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Abstract

We construct polynomial commitment schemes with constant sized evaluation proofs and loga-
rithmic verification time in the transparent setting. To the best of our knowledge, this is the first
result achieving this combination of properties.

Our starting point is a transparent inner product commitment scheme with constant-sized proofs
and linear verification. We build on this to construct a polynomial commitment scheme with constant
size evaluation proofs and logarithmic (in the degree of the polynomial) verification time. Our
constructions make use of groups of unknown order instantiated by class groups. We prove security
of our construction in the Generic Group Model (GGM). Using our polynomial commitment scheme
to compile an information-theoretic proof system yields Dew – a transparent and constant-sized
zkSNARK (Zero-knowledge Succinct Non-interactive ARguments of Knowledge) with logarithmic
verification.

Finally, we show how to recover the result of DARK (Bünz et al., Eurocrypt 2020). DARK
presented a succinct transparent polynomial commitment scheme with logarithmic proof size and
verification. However, it was recently discovered to have a gap in its security proof (Block et al,
CRYPTO 2021). We recover its extractability based on our polynomial commitment construction,
thus obtaining a transparent polynomial commitment scheme with logarithmic proof size and verifi-
cation under the same assumptions as DARK, but with a prover time that is quadratic.

∗Work partially done while at Microsoft Research India.
†Work partially done while at Indian Institute of Science.
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1 Introduction

Proof systems have a rich history in cryptography and theory of computation starting from interac-
tive proofs [GMR89], zero-knowledge proofs [GMW86], and probabilistically checkable proofs [BFLS91,
ALM+92]. They are now a fundamental building block in public-key encryption [NY90], signature
schemes, anonymous credential systems [CL01] and various other cryptographic constructions. In re-
cent times, proof systems are gaining widespread deployment for privacy-preserving applications on the
Blockchain, for instance in cryptocurrencies like ZCash [Zca].

Succinct proofs. In real-world applications, crucial parameters of a proof system that are of interest are:
the amount of interaction, proof size and efficiency of proving and verification. It is known that sta-
tistically sound proofs are unlikely to allow for significant improvements in proof size, [GH98, GVW02,
Wee05], and therefore one way to beat the bound is by considering computationally sound proofs. Com-
putationally sound proofs are called arguments. Succinct arguments, where the proof size is logarithmic
in the size of the statement were first considered by Kilian [Kil92a], who gave a construction based on
probabilistically checkable proofs (PCP). This was made non-interactive by Micali [Mic94a] in the random
oracle model. In the plain model, non-interactivity is achieved by generating a Common Reference String
(CRS) during a setup phase. There has been a series of works on constructing (zero-knowledge) Succinct
Non-interactive ARguments of Knowledge (zk-SNARKs) [Gro10, Lip12, BCI+13, GGPR13, PHGR13,
Lip13, BCTV14, Gro16], which have very short proofs that can be verified efficiently. These are all ei-
ther in the Structured Reference String (SRS) model or in idealized models (like ROM,GGM,AGM). The
constructions that achieve concretely better proof sizes are in the SRS model and require a preprocessing
phase. Unfortunately, this one-time setup or preprocessing needs to be trusted.

Transparent proof systems. Proof systems that do not involve a trusted setup phase and the verifier
randomness consists of only public coins are called transparent. The GKR protocol [GKR08], and a
recent line of works building on that protocol give a proof with communication complexity O(d log n) for
circuits of size n and depth d. For uniform computations, STARKs [BBHR19] achieve communication
complexity of O(log2 T ) where T is a bound on the running time of the program. Another line of work
attempts to reduce the degree of trust in the setup phase by constructing SNARKS with a universal and
updatable SRS, where the one-time setup can be used to prove statements about any computation, as
opposed to a circuit-dependent setup required in preprocessing based SNARKs. This universal SRS is, in
addition, updatable, meaning parties can continuously contribute to the randomness of the SRS, and an
SRS is trusted as long as at least one of the updates was honest. A recent line of work [CHM+20, RZ21a,
CFF+21, GWC19] follows a modular approach to construct SNARKs: first, an information-theoretic
component is constructed; then this is compiled into an argument using cryptographic tools. Finally,
this is made non-interactive to obtain a SNARK in the random oracle model (ROM). The resulting
SNARK inherits the trusted setup assumption or the transparency property from the cryptographic
tools used in the compilation process.

Polynomial commitment scheme (PCS). At a high level, a PCS allows a prover to commit to a polynomial
P of bounded degree so that later a verifier can ask for evaluations P (x) along with proofs that the
provided values are indeed consistent with the commitment. A PCS is a central cryptographic tool used
to obtain a SNARK in a modular way. Any resulting SNARK from compiling an information-theoretic
protocol inherits the complexity of the PCS, that is, the proof size depends on the commitment size
and evaluation proof size of the PCS. Unfortunately, all existing succinct PCS schemes either require
the trusted-setup assumption [KZG10], or they are transparent, but only achieve logarithmic proof
size [BFS20, BHR+21]1.

1.1 Our Contributions

In this work, we present the first PCS with constant size commitment and constant evaluation proof
size in the transparent setting. Our starting point is a construction of a transparent inner product
commitment (IPC) scheme (which is a more general object than PCS) that allows a prover to open
a committed vector to inner products with query vectors. This is succinct – that is, the size of the

1A flaw in the proof of security of DARK scheme [BFS20] was discovered by Block et al [BHR+21], who propose a
different PCS with logarithmic proof size. See §6 for a discussion.
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commitment and the proof of correct opening is independent of the size of the vector. We then specialize
our IPC construction to a succinct PCS, resulting in a transparent constant-sized PCS with logarithmic
verification – the first such construction to achieve the above combination of properties for a PCS, to
the best of our knowledge.

From a technical point of view, our contributions are summarized below.

Inner Product Commitment (IPC) and Polynomial Commitment Scheme (PCS). We con-
struct a constant size transparent IPC scheme in §3. In §5, we present our transparent PCS construction
that achieves constant sized proofs, constant sized public parameters, and verification in O(log n) field
operations and a constant number of group operations for polynomials of degree n. Both the above
constructions are in the GGM.
We also show hiding and zero knowledge variants of our constructions. Using the now standard com-
pilation process from information-theoretic proofs in idealized models to zkSNARKs via PCS [BFS20,
CHM+20], we immediately obtain the first transparent constant-sized zkSNARK with constant-sized pub-
lic parameters (§7). The resulting zkSNARKs achieve Oκ(1) communication, O(log n) “online” verifica-
tion, Õ(n) prover time, where n is the complexity of the NP relation (number of constraints of a Rank
1 Constraint System, or the number of gates in an arithmetic circuit). We compare our zkSNARK Dew
to existing schemes in the literature in Fig.14.

A New Combinatorial Lemma. For our PCS with log-verification, we rely on some extremal combi-
natorial bounds. Informally, how many points can we choose in the discrete cube [n]d such that they do
not contain among them the corners of a d-dimensional hyper-rectangle (box)? When d = 2, this bound
also follows from the Zarankiewicz problem [Bol04] in extremal graph theory, and for dimension d, it
is given by a Box theorem due to Rosenfeld [Ros16]. We can use these bounds to obtain sublinear (lϵ)
verification time for constant 0 < ϵ < 1. But they do not suffice to obtain logarithmic verification. We
achieve logarithmic verification by generalizing boxes to “d-structures” (details in §5.2.1) and obtaining
significant asymptotic improvements over the Box theorem [Ros16] and tight bounds on the number of
points that do not contain a d-structure. Extremal combinatorics results like this have found applications
in complexity theory and theoretical computer science in general. To the best of our knowledge, our
result is the first application of an extremal combinatorics theorem in the construction of SNARKs and
we believe this to be of independent interest.

Recovering the DARK [BFS20] result. We show that our PCS can be adapted to obtain logarithmic
proof size and verification by employing the recursive evaluation protocol from DARK on our new
commitment scheme. This recovers the flawed Lemmas 8, 9 from DARK thus recovering a transparent
PCS with logarithmic proof size and logarithmic verification, but at the expense of an increased quadratic
prover time. We note that the DARK recovery does not require GGM; we achieve this result under the
same assumptions made in DARK, i.e., the Adaptive Root Assumption and the Strong RSA Assumption.
We also note that [BHR+21] also give a construction that achieves similar results as DARK by modifying
DARK’s evaluation protocol. In contrast, our construction is a commitment scheme that is syntactically
close to DARK, and has a similar evaluation protocol. We present this in §6.

