
Efficient and Tight Oblivious Transfer from PKE
with Tight Multi-User Security∗

Saikrishna Badrinarayanan1, Daniel Masny2, and Pratyay Mukherjee3

1 Visa Research
2 Meta

3 Swirlds

Abstract. We propose an efficient oblivious transfer in the random or-
acle model based on public key encryption with pseudorandom public
keys. The construction is as efficient as the state of art though it has a
significant advantage. It has a tight security reduction to the multi-user
security of the underlying public key encryption. In previous construc-
tions, the security reduction has a multiplicative loss that amounts in
at least the amount of adversarial random oracle queries. When consid-
ering this loss for a secure parameter choice, the underlying public key
encryption or elliptic curve would require a significantly higher security
level which would decrease the overall efficiency.

Our OT construction can be instantiated from a wide range of assump-
tions such as DDH, LWE, or codes based assumptions as well as many
public key encryption schemes such as the NIST PQC finalists. Since
tight multi-user security is a very natural requirement which many pub-
lic key encryption schemes suffice, many public key encryption schemes
can be straightforwardly plugged in our construction without the need
of reevaluating or adapting any parameter choices.

1 Introduction

An oblivious transfer (OT) [Rab81, EGL82] is an interactive protocol between
two parties called a sender and a receiver. At the end of the protocol, the sender
outputs two messages m0, m1 while the receiver outputs b,mb for a choice bit
b. Security requires that the sender does not learn b and the receiver does not
learn m1−b. OT is a fundamental building block in cryptography [Kil88], partic-
ularly in secure multi-party computation (MPC) [Yao82, Yao86, CvT95, IPS08,
IKO+11, BL18, GS18], which allows mutually distrusting parties to securely
perform joint computations on their privately held data. MPC has a plethora
of applications in practice, for example, in securely training machine learning
models (e.g. [MR18]), private set intersection (e.g. [KKRT16, PRTY20]) etc. In
fact, a significant body of practically efficient MPC protocols do rely primarily
on the primitive of OT (e.g. [NNOB12, KOS16]), which makes efficient secure
OT an important and very natural objective.

∗Part of the work was done while the authors were at Visa Research.



Within the last years, there has been significant progress in making OT
more efficient. Chou and Orlandi [CO15] proposed a very efficient OT in the
random oracle model [BR93, CGH98] based on the DDH assumption. It turned
out, that it does not achieve UC security [GIR17, HL17], but only stand-alone
security. Masny and Rindal [MR19] proposed an OT from public key encryption
(PKE) with pseudorandom public keys that is as well very efficient but also
UC secure and can be instantiated from a variety of assumptions such as LWE
or code based assumptions. The construction makes it very easy to plug in
PKE schemes such as the NIST PQC candidates [SAB+20, DKR+20, CDH+20,
ABC+20] which is a significant advantage over more tailored construction of OT
based on DDH [CSW20], LWE [PVW08, BD18, BDK+20] or McEliece [DvMN08,
DNM12]. McQuoid, Rosulek and Roy [MRR20, MRR21] gave a more modular
analysis of this approach, extended it to PKEs with pseudorandom ciphertexts
(PKE B) as well as increased the efficiency when multiple OTs are run in parallel.
Masny and Watson [MW21] increased the efficiency by leveraging a PKI.

This approach works as follows. Using a specific query pattern to a random
oracle, a receiver can freely chose one public key while a second public key will
be completely determined by the random oracle. At the same time, a sender
can reproduce the same queries and public keys and then encrypt one OT string
under each of the public keys. Though he will not be able to determine which of
the keys has been freely chosen by the receiver. At the same time, the receiver
can only recover the string under the freely chosen public key but not the other.
Unfortunately, this approach has some drawbacks, namely the receiver could re-
peat the query pattern to the random oracle until he finds a public keys that
might be easier to break than the average public key and then try to recover
both strings. Typically, a PKE is hard to break for a random public key with
overwhelming probability and therefore it should not cause an issue. Neverthe-
less, it limits how tightly one can prove the security of the OT protocol based
on a PKE scheme.

This drawback can be resolved by using a PKE that is tightly secure in the
multi-user setting. Tight multi user security has received significant attention
in the context of key exchange, PKE and signatures [H̊as88, BBM00, HJ12,
Zav12, BHJ+15, KMP16, CKMS16, GKP18, GJ18, PR20, LLGW20, JKRS21].
Bellare, Boldyreva and Micali [BBM00] showed that ElGamal is tightly secure
even when multiple challenge ciphertexts are given to the adversary. There are
numerous works that focus on tight multi-user secure PKE [H̊as88, HJ12, Zav12,
CKMS16, GKP18]. The tightness requirement does not put significant restric-
tions on known PKEs. Tight multi-user security is a very natural property that
a PKE should typically have since usually the security of all users and not just
of a single user needs to be considered. Non-tightness would demand an increase
in the bit security level of a PKE when used across many users which would
render the PKE significantly less efficient.

