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Abstract

Modular reduction is a core operation in public-key cryptography. While a standard modular reduc-
tion is often required, a partial reduction limiting the growth of the coefficients is enough for several
usecases.

Knowing the quotient of the Euclidean division of an integer by the modulus allows to easily recover
the remainder. We propose a way to compute efficiently, without divisions, an approximation of this
quotient. From this approximation, both full and partial reductions are deduced. The resulting algo-
rithms are modulus specific: the sequence of operations to perform in order to get a reduction depends
on the modulus and the size of the input.

We analyse the cost of our algorithms for a usecase coming from post-quantum cryptography. We
show that with this modulus, our method gives an algorithm faster than prior art algorithms.

1 Introduction

Modular reduction is used on most of cryptosystems and is an important requirement for an efficient,
secure and compact public-key cryptosystem. Depending on the cryptosystem parameters or structure,
the modular reduction can be performed in different ways. Generic modular reduction algorithms exist,
such as Montgomery [Mon85] or Barrett reduction [Bar86]. However, in some settings, specific modular
reduction algorithms are more adapted. For example, Solinas reduction [Sol11] is an efficient method to
reduce coefficients with modulus of the form f

(
2k
)
, where f is a polynomial with low degree and small

coefficients. Likewise, Crandall introduced a specific method for reduction modulo 2k − c with small c in
[Cra27].

In this paper, we introduce a method to compute an approximation of a quotient, leading to a modular
reduction algorithm. For some specific application, this algorithm is faster than both generic and specific
algorithms. This modular reduction finds applications in Lattice-based Cryptography.

1.1 Notations, definitions

Throughout this paper, all integers are considered as non-negative ones.

Logical operations We denote by:

� ”>>” the logical right shift operation: let a be an integer of bit-length k, so that a =

k−1∑
i=0

ai · 2i. Then

for 0 ≤ s ≤ k − 1, (a >> s) =

k−1∑
i=s

ai · 2i−s. If s ≥ k, then (a >> s) = 0,
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� ”<<” the logical left shift operation.

� ” & ” the logical bitwise AND.

Integer and fractional parts Given a non-negative real number x, the integer part of x, that is the
largest integer ≤ x, is denoted by ⌊x⌋. Its fractional part x− ⌊x⌋ is denoted by {x}.

For the sequel, let q ≥ 2 be a fixed integer.

Modular Reduction Given a ∈ N, the modular reduction of a modulo q is the integer r ∈ {0, 1, . . . , q − 1}
such that a = ⌊a/q⌋ · q + r. It is denoted by a mod q.

Partial Modular Reduction Given a > 2 · q, a partial reduction of a modulo q is an integer a′ such that
a′ < a and a′ mod q = a mod q.

1.2 Problem Statement and Motivations

We consider the following problems:

1. Given a fixed modulus q and a bound k, compute a modular reduction of any input of bit-length ≤ k.

2. Given a fixed modulus q and a bound k, compute a partial reduction of any input of bit-length ≤ k.

Solving efficiently these two problems is motivated by lattice-based post-quantum cryptography. In these
cryptosystems, polynomials with coefficients modulo q, where q is fixed and generally fits in a machine
word, are multiplied (see e.g. [ABD+20, BDL+19, VSRDK, CDH+19]). Hence, the modular multiplication
between coefficients is a core operation.

Most schemes work with a modulus q such that polynomial multiplication is computed using the Number
Theoretic Transform (see e.g. [PG12]). After a transformation to the NTT domain, polynomial multiplication
is handled by point-wise multiplication. Finally, the result is transformed back from the NTT domain. In this
setting, the conversion to and from Montgomery representation can be done for free in the transformations
to and from the NTT domain, see e.g. the reference implementations of [ABD+20, BDL+19]. Thus, the
point-wise modular multiplications are naturally handled with Montgomery multiplication.

However, some specific devices like smartcards may have a slow CPU multiplication, while having a
coprocessor handling large integers multiplication. In this context, it can be faster to transform the polyno-
mial multiplication into a large integer one, thanks to the Kronecker substitution. Then, the large integer
arithmetic is handled by the coprocessor, as presented in [AHH+19, BRvV21, GMR21]. Nevertheless, it
computes the polynomial multiplication over the integers. Hence, each coefficient must be reduced modulo
q. Thus, solving efficiently Problem 1 is of interest in this context.

In general, only the final values have to be fully reduced. Then, it can be sufficient to just control the size
of intermediate values, to avoid overflows. In this case, efficient algorithms to solve Problem 2 are adapted.

1.3 Contributions

Let a and q be non negative integers, let k be an upper bound on the bit-length of a. We provide an algorithm
that computes an approximation of ⌊a/q⌋ as a sum of (a >> j)’s in Section 2.2.

A partial reduction modulo q is deduced from this algorithm in Section 2.3.1. Such a partial reduction

is a a mod q + t · q, for a non-negative integer t. We prove that t ≤
∑k−1

i=0

{
2i

q

}
.

In addition, a relaxed version is given in Section 2.3.2. It follows the same idea as the previous partial
reduction, with a lower accuracy, leading to a faster algorithm.

In Section 2.4, we show that a full reduction can easily be obtained from the partial ones, e.g. by
performing a standard division algorithm. A standard division algorithm leads to a mod q, from a mod q+
t · q, with at most ⌊log(t)⌋+ 1 subtractions.
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Section 3 is devoted to a usecase study. Coming from post-quantum cryptography, the modulus q is such

that
∑k−1

i=0

{
2i

q

}
is small. We analyse the cost of our reduction and compare it to prior art algorithms. We

show that on a CPU with a slow multiplication, our reduction is faster.

1.4 State of the Art

In this part we present standard modular reduction algorithms. The first two work with any modulus. The
two others are designed for modulus with a special shape. For a more complete bibliography on modular
reduction, see [GG03, BZ10] and references therein.

Montgomery Reduction Montgomery Reduction is introduced in [Mon85]. Given a modulus q, a radix
R coprime to q and an integer 0 ≤ a < R · q to reduce, it computes ã = a · R−1 mod q. Montgomery
multiplication is a combination of a multiplication and a Montgomery Reduction.

To get a mod q from the Montgomery reduction ã, either a pre-computation (input a ·R mod q instead
of a) or a post-computation (output ã ·R mod q instead of ã) has to be done.

When several Montgomery multiplications are performed, the relative cost of pre or post-computation
becomes negligible. In the context of NTT multiplication, even if only one multiplication by coefficient is
done, pre and post-computations can be mixed into the transformations to and from the NTT domain, so
that their cost becomes free.

However in our context, we assume that the value to reduce comes from a Kronecker substitution fol-
lowed by a large integer multiplication. Thus, only one reduction is performed, so that the cost of pre or
post-computation, that requires another reduction modulo q, remains significant. Hence, we consider that
Montgomery reduction and Montgomery multiplication are out of scope for this paper.

Barrett Reduction Barrett reduction, introduced in [Bar86] and described in a more modern way in
[MVOV18], is a partial reduction algorithm that does not require any assumption on the modulus. While it
is often presented assuming that the value to reduce modulo q is less than q2, we give here a more general
presentation.

Let q and a be integers, let ℓ = bitlen (q). Barrett reduction computes a partial reduction of a modulo
q as follow: let k be an integer such that 2ℓ < a < 2k and let m =

⌊
2k/q

⌋
. Then a partial reduction of a is

given by a′ = a− ((a ·m) >> k) ·q. In addition, a′ is either the modular reduction a mod q or a mod q+q.
During Barrett reduction, the computation a ·m can exceed the size of a register. Therefore, additional

operation are required to handle this temporary result on 2 registers. However, some variants of Barrett
algorithm allow to limit the size of temporary variables [MVOV18, Kon10]. The idea is to perform Barrett
reduction using information only on the highest bits of a instead of the whole bits. To do so:

� The precomputed value: m =
⌊
2ℓ+α/q

⌋
� Barrett reduction: a′ = a− q · quo where quo = [(a >> (ℓ+ β)) ·m] >> (α− β) and α, β are integers.

This variant is a trade-off between temporary variables size and final subtraction requirement. Indeed, this
partial reduction requires at best one final subtraction at cost of a slight increase in bit size or several final
subtractions without increasing the bit size.

Generalized Mersenne Number Reduction Generalized Mersenne numbers are integers of the form
q = f

(
2k
)
, where f is a polynomial with small coefficients and low degree. A method to compute their

modular reduction is presented in [Sol99, Sol11].
It is not a general modular reduction algorithm. Instead, it allows to find, given a modulus q, a sequence

of operations leading to the modular reduction. These operations are logical shifts, logical ands, modular
additions and subtractions.
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As an illustration, we instantiate the first example in [Sol99] with k = 5: the reduction of a < 230 modulo
q = 215− 25 +1 is given by a mod q = T +S1 +S2−D1−D2, where + and − are modular operations and
T = a & 0x7FFF, S1 = (a >> 10) & 0x7FE0, S2 = (a >> 20) & 0x3E0, D1 = (a >> 15) and D2 = (a >> 25).

We refer to [Sol99, Sol11] for the general presentation of the method.

Pseudo Mersenne Number Reduction Pseudo Mersenne Numbers are integers of the form q = 2ℓ− c,
where c is ”small”. An algorithm to computhe their modular reduction is introduced by Crandall in the
patent [Cra27].

Let q = 2ℓ − c, with c < 2ℓ−1. This reduction relies on the identity 2ℓ = c mod q: if a = a12
ℓ + a0 then

a mod q = c × a1 + a0 mod q. Hence, a recursive computation of c × a1 + a0 is done, until the result is
fully reduced.

Algorithm 1 Crandall

Require: a, q = 2ℓ − c
1: while a ≥ 2q do
2: a0 = a & (2ℓ − 1)
3: a1 = a >> ℓ
4: a = c× a1 + a0
5: end while
6: return a

In the following we present a modular reduction named Quotient Approximation Reduction and after-
wards we compare it complexity with the previous algorithms in the case of post-quantum cryptography.

2 Quotient Approximation Reduction

2.1 Overview

Let q and a be integers, let k = bitlen (a), so that a =

k−1∑
i=0

ai · 2i, where ai is the i-th bit of a.

The Quotient Approximation aims to compute efficiently a value close to ⌊a/q⌋. Since a mod q =
a− ⌊a/q⌋ · q, this is a first step to a partial reduction.

A first approximation is to compute

k−1∑
i=0

ai ·
⌊
2i

q

⌋
rather than ⌊a/q⌋. This sum is expected to be ”close”

to ⌊a/q⌋. Indeed,⌊
a

q

⌋
=

⌊
k−1∑
i=0

ai ·
2i

q

⌋
=

⌊
k−1∑
i=0

ai ·
⌊
2i

q

⌋
+

k−1∑
i=0

ai ·
{
2i

q

}⌋
=

k−1∑
i=0

ai ·
⌊
2i

q

⌋
+

⌊
k−1∑
i=0

ai ·
{
2i

q

}⌋
,

where by definition, for each i,
{
2i/q

}
< 1.

The sum

k−1∑
i=0

ai ·
⌊
2i

q

⌋
is then computed replacing the computation of the

⌊
2i/q

⌋
’s with the computation

of some (a >> j)’s, in order to avoid divisions. The idea is that if bitlen (q) = ℓ and q is ”close to” a power
of two, then 2i/q is ”close to” 2i >> ℓ.

Section 2.2 is devoted to the computation of
∑

ai ·
⌊
2i/q

⌋
as a sum of (a >> j)’s. Then, a partial reduction

algorithms relying on this quotient approximation are presented in Section 2.3. In Section 2.4, two methods
to get a modular reduction from the partial reduction are given. Finally, we present in Section 3 some specific
usecases where our method is more efficient than the state of the art.
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2.2 Computing
∑

ai · ⌊2i/q⌋ without divisions

Let q and a be integers, ℓ = bitlen (q) and k = bitlen (a). Since the computation of
⌊
2i/q

⌋
without division

is straightforward if q is a power of 2, we assume in the sequel that q is not a power of 2. Let ai be the i-th
bit of a, so that a =

∑k−1
i=0 ai · 2i. Notice that for each j,

⌊
2j/q

⌋
is either 2 ·

⌊
2j−1/q

⌋
or 2 ·

⌊
2j−1/q

⌋
+ 1.

Let Jk be the set of integers Jk =
{
1 ≤ j ≤ k − 1,

⌊
2j/q

⌋
= 2 ·

⌊
2j−1/q

⌋
+ 1
}
.

Remark 1. If q is not a power of 2 then ℓ = bitlen (q) ∈ Jk and is its smallest element.
Indeed, let 1 ≤ j ≤ ℓ− 1. Then q > 2ℓ−1 ≥ 2j, that implies 2j/q < 1 and then

⌊
2j/q

⌋
= 0. In particular,⌊

2j/q
⌋
= 2 ·

⌊
2j−1/q

⌋
= 0 for 1 ≤ j ≤ ℓ− 1.

In addition, 2ℓ−1 < q < 2ℓ (where 2ℓ−1 < q being strict as q is not a power of 2), so that 1 < 2ℓ/q < 2.
Hence, 1 ≤

⌊
2ℓ/q

⌋
< 2. As an integer,

⌊
2ℓ/q

⌋
is necessarily equal to 1. In particular,

⌊
2ℓ/q

⌋
= 2 ·

⌊
2ℓ−1/q

⌋
+

1 = 1 and ℓ is the smallest element in Jk.

Lemma 1. Let i0, i1 such that ]i0, i1] ∩ Jk = ∅. Then
⌊
2i1/q

⌋
= 2i1−i0 ·

⌊
2i0/q

⌋
.

Proof. Since ]i0, i1] ∩ Jk = ∅, for any k ∈ ]i0, i1],
⌊
2k/q

⌋
= 2 ·

⌊
2k−1/q

⌋
. Hence,⌊

2i1/q
⌋
= 2 ·

⌊
2i1−1/q

⌋
= 22 ·

⌊
2i1−2/q

⌋
= · · · = 2i1−i0 ·

⌊
2i1−(i1−i0)/q

⌋
= 2i1−i0 ·

⌊
2i0/q

⌋
.

Proposition 1. Let Jk =
{
1 ≤ j ≤ k − 1,

⌊
2j/q

⌋
= 2 ·

⌊
2j−1/q

⌋
+ 1
}
. For all a such that bitlen (a) ≤ k,

k−1∑
i=ℓ

ai
⌊
2i/q

⌋
=
∑
j∈Jk

(a >> j) .

Proof. Let t be the cardinal of Jk and let j1 = ℓ ≤ j2 ≤ · · · ≤ jt be its elements. We prove the following
statement by backward induction: for all 2 ≤ s ≤ t,

k−1∑
i=js

ai
⌊
2i/q

⌋
=

k−1∑
i=js

ai · 2i−js−1
⌊
2js−1/q

⌋
+

∑
j∈Jk, j≥js

(a >> j) . (1)

First, let’s prove the case s = t. Applying Lemma 1 with i0 = jt and i1 = i to
⌊
2i/q

⌋
leads to

k−1∑
i=jt

ai ·
⌊
2i/q

⌋
=

k−1∑
i=jt

ai · 2i−jt ·
⌊
2jt/q

⌋
.

Since jt ∈ Jk ,
⌊
2jt/q

⌋
= 2 ·

⌊
2jt−1/q

⌋
+ 1. Replacing in the above equation gives

k−1∑
i=jt

ai ·
⌊
2i/q

⌋
=

k−1∑
i=jt

ai · 2i−jt ·
(
2 ·
⌊
2jt−1/q

⌋
+ 1
)
=

k−1∑
i=jt

ai · 2i−jt+1 ·
⌊
2jt−1/q

⌋
+

k−1∑
i=jt

ai · 2i−jt . (2)

In the first term of the right-hand side,
⌊
2jt−1/q

⌋
can be replaced with 2jt−jt−1−1

⌊
2jt−1/q

⌋
, using

Lemma 1 with i0 = jt−1 and i1 = jt − 1.
In addition, the second term of the right-hand side is (a >> jt). Since jt is the greatest element in Jk,

(a >> jt) can be written
∑

j∈Jk, j≥jt

(a >> j).

Reporting these equalities in Equation 2 leads to

k−1∑
i=jt

ai ·
⌊
2i/q

⌋
=

k−1∑
i=jt

ai · 2i−jt+1 · 2jt−jt−1−1
⌊
2jt−1/q

⌋
+

∑
j∈Jk, j≥jt

(a >> j)

=

k−1∑
i=jt

ai · 2i−jt−1
⌊
2jt−1/q

⌋
+

∑
j∈Jk, j≥jt

(a >> j) ,
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that proves the case s = t.

We now assume that the induction hypothesis (Equation 1) is true for a given s and we prove it also holds

for s− 1. We split the sum
∑k−1

i=js−1
ai ·

⌊
2i/q

⌋
in two parts to get

k−1∑
i=js−1

ai ·
⌊
2i/q

⌋
=

js−1∑
i=js−1

ai ·
⌊
2i/q

⌋
+

k−1∑
i=js

ai ·
⌊
2i/q

⌋

=

js−1∑
i=js−1

ai ·
⌊
2i/q

⌋
+

k−1∑
i=js

ai · 2i−js−1
⌊
2js−1/q

⌋
+

∑
j∈Jk, j≥js

(a >> j)

 , (3)

where the second equality comes from the induction hypothesis.
Applying again Lemma 1, with i0 = js−1 and i1 = i, one gets

js−1∑
i=js−1

ai ·
⌊
2i/q

⌋
=

js−1∑
i=js−1

ai · 2i−js−1
⌊
2js−1/q

⌋
,

thus, replacing this expression in Equation 3,

k−1∑
i=js−1

ai ·
⌊
2i/q

⌋
=

js−1∑
i=js−1

ai · 2i−js−1
⌊
2js−1/q

⌋
+

k−1∑
i=js

ai · 2i−js−1
⌊
2js−1/q

⌋
+

∑
j∈Jk, j≥js

(a >> j)


=

k−1∑
i=js−1

ai · 2i−js−1
⌊
2js−1/q

⌋
+

∑
j∈Jk, j≥js

(a >> j) . (4)

Since js−1 ∈ Jk ,
⌊
2js−1/q

⌋
= 2 ·

⌊
2js−1−1/q

⌋
+ 1. Hence,

k−1∑
i=js−1

ai · 2i−js−1
⌊
2js−1/q

⌋
=

k−1∑
i=js−1

ai · 2i−js−1
(
2 ·
⌊
2js−1−1/q

⌋
+ 1
)

=

k−1∑
i=js−1

ai · 2i−js−1+1 ·
⌊
2js−1−1/q

⌋
+

k−1∑
i=js−1

ai · 2i−js−1

According to Lemma 1 applied with i0 = js−2 and i1 = js−1 − 1,
⌊
2js−1−1/q

⌋
= 2js−1−1−js−2

⌊
2js−2/q

⌋
,

thus above equation becomes

k−1∑
i=js−1

ai · 2i−js−1
⌊
2js−1/q

⌋
=

k−1∑
i=js−1

ai · 2i−js−1+1 · 2js−1−1−js−2
⌊
2js−2/q

⌋
+

k−1∑
i=js−1

ai · 2i−js−1

=
k−1∑

i=js−1

ai · 2i−js−2 ·
⌊
2js−2/q

⌋
+

k−1∑
i=js−1

ai · 2i−js−1 .

Replacing above equation in Equation 4 and noticing that

k−1∑
i=js−1

ai · 2i−js−1 = a >> js−1, it comes

k−1∑
i=js−1

ai ·
⌊
2i/q

⌋
=

k−1∑
i=js−1

ai · 2i−js−2 ·
⌊
2js−2/q

⌋
+ (a >> js−1) +

∑
j∈Jk, j≥js

(a >> j)

=

k−1∑
i=js−1

ai · 2i−js−2 ·
⌊
2js−2/q

⌋
+

∑
j∈Jk, j≥js−1

(a >> j) ,

that proves the backward induction step.
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To conclude, we prove the statement of the proposition, starting from

k−1∑
i=j1

ai ·
⌊
2i/q

⌋
=

j2−1∑
i=j1

ai ·
⌊
2i/q

⌋
+

k−1∑
i=j2

ai ·
⌊
2i/q

⌋
. (5)

According to Lemma 1 applied with i0 = j1 = ℓ and i1 = i, the first term of the right-hand side can be
written

j2−1∑
i=j1

ai ·
⌊
2i/q

⌋
=

j2−1∑
i=j1

ai · 2i−j1
⌊
2j1/q

⌋
.

The second term is re-written thanks to Equation 1 for s = 2, that is true from the previous backward
induction:

k−1∑
i=j2

ai ·
⌊
2i/q

⌋
=

k−1∑
i=j2

ai · 2i−j1
⌊
2j1/q

⌋
+

∑
j∈Jk, j≥j2

(a >> j) .

Replacing these two expressions in Equation 5 leads to:

k−1∑
i=j1

ai ·
⌊
2i/q

⌋
=

j2−1∑
i=j1

ai · 2i−j1
⌊
2j1/q

⌋
+

k−1∑
i=j2

ai · 2i−j1
⌊
2j1/q

⌋
+

∑
j∈Jk, j≥j2

(a >> j)

=

k−1∑
i=j1

ai · 2i−j1
⌊
2j1/q

⌋
+

∑
j∈Jk, j≥j2

(a >> j)

Since j1 = ℓ,
⌊
2j1/q

⌋
= 1, so that the first term of above right-hand side is

k−1∑
i=j1

ai · 2i−j1 , that is (a >> j1).

This means that

k−1∑
i=j1

ai ·
⌊
2i/q

⌋
= (a >> j1) +

∑
j∈Jk, j≥j2

(a >> j) =
∑

j∈Jk, j≥j1

(a >> j) =
∑
j∈Jk

(a >> j)

Proposition 1 allows to compute, without division, an approximation of the quotient ⌊a/q⌋. In the next
section, we deduce a partial reduction algorithm, based on this quotient approximation.

2.3 Partial Modular Reductions

Let q be a modulus of bit-length ℓ, let k be the maximum bit-length of the numbers to reduce. Let Jk be
the set of integers Jk =

{
1 ≤ j ≤ k − 1,

⌊
2j/q

⌋
= 2 ·

⌊
2j−1/q

⌋
+ 1
}
.

2.3.1 Quotient Approximation Partial Reduction

The following algorithm computes a partial reduction modulo q of any input a of bit-length at most k and
such that a ≥ 2ℓ.
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Algorithm 2 QAPartialRed(a, q, Jk): Quotient Approximation Partial Reduction

Require: a =
∑k−1

i=0 ai · 2i ≥ 2ℓ, q, Jk defined as above

Ensure: r = a−
(∑k−1

i=ℓ ai ·
⌊
2i/q

⌋)
· q

1: quo approx← 0
2: for each j ∈ Jk do
3: quo approx← quo approx+ (a >> j)
4: end for
5: r ← a− quo approx · q
6: return r

Proposition 2. Algorithm 2 is correct and it outputs a partial reduction of a modulo q, that is r < a and r
mod q = a mod q.

Proof. It is clear that at the end of the inner loop, quo approx =
∑
j∈Jk

(a >> j). According to Proposition 1,

∑
j∈Jk

(a >> j) =

k−1∑
i=ℓ

ai ·
⌊
2i/q

⌋
. Hence, at the end of the algorithm,

r = a−

(
k−1∑
i=ℓ

ai ·
⌊
2i/q

⌋)
· q,

so that it outputs the expected value.
In addition, quo approx ̸= 0: since a ≥ 2ℓ, at least one index i ≥ ℓ is such that a’s i-th bit ai is not 0.

Thus, the sum quo approx =
∑k−1

i=ℓ ai ·
⌊
2i/q

⌋
is necessarily non-zero. Hence, r = a − quo approx · q < a.

As the subtraction of a and a multiple of q, r mod q = a mod q, and r is a partial reduction of a modulo
q.

The following Proposition gives a bound on the difference between the modular reduction a mod q and
the partial reduction given by Algorithm 2.

Proposition 3. Let r be the output of Algorithm 2 for an input a of bit-length k. Then

0 ≤ r − (a mod q) ≤

⌊
k−1∑
i=0

{
2i

q

}⌋
· q.

Proof. Let a be a k-bit integer and r the corresponding output of Algorithm 2. According to Proposition 2,
denoting by ai the i-th bit of a,

r = a−

(
k−1∑
i=ℓ

ai ·
⌊
2i/q

⌋)
· q. (6)

Moreover,⌊
a

q

⌋
=

⌊
k−1∑
i=0

ai ·
2i

q

⌋
=

⌊
k−1∑
i=0

ai ·
⌊
2i

q

⌋
+

k−1∑
i=0

ai ·
{
2i

q

}⌋
=

k−1∑
i=0

ai ·
⌊
2i

q

⌋
+

⌊
k−1∑
i=0

ai ·
{
2i

q

}⌋

Or
∑l−1

i=0 ai ·
⌊
2i

q

⌋
= 0, then ⌊

a

q

⌋
=

k−1∑
i=ℓ

ai ·
⌊
2i

q

⌋
+

⌊
k−1∑
i=0

ai ·
{
2i

q

}⌋
(7)
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Since a mod q = a− ⌊a/q⌋ · q, using it follows from Equations 6 and 7 that

r − (a mod q) =

(
a−

(
k−1∑
i=ℓ

ai ·
⌊
2i/q

⌋)
· q

)
− (a− ⌊a/q⌋ · q)

=

(
⌊a/q⌋ −

k−1∑
i=ℓ

ai ·
⌊
2i/q

⌋)
· q

=

(
k−1∑
i=ℓ

ai ·
⌊
2i/q

⌋
+

⌊
k−1∑
i=0

ai ·
{
2i/q

}⌋
−

k−1∑
i=ℓ

ai ·
⌊
2i/q

⌋)
· q

=

⌊
k−1∑
i=0

ai ·
{
2i/q

}⌋
· q ≤

⌊
k−1∑
i=0

{
2i/q

}⌋
· q,

the last inequation holding because each ai is a bit, so that ai ≤ 1. It is also clear that
⌊∑k−1

i=0 ai ·
{
2i/q

}⌋
≥ 0,

as a sum of non-negative elements, thus so is r − (a mod q).

Remark 2. Practically, when working with a fixed modulus, it is more efficient to ”unroll” the loop in
Algorithm 2, as shown in the next toy example.

Example 1. Let q = 24 − 2 = 14, so that ℓ = 4. Let k = 10 be the maximum bit-length of the number to
reduce. The table

i 0 1 2 3 4 5 6 7 8 9⌊
2i/q

⌋
0 0 0 0 1 2 4 9 18 36{

2i/q
}

1/14 1/7 2/7 4/7 1/7 2/7 4/7 1/7 2/7 4/7

ensures that J8 = {4, 7}. Then, Algorithm 2 can be written:

� quo approx← (a >> 4) + (a >> 7)

� return a− quo approx · q
In addition, Proposition 3 ensures that for any 10-bit integer a, the corresponding result r is such that:

0 ≤ r − (a mod q) ≤

⌊
10−1∑
i=0

{
2i

q

}⌋
· q =

⌊
43

14
· q
⌋
= 3 · q.

Finally, we give the number of operations to perform the Quotient Approximation partial reduction.

Proposition 4. Let q be a modulus of bit-length ℓ, let k be the maximum bit-length of the numbers to
reduce. Let Jk be the set of integers Jk =

{
1 ≤ j ≤ k − 1,

⌊
2j/q

⌋
= 2 ·

⌊
2j−1/q

⌋
+ 1
}
and let n = #Jk be its

cardinality. Then for all a of bit-length at most k, QAPartialRed(a, q, Jk) is computed with

� n right shifts on k-bit elements,

� n− 1 additions of (k − ℓ)-bit elements,

� 1 multiplication between an element of bit-length at most k − ℓ+ 1 and one ℓ-bit element,

� 1 subtraction between two elements of size at most k.

Proof. The for loop computes the sum of n elements, each element being a (a >> j) with j ≥ ℓ. Hence, this
can be done with n shifts on k-bit elements and n− 1 additions on (k− ℓ)-bit elements. Since quo approx ≤
⌊a/q⌋, it has bit-length at most k − ℓ+ 1.

Thus, the final step a−quo approx · q requires 1 multiplication between an element of bit-length at most
k− ℓ+1 and one ℓ-bit element. Since the result is non-negative according to Proposition 3, the result of the
multiplication is necessarily of bit-length at most k. The subtraction is then between two elements of size
at most k.
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2.3.2 Quotient Approximation Partial Reduction Relaxed

The Algorithm 2 determines an approximation of the quotient by iterating over all the elements of Jk.
However in some cases we do not need such a precision for the approximated quotient. Hence, one can
perform the Algorithm 2 in a subset of Jk.

Let Jk = J ′
k ∪ J̄ ′

k where J ′
k ∩ J̄ ′

k = ∅ and the first element of Jk is included in J ′
k. The Algorithm 3

computes a partial reduction modulo of any input a of bit-length at most k such that a ≥ 2ℓ and the inner
loop iterates in J ′

k ⊂ Jk.

Algorithm 3 QAPartialRedRelaxed(a, q, J ′
k): Quotient Approximation Partial Reduction Relaxed

Require: a =
∑k−1

i=0 ai · 2i ≥ 2ℓ, q, J ′
k defined as above

Ensure: r = a−
(∑k−1

i=ℓ ai ·
⌊
2i/q

⌋
+
∑

j∈J̄′
k

⌊
(2k − 1)/2j

⌋)
· q

1: quo approx← 0
2: for each j ∈ J ′

k do
3: quo approx← quo approx+ (a >> j)
4: end for
5: r ← a− quo approx · q
6: return r

Proposition 5. Algorithm 3 is correct and it outputs a partial reduction of a modulo q, that is r < a and r
mod q = a mod q.

Proposition 6. Let r be the output of Algorithm 3 for an input a of bit-length k. Then

0 ≤ r − (a mod q) ≤

⌊k−1∑
i=0

{
2i

q

}⌋
+
∑
j∈J̄′

k

⌊
(2k − 1)/2j

⌋ · q.
Proof. By definition Jk = J ′

k ∪ J̄ ′
k where J ′

k ∩ J̄ ′
k = ∅ and the first element of Jk is included in J ′

k. Then,

∑
j∈J′

k

(a >> j) =
∑
j∈Jk

(a >> j)−
∑
j∈J̄′

k

(a >> j) =

k−1∑
i=ℓ

ai ·
⌊
2i/q

⌋
−
∑
j∈J̄′

k

⌊
a/2j

⌋
> 0 (8)

Hence at the end of Algorithm 3:

r = a−

k−1∑
i=ℓ

ai ·
⌊
2i/q

⌋
−
∑
j∈J̄′

k

⌊
a/2j

⌋ · q ≤ a−

k−1∑
i=ℓ

ai ·
⌊
2i/q

⌋
−
∑
j∈J̄′

k

⌊
(2k − 1)/2j

⌋ · q (9)

Using equations 8 and 9, the proofs of Propositions 5 and 6 can be deduced from the proofs of Propositions
2 and 3.

The Proposition 4 holds for the set J ′
k. A use case of Algorithm 3 is described in Section 3.

2.4 From Partial Reduction to Modular Reduction

In this section, two methods are proposed to get a modular reduction from the Quotient Approximation
partial reduction.
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2.4.1 Partial Reduction Iterations

A first straightforward way to get a complete modular reduction is to iterate the partial reduction algorithm
until the result is < 2ℓ. Up to a final subtraction with q, the result is a full modular reduction. This leads
to Algorithm 4.

Algorithm 4 QARed: Quotient Approximation Reduction

Require: a =
∑k−1

i=0 ai · 2i, q, Jk
Ensure: r = a mod q
1: r ← a
2: J ← Jk
3: while r ≥ 2ℓ do
4: r ← QAPartialRed(r, q, J)
5: J ← Jbitlen(r)
6: end while
7: if r ≥ q then
8: r ← r − q
9: end if

10: return r

Proposition 7. Algorithm 4 is correct.

Proof. Given r ≥ 2ℓ, QAPartialRed(r) is a partial reduction modulo q according to Proposition 2. In partic-
ular, QAPartialRed(r) < r. Thus, the while loop ends and r mod q = a mod q always holds.

In addition, if r < 2ℓ, then either it is already less than q (and then already = a mod q) or it is between
q and 2 · q. Indeed, q has bit-length equal to ℓ, so that 2 · q ≥ 2ℓ > r. In the latter case, 0 ≤ r − q < q, thus
r − q = a mod q.

Remark 3. A closed-form formula for the complexity in the general case seems hard to get and outside the
scope of this paper. However, for a fixed modulus q, the maximum number of iteration of the while loop can
be computed thanks to the bound given in Proposition 3.

Example 2 (Example 1 continued). In Example 1, after one iteration, r − (a mod q) ≤ 3 · q. Hence,
r ≤ (a mod q) + 3 · q ≤ 4 · q = 56 < 26 is at most 6-bit long.

Then for the second iteration, quo approx = (r >> 4) and r ≤ (a mod q) · q+
⌊∑6−1

i=0

{
2i/q

}⌋
· q ≤ 2 · q,

thus it is at most 5-bit long.
For the third iteration, quo approx = (r >> 4). If r was ≥ 24 before this third step, since it was

necessarily ≤ 2 · q < 25, then quo approx = 1. In that case, the new r is r = r − q ≤ q < 24. In the other
case, quo approx = 0 but r was < 24 already.

Finally, with the last subtraction, the full algorithm can be unrolled as follow:

1. quo approx← (a >> 4) + (a >> 7)

2. r ← a− quo approx · q

3. quo approx← (r >> 4)

4. r ← r − quo approx · q

5. quo approx← (r >> 4)

6. r ← r − quo approx · q

7. if r ≥ q then r ← r − q

8. return r

2.4.2 Division Algorithm

A second way to get a modular reduction from a Quotient Approximation partial reduction is to perform a
standard division algorithm until the full reduction is reached.
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Algorithm 5 QARedDiv: Quotient Approximation Reduction with Divisions

Require: a =
∑k−1

i=0 ai · 2i, q, Jk
Ensure: r = a mod q
1: r ← QAPartialRed(a, q, Jk)
2: s← bitlen (r)
3: while s ≥ ℓ do
4: if r − (q << (s− ℓ)) ≥ 0 then
5: r ← r − (q << (s− ℓ))
6: end if
7: s← s− 1
8: end while
9: return r

The correctness of Algorithm 5 is straightforward as it is QARedDiv followed by a standard binary division
algorithm, that computes the remainder of r in its division by q.

Likewise, according to Proposition 3, r ≤ (a mod q) +
⌊∑k−1

i=0

{
2i/q

}⌋
· q, that is r = (a mod q) + δ · q,

where 0 ≤ δ ≤
⌊∑k−1

i=0

{
2i/q

}⌋
. Then the while loop actually computes r− δ · q, that is done with bitlen (δ)

iterations with a standard binary algorithm. Hence, at most bitlen
(⌊∑k−1

i=0

{
2i/q

}⌋)
iterations of the

while loop are performed.

Remark 4. Practically, for a fixed modulus, the algorithm is unrolled, as shown in the following example.

Example 3 (Example 1 continued). In Example 1, after one iteration, r − (a mod q) ≤ 3 · q. Hence, a
mod q can be recovered from r with a most 2 subtractions. The unrolled algorithm is then:

1. quo approx← (a >> 4) + (a >> 7)

2. r ← a− quo approx · q

3. if r − (q << 1) ≥ 0 then r ← r − (q << 1)

4. if r − q ≥ 0 then r ← r − q

5. return r

3 Application: CRYSTALS-Dilithium

Dilithium [BDL+19] is a lattice-based signature, finalist of the NIST call for Post-Quantum Cryptography
[MAA+20]. It relies on multiplication of polynomials of degree 256, modulo q = 8380417 = 223 − 213 + 1.

Key Generation We first consider multiplications in Key Generation for Dilithium2. In this context, 2
polynomials of degree n = 256 are multiplied. The first one, says f , has coefficients in [0, q[ while the second
one, say g, has coefficients in [−η, η], with η = 2. To deal with non-negative coefficients, one can compute
f · g as f · g+ − f · g−, where g+ has coefficients in [0, η], g− in ]0, η] and g = g+ − g−.

Hence, without loss of generality, we consider the polynomial multiplication between f and a polynomial
with coefficients in [0, η]. Each coefficient a of the result is such that 0 ≤ a ≤ n · q · η < 232.

To apply Quotient Approximation reduction with k = 32, we compute Jk = {23} and
⌊∑k−1

i=0

{
2i/q

}⌋
=⌊

12574208
8380417

⌋
= 1. It follows that at most 1 subtraction by q is needed to get a mod q from QAPartialRed(a, q, Jk).

Hence, our modular reduction becomes:
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1. quo approx← (a >> 23)

2. r ← a− quo approx · q

3. if r − q ≥ 0 then r ← r − q

4. return r

In the following we assess Quotient Approximation Reduction, a variant of Barrett, Crandall and Solinas
algorithms in the case of Dilithium parameters.

For the Barrett algorithm, we use the parameters α = 10, β = −2 and m =
⌊
233/q

⌋
. These parameters

ensure that the temporary variable fits in a register and at most one final subtraction is required.
For Crandall algorithm, the modular reduction is done with one iteration in the ”while” loop and a final

subtraction.
For Solinas algorithm, the reduction of a < 232 modulo q = 223 − 213 + 1 is given by a mod q =

T + S1 + S2 − D, where + and − are modular operations and T = a & 7FFFFF, S1 = (a & 0x7FE0) >> 10,
S2 = (a & 0x3E0) >> 20, D = (a & 0x1ff800000) >> 15.

The Table 1 describes the operations count for each reduction algorithm. The result of the operations
fits in a register.

Operation on 32 bits
Mult. Add/Sub Shift AND Cond. Sub

Barrett10,−2 2 1 2 0 1
Solinas 0 2 2 3 1
Crandall 1 1 1 1 1
QARed 1 1 1 0 1

Table 1: Complexity of the reduction algorithms

In this context Quotient Approximation Reduction is more efficient than Barrett and Crandall algo-
rithms. The comparison between Solinas and QARed algorithms depends on the component. Indeed, if a
multiplication where both the result and each operand fit in a register costs less than 3 AND, 1 add and 1
shift, then Quotient Approximation Reduction is faster than Solinas. Otherwise Solinas is faster.

Signature In the Dilithium signature computation, one polynomial has coefficients in [0, q[. The other
one has coefficients in [0, 2γ1 ], where γ1 = 217 or 219. Hence, each coefficient a of the result is such that
0 ≤ a ≤ n · q · 2γ1 < 250.

Here, for k = 50, we get Jk = {23, 33, 44, 45, 46} and
⌊∑k−1

i=0

{
2i/q

}⌋
= 5. It follows that at most

bitlen (5) = 3 subtractions by q are needed to get a mod q from QAPartialRed(a, q, Jk):

1. quo approx ← (a >> 23) + (a >> 33) +
(a >> 44) + (a >> 45) + (a >> 46)

2. r ← a− quo approx · q

3. if r − (q << 2) ≥ 0 then r ← r − (q << 2)

4. if r − (q << 1) ≥ 0 then r ← r − (q << 1)

5. if r − q ≥ 0 then r ← r − q

6. return r

However, one can perform the modular reduction by firstly use QAPartialRedRelaxed and afterwards use
QAPartialRed. For k = 50, we take Jk = {23, 33, 44, 45, 46} , J ′

k = {23, 33} and J̄ ′
k = {44, 45, 46}. First we

apply the algorithm r ← QAPartialRedRelaxed(a, q, J ′
k):

1. quo approx← (a >> 23) + (a >> 33)

2. r ← a− quo approx · q

3. return r
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Due to Proposition 6 we got

r ≤

⌊k−1∑
i=0

{
2i

q

}⌋
+
∑
j∈J̄′

k

⌊
(2k − 1)/2j

⌋ · q = 114 · q < 232

After this partial reduction our result is lower than 232. Then, we re-define Jk as Jk = {23, 33} and by
applying, like in the previous key generation example, QAPartialRed(r, q, Jk) and a final subtraction we got
the expected reduction. In the following we denote by QARedRelaxed the combination of these reductions.

We compare the Quotient Approximation Reduction Algorithm with the Barrett modular reduction.
For Crandall algorithm, the modular reduction is done with three iterations in the ”while” loop and a

final subtraction. After the second iteration, the result fits on 32 bits.
For the Barrett algorithm, we use the parameters α = 28, β = −2 and m =

⌊
251/q

⌋
. These parameters

ensure that the temporary variables are encoded on 58 bits rather than 50 bits but fits on 2 machine words.
The reduction requires at most one final subtraction.

For Solinas algorithm, the reduction of a < 250 modulo q = 223 − 213 + 1 is given by a mod q =
T +S1+S2+S3+S4− (D1+D2+D3+D4), where + and − are modular operations and T = a & 0x7fffff,
S1 = (a & 0x1ff800000) >> 10, S2 = (a & 0x7fe00000000) >> 20, S3 = (a & 0x7f80000000000) >> 30,
S4 = (a & 0x7c00000000000) >> 46, D1 = (a & 0x3fffff800000) >> 23, D2 = (a & 0x7c00000000000) >>
32, D3 = (a & 0x3ffe00000000) >> 33, D4 = (a & 0x7f80000000000) >> 43. In practice, S4 and D4 are
computed as S4 = D2 >> 14, D4 = S3 >> 13. Most of the masks are sparse (especially lower bytes),
therefore operations can be done on one machine word instead of two.

The Table 2 describes the number of operations required for each reduction algorithm. The operations
are performed on a machine word (32 bits) or 2 machine words (64 bits). For the multiplication on 64 bits we
consider that we multiply two integers encoded on a word and the result is encoded on two machine words.

Operation on 64 bits Operation on 32 bits
Mult. Add/Sub Shift And Mult. Add/Sub Shift And Cond. Sub

Barrett28,−2 2 1 2 0 0 0 0 0 1
Solinas 0 0 2 2 0 8 6 5 2
Crandall 1 1 2 0 2 2 1 3 1
QARed 1 1 1 0 0 4 4 0 3
QARedRelaxed 1 1 1 0 1 2 2 0 1

Table 2: Complexity of the reduction algorithms

In order to compare the reduction algorithms we convert all operations on 64 bits to ones on 32 bits.

� A multiplication with result on 64 bits requires 4 multiplications and 3 additions on 32 bits.

� Add/sub on 64 bits requires 2 add/sub on 32 bits (addition/subtraction of the carry/borrow and the
two most/least significant words can generally be performed with a single instruction, at the same cost
as a simple add/sub)

� A shift on 64 bits requires 2 shifts and 1 addition on 32 bits. Generally, a shift on 64 bits requires 2
additions on 32 bits rather than 1. However, in our context the shift operation ensures that the result
fits on a machine word. Therefore, only one addition is required.

� An AND on 64 bits requires 2 AND on 32 bits.

The complexities on 32 bits are described in Table 3.
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Operation on 32 bits
Mult. Add/Sub Shift And Cond. Sub

Barrett28,−2 8 10 4 0 1
Solinas 0 10 10 9 2
Crandall 6 9 5 3 1
QARed 4 10 6 0 3
QARedRelaxed 5 8 4 0 1

Table 3: Complexity with machine word operations of the reduction algorithms

In this context Quotient Approximation Reduction (relaxed version) is more efficient than Barrett and
Crandall algorithms. The comparison between Solinas and QARed algorithms depends on the component.
Indeed, if 5 multiplications where both the result and each operand fit in a register costs less than 9 AND, 2
add, 1 conditional subtraction and 6 shifts, then Quotient Approximation Reduction is faster than Solinas.
Otherwise Solinas is faster.

4 Conclusion

In this paper we introduced the modular reduction Quotient Approximation Reduction. This one is modulo-
dependent and does not use temporary variable larger than the coefficient to reduce. In addition, Quotient
Approximation Reduction is quite flexible allowing an optimized reduction regarding the context. Indeed,
the targeted quotient can be computed more or less precisely to obtain the most efficient reduction. In our
study, an application of this flexibility has been shown on the post-quantum signature Dilithium. Quotient
Approximation Reduction can find other applications on cryptography like elliptic curve cryptosystems.
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