1.2 Related Work

Functional commitments were introduced by [LRY16] as a generalization of a vector commitment scheme,
where, a prover can commit to a vector, and later respond to inner product queries by revealing the inner
product together with a proof that the answer is consistent with the committed vector. In their definition,
they only ask for function binding, without any extractability guarantee. Lai and Malavolta [LM19] put
forth the notion of Linear Map Commitments (LMC) that capture a more general class of functions
on a committed vector allowing a prover to open a commitment to the output of a linear map. The
construction from [LM19] achieves succinctness — constant commitment and proof size, but requires
trusted setup and is therefore, not transparent.

In a recent concurrent work, [CFKS22] presents transparent inner product commitment schemes with
constant size openings and constant size public parameters. Their scheme is also in groups of unknown
order, however, the techniques they use are completely different. Their result relies on proofs of car-
dinality of RSA accumulated sets, whereas we rely on integer encoding of vectors and combinatorial
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techniques to show extraction.

Polynomial commitment schemes were introduced in [KZG10], and have since led to several variants being
used in recent SNARKs. The KZG scheme [KZG10] gives constant-sized commitments and proofs, but
require a trusted setup. In the transparent setting, Wahby et al. [WTs+18] constructed a polynomial
commitment scheme for multilinear polynomials that has commitment size and evaluation proof size
O(
√
d) for degree d polynomials. Zhang et al. [ZXZS20] construct a polynomial commitment from FRI

(Fast Reed Solomon IOPP) that is transparent, has constant size commitments, but evaluation proofs
have size O(log2 d). Transparent instantiations of the schemes in Spartan [Set20] yield SNARKs with
polylogarithmic proof size and verification.

As mentioned earlier, Bünz et al [BFS20] used a Diophantine Argument of Knowledge (DARK), and
constructed a polynomial commitment scheme for m-variate polynomials of total degree d with proof
size O(m log d) and O(m log d) verification time. However, Block et al [BHR+21] identified a gap in the
proof of security of the DARK scheme that breaks the extraction procedure. The work of [BHR+21] also
propose a modification to the DARK scheme that sidesteps the gap in extraction, with polylogarithmic
proof size and verification time.

Classical CS proofs approach [Kil92b, Mic94b] based on PCP also yields a transparent SNARK. The
resulting properties are inherited from the vector commitment scheme (VC) used to commit to the PCP.
Using Merkle trees as VC yield proofs of logarithmic size, and VC constructions with constant size
openings (like the construction in [LM19]) give constant-sized SNARKs but with public parameters that
are linear in the size of the PCP (and therefore, at least linear in the instance size).

1.3 Technical Overview

We now give an informal description of the technical ideas behind our constructions.

The intuitive starting point of our commitment schemes is the following basic ideas of converting vectors
into integers. Given a vector2 c, define intα(c) := ⟨c,α⟩ :=

∑l−1
0 ciα

i, where α := (1, α, α2, . . . , αl−1),
for α≫ maxi ci (bounds on α are defined in terms of p and l in later sections). Given a random element
g ∈ G from a group G of unknown order, our commitment to vector c is then defined as C := gintα(c).
Conversely, given C ∈ G, and parameters g and α, using a proof of knowledge of exponent protocol (see
PoKPE that builds on Wesolowski’s PoE protocol [Wes19] and GGM in Section 2.5), we can compute a
such that C = ga and derive a vector a from the α-base representation of a = a0+a1α+a2α

2 . . ..

Now, given a query vector q, to evaluate the inner product ⟨c,q⟩, we consider the integer product

intα(c) · intα(reverse(q)) = (

l−1∑
i=0

ciα
i) · (

l−1∑
i=0

ql−iα
i) = L+ αl · ⟨c,q⟩+H, (1)

where L and H are polynomials in α of degree less than l and more than l respectively. Raising g to
both sides of (1), we obtain

C intα(reverse(q)) = (gL) · (gα
l⟨c,q⟩) · (gH). (2)

It follows that if a prover sends to a verifier a commitment C to c, and given a query vector q, claims that
inner product ⟨c,q⟩ evaluates to v, and also sends gL and gH , then the verifier can check consistency of
the prover’s claim using (2) (with v in place of ⟨c,q⟩). While this intuition suffices for a completeness
proof, it is by no means sufficient for a soundness proof. Our main challenge is to show that a check
somewhat analogous to (2) with some additional machinery suffices for a verifier to catch a cheating
prover with high probability.

The above argument is reminiscent of approaches in [LM19, BFS20]; however, we have to tackle a number
of technical challenges that arise since our goal is constant sized proofs (unlike in [BFS20]), and in the
transparent setting where α is not secret (unlike the trusted setup in [LM19]). We describe below the
hurdles and our ideas to overcome them at a high level.

2Our vectors are in Zl
p, which we often view as vectors with integer coordinates in {0, . . . , p− 1}.
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A cheating prover could use large values (violating α≫ maxi ci) in the committed vector (extracted by
computing the α-base representation of exponent of g in C) that could cause “overflow” in the coordinates
of the computation expressed in (1). In that case, we can no longer guarantee the correctness of the
inner product.

To control the issues caused by overflow, our idea is to double the length of the vector to 2l and place
the vector c to be committed in even positions (0, 2, . . . , 2l − 2) and 0’s in odd positions (in the honest
case). More generally, let d (resp. c) denote the subvector in the odd (even) positions and let c∥d
denote the combined vector of length 2l. Then, in the honest case, d = 0 and intα(c∥d) = intα2(c) and
hence completeness goes through as before (by replacing α with α2). From now on, we will consider
equations (1) and (2) generalized to length 2l vectors and commitment C to the vector c∥d. Suppose
now, a cheating prover creates non-zero entries in the d-coordinates (but uses a c ∈ Zl

p). Then, the inner

product of c∥d with a uniformly chosen random vector z ∈ Zl
p in odd positions (d-coordinates) and 0’s

in even positions will be nonzero with high probability by Schwartz-Zippel. Define test equations to be
the (generalizations of) (1) and (2) but without the middle terms on the right hand side (corresponding
to inner product being 0) and 0l∥z for a random z ∈ Zl

p as the (test) query vector3. We use these test
equations to define a TEST protocol (cf. Fig. 2) that allows a verifier to immediately catch a cheating
prover or derive structural conditions on the d-vector that are exploited in a subsequent inner product
evaluation protocol IPP (cf. Fig 3). By the Schwartz-Zippel argument above, if a cheating prover
succeeds in TEST, the middle term is no longer the inner product ⟨d, z⟩, but is corrupted by an error

term overflowing from the c-vector: it is in fact, ⟨d, z⟩ mod α+err, where err = ⌊ ⟨c,z⟩α ⌋. Vanishing of this
middle term combined with bounds on c, z in relation to α and hardness assumptions in GGM, allows
us to show that d must have a certain structure, captured by Theorem 3.4; namely, the coordinates of
d
α are close to rationals with small (≪ α) denominators. This structure theorem is a crucial technical
ingredient of our results.

Armed with the structure theorem, we prove (Theorem 3.5) that if an instance of the inner product
evaluation protocol IPP succeeds in satisfying (generalizations) of (1) and (2), with query vector q∥0l
(i.e. real query vector in even positions and 0’s in odd positions), then we can extract a vector c̃ that,
while fractional over the integers, has invertible denominators modulo p. Using this c̃ as the “opening
hint” (cf. Open() in §3.1), we can then extract a unique c. This completes the technical overview for
our IPC scheme.

PCS with logarithmic verification. Our IPC scheme above immediately yields a Polynomial Commit-
ment Scheme (PCS), noting that, for a polynomial f given by its vector of coefficients f = (f0, . . . , fl−1),
f(x) = ⟨f ,x⟩, where x = (1, x, . . . , xl−1). However, the verification complexity of the resulting PCS is
much worse than what we want to achieve. While linear verification seems inherent for inner products
(since the query vectors can be arbitrary and the verifier needs to at least read the statement), in a PCS,
the query vector x parameterized by single variable x, we can hope to achieve logarithmic verification
time. In particular, we can delegate the verifier’s expensive exponentiations to the prover using standard
Proof of Exponentiation (PoE). This makes the verifier in IPP protocol (specialized to a PCS) logarith-
mic. However, the bottleneck for verifier computation arises from the TEST protocol of our IPS. Note
that while the query vector x is parameterized by a single variable x, the test vector z is not and hence
computing intα(reverse(z)) in checking (2) seems to require linear time.