Unfortunately, using a tightly secure PKE in the multi user setting is not
sufficient. The security analysis of [MR19, MRR20, MRR21] also involves re-
programming the random oracle and guessing which query a malicious receiver
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will later use during the OT protocol. This comes at the cost of a security loss
which is multiplicative in the amount of adversarial random oracle queries. This
issue seems to requires a more in-depth analysis of this approach of constructing
OT and opens the question whether a similar construction could achieve tight
security. In this paper, we answer the following question:

Can we construct efficient OT that is tightly secure in the ROM from
public-key encryption?

1.1 Our Contribution

We propose a new construction of OT in the random oracle model which can
be proven tightly secure based on the multi-user security of the underlying
PKE. This approach follows the paradigm of Masny and Rindal [MR19, MRR20,
MRR21, MW21] by specifying a pattern of random oracle queries which allows
a malicious receiver to choose one public key freely while a second one is deter-
mined by the random oracle.

We use a mild notion of multi-user security which is weaker than the no-
tion proposed in previous literature such as [BBM00]. In our notion, we require
that an adversary receives n user public keys and then decides for which he
wants to see a challenge ciphertext. The notion of [BBM00] allows an adver-
sary to see challenge ciphertext for all of the public keys. Nevertheless, there
are many PKEs that even achieve the stronger notion of [BBM00] with a tight
security proof under the DDH or LWE [Reg05] assumption. We recap the most
basic PKEs and their tight reductions to DDH and LWE in Section 3. The re-
sults extend straightforwardly to code based schemes, the ring or module LWE
[LPR10, BGV12, LS15] setting or elliptic curves.

For our OT, we require a second property that is the pseudorandomness of
the public keys. This requirement is the same as in [MR19] we the exception
that it holds tightly based on the underlying assumption even when n keys are
seen. We recap this property as well in Section 3 for the PKEs of interest.

In Figure 1, we compare our result with previous works. Since the main dif-
ference of our construction to [MR19] is how the random oracle is used, the ef-
ficiency of our OT is very similar to [MR19]. On one hand, we need to compute
3 additional hash evaluations. The hash evaluations are standard evaluations
mapping onto {0, 1}∗ and when using elliptic curves, not to curve points. On
the other hand, we are actually, similar to [MRR20] able to reduce the com-
munication complexity on the receivers side from 2|pk| ([MRR20]) to |pk + 2λ.
In particular when instantiating the OT with lattice or code based schemes
[SAB+20, DKR+20, CDH+20, ABC+20] which have rather long keys, this is a
significant reduction. Even when instantiating the OT with ElGamal encryption,
we need to sample one random group element less which requires an exponen-
tiation. In the elliptic curve setting, our construction is compatible with the
performance optimizations of [MRR21] and would therefore be competitive with
the currently fastest implementations of UC OT reported in [MRR21]. Further,
our OT is based on a PKE with pseudorandom public keys (PKE A) which,
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UC Loss Model Com(R) Com(S)

[CO15] 7 - ROM log |G| log |G|
[MR19] PKE A O(q) ROM 2|pk| 2|ct|
[CSW20] DDH O(q2) ROM,CRS 2 log |G| log |G|
[MRR20] PKE B O(q2) ROM |ct|+ λ |pk|
[MRR20]∗ PKE A O(q) ROM |ct|+ λ |pk|
[MRR21] PKE B O(q) Ideal Cipher |ct|+ λ |pk|
[MRR21]∗ PKE A O(1) Ideal Cipher |ct|+ λ |pk|
Ours PKE A O(1) ROM |pk|+ 2λ 2|ct|

Fig. 1: We compare our construction with previous works. The depicted loss as-
sumes tight multi-user security of the underlying PKE. We emphasize that the
listed works realize different OT functionalities and therefore the comparison
between the communication should be interpreted with caution. PKE A stands
for PKE with pseudorandom public keys and PKE B stands for PKE with uni-
form ciphertexts. q is the amount of adversarial random oracle queries (hash
evaluations). [MRR20]

∗
, [MRR21]

∗
are slight adaptations of the original works

to make them compatible with the PKE A setting.

unlike PKEs with uniform ciphertexts (PKE B), can be efficiently instantiated
with post-quantum PKEs, e.g. from codes or lattices. We could also use our tech-
niques to construct an OT from a PKE with pseudorandom ciphertexts (PKE
B), though it is unclear whether the tightness would still hold and it might re-
quire stronger assumptions such as the interactive DDH assumption [MR19] or
oracle assumptions [BCJ+19, MRR21].

As shown in Figure 1, our OT is currently the only OT among the most effi-
cient OTs that is tightly secure in the random oracle model. The main challenge
is typically security against a malicious receiver. Previous works suffer at least a
loss of O(q) where q is the amount of adversarial hash evaluations. For a conser-
vative parameter choice, previous works need to start with a significantly higher
security level of the PKE or elliptic curve which negatively impacts efficiency
and communication complexity or alternatively, use a stronger model such as
the ideal cipher model as in case of [MRR21]

∗
.

We emphasize that Figure 1 states the loss for [MRR20]
∗

and [MRR21]
∗

when
using a PKE with tight multi user security. Using (plain) single user secure PKE,
the loss increases by a factor of q. This also holds for the loss stated for [MR19].

