in F[S1, . . . , Sc] of degree d.

5.1 Knowledge-Soundness Proof

Theorem 1. Vampire is knowledge-sound in the AGM under the PDL assump-
tion. More precisely, an algebraic A breaks the knowledge-soundnness of Vampire
with probability at most

Advpdld1,d2,Pgen,B(λ) ·
|F|2
|F|2−q +

16nh+4m0−12
|Cβ | + nh−1

|F|−nh , (15)

where B is a PPT adversary, d1 = max(dgap+d, nk−1), d2 = max(nk, dgap+2),
and q = max(q1, q2), where q1 = nk + dmax, q2 = dmax + 2 + dgap, and dmax =
max(dgap + d, nk − 1).

Proof. Let A = (A1,A2) be an algebraic adversary in the knowledge soundness
game and ExtA its AGM extractor. In each round of the protocol, A sends
either an integer or a G1 element. For G1 element, ExtA outputs coefficients of a
polynomial where its monomials belong to S1. Let us denote polynomials that the
adversary sends as z̃(Y,Xτ), ψipc(Y,Xτ), R(Y,Xτ), Q(Y,Xτ), and Bpc(Y,Xτ),
where each of the polynomials is in the span of S1. Integers vz, vM ∈ F that the
prover sends are denoted as in the honest protocol description.

The knowledge-soundness extractor Ext is described in Fig. 3. It runs ExtA
to obtain coefficients of z̃(Y,Xτ) and then evaluates z̃(Y, 0) at points of Y ∈ H
which correspond to za and zb in the honest argument and returns those vectors.
The rest of the proof shows that the value outputted by Ext is a valid witness
for x with an overwhelming probability.

We have two checks, with each check guaranteeing that Vi(σ, τ) = 0, where

V1(Y,Xτ) :=(num(Y)− vM
nk

den(Y))Xτ −R(Y,Xτ)zden(Y)−Q(Y,Xτ)ZK(Y) ,

V2(Y,Xτ) :=(z̃(Y,Xτ)− vz)(Y − β)S(Y) + Ψ(Y,Xτ)(Y − βωm)S(Y)−
ψipc(Y,Xτ)(Y − βωm)−Bpc(Y,Xτ)(Y − β)(Y − βωm)S(Y) ,

where Ψ(Y,Xτ) =
(
ΛbH(α, β)− vM · z(βωm)

)
(Zinp(β)z̃(Y,Xτ) + inp(β)) and

z(βωm) = Zinp(βω
m)vz + inp(βωm).

We can express A’s winning probability as Pr[A wins] ≤ Pr[A wins |
V1(Y,Xτ) = 0 ∧ V2(Y,Xτ) = 0] + Pr[A wins | V1(Y,Xτ) 6= 0 ∨ V2(Y,Xτ) 6= 0].
We will analyze both probabilities in separate lemmas.

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 25

Ext(srs, aux; r)

(z̃(Y,Xτ), . . .)← ExtA(srs, aux; r);

za ←
(
z̃(ωm0+1, 0) · Zinp(ω

m0+1), . . . , z̃(ωm−1, 0) · Zinp(ω
m−1)

)>
;

zb ←
(
z̃(ωm+m0+1, 0) · Zinp(ω

m+m0+1), . . . , z̃(ω2m−1, 0) · Zinp(ω
2m−1)

)>
;

return w = (za
zb

);

Fig. 3. The knowledge-soundness extractor Ext for Vampire zk-SNARK where A is an
algebraic adversary and ExtA its extractor.

Lemma 5. For an algebraic A and V1(Y,Xτ),V2(Y,Xτ) as defined above,
Pr[A wins | V1(Y,Xτ) = 0 ∧ V2(Y,Xτ) = 0] ≤ (16nh + 4m0 − 12)/|Cβ | +
(nh − 1)/(|F| − nh).

Proof. We analyze both equations in the following.
Eq. V1(Y,Xτ) = 0. We express R(Y,Xτ) = XτR

′(Y) + R′′(Y) and
Q(Y,Xτ) = XτQ

′(Y) + Q′′(Y). In particular, R′(Y) and Q′(Y) have at most
degree nk − 2 since the only Xτ -dependent monomials S1 are (Y iXτ)

nk−2
i=0 .

Thus, V1(Y,Xτ) = V ′1(Y)Xτ − R′′(Y)zden(Y) − Q′′(Y)ZK(Y), where V ′1(Y) :=
num(Y)− vM

nk
den(Y)−R′(Y)zden(Y)−Q′(Y)ZK(Y).

From V1(Y,Xτ) = 0, we get that V ′1(Y) = 0. Thus, ∀y ∈ K.(num(y)−vM/nk ·
den(y)) − yR′(y)den(y) = 0, that is, ∀y ∈ K.T (y) = num(y)/den(y) = yR′(y) +

vM/nk. Note that den(y) 6= 0 since α, β /∈ H. Since T̂ (Z) :=
∑
y∈K T (y)L

K
y (Z)

has degree≤ nk−1, we get that T̂ (Z) = ZR′(Z)+vM/nk. By Aurora’s sumcheck,

M b(α, β) =
∑
y∈K T (y) =

∑
y∈K T̂ (y) = vM . (16)

Eq. V2(Y,Xτ) = 0. Given that β ∈ Cβ , we know that Y − β and Y − βωm
do not divide S(Y) and also that β 6= βωm since β 6= 0. Thus, Y − β, Y − βωm,
and S(Y) are pair-wise coprime. Thus, V2(Y,Xτ) = 0 implies that

(Y − βωm) | (z̃(Y,Xτ)− vz) , (17)
(Y − β) | (Ψ(Y,Xτ)S(Y)− ψipc(Y,Xτ)) . (18)