To reduce verifier’s computation, we use the idea of Kronecker products: instead of choosing z ∈ Zl
p,

we choose log l vectors z1, . . . , zlog l from Z2
p and define z = z1 ⊗ · · · ⊗ zlog l. To illustrate how this

helps, consider the following computation needed on the right hand side of (2), where z is as above and
i = (i0, . . . , ilog l−1) the binary expansion of index i ∈ [l].

intα(reverse(z)) =
l−1∑
i=0

αl−i
log l−1∏
j=0

zj,ij = αl ·
log l−1∏
j=0

(zj,0 + zj,1α
−2j ),

and note that the big product on the right hand side can be computed in logarithmic time.

3To make the communication complexity in this step to be constant, verifier can send the seed to a PRG that generates
z.
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While Kronecker helps improve verifier efficiency of TEST, it breaks soundness! Note that the ex-
tractability proof of TEST in IPC relies on uniform randomness of the test vector z ∈ Zl

p. So, to benefit
from Kronecker products, we must improve the extractability proof to work with exponentially smaller
randomness in the log l vectors zj of length 2 as compared to the single length-l vector z from before.
Specifically, it is crucial to recover analog of the structure theorem from this vastly reduced space of
randomness. We do so by proving a new result in extremal combinatorics. Informally, this theorem
(Theorem 5.2) gives a tight upper bound on the number of points in the hypercube [n]d such that no
subset of 2d points in that set form a configuration called a d-structure. A d-structure is a generaliza-
tion of the corners of a box or a hyper-rectangle. When d = 2 and the “forbidden” configuration is
a rectangle, this is the well-known Zarankiewicz problem [Bol04] from extremal graph theory and the
bound is asymptotically n3/2. We need to generalize this in two ways: first, we need to consider high
dimensions with growing d (but no more than log n) and second, we need to generalize rectangles/boxes
to d-structures; when d = 2, a d-structure generalizes a rectangle to a parallelogram and for larger d, a

recursive definition is given in §5.2.2. For d > 2, Rosenfeld [Ros16] proved an upper bound of nd−2−d+1

on the number of points that do not contain the corners of a box. This bound, however, is insufficient for
us to get logarithmic verification since as d grows it tends to nd almost entirely filling the space. By gen-
eralizing boxes to d-structures, we succeed in obtaining a tight upper bound of (nd − (n− 1)d) ≤ dnd−1,
which is a vanishingly small fraction of nd.

How do we use this combinatorial bound? Intuitively, each successful run of TEST by the prover
corresponds to choosing a point in [n]d (in our application, this will be space of randomness, n will be p
and d will be like log l). Hence, a prover that succeeds with a non-negligible probability gives rise to many
such points and then the combinatorial bound implies the existence of a d-structure in that space. Each
point in that structure gives rise to equations involving the coordinates of the d-vector (from c∥d) and
random variable zij . These equations are derived as consequences of satisfaction of (2) (corresponding
to prover’s success). The recursive nature of the structure can then be exploited to combine (fold) these
equations by recursively subtracting them along various dimensions and finally obtain conditions only
on the coordinates of the d-vector. These conditions help us recover an analog of the structure theorem
(Theorem 3.4) for logTEST (Theorem 5.4).

The cost for recovering the structure theorem for logTEST in the reduced randomness space is increased
value of α. Whereas we could do with an α that is polynomial in p in the IPC, for the PCS with log
verification as described above, we needed to increase α to at least pl log l. Among other things, this
increased value of α results in a prover complexity of O(l2) (due to various PoKPE calls). To reduce
the value of α and bring the prover’s running time to Õ(l), we use a very recent result by Bünz and
Fisch [BF22] who prove a Schwartz-Zippel lemma for multilinear polynomials over mod n for composite
n. We use this lemma to prove an upper bound on the number of d-structures that can arise from
a prover’s successful execution of logTEST. On the other hand, our combinatorial theorem not only
shows the existence but also gives a lower bound on the number of d-structures that must exist when we
choose many points in the randomness space. Combing these helps us achieve extractability with a much
smaller value of α that is only pO(log l). With this smaller value of α, our prover takes only quasilinear
Õ(l) time.

Recovering DARK. In DARK, the evaluation protocol is recursive, where at each step, the parties
recurse on a random linear combination of an instance of reduced size. The magnitude of the digits
in the base-q representation (q is the large integer at which the polynomial is evaluated) grows as the
protocol proceeds. In the DARK extraction procedure, the extractor takes a tree of accepting transcripts,
recursively runs an extractor twice at each level, and combines two outputs at level i+ 1 into an output
at level i. Block et al [BHR+21] note that this recombination is not sound. In particular, the proof of
the Lemma that argues that the digits remain small (Lemma 8 in DARK) after recombination is flawed.
Thus, there is no valid extractor that shows that DARK PCS satisfies witness extended emulation.

We show a PCS with logarithmic proof size and verification. The way we commit to a polynomial is
syntactically similar to the DARK PCS: encoding the evaluation of the polynomial at a large integer.
We construct a PCS that is similar to the one defined above in the commit function, but the evaluation
protocol is recursive as in DARK. Since our PCS allows rationals as opening hints, by setting our
parameter α carefully, we recover the flawed lemma and prove extraction based on the adaptive root and
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strong RSA assumptions. This prover, however, takes quadratic time. This is due to an increased value
of α that is an artifact of our encoding methods.

2 Preliminaries

Notation. A finite field is denoted by F. We denote by κ a security parameter. When we explicitly
specify the random tape for a randomized algorithm A, then we write a ← A(pp; ρ) to indicate that A
outputs a given input pp and random tape ρ. We consider interactive arguments for relations, where a
prover P convinces the verifier that it knows a witness w such that for a public statement x, (x,w) ∈ R.
For a pair of PPT interactive algorithms P, V , we denote by ⟨P (w), V ⟩(x), the output of V on its
interaction with P where w is P ’s private input and x is a common input.

Fiat-Shamir transform. In this work, we consider public coin interactive arguments where the ver-
ifier’s messages are uniformly random strings. Public coin protocols can heuristically be made non-
interactive by applying the Fiat-Shamir [FS87] transform (FS) in the Random Oracle Model (ROM).

2.1 Inner Product Commitments

We define Inner Product Commitments (IPC) which is an extension of functional commitments intro-
duced in [LRY16]. IPC allows a prover to prove that the committed vector f satisfies ⟨f ,q⟩ = v, for some
vector q and v.

An Inner Product Commitment scheme over F is a tuple
IPC = (Setup,Com,Open,Eval) where:

• Setup(1κ, D)→ pp. On input security parameter κ, and an upper bound on the lengths of vectors
accepted as inputs D ∈ N, Setup generates public parameters pp.

• Com(pp, f0, . . . , fl−1, l) → (C, c̃). On input the public parameters pp, the length of the vector
l ≤ D and a vector of length l, given as f0, . . . , fl−1 ∈ F, Com outputs a commitment C, and
additionally an opening hint c̃ ≡ (f0. . . . , fl−1).

• Open(pp, f , l, C, c̃) → b. On input the public parameters pp, the opening hint c̃, the length of
the vector in the commitment l and the commitment C, the claimed committed vector f , Open
outputs a bit indicating accept or reject.

• Eval(pp, C, l,q, v; f)→ b. A public coin interactive protocol
⟨PEval(f), VEval⟩(pp, C, l,q, v) between a PPT prover and a PPT verifier. The parties have as
common input public parameters pp, commitment C, the length of the vector in the commitment
l, query vector q ∈ Fl, and claimed inner product v. The prover has, in addition, the vector
committed to in C, f . At the end of the protocol, the verifier outputs 1 indicating accepting the
proof that ⟨f ,q⟩ = v, or outputs 0 indicating rejecting the proof.

Definition 2.1 (Completeness). For all l ≤ D, for all inputs f0, . . . , fl−1 ∈ F, for query vectors q ∈ Fl,

Pr

b = 1 :

pp← Setup(1κ, D)
(C, c̃)← Com(pp, f0, . . . , fl−1, l)

v ← ⟨(f0, . . . , fl−1),q⟩
b← Eval(pp, C, l,q, v; f)

 = 1.

Definition 2.2 (Binding). An Inner Product Commitment scheme PC is binding if for all PPT A, the
following probability is negligible in κ.

Pr

Open(pp, f0, l, C, c̃0) = 1∧
Open(pp, f1, l, C, c̃1) = 1∧

c̃0 ̸= c̃1

:
pp← setup(1κ, D)

(C, f0, f1, c̃0, c̃1, l)← A(pp)

 .
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Definition 2.3 (Succinctness). We require the commitments and the evaluation proofs to be of size
independent of the length of the vector, that is the scheme is proof succinct if |C| is poly(κ) and |π| is
poly(κ), where π is the transcript obtained by applying FS to Eval.