1.2 Technical Overview

We follow an approach by Masny and Rindal [MR19]. They construct a two
round OT in which the receiver starts by sending a message r0, r1 from this
message the sender can derrive two public keys under which he encrypts the two
OT strings. The public keys are pk0 := r1 + H(r0) and pk1 := r0 + H(r1). When
following this approach, proving security against a malicious sender is typically
easy since the random oracle can be programmed such that the simulator knows
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the secret keys for both public keys which can then be used to extract the
malicious sender’s string. The more challening part is to prove security against
a malicious receiver R∗. Given that R∗ makes only two random oracle queries,
r0 and r1, the simulator can observe the first query, let it be rb. Then, b is
the extracted choice bit. Further, when the second query is made, the simulator
could pick a public key pk∗ of its choice and program the oracle H such that
H(r1−b) := pk∗ − rb and thus pk1−b = pk∗. If R∗ learns information about the
OT string s1−b, he would then break the security of the PKE.

Unfortunately, when the malicious receiver makes many queries, it is not
clear how to program H(r1−b) since any of the q previous queries r̃1, . . . , r̃q
could be the rb query. This would lead to the potential public keys pk1−b,1 :=
r̃1+H(r1−b), . . . , pk1−b,q := r̃q+H(r1−b). We could guess j ∈ [q] such that rb = r̃j
but this would cause a loss of q.

Before explaining our construction, we first take an intermediate step. The
MR OT has similarities with a sequential OR proof [RST01, AOS02]. Instead we
could follow the parallel OR proof paradigm [CDS94]. The public keys would be
then derrived from a message r, c0, c1 and defined as pk0 := r+H(c0) and pk1 :=
r+H(c1). This construction has similarities with the McQuoid, Rosulek and Roy

OT [MRR20]. As an additional constraint, we ask that Ĥ(r) = c0+c1, where Ĥ is
a second random oracle. When proving security against R∗, whenever R∗ makes
a query to Ĥ, the simulator samples a random ĉ and programs H(ĉ+cj) = pk∗j−r
for any previous query cj to H for a public key of its choice. Since ĉ is uniform,
it is very unlikely that H has been programmed on this input for a previous
query. Now we could just rely on the multi-user security of the PKE rather than
trying to guess which of the previous queries corresponds to rb. Nevertheless, R∗
could first query Ĥ for r and then query H for c0, c1 such that Ĥ(r) = c0 + c1.
This would cause an issue in the programming strategy which assumes that the
adversary queries first c0 or c1 to H. Further, this strategy does not seem to help
R∗ since by using a guessing strategy, we could show that by the security of the
PKE, R∗ cannot learn any of the OT strings. However, it seems that we cannot
show this via a tight reduction.

We resolve the issue via the following approach. We let the receiver send
(r, c0, c1) and the public keys are defined as pk0 := r+Ĥ(ĉ0) and pk1 := r+Ĥ(ĉ1),
where ĉ0 := c1 + H(r, c0) and ĉ1 := c0 + H(r, c1). ĉ0 and ĉ1 could be seen as the
r0, r1 values of the MR OT. But rather than using them directly, we apply an
additional random oracle on them as “correlation breaker”. A PKE scheme is
typically not tightly secure in a setting where an adversary A can first suggest
q shifts r̃1, . . . , r̃q, then receives public key pk and finally tries to break IND-
CPA security under public key pk − r̃j where j ∈ [q] is chosen by A. Though

a correlation robust hash function Ĥ [IKNP03] is tailored to such a setting and
maps all inputs pk− r1, . . . , pk− rq to strings that do not collide as long as pk is
uniform and independent of r̃1, . . . r̃q. In our setting, we need something stronger
than correlation robustness since we also need programmability such that we can
program these disjunct strings to different public keys. Fortunately, a random
oracle provides both properties such that for any choice of r, c0, c1 among the
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random oracle queries of R∗, at least one of the public keys pk0 and pk1 will
correspond to a programmed key chosen by the simulator. When q is the total
amount of random oracle queries, there are at most q2 choices for r, c0, c1 among
the queries. This is due to the fact, that for any b ∈ {0, 1}, cb is uniquely defined
by r and c1−b. Therefore, there will be at most q2 choices of public keys pk0,
pk1 and hence the multi-user security of PKE for q2 user is sufficient to prove
security against a malicious receiver.

For the proof, it would sufficient to just hash r0, r1 of the MR OT, though
in the actual protocol, we need to allow the receiver to control one of the public
keys. For this reason we introduce r to the protocol. Interestingly, our protocol
could be seen as a combination of sequential and parallel OR proof techniques.

2 Preliminaries

Notation. For n ∈ N, we use [n] to denote the set {1, . . . , n}. We use λ to denote
the security parameter. And x← X , x← X to sample x from a distribution X
or uniformly random from a set X.

Let Π be a protocol between two parties S and R. For two (interactive)
algorithms S ′,R′ that do not necessarily follow the protocol description of Π,
we use [S ′,R′]Π to denote the interaction between S ′ and R′ in protocol Π,
where S ′ takes the role of S and R′ the role of R. For an environment D, we use
D([S ′,R′]Π) to denote an interaction of D with S ′,R′ who interact in Π. Here,
we follow the simple UC framework of [CCL15].