Eq. (17) gives that z̃(βωm, Xτ) = vz. Denoting z̃(Y,Xτ) = z̃′(Y)Xτ + z̃
′′(Y),

z̃′(βωm)Xτ + z̃′′(βωm) = vz. Thus, vz = z̃′′(βωm) and z̃′(βωm) = 0.
Let us denote ψipc(Y,Xτ) = ψ′ipc(Y)Xτ + ψ′′ipc(Y). Observe that ψ′′ipc(Y) ∈

PolyPuncF(d, dgap, Y). We can express Ψ(Y,Xτ) as

Ψ(Y,Xτ) =
(
ΛbH(α, β)− vM · z(βωm)

)
(Zinp(β)z̃(Y,Xτ) + inp(β))

=
(
ΛbH(α, β)− vM · z(βωm)

)
(Zinp(β)(z̃

′(Y)Xτ + z̃′′(Y)) + inp(β))

=Ψ ′(Y)Xτ + Ψ ′′(Y) ,

where Ψ ′(Y) := (ΛbH(α, β)−vM ·z(βωm))Zinp(β)z̃
′(Y) and Ψ ′′(Y) := (ΛbH(α, β)−

vM · z(βωm)) (Zinp(β)z̃
′′(Y) + inp(β)).

26 Helger Lipmaa, Janno Siim, and Michał Zając

Thus, Eq. (18) implies Ψ(β,Xτ)S(β) − ψipc(β,Xτ) = (Ψ ′(β)S(β) − ψ′ipc(β))
Xτ + Ψ ′′(β)S(β)− ψ′′ipc(β) = 0. Hence, Ψ ′′(β)S(β) = ψ′′ipc(β). Let

ψα(Y) :=
(
ΛbH(α, Y)−M b(α, Y) · z(Y ωm)

)
(Zinp(Y)z̃′′(Y) + inp(Y)) .

Let V3(Y) := ψα(Y)S(Y)− ψ′′ipc(Y). By Eq. (16), it holds that V3(β) = 0.
Since the polynomials ψα and ψipc were fixed before the adversary received β,

we can apply the Schwartz-Zippel lemma to V3. Note that (1) deg z̃′′ ≤ dgap + d,
(2) deg inp ≤ nh − 1, (3) degZinp ≤ 2(m0 + 1), (4) deg z ≤ dgap + d+ 2(m0 + 1),
(5) degY ΛH(α, Y) ≤ nh − 1, degY M b(α, Y) ≤ nh − 1, (6) degψ′′ipc ≤ dgap + d,
(7) degψα ≤ (nh − 1) + 2 (dgap + d+ 2(m0 + 1)) = 13nh + 4m0 − 9.

Thus, degV3 ≤ max(degψα+ dgap,degψ
′′
ipc) ≤ max(16nh+4m0− 12, 6(nh−

1)) = 16nh+4m0−12. It follows from the Schwartz-Zippel lemma that V3(Y) 6= 0
and V3(β) = 0 can happen at most with probability (16nh + 4m0 − 12)/|Cβ |.
Thus, let us assume from this point on that V3(Y) = 0.

Since ψα(Y)S(Y) = ψ′′ipc(Y), degψ′′ipc ≤ dgap + d and degS = dgap, then
degψα ≤ d. Since Xdgap /∈ S1, the coefficient of Y dgap in ψ′′ipc(Y) = ψα(Y)S(Y) =

ψα(Y)(Y dgap +Y dgap−nh+Y dgap−2nh) is 0. But this coefficient is (ψα)0+(ψα)nh+
(ψα)2nh . Thus, from Lemma 1 it follows that

∑
y∈H ψα(y) = 0.

Let us express ψα(Y) as ψ(X,Y), where X corresponds to α. We estab-
lished that

∑
y∈H ψ(α, y) = 0. For any y ∈ H, degX ψ(X, y) = nh − 1. If∑

y∈H ψ(X, y) 6= 0, then by the Schwartz-Zippel lemma,
∑
y∈H ψ(α, y) = 0 with

probability at most (nh − 1)/(|F| − nh). Assume that
∑
y∈H ψ(X, y) = 0. By

Lemma 4, ∀x ∈ H.P (x) = 0, where P (X) is as in Eq. (5). In the beginning
of Section 4, we established that this equation is equivalent to R1CSLite. Since
z(Y) = Zinp(Y)z̃′′(Y)+inp(Y) = z̃′′(Y)

∏m0+1
i=1 (Y −ωi−1)(Y −ωm+i−1)+`H1 (Y)+∑m0

i=1 xi`
H
i+1(Y)+

∑m0+1
i=1 `Hm+i(Y), then z(ωi−1) for i ∈ {1, . . . ,m0+1} correctly

encodes (1,x1, . . . ,xm0). The extractor extracts z(ωi−1) for i ∈ {m0+2, . . . ,m}∪
{m+m0 + 2, . . . , 2m} which indeed corresponds to the R1CSLite witness. ut

Lemma 6. Let d1 = max(dgap+d, nk−1), d2 = max(nk, dgap+2). For an alge-
braic A and V1(Y,Xτ),V2(Y,Xτ) as above, there exists a PPT B, s.t. Pr[A wins |
V1(Y,Xτ) 6= 0 ∨ V2(Y,Xτ) 6= 0] ≤ Advpdld1,d2,Pgen,B(λ) · |F|

2/(|F|2 − q).

Proof. This part of the proof is standard and essentially equivalent to [FKL18]
AGM proof for Groth16 SNARK. Hence, we only sketch the main idea. We
construct an adversary B that breaks the (d1, d2)-PDL assumption whenever A
wins in the knowledge-soundness game and either V1(Y,Xτ) 6= 0 or V2(Y,Xτ) 6=
0.

The adversary B gets as an input (p; [(xi)d1i=0]1, [(x
i)d2i=0]2). It samples

s1, s2, r1, r2 and defines σ = s1x + r1 and τ = s2x + r2. Although B does not
know σ or τ (they depend on the challenge x), B is able to homomorphically
compute elements of the form

[
τσi
]
ι
(e.g., [σ]1 = s1[x]1 + r1[1]1). The degrees

d1 and d2 are sufficiently large so that B can compute srs where σ and τ are
the trapdoors. Next, B runs A and ExtA on this srs to obtain the argument
and related argument polynomials. Moreover, B now knows coefficients of the
verification polynomials V1(Y,Xτ) and V2(Y,Xτ).

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 27

When A wins, V1(σ, τ) = 0 and V2(σ, τ) = 0. We define Pi(X) := Vi(S1X +
R1, S2X + R2) ∈ (F[S1, S2, R1, R2])[X] for i ∈ {1, 2}. According to Fact 4, if
Vi(Y,Xτ) 6= 0 has degree qi, then the coefficient of the maximal degree of Pi(X)
is some polynomial C(S1, S2) ∈ F[S1, S2] of degree qi. Thus, the coefficient of
the leading term of P ′i(X) := Vi(s1X + r1, s2X + r2) ∈ Zp[X] is C(s1, s2). Since
s1 and s2 are information-theoretically hidden from A (they are masked by r1
and r2), by the Schwartz-Zippel lemma, C(s1, s2) = 0 at most with probability
qi/|F|2. Thus, with an overwhelming probability, C(s1, s2) 6= 0 and P ′i(X) 6= 0.

Thus, B can check which out of Vi(Y,Xτ), i ∈ {1, 2}, is non-zero and then
find the roots of corresponding P ′i(X). One of the roots must be σ since P ′i(σ) =
Vi(s1σ + r1, s2σ + r2) = 0. Finally, B outputs σ.

Let q := max(q1, q2). Clearly, the maximum total degree q1 of V1 is at most
nk+dmax, where dmax = max(dgap+d, nk− 1). The maximum total degree q2 of
V2 is at most dmax+2+dgap. Finally, Pr[A wins | V1(Y,Xτ) 6= 0∨ V2(Y,Xτ) 6= 0]·
(1−q/|F|2) ≤ Advpdld1,d2,Pgen,B(λ). Thus, Pr[A wins | V1(Y,Xτ) 6= 0 ∨ V2(Y,Xτ) 6=
0] ≤ Advpdld1,d2,Pgen,B(λ) · |F|

2/(|F|2 − q). ut

It follows from these lemmas that Eq. (15) holds. This proves the claim. ut

5.2 Zero-Knowledge Proof

Theorem 2. Let b = 4. Then, Vampire is perfectly zero-knowledge.

Proof. We construct a simulator that, given an input (srs, td,R,x), simulates
the argument using a witness with za = zb = 0. We argue that no adversary can
distinguish an argument with a zero witness from argument with a real witness.

Let A = (A1,A2) be an unbounded adversary. Suppose that A1(srs) outputs
(R,x,w, st) such that (x,w) ∈ R and R ∈ URp,nh . We describe the simulator
as it interacts with A2(st) who plays the role of a malicious verifier.

The simulator Sim proceeds as follows. In the first round, Sim sets za, zb ←
0m−m0−1 and outputs the commitment [z̃(σ)]1 computed from it as in the real
protocol. Then, it obtains α from A2(st) and aborts if α /∈ F \H.

In the second round, Sim computes the polynomial ψipc(Y) as in the honest
protocol. In the real argument, ψipc(Y) has a zero coefficient of Y dgap ; with an
overwhelming probability, this is not a case in the simulated argument. Hence,
Sim uses the trapdoor σ to compute the commitment [ψipc(σ)]1 as in Eq. (11).
Next, Sim obtains β from A2(st) and aborts if β /∈ F \ (H ∪ {σ, σ/ωm}).

After that, Sim follows the protocol. In particular, Sim computes [Bpc(σ)]1
honestly as in Fig. 2, by setting Bpc(σ) ← (z̃(σ) − vz)/(σ − βωm) +
Ψ(σ)/(σ − β) − ψα(σ)/(σ − β); this is possible since β /∈ {σ, σ/βm}. Hence,
if there are no aborts, the argument transcript is [z̃(σ)]1, α, [ψipc(σ)]1, β,
vz, vM , [R(σ)τ,Q(σ)τ]1, [Bpc(σ)]1.

We show that A cannot tell apart the real and simulated arguments, by
showing that each argument element has identical distribution in the honest and
simulated case. First, only the polynomials z̃ and z depend on the witness; more-
over, z is determined by z̃ and the public input x. Furthermore, z̃ is evaluated

28 Helger Lipmaa, Janno Siim, and Michał Zając

at the points β, βωm, σ, and σωm (the last evaluation is done inside ψipc(σ)).
Thus, given b = 4, z̃(σ) (and z(σ)) have the same distribution.

Recall from Eq. (11) that ψipc(Y) = (ΛbH(α, Y) − M b(α, Y)z(Y ωm))
z(Y)S(Y). All polynomials except z are public. As observed, z(Y ωm) is uniquely
determined by x and z̃(Y ωm). Since z̃(σ) has identical distributions in the hon-
est and simulated arguments and ψipc(σ) is deterministically computed from it,
[ψipc(σ)]1 has the same distribution in the honest and in the simulated argument.

The values vM = M b(α, β) and [R(σ)τ,Q(σ)τ]1 are independent of the wit-
ness and computed honestly by the simulator. Finally, [Bpc(σ)]1 is uniquely
determined by the verification equation and can be computed from z̃(σ), τ, σ, β
and x. That is, from elements with identical distributions in the honest and
simulated arguments. This proves the claim. ut

Subversion Zero Knowledge. Next, we show that Vampire is subversion zero-
knowledge (Sub-ZK, [BFS16,ABLZ17,Fuc18,ALSZ21]), i.e., Vampire stays zero-
knowledge even when the SRS generator is compromized. For this, we need
to modify the Sub-ZK definition of [ALSZ21] to match interactive argument
systems for universal relations. The new definition divides A into A1 and A2;
moreover, we allow it to pick the relation which will be proven. Since Derive is
deterministic and uses only public input, we assume that the SRS specialization
is performed honestly. Hence, any party, when given ekR or vkR by an untrusted
party, can verify their correctness by running Derive(srs,R). More precisely, we
explicitly assume that the prover, who is supposed to verify correctness of ekR,
has access to the whole SRS.
Sub-ZK. Π is (statistical) subversion zero-knowledge, if there exist a PPT SRS
verification algorithm SrsVer and a PPT simulator Sim, such that the following
holds: for any PPT subverter Z, there exists a PPT ExtZ , such that for all
unbounded A = (A1,A2) and N ∈ poly(λ),

Pr

 〈P(ekR,x,w),A2(st)〉 = 1
∧SrsVer(srs) = 1∧R(x,w)

∧R ∈ URp,N

∣∣∣∣∣∣
srs← Z (p, N);

(R,x,w, st)← A1(srs);
(ekR, vkR)← Derive(srs,R)

 ≈s
Pr

 〈Sim(srs, td,R,x),A2(st)〉 = 1
∧SrsVer(srs) = 1∧R(x,w)

∧R ∈ URp,N

∣∣∣∣∣∣
srs← Z (p, N); td← ExtA(p, N);

(R,x,w, st)← A1(srs);
(ekR, vkR)← Derive(srs,R)

 .

We highlighted the changes compared to the definition of zero-knowledge.
We prove that Vampire is subversion zero-knowledge under the BDH-KE

assumption [ABLZ17,ALSZ21]. BDH-KE states that if an adversary, given p,
outputs ([σ]1, [σ]2), then one can extract σ. Here, we also construct an algorithm
SrsVer that verifies the correctness of srs; SrsVer is also needed for Vampire to
be updatable.

Theorem 3. Vampire is subversion zero-knowledge under the BDH-KE.

Proof. As proven in [ALSZ21], a perfectly zero-knowledge argument system is
subversion zero-knowledge if (1) there exists a PPT algorithm SrsVer(srs) that

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 29

outputs 1 or 0; in the first case, for a valid x, Sim(srs, td,R,x) outputs an argu-
ment indistinguishable from the real one, and (2) for any PPT adversary Z, there
exists a PPT extractor ExtZ , such that: if srs← Z(p, N ; r) and SrsVer(srs) = 1,
then ExtZ(p, N ; r) outputs the simulation trapdoor σ with overwhelming prob-
ability,.

The existence of Sim follows since if SrsVer accepts then the SRS is computed
correctly and the extractor provides Sim with the corresponding trapdoor, i.e.,
Sim behaves as in Theorem 2. Next, we construct SrsVer and ExtZ .
SrsVer(srs): Recall from Fig. 2 that {(Xi)

dgap+d
i=0:i 6=dgap , (X

iXτ)
nk−2
i=0 } and S2 =

{(Xi)nki=0, ((X
dgap+j−nhi)2j=0)

bd/nhc
i=0 }. We use [x]ι to denote the claimed value

(e.g., [σ2]1) of an entry in the SRS (e.g., [σ2]1) and [x]ι to denote the same value
after it has already been verified. We assume in the start that [1, σ, τ]1 and [1]2
are verified. After a check of [x]ι in an equation where all other variables are
already verified, we can think of [x]ι to be verified too. For example, the check
[σ]1 • [1]2 = [1]1 • [σ]2 convinces us that [σ]2 = [σ]2 is correctly computed.
1. Check [σ]1 • [1]2 = [1]1 • [σ]2.
2. For i ∈ [1, dgap − 1]: check [σi−1]1 • [σ]2 = [σi]1 • [1]2.
3. Check [σ2]1 • [1]2 = [1]1 • [σ2]2.
4. Check [σdgap−1]1 • [σ2]2 = [σdgap+1]1 • [1]2.
5. For i ∈ [dgap + 2, dgap + d]: check [σi−1]1 • [σ]2 = [σi]1 • [1]2.
6. For i ∈ [2, nk]: check [σ]1 • [σi−1]2 = [1]1 • [σi]2.
7. (if dgap > nk) Check [σdgap−1]1 • [σ]2 = [1]1 • [σdgap]2.
8. For i ∈ [1, nk − 2]: check [σi−1τ]1 • [σ]2 = [σiτ]1 • [1]2.
9. For k ∈ {dgap − nh, dgap − 2nh, dgap + 1, dgap + 1− nh, dgap + 1− 2nh, dgap +

2, dgap + 2− nh, dgap + 2− 2nh} (if k > nk): check [σk]1 • [1]2 = [1]1 • [σk]2.
If all of the above checks pass, then SrsVer outputs 1, otherwise it outputs 0.
Clearly, SrsVer is correctly constructed.
ExtZ(p, nh): Let Z be an adversary, that on input (p, N) outputs srs. Since
SrsVer(srs) = 1, the SRS has the form specified at Fig. 2. In particular, it contains
([σ]1, [σ]2) = σ([1]1, [1]2). By the BDH-KE assumption, there exists an extractor
Ext′A that extracts σ from A. The Sub-ZK extractor ExtA just returns σ.

Since the SRS has been computed correctly and there exists an extractor
that extracts σ, Sim(srs,x) outputs an argument indistinguishable from a real
one. This proves the claim. ut

Acknowledgment. Janno Siim was partially supported by the Estonian Re-
search Council grant (PRG49).

References

ABLZ17. Behzad Abdolmaleki, Karim Baghery, Helger Lipmaa, and Michal Zajac.
A subversion-resistant SNARK. In Tsuyoshi Takagi and Thomas Peyrin,
editors, ASIACRYPT 2017, Part III, volume 10626 of LNCS, pages 3–33.
Springer, Heidelberg, December 2017. doi:10.1007/978-3-319-70700-6_
1.

https://doi.org/10.1007/978-3-319-70700-6_1
https://doi.org/10.1007/978-3-319-70700-6_1

30 Helger Lipmaa, Janno Siim, and Michał Zając

ALSZ21. Behzad Abdolmaleki, Helger Lipmaa, Janno Siim, and Michal Zajac. On
subversion-resistant SNARKs. Journal of Cryptology, 34(3):17, July 2021.
doi:10.1007/s00145-021-09379-y.

BBHR18. Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast
reed-solomon interactive oracle proofs of proximity. In Ioannis Chatzigian-
nakis, Christos Kaklamanis, Dániel Marx, and Donald Sannella, editors,
ICALP 2018, volume 107 of LIPIcs, pages 14:1–14:17. Schloss Dagstuhl,
July 2018. doi:10.4230/LIPIcs.ICALP.2018.14.

BCC+16. Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and
Christophe Petit. Efficient zero-knowledge arguments for arithmetic cir-
cuits in the discrete log setting. In Marc Fischlin and Jean-Sébastien Coron,
editors, EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 327–357.
Springer, Heidelberg, May 2016. doi:10.1007/978-3-662-49896-5_12.

BCG+14. Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized Anony-
mous Payments from Bitcoin. In IEEE SP 2014, pages 459–474, Berkeley,
CA, USA, May 18–21, 2014. IEEE Computer Society.

BCI+13. Nir Bitansky, Alessandro Chiesa, Yuval Ishai, Rafail Ostrovsky, and Omer
Paneth. Succinct non-interactive arguments via linear interactive proofs.
In Amit Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 315–333.
Springer, Heidelberg, March 2013. doi:10.1007/978-3-642-36594-2_18.

BCR+19. Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner,
Madars Virza, and Nicholas P. Ward. Aurora: Transparent succinct ar-
guments for R1CS. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part I, volume 11476 of LNCS, pages 103–128. Springer,
Heidelberg, May 2019. doi:10.1007/978-3-030-17653-2_4.

BCS21. Jonathan Bootle, Alessandro Chiesa, and Katerina Sotiraki. Sumcheck
arguments and their applications. In Tal Malkin and Chris Peikert,
editors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages 742–
773, Virtual Event, August 2021. Springer, Heidelberg. doi:10.1007/
978-3-030-84242-0_26.

BDFG20. Dan Boneh, Justin Drake, Ben Fisch, and Ariel Gabizon. Efficient polyno-
mial commitment schemes for multiple points and polynomials. Cryptology
ePrint Archive, Report 2020/081, 2020. https://eprint.iacr.org/2020/
081.

BFL20. Balthazar Bauer, Georg Fuchsbauer, and Julian Loss. A classification
of computational assumptions in the algebraic group model. In Daniele
Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II, vol-
ume 12171 of LNCS, pages 121–151. Springer, Heidelberg, August 2020.
doi:10.1007/978-3-030-56880-1_5.

BFS16. Mihir Bellare, Georg Fuchsbauer, and Alessandra Scafuro. NIZKs with an
untrusted CRS: Security in the face of parameter subversion. In Jung Hee
Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part II, volume
10032 of LNCS, pages 777–804. Springer, Heidelberg, December 2016. doi:
10.1007/978-3-662-53890-6_26.

BGW05. Dan Boneh, Craig Gentry, and Brent Waters. Collusion resistant broad-
cast encryption with short ciphertexts and private keys. In Victor Shoup,
editor, CRYPTO 2005, volume 3621 of LNCS, pages 258–275. Springer,
Heidelberg, August 2005. doi:10.1007/11535218_16.

https://doi.org/10.1007/s00145-021-09379-y
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-642-36594-2_18
https://doi.org/10.1007/978-3-030-17653-2_4
https://doi.org/10.1007/978-3-030-84242-0_26
https://doi.org/10.1007/978-3-030-84242-0_26
https://eprint.iacr.org/2020/081
https://eprint.iacr.org/2020/081
https://doi.org/10.1007/978-3-030-56880-1_5
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/978-3-662-53890-6_26
https://doi.org/10.1007/11535218_16

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 31

Bow17. Sean Bowe. BLS12-381: New zk-SNARK Elliptic Curve Construction.
Blog post, https://blog.z.cash/new-snark-curve/, last accessed in July,
2018, March 11, 2017.

CFF+21. Matteo Campanelli, Antonio Faonio, Dario Fiore, Anaïs Querol, and
Hadrián Rodríguez. Lunar: a toolbox for more efficient universal and up-
datable zkSNARKs and commit-and-prove extensions. In Tibouchi and
Wang [TW21], pages 3–33.

CHM+20. Alessandro Chiesa, Yuncong Hu, Mary Maller, Pratyush Mishra, Noah
Vesely, and Nicholas P. Ward. Marlin: Preprocessing zkSNARKs with
universal and updatable SRS. In Anne Canteaut and Yuval Ishai, edi-
tors, EUROCRYPT 2020, Part I, volume 12105 of LNCS, pages 738–768.
Springer, Heidelberg, May 2020. doi:10.1007/978-3-030-45721-1_26.

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model
and its applications. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62. Springer,
Heidelberg, August 2018. doi:10.1007/978-3-319-96881-0_2.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
CRYPTO’86, volume 263 of LNCS, pages 186–194. Springer, Heidelberg,
August 1987. doi:10.1007/3-540-47721-7_12.

Fuc18. Georg Fuchsbauer. Subversion-zero-knowledge SNARKs. In Michel Ab-
dalla and Ricardo Dahab, editors, PKC 2018, Part I, volume 10769 of
LNCS, pages 315–347. Springer, Heidelberg, March 2018. doi:10.1007/
978-3-319-76578-5_11.

GGPR13. Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova.
Quadratic span programs and succinct NIZKs without PCPs. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 626–645. Springer, Heidelberg, May 2013. doi:
10.1007/978-3-642-38348-9_37.

GKM+18. Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian
Miers. Updatable and universal common reference strings with applications
to zk-SNARKs. In Hovav Shacham and Alexandra Boldyreva, editors,
CRYPTO 2018, Part III, volume 10993 of LNCS, pages 698–728. Springer,
Heidelberg, August 2018. doi:10.1007/978-3-319-96878-0_24.

Gro10. Jens Groth. Short pairing-based non-interactive zero-knowledge argu-
ments. In Masayuki Abe, editor, ASIACRYPT 2010, volume 6477 of
LNCS, pages 321–340. Springer, Heidelberg, December 2010. doi:10.1007/
978-3-642-17373-8_19.

Gro16. Jens Groth. On the size of pairing-based non-interactive arguments. In
Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May
2016. doi:10.1007/978-3-662-49896-5_11.

GWC19. Ariel Gabizon, Zachary J. Williamson, and Oana Ciobotaru. PLONK:
Permutations over lagrange-bases for oecumenical noninteractive argu-
ments of knowledge. Cryptology ePrint Archive, Report 2019/953, 2019.
https://eprint.iacr.org/2019/953.

ILV11. Malika Izabachène, Benoît Libert, and Damien Vergnaud. Block-wise P-
signatures and non-interactive anonymous credentials with efficient at-
tributes. In Liqun Chen, editor, 13th IMA International Conference on
Cryptography and Coding, volume 7089 of LNCS, pages 431–450. Springer,
Heidelberg, December 2011.

https://blog.z.cash/new-snark-curve/
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-319-96881-0_2
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-319-76578-5_11
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-642-38348-9_37
https://doi.org/10.1007/978-3-319-96878-0_24
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-642-17373-8_19
https://doi.org/10.1007/978-3-662-49896-5_11
https://eprint.iacr.org/2019/953

32 Helger Lipmaa, Janno Siim, and Michał Zając

KMSV21. Markulf Kohlweiss, Mary Maller, Janno Siim, and Mikhail Volkhov. Snarky
Ceremonies. In Tibouchi and Wang [TW21], pages 98–127.

KZG10. Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. Constant-size
commitments to polynomials and their applications. In Masayuki Abe,
editor, ASIACRYPT 2010, volume 6477 of LNCS, pages 177–194. Springer,
Heidelberg, December 2010. doi:10.1007/978-3-642-17373-8_11.

LFKN90. Carsten Lund, Lance Fortnow, Howard J. Karloff, and Noam Nisan. Al-
gebraic methods for interactive proof systems. In 31st FOCS, pages 2–10.
IEEE Computer Society Press, October 1990. doi:10.1109/FSCS.1990.
89518.

Lip12. Helger Lipmaa. Progression-free sets and sublinear pairing-based non-
interactive zero-knowledge arguments. In Ronald Cramer, editor,
TCC 2012, volume 7194 of LNCS, pages 169–189. Springer, Heidelberg,
March 2012. doi:10.1007/978-3-642-28914-9_10.

LY10. Benoît Libert and Moti Yung. Concise mercurial vector commitments and
independent zero-knowledge sets with short proofs. In Daniele Miccian-
cio, editor, TCC 2010, volume 5978 of LNCS, pages 499–517. Springer,
Heidelberg, February 2010. doi:10.1007/978-3-642-11799-2_30.

MBKM19. Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic:
Zero-knowledge SNARKs from linear-size universal and updatable struc-
tured reference strings. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 2111–2128.
ACM Press, November 2019. doi:10.1145/3319535.3339817.

PHGR13. Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:
Nearly practical verifiable computation. In 2013 IEEE Symposium on Se-
curity and Privacy, pages 238–252. IEEE Computer Society Press, May
2013. doi:10.1109/SP.2013.47.

RZ21a. Carla Ràfols and Arantxa Zapico. An algebraic framework for uni-
versal and updatable SNARKs. In Tal Malkin and Chris Peikert,
editors, CRYPTO 2021, Part I, volume 12825 of LNCS, pages 774–
804, Virtual Event, August 2021. Springer, Heidelberg. doi:10.1007/
978-3-030-84242-0_27.

RZ21b. Carla Ràfols and Arantxa Zapico. An Algebraic Framework for Universal
and Updatable SNARKs. Technical Report 2021/590, IACR, May 5, 2021.
Last checked modification from August 19, 2021. URL: https://ia.cr/
2021/590.

Tha13. Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In
Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 71–89. Springer, Heidelberg, August 2013. doi:10.
1007/978-3-642-40084-1_5.

Tha21. Justin Thaler. Proofs, Arguments, and Zero-Knowledge. Jan-
uary 23, 2021. URL: http://people.cs.georgetown.edu/jthaler/
ProofsArgsAndZK.html.

TW21. Mehdi Tibouchi and Huaxiong Wang, editors. ASIACRYPT 2021 (3),
volume 13092 of LNCS, Singapore, December 5–9, 2021. Springer, Cham.

A Full Efficiency Comparison

Next, we establish the efficiency of Vampire (see Fig. 2 for an easy reference). In
Table 2, we provide an extensive comparison with other recent updatable and

https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1109/FSCS.1990.89518
https://doi.org/10.1109/FSCS.1990.89518
https://doi.org/10.1007/978-3-642-28914-9_10
https://doi.org/10.1007/978-3-642-11799-2_30
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1109/SP.2013.47
https://doi.org/10.1007/978-3-030-84242-0_27
https://doi.org/10.1007/978-3-030-84242-0_27
https://ia.cr/2021/590
https://ia.cr/2021/590
https://doi.org/10.1007/978-3-642-40084-1_5
https://doi.org/10.1007/978-3-642-40084-1_5
http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html
http://people.cs.georgetown.edu/jthaler/ProofsArgsAndZK.html

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 33

universal zk-SNARKs. Recall that nh = |H| is equal to 2m + b = 2m + 4 and
nk = |K| is equal to the total number of non-zero entries in L and R.

Size of srs. Let us compute which SRS elements are needed by Vampire. For the
prover’s computation to succeed, srs needs to contain the following G1 elements
(we list the group elements output by P, important underlying polynomials, and
the needed SRS elements):

Group element Polynomial SRS elements

[z̃(σ)]1 z̃(Y) ∈ F≤nh−2m0−3[Y] [(σi)nh−2m0−3
i=0]1

[ψipc(σ)]1 ψipc(Y) ∈ PolyPuncF(d, dgap, Y) [(σi)
dgap+d
i=0:i 6=dgap]1

[R(σ)τ]1 R(Z) ∈ F≤nk−2[Z] [(σiτ)nk−2i=0]1
[Q(σ)τ]1 Q(Z) ∈ F≤nk−3[Z] [(σiτ)nk−3i=0]1
[Bpc(σ)]1 Bpc(Y) ∈ F≤d−1[Y] [(σi)d−1i=0]1

Recalling the definitions of d and dgap from Eqs. (10) and (12) (in particular,
nh < d = dgap), the prover needs the following elements to be in the SRS:
[(σi)

dgap+d
i=0:i 6=dgap , (σ

iτ)nk−2i=0]1 = [g(σ, τ) : g ∈ S1]1.
For the verifier’s computation to succeed, the SRS needs to contain the fol-

lowing elements:
– To check (]) in Fig. 2, the SRS needs to contain ([τ]1, [1, σ]2). Moreover,

srsR needs to contain [rcv(σ), col(σ), row(σ), rc(σ), zcol(σ), zrow(σ), zrc(σ),
ZK(σ)]2. All these elements of srsR can be computed from [(σi)nki=0]2.

– To check (]]), the SRS needs to contain ([1]1, [1, σ, S(σ), σS(σ), σ
2S(σ)]2),

where [S(σ), σS(σ), σ2S(σ)]2 can be computed in the preprocessing phase
from [((σdgap+j−nhi)2j=0)

bd/nhc
i=0]2.

Thus, vkR has to contain ([1, τ]1, [1, σ]2, srsR) (where srsR is as in Fig. 2), while
[(σi)nki=0, ((σ

dgap+j−nhi)2j=0)
bd/nhc
i=0]2 is needed in the preprocessing phase to com-

pute srsR. This explains the definition of srs, srsR, ekR, and vkR in Fig. 2.
Altogether, srs contains (dgap + d) + (nk − 2 + 1) = (6(nh − 1)) + (nk − 1) =

6nh + nk − 7 = 12m+ nk + 6b− 7 = 12m+ nk + 17 elements of G1 and at most
nk + 1 + 3 · 3 = nk + 10 elements of G2.

If nk � m (in most applications, nk > 4m and choosing an even larger nk
seems to be prudent), then the SRS length is dominated by nk elements of G1

and G2.

Computational Complexity of KGen. The key generation is dominated by
the need to compute all SRS elements and is thus the same as SRS length but
in different units (scalar multiplications).

Complexity of Derive. In Derive, one needs to compute [f(σ)]2 for seven degree-
(≤ nk−1) polynomials (thus 7(nk−1) scalar multiplications in G2), three degree-
≈ dgap polynomials S(Y), Y S(Y), Y 2S(Y) (≈ 3dgap = 3 · 3(nh − 1) = 9(2m +
b − 1) = 18m + 27 scalar multiplications in G2), and [ZK(σ)]1 (one additional
scalar multiplication). Thus, the computational complexity is ≈ 18m+7nk scalar
multiplications in G2.

34 Helger Lipmaa, Janno Siim, and Michał Zając

Prover’s Computation. The prover’s computation is quasilinear, like in other
efficient updatable zk-SNARKs with constant communication. More precisely, P
needs a quasilinear number of F operations to compute z(Y) ← Zinp(Y)z̃(Y) +
inp(Y), R(Z) and Q(Z), and polynomial openings z̃pc(Y) and Φpc(Y).

In addition, the prover needs a linear number of scalar multiplications to com-
pute the values [z̃(σ), ψipc(σ), R(σ)τ,Q(σ), Bpc(σ)]1. More precisely, to compute
[f(σ)]1 for some f , the prover has to execute deg f+1 scalar multiplications. Now,
note that z̃ ∈ F≤nh−2m0−3[Y], ψipc ∈ PolyPuncF(d, dgap, Y), R ∈ F≤nk−2[Z],
Q ∈ F≤nk−3[Z], and Bpc ∈ F≤d−1[Z] correspondingly. Moreover, d = 3(nh − 1)
(see Eq. (10)), dgap = 3(nh − 1) (see Eq. (12)), nh = 2m+ b, and b = 4. Hence,
the total number of scalar multiplications is (nh− 2m0− 3+1)+ (dgap + d− 1+
1)+ (nk − 2+1)+ (nk − 3+1)+ (d− 1+1) = dgap +2d+nh+2nk − 2m0− 5 =
10nh+2nk − 2m0− 14 = 20m+2nk − 2m0 +10b− 14 = 20m+2nk − 2m0 +26.

Using Count instead of Aurora’s sumcheck eliminates one FFT but adds cryp-
tographic operations. Decreasing the prover’s computation is an interesting open
question.

Verifier’s Computation. The verifier’s computation is dominated by the com-
putation of inp(β), Zinp(β) (see Eq. (8)), and ΛbH(α, β) (see Eq. (6)), in total
Θ(m0+log nh) field multiplications. Otherwise, the verifier executes three scalar
multiplications in G1, 13 scalar multiplications in G2 (this number can be slightly
optimized), and seven pairings.

Summatory Efficiency Comparison. See Table 2 for efficiency comparison
with previous work. Essentially, we copied the efficiency comparison table of
Table 2 from [RZ21b] and added one additional entry for Vampire. Clearly, it
makes sense to compare the efficiency of zk-SNARKs for the constraint system
that underlies Vampire, that is, R1CSLite with sparse matrices. (We denote
corresponding rows in Table 2 by bold font.) Pink cells contain the absolutely
best (most optimal) entries while yellow cells contain the absolute best entries
as functions of nk only.

As we see from Table 2, Vampire has very good efficiency when measured as
a function of Nk / nk and somewhat worse efficiency as a function of M / m.
In other words, Vampire is very competitive when Nk / nk are relatively large
compared to M / m. In applications, we think it is reasonable to assume that
Nk � M since it allows to implement circuits of high fan-in. Inefficiency in m
follows from our strategy of optimizing the argument length. For example, the
fact that we use a single polynomial to commit both to zl and zr increases nh
twice from m+ b to 2m+ b.

Let us now ignore nk-independent terms (we can do it when say Nk > 20M).
Then, Vampire’s SRS has the same length as LunarLite’s and is three times
shorter than Marlin’s; the same holds for the complexity of KGen. The complexity
of Derive is 7nk in the case of Vampire, which is only beaten in the case of the
RZ21 zk-SNARK for the same constraint system; however, the latter has a twice
longer argument. The prover’s computation is 2nk, compared to 4nk in the case of
Basilisk (for the same arithmetization), 3nk in the case of LunarLite, and 8nk in
the case of Marlin. We emphasize that Vampire has the best prover computation,

Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK 35

Table 2. Efficiency comparison from [RZ21a]: updatable and universal zk-SNARKs.
Here, m0 is the number of public input wires, m is the number of multiplicative gates,
ng is the number of total gates, v: bounded fan-out, nk: non-zero elements of the
matrix that describe the circuit, a is the number of additive gates, ng, Nk, A,M, V are
maximum supported values for ng, nk, a,m, v.

Scheme |srs| |srsR| |π| KGen Derive Prove Verify Language

Sonic G1 4M – 20 4M 36m 273m 7P
[BCC+16]
constraints[MBKM19] G2 4M 3 – 4M – –

F – – 16 – O(nk lognk) O(nk lognk) O(m0 + lognk)

Marlin G1 3Nk 12 13 3Nk 12nk 14m+ 8nk 2P R1CS with
sparse
matrices

[CHM+20] G2 2 2 – – – –
F – – 8 – O(nk lognk) O(nk lognk) O(m0 + lognk)

Plonk G1 3ng 8 7 3ng 8ng 11ng 2P
Plonk
constraints[GWC19] G2 1 1 – – – –

F – – 7 – O(ng logng) O(ng logng) O(m0 + logng)

LunarLite2x G1 Nk 16 11 Nk 16nk 8m+ 4nk 2P R1CSLite
with sparse
matrices

[CFF+21] G2 1 1 – 1 – –
F – – 3 – O(nk lognk) O(nk lognk) O(m0 + lognk)

LunarLite G1 Nk – 10 Nk – 8m+ 3nk 7P R1CSLite
with sparse
matrices

[CFF+21] G2 Nk 27 – Nk 24nk –
F – – 2 – O(nk lognk) O(nk lognk) O(m0 + lognk)

RZ21 G1 Nk 4 10 Nk 6nk 6m+ 4nk 2P R1CSLite
with sparse
matrices

(sparse matrices) G2 – – – – – –
[RZ21a], §5.3 F – – 3 – O(nk lognk) O(nk lognk) O(m0 + lognk)

RZ21 (“Plonk”) G1 ng 11 8 ng 11ng 8ng 2P
Plonk
constraints[RZ21b], Fig 11 G2 1 1 – – – –

F – – 4 – O(ng logng) O(ng logng) O(m0 + logng)

Basilisk G1 M 3V + 1 6 M (3v + 1)m 6m 2P weighted
R1CS with
bounded
fan-out

[RZ21b], App F G2 1 1 – – – –
F – – 2 – O(m logm) O(m logm) O(m0 + logm)

Vampire G1 12M +Nk + 17 – 5 12M +Nk + 17 – 20m+ 2nk
3G1 + 13G2 + 7P R1CSLite

with sparse
matrices

(sparse matrices) G2 Nk + 10 11 – Nk + 10 18m+ 7nk –
current paper F – – 2 – O(nk lognk) O(nk lognk) O(m0 + logm)

as a function of nk, among any known updatable zk-SNARKs. The verifier needs
to execute seven pairings, compared to seven in LunarLite and two in most of
the other SNARKs.

	Counting Vampires: From Univariate Sumcheck to Updatable ZK-SNARK