Definition 2.4 (Extractability). For any PPT adversary A = (A1,A2), there exists a PPT algorithm
Ext such that the following probability is negligible in κ:

Pr

b = 1 ∧REval(pp, C, l,q, v; f , c̃) = 0 :

pp← Setup(1κ, D)
(C, l,q, v, st)← A1(pp)

(f , c̃) = ExtA2(pp)
b← ⟨A2(st), VEval⟩(pp, C, l,q, v)

 .

where the relation REval is defined as follows:

REval = {
(
(pp, C ∈ G, l ∈ N, q ∈ Fl, v ∈ F); (f , c̃)

)
:

(Open(pp, f , l, C, c̃) = 1) ∧ v = ⟨f ,q⟩ mod p}

2.2 Polynomial Commitment Scheme

The notion of a polynomial commitment scheme that allows the prover to open evaluations of the
committed polynomial succinctly was introduced in [KZG10] who gave a construction under the trusted
setup assumption. A polynomial commitment scheme over F is a tuple PC = (setup, commit, open, eval)
where:

• setup(1κ, D) → pp. On input security parameter κ, and an upper bound D ∈ N on the degree,
setup generates public parameters pp.

• commit(pp, f(X), d) → (C, c̃). On input the public parameters pp, and a univariate polynomial
f(X) ∈ F[X] with degree at most d ≤ D, commit outputs a commitment to the polynomial C, and
additionally an opening hint c̃.

• open(pp, f(X), d, C, c̃)→ b. On input the public parameters pp, the commitment C and the opening
hint c̃, a polynomial f(X) of degree d ≤ D, open outputs a bit indicating accept or reject.

• eval(pp, C, d, x, v; f(X))→ b. A public coin interactive protocol
⟨Peval(f(X)), Veval⟩(pp, C, d, z, v) between a PPT prover and a PPT verifier. The parties have as
common input public parameters pp, commitment C, degree d, evaluation point x, and claimed
evaluation v. The prover has, in addition, the opening f(X) of C, with deg(f) ≤ d. At the end
of the protocol, the verifier outputs 1 indicating accepting the proof that f(x) = v, or outputs 0
indicating rejecting the proof.

A polynomial commitment scheme must satisfy completeness, binding and extractability.

Definition 2.5 (Completeness). For all polynomials f(X) ∈ F[X] of degree d ≤ D, for all x ∈ F,

Pr

b = 1 :

pp← setup(1κ, D)
(C, c̃)← commit(pp, f(X), d)

v ← f(x)
b← eval(pp, C, d, x, v; f(X))

 = 1.

Definition 2.6 (Binding). A polynomial commitment scheme PC is binding if for all PPT A, the
following probability is negligible in κ:

Pr

open(pp, f0, d, C, c̃0) = 1∧
open(pp, f1, d, C, c̃1) = 1∧

f0 ̸= f1

:
pp← setup(1κ, D)

(C, f0, f1, c̃0, c̃1, d)← A(pp)

 .
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Definition 2.7 (Extractability). For any PPT adversary A = (A1,A2), there exists a PPT algorithm
Ext such that the following probability is negligible in κ:

Pr

b = 1 ∧Reval(pp, C, x, v; f̃ , c̃) = 0 :

pp← setup(1κ, D)
(C, d, x, v, st)← A1(pp)

(f̃ , c̃)← ExtA2(pp)
b← ⟨A2(st), Veval⟩(pp, C, d, x, v)

 .

where the relation Reval is defined as follows:

Reval = {((pp, C ∈ G, x ∈ F, v ∈ F); (f(X), c̃)) :

(open(pp, f, d, C, c̃) = 1) ∧ v = f(x)}

Definition 2.8 (Succinctness). We require the commitments and the evaluation proofs to be of size
independent of the degree of the polynomial, that is the scheme is proof succinct if |C| is poly(κ), |π| is
poly(κ) where π is the transcript obtained by applying FS to eval. Additionally, the scheme is verifier
succinct if eval runs in time poly(κ) · log(d) for the verifier.

2.3 Assumptions

Groups of unknown order and GGM. Our constructions make use of groups of unknown order.
A class group is a candidate group of unknown order. The class group of an imaginary quadratic order
[BS96, BH01] is the quotient group of fractional ideals by principal ideals of an order of a number field
with ideal multiplication. It is completely defined by its discriminant, which can be generated using only
public randomness.

We use the generic group model (GGM) for groups of unknown order as defined by Damg̊ard and
Koprowski [DK02], and used in [BBF19]. In this model, the group is parameterized by two integer
public parameters A, B and the order of the group is sampled uniformly from [A,B]. The group G
description consists of a random injective function σ : Z|G| → {0, 1}ℓ, for some ℓ where 2ℓ ≫ |G|. The
elements of the group are σ(0), σ(1), . . . , σ(|G| − 1).

A generic group algorithm A is a probabilistic algorithm with the following properties. Let L be a list
that is initialized with the encodings (group elements) given to A as inputs. A can query two generic
group oracles, O1 and O2. O1 samples a random r ∈ Z|G| and returns σ(r) which is appended to L. The
second oracle O2(i, j,±) takes two indices i, j ∈ {1, . . . , q}, where q is the size of L, and a sign bit and
returns σ(xi ± xj), which is appended to L. It should be noted that A is not given |G|. We use a group
sampler GGen that on input a security parameter κ, samples a description of the group G of size 2poly(κ).
Note that GGen is public-coin.

Assumption 1 (Order assumption – [BBF19]). For a group of unknown order G← GGen(κ), the Order
assumption holds if for any adversary A

Pr

w ̸= 1 ∧ wα = 1 :
GGen(κ)→ G
A(G)→ (w, α)

where |α| < 2poly(κ) ∈ Z and w ∈ G

 ≤ negl(κ)

Assumption 2 (Adaptive root assumption – [Wes19]). For a group of unknown order G ← GGen, we
say that the Adaptive root assumption holds for GGen if there is no efficient adversary (A0,A1) that
succeeds in the following task:

• A0 outputs an element w ∈ G and some state.

• A1 is given a uniformly sampled ℓ←$Primes(κ) and the output state of A0.

• A1 outputs z = w1/ℓ ∈ G.

More precisely, there exists a negligible function negl(κ) such that:
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Pr

zℓ = w ̸= 1 :

GGen(κ)→ G
A0(G)→ (w, state)
ℓ←$Primes(κ)
A1(ℓ, state)→ z

 ≤ negl(κ)

Assumption 3 (r-Fractional Root Assumption – [BFS20]). For a group of unknown order, the r-
Fractional Root Assumption holds for GGen if for any efficient adversary A:

Pr

u
β = gα ∧ β

gcd(α, β)
̸= rk, k ∈ N. :

GGen(κ)→ G
G→ g

A(G, g)→ (α, β, u)
where |α| < 2poly(κ),
|β| < 2poly(κ) ∈ Z,

and u ∈ G

 ≤ negl(κ)

Note that the adaptive root assumption implies the order assumption. In addition, these assumptions
are indeed intractable in the Generic Group Model as shown in [BBF19].

2.4 Arguments of knowledge and SNARKs

Definition 2.9 (Indexed relation [CHM+20]). An indexed relation R is a set of triples (i, x,w) where i
is the index, x is the instance, and w is the witness. The corresponding indexed language LR is the set
of pairs (i, x) for which there exists a witness w such that (i, x,w) ∈ R. Given a size bound n ∈ N, we
denote by Rn the restriction of R to triples (i, x,w) ∈ R such that |i| ≤ n.

A proof (or argument) for a language L allows a prover P to convince a verifier V that x ∈ L for a
common input x. A proof of knowledge4 intuitively captures not only the truth of a statement x ∈ L,
but also the fact that the prover is in “possession” of a witness w.

Definition 2.10 (Preprocessing Argument of Knowledge with Universal SRS). A preprocessing argument
of knowledge with universal SRS is a tuple of four algorithms AoK = (S, I,P,V). S is a probabilistic
polynomial-time setup algorithm that given a bound n ∈ N samples a structured reference string srs
supporting indices of size up to n. The indexer algorithm I is deterministic and, given oracle access to
srs produces a proving index key and a verifier index key, used by P and V respectively. P and V are
probabilistic polynomial-time interactive algorithms.

1. Completeness. For all size bounds n ∈ N and PPT A, the following probability is 1.

Pr

 (i, x,w) ̸∈ Rn ∨
⟨P (ipk, x,w) ,V (ivk, x)⟩ = 1

:
srs← S(1κ, n)

(i, x,w)← A(srs)
(ipk, ivk)← Isrs(i)


2. Knowledge Soundness. For every n ∈ N and PPT adversary P̃ =

(
P̃1, P̃2

)
there exists an efficient

extractor Ext such that the following probability is negl(κ).