For a cyclic group G of order p ∈ N with generator g, we use J1K to denote g
and for a, b ∈ N, JaK + bJ1K = Ja+ bK. For a, b ∈ Zηq , we use 〈a, b〉 to denote the

inner product between a and b. For an oracle O and an algorithm A, we use AO

to denote A when A has query access to O.

Cryptographic Assumptions.
We recap the DDH and LWE problems below. Since we consider the UC

setting, we need to consider non-uniform algorithms which receive an auxiliary
input.

Definition 1 (Decisional Diffie-Hellman (DDH)). A ppt algorithm A solves
the decisional Diffie-Hellman (DDH) problem for a group G of order p ∈ N with
generator J1K with probability ε if for any polynomial auxiliary input z,

|Pr[A(z, J1K, JaK, JbK, JabK) = 1]− Pr[A(z, J1K, JaK, JbK, JcK) = 1]| ≥ ε,

where a, b, c← Zp.

Definition 2 (Learning with Errors (LWE)). A ppt algorithm A solves
the Learning with Errors (LWE) problem for parameters q, η ∈ N and noise
distribution X with probability ε if for any polynomial auxiliary input z

|Pr[AOLWE(z) = 1]− Pr[AOU(z) = 1]| ≥ ε,
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where OLWE is a oracle that outputs samples of the form a, 〈a, s〉+e with a← Zηq ,
e ← X and each sample uses the same secret s ← Zηq . OU is the oracle that
outputs a, u with a← Zηq , u← Zq.

Public Key Encryption. We define public key encryption and its multi-user
security below. We emphasize that we consider a setting with only a single
challenge ciphertext which is a weaker security notion than the commonly used
multi-user security setting in which an adversary receives a challenge ciphertext
for each public key.

Definition 3 (Public Key Encryption). A public key encryption (PKE) is
a triplet of algorithms (Gen,Enc,Dec) and a message space M with the following
syntax.

Gen: Takes as input 1λ and outputs a key pair (sk, pk).
Enc: Takes as input pk and a message m ∈ M and outputs a ciphertext ct.
Dec: Takes as input sk and a ciphertext ct and outputs a message m.

We require correctness and M-IND-CPA security.

Correctness: For any m ∈ M

Pr[Dec(sk,Enc(pk,m)) = m] ≥ 1− negl,

where (sk, pk)← Gen(1λ).
n-Multi-User IND-CPA (M-IND-CPA): For any ppt adversay A := (A1,A2)

and any polynomial auxiliary input z

|Pr[A2(st, ct∗0) = 1]− Pr[A2(st, ct∗1) = 1]| ≤ negl,

where for all i ∈ [n], (ski, pki)← Gen(1λ), (st, i∗,m0,m1)← A1(z, pk1, . . . , pkn)
and for all b ∈ {0, 1} ct∗b ← Enc(pki∗ ,mb).

In addition to the multi-user IND-CPA security, we also need that public
keys are indistinguishable from uniform in the multi-user setting.

Definition 4 (PKE with Pseudorandom Public Keys). For n ∈ N, we
call a PKE scheme n-multi-user public key indistinguishable (M-IND-PK) over
group G if for any ppt A and polynomial auxiliary input z

|Pr[A(z, pk1, . . . , pkn) = 1]− Pr[A(z, u1, . . . , un) = 1]| ≤ negl,

where for all i ∈ [n], (ski, pki)← Gen(1λ) and ui ← G.

Oblivious Transfer. We use the simplified UC framework which is sufficient
for full UC [CCL15]. Below, we define UC secure OT.

Definition 5 (Ideal Oblivious Transfer Functionality). An ideal OT func-
tionality FOT interacts with two ppt parties S and R as follows. FOT takes s0, s1
from S. FOT takes b from R and returns sb.
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Definition 6 (Oblivious Transfer). We call a protocol Π between two ppt
parties, a sender S and a receiver R, oblivious transfer (OT) if at the end of
the protocol they have established a correlation in which S holds strings (s0, s1)
and R holds (b, sb). For security, we require two properties with respect to a
functionality FOT.

Security Against a Malicious Sender: For any ppt adversary A, there ex-
ists a ppt adversary A’ such that for any ppt environment D and any poly-
nomial size auxiliary input z

|Pr[D(z, [A,R]Π) = 1]− Pr[D(z, [A′,FOT]Π) = 1]| = negl,

where all algorithms receive input 1λ. R additionally receives input b.
Security Against a Malicious Receiver: For any ppt adversary A, there ex-

ists a ppt adversary A’ such that for any ppt environment D and any poly-
nomial size auxiliary input z

|Pr[D(z, [S,A]Π) = 1]− Pr[D(z, [FOT,A
′]Π) = 1]| = negl,

where all algorithms receive input 1λ.

3 Public Key Encryption in the Multi User Setting

We use this section to recap commonly known public key encryption schemes that
are tightly secure in the multi-user setting. As a proof of concept, we consider
ElGamal, Regev encryption and dual Regev encryption.

Definition 7 (ElGamal). The ElGamal PKE over group G with order p ∈ N
and generator J1K with message space M := G has the following syntax.

Gen(J1K)→ (pk, sk): Sample x← Zp and output pk := JxK and sk := x.
Enc(J1K, pk,m)→ (ct1, ct2): Sample r ← Zp and output ct1 := JrK, ct2 := rpk +

m.
Dec(J1K, sk, ct)→ m: Output m := ct2 − sk · ct1.

It is straightforward to see that ElGamal is perfectly correct. Let us recap
that it is tightly secure in the multi-user setting. Due to the fact that the public
keys are uniform over G, ElGamal is perfectly n-M-IND-PK secure.

Lemma 1. Let G be of prime order and DDH be ε hard over G and n polynomial,
then ElGamal over G is 2ε n-M-IND-CPA secure.

Proof. The proof follows straightforwardly from the random selfreducibility of
the DDH assumption. The reduction for parameter d ∈ {0, 1} receives a DDH
challenge JaK, JbK, JcK and samples for all i ∈ [n] ri ← Zp. It forwards z and
pk1 := r1JaK, . . . , pkn := rnJaK to A that tries to break ElGamal. When A send
i∗,m0,m1, the reduction sends ct := (JbK, riJcK ·md). The reduction outputs the
output of A.
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When JcK = JabK, ct is an encryption of md, i.e. ct := ctd, while when c is
uniform, ct encrypts a uniform message, i.e. ct := ctU. If A distinguishes ctd from
ctU with probability ε′, the reduction solves DDH with probability ε′. Assuming
that DDH is ε hard, A cannot distinguish ctd from ctU with ε′ > ε for any
d ∈ {0, 1} and it cannot distinguish ct0 from ct1 with ε′ > 2ε. ut

Definition 8 (Regev Encryption [Reg05]). Regev encryption with the pa-
rameters q, η,m ∈ N with m ≥ η log q and message space {0, 1}m has the follow-
ing syntax.

Gen(1λ)→ (pk, sk): Sample s ← Zηq , A ← Zm×ηq , e ← Xm and output pk :=
(A,As+ e) and sk := s.

Enc(pk,m)→ (ct1, ct2): Sample R← {0, 1}m×m and output ct1 := Rpk1, ct2 :=
Rpk2 + mb q2e.

Dec(sk, ct)→ m: Compute m̂ := ct2 − ct1 · sk and output m := |b 2q m̂e|.

For a proper choice of q,m and X , Regev encryption will be correct.

Lemma 2. Let LWE be ε hard and n polynomial, then Regev encryption is 2ε
n-M-IND-CPA and ε n-M-IND-PK secure.

Proof. We first show M-IND-CPA security. The reduction for parameter d ∈
{0, 1} receives access to an oracle O that it uses to generate Ai, bi for all i ∈ [n].
It sets pki := (Ai, bi +Aisi) for si ← Zηq and forwards them to A. After A sends
(i∗,m0,m1), the reduction samples R← {0, 1}m×m and sends ct := (RAi, R(bi+
Aisi) + mb q2e). The reduction outputs the output of A.

WhenO = OLWE, ct is an encryption of md, i.e. ct := ctd, while whenO = OU,
ct is by the leftover hash lemma uniform, i.e. ct := ctU. If A distinguishes ctd from
ctU with probability ε′, the reduction solves LWE with probability ε′. Assuming
that LWE is ε hard, A cannot distinguish ctd from ctU with ε′ > ε for any
d ∈ {0, 1} and it cannot distinguish ct0 from ct1 with ε′ > 2ε.

Let us now consider the M-IND-PK security. The reduction defines pki as
previously. When O = OLWE, then pki is a proper public key and when O = OU,
then the public key is uniform. If A can distinguish them, it solves LWE. ut

Definition 9 (Dual Regev Encryption [GPV08]). Dual Regev encryption
with the parameters q, η,m ∈ N with m ≥ η log q and message space {0, 1}m has
the following syntax.

Gen(1λ)→ (pk, sk): Sample R ← {0, 1}m×m, A ← Zm×ηq and output pk :=
(A,RA) and sk := R.

Enc(pk,m)→ (ct1, ct2): Sample s ← Znq , e1, e2 ← Xm, R′ ← {0, 1}m×m and
outputs ct1 := pk1 · s+ e1, ct2 := pk2 · s+R′e2 + mb q2e.

Dec(sk, ct)→ m: Compute m̂ := ct2 − sk · ct1 and output m := |b 2q m̂e|.

Correctness follows in the same way as in Regev encryption. By the leftover
hash lemma, the public key is statistically indistinguishable from uniform and
therefore dual Regev encryption is M-IND-PK secure.
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Lemma 3. Let LWE be ε hard and n polynomial, then dual Regev encryption is
2ε n-M-IND-CPA secure.

Proof. The reduction for parameter d ∈ {0, 1} receives access to an oracle O
that it uses to generate Ai, bi for all i ∈ [n]. It sets pki := (Ai, RiAi) for Ri ←
{0, 1}m×m and forwards them to A. After A sends (i∗,m0,m1), the reduction
sends ct := (bi, Ribi + mb q2e). The reduction outputs the output of A.

WhenO = OLWE, ct is an encryption of md, i.e. ct := ctd, while whenO = OU,
ct is by the leftover hash lemma (with leakage Re2) uniform, i.e. ct := ctU. If
A distinguishes ctd from ctU with probability ε′, the reduction solves LWE with
probability ε′. Assuming that LWE is ε hard, A cannot distinguish ctd from ctU
with ε′ > ε for any d ∈ {0, 1} and it cannot distinguish ct0 from ct1 with ε′ > 2ε.

ut

We remark that our security proofs for multi user security require more LWE
samples than the proofs of the standard PKE security notions. We emphasize
that there are well known techniques to generate many LWE samples from a fixed
amount of LWE samples [Reg05, ILL89]. Since such a rerandomization increases
the noise level, one needs to start with a lower noise level which decreases the
hardness of LWE slightly such that the approximation factor of the underlying
SVP instance increases by a factor of Õ(n1/2).

4 Oblivious Transfer from PKE

Theorem 1. Let PKE be a M-IND-CPA and M-IND-PK secure and correct.
Then Protocol 2 is a UC secure OT in the ROM.

Proof. Given the correctness of PKE, an honest sender and receiver will establish
correlation (s0, s1), (b, sb) with overwhelming probability.

We now focus on security against a malicious sender.

Lemma 4. Let PKE be εu 1-M-IND-PK secure. Then, for any ppt adversary A,
there exists a ppt adversary A’ such that for any ppt environment D and any
polynomial size auxiliary input z

|Pr[D(z, [A,R]Π) = 1]− Pr[D(z, [A′,FOT]Π) = 1]| ≤ εu,

where all algorithms receive input 1λ. R additionally receives input b.

Proof. We construct a receiver R′ follows the description of R by sampling
(pkb, skb) ← Gen(1λ), ĉb ← {0, 1}λ, cb ← {0, 1}λ, computing r := pkb − Ĥb(ĉb),
c1−b := ĉb⊕H(r, cb). Unlike R, R′ computes ĉ1−b := cb⊕H1−b(r, c1−b), samples

(pk1−b, sk1−b)← Gen(1λ) and programs Ĥ1−b(ĉ1−b) := pk1−b − r. Otherwise, R′
follows the description of R.

Notice that in case of R, r+ Ĥ1−b(ĉ1−b) is uniform while in case of R′, it has
the distribution of a public key generated by Gen. If D can distinguish [A,R′]
from [A,R], then D can be used to break the 1-M-IND-PK security of PKE

10



Oblivious Transfer Protocol

Primitives:
– PKE scheme (Gen,Enc,Dec) with pseudorandom public keys in G.
– Random oracles
• H0,H1 : G× {0, 1}λ → {0, 1}λ.
• Ĥ0, Ĥ1 : {0, 1}λ → G.

Common input: 1λ.
Sender S input: s0, s1.
Receiver R input: b ∈ {0, 1}.

1. R samples (pkb, skb)← Gen(1λ), ĉb ← {0, 1}λ, cb ← {0, 1}λ, computes
– r := pkb − Ĥb(ĉb)
– c1−b := ĉb ⊕ Hb(r, cb)

and sends (r, c0, c1).
2. S computes

– ĉ0 := c1 ⊕ H0(r, c0), ĉ1 := c0 ⊕ H1(r, c1),
– pk0 := r + Ĥ0(ĉ0), pk1 := r + Ĥ1(ĉ1),
– ct0 := Enc (pk0, s0) , ct1 := Enc (pk1, s1),

and sends (ct0, ct1).
3. R computes sb := Dec (skb, ctb).

Fig. 2: Oblivious Transfer in the Random Oracle Model. (+,−) are used to
denote the operations in G. ⊕ is the xor operation over {0, 1}∗.

with probability εu as follows. The reduction receives a 1-M-IND-PK challenge
pk and sets pk1−b := pk. When pk is uniform, it simulates R and otherwise R′.
Therefore,

|Pr[D(z, [A,R]Π) = 1]− Pr[D(z, [A,R′]Π) = 1]| ≤ εu.

Based on R′, we can construct an adversary A′ which interacts with A, relays
all interaction between A and D and needs to submit s0 and s1 to FOT. A′ follows
the process of R′ when constructing r, c0, c1 that defines pk0 and pk1. As R′,
A′ knows both, sk0 and sk1 which A′ uses to decrypt ct0 and ct1 to obtain s0
and s1. Since, A′ follows the description of R′, it leads to the same interaction
between A and D. Therefore

Pr[D(z, [A,R′]Π) = 1] = Pr[D(z, [A′,FOT]Π) = 1],

which concludes the proof of the lemma. ut

We conclude the theorem with the following lemma that establishes security
against a malicious receiver.

Lemma 5. Let PKE be εu q
2-M-IND-PK and εt q

2-M-IND-CPA secure. Then,
for any ppt adversary A making at most q random oracle queries to H0, H1, Ĥ0
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and Ĥ1 combined, there exists a ppt adversary A’ such that for any ppt environ-
ment D and any polynomial size auxiliary input z

|Pr[D(z, [S,A]Π) = 1]− Pr[D(z, [FOT,A
′]Π) = 1]| ≤ εu + εt +

q2

2λ
,

where all algorithms receive input 1λ.

Proof. For simplicity, we assume that when A sends r, c0, c1 during the protocol
to the sender, it has queried the random oracles for H0(r, c0), H1(r, c1), Ĥ0(ĉ0)

and Ĥ1(ĉ1). We can assume this without loss of generality by making at most 4
additional queries and setting the amount of queries to q̂ = q + 4. Since this is
not significant for our overall bound, we identify q̂ with q in the following. We
also assume without loss of generality that A queries an oracle only once per
input.

We define three intermediate algorithms S1, S2, S3 playing the role of sender
S. S1 is identical to S except that it simulates random oracles H0,H1 as follows.
For all i ∈ [q] and j ∈ [q] (where q is the amount of queries), it samples pki,j ← G.
Whenever A makes a query ri, ci,d to Hd for i ∈ [q] and d ∈ {0, 1}, S1 samples
Hd(ri, ci,d)← {0, 1}λ and does the following for any j ∈ [q] with j < i for which
the jth query is a query rj , cj,1−d to H1−d with rj = ri.

1. Compute ĉi,j,d := cj,1−d ⊕ Hd(ri, ci,d).

2. If Ĥd(ĉi,j,d) is defined (through programming or a query), abort. Otherwise,

program Ĥd(ĉi,j,d) := pki,j − ri.

Afterwards, S1 answers the query with Hd(ri, ci,d).
When A sends r, c0, c1, S1 computes pk0, pk1 in the same way as S. S1 defines

b∗ such that pk1−b∗ = pki,j for a i ∈ [q] and j ∈ [q]. If no such b∗, i, j exists, S1
aborts. Otherwise, it conludes the protocol according to the description of S.

Let us now consider whether an environment D can distinguish [A,S] from

[A,S1]. Since pki,j are uniform in G, the output distribution of Ĥd, in particular

for every point Ĥd(ĉi,j,d) := pki,j − ri is uniform over G, in both settings. Other
than that, S1 differs from S by two abort conditions - one during queries to Hd
and one after seeing (r, c0, c1). Let us assume that S1 aborts during a query to

Hd. This implies that either A has queried Ĥd for ĉi,j,d = cj,1−d ⊕Hd(ri, ci,d) for
an j ∈ [q] or there exists a j ∈ [q] and a j′ ∈ [q] \ {j} with cj,1−d ⊕Hd(ri, ci,d) =
cj′,1−d ⊕ Hd(ri, ci,d). In the former case, A would predict Hd(ri, ci,d) = cj,1−d ⊕
ĉi,j,d which happens for each query with probability at most q

2λ
. In the latter

case, cj,1−d = cj′,1−d and thus A would make the same query twice which we
have excluded w.l.o.g. since every adversary queries any input at most once.4

The second abort condition never triggers for the following reason. Since A
sends r, c0, c1, he will query r, c0 to H0 and r, c1 to H1. Let b∗ ∈ {0, 1} such

4In case an adversary is allowed to query inputs multiple time, S1 would simply
not try to program the oracle on an input that the adversary has queried already and
send the output that is consistent with the previous query for that input.
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that A makes query r, cb∗ before r, c1−b∗ . When A makes query c1−b∗ , cb∗ will
therefore be defined and S1 will program Ĥ1−b∗(cb∗ ⊕ Hd(r, c1−b∗)) = pki,j − r
for some i, j ∈ [q]. By the definition of pk1−b∗ , pk1−b∗ = pki,j . Thus, we obtain
the bound

|Pr[D(z, [S,A]Π) = 1]− Pr[D(z, [S1,A]Π) = 1]| ≤ q2

2λ
.

S2 is identical to S1 except that it samples (pki,j , ski,j) ← Gen(1λ) for any
i, j ∈ [q]. If there is an environment D that can distinguish [A,S2] from [A,S1],
then we can break the q2-M-IND-PK security, i.e. public keys are hard to dis-
tinsuish from uniform, of PKE as follows. The reduction receives q2 challenge

public keys p̂ki,j for i, j ∈ [q]. Instead of sampling pki,j , it sets pki,j := p̂ki,j .
When the challenge public keys are uniform, the reduction simulates S1 and

otherwise (when the challenge public keys are distributed according to Gen) S2.
Therefore,

|Pr[D(z, [S1,A]Π) = 1]− Pr[D(z, [S2,A]Π) = 1]| ≤ εu.

Our next intermediate sender S3 follows the description of S2 except that
after receiving r, c0, c1 from A, it defines ct1−b∗ := Enc(pk1−b∗ , 0). If there is
an environment D that can distinguish [A,S2] from [A,S3], we can break the
q2-M-IND-CPA security of PKE as follows. The reduction receives q2 challenge

public keys p̂ki,j for i, j ∈ [q]. As previously, it sets pki,j := p̂ki,j . It then follows
the description of S2 until it defines b∗ and can compute pk1−b∗ = pki,j for some
i, j ∈ [q]. The reduction sends ((i, j),m0 := s1−b∗ ,m1 := 0) to the M-IND-CPA
challenger and receives back ct∗. It then sets ct1−b∗ := ct∗. When ct∗ encrypts
s1−b∗ , the reduction simulates S2 and otherwise S3. Therefore,

|Pr[D(z, [S2,A]Π) = 1]− Pr[D(z, [S3,A]Π) = 1]| ≤ εt.

Based on S3, we can define A′ which interacts with A, relays all interaction
between A and D and submits b∗ to FOT and then receives sb∗ which is used
to generate ctb∗ . Since A′ follows the description of S3, it leads to the same
interaction between A and D. Therefore, we can conclude the lemma with

Pr[D(z, [S3,A]Π) = 1] = Pr[D(z, [FOT,A
′]Π) = 1].

ut

Lemma 4 and Lemma 5 are sufficient to establish Theorem 1. ut
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CvT95. Claude Crépeau, Jeroen van de Graaf, and Alain Tapp. Committed obliv-
ious transfer and private multi-party computation. In Don Coppersmith,
editor, CRYPTO’95, volume 963 of LNCS, pages 110–123. Springer, Hei-
delberg, August 1995.

DKR+20. Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, Frederik
Vercauteren, Jose Maria Bermudo Mera, Michiel Van Beirendonck, and An-
drea Basso. SABER. Technical report, National Institute of Standards
and Technology, 2020. available at https://csrc.nist.gov/projects/

post-quantum-cryptography/round-3-submissions.

DNM12. Bernardo Machado David, Anderson C. A. Nascimento, and Jörn Müller-
Quade. Universally composable oblivious transfer from lossy encryption
and the McEliece assumptions. In Adam Smith, editor, ICITS 12, volume
7412 of LNCS, pages 80–99. Springer, Heidelberg, August 2012.

DvMN08. Rafael Dowsley, Jeroen van de Graaf, Jörn Müller-Quade, and Anderson
C. A. Nascimento. Oblivious transfer based on the McEliece assumptions.
In Reihaneh Safavi-Naini, editor, ICITS 08, volume 5155 of LNCS, pages
107–117. Springer, Heidelberg, August 2008.

EGL82. Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized pro-
tocol for signing contracts. In David Chaum, Ronald L. Rivest, and Alan T.
Sherman, editors, CRYPTO’82, pages 205–210. Plenum Press, New York,
USA, 1982.
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LS15. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Des. Codes Cryptogr., 75(3):565–599, 2015.

MR18. Payman Mohassel and Peter Rindal. ABY3: A mixed protocol framework
for machine learning. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, ACM CCS 2018, pages 35–52. ACM Press,
October 2018.

MR19. Daniel Masny and Peter Rindal. Endemic oblivious transfer. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors,
ACM CCS 2019, pages 309–326. ACM Press, November 2019.

MRR20. Ian McQuoid, Mike Rosulek, and Lawrence Roy. Minimal symmetric PAKE
and 1-out-of-N OT from programmable-once public functions. In Jay Lig-
atti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS
2020, pages 425–442. ACM Press, November 2020.

MRR21. Ian McQuoid, Mike Rosulek, and Lawrence Roy. Batching base oblivious
transfers. IACR Cryptol. ePrint Arch., 2021:682, 2021.

MW21. Daniel Masny and Gaven J. Watson. A pki-based framework for establishing
efficient MPC channels. In Yongdae Kim, Jong Kim, Giovanni Vigna, and
Elaine Shi, editors, CCS ’21: 2021 ACM SIGSAC Conference on Computer
and Communications Security, Virtual Event, Republic of Korea, November
15 - 19, 2021, pages 1961–1980. ACM, 2021.

NNOB12. Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and
Sai Sheshank Burra. A new approach to practical active-secure two-
party computation. In Reihaneh Safavi-Naini and Ran Canetti, editors,
CRYPTO 2012, volume 7417 of LNCS, pages 681–700. Springer, Heidel-
berg, August 2012.

PR20. Jiaxin Pan and Magnus Ringerud. Signatures with tight multi-user secu-
rity from search assumptions. In Liqun Chen, Ninghui Li, Kaitai Liang,
and Steve A. Schneider, editors, ESORICS 2020, Part II, volume 12309 of
LNCS, pages 485–504. Springer, Heidelberg, September 2020.

PRTY20. Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. PSI from PaXoS:
Fast, malicious private set intersection. In Anne Canteaut and Yuval Ishai,
editors, EUROCRYPT 2020, Part II, volume 12106 of LNCS, pages 739–
767. Springer, Heidelberg, May 2020.

17



PVW08. Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework
for efficient and composable oblivious transfer. In David Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 554–571. Springer, Heidelberg,
August 2008.

Rab81. Michael O. Rabin. How to exchange secrets by oblivious transfer. Technical
report, Harvard University, 1981.

Reg05. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In Harold N. Gabow and Ronald Fagin, editors, 37th ACM
STOC, pages 84–93. ACM Press, May 2005.

RST01. Ronald L. Rivest, Adi Shamir, and Yael Tauman. How to leak a secret.
In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages
552–565. Springer, Heidelberg, December 2001.

SAB+20. Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz,
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