
Complete and Improved FPGA Implementation of
Classic McEliece∗

Po-Jen Chen1,2, Tung Chou2, Sanjay Deshpande3, Norman Lahr4,
Ruben Niederhagen5, Jakub Szefer3 and Wen Wang3

1 GIEE, National Taiwan University, Taipei, Taiwan, mooseedsheeran@gmail.com
2 CITI, Academia Sinica, Taipei, Taiwan, blueprint@crypto.tw

3 CASLAB, Deptartment of Electrical Engineering, Yale University, New Haven, US,
sanjay.deshpande@yale.edu,jakub.szefer@yale.edu,wen.wang.ww349@yale.edu

4 ACE, Fraunhofer SIT, Darmstadt, Germany, norman@lahr.email
5 IMADA, University of Southern Denmark, Odense, Denmark, ruben@polycephaly.org

Abstract. We present the first specification-compliant constant-time FPGA imple-
mentation of the Classic McEliece cryptosystem from the third-round of NIST’s
Post-Quantum Cryptography standardization process. In particular, we present the
first complete implementation including encapsulation and decapsulation modules as
well as key generation with seed expansion. All the hardware modules are parametriz-
able, at compile time, with security level and performance parameters. As the most
time consuming operation of Classic McEliece is the systemization of the public key
matrix during key generation, we present and evaluate three new algorithms that can
be used for systemization while complying with the specification: hybrid early-abort
systemizer (HEA), single-pass early-abort systemizer (SPEA), and dual-pass early-
abort systemizer (DPEA). All of the designs outperform the prior systemizer designs
for Classic McEliece by 2.2× to 2.6× in average runtime and by 1.7× to 2.4× in
time-area efficiency. We show that our complete Classic McEliece design for example
can perform key generation in 5.2 ms to 20 ms, encapsulation in 0.1 ms to 0.5 ms, and
decapsulation in 0.7 ms to 1.5 ms for all security levels on an Xlilinx Artix 7 FPGA.
The performance can be increased even further at the cost of resources by increasing
the level of parallelization using the performance parameters of our design.
Keywords: Classic McEliece · Key Encapsulation Mechanism · Code-Based Cryp-
tography · PQC · FPGA · Hardware Implementation

1 Introduction
In 2016 NIST started a standardization process1 with the goal to standardize cryptographic
primitives that are secure against attacks aided by quantum computers. There are
several families of post-quantum cryptography: hash-based, code-based, lattice-based,
multivariate, and isogeny-based cryptography. One of the “finalists” in the third round
of the standardization process is the code-based key encapsulation mechanism (KEM)
Classic McEliece [ABC+20]. Classic McEliece is generally considered a conservative choice:
Its security properties are relatively well understood, but its public key size ranges from
0.25 to 1.3 megabytes. Despite its name honoring Robert J. McEliece as the founder of

∗September 5, 2022. This version of the paper provides fixes to errata in the version of TCHES 2022.3.
A list of all errata (marked in blue in the text) is provided at the end of this document.

1https://csrc.nist.gov/projects/post-quantum-cryptography

mailto:mooseedsheeran@gmail.com
mailto:blueprint@crypto.tw
mailto:sanjay.deshpande@yale.edu,jakub.szefer@yale.edu,wen.wang.ww349@yale.edu
mailto:norman@lahr.email
mailto:ruben@polycephaly.org
https://tches.iacr.org/index.php/TCHES/article/view/9695/9226
https://csrc.nist.gov/projects/post-quantum-cryptography


2 Complete and Improved FPGA Implementation of Classic McEliece

code-based cryptography, Classic McEliece uses the syndrome-based dual variant of the
McEliece cryptosystem [McE78] introduced by Harald Niederreiter [Nie86].

An important aspect of the NIST standardization process is the performance of the
submissions both in software and in hardware, and there have been many publications
providing software and hardware optimizations. Optimized software implementations
of Classic McEliece for x86 systems are described, e.g., in [BCS13, Cho17] and an im-
plementation for a Cortex M4 system in [CC21]. There have been several hardware
implementations of McEliece and Niederreiter cryptosystems. For example, Eisenbarth
et. al. [EGHP09] describe a hardware design for the McEliece cryptosystem including en-
cryption and decryption; the design by Shoufan et. al. [SWM+10] includes key generation,
encryption, and decryption. Gosh et. al. [GDUV12] as well as Massolino et. al. [MBR15]
target decryption only. A hardware implementation of encryption and decryption for the
Niederreiter variant is provided by Heyse et. al. in [HG13]. López-García et. al. [LGCN20]
describe a hardware-software co-design for the McEliece cryptosystem. These hardware
publications do not target the exact parameter sets and algorithmic specifications of the
Classic McEliece submission since they either pre-date the Classic McEliece specification
or implement different variants of the original cryptosystems of McEliece and Niederreiter.

The hardware implementation accompanying the specification of Classic McEliece is
described in [WSN17, WSN18]. However, this hardware implementation covers only the
core functionalities of key generation, encryption, and decryption, but it does not cover
encapsulation and decapsulation as well as generation of the keys from a seed.

Motivation. Each attempt of public-key generation, when the systematic variants of
key generation are used, fails with a high probability: It fails whenever the input parity-
check matrix can not be reduced to systematic form (for convenience, in the remainder
of the paper we say that a matrix is “systemizable” if it can be reduced to systematic
form). Software implementations released by the Classic McEliece team, along with
the implementation in [CC21], thus make use of early abort so that matrices that are
not systemizable are quickly detected. The early abort does not violate constant-time
requirements, since it triggers an entirely new secret and public key generation. The early
abort approach is faster because it only needs to operate on the leftmost (n− k)× (n− k)
submatrix in order to detect whether the whole (n− k)× n matrix is systemizable. This
has not been used in previous hardware implementations. In addition, the hardware
implementation accompanying the Classic McEliece submission does not implement the
complete KEM specification but only its Niederreiter core. Hence, all currently existing
hardware implementations are not fully specification-compliant.

Contribution. Our contributions are as follows:

• We introduce the three more efficient algorithmic systemizer variants. The systemizers
all make use of early-abort to accelerate the systemization. We introduce our hardware
designs for the systemizers and compare them to [WSN17, WSN18] in terms of area
and speed. All of our designs outperform designs prior art for Classic McEliece by
2.2× to 2.6× in average runtime and by 1.7× to 2.4× in time-area efficiency.

• Based on our improved designs for public-key generation and on the hardware
implementation of [WSN17, WSN18] of the core cryptographic functionalities of
Classic McEliece, we provide the first complete specification-compliant FPGA imple-
mentation of Classic McEliece including seeded key generation, encapsulation, and
decapsulation, as well as a joint design of all three operations, adherent to the latest
(third-round) Classic McEliece specification.

• Similar to [WSN17, WSN18], our designs are constant time (i.e., the runtime does



Chen, Chou, Deshpande, Lahr, Niederhagen, Szefer, and Wang 3

not depend on any secret information) and provide compile-time parameters for
selecting the desired security level and performance.

• We evaluate the resource requirements of our designs on an Xilinx Artix 7 FPGA as
recommended by NIST for the evaluation of PQC hardware designs.

Our key generation module implements the systematic variants of key generation. It
has been shown that the semi-systematic variants significantly speed up key generation
in software implementations [ABC+20, Sect. 2.2.1]. However, we expect that a hardware
module for key generation for the semi-systematic public key generation will be more
complex than one for the systematic variants, so we consider this as a future work. Since
the public key is oblivious of the key generation variants, our encapsulation module works
for all variants. Our decapsulation module, for now, only works with the systematic
variants, but it can be adapted for the semi-systematic variants with some small changes.

The source code of our hardware designs is available under an open source license at
https://caslab.csl.yale.edu/code/pqc-classic-mceliece/.

Structure of this paper. We give a brief introduction to code-based cryptography and the
relevant algorithms of the Classic McEliece specification in Section 2. We introduce prior
systemizer designs in Section 3. We describe and evaluate our performance improvements of
the key generation and our three new systemizer variants in Section 4. The modifications
and extensions to [WSN17, WSN18] in order to obtain a complete Classic McEliece
implementation are described in Section 5. Finally, in Section 6 we describe the overall
joint design of the entire Classic McEliece cryptosystem, compare its performance to
selected code-based designs, and conclude the paper.

2 Classic McEliece
Code-based cryptography was introduced by McEliece in 1978 [McE78]. The McEliece
cryptosystem uses as public key a generator matrix G ∈ Fk×n

2 with code length n and code
rank k of a binary Goppa code G that can correct up to t errors. Goppa codes are defined
using a binary field Fq with q = 2m and an irreducible Goppa polynomial g of degree t.
The sender encrypts a message by converting it into a vector m′ ∈ Fk

2 and computes the
ciphertext c ∈ Fn

2 as erroneous code word c = m′G + e where e ∈ Fn
2 is an error vector

of weight t. The receiver then uses the secret code structure of the code G to correct the
errors and decode the codeword back to the message m′.

In 1986, Niederreiter proposed a dual-variant of the McEliece scheme [Nie86]: In his
version, a parity check matrix H ∈ F(n−k)×n

2 is used as public key and the sender encodes
the message as an error vector e ∈ Fn

2 of weight t and encrypts it to a ciphertext c ∈ Fn−k
2

as the syndrome c = He. Again, the receiver uses the secret code structure in order to
recover the error positions in the syndrome and hence the plaintext. In his proposal,
Niederreiter used a code family that later was broken; however, the overall scheme remains
secure with binary Goppa codes.

The Classic McEliece submission to NIST [ABC+20] is using the variant by Niederreiter
with binary Goppa codes as proposed by McEliece. The parameter sets of Classic McEliece
from the third round of the standardization process are shown in Table 1.

Algorithm 1 shows the key generation from a secret random seed as specified in the
submission. The function FieldOrdering returns a random permutation of the filed
elements from a seed as the secret support α1, . . . , αn; for details see [ABC+20, Sect. 2.4.2].
The function Irreducible returns a random irreducible Goppa polynomial g; for details
see [ABC+20, Sect. 2.4.1]. Both the support α1, . . . , αn and the Goppa polynomial g are
part of the secret key. The public key is generated from the private key using the function
MatGen shown in Algorithm 2. It computes a binary matrix Ĥ from α1, . . . , αn and g

https://caslab.csl.yale.edu/code/pqc-classic-mceliece/


4 Complete and Improved FPGA Implementation of Classic McEliece

Algorithm 1 SeededKeyGen(δ) algorithm (using PRNG G) [ABC+20, Sect. 2.4.3].
1: Compute E = G(δ), a string of n + σ2q + σ1t + ℓ bits.
2: Define δ′ as the last ℓ bits of E.
3: Define s as the first n bits of E.
4: Compute α1, . . . , αq from the next σ2q bits of E by the FieldOrdering algorithm.

If this fails, set δ ← δ′ and restart the algorithm.
5: Compute g from the next σ1t bits of E by the Irreducible algorithm.

If this fails, set δ ← δ′ and restart the algorithm.
6: Define Γ = (g, α1, α2, . . . , αn). (Note that αn+1, . . . , αq are not used here.)
7: Compute (T, cn−k−µ+1, . . . , cn−k, Γ′)←MatGen(Γ).

If this fails, set δ ← δ′ and restart the algorithm.
8: Write Γ′ as (g, α′

1, α′
2, . . . , α′

n).
9: Output T as public key and (δ, c, g, α, s) as private key, where c = (cn−k−µ+1, . . . , cn−k)

and α = (α′
1, . . . , α′

n, αn+1, . . . , αq).

Algorithm 2 MatGen(Γ) algorithm (systematic form) [ABC+20, Sect. 2.2.2].
1: Compute the t×n matrix H̃ = {hi,j} over Fq, where hi,j = αi−1

j /g(αj) for i = 1, . . . , t
and j = 1, . . . , n.

2: Form an mt× n matrix Ĥ over F2 by replacing each entry u0 + u1z + · · ·+ um−1zm−1

of H̃ with a column of m bits u0, u1, . . . , um−1.
3: Reduce Ĥ to systematic form (In−k | T ) where In−k is an (n− k)× (n− k) identity

matrix.
If this fails, return ⊥.

4: Return (T, Γ).

Algorithm 3 Encap(T ) algorithm with hash-function H [ABC+20, Sect. 2.4.5].
1: Use FixedWeight to generate a vector e ∈ Fn

2 of weight t.
2: Compute C0 = Encode(e, T ).
3: Compute C1 = H(2, e). Put C = (C0, C1).
4: Compute K = H(1, e, C).
5: Output ciphertext C and session key K.

Algorithm 4 FixedWeight algorithm [ABC+20, Sect. 2.4.4].
1: Generate σ1τ uniform random bits b0, b1, . . . , bσ1τ−1.
2: Define dj =

∑m−1
i=0 bσ1j+i2i for each j ∈ {0, 1, . . . , τ − 1}.

3: Define a0, a1, . . . , at−1 as the first t entries in d0, d1, . . . , dτ−1 in the range
{0, 1, . . . , n− 1}. If there are fewer than t such entries, restart the algorithm.

4: If a0, a1, . . . , at−1 are not all distinct, restart the algorithm.
5: Define e = (e0, e1, . . . , en−1) ∈ Fn

2 as the weight-t vector such that eai = 1 for each i.
6: Return e.

Algorithm 5 Encode(e, T ) algorithm [ABC+20, Sect. 2.2.3].
1: Define H = (In−k | T ).
2: Compute and return C0 = He ∈ Fn−k

2 .



Chen, Chou, Deshpande, Lahr, Niederhagen, Szefer, and Wang 5

Table 1: Parameter sets of Classic McEliece [ABC+20].

Parameter Set Parameters
systematic semi-systematic m n t n− k

mceliece348864 mceliece348864f 12 3488 64 768
mceliece460896 mceliece460896f 13 4608 96 1248
mceliece6688128 mceliece6688128f 13 6688 128 1664
mceliece6960119 mceliece6960119f 13 6960 119 1677
mceliece8192128 mceliece8192128f 13 8192 128 1664

Algorithm 6 Decap ((δ, c, g, α, s), C) algorithm [ABC+20, Sect. 2.3.3].
1: Split the ciphertext C as (C0, C1) with C0 ∈ Fn−k

2 and C1 ∈ Fℓ
2.

2: Set b← 1.
3: Extract s ∈ Fn

2 and Γ′ = (g, α′
1, α′

2, . . . , α′
n) from the private key.

4: Compute e← Decode(C0, Γ′). If e = ⊥, set e← s and b← 0.
5: Compute C ′

1 = H(2, e).
6: If C ′

1 ̸= C1, set e← s and b← 0.
7: Compute K = H(b, e, C).
8: Output session key K.

Algorithm 7 Decode(C0, Γ′) algorithm [ABC+20, Sect. 2.2.4].
1: Extend C0 to v = (C0, 0, . . . , 0) ∈ Fn

2 by appending k zeros.
2: Find the unique codeword c in the Goppa code defined by Γ′ that is at distance ≤t

from v. If there is no such codeword, return ⊥.
3: Set e = v + c.
4: If wt(e) = t and C0 = He, return e. Otherwise return ⊥.

and then reduces Ĥ to its systematic form (In−k|T ). This operation typically is the most
expensive operation of the key generation. Reduction of the quasi-random binary matrix
Ĥ might fail; in that case, key generation is repeated with a new seed.

In Classic McEliece, the OW-CPA secure public key encryption (PKE) schemes from
McEliece and Niederreiter are converted into an IND-CCA2 secure KEM. Encapsulation
is shown in Algorithm 3. First, the function FixedWeight (see Algorithm 4) is used
to generate an error vector e ∈ Fn

2 of weight t. Then this error vector is encoded into a
syndrome C0 using the function Encode shown in Algorithm 5 as described above. The
complete parity check matrix is obtained by appending the public key T to the identity
matrix In−k. The error vector is then hashed to obtain C1 = H(2, e) and the ciphertext
C = (C0, C1). The session key is obtained by hashing the error vector e and the ciphertext
C; both hash operations use domain separation.

Decapsulation is shown in Algorithm 6. First, the ciphertext C is split into C0 and C1.
Then, the function Decode (see Algorithm 7) is used to obtain the error vector e from C0
and to verify that C0 = He. After the hash of e has been compared to C1, the shared
session key K is computed and returned.



6 Complete and Improved FPGA Implementation of Classic McEliece

AB
r

B
r

B
r

. . .

B
r

B
r

AB
r

B
r

. . .

B
r

B
r

B
r

AB
r

. . .

B
r

. . .

. . .

. . .

. . .

. . .

B
r

B
r

B
r

. . .

AB
r

Figure 1: Layout of the processor array from [WSN16].

3 Previous Systemizer Designs
As shown in Algorithm 2, the central computation in public key generation for Classic
McEliece is to compute the systematic form of a binary matrix. Generally, Gaussian
elimination can be used for this task. There are several hardware designs for Gaussian
elimination of matrices over F2 in literature, e.g., [HQR89, BMP+06, REBG11, YL15].
However, for the systemization of the public key it is not necessary to compute the complete
row-echelon matrix if the public key matrix is not systemizable. In this case, computation
can be aborted once a there is no pivot found on the left diagonal of the matrix.

The Gaussian elimination designs mentioned above all are using an array of com-
putational nodes organized as systolic lines or systolic networks. They are organized
in the shape of an upper triangular matrix of the same dimension as the matrix that
needs to be processed and the entire matrix is fed into the array during computation.
This approach is fine for relatively small matrices — but for the large matrices of the
Classic McEliece cryptosystem, this would require too many resources. Therefore, the
hardware implementation of the McEliece cryptosystem in [SWM+10] exploits the fact
that the row-echelon form of the public key matrix does not need to be computed during
key generation for non-systematic matrices and uses a design where the matrix data is
processed in column blocks of a certain width s. This has the advantage that the size of
the array can be more freely chosen, and is only as large as the block width s and not as
large as the entire matrix, which reduces resource requirements significantly.

The basis for our work is the systemizer2 hardware design proposed in [WSN16]. This
design has been extended for the use in the hardware implantation of Niederreiter key
generation in [WSN17] and for the complete hardware implementation of the Niederreiter
cryptosystem in [WSN18]. The design from [WSN16] uses a similar approach as [SWM+10]
to reduce the public key matrix to systematic form.

In [WSN16], matrix data is stored in on-chip block RAM. The design uses the processor
array shown in Figure 1 of processors shown with their input and output ports in Figure 2.
The processor array has a width and height of s processor elements. The matrix data is
streamed row-wise in row slices of blocks of s columns into the processor array via the
data_in ports of the processors on the top of the processor array and back out of the
processor array via the data_out ports of the processors in the bottom during computation.

2By systemizer we mean an algorithm or a hardware module that reduces the input matrix to systematic
form. The systemizer may return “failure” if the input matrix is not systemizable.



Chen, Chou, Deshpande, Lahr, Niederhagen, Szefer, and Wang 7

AB
r

data in

data out

start in start out
op in op out

finish in

finish outfunction A

B
r

data in

data out

start in start out
op in op out

Figure 2: Input and output ports of processor_AB and processor_B from [WSN16].

Each processor element has a register r that stores some row slices of the matrix
during the computation. The diagonal nodes in the processor array in Figure 1 of type
processor_AB (short AB in Figure 1) are the pivoting nodes: They have the task to issue
operations to the following nodes of type processor_B (short B in Figure 1) in their
processor row. The operations are streamed out of the processor array via the op_out
ports of the processors on the right side of the processor array into an operation memory.
Later, these operations can be streamed back into the processor via the op_in processors
on the left side of the processor array. The operations are:

• pass: The input data is passed on to the next processor row without modification.

• swap: The data currently stored in register r is passed on to the next processor row
and the input data is stored in register r instead.

• add: The input data is added to currently stored (pivot) data and the result is passed
on to the next processor row.

The processors in the processor array are used in a concerted way to operate on the input
matrix in order to compute its upper-triangular and systematic form of the matrix as
described in the following text.

Computing the upper-triangular form. We say that a matrix is in upper-triangular form,
if 1) all the elements below the main diagonal are 0’s and 2) all diagonal elements are 1’s.
Let’s first look into how to compute the upper-triangular form of a systemizable matrix:
The computation on the entire matrix is divided into several phases with several steps
each. In each step, one column block of s columns (as many as the width of the processor
array) is fed into the array from the top, one row-slice per cycle. The first column block
contains columns 1 to s, the second column block contains columns s + 1 to 2s and so on.
Each phase computes s pivots. The process works as follows:

The first step of the first phase is the pivot step: The processor nodes of type
processor_B in the lower left rectangle do not need to contribute to the computation —
they constantly receive pass as operation. The diagonal pivot nodes (processor_AB) are
configured to do the pivoting. In the very beginning, all nodes are “empty” — they do not
store any matrix data. As the first column block of the matrix is fed into the array, empty
nodes are initialized by storing an incoming matrix row-slice in their data registers r —
the pivot node issues a swap operation (the design in [WSN16] uses start_in to instruct
the pivot nodes to issue the swap operation) to the following processor_B in its processor
row. If the incoming row-slice can be a pivot row, i.e., if it has a 1 at the respective pivot
position, then this row-slice can be used right away for reducing the following row-slices
(as described below). Otherwise, the following incoming row-slices are checked if they are
suitable as pivot row. If not, they are simply passed on — the pivot node issues a pass
operation. If yes, this row slices is stored in the nodes — the pivot node issues a swap
operation to the following nodes in its processor row. This evicts the previous non-pivot
row, which has the effect that the pivot row and the non-pivot row are swapped.



8 Complete and Improved FPGA Implementation of Classic McEliece

Once a pivot node has found a suitable matrix row, it can start reducing the following
matrix rows: If the incoming data of the corresponding column is a 1, it issues an add
operation, otherwise it issues a pass operation. Hence, the following processor_B nodes
of the processor row add the incoming matrix row to the stored pivot row or they pass
it on without modification correspondingly. Once all row-slices of the current column
block have been fed into the processor array, the remaining matrix data, which is still
stored in the registers r of the processor elements, is read out of the respective processor
rows using a swap operation (the design in [WSN16] uses the signal finish_in to instruct
the pivoting nodes to issue the swap operation). The data can then be passed out of the
processor array using pass operations in the following processor rows.

This first pivot step has only processed data from the first column block. In order to
process the remaining column blocks, all operations that are issued in the first step are
recorded into a dedicated operation memory. In the next step, all nodes including the
diagonal nodes act as normal, non-pivoting nodes of type processor_B. The operations are
read from the operation memory and fed back into the processor array in synchronization
with the matrix data of the next column block. Thus, the pass, swap, and add operations
from the pivoting step are used to compute the same operations on the next column block.
This process is repeated for all remaining column blocks, always replaying the stored
operations from the pivoting step.

After the last step of the first phase, the matrix has a shape where the first s columns
are in upper-triangular form. In the next phase, the same process is repeated starting at
the next column block with row s. The operations are recorded in the first step into the
operation memory and replayed in the following steps until all column blocks have been
processed. These phases are repeated such that phase i starts at row (i − 1)s until the
entire left square sub-matrix has been converted to upper-triangular form.

Figure 3a shows an illustration of the data memory for the overall process. The figure
shows the initial data at the left and then the memory contents after each of the phases
(after all steps of the phase have been completed). The parts of the data memory that
have been processed in each phase are marked with a red box. Blue arrows indicate in
which order row slices of the column block have been fed into the processor array.

Computing the systematic form. Once the matrix is in upper-triangular form, the
systematic form can be computed using back substitution. We can use the same processor
array as for computing the upper-triangle form: In the first phase, we start with the
right-most pivoting column block. First, the pivoting row slices are loaded into the
processor array. Then the following rows are echelonized: If the corresponding entry in a
pivoting column is a 1, then the pivoting row is added to it — the pivot node issues an
add operation to the following processor_B in its processor row. Otherwise, the row does
not need to be modified — the pivot node issues a pass operation. Once all rows have
been processed, the pivoting rows themselves need to be echelonized. Starting from the
first pivoting row, the processor nodes simply evict the row data — the pivot node issues
a swap operation. The pivoting row data is then processed by the subsequent processor
rows as described above which echelonizes the pivot row. As before, the operations of the
first step are recorded in the operation memory and replayed in the following steps to the
remaining column blocks starting at column (n− k) + 1.

In the second phase, the same process is repeated for the second-last pivoting column
block and so on in the consecutive phases. Observe, that pivoting column blocks that
already have been processed do not need to be touched again — since the corresponding
entries already are all 0. Each phase needs to compute on s fewer rows until the last phase
processed the final batch of s rows.

Figure 3b shows a visualization of the data memory for the process of computing the
systematic form using back substitution. Again, the parts of the matrix that are processed



Chen, Chou, Deshpande, Lahr, Niederhagen, Szefer, and Wang 9

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*

*
*
*

*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*

*
*
*

*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0

0
0
0

0
0
0

1
0
0

*
1
0

*
*
1

1
0
0

*
1
0

*
*
1
1
0
0

*
1
0

*
*
1

1
0
0

*
1
0

*
*
1
1
0
0

*
1
0

*
*
1
1
0
0

*
1
0

*
*
1

initial data after 1st phase after 2nd phase after last phase

(a) Computing the upper-triangular form: First pass of the dual-pass approach (pivotization).
The first pass requires (n − k)/s = 9/3 = 3 phases of n/s = 12/3 = 4 steps in the first phase
down to two steps in the last phase.

*
*
*

*
*
*

*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*

*
*
*

*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0

0
0
0

0
0
0

1
0
0

*
1
0

*
*
1
1
0
0

*
1
0

*
*
1
1
0
0

*
1
0

*
*
1

1
0
0

*
1
0

*
*
1
1
0
0

*
1
0

*
*
1

1
0
0

*
1
0

*
*
1

1
0
0

0
1
0

0
0
1

1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1

1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1

from 1st pass after 1st phase after 2nd phase after last phase

(b) Computing the systematic form: Second pass of the dual-pass approach (back substitution).
The second pass requires (n − k)/s = 9/3 = 3 phases of two steps each.

Figure 3: Visualization of the data memory for the dual-pass approach for an (n− k)×
n = 9 × 12 matrix using a column-block size of s = 3. Asterisks denote random data.
Corresponding sets of rows are marked in the same color. Red boxes show which matrix
parts have been computed.

in each phase are marked with a red box and blue arrows indicate the reading order.

Single- and dual-pass approaches. The design in [SWM+10] uses the dual-pass approach
described above: In the first pass it computes the upper-triangular form of the matrix and
in the second pass it uses back substitution to compute the systematic form. Since in each
phase of both passes, another s rows are getting echelonized, this approach needs to work
on fewer and fewer rows of the matrix in each phase as shown by the red boxes in Figure 3.

The design in [WSN16] is using a single-pass approach: At the end of each pivoting
step, the stored data is not simply read out of the processor array, but starting from the
top processor row, as during back substitution, the data is fed in normal operation to the
following processor rows that then fully reduce the rows. The second phase starts from
row s, finds pivoting rows, and reduces the second column block including a full reduction
of the first s rows. The following phases continue equivalently as shown in Figure 4.

This single-pass approach can be implemented in hardware with simpler logic than the
dual-pass approach, but it requires all phases to operate on all matrix rows as illustrated
by the red boxes in Figure 4, since each phase computes on all rows. However, as [WSN16]
points out, this approach can be more efficient depending on overheads, the dimensions of
the input matrix, and the choice for s.

Matrices that are not systemizable. The previous paragraphs assume that the input
matrix is systemizable. However, for Classic McEliece, this is not guaranteed. If the matrix
is not systemizable, key generation needs to be restarted (if the f-parameter sets are not
used). On average, Classic McEliece requires 3.4 key-generation attempts to successfully
compute a public key [ABC+20, Sect. 4.2]. The design from [WSN17] provides a failure
signal to detect if pivoting failed: In the pivoting step of each phase, the processor nodes



10 Complete and Improved FPGA Implementation of Classic McEliece

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

1
0
0

0
1
0

0
0
1

1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1

1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1

initial data after 1st phase after 2nd phase after last phase

Figure 4: Visualization of the data memory for the single-pass approach for an (n−k)×n =
9 × 12 matrix using a column-block size of s = 3. The single-pass approach requires
(n− k)/s = 9/3 = 3 phases of n/s = 12/3 = 4 steps in the first phase down to two steps
in the last phase. Asterisks denote random data. Corresponding sets of rows are marked
in the same color. Red boxes show which matrix parts have been computed.

check if they indeed all found a pivot row during forward elimination. If not, the failure
signal is raised and key generation is restarted with a new seed.

An advantage of the dual-pass approach is that it can detect failure already after the
first pass without the need to also compute the second pass in case the matrix cannot
be systemized. The single-pass approach however, needs to attempt to compute almost
the entire systemization of the matrix before it can detect if the matrix indeed can be
systemized. Thus, on average, the dual-pass approach can be faster and more efficient for
public key generation in the Classic McEliece cryptosystem when the failure rate is taken
into account. Therefore, a careful analysis is required for the choice between single- and
dual-pass systemization.

4 Optimization of Public Key Generation
To carry out public-key generation, the offical Classic McEliece hardware implementation
described in [WSN17, WSN18] applies single-pass systemization to the whole Ĥ using the
systemizer design from [WSN16]. As public-key generation fails with a high probability
(for the non-f parameter sets), the process can be accelerated if the systemizer detects early
that Ĥ is not systemizable and aborts immediately. We ended up with three algorithms
supporting such early abort, which we call:

• hybrid early-abort systemizer (HEA),

• single-pass early-abort systemizer (SPEA), and

• dual-pass early-abort systemizer (DPEA).

The algorithms consider Ĥ as (ĤL | ĤR), where ĤL ∈ F(n−k)×(n−k)
2 and ĤR ∈ F(n−k)×k

2 ,
and operate on ĤL (instead of the whole Ĥ) first to check if Ĥ is systemizable. If not, the
algorithms return ⊥ to indicate that Ĥ is not systemizable. Once it is confirmed that Ĥ
is systemizable, operations are applied to ĤR to obtain the public key T = (ĤL)−1ĤR.
The three algorithms make difference decisions on whether to detect if Ĥ is systemizable
using the single-pass or the dual-pass approach and how to compute the final systematic
form efficiently once it has been confirmed that that Ĥ is systemizable.

Below we introduce HEA in Section 4.1, SPEA in Section 4.2, and DPEA in Section 4.3.
For each systemier we start from introducing the algorithm and showing an example, and
then we introduce the corresponding hardware modules and how they work together to
support operations in the systemizer. The sections are written in an “incremental” way:
The contents in Section 4.1.2 to Section 4.1.5 apply to not only HEA but also SPEA and
DPEA, if not mentioned otherwise. Similarly, the contents in Section 4.2.2 apply to not



Chen, Chou, Deshpande, Lahr, Niederhagen, Szefer, and Wang 11

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*

*
*
*

*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*

*
*
*

*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0

0
0
0

0
0
0

1
0
0

0
1
0

0
0
1

1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1

1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1

Gen (left) after 1st phase after 2nd phase after 3rd phase

(a) Detecting failure from ĤL. Parts of the back substitution are conducted due to block-wise
memory access. Cost: ≥

∑3
j=1 3j2 cycles.

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

1
0
0

0
1
0

0
0
1

1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1

1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1

Gen (all) after 1st phase after 2nd phase after 3rd phase

(b) Computation of the single-pass approach on the entire matrix. Cost: ≥
∑3

j=1 9(j + 1) cycles.

Figure 5: Visualization of HEA for a 9× 12 matrix using a column-block size of s = 3.
Asterisks denote random data. Corresponding sets of rows are marked in the same color.
Red boxes show which matrix parts have been computed. ‘Gen (left)’ denotes only ĤL is
generated while ‘Gen (all)’ denotes the same matrix Ĥ is (re-)generated.

only SPEA but also DPEA, if not mentioned otherwise. In the last subsection Section 4.4,
we compare the three systemizers in terms of resource consumption and efficiency.

4.1 Hybrid Early-Abort Systemizer (HEA)

The pseudocode of HEA is shown in Algorithm 8 in Appendix A. HEA first checks if Ĥ
is systemizable by applying the first half of a dual-pass systemization on ĤL to reduce
it to an upper-triangular matrix U . In other words, only forward elimination is carried
out for ĤL. If any of the diagonal elements in the upper-triangular matrix is zero, which
means that Ĥ is not systemizable, the algorithm returns ⊥. Otherwise, a single-pass
systemization is applied to Ĥ to obtain the public key T .

4.1.1 An Example and Lower Bound of Cycles

Figure 5 illustrates how our hardware implementation of HEA with s = 3 operates on a
9× 12 matrix Ĥ. Figure 5a illustrates generation of ĤL and the forward elimination on it.
As in Figure 3a, the number of processed rows decreases by s in each phase. However, as
opposed to Figure 3a and Algorithm 8, parts of back substitution are conducted on the
pivoting rows in ĤL. This does not have an impact on the speed of HEA but allows us to
share logic with the following single-pass systemization and hence improves the resource
requirements of the design. Figure 5b illustrates generation of Ĥ (including ĤL) and the
single-pass systemization on it.

The first pass of the dual-pass approach for checking systemizability operates on
(n − k)/s column blocks and all (n − k) rows in the first phase. In the second phase,
it operates on (n − k)/s − 1 column blocks of (n − k) − s rows and so on. In the last
phase, it operates on only one column block and only s rows. Hence, the cost of checking
systemizability in HEA is at least

∑(n−k)/s
j=1 sj2 cycles.



12 Complete and Improved FPGA Implementation of Classic McEliece

Figure 6: Hardware structure of the HEA systemizer design. Each wire in the diagram is
of width s (the column-block width), and the processor array is of dimension s× s.

Once systemizability has been verified, the entire matrix is systemized using the single-
pass approach. This requires to operate on n/s column blocks of all (n− k) rows in the
first phase. In the second phase, it operates on n/s−1 column blocks of all (n− k) rows
and so on. In the last phase, it operates on the last column block in ĤL and all k/s
column blocks of ĤR and all (n − k) rows. Hence, the single-pass systemization on Ĥ

takes at least
∑(n−k)/s

j=1 (n− k)(j + k/s) cycles.

4.1.2 Hardware Architecture

Figure 6 shows an overview of the HEA systemizer architecture. To use the systemizer
module, the left part ĤL of the parity-check matrix Ĥ needs to be stored in the data
memory (Data Mem.). After that, we instruct the systemizer to check if the matrix can
be systemized by setting the input signal start to high. The s× s processor array (see
Section 4.1.3) then reads ĤL from the data memory and carries out all the row operations
required by HEA to check if Ĥ can be systemized. If the systemizer detects that the
input matrix Ĥ is not systemizable, it sets the done and the fail output signals to
high. In this case, a new secret key and the corresponding Ĥ need to be generated and
systemization needs to be started again. If the systemizer detects that the matrix can be
systemized, it sets the output signal success to high. Now, we can initialize the entire
Ĥ and then instruct the systemizer to finish the systemization of Ĥ by setting the input
signal start_right to high. After systemization, the systemizer sets the output signal
done to high again and the public key is available to be read out from the data memory.

There are two s-bit output wires op_mem and data_mem from the processor array.
During a pivot step, the processor array uses op_mem to store operations into the operation
memory (Op. Mem.), so that they can be replayed in the remaining steps of the same
phase. The processor array uses data_mem to write reduced column blocks of Ĥ into the
data memory. This overall design is very similar to [WSN16] and [WSN17]. However, we
apply several improvements to those prior designs as explained in Sections 4.1.4 and 4.1.5.
The internal controller (Int. Ctrl.) is in charge of replaying operations in the operation
memory. The external controller (Ext. Ctrl) is in charge of loading data into comb_SL at
the beginning of a step and reading data from comb_SL at the end of a step.

4.1.3 Our Systolic Architecture

The central module of our systemizer is the processor array that implements a systolic
architecture in form of a systolic line respective systolic array. The systolic architecture
in [WSN16] combines the systolic arrays SQR-SA and TRI-SA from [SWM+10] and hence



Chen, Chou, Deshpande, Lahr, Niederhagen, Szefer, and Wang 13

AB
r

data in

data out

op in op out

fail in
check en in trig

pivot en
ext en

fail out
check en out

(a) Module processor_AB.

B
r

data in

data out

op in op out

(b) Module processor_B.

Figure 7: Details of the input and output ports of modules processor_AB and
processor_B. The width of op_in and op_out is two bits.

calls its processor-array module comb_SA. To distinguish our design from [WSN16], we
refer to ours as systolic line (architecture) and call the module comb_SL. The structure of
our processor array comb_SL is essentially the same as Figure 1. Our design is similar to
that of [WSN16] in respect to the following aspects:

• The processor array consists of two types of processors processor_AB that can
compute pivots and processor_B. The input and output ports of our processors are
shown in Figure 7, those of [WSN16] in Figure 2.

• To carry out a step, row slices of the corresponding column block are passed to the
topmost processors of the processor array, while the eliminated rows are returned
from the bottommost processors.

• In each pivot step, the operations are streamed out of the processor array via the
op_out ports of the processors on the right side of the processor array into an
operation memory. As we will discuss in the later subsections, for SPEA and DPEA
this is not the case.

• Control logic (in our case the external and internal controller, see Figure 6) controls
the behavior of the processor array by sending operations to the leftmost processors.

Note that the design of the two types of processors, as specified in Table 3 and Table 2, is
somewhat different from that of [WSN16].

The output ports data_out of the processor elements in the bottom line of the processor
array are concatenated together to the bus data_mem in Figure 6. Similarly, operation
outputs are concatenated together to the bus op_mem. The internal and external operation
buses int_op and ext_op in Figure 6 are multiplexed using MMUX1, which is a collection
of s multiplexers, and fed into comb_SL. There, the input bus is split and the individual
signals are attached to the input ports op_in of the processor elements on the left side of
the processor array. The bus data from the data memory is split as well and the individual
signals are attached to the input ports data_in of the processor elements at the top of
the processor array.

Design of processor_B. Our processor_B is quite similar to that of [WSN16] (see
Figure 2). As shown in Table 2, depending on the value of op_in, our processor_B is
able to carry out three operations pass, add, and swap as in [WSN16].

Design of processor_AB. The truth table for processor_AB is shown in Table 3. We
use pivot_en to configure processor_AB to operate in one of the following two modes
(similar to the port function_A in [WSN16], see Figure 2):



14 Complete and Improved FPGA Implementation of Classic McEliece

Table 2: The truth table for processor_B. The symbol r’ denotes the new register value
in the next cycle.

inputs state outputs
op_in data_in r r’ op_out data_out
pass d r r pass d
add d r r add r+d
swap d r d swap r

Table 3: The truth table for processor_AB in this work.

input state output
ext_en pivot_en op_in data_in r r’ op_out data_out trig

1 x pass d r r pass d 0
1 x swap d r d swap r 0
0 1 x 0 r r pass 0 0
0 1 x 1 1 1 add 1 0
0 1 x 1 0 1 swap 0 1
0 0 pass d r r pass d 0
0 0 add d r r add d+r 0
0 0 swap d r d swap r 0

• Mode A (pivot_en = 1): In pivots steps, we set a processor_AB to mode A so
that it acts as a pivoting processor (“processor_A”) to generate commands for the
following processor_B in the same row of the processor array.

• Mode B (pivot_en = 0): In non-pivot steps, we set a processor_AB to mode B so
that it acts like a processor_B.

Using the signal ext_en, it is possible to pass operations from the control logic to
the processor array using MMUX1 (see Figure 6). This forces processor_AB to execute
operations provided via op_in even if processor_AB is in mode A. In HEA, this is used
at the beginning of a step to initialize the internal registers of the processors and at the
end of a step to flush out pivoting rows from the processor array similar to the signals
start_in and finish_in in [WSN16].

We use an output port trig to signal when a pivoting row has been found. To
check whether Ĥ is systemizable, we have to check whether all the diagonal elements of
ĤL are 1’s after reduction. We use the ports fail_in/fail_out in combination with
check_en_in/check_en_out for this purpose. The design in [WSN16] does not provide
logic to check if systemization was successful and [WSN17] uses control logic that accesses
the contents of the internal register r of each processor_AB directly.

4.1.4 Reducing Time and Memory Demand by Overlapping Steps

Figure 8a shows an example of two systemizer steps for the design from [WSN16] operating
on n− k = 8 rows of a column block of width s = 4. At the beginning of each step, each
processor row in the processor array begins to process data two cycles earlier than the
next row. Similarly, at the end of each step each row in the processor array completes all
computation two cycles earlier than the next row. It is easy to see that in the example
in Figure 8a each step takes n− k + 2s− 2 cycles to finish, even though there are only
n− k rows to process. The implementation of [WSN16] carries out the steps in each phase
sequentially: Step i + 1 begins only after the step i has finished completely, which results
in a significant overhead.



Chen, Chou, Deshpande, Lahr, Niederhagen, Szefer, and Wang 15

(a) This figure illustrates how operations are applied to the following column blocks.

(b) This figure indicates how operations in respective cycles are saved in the operation memory
(each cell represents two bits in [WSN16]).

Figure 8: Details of the column-block elimination in [WSN16] for (n− k, s) = (8, 4).

(a) This figure illustrates how operations are applied to the following column blocks with
overlapping.

(b) This figure indicates how operations in respective cycles are saved in a condensed way.

Figure 9: Details of the column-block eliminations in this work for (n− k, s) = (8, 4).

This computation pattern also has impact on memory consumption. In a pivot step, the
approach of [WSN16] simply records all operations generated by all processor_ABs during
the step, including operations generated when a processor_AB is idle. The layout of the
operations when stored in memory is thus as shown in the example in Figure 8b including
an overhead marked with “-”. Therefore, for the example in Figure 8 this approach requires
an operation memory of size 2s(n− k + 2s− 2) to store the 2-bit operations, even though
there are only 2s(n− k) meaningful bits to store.

To increase the utilization rate of our processor array and to reduce the memory
requirements, we pipeline the execution of consecutive steps: We change the computation
pattern such that each row of the processor array starts to process data of step i + 1 of a
phase as soon as it has finished processing the data in step i for any i ≥ 2, as depicted
in Figure 9a. In this way, assuming that there are enough column blocks in a phase, the
average cycle count for each step is reduced from n− k + 2s− 2 to about n− k. (There is
still some cycle overhead at the beginning and end of the first step of a phase and at the
end of the last step of a phase.) To support the new computation pattern, we need to store
the operations in the way shown in Figure 9b, so that operations executed in the same
cycle (for both step i and step i + 1) can be loaded from the same memory entry. With our
new memory layout, the size of the operation memory is reduced from 2s(n− k + 2s− 2)
bits to 2s(n− k) bits.

To achieve the memory layout, we first start out as [WSN16] in the beginning of the
pivot step of each phase. At the end of a pivot step in cycle n−k + i, i ∈ {1, . . . , 2s−2}, we
read out the operations executed in cycle i at the beginning of the pivoting step, combine



16 Complete and Improved FPGA Implementation of Classic McEliece

these operations with the operations generated in the current cycle n− k + i, and store
the result back to the operation memory. In other words, each operation in the written
memory entry comes from either the original memory entry or the processor array.

Whether an operation that is written to operation memory comes from the processor
array or from a previous entry in the operation memory is selected by MMUX2 shown in
Figure 6, which is a collection of s multiplexers similar to MMUX1. We note that using MMUX2
increases the length of the critical path and the resource requirements due to additional
logic. However, this penalty is a trade-off between performance and memory demand
versus logic and path length.

4.1.5 Reducing Memory Demand for the Swap Operations

Observe that in Algorithm 8, there is at most one row swap for each pivot. This fact has
been used in the software implementation of [CC21] to reduce memory demand. Below we
discuss how we use the same technique as [CC21] for our hardware implementation.

Because of the aforementioned fact, in a pivot step, each of the s processor_AB’s,
when in mode A, generates at most one swap. To make use of this fact, we choose the
opcode 002 for pass, 012 for add, and 102 for swap. We follow the approach in the previous
subsection but only store the least significant bit of the operations into the operation
memory. In this way, we reduce the size of the operation memory from 2s(n− k) bits to
s(n− k) bits, but we need a way to keep track of the most significant bit of each issued
operation, which simply indicates whether the operation is swap or not.

Our solution is to add dedicated logic to the internal controller as shown in Figure 10.
For each row i of the processor array, there is a register reg[i] that records in which
cycle of a pivot step the swap operation is generated. The registers start to count at the
beginning of a step. Due to the systolic structure of the processor array, it takes n−k+s−1
cycles before all n− k inputs have had the chance to reach all processor elements (e.g., in
case the very last row is the pivoting row for the processor_AB in the last processor row).
Therefore, each register reg[i] needs to be able to count up to n− k + s− 1 cycles and
hence the width of the registers is ⌈log2 (n− k + s− 1)⌉ bits.

When the ith processor_AB generates a swap operation, it raises the signal trig to
indicate that the current value of the cycle counter needs be recorded in reg[i]. In the
following steps of the same phase, a comparator for each row i compares the current
cycle-counter value with the recorded cycle-counter value in register reg[i]. If they are
the same, the ith bit in perm_op[i] in Figure 10 is set to 1. By pairwise combining
perm_op with the s bits stored for pass and add in the operation memory, we reconstruct
the 2s operation bits needed for the s rows of the processor array in each cycle.

4.2 Single-Pass Early-Abort Systemizer (SPEA)
The HEA approach has the disadvantage that the operations that are performed on ĤL to
check if the matrix is systemizable are “wasted” — even though we already computed the
upper-triangular form during the systemizability check, we recompute the systemization
on the entire matrix Ĥ = (ĤL|ĤR) including ĤL. Our second systemizer design SPEA
has the goal to re-use the computations used for checking on ĤL when finishing the
systemization on ĤR.

The pseudocode of SPEA is shown in Algorithm 9 in Appendix A. SPEA first checks if
Ĥ is systemizable by performing a single-pass systemization to reduce ĤL to In−k. During
the elimination, additions between rows are recorded in the space of ĤL so that they can
be replayed to ĤR, and swaps between rows are recorded in a list of n − k row indices.
If any of the diagonal elements is zero after the reduction, the algorithm returns ⊥ to
indicate that Ĥ is not systemizable. Otherwise, the operations that were applied to and
recorded in ĤL are replayed to ĤR to obtain the public key T .



Chen, Chou, Deshpande, Lahr, Niederhagen, Szefer, and Wang 17

reg

current

cycle

trig

pivot_en

reg
Comparator

reg
Comparator

reg
Comparator

reg
Comparator

reg
Comparator

current

cycle

perm_op

perm_op[0]

perm_op[1]

perm_op[2]

perm_op[3]

perm_op[4]

1

1

1

1

1

s

Perm.

Mem.1

0

Figure 10: Logic to deal with operation swap (s = 5). (Orange color indicates components
used only for SPEA and DPEA see Section 4.2.2).

4.2.1 An Example and Lower Bound of Cycles

Figure 11 illustrates how our hardware implementation of SPEA with s = 3 operates on a
9× 12 matrix Ĥ. Figure 11a illustrates generation of ĤL and how the algorithm operates
on it. The column blocks of ĤL are used to record operations carried out in pivot steps.
Figure 11b illustrates generation of ĤR and how operations recorded in blue boxes are
replayed to it (in the red box).

SPEA uses a single-pass approach to detect systemizability. Here, the single-pass
approach is working only on ĤL, i.e., the first (n− k) columns of Ĥ. Hence, the cost for
this computation is at least

∑(n−k)/s
j=1 (n − k)j cycles. When operating on ĤR, in each

phase SPEA needs to read operations from all rows of one column block of ĤL and then
applies these operations to all rows of all k/s column blocks of ĤR. Hence, the cost for
this computation is at least

∑(n−k)/s
j=1 (n− k)(1 + k/s) cycles.

4.2.2 Memory Management for Operations

SPEA stores the operations of all phases that are generated during the computation of ĤL

so that they can be replayed for the computation on ĤR. We thus add a permutation
memory (“Perm. Mem.”, marked in orange in Figure 10) to the design to store values of
reg[i]’s generated in all pivot steps. Furthermore, we use the data memory to store the
(least significant bit of) operations generated in all pivot steps. The values and operations
are loaded later before we operate on ĤR. Below we explain how this is done in our
implementation.

Storing/loading reg[i]’s. to/from the permutation memory. To simplify the logic for
saving and loading the values in the reg[i]’s into the permutation memory, we connect
the reg[i]’s as a shift register, as illustrated by the orange wiring in Figure 10. To
store the values in reg[i]’s, we store the value of reg[0] into the permutation memory
while shifting all other values from reg[i] to reg[i-1], each time increasing the memory
address by one. When loading, we load the permutation indices into reg[s-1] and shift all
other values from reg[i] to reg[i-1]. In this way, we avoid a complex decoder/encoder
for writing and reading the permutation memory. There are s registers reg[i] of width
⌈log2 (n− k + s− 1)⌉ and (n− k)/s phases. Thus, the permutation memory has a size of
(n− k)⌈log2 (n− k + s− 1)⌉ bits.



18 Complete and Improved FPGA Implementation of Classic McEliece

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

1
0
0

0
1
0

0
0
1

1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1

1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1

Gen (left) after 1st phase after 2nd phase after 3rd phase

(a) Performing a single-pass Gaussian elimination to reduce ĤL to In−k. Operations are recorded
into corresponding column blocks shown with a dashed background. Cost: ≥

∑3
j=1 9j cycles.

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0

0
0
0
0
1
0
0
0
0

0
0
0
0
0
1
0
0
0

0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
0
1

1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0

0
0
0
0
1
0
0
0
0

0
0
0
0
0
1
0
0
0

0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
0
1

1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0

0
0
0
0
1
0
0
0
0

0
0
0
0
0
1
0
0
0

0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
0
1

1
0
0
0
0
0
0
0
0

0
1
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0
0

0
0
0
1
0
0
0
0
0

0
0
0
0
1
0
0
0
0

0
0
0
0
0
1
0
0
0

0
0
0
0
0
0
1
0
0

0
0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
0
1

Gen (right) after 1st phase after 2nd phase after 3rd phase

(b) Computation of replaying operations recorded in the ĤL. Blue boxes show which column
blocks storing operations are read for restoring recorded operations. Cost: ≥

∑3
j=1 9 · (1 + 1)

cycles.

Figure 11: Visualization of SPEA for a 9× 12 matrix using a column-block size of s = 3.
Asterisks denote random data. Corresponding sets of rows are marked in the same color.
Red boxes show which matrix parts have been computed. ‘Gen (right)’ denotes only ĤR

is generated.

Storing/loading operations to/from the data memory. To store (the least significant bit
of) operations into the operation memory, we make use of data_out of the processor_AB’s.
As the processors in the same column are connected using data_out and data_in, we
can transfer the operations to the bottommost processors so that they can then be stored
into the data memory. The control logic of the external controller sets op_in of each of
the leftmost processors to swap, so that the least significant bit of the operations can be
passed from data_out of the ith processor_AB, via processor_B’s (if there are any), to
data_out of the corresponding processor in the last row and then stored into the data
memory. As the swap operation is used, there is a two-cycle delay for a bit in row i to
reach row i + 1. Therefore, an operation issued from the ith processor_AB of the systolic
line takes two more cycles to arrive the last row than an operation issued from the (i + 1)th
processor_AB, which results in the memory layout shown in Figure 12a.

In order to carry out one phase for ĤR, we first load operations from the data memory
and store them into the operation memory. In order to achieve the memory layout as
shown in Figure 8b, we send each memory entry through the systolic line once more,
while setting op_in of the leftmost processors to swap while setting ext_en to high. In
this way, we force all processors to perform swap. Due to the two-cycle delay in the
processor_B, the operations arrive at the corresponding processor_AB in the same order
as they were generated in the corresponding pivot step as illustrated in Figure 12b, and
each processor_AB writes the operation it receives directly to the operation memory. We
cannot use op_out for this since we need to issue the swap operation via op_out to the
following processor_B of this processor row. Instead, we similar to above output the
operations through the data_out port of all processor_AB and connect these ports to
op_mem directly as shown in Figure 13. Thus both while copying operations and during
pivoting, we write the least significant bit of the operation to op_mem via data_out.

Overall, saving and restoring the operation memory for the computation on ĤR does



Chen, Chou, Deshpande, Lahr, Niederhagen, Szefer, and Wang 19

(a) Output operations recorded in the corresponding column block of ĤL.

(b) Output operations restored from the corresponding column block of ĤL.

Figure 12: Management for the operation and data memory for n− k = 8 and s = 4.

AB
r

B
r

B
r

. . .

B
r

B
r

AB
r

B
r

. . .

B
r

B
r

B
r

AB
r

. . .

B
r

. . .

. . .

. . .

. . .

. . .

B
r

B
r

B
r

. . .

AB
r

Figure 13: Layout of module comb_SL for SPEA.

not require additional memory and only has a small overhead in logic. However, it requires
additional cycles in order to transfer the operations from the data memory (ĤL) back to
the operation memory.

4.3 Dual-Pass Early-Abort Systemizer (DPEA)

Although SPEA has an advantage over HEA for the finial computation on ĤR, since it
is able to record operations from checking ĤL and to replay them later to ĤR, it also
has a disadvantage compared to HEA: For checking if the matrix is systemizable SPEA
uses the single-pass approach, while HEA is using the faster first pass of the dual-pass
approach. Our third systemizer design DPEA attempts to combine the advantages of both
approaches as described in this section.

The pseudocode of DPEA is shown in Algorithm 10 in Appendix A. DPEA first checks
if Ĥ is systemizable by applying the first half of a dual-pass Gaussian elimination on ĤL

to reduce it to an upper-triangular matrix U . During the elimination, additions between
rows are recorded in lower-triangular part of ĤL, and swaps between rows are recorded
in a list of n− k row indices. If any of the diagonal elements is zero after the reduction,
the algorithm returns ⊥ to indicate that systemization failed. If the diagonal elements



20 Complete and Improved FPGA Implementation of Classic McEliece

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

×
×
×
×
×
×
×
×
×

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*

*
*
*

*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*

*
*
*

*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0

0
0
0

0
0
0

1
0
0

0
1
0

0
0
1

1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1

1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1

Gen (left) after 1st phase after 2nd phase after 3rd phase

(a) Decomposition of ĤL. Operations are recorded into originated column blocks shown with a
dashed background. Cost: ≥

∑3
j=1 3 · j2 cycles.

*
*
*

*
*
*

*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0

0
0
0

0
0
0

1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1

*
*
*

*
*
*

*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0

0
0
0

0
0
0

1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1

*
*
*

*
*
*

*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0

0
0
0

0
0
0

1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1

*
*
*

*
*
*

*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0

0
0
0

0
0
0

1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1

Gen (right) after 1st phase after 2nd phase after 3rd phase

(b) Computation of replaying operations in the decomposition (the first pass). Blue boxes show
which matrix parts have been restored for recorded operations. Cost: ≥

∑3
j=1 3 · j · (1 + 1) cycles.

*
*
*

*
*
*

*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*

*
*
*

*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

*
*
*
*
*
*
*
*
*

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1

1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1

1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1
1
0
0

0
1
0

0
0
1

from 1st pass after 1st phase after 2nd phase

(c) Computation for carrying out the back substitution (the second pass). Dashed red boxes
indicate data that is only read but not modified. Cost: ≥

∑2
j=1 3 · (j + (j + 1)) cycles.

Figure 14: Visualization of DPEA for a 9× 12 matrix using a column-block size of s = 3.
Asterisks denote random data. Corresponding sets of rows are marked in the same color.
Red boxes show which matrix parts have been computed.

are all 1’s, the operations for the forward elimination are be applied to ĤR to obtain a
matrix M . Note that the entries of the upper triangular matrix U (excluding the diagonal
elements) then define the remaining row additions that we need to perform on M in order
to obtain the public key T (see [CC21, Sect. 3.1] for an explanation). Therefore, DPEA
simply applies these operations to M to obtain the public key.

4.3.1 An Example and Lower Bound of Cycles

Figure 14 illustrates how our hardware implementation of DPEA with s = 3 operates on a
9× 12 matrix Ĥ. Figure 14a illustrates generation of ĤL and how our implementation
operates on it. To detect the failure earlier, each phase i computes on (i − 1)s fewer
rows. (Again, parts of the back substitution are also conducted due to block-wise memory
access.) During the pivot step of each phase, operations are recorded into the corresponding
column block in ĤL (dashed background in the figure). The part of ĤL without dashed
background then forms the matrix U . Figure 14b illustrates generation of ĤR and from
which matrix parts the recorded operations are restored (in blue boxes). By replaying the
recorded operations in blue boxes to ĤR in a sequential order, we can finish the first pass
of the elimination on ĤR to obtain the matrix M .



Chen, Chou, Deshpande, Lahr, Niederhagen, Szefer, and Wang 21

Figure 15: Output operations restored from U in ĤL (s = 4). Each column represents a
entry of memory while the row represents the bit position.

Figure 14c illustrates the remaining pass where we apply the remaining operations
to M . In the first phase, operations in the third column block of U (in the blue box with
solid edges) are applied to the corresponding three row blocks of M (in the red box): The
operations in the blue box indicate how the rows in the third row block of M should be
added to the rows in the first two row blocks. We do not need to load the operations in the
dashed blue box, since the corresponding rows in ĤR simply need to be loaded into the
processor array using control logic. In the second phase, operations in the second column
block of U (in the blue box with solid edges) are applied to the corresponding two row
blocks of M (in the red box): The operations in the blue box indicate how the rows in the
second row block of M should be added to the rows in the first row block. As there are no
operations in the first column block of U , the algorithm finishes at this moment. Note
that unlike the first pass, the second pass involves only two phases.

DPEA first applies the first pass of the dual-pass approach to obtain an upper-triangular
matrix. Like in HEA, this requires at least

∑(n−k)/s
j=1 sj2 cycles. To finish systemization,

in each phase DPEA first reads operations from one column block of ĤL and replays them
to all k/s column block of ĤR. In the first phase, all (n− k) rows are involved, in the next
phase (n− k)− s rows, and finally in the last phase only s rows. Hence, this computation
requires at least

∑(n−k)/s
j=1 sj(1 + k/s) cycles. For the final back-substitution, in each phase

DPEA needs to read s rows of the k/s column blocks of ĤR for eliminating the other rows.
In the first phase it also needs to load operations for (n− k)− s rows from one column
block in ĤL and to apply these operations to (n− k)− s rows of all k/s column blocks of
ĤR. In the second phase (n− k)− 2s rows are involved and in the last phase only s rows.
Hence, this computation requires at least

∑(n−k)/s−1
j=1 sj + s(j + 1)k/s cycles.

4.3.2 Back Substitution in DPEA

In DPEA, the elimination on ĤR is processed in two passes. In the first pass, we replay
the operations that were applied to ĤL for decomposing the matrix. In the second pass,
we apply the remaining operations for the back substitution. However, in the second pass
of the dual-pass approach, there is no need for permutation since the pivot rows have
already been swapped in the first pass. Therefore, after we streamed these pivot rows into
the systolic line, the only operations that need to be performed are pass and add. Since
these two kinds of operations are processed within one cycle in each processor row, we
delay each operation in the same memory entry accordingly by one cycle using the systolic
line when transferring these remaining operations in ĤL to the operation memory. As
shown in Figure 15, by setting the operation of each row in the systolic line to pass, the
operations for the ith row of the processor array (Op of row[i]) are delayed by i cycles
as read out from the data_out port of the ith processor_AB.

We read out the data from ĤR starting from the s pivot rows. They are used to pivot
the following rows according to operations replayed from operation memory. After restoring
these operations to the operation memory phase by phase, the remaining operations for
back substitution can be applied to ĤR iteratively in the steps of each phase.



22 Complete and Improved FPGA Implementation of Classic McEliece

4.4 Performance Evaluation
In this section, we first evaluate the performance of our stand-alone systemizer modules
based on the smallest Classic McEliece parameter set mceliece348864 compared to the
prior art [WSN16] and [WSN18] in Section 4.4.1. The difference between the design
in [WSN16] and [WSN18] is that [WSN16] only works for matrices over F2. However,
since matrix systemization is also required over F2m for private key generation, [WSN17]
(which is used in [WSN18]) extended the design such that it can work over any finite field
(once modules for addition, multiplication, and inversion in that field are provided). The
choice of the field is a parameter that is provided at compile time. The additional logic
required for general field arithmetic introduces a significant overhead also when the design
is synthesized for F2.

Since the performance of public key generation does not only depend on the systemizer
design but also on the cost for generating the initial matrix entries before systemization,
we then analyse the time required for public key generation using our new designs in
Section 4.4.2. We then briefly discuss the performance our designs for the remaining, larger
parameter sets of Classic McEliece in Section 4.4.3. Finally in Section 4.4.4, we give a
brief recommendation on which systemizer design to use under which circumstances.

4.4.1 Systemizer

Table 4 compares the synthesis results for our three F2 systemizers with that of [WSN16]
and [WSN18] on a Xilinx Artix 7 FPGA (xc7a200t) for the parameter set mceliece348864.
The performance of the designs can be tuned independently of the security parameters by
adjusting the width s of the processor array to achieve different levels of parallelism at the
cost of computing resources.

The left part of Table 4 shows the performance of the stand-alone systemizer variants.
The column “Check” shows the cycles required for checking if the matrix can be systemized
and the column “Finish” the cycles required to finish the systemization of the entire matrix
after a successful check. (For [WSN16] and [WSN18], there is no separation between
checking and finishing, so we list the cost of the entire systemization under “Check”.) We
obtained the exact cycle counts from simulated runs of the designs (using Verilator3) on a
systemizable matrix. The column “Average” shows the average cycle count required to
systemize a parity-check matrix successfully including an average of 3.4 failure cases (in
which case key generation needs to be repeated, see [ABC+20, Section 4.2] on the failure
rate). The average is computed as column “Check” times 3.4 plus column “Finish”. The
column “Time” is computed from the average cycle count divided by Fmax, the column
“Time×Area” by multiplying “Time” and “Area”. The time required for generating the
private key is not included in this table.

Cycles. HEA performs a complete single-pass systemization on the entire matrix during
“Finish”, which is conceptually similar to the single-pass systemization of [WSN16] and
[WSN18] listed in their “Check” column — but our HEA design reduces their overheads
in time (and memory, see below). This can be seen by comparing the entires of “Check” of
[WSN16] and [WSN18] with the entries “Finish” of HEA. Since our approaches perform
a complete systemization of the entire matrix only if the check on ĤL was successful,
the average runtime (column “Systemizer — Average”) is significantly lower than that of
[WSN16] and [WSN18]. The “Finish” time of SPEA is shorter than that of HEA since
SPEA does not need to operate on ĤL but only replays operations to ĤR, but since it
has a larger “Check” time, on average, HEA is faster than SPEA. DPEA has the same
“Check” time as HEA and a “Finish” time only slightly longer than SPEA and therefore
has the best average speed for smaller values of s. However, the advantages of DPEA over

3https://www.veripool.org/verilator/

https://www.veripool.org/verilator/


C
hen,C

hou,D
eshpande,Lahr,N

iederhagen,Szefer,and
W

ang
23

Table 4: Performance of the F2 systemizer for the mceliece348864 parameter set with a 768×3488 matrix Ĥ. All cycle counts, “Time”, and
“Time×Area” are rounded to four significant figures. Cycles are given in kilocycles (kcyc.). Resources are for a Xilinx Artix 7 FPGA (xc7a200t).

Systemizer Public Key Generation
Cycles Resources Cycles

Method s Check Finish Average Fmax Avg. Time Area Memory Time×Area 1st Gen. 2nd Gen. Average
(kcyc.) (kcyc.) (kcyc.) (MHz) (ms) (LUTL) (FF) (BR) (kcyc.) (kcyc.) (kcyc.)

[WSN16] 16 7,525 − 25,580 188 136.1 877 843 97 119.4 × 103 201.4 − 26,270
[WSN16] 32 1,961 − 6,667 191 34.91 1,757 2,528 98 61.33 × 103 102.5 − 7,016
[WSN16] 64 535.8 − 1,822 220 8.281 5,206 8,988 132 43.11 × 103 53.46 − 2,004
[WSN16] 128 157.6 − 535.9 215 2.492 18,080 34,223 142.5 45.06 × 103 29.01 − 634.5
[WSN18] 16 7,534 − 25,620 166 154.3 1,107 1,056 97.5 170.8 × 103 201.4 − 26,300
[WSN18] 32 1,963 − 6,675 172 38.81 2,381 2,825 99 92.41 × 103 102.5 − 7,024
[WSN18] 64 536.4 − 1,824 171 10.67 7,435 9,537 133.5 79.30 × 103 53.46 − 2,006
[WSN18] 128 157.8 − 536.4 175 3.065 26,393 35,267 149.5 80.89 × 103 29.01 − 635.0
HEA 16 611.8 7,173 9,253 150 61.69 1,139 1,001 96.5 70.26 × 103 44.35 201.4 9,606
HEA 32 160.0 1,800 2,344 151 15.52 2,154 2,864 97 33.44 × 103 22.56 102.5 2,523
HEA 64 44.63 459.4 611.1 155 3.942 5,967 9,678 130 23.52 × 103 11.66 53.46 704.2
HEA 128 14.51 120.6 169.9 181 0.9389 19,538 35,605 132 18.34 × 103 6.216 29.01 220.1
SPEA 16 906.5 6,307 9,389 153 61.37 1,300 1,012 97 79.78 × 103 44.35 157.1 9,697
SPEA 32 233.6 1,588 2,383 140 17.02 2,523 2,876 97.5 42.94 × 103 22.56 79.90 2,539
SPEA 64 62.93 408.7 622.6 160 3.891 6,538 9,732 130.5 25.44 × 103 11.66 41.80 704.1
SPEA 128 18.99 109.1 173.7 173 1.004 20,969 35,709 132.5 21.05 × 103 6.216 22.79 217.6
DPEA 16 611.8 6,438 8,518 140 60.84 1,527 1,065 97 92.90 × 103 44.35 157.1 8,825
DPEA 32 160.0 1,653 2,197 139 15.81 2,600 2,964 97.5 41.1 × 103 22.56 79.90 2,354
DPEA 64 44.63 441.1 592.9 150 3.952 6,752 9,846 130.5 26.69 × 103 11.66 41.80 674.3
DPEA 128 14.51 125.1 174.5 152 1.148 20,545 35,926 132.5 23.58 × 103 6.216 22.79 218.4

LUTL = Lut as logic, FF = flip-flop, BR = BRAM



24 Complete and Improved FPGA Implementation of Classic McEliece

HEA and SPEA diminish when performing a complete systemization for growing s since
DPEA needs to read matrix rows repeatedly during back-substitution. Hence, for s = 128
HEA and SPEA outperform DPEA in the average cycle count.

Fmax. The maximum frequency of all our designs is significantly lower than that of
[WSN16] and also slightly lower than that of [WSN18], but our cycle count and resource
usage improvements compensate well for that. The maximum frequency of a design does
not only depend on the design itself but also on the placement and routing heuristics of
the FPGA tool chain. Therefore, it is not easy to compare design frequencies directly.
The average Fmax of each of our systemizers over the four listed processor-array sizes s
is 159.25 MHz for HEA, 156.50 MHz for SPEA, and 145.25 MHz for DPEA. Thus, Fmax
appears to be quite similar for HEA and SPEA (with a slight advantage for HEA), but
the additional logic for back substitution seems to take a slight toll on DPEA.

Average time. We compute the average time (“Avg. Time”) from the average cycle count
and Fmax. Our systemizer approaches are more than 2.2 times faster than [WSN16, WSN18]
for small s and more than 2.6 times faster for large s despite our lower Fmax due to our
significant savings in the average cycle count. As seen before, DPEA has some performance
advantages over HEA and SPEA for small values of s, while for s ≥ 64 HEA and SPEA
take over due to the diminishing differences in cycle counts and the differences in Fmax.

Resources. We show the resource consumption in terms of area (in LUTs), registers
(flip-flops — “FF”), and block RAM (“BR”). Over all, [WSN16] has the smallest resource
requirements due to its simpler design. For small s, the area consumption of [WSN18]
lies in between HEA/SPEA and DPEA. However, for growing s, the area consumption of
[WSN18] grows much faster than that of our designs due to additional logic that [WSN18]
requires to make their systemizer compatible with different finite fields (while our design
is restricted to and optimized for F2). For s = 128, our designs require 40%-45% fewer
resources than that of [WSN18]. Comparing our three approaches, HEA is the most area
efficient one for any value of s.

In regard to the number of required registers, all five designs are quite similar with a
small advantage to [WSN16] and the highest register count for DPEA. Since our operation
memory is only half the size of that from [WSN16] and [WSN18], we have significant
savings in block RAM for larger s over these designs, while the block RAM consumption
of our three designs is quite similar.

Time-area product. For the time-area product (“Time×Area”) we can see that our
designs are 1.7 times more efficient than [WSN16, WSN18] for small s and 2.4 times more
efficient for large s since we improve over their designs in terms of cycle count and resource
consumption. Comparing our three designs, HEA has the lowest time-area product for all
values of s followed by SPEA and then DPEA, since the higher cycle count performance
of DPEA comes at a premium in resources and a penalty in maximum frequency.

4.4.2 Public Key Generation

On the right side, Table 4 also shows the cycle counts that are required for the complete
public key generation including the cost for generating the initial values in Ĥ before
systemization is performed.

Column “1st Gen.” shows the time needed to generate the initial matrix entires before
checking if the matrix can be systemized and “2nd Gen.” the cycles for generating matrix
entries before finishing the systemization. The column “Average” under “Public Key Gen”
is the average time needed to compute a complete systemization including failure cases



Chen, Chou, Deshpande, Lahr, Niederhagen, Szefer, and Wang 25

50 100

1

1.05

1.1

s

mceliece348864

50 100
1

1.05

1.1

s

mceliece460896

50 100
1

1.05

1.1

s

mceliece6688128

50 100
1

1.05

1.1

s

mceliece6960119

50 100
1

1.05

1.1

s

mceliece8192128

HEA
SPEA
DPEA

Figure 16: Speed (in terms of cycle count) of public-key generation using our three
systemizers HEA, SPEA, and DPEA relative to DPEA for different s for the param-
eter sets mceliece348864, mceliece460896, mceliece6688128, mceliece6960119, and
mceliece8192128. Compared to DPEA, [WSN16] and [WSN18] (omitted in the graphs)
are about three times slower for all s and all parameter sets.

and the time for generating initial matrix entries, i.e., column “1st Gen.” times 3.4 plus
column “2nd Gen.” plus the average time of the systemizer.

Initializing Ĥ. Comparing the time required to generate matrix entries (“1st Gen.” and
“2nd Gen.”) with that required for the following computation (“Check” and “Finish” for
the systemizer), we can see that computation dominates the time for small s — but that
generation time becomes more significant for larger s, taking up to 30% of the time of
“Check” and up to 19% of the time of “Finish” at s = 128.

Average cycles. Looking at the average cycle count of public key generation including
failure cases and matrix initialization (“Public Key Generation — Average”), we can see
that all our approaches HEA, SPEA, and DPEA outperform the designs from [WSN16]
and [WSN18], since their designs need to operate on average 3.4 times on the entire matrix,
while our approaches abort early in case the matrix cannot be systemized. Since SPEA
has a higher workload in “Check”, it starts out with a lower performance than HEA for
small s but since SPEA does not need to re-generate ĤL before “Finish”, it cuts even and
excels over HEA for s ≥ 64. SPEA also cuts even with DPEA for s = 128.

4.4.3 Larger Parameter Sets

Since the main resource consumption of the systemizer designs is due to the size s of the
processor array, larger Classic McEliece parameter sets have mainly an impact on the
memory resources (due to their larger matrix sizes) but only a small impact on the area
for a fixed s, since mainly logic for address calculation is affected by larger parameter sets.

Figure 16 shows the speed of public key generation using all of our systemizer designs
relative to DPEA obtained from simulating the designs for all Classic McEliece parameter



26 Complete and Improved FPGA Implementation of Classic McEliece

sets. As described above, for mceliece348864 DPEA starts out to be about 10% faster
than HEA and SPEA for small s. At the beginning, SPEA is the slowest, but it catches
up with HEA at s = 64. At s = 128, HEA and SPEA both are about as fast as DPEA.
A similar trend is visible for the larger parameter sets shown in Figure 16. However, the
turn-even point between HEA and SPEA is later for larger s. Cutting even with DPEA
requires even larger values of s.

4.4.4 Recommendation

We recommend to use the HEA systemizer for area-restricted applications that cannot
afford the additional resources of SPEA and DPEA, and the DPEA systemizer for high-
performance applications. However, for large values of s, the benefits of DPEA diminish
and SPEA becomes the fastest option. Since performance and efficiency depend on s,
eventually the most suitable design needs to be chosen based on the specific needs of the
application regarding performance requirements and available resources.

5 Encapsulation, Decapsulation, and Key Generation
Classic McEliece KEM consists of three primitives: Key Generation (SeededKeyGen),
Encapsulation (Encap), and Decapsulation (Decap). The algorithms for each primitive
are shown in Algorithm 1, Algorithm 3, and Algorithm 6 respectively. In this work, using
the Classic McEliece PKE code from [WSN18], we design and implement novel hardware
designs for all three primitives of Classic McEliece KEM. In the following sub-sections we
discuss the hardware design for each primitive on a high level by briefly elaborating on the
building blocks involved in their construction. The main building blocks for each primitive
are as follows:

• Encap: SHAKE256, FixedWeight, and Encode;

• Decap: SHAKE256, Decode, and FieldOrdering;

• SeededKeyGen: SHAKE256, KeyGen, and F2 systemizer.

In our hardware design, we re-use the hardware modules implementing FieldOrdering
and Decode from [WSN18]. Besides that, we tailor and improve the hardware mod-
ule implementing SHAKE256 from [WTJ+20] to cater our needs. We also use the im-
proved F2 systemizer designs discussed in Section 4 to optimize the KeyGen hardware
module from [WSN18] that we use in the implementation of SeededKeyGen. We de-
sign the remaining hardware modules for FixedWeight, Encode, Encap, Decap and
SeededKeyGen from scratch. We make our hardware modules parameterizable such
that performance parameters can be set based on the targeted time-area trade off.

In the following sections we give a high-level overview of the implementation of our
modules. For each of the building blocks and the hardware designs of Encap, Decap,
and SeededKeyGen we provide time and area comparison for exemplary performance
parameters and a comparison with related work wherever possible.

5.1 SHAKE256
Classic McEliece uses SHAKE256 for several purposes, e.g., for pseudo-random seed
expansion in key generation and for hashing in encapsulation in decapsulation. We are
also using SHAKE256 as pseudorandom number generator (PRNG) in encapsulation.

We use the keccak module from [WTJ+20] to perform SHAKE256 operations in our
Classic McEliece design. This module was originally designed as a complete keccak module
that can perform all configurations of SHAKE and cSHAKE. We tailor the existing keccak



Chen, Chou, Deshpande, Lahr, Niederhagen, Szefer, and Wang 27

Table 5: Comparison of the time and area for our SHAKE256 module targeting Xilinx
Artix 7 (xc7a200t) FPGA.

Resources
parallel_slices Area Memory Cycles Freq. Time Time×Area

(LUTL) (LUTM) (FF) (cyc.) (MHz) (us)
1 739 25 482 5,010 150 33.40 24.68 × 103

2 878 50 455 2,306 146 15.79 13.86 × 103

4 920 100 360 1,086 147 7.39 6.799× 103

8 1,169 200 270 542 148 3.66 4.279× 103

16 1,817 400 226 270 150 1.80 3.271× 103

LUTL = LUT as logic, LUTM = LUT as memory, FF = flip-flop

hardware module as per the requirement of our hardware design. The modifications we
perform are as follows:

• Since our design only requires SHAKE256, we removed all surplus logic and further
optimized the design for a more efficient area usage.

• We note that the keccak hardware design in [WTJ+20] is functionally designed
only for 32-bit input data blocks; in our work, we extend its capability to process
byte-sized blocks.

• We added a forced exit signal (triggering this signal brings the control back to the
loading state and sets all the counters to their initial state) to the control logic of the
SHAKE256 module to support the parallel processing of seed expansion (described in
the FixedWeight module in Section 5.3.1) and δ expansion (described in the seeded
key-generation module in Section 5.2).

The original design presented in [WTJ+20] provides a performance parameter to
control time-area trade-offs using parallelization. In our optimized design, we use a similar
parameter called parallel_slices that provides five different time-area trade-offs as
shown in Table 5. The SHAKE256 design has a 32-bit input interface (for all the variants
controlled by parallel_slices) that works on a simple valid-ready protocol.

The results targeting a Xilinx Artix 7 xc7a200t FPGA for all the variants are shown
in Table 5. The clock cycles shown in Table 5 include the cycles required for processing
one block of input (where the block size is 1088 bits) and generating a maximum of
1088 bits output. Currently, the design is limited to a maximum parallel_slices of
16 due to the structure of the round function of SHAKE256. In all our designs we use
parallel_slices = 16 as that provides the best time area product.

5.2 Seeded Key Generation
Our hardware design for seeded key generation (described in Algorithm 1) is shown
in Figure 17. From Algorithm 1, the seeded key-generation operation can be broken down
in to four main components:

1. Expanding δ using a PRNG.
2. Generating permutation using the FieldOrdering.
3. Generating an Irreducible polynomial.
4. Matrix generation using MatGen.

To perform components two, three and four, we are using the key-generation module
KeyGen from [WSN18]. However, we replace corresponding components from [WSN18]
with our optimizations for public key generation and our optimized systemizer modules.



28 Complete and Improved FPGA Implementation of Classic McEliece

KeyGen

Control Logic
SEEDED_KEYGEN

S
H
A
K
E

256

RAM_ 
delta

delta

FIELD
ORDERING

Distribution Network

IRREDUCIBLE

sh
ak
e_
ou
tp
ut

RAM_s

s_out

deltaprime

poly_g P

Public_Key_Generation

Figure 17: Hardware design of SeededKeyGen module interfaced with SHAKE256 module.

The [WSN18] implementation does not include the first component, i.e., the expansion
of δ using a PRNG to the inputs for private key generation (s, α, β, and δ’). Therefore, we
extend the existing key generator by adding a wrapper around the KeyGen module. The
wrapper consists of a distribution network that stores the secret seed s in a single ported
RAM (RAM_s), distributes the α and β values to the FieldOrdering and Irreducible
modules inside key generation respectively, and stores the δ′ value (deltaprime in Fig-
ure 17) in a single ported RAM (RAM_delta in Figure 17). The wrapper also provides an
interface for the connection to the SHAKE256 module described in Section 5.1.

It is possible that the operations Irreducible, FieldOrdering, or MatGen in Al-
gorithm 1 may fail, in which case the key-generation operation needs to be rerun using δ’ as
new δ. We optimize our design by expanding the δ′ values in advance for a potential next
iteration of key generation in case of a failure. The process of reseeding and expanding
δ′ works in parallel with the KeyGen module, which hides the time overhead required for
expanding δ′ in the next attempt of key generation.

The default secret key format in the specification includes 5 components (δ, c, g, α, s),
where α is stored as control bits of a Beněs network. Our module for key generation does
compute α (as a list of F2m elements) and s, but it does not use the control bits and hence
does not generate them to save time and area. In Section 5.4 we will explain that our
decapsulation module simply takes (δ, c, g) as input. This is not the default secret key
format, but it is explicitly mentioned in the specification as a choice to compress secret
keys. We note that using (δ, c, g) reduces the key size by a very large factor.

Table 6 shows the time and area results for our SeededKeyGen hardware module.
Reported clock cycles are the average cycles for a successful key generation including
unsuccessful attempts computed similar as in Table 4 and using s = t (here parameter s is
the size of the processor array for Gaussian systemization and t as in Table 1).

The area estimates shown in the Table 6 do not include the area of the SHAKE256
module, since the SHAKE256 module is common in the SeededKeyGen, Encap, and
Decap modules. Hence, we provide the flexibility of either choosing a common SHAKE256
module for all operations in an area optimized target or choosing multiple SHAKE256 modules
for parallel processing in a performance optimized target. The first two (comparatively
smaller) parameter sets, mceliece348864 and mceliece460896 were able to fit on the
Xilinx Artix 7 xc7a200t FPGA. However, for the other three parameter sets the Block
RAM requirement for storing the public key is higher than the memory capacity of target
FPGA. Consequently, we use the Xilinx Zynq UltraScale+ ZCU216 evaluation platform
xczu49dr (which provides more Block RAM resources) as the target.

A noticeable resource difference can be seen between Xilinx Artix 7 and Xilinx Zynq



Chen, Chou, Deshpande, Lahr, Niederhagen, Szefer, and Wang 29

Table 6: Comparison of the time and area for our SeededKeyGen module targeting Xilinx
Artix 7 (xc7a200t) and Xilinx Zynq UltraScale+ (xczu49dr) FPGAs.

Resources
Param. Set Area Memory ACC Fmax Time T×A

(LUTL) (LUTM) (FF) (BR) (DSP) (Mcyc.) (MHz.) (ms)
Xilinx Artix 7 (xc7a200t)

mceliece348864 25,532 290 37,185 165.0 4 1.0 142 6.8 0.17
mceliece460896 44,644 515 66,869 271.5 4 1.7 147 11.8 0.53

Xilinx Zynq UltraScale+ (xczu49dr)
mceliece348864 25,119 344 37,245 112.5 4 1.0 186 5.2 0.13
mceliece460896 44,631 577 66,894 234.5 4 1.7 178 9.7 0.43
mceliece6688128 58,881 408 89,174 365.0 4 2.8 164 17.4 1.02
mceliece6960119 55,489 579 85,662 369.0 4 2.7 155 17.2 0.95
mceliece8192128 59,127 407 89,200 425.0 4 3.1 158 19.3 1.14
LUTL = LUT as logic, LUTM = LUT as memory, FF = flip-flop, BR = BRAM, ACC = average clock
cycles, T×A = Time×Area

UltraScale+ FPGAs in terms of Block RAM utilization. This is caused by the synthesis
tool (Xilinx Vivado), which synthesises some part of memory using LUTs as memory
(distributed RAM) instead of Block RAM on the Zynq UltraScale+ FPGA.

The reported frequency in Table 6 is the maximum clock frequency for the SeededKeyGen
module standalone. The frequency value is reduced after interfacing it with the SHAKE256
module since the critical path of the design lies in the SHAKE256 module. We also observe
an improvement in maximum clock frequency, time, and time-area product for the Zynq
UltraScale+ (xczu49dr) FPGA when compared to the Artix 7 (xc7a200t) FPGA due to
their different manufacturing processes.

5.3 Encapsulation
As shown in Algorithm 3, the encapsulation function of Classic McEliece uses the func-
tions FixedWeight and Encode. In this section we first describe how we use the
SHAKE256 module from Section 5.1 to generate a fixed-weight error vector implementing
the FixedWeight function. Then we describe our re-implementation of the Encode
function, replacing the existing implementation from [WSN18]. Finally, we describe how
we implement the complete encapsulation function as specified in [ABC+20] using these
building blocks.

5.3.1 Fixed-Weight Vector Generation

The FixedWeight function (Algorithm 4) generates a uniform random n-bit error vector
e of weight t. The function assumes that there is a random number generator (RNG) that
can be used to generate uniformly distributed random bits. The FixedWeight function
first generates a string of τσ1 random bits (where τ = t for mceliece8192128 and τ = 2t
for other parameter sets as specified in [ABC+20]). These random bits are arranged into
τ m-bit integers. Out of these τ integers, the first t integers of value smaller than n are
selected. The selected t integers then indicate the indices of 1’s in e. If the number of
m-bit integers in the right range (i.e., < n) is less than t or if there exist any duplicates
among the t selected integers, the whole process needs to start over by generating another
string of τσ1 random bits.

In our hardware implementation, we use a PRNG to generate these uniform random



30 Complete and Improved FPGA Implementation of Classic McEliece

Table 7: Comparison of the time and area for our FixedWeight hardware module with
output word sizes 32-bits and 160-bits targeting Xilinx Artix 7 (xc7a200t) FPGA.

Resources
Param. Set Area Memory ACC Fmax Time T×A Prob.

(LUTL) (LUTM) (FF) (BR) (kcyc.) (MHz) (µs)
FixedWeight with output word size - 32 bit

mceliece348864 265 44 148 2.0 1.0 261 3.9 1.02 0.56
mceliece460896 291 58 157 2.0 2.2 261 8.4 2.45 0.36
mceliece6688128 287 58 158 2.0 3.5 259 13.6 3.90 0.29
mceliece6960119 310 84 157 2.0 2.7 262 10.4 3.24 0.36
mceliece8192128 272 32 148 2.0 1.9 262 7.1 1.94 0.37

FixedWeight with output word size - 160 bit
mceliece348864 488 44 152 5.5 1.0 170 5.9 2.88 0.56
mceliece460896 554 58 156 5.5 2.2 153 14.4 7.98 0.36
mceliece6688128 542 58 159 5.5 3.5 148 23.8 12.92 0.29
mceliece6960119 566 84 158 5.5 2.7 152 18.0 10.18 0.36
mceliece8192128 509 58 158 5.5 1.9 151 12.4 6.30 0.37
LUTL = LUT as logic, LUTM = LUT as memory, FF = flip-flop, BR = BRAM, ACC = average clock
cycles, T×A = Time×Area, Prob. = Success Probability

bits from input seeds of length 512 bits. Our hardware module for FixedWeight includes
this PRNG, and we assume that the seed will be initialized by another hardware module
implementing a true random number generator (TRNG). In our design we use SHAKE256
as a PRNG. To support regeneration of the next τσ1 random bits, our hardware design
actually generates 512 extra bits in addition to the τσ1 random bits using the PRNG.
These 512 bits form a new seed that can be used when the process needs to start over in
case the current error-vector generation attempt fails. We note that this specific way of
generating random bits for FixedWeight is an implementation choice we made and is
not a part of the specification.

The hardware design for the FixedWeight module is shown in the Figure 18a. We use
the SHAKE256 module described in Section 5.1 to expand a 512-bit seed to a (τσ1 +512)-bit
string. Since the SHAKE256 module has a 32-bit interface, we load the new seed in chunks
of 32 bits and store it in a single port RAM (seed_RAM) as shown in Figure 18a. The
seed_RAM is updated each time a new seed is generated internally.

We use the module RangeCheck to ensure that there are t integers in the right range
(i.e., < n). The integer values that pass the range checking are stored in a single-ported
RAM (int_RAM). Then the OneGen module is used to detect potential duplicates among
the integer values stored in int_RAM while it sets the error positions in the error vector e
stored in a dual ported RAM (e_RAM). The word width of the e_RAM is parameterizable
and can be chosen based on the desired time-area trade-off. This word width also defines
the output width of the error port of the OneGen module (shown in 18a).

To reduce the time penalty due to a potential failure during the FixedWeight
computation, we reseed and expand the next seed values in advance for the next iteration
of FixedWeight in parallel to an ongoing FixedWeight computation. Since the process
of reseeding works in parallel to the OneGen module, we are effectively able to hide all
the clock cycles required for expanding the seed for the next attempt of FixedWeight
error vector generation. Our design is constant-time for successful attempts of error vector
generation.

Table 7 shows the results for the FixedWeight hardware module for output widths



Chen, Chou, Deshpande, Lahr, Niederhagen, Szefer, and Wang 31

seed_
RAM

seed

error done

S
H
A
K
E
256

Range_Check

int_RAM

Control logic 
overall 

Control logic
Seed handling 

seed_valid

Control logic 
parallel SHAKE 

32

e_RAM

shake_output

Put ‘1’ at 
the index

Address 
Decoder

O
n
e
G
e
n

(a) FixedWeight module.

C0

done

Control logic 

XOR
Shift 
Reg

pk_addrstart

public_key

rd_pk

RAM_
Encode

rd_addr_c

AND

XOR

Shift 
Reg

32

e

e_addr
rd_e rd_en_c

(b) Sequential Encode module.

Figure 18: Hardware designs of the FixedWeight error-vector generation module and the
sequential Encode module.

32 bits and 160 bits targeting an Xilinx Artix 7 xc7a200t FPGA. With an increasing
output width, the required number of BRAMs increases as well, because for a larger output
width more BRAMs need to be used for our e_RAM. Also, with the increase in output width,
the maximum clock frequency is reduced, because of some combinatorial logic overhead
from the address decoder in the OneGen module (shown in Figure 18a). The clock cycles
shown in Table 7 are the average cycles computed based on the success probability of
the FixedWeight error vector generation process. We obtain the success probabilities
(provided in column “Prob.” of Table 7) for each parameter set using the methodology
described in [ABC+20, Sect. 4.4, p. 31].

The area estimates shown in the Table 7 do not include the area of the SHAKE256
module for the same reasons as described in Section 5.2. The reported frequency values
from Table 7 shows the maximum clock frequency for the FixedWeight module standalone.
The overall frequency when combining the FixedWeight module and the SHAKE256 module
is limited by the SHAKE256 module as described in Section 5.2.

5.3.2 Encoding Function

The Encode function (Algorithm 5) takes a weight-t error vector e ∈ Fn
2 generated by

the FixedWeight function and a public key T ∈ F(n−k)×k
2 as an input and generates a

ciphertext C0 = (In−k | T )eT ∈ Fn−k
2 . We first analyzed the hardware implementation of

the encoding module provided in [WSN18]. Although that design of the encoding module
performs well in terms of cycles and frequency as shown in Table 8, the module requires
inputs of the full length of public key columns per clock cycle. This results in a significant
resource cost. Furthermore, [WSN18] stores the public key in column major format, which
introduces additional effort to import and export a key adherent to the specification, since
the specification requires the public key to be represented in row major format.

We address these issues by implementing a sequential Encode module. The hardware
design for our sequential Encode module is shown in Figure 18b. We follow a RAM-based
approach in order to avoid the usage of large registers as in [WSN18]. Since the first n− k
columns of the public key matrix H are always the identity matrix, we efficiently perform
the multiplication of the error vector e with this sub-matrix by copying the first n − k



32 Complete and Improved FPGA Implementation of Classic McEliece

Table 8: Comparison of the time and area for our sequential Encode module with two
exemplary column-block widths of 32 and 160 bit vs. the full-width hardware design
from [WSN18] targeting a Xilinx Artix 7 xc7a200t FPGA.

Resources
Param. Set Area Memory Cycles Freq. Time Time×Area

(LUTL) (FF) (BR) (MHz) (us)
32-bit design (Our Design)

mceliece348864 139 167 1 66,053 337 195.9 15.87× 103

mceliece460896 144 173 1 132,293 329 401.9 35.37× 103

mceliece6688128 150 175 1 262,917 337 780.3 71.01× 103

mceliece6960119 160 196 1 264,542 319 828.6 72.08× 103

mceliece8192128 145 176 1 341,125 335 1,019 83.55× 103

160-bit design (Our Design)
mceliece348864 313 321 1 13,289 197 67.46 10.55× 103

mceliece460896 313 326 1 27,461 201 136.5 21.02× 103

mceliece6688128 322 393 1 54,917 196 279.9 47.03× 103

mceliece6960119 333 350 1 54,150 190 284.6 47.24× 103

mceliece8192128 320 394 1 69,893 199 351.8 54.89× 103

Full-width implementation [WSN18]
mceliece348864 4,267 3,504 0 2,720 312 8.718 37.20× 103

mceliece460896 5,866 4,624 0 3,360 330 10.18 59.73× 103

mceliece6688128 8,365 6,705 0 5,024 322 15.60 130.5 × 103

mceliece6960119 8,519 6,977 0 5,413 310 17.46 148.8 × 103

mceliece8192128 9,869 8,209 0 6,528 321 20.33 200.7 × 103

LUTL = LUT as logic, FF = flip-flop, BR = BRAM

elements (i.e., bits) of e directly to the RAM_Encode with the help of a shift register (shown
in Figure 18b).

We are using the same storage format for the right part T of the public key matrix
as for the generation of the public key by storing the matrix in column blocks. On the
one hand, this simplifies loading the public key in row-major format into the memory and
on the other hand, this simplifies to share the large memory of the public key between
key generation and encoding for a joint design. Hence, for processing the right side of
the matrix H, we load the rows of the public key in chunks of the width of the column
blocks in each clock cycle. The column-block size for the computation is parameterizable
and can be chosen freely depending on the targeted time-area trade-off (or according
to the choice made for key generation in a joint design). However, in our design, the
ciphertext is always consolidated in 32-bit words and stored in “RAM_Encode” irrespective
of the block size chosen for the public key matrix. Our hardware design is constant-time,
compatible with all recommended parameter sets given in the third-round specification
document [ABC+20], and is parameterizable in terms of the column-block size for the
public key matrix and the error vector input width.

Table 8 shows performance results for our sequential Encode module for the column-
block sizes 32-bits and 160-bits in comparison to the reference implementation of [WSN18]
targeting an Xilinx Artix 7 xc7a200t FPGA for all the recommended parameter sets.
From the area results shown in Table 8 it can be seen that our sequential implementation is
highly optimized in terms of area, while the full-width module from [WSN18] requires much
fewer cycles at a significant cost in resources. However, when increasing the column-block
size, the efficiency of our design improves in regard to both clock cycles and time-area



Chen, Chou, Deshpande, Lahr, Niederhagen, Szefer, and Wang 33

FIXEDWEIGHT

HASH_
PROCESSOR

ENCODE

Control 
Logic
ENCAP

S
H
A
K
E
256

e

e

RAM_ 
C1

shake_out

public_keyseedseed_valid

K C1

C0

rd_pk

pk_addr

Figure 19: Hardware design of Encap module interfaced with SHAKE256.

product. We also observe that as the column-block size is increased the maximum clock
frequency decreases because the depth of the combinatorial logic performing addition and
multiplication increases in the Encode module (shown in Figure 18b).

5.3.3 H(2, e) and H(b, e, C) Functions

As specified in [ABC+20] we use SHAKE256 as the hash function H in Algorithm 3. For
H(2, e), we prepend the byte 0x02 to the most significant part of the error vector e and
calculate the hash value as directed in the specification [ABC+20]. For H(b, e, C), we
prepend the byte 0x0b to the most significant part of the error vector e and append the
ciphertext C. The resulting bit vector is sent to the hash function and a hash value is
calculated as directed in the specification [ABC+20]. To compute the aforementioned
hash values efficiently, we design a Hash_Processor. In this design, we interface a block
RAM (which we refer to as Hash_RAM) with the SHAKE256 module such that the specified
number of bytes are fetched from the block RAM and the hash computation is performed
on them afterwards. We use this approach to eliminate complex multiplexing logic at
the input of the SHAKE256 module that would potentially impose negative effects on the
overall maximum clock frequency.

5.3.4 Complete Encapsulation Module

The hardware design for the complete encapsulation module implementing Algorithm 3
is shown in Figure 19. We are using the FixedWeight, Encode, and Hash_Processor
modules described in the previous paragraphs as building blocks in the implementation.
In order to be able to share the SHAKE256 module with other Classic McEliece functions
(e.g., key generation), we are using a 32-bit interface that is compatible with the SHAKE256
module and multiplex all inputs going to SHAKE256 module via this interface. We start
with computing the FixedWeight error vector. Then, we compute Encode and H(2, e)
operations (to generate ciphertext C0 and C1 respectively) in parallel completely hiding
the cycles taken for C1. We achieve this by storing e inside a dual-port RAM in the OneGen
module (within FixedWeight module, described in Section 5.3.1). Then we compute
H(1, e, C) to generate the session key K.

Our design is constant-time and parameterizable across all the recommended parameter
sets described in the third-round specification [ABC+20]. We take advantage of the param-
eterizable column-block width of the Encode module (described in Section 5.3.2) and the



34 Complete and Improved FPGA Implementation of Classic McEliece

Table 9: Comparison of the time and area for our Encap hardware module for column-block
sizes 32-bits and 160-bits targeting Xilinx Artix 7 (xc7a200t) FPGA.

Resources

Parameter Set Area Memory Cycles Freq. Time T×A
(LUTL) (LUTM) (FF) (BR) (kcyc.) (MHz) (µs)

Encap with column-block size = 32-bits
mceliece348864 679 76 423 4 67.98 215 316.2 214.7× 103

mceliece460896 713 64 427 4 135.6 219 619.1 441.4× 103

mceliece6688128 731 90 446 4 267.9 204 1,313 959.9× 103

mceliece6960119 809 116 482 4 268.9 217 1,239 1,002 × 103

mceliece8192128 718 90 414 4 344.8 204 1,690 1,214 × 103

Encap with column-block size = 160-bits
mceliece348864 1,110 76 577 7.5 15.75 174 90.52 100.5× 103

mceliece460896 1,209 90 591 7.5 28.19 144 195.8 236.7× 103

mceliece6688128 1,190 90 664 7.5 32.55 142 229.2 272.8× 103

mceliece6960119 1,240 116 636 7.5 58.50 147 398.0 493.5× 103

mceliece8192128 1,181 90 677 7.5 70.02 146 479.6 566.4× 103

LUTL = LUT as logic, LUTM = LUT as memory, FF = flip-flop, BR = BRAM, T×A = Time×Area

parameterizable error-vector output width of the FixedWeight (described in Section 5.3.1)
and add a similar parameterizable capability to our Encap hardware module. Since the
Encap module has the public key as an input, our design allows a free choice of the key
column-block size depending upon on the desired time-area trade-off. Based on the choice
of the column-block size, the error vector output width from FixedWeight is adjusted
internally to support the Encode operation.

Table 9 shows the area and time utilization results for our Encap hardware module
for key column-block widths of 32-bits and 160-bits targeting a Xilinx Artix 7 xc7a200t
FPGA. The clock cycles in Table 9 include the average cycles taken by FixedWeight error
vector generation module (computed based on the success probability as described in
Section 5.3.1), cycles taken by Encode module and hash computation for K. The area
estimates shown in Table 9 do not include the area of the SHAKE256 module. The reported
frequency in Table 9 shows the maximum clock frequency of Encap module standalone for
all the parameter sets. As discussed before, the frequency is lower when the Encap module
is interfaced with the SHAKE256. Across all the parameter sets we observe that as the
column-block size is increased, the efficiency of our design improves. This can be observed
in terms of a decrease in the number of clock cycles for the encapsulation operation and a
better time-area product.

5.4 Decapsulation
In this section, we present our efficient, modular, and constant-time hardware implementa-
tion of the Decap operation defined in Algorithm 6. Our implementation uses the Decode
module from [WSN18] as building block. An overview of our Decap hardware module is
shown in Figure 20.

The Decap function takes a ciphertext C (C0, C1) and a secret key as inputs and
outputs the session key K (see Algorithm 6). The default secret key format includes 5
components (δ, c, g, α, s), but our decapsulation module takes (δ, c, g) as input. Therefore,
our decapsulation module regenerates α (as a list of F2m elements) and s by expanding δ
so that decapsulation can be carried out. The corresponding decapsulation process can
thus be broken down into four main components:



Chen, Chou, Deshpande, Lahr, Niederhagen, Szefer, and Wang 35

HASH_
PROCESSOR

K

Control logic 
DECAP

Decode

poly_g

e_recovered

start

RAM_s

RAM_ 
C0

RAM_ 
C1

Compare

C0

C1

shake_
output

Field
Ordering

P

shake_output

done

S
H
A
K
E
256

RAM_ 
delta

delta

Distribution 
Network

Figure 20: Hardware design of Decap module interfaced with SHAKE256 module.

1. Expand δ (the secret seed) using the PRNG into n+σ2q bits, use the most significant
n bits as S, and rest of the bits (i.e. σ2q bits) will be used to generate α.

2. Compute α as a list of field elements from the σ2q bits using FieldOrdering.
3. Decode the fixed-weight error vector from the permutation output and C0.
4. Compute the H.

We perform the δ expansion using the SHAKE256 module described in Section 5.1 and
generate a total of n + σ2q pseudorandom bits. As described in Section 5.1, the SHAKE256
module has a 32-bit interface and therefore generates 32-bits of output per cycle. We
build a distribution network to distribute the generated psuedorandom bits to appropriate
modules (as shown in Figure 20). Out of the generated n + σ2q-bits, the first n-bits are
stored as s in the Block RAM (RAM_s as shown in Figure 20). The word size of RAM_s is
32-bits. The following σ2q-bits are broken down into two 16-bit numbers. From each 16-bit
number ji the m least significant bits are used as input for the FieldOrdering module.

The FieldOrdering module computes the q field elements of the support α. After
the FieldOrdering step is completed, we the use permutation output, the polynomial g
(poly_g in Figure 20), and the first part of the ciphertext (i.e., C1) to decode the error
vector using the Decode module (shown in Figure 20). We use the FieldOrdering and
Decode hardware modules from the implementations provided in [WSN18]. After the error
vector has been decoded, the error vector is loaded into the Hash_RAM and the functions
H(2, e) and H(b, e, C) are computed as described in Section 5.3.3. In case of a decoding
failure, we load s into the Hash_Processor instead of the error vector as described in
Algorithm 6 and perform the same steps as above.

We use a 32-bit interface that is compatible with the SHAKE256 module to multi-
plex inputs from δ expansion and H calculation into the SHAKE256 module. The Decode
module from [WSN18] uses the number of multipliers inside the Berlekamp-Massey de-
coder as a performance parameter, which is defined using parameters ‘mul_sec_BM’ and
‘mul_sec_BM_step’. We set both these parameters to 20 to obtain a good time-area balance.

Within the Decode module, after the error vector is recovered, a ReEncrypt module gets
triggered to check the validity of the recovered error. Specifically, as shown in Algorithm 7,



36 Complete and Improved FPGA Implementation of Classic McEliece

Table 10: Comparison of the time and area for our Decap hardware module targeting
Xilinx Artix 7 (xc7a200t) FPGA.

Resources
Parameter Set Area Memory Cycles Freq. Time T×A

(LUTL) (LUTM) (FF) (BR) (kcyc.) (MHz) (ms)
mceliece348864 15,557 314 29,984 34.5 100.2 180 0.56 8.711× 103

mceliece460896 24,698 540 46,509 70.5 201.7 176 1.15 28.36 × 103

mceliece6688128 25,848 330 54,527 52.5 216.0 175 1.24 31.96 × 103

mceliece6960119 29,546 546 58,126 70.5 210.9 171 1.23 36.36 × 103

mceliece8192128 26,633 330 59,048 52.5 219.1 174 1.26 33.43 × 103

LUTL = LUT as logic, LUTM = LUT as memory, FF = flip-flop, BR = BRAM, T×A = Time×Area

a validity check ensures that the hamming weight of e is t and Hv = He. The first step
within re-encryption is to scan the error vector e to extract its hamming weight. This step
also packs the indexes of the t nonzero bits of e to a vector error_bits_indexes.

A direct check of Hv = He requires the parity check matrix H and hence the large
public key, which is actually not necessary. As described in the specification [ABC+20,
Sect. 2.2.4], we use the double-size parity check matrix H(2) as the parity check matrix and
compare H(2)v with H(2)e in our design. Since the computation of the double-size syndrome
H(2)v [WSN18] is already a sub-module within the Decode module, the computation of
H(2)e can directly reuse this sub-module with the error_bits_indexes signal provided
as input. Since error_bits_indexes always encodes the information of t indexes of e, it
is ensured that the re-encryption step is constant-time. Using this approach, the overhead
for re-encryption is very small, both in terms of area utilization and clock cycles.

Table 10 shows results for the Decap hardware module for all the parameter sets. The
area estimates shown in Table 10 do not include the area of the SHAKE256 module. We
observe that more than 80% of the cycles for the Decap operation are taken by the δ
expansion and FieldOrdering steps. This overhead can be reduced by buffering α
between consecutive decoding operations that using the same private key. The frequency
values reported in Table 10 are the maximum clock frequency of our Decap module
standalone. However, the maximum clock frequency is limited by the SHAKE256 module
when interfaced with our Decap module as explained before.

6 Classic McEliece KEM — Joint Design
In this section, we present our hardware design of a joint Classic McEliece design combining
our Encap, Decap, and SeededKeyGen modules described in Section 5 into one overall
design. In order to build a resource-efficient joint design we start with identifying the
sub-modules that can be shared among these three primitives:

1. SHAKE256: As discussed in Sections 5.2 to 5.4, the SHAKE256 module is common
among all three primitives key generation, encapsulation, and decapsulation. The
resource utilization for the SHAKE256 module is reported in Table 5.

2. FieldOrdering: The FieldOrdering operation is common among the Decap
and SeededKeyGen algorithms as described in Section 5.4. For the parameter set
mceliece348864, the FieldOrdering hardware module takes up 94% and 14% of
the Block RAM resources of the Decap and SeededKeyGen modules respectively.

3. Additive FFT: The KeyGen and Decode modules described in [WSN18] use similar
AdditiveFFT modules. For the parameter set mceliece348864, the AdditiveFFT
module takes up to 17% of the resources of Decap and up to 28% of SeededKeyGen.



Chen, Chou, Deshpande, Lahr, Niederhagen, Szefer, and Wang 37

Table 11: Comparison of the time and area for our joint hardware design of Classic McEliece
with other code-based schemes (as there is no other complete hardware implementation of
Classic McEliece KEM to compare with) targeting Xilinx Artix 7 (xc7a200t) FPGA.

Resources
Design Logic Memory F Encap Decap KeyGen

(LUT) (DSP) (FF) (BR) (MHz) (Mcyc.) (ms) (Mcyc.) (ms) (Mcyc.) (ms)
mceliece348864 (our design)

LW 23,890 5 45,658 138.5 112 0.13 1.1 0.17 1.5 8.88 79.2
HS 40,018 4 61,881 177.5 113 0.03 0.3 0.10 0.9 0.97 8.6

BIKE - L1 [RBMG20]
LW 12,868 7 5,354 17.0 121 0.20 1.2 1.62 13.3 2.67 21.9
HS 52,967 13 7,035 49.0 96 0.01 0.1 0.19 1.9 0.26 2.6

HQC - L1 (HLS design) [AAB+20]
LW 8,900 0 6,400 14.0 132 1.50 11.4 2.10 15.9 0.63 4.7
HS 20,000 0 16,000 12.5 148 0.09 0.6 0.19 1.3 0.04 0.3
LW = LightWeight, HS = HighSpeed, FF = flip-flop, F = Fmax, BR = BRAM

4. Public Key Memory: As discussed in Section 5.2, the public key memory has huge
impact on the Block RAM usage in the SeededKeyGen module. Duplicating it for
Encap would double the number of required Block RAM resources.

To save the resource overhead that would result from duplicating these hardware
components, we decided to share them between the corresponding modules. To differen-
tiate between the three operations SeededKeyGen, Decap, or Encap, we add a 2-bit
instruction port to our joint hardware design to indicate which of the three operations
should be performed.

Table 11 shows the time and area results for our joint Classic McEliece design in
two flavors, lightweight (LW ) and high-speed (HS). Since there exists no other Classic
McEliece hardware design to compare to, we compare our design to existing hardware
designs of the code-based cryptography KEM schemes BIKE from [RBMG20] and HQC
from [AAB+20] (high-level synthesis from C code) at NIST security level 1. For our
HS design we choose the modules and performance parameters as described in Section 5,
whereas for our LW design, we select the KeyGen module with DPEA systemizer (described
in Section 4) with s = 12, the Encap module with column-block size = 12 (Section 5.3.4),
and we choose the smallest possible performance parameters for the Decode module (from
[WSN18]), i.e., mul_sec_BM = 1 and mul_sec_BM_step = 1.

We observe that the area footprint for our HS Classic McEliece hardware design is
smaller than that of the HS BIKE design in terms of logic utilization and lies in between
BIKE and HQC. Time taken by our Encap module is faster in all the cases except in case
of HS implementation of BIKE. Our HS and LW Decap module is 9× and 2× faster than
HS and LW BIKE implementation and 11× and 1.5× faster than the HS and LW HLS
implementation of HQC respectively, even though our design includes re-computation of
the support α. We also observe that the overall maximum clock frequency of our LW and
HS joint designs is limited due to the SHAKE256 module as described in Section 5.

Conclusion. Overall, our design has a relatively high resource cost for the LW variant
but shows overall a very good performance at a good cost for the HS variant. Hence, in
regard to hardware implementation Classic McEliece competes well with other code-based
schemes. In particular the relatively high cost of key generation can be compensated well
using optimized systemizer designs if sufficient resources are available.



38 Complete and Improved FPGA Implementation of Classic McEliece

Acknowledgments
This work was partially funded through the Taiwan Ministry of Science and Technology
(MoST) grant 109-2222-E-001-001-MY3, a grant from the Technology Innovation Institute,
the United States National Science Foundation grant 1716541, and the German Federal
Ministry of Education and Research and the Hessen State Ministry for Higher Education,
Research and the Arts within their joint support of the National Research Center for Applied
Cybersecurity ATHENE. We would like to thank Victor Mateu for helpful discussions.

References
[AAB+20] Carlos Aguilar Melchor, Nicolas Aragon, Slim Bettaieb, Loïc Bidoux, Olivier

Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Persichetti,
Gilles Zémor, and Jurjen Bos. HQC. Technical report, National Institute
of Standards and Technology, 2020. available at https://csrc.nist.gov/
projects/post-quantum-cryptography/round-3-submissions.

[ABC+20] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan Gilcher,
Tanja Lange, Varun Maram, Ingo von Maurich, Rafael Misoczki, Ruben
Niederhagen, Kenneth G. Paterson, Edoardo Persichetti, Christiane Peters,
Peter Schwabe, Nicolas Sendrier, Jakub Szefer, Cen Jung Tjhai, Martin
Tomlinson, and Wen Wang. Classic McEliece. Technical report, National
Institute of Standards and Technology, 2020. available at https://csrc.nist.
gov/projects/post-quantum-cryptography/round-3-submissions.

[BCS13] Daniel J. Bernstein, Tung Chou, and Peter Schwabe. McBits: Fast constant-
time code-based cryptography. In Guido Bertoni and Jean-Sébastien Coron,
editors, CHES 2013, volume 8086 of LNCS, pages 250–272. Springer, August
2013.

[BMP+06] Andrey Bogdanov, Marius C. Mertens, Christof Paar, Jan Pelzl, and Andy
Rupp. A parallel hardware architecture for fast Gaussian elimination over
GF(2). In Field-Programmable Custom Computing Machines - 14th IEEE
Symposium, FCCM 2006, pages 237–248. IEEE, April 2006.

[CC21] Ming-Shing Chen and Tung Chou. Classic McEliece on the ARM Cortex-M4.
IACR TCHES, 2021(3):125–148, 2021.

[Cho17] Tung Chou. McBits revisited. In Wieland Fischer and Naofumi Homma, editors,
CHES 2017, volume 10529 of LNCS, pages 213–231. Springer, September 2017.

[EGHP09] Thomas Eisenbarth, Tim Güneysu, Stefan Heyse, and Christof Paar. Mi-
croEliece: McEliece for embedded devices. In Christophe Clavier and Kris Gaj,
editors, CHES 2009, volume 5747 of LNCS, pages 49–64. Springer, September
2009.

[GDUV12] Santosh Ghosh, Jeroen Delvaux, Leif Uhsadel, and Ingrid Verbauwhede. A
speed area optimized embedded co-processor for McEliece cryptosystem. In
Application-Specific Systems, Architectures and Processors - 23rd IEEE Inter-
national Conference, ASAP 2012, pages 102–108. IEEE, July 2012.

[HG13] Stefan Heyse and Tim Güneysu. Code-based cryptography on reconfigurable
hardware: tweaking Niederreiter encryption for performance. Journal of
Cryptographic Engineering, 3(1):29–43, April 2013.

https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions


Chen, Chou, Deshpande, Lahr, Niederhagen, Szefer, and Wang 39

[HQR89] Bertrand Hochet, Patrice Quinton, and Yves Robert. Systolic Gaussian elimi-
nation over GF(p) with partial pivoting. IEEE Trans. Computers, 38(9):1321–
1324, 1989.

[LGCN20] Mariano López-García and Enrique Cantó-Navarro. Hardware-software im-
plementation of a McEliece cryptosystem for post-quantum cryptography.
In Kohei Arai, Supriya Kapoor, and Rahul Bhatia, editors, Proceedings of
the 2020 Future of Information and Communication Conference (FICC) -
Advances in Information and Communication, volume 1130 of AISC, pages
814–825. Springer, March 2020.

[MBR15] Pedro M.C. Massolino, Paulo S.L.M. Barreto, and Wilson V. Ruggiero. Opti-
mized and scalable co-processor for McEliece with binary Goppa codes. ACM
Trans. Embed. Comput. Syst., 14(3):45:1–45:32, 2015.

[McE78] Robert J. McEliece. A public-key cryptosystem based on algebraic cod-
ing theory. Technical report, NASA, 1978. https://ipnpr.jpl.nasa.gov/
progress_report2/42-44/44N.PDF.

[Nie86] Harald Niederreiter. Knapsack-type cryptosystems and algebraic coding theory.
Problems of Control and Information Theory, 15(2):159–166, 1986.

[RBMG20] Jan Richter-Brockmann, Johannes Mono, and Tim Güneysu. Folding BIKE:
Scalable hardware implementation for reconfigurable devices. Cryptology ePrint
Archive, Report 2020/897, 2020. https://eprint.iacr.org/2020/897.

[REBG11] Andy Rupp, Thomas Eisenbarth, Andrey Bogdanov, and Oliver Grieb. Hard-
ware SLE solvers: Efficient building blocks for cryptographic and cryptanalytic
applications. Integr., 44(4):290–304, 2011.

[SWM+10] Abdulhadi Shoufan, Thorsten Wink, Gregor Molter, Sorin A. Huss, and Eike
Kohnert. A novel cryptoprocessor architecture for the McEliece public-key
cryptosystem. IEEE Trans. Computers, 59(11):1533–1546, 2010.

[WSN16] Wen Wang, Jakub Szefer, and Ruben Niederhagen. Solving large systems of
linear equations over GF(2) on FPGAs. In Peter M. Athanas, René Cumplido,
Claudia Feregrino, and Ron Sass, editors, ReConFigurable Computing and FP-
GAs - International Conference, ReConFig 2016, pages 1–7. IEEE, November
2016.

[WSN17] Wen Wang, Jakub Szefer, and Ruben Niederhagen. FPGA-based key generator
for the Niederreiter cryptosystem using binary Goppa codes. In Wieland
Fischer and Naofumi Homma, editors, CHES 2017, volume 10529 of LNCS,
pages 253–274. Springer, September 2017.

[WSN18] Wen Wang, Jakub Szefer, and Ruben Niederhagen. FPGA-based Niederreiter
cryptosystem using binary Goppa codes. In Tanja Lange and Rainer Stein-
wandt, editors, Post-Quantum Cryptography - 9th International Conference,
PQCrypto 2018, volume 10786 of LNCS, pages 77–98. Springer, April 2018.

[WTJ+20] Wen Wang, Shanquan Tian, Bernhard Jungk, Nina Bindel, Patrick Longa,
and Jakub Szefer. Parameterized hardware accelerators for lattice-based
cryptography and their application to the HW/SW co-design of qTESLA.
IACR TCHES, 2020(3):269–306, 2020.

https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF
https://eprint.iacr.org/2020/897


40 Complete and Improved FPGA Implementation of Classic McEliece

[YL15] Haibo Yi and Weijian Li. Small FPGA implementations for solving systems of
linear equations in finite fields. In Software Engineering and Service Science
- 6th IEEE International Conference, ICSESS 2015, pages 561–564. IEEE,
September 2015.



Chen, Chou, Deshpande, Lahr, Niederhagen, Szefer, and Wang 41

A Appendix

Algorithm 8 Hybrid Early-Abort Systemizer (HEA)

Input: Ĥ =
(

ĤL | ĤR

)
, where ĤL ∈ F(n−k)×(n−k)

2 and ĤR ∈ F(n−k)×k
2

Output: T ∈ F(n−k)×k
2 such that

(
In−k | T

)
is the systematic form of Ĥ, or ⊥

1: A← ĤL

2: for i = 0 to n− k − 1 do
3: for j = i + 1 to n− k − 1 do
4: if Ai,i = 0 and Aj,i = 1 then
5: for c = i to n− k − 1 do
6: swap Ai,c with Aj,c

7: end for
8: else if Ai,i = 1 and Aj,i = 1 then
9: for c = i to n− k − 1 do

10: Aj,c ← Aj,c + Ai,c

11: end for
12: end if
13: end for
14: if Ai,i ̸= 1 then
15: return ⊥ ▷ Ĥ is not systemizable.
16: end if
17: end for
18: B ← Ĥ
19: for i = 0 to n− k − 1 do
20: for j = i + 1 to n− k − 1 do
21: if Bi,i = 0 and Bj,i = 1 then
22: for c = i to n− 1 do
23: swap Bi,c with Bj,c

24: end for
25: else if Bi,i = 1 and Bj,i = 1 then
26: for c = i to n− 1 do
27: Bj,c ← Bj,c + Bi,c

28: end for
29: end if
30: end for
31: for j = 0 to i− 1 do
32: if Bj,i = 1 then
33: for c = i to n− 1 do
34: Bj,c ← Bj,c + Bi,c

35: end for
36: end if
37: end for
38: end for
39: return the matrix formed by the last k columns of B



42 Complete and Improved FPGA Implementation of Classic McEliece

Algorithm 9 Single-Pass Early-Abort Systemizer (SPEA)

Input: Ĥ =
(

ĤL | ĤR

)
, where ĤL ∈ F(n−k)×(n−k)

2 and ĤR ∈ F(n−k)×k
2

Output: T ∈ F(n−k)×k
2 such that

(
In−k | T

)
is the systematic form of Ĥ, or ⊥

1: for ℓ = 0 to n− k − 1 do
2: pℓ = ℓ
3: end for
4: A← HL

5: for i = 0 to n− k − 1 do
6: for j = i + 1 to n− k − 1 do
7: if Ai,i = 0 and Aj,i = 1 then
8: for c = i to n− k − 1 do
9: swap Ai,c with Aj,c

10: end for
11: pi ← j
12: else if Ai,i = 1 and Aj,i = 1 then
13: for c = i + 1 to n− k − 1 do
14: Aj,c ← Aj,c + Ai,c

15: end for
16: end if
17: end for
18: if Ai,i ̸= 1 then
19: return ⊥ ▷ Ĥ is not systemizable.
20: end if
21: for j = 0 to i− 1 do
22: if Aj,i = 1 then
23: for c = i + 1 to n− k − 1 do
24: Aj,c ← Aj,c + Ai,c

25: end for
26: end if
27: end for
28: end for
29: B ← HR

30: for i = 0 to n− k − 1 do
31: for j = i + 1 to n− k − 1 do
32: if pi = j then
33: for c = i to k − 1 do
34: swap Bi,c with Bj,c

35: end for
36: else if ĤL

j,i = 1 then
37: for c = i to k − 1 do
38: add Bi,c to Bj,c

39: end for
40: end if
41: end for
42: for j = 0 to i− 1 do
43: if Aj,i = 1 then
44: for c = i to k − 1 do
45: add Bi,c to Bj,c

46: end for
47: end if
48: end for
49: end for
50: return B



Chen, Chou, Deshpande, Lahr, Niederhagen, Szefer, and Wang 43

Algorithm 10 Dual-Pass Early-Abort Systemizer (DPEA)

Input: Ĥ =
(

ĤL | ĤR

)
, where ĤL ∈ F(n−k)×(n−k)

2 and ĤR ∈ F(n−k)×k
2

Output: T ∈ F(n−k)×k
2 such that

(
In−k | T

)
is the systematic form of Ĥ, or ⊥

1: for ℓ = 0 to n− k − 1 do
2: pℓ = ℓ
3: end for
4: A← HL

5: for i = 0 to n− k − 1 do
6: for j = i + 1 to n− k − 1 do
7: if Ai,i = 0 and Aj,i = 1 then
8: for c = i to n− k − 1 do
9: swap Ai,c with Aj,c

10: end for
11: pi ← j
12: else if Ai,i = 1 and Aj,i = 1 then
13: for c = i + 1 to n− k − 1 do
14: Aj,c ← Aj,c + Ai,c

15: end for
16: end if
17: end for
18: if Ai,i ̸= 1 then
19: return ⊥ ▷ Ĥ is not systemizable.
20: end if
21: end for
22: B ← HR

23: for i = 0 to n− k − 1 do
24: for j = i + 1 to n− k − 1 do
25: if pi = j then
26: for c = i to k − 1 do
27: swap Bi,c with Bj,c

28: end for
29: else if Aj,i = 1 then
30: for c = i to k − 1 do
31: add Bi,c to Bj,c

32: end for
33: end if
34: end for
35: end for
36: for i = n− k − 1 to 0 do
37: for j = i− 1 to 0 do
38: if Aj,i = 1 then
39: for c = i to k − 1 do
40: add Bi,c to Bj,c

41: end for
42: end if
43: end for
44: end for
45: return B



44 Complete and Improved FPGA Implementation of Classic McEliece

Errata
The following points have been fixed compared to the CHES version of this paper (IACR
TCHES, Volume 2022, Issue 3):

Sept. 5, 2022: Removed “a” on page page 6.

Sept. 5, 2022: Changed “H” to “Ĥ” twice on page page 10.

Sept. 5, 2022: Added “−1” to “n/s− 1”on page page 12.

Sept. 5, 2022: Changed “H” to “Ĥ” on page page 14.

Sept. 5, 2022: Changed “dual-pass” to “single-pass” twice on page page 17.

Aug. 25, 2022: Added a clarification on the choice of parameter s (size of the processor
array) in Section 5.2 on page 28.

Aug. 25, 2022: Fixed metric suffix in Table 6 on page page 29 from “kcyc.” to ”Mcyc.”.

https://tches.iacr.org/index.php/TCHES/article/view/9695
https://tches.iacr.org/index.php/TCHES/article/view/9695

	Introduction
	Classic McEliece
	Previous Systemizer Designs
	Optimization of Public Key Generation
	Hybrid Early-Abort Systemizer (HEA)
	Single-Pass Early-Abort Systemizer (SPEA)
	Dual-Pass Early-Abort Systemizer (DPEA)
	Performance Evaluation

	Encapsulation, Decapsulation, and Key Generation
	SHAKE256
	Seeded Key Generation
	Encapsulation
	Decapsulation

	Classic McEliece KEM — Joint Design
	Appendix