Pr

 (i, x,w) ̸∈ Rn ∧〈
P̃2 (st) ,V (ivk, x)

〉
= 1

:

srs← S(1κ, n)

(i, x, st)← P̃1(srs)

w← ExtP̃ (srs)
(ipk, ivk)← Isrs(i)


3. Zero-knowledge. There exists an efficient simulator Sim = (Setup,Prove) such that for every effi-

cient adversary Ṽ = (Ṽ1, Ṽ2) it holds that

Pr

 (i, x,w) ∈ Rn ∧〈
P (ipk, x,w) , Ṽ2 (st)

〉
= 1

:

srs← S(1κ, n)

(i, x,w, st)← Ṽ1(srs)
(ipk, ivk)← Isrs(i)

 =

4We use proof and argument as synonymous in this paper, as we are only interested in computational soundness.
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Pr

(
(i, x,w) ∈ Rn ∧〈

Sim.Prove (trap, i, x) , Ṽ2 (st)
〉
= 1

:
(srs, trap)← Sim.Setup(1κ, n)

(i, x,w, st)← Ṽ1(srs)

)

4. Succinctness. An argument system is proof succinct if the communication complexity between
prover and verifier is bounded by poly(κ), and verifier succinct if the running time of V is bounded
by poly(κ+ |x|) and independent of the size of the index i.

An argument is public-coin if all the messages from the verifier are uniformly random strings of a bounded
length. Furthermore, it is transparent, if the srs is not trusted, that is, the setup algorithm S uses only
public random coins.

A public-coin succinct preprocessing argument of knowledge can be compiled using the Fiat-Shamir
transformation [FS87] to obtain their non-interactive analogue: preprocessing zkSNARKs with universal
SRS.

2.5 Proofs about Exponents

PoE: Proof of Exponentiation We use Wesolowski’s proof of exponentiation (PoE) protocol [Wes19]
in it’s slightly more generalized form as presented in [BBF19] for the relation

RPoE = {((u,w ∈ G, x ∈ Z);⊥) : w = ux ∈ G)}

PoE (Proof of exponentiation)

Params : G $←− GGen(κ); Inputs : u,w ∈ G, x ∈ Z; Claim : ux = w

1. Verifier sends l
$←− Primes(κ) to the prover.

2. Prover finds the quotient q = ⌈x/l⌉ and residue r ∈ [l] such that x = ql + r.

Prover sends Q := uq, to the Verifer.

3. Verifier computes r = x mod l and Qlur = w.

Theorem 2.11. ([BBF19] Theorem 1) Protocol PoE is an argument system for the relation RPoE

with negligible soundness error, assuming the adaptive root assumption holds for GGen.

PoKE: Proof of Knowledge of Exponent For completeness, we have the PoKE protocol from
[BBF19] below

RPoKE = {((u,w ∈ G);x ∈ Z : w = ux ∈ G)}

PoKE (Proof of knowledge of exponent)

Params : (G, g)
$←− GGen(κ); Inputs : u,w ∈ G; Witness : x ∈ Z;

Claim : ux = w

1. Prover sends z = gx ∈ G to the verifier.

2. Verifer sends l
$←− Primes(κ).

3. Prover finds the quotient q and residue r ∈ [l] such that x = ql + r.

Prover sends Q := uq, Q′ := gq and r to the Verifer.

4. Verifier accepts if r ∈ [l], Qlur = w and accepts if (Q′)lgr = z.

Theorem 2.12. ([BBF19] Theorem 3) Protocol PoKE is an argument of knowledge for the relation
RPoKE in the generic group model.

Proof of Knowledge of Squared Exponent (PoKSE) First, we describe a auxiliary protocol
PoKSE (Proof of Knowledge of Squared exponent) as a special case of the PoKE from the previous
section.

RPoKSE = {((w ∈ G);x ∈ Z : w = gx
2

∈ G)}
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PoKSE (Proof of Knowledge of Squared exponent)

Params : (G, g)
$←− GGen(κ); Inputs : w ∈ G; Witness : x ∈ Z;

Claim : gx
2

= w

1. Prover sends z = gx ∈ G to the verifier.

2. Verifer sends l
$←− Primes(κ).

3. Prover finds the quotient q and residue r ∈ [l] such that x = ql + r.

Prover sends Q := zq, Q′ := gq and r to the Verifer.

4. Verifier accepts if r ∈ [l], Qlzr = w and Q′lgr = z.

Theorem 2.13. Protocol PoKSE is an argument of knowledge for the relation RPoKSE in the generic
group model.

This follows directly from Theorem 2.12, as a special case.

2.6 Arguing positivity

Recall Lagrange’s four-square theorem: Every natural number can be written as the sum of four integer
squares. Using this theorem and 4 invocations of the PoKSE protocol, we construct an argument of
knowledge for the relation RPoKPE . (Note that we can use a trick noted in [Gro05] to reduce the
number of calls to three – (4y + 1) is positive iff y is non-negative, and (4y + 1) can always be written
as a sum of three squares by Legendre’s three-square theorem).

Define the relation RPoKPE as

RPoKPE = {((w ∈ G);x ∈ Z : (w = gx) ∧ (x > 0))}

Now, consider the following protocol:

PoKPE (Proof of knowledge of positivity of exponent)

Params : (G, g)
$←− GGen(κ); Inputs : w ∈ G; Witness : x ∈ Z;

Claim : (gx = w) ∧ (x > 0)

1. Prover sets x = a2
1 + a2

2 + a2
3 + a2

4 ∈ Z and Pi := ga
2
i .

2. Prover and Verifer engage in PoKSE for each Pi.

3. Verifier accepts if all the PoKSE’s output accept and at least one Pi ̸= 1

and if w = P1P2P3P4.

Theorem 2.14. Protocol PoKPE is an argument of knowledge for the relation RPoKPE in the generic
group model.

Proof. Since all the PoKSEs pass, there exists an extractor (from PoKSE) that outputs exponents pi ∈ Z
such that Pi = gp

2
i for all i. At least one is a positive square due to the check that at least one Pi ̸= 1.

WLOG let P1 ̸= 1, which implies that p1 > 0. Since w = P1P2P3P4, we know that w = gp1+p2+p3+p4 ∧
(p1 + p2 + p3 + p4 > 0). The extractor for PoKPE simply calls the PoKSE extractors for each Pi to get
pi and outputs p1 + p2 + p3 + p4.

We also use the notation PoKPE{A,B, . . . } to denote the execution of protocols PoKPE(A),PoKPE(B), . . . ,
where the verifier outputs 1 iff the PoKPE checks pass for all elements in the set {A,B, . . . }.

3 Constant-size Inner Product Commitment Scheme

In this section, we construct an inner product commitment (IPC) scheme. Our focus here is to get
a constant size commitment. We construct polynomial commitment schemes in the next two sections
building on this IPC.
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3.1 Construction

IPC = (Setup,Com,Open,Eval) are as defined below:

• Setup(1κ, D): Here, κ is the security parameter and D is an upper bound on the length of the
committed vectors. Sample a group of unknown order (we use class groups) G ← GGen(κ) and
g←$G. An integer α such that α > 12Dp4 and α = 0 mod p is selected (p is a large prime such
that len(p) = poly(κ)). Return pp = (κ,G, g, p, α).

• Com(pp, D, f0, . . . , fl−1, l): Define commitment C := g
∑l−1

i=0 fiα
2i

, considering fi ∈ Zp as integers
in [0, p− 1]. If l ≤ D, return (C, f), where f = (f0, . . . , fl−1) else return error.

• Open(pp, f , l, C, c̃): Return 1 if all the below conditions hold, else return 0.

– l ≤ D

–
∑d

i=0 c̃iα
2i ∈ Z, C = g

∑l−1
i=0 c̃iα

2i

– c̃ ∈ Q(2, 3)l, where

Q(β1, β2) :=
{a
b
: gcd(a, b) = 1, gcd(b, p) = 1, 0 < b < pβ1 , |a/b| ≤ β2α

}
,

where |a| denotes the absolute value of a ∈ Q. (Note that Q(β1, β2) is a subset of Q(β′1, β
′
2) if

β1 ≤ β′1, β2 ≤ β′2)

– c̃ = f mod p

• Eval(pp, C, l,q, v; f): The Eval protocol consists of two sub-protocols TEST and IPP as described
in Fig. 2 and 3 below.

– b1 ← TEST(C, l; f), b2 ← IPP(C, l,q, v; f), and

– If l ≤ D return b = b1 ∧ b2, return 0 otherwise.

To describe the “Computations in TEST” and IPP, we define a common algorithm CoeffSplit in Fig. 1
that takes as input α, two integers, and an index of interest i and returns 3 outputs (v, γ, λ).

“Computations in TEST” calls

CoeffSplit

α,

l−1∑
j=0

fjα
2j ,

l−1∑
j=0

α2l−2−2jzj , 2l − 1


to obtain (v, γ, λ) and defines Λ := gλ, Γ := gγ and outputs (Λ,Γ).
“Computations in IPP” calls

CoeffSplit

α,

l−1∑
j=0

fjα
2j ,

l−1∑
j=0

α2l−1−2jqj , 2l − 1


to obtain (v, γ, λ) and defines Λ := gλ, Γ := gγ and outputs (v mod p,

⌊
v
p

⌋
,Λ,Γ).

CoeffSplit(α, a, b, i)

1. Write a · b in base α, call the resulting representation vector c.

2. Set v := ci , γ :=

i−1∑
j=0

cjα
j , λ :=

⌈logα ab⌉∑
j=i+1

cjα
j

3. Output the tuple (v, γ, λ).

Figure 1: CoeffSplit
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TEST

Prover Verifier

C := commit(pp, f ∈ Zl
p)

C

z z←$Zl
p uniformly at random

Computations in TEST

(Λ,Γ)

(Λ,Γ)
Checks

σ :=

l−1∑
j=0

α2l−2−2jzj

E :=
gα

2l−1

C
,∆ :=

gα
2l−1

Γ

1 : PoKPE{C,E,Λ,Γ,∆} accepts

2 : Cσ ?
= Λα2l

Γ

The blue colored parts will be replaced in subsequent versions of this protocol.

Figure 2: The TEST Protocol

IPP

Prover Verifier

q q ∈ Zl
p is the inner product vector

Computations in IPP

(v, n,Λ,Γ), N := gn

(v = ⟨f ,q⟩ mod p)

(v,N,Λ,Γ)
Checks

σ :=

l−1∑
j=0

α2l−1−2jqj

∆ :=
gα

2l−2

Γ

1 : v ∈ Zp

2 : PoKPE{Λ,Γ,∆, N} accepts

3 : Cσ ?
= (gvNp)α

2l−1
Λα2l

Γ

The blue colored parts will be replaced in subsequent versions of this protocol.

Figure 3: The IPP Protocol

3.2 Proofs of Security

In this section, we prove that our construction IPC satisfies the requirements of an inner product scheme
as defined in §2.1.

Theorem 3.1 (Completeness). The inner product commitment scheme IPC satisfies Completeness (Def-
inition 2.1).

Proof. Note that by definition of CoeffSplit and completeness of PoKPE, all the PoKPE checks will accept.

To show that the last checks in TEST and IPP hold, it suffices to show that v = 0 in TEST and
v = ⟨f ,q⟩ mod p in IPP. We will show this by expanding the computations done in CoeffSplit.
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In TEST, direct manipulation shows

l−1∑
j=0

fjα
2j ×

l−1∑
j=0

α2l−2−2jzj

= α2l

∑
j′>j

α2(j′−j)−2fj′zj


︸ ︷︷ ︸

λ

+

∑
j′<j

α2l−2−2(j−j′)fj′zj +
∑
j′=j

α2l−2fjzj


︸ ︷︷ ︸

γ

and notice that since α > lp2, these are indeed the γ, λ returned by CoeffSplit, and v = 0.

And, in IPP,

l−1∑
j=0

fjα
2j ×

l−1∑
j=0

α2l−1−2jqj = α2l−1


l−1∑
i=0

fjqj mod p︸ ︷︷ ︸
v

+ p

⌊∑l−1
i=0 fjqj
p

⌋
︸ ︷︷ ︸

n


+ α2l−2(0) + α2l

∑
j′>j

α2(j′−j)−1fj′qj


︸ ︷︷ ︸

λ

+

∑
j′<j

α2l−1−2(j−j′)fj′qj


︸ ︷︷ ︸

γ

Here, again since α > lp2, (v + np, λ, γ) above coincide with the output of CoeffSplit, and v = ⟨f ,q⟩
mod p.

Theorem 3.2 (Binding). The inner product commitment scheme IPC Construction in §3.1 is binding
(Definition 2.2) for opening hint vectors in Q(β1, β2) if α > 4β2p

2β1 and if the Order assumption holds
for GGen.

Proof. Suppose there exists an adversary A which breaks binding as defined in Definition 2.2, i.e., A(pp)
outputs (C, f , f ′, c, c′, d) such that open(pp, f , d, C, c) = 1 and open(pp, f ′, d, C, c′) = 1 but f ̸= f ′ (which
also implies that c ̸= c′ – we will use this condition to show a contradiction). Then, since open outputs
1 for both f , f ′ we know that the opening hints c, c′ ∈ Q(β1, β2)

l and that

g
∑l−1

i=0 ciα
2i

= g
∑l−1

i=0 c′iα
2i

⇐⇒ g
∑l−1

i=0(ci−c
′
i)α

2i

= 1.

If the exponent of g above were not zero, we could construct an adversary AOrd that uses the above
exponent to break the Order assumption (Assumption 1). Now, let the exponents be equal, and consider

the largest index j such that c′i ̸= ci (WLOG, let c′i > ci). This implies that
∑j−1

i=0 (ci − c′i)α
2i =

(c′j − cj)α
2j .

We can now show that this equality is impossible given the conditions on α, β1, β2.
Notice that any difference |c′i − ci| (if non-zero) can be bounded by 1

p2β1
< |c′i − ci| < 2β2α,

since ci, c
′
i ∈ Q(β1, β2). This implies that

j−1∑
i=0

(ci − c′i)α
2i < 2β2α

j−1∑
i=0

α2i < 2β2α · 2α2j−2 <
α2j

p2β1
< (c′j − cj)α

2j ,

which is a contradiction.

Before proving extractability, we need a few definitions. Define the set

S :=

{
mα− n

k
: m,n, k ∈ Z, gcd(m, k) = 1, 0 < m ≤ k < p, 0 ≤ n < k + 2

}
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and functions χm, χn : Sq −→ Qq which isolates the vector of fractions m/k and n/k from the elements
of Sq:

v ∈ Sq =⇒ v =

(
miα− ni

ki

)
i

, χm(v) :=

(
mi

ki

)
i

, and χn(v) :=

(
ni

ki

)
i

.

These functions can be made well-defined by fixing a representation of elements of S: for any d ∈ S,
consider the representation (m,n, k) as the one with the smallest denominator k and if there are multiple
such representations, we pick the one with the smallest m.

For a (multi-)set of rational numbers F in reduced form (a rational q = a/b is in reduced form if), define
DenLCM(F ) as the LCM of the denominators of elements of F , lcm({b : a/b ∈ F}). For a vector f ,
DenLCM(f) is defined to be the DenLCM of the set of its coefficients.

Theorem 3.3 (Extractability). The inner product commitment scheme IPC satisfies Extractability for
(β1, β2) = (2, 3) (Def. 2.4) in the Generic Group Model.

Proof. We split the proof into two theorems; the first theorem (concerning TEST) will define a partial
extractor and obtain conditions on the extracted objects, while the second theorem uses the results of
the first one and proves the required conditions on the final extracted object.
Suppose there exists a generic adversary A that makes the Verifier in eval accept with non-negligible
probability (and hence both the TEST verifier and IPP verifier). We will construct a polynomial time
extractor Ext that outputs (f̃ , c̃) satisfying Reval (in Def 2.7) with overwhelming probability.

Theorem 3.4 (TEST Extractor). If the Verifier in TEST outputs accept with non-negligible probability
over the choice of the random z ∈ Zl

p, there exists an efficient extractor ExtT in the GGM that outputs

vectors c,d ∈ Zl
p satisfying the following properties:

1. C = g
∑l−1

i=0(ci+αdi)α
2i

– proved in Lemma 3.10

2. d ∈ Sl – proved in Lemma 3.11

3. DenLCM(χm(d)) < p – proved in Lemma 3.12

Theorem 3.5 (IPP Extractor). If the Verifier in IPP outputs accept with non-negligible probability for
some query vector q, and given that the Verifier of TEST also did so, there exists an efficient extractor
Ext in the GGM that outputs an opening f̃ ∈ Zl

p and a valid opening hint c̃ in Q(2, 3) for C such that

v = ⟨f̃ ,q⟩ mod p.

These theorems are proved in the next section (§ 3.3).

3.3 Proofs of TEST and IPP Extractors

Auxiliary Lemmas. Before we prove Theorems 3.4 and 3.5, we state four auxiliary lemmas (Lem-
mas 3.6, 3.7, 3.8, and 3.9) that go into their proofs. Proofs of the auxiliary lemmas appear in Appendix
§A.

Lemma 3.6. Given a group G and g ∈ G, if there exist group elements W,X1, . . . , Xm such that
W =

∏m
i=1 Xi and a prover succeeds in convincing a PoKPE verifier for all of these elements w.r.t. the

base g, either 1 or 2 below hold:

1. the prover knows exponents w, x1, . . . , xm for W,X1, . . . , Xm respectively such that w, xi > 0 and
w =

∑m
i=1 xi.

2. the prover knows (a multiple of) the order of g, and can break the Order Assumption (Assumption
1).
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Lemma 3.7. Suppose K =
∑k

i=0 Miα
i where Mi’s are not necessarily < α, but we have a bound

Mi < α(α− 1) ∀ i. Then, we can write K =
∑k+1

i=0 Uiα
i where each Ui < α, and

Ui :=


(M0 mod α+ u0) mod α if i = 0

(Mi mod α+
⌊
Mi−1

α

⌋
+ ui) mod α if 1 ≤ i ≤ k

(
⌊
Mk

α

⌋
+ uk+1) if i = k + 1

ui :=


0 if i = 0⌊

Mi−1 mod α+
⌊

Mi−2
α

⌋
+ui−1

α

⌋
if 1 ≤ i ≤ k + 1

Also, ∀ i ui ∈ {0, 1}.

Lemma 3.8. Suppose for some α, M ′α−N ′ = Mα−N , where M ′, N ′ ∈ Q and M,N ∈ Z.
If |N |, |N ′| < B, and M ′ = x

y for the smallest possible y and y < α
2B , then M ′ = M and N ′ = N .

Lemma 3.9. Given k, p ∈ Z and n < p
2 , then any polynomial f(x1, . . . , xn) :=

∑n
i=1 mixi is such that

for all c ∈ Zp and b = GCD(m1, . . . ,mn, k),

Pr
xi ←$Zp

(
n∑

i=1

mixi = c mod k

)
≤ b

k
+

n

p
.

We now prove Theorems 3.4 and 3.5 (proof of Extractability).

Lemma 3.10 (Part (1) of TEST extraction). If the TEST Verifier accepts with non-negligible prob-
ability over the choice of the random query z, there exists an extractor that outputs vectors c,d ∈ Zl

p

satisfying C = g
∑l−1

i=0(ci+αdi)α
2i

.

The extractor ExtT invokes the PoKPE extractor for C, which outputs an exponent c > 0 such that

C = gc. Since E also passes the PoKPE protocol and C · E = gα
2l−1

, we can infer that c < α2l−1.
Consider the base-α representation of c, which is a 2l-length vector. ExtT outputs the even indexed
coordinates as c and the odd indexed coordinates as d.

Note that by definition, the first condition in the theorem is satisfied: C = g
∑l−1

i=0(ci+αdi)α
2i

. An honest
prover would clearly choose di = 0 and ci = xi, 0 ≤ ci ≤ p − 1 for 0 ≤ i ≤ l − 1 to commit to a vector
x ∈ Zl

p. However, with a cheating prover, we are only guaranteed that 0 ≤ ci, di ≤ α− 1.

Lemma 3.11 (Part (2) of TEST extraction). For all 0 ≤ i ≤ l − 1, di ∈ S.

Suppose the prover succeeds with non-negliglible probability over the choice of random z ∈ Zl
p. Fix some

arbitrary index 0 ≤ i ≤ l − 1.
Consider a partition of Zl

p by sets of the form

Tq := {(zi,q) : zi ∈ Zp}

for every q ∈ Zl−1
p (each set contains p points, each of which differ only in the ith coordinate). Since 1

p is
negligible, there exists at least one Tq which contains more than one point for which the prover is able to
succeed (we will refer to these as accepting points). Call this set T ∗, and the two accepting points z1, z2
(for simplicity, we will use z1, z2 to denote the ith coordinate that differs in both these vectors).

Then, we can look at the final check in TEST (Fig. 2, Check 2) and using Lemma 3.6, we get an
integer equality and Lemma 3.7 gives us two equations for the (2l− 1)th index with M2l−1 = ⟨d, z⟩ and
M2l−2 = ⟨c, z⟩. Since each Mi is an inner product of two vectors, one of which has coordinates < α and
the other < p, =⇒ Mi < α(α− 1).

⟨d, z1⟩ mod α+

⌊
⟨c, z1⟩

α

⌋
+ u1 mod α = 0 mod α (3)

⟨d, z2⟩ mod α+

⌊
⟨c, z2⟩

α

⌋
+ u2 mod α = 0 mod α (4)
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where u1, u2 ∈ {0, 1}. We can subtract the two equations to obtain bounds on di (WLOG, let z2 >
z1):

(z2 − z1)di = −
(⌊
⟨c, z2⟩

α

⌋
−
⌊
⟨c, z1⟩

α

⌋
+ u2 − u1

)
mod α (5)

Let the term in the brackets on the RHS be n. Using the fact that x− 1 ≤ ⌊x⌋ < x and ui ∈ {0, 1} for
all i gives us trivial bounds −1 < n < (z2 − z1) + 2. We know that 0 < z2 − z1 < p, hence di ∈ S. Since
i was an arbitrary index, d ∈ Sl.

Lemma 3.12 (Part (3) of TEST extraction). DenLCM(χm(d)) < p.

Suppose DenLCM(χm(d)) > p (this is well-defined as d ∈ Sl from Lemma 3.11).
Then, we can always find a subset J of the indices [0, l− 1] such that p < DenLCM(χm(d|J)) < p2. J is
non-empty because each di contributes at most a factor of (p − 1) to DenLCM(χm(d)). For notational
simplicity, assume WLOG that J consists of the first |J | indices.

Now consider a partition of Zl
p by sets of the form

Tq := {(z0, . . . , z|J|−1,q)}

for every q ∈ Zl−|J|
p – each set has p|J| points. We will show that no set can contain more than 2

accepting points, which contradicts the fact that the verifier in TEST outputs accept with non-negligible
probability.

Consider any set T ∗ and pick any two accepting points in the set. We can derive a condition on the
difference of any two accepting points, which in turn gives us a bound on the maximum number of
accepting points.
Again, take any two accepting points in the set T ∗, call them z, z′ such that they differ only in the first
|J | coordinates. Lemmas 3.6, 3.7 give us two equations similar to (3) and (4) with z, z′ instead of z1, z2:
Subtracting the two equations retains only the |J | coordinates of the first term (WLOG let the LHS be
positive, if not, relabel z, z′):

|J|−1∑
i=0

di(z
′
i − zi) = −

(⌊
⟨c, z′⟩
α

⌋
−
⌊
⟨c, z⟩
α

⌋
+ u′ − u

)
mod α

Note that the negative term on the RHS (call it N) is bounded in absolute value by p|J |+2 since z and

z′ differ in at most |J | indices. The equation can be now written as
∑|J|−1

i=0 di(z
′
i− zi) = Mα−N . From

Lemma 3.11, we know that every di can be written in the form miα−ni

ki
, and we can define two additional

quantities M ′, N ′. Let M ′ :=
∑|J|−1

i=0
mi(z

′
i−zi)
ki

and N ′ :=
∑|J|−1

i=0
ni(z

′
i−zi)
ki

. Due to the conditions on
mi, ni, ki, zi we know that M ′ < p|J |, N ′ < 2p|J | and that the smallest denominator of M ′ when written
as a rational is the LCM of all the ki, which is at most p2.

Since α > 4lp3, using Lemma 3.8 we can conclude that M,N ∈ Z.
However, M ∈ Z can only happen for certain choices of (z0, . . . , z|J|−1) ∈ Z|J|p . We can re-write the
condition M ∈ Z as:

|J|−1∑
i=0

miL

ki
yi = 0 mod L

where L := DenLCM(k0, . . . , k|J|−1) and yi is uniform over Zp and is representative of candidate differ-
ences. Note that the GCD of all the (integer) coefficients is 1 (since gcd(mi, ki) = 1 for all i).

Using Lemma 3.9, this probability is negligible when L > p.
Note that we have proved that there is only a negligible fraction of differences of accepting points in any
partitioning set T ∗. However, given a bound on differences of a set of points, the maximum number of
points that can exist in the set is simply bounded by the same number plus one – precisely when all the
points are arranged in a line (arithmetic progression) at a constant distance from each other (if there are
B distinct numbers in a set, there are at least B−1 unique elements in the set {|b1− b2| : b1 ̸= b2 ∈ B}).
Hence, we have shown that the verifier in TEST will output accept only with negligible probability,
which is a contradiction to our initial assumption.
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3.4 Proof of Theorem 3.5 – IPP extraction

We are now ready to prove Theorem 3.5. We define the extractor Ext for eval using the extractor ExtT of
TEST. Since the TEST verifier outputs accept with non-negligible probability, there exists ExtT that
outputs vectors c,d such that they satisfy the conditions in Theorem 3.4. Ext invokes ExtT and performs
the following computations on c,d:

1. Compute mi, ni, ki for every i such that di =
miα−ni

ki
.

2. Let m−1 := 0, k−1 := 1 and define vectors c′,d′ ∈ Zl
p as

c′i := ci +
mi−1

ki−1
and d′i := −ni

ki
.

3. Output c′ + αd′ as the opening hint, and (c′ + αd′) mod p as the opening to the commitment.

Note that this extractor is indeed efficient, since ExtT is efficient and the only non-trivial computations
done are in Step 1 above. This can be done efficiently, details are given in Lemma 4.9.

By construction, this is a valid opening hint, as d ∈ Sl =⇒ c′ + αd′ ∈ Q(2, 3) and since it is

just a rearrangement of the coordinates of c and d while keeping the sum
∑l−1

i=0(c
′
i + αd′i)α

2i equal to

the previous sum
∑l−1

i=0(ci + αdi)α
2i (since we just move the coefficient of α in di to ci+1), we have

C = g
∑l−1

i=0(c
′
i+αd′

i)α
2i

, which is one of the required conditions.

Now, since the verifier accepts in IPP, Lemmas 3.6 and 3.7 along with the final check of the verifier
(check 3) gives us equations corresponding to the coefficients of α2l−2 and α2l−1, which given that
M2l−3 = ⟨c,q+⟩, M2l−2 = ⟨d,q+⟩ and M2l−1 = ⟨c,q⟩ are:

⟨d,q+⟩ mod α+

⌊
⟨c,q+⟩

α

⌋
+ u′ = 0 mod α (6)

⟨c,q⟩ mod α+

⌊
⟨d,q+⟩

α

⌋
+ u = v + np mod α (7)

where q+ is defined as the vector with elements q+i := qi+1 ∀ i ∈ {0, . . . , l−2}, q+l−1 := 0 and u, u′ ∈ {0, 1}.
Due to the bounds on coefficients of q, we know that Equation 6’s LHS must be either 0 or α. Also
define

M ′ :=

l−1∑
i=0

mi

ki
q+i , and N ′ :=

l−1∑
i=0

ni

ki
q+i

1. If the LHS is 0, then so are each of the terms in the LHS, as they are all non-negative. Hence,
⟨d,q+⟩ = 0 mod α, and by definition, u = 0 (Lemma 3.7).
Hence, we can simplify Equation 7

v + np = ⟨c,q⟩ mod α+

⌊
⟨d,q+⟩

α

⌋
+ u mod α

= ⟨c,q⟩+ ⟨d,q
+⟩

α
mod α = ⟨c,q⟩+M ′ − N ′

α
mod α

M ′ −N ′/α is an integer and N ′ < α by choice of α and q =⇒ N ′ = 0.

v + np = ⟨c,q⟩+M ′ mod α = ⟨c′,q⟩ mod α

=⇒ v = ⟨c′,q⟩ mod p = ⟨c′,q⟩+ α⟨d′,q⟩ mod p,

as α = 0 mod p and ⟨d′,q⟩ is invertible modulo p (or simply 0 mod p). In either case, v =
⟨c′ + αd′,q⟩ mod p.

2. If the LHS is α, we get that u = 1 by definition. From the properties of c and d as shown in
Lemma 3.12, we know that M ′ ∈ Q has a denominator of at most p (in the reduced form). Write
Equation 6 in the form ⟨d,q+⟩ = Mα −N, by moving all the terms but the inner product to the
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RHS and calling it N . Now, Lemma 3.8 implies that M ′, N ′ ∈ Z (since α > 4lp2). Then,

v + np = ⟨c,q⟩ mod α+

⌊
⟨d,q+⟩

α

⌋
+ u mod α

= ⟨c,q⟩ mod α+

⌊
M ′ − N ′

α

⌋
+ 1 mod α

= ⟨c,q⟩ mod α+M ′ − 1 + 1 mod α

as N ′ < α. Hence, as before, we get that v = ⟨c′ + αd′,q⟩ mod p.

Thus, the extracted opening equals the claimed inner product v in both cases.

3.5 Optimizations

3.5.1 Using a PRG to generate the TEST query vector

The communication (and hence the proof size) in theTEST protocol is linear in the size of the committed
vector, due to the random vector z ∈ Zl

p being sent by the verifier. Instead of the Verifier sending the

vector, the prover and verifier can agree on a PRG that outputs vectors in Zl
p beforehand, and the verifier

instead sends a short seed to the prover, and both the parties locally compute the vector.

To show that this does not affect the soundness of the TEST protocol, consider two hybrids H0 and
H1 where the difference between the two hybrids is the query vector, which is generated and sent to the
prover using true randomness in H0 and using the PRG in H1.
Suppose there was exists some prover A that succeeds in cheating in H0 with probability p0 and proba-
bility p1 in H1. Consider a distinguisher D for the PRG, which runs the prover in the two hybrids and
outputs “PRG” if the prover succeeds and “random” if the prover fails. The distinguishing probability
is precisely 1

2 +
p1−p0

2 , which has non-negligible advantage over 1
2 iff p1 − p0 is non-negligible. Hence, no

prover can succeed in breaking soundness with non-negligible probability when the random vector z is
replaced by the output of a PRG on a random seed.

3.5.2 Using Proofs of Exponentiation

The TEST protocol contains checks on group elements which involve raising the group elements to large
powers like α2l. This computation, if done locally by the verifier is very inefficient. Hence, we use a
Proof of Exponentiation (PoE) [Wes19, Pie18] to outsource the computation to the prover.
For completeness, the protocol is described in Section 2.5. This protocol is public-coin, has constant
communication and verifier time.

3.5.4 Batching PoKE proofs

We perform a (constant) number of PoKE proofs in our protocol, which can all be batched using tech-
niques from [BBF19] (the PoKCR protocol) to concretely reduce the communication cost of our protocol.
This can be combined with an optimisation in the PoKPE protocol (Def 2.6) where we can represent a
number as a sum of three squares instead of four [Gro05], and hence only require 3 calls to PoKE.

3.5.5 Evaluating a single commitment at multiple points

The protocols TEST and IPP can be extended to the case of evaluating a single committed polynomial
at a vector of evaluation points x, and claimed evaluations y in Zn

p , say.
Given a commitment C, the Prover and Verifier first engage in TEST for C. If the Verifier accepts, the
Prover then sends the claimed evaluations of the committed polynomial at x to the Verifier. Then, they
run the IPP protocol with the query

∑n
i=0 ziqi, where qi are the queries corresponding to each xi as

defined in the IPP protocol in Section 3.1, and zi ∈ Zp are chosen uniformly at random. The claimed
output (used for the checks) is naturally taken as

∑
i ziyi mod p.

21



When n ≪ p and the Verifier accepts, the Eval extractor works the same as in the soundness proof
(Theorem 3.3), and outputs an opening f(X) ∈ Zp[X] to C such that

n∑
i=1

zif(xi) =

n∑
i=1

ziyi mod p

A single application of the Schwartz-Zippel lemma gives us the desired property.

3.5.6 Aggregating multiple commitments

When multiple inner products need to be computed with the same vector, the Prover first commits
to each polynomial in a separate commitment. Given commitments C1, C2, . . . , Cm, and claimed inner
products y ∈ Zm

p with some fixed vector q, we would like a aggregated proof that is more efficient
(succinct) that running the evaluation protocol m times.

This can be done in a standard way; both the Prover and Verifier compute a randomly combined
commitment C := C1C

z
2 · · ·Czm−1

m , and run Eval on the combined commitment C with the query vector
q and with the claimed output

∑m
i=1 z

i−1yi mod p. Note that we can also use random powers for each
commitment instead of powers of a single element. The only difference in the proof is that a Vandermonde
matrix is always invertible, as opposed to a random matrix.

We also need to slightly relax the opening requirements of our scheme, by allowing opening hints in the
set Q(mβ1 +m2 −m,mpmβ2)

l as valid opening hints - this in turn gives a lower bound on α according
to Theorem 3.2 since the extracted openings hints need to be within the binding space.

Theorem 3.13. When the verifier accepts in Eval performed as above with non-negligible probability
over the choice of z ∈ Zp, there exists an extractor that outputs with high probability for all i ∈ [m]
openings (and opening hints) to each commitment Ci such that ⟨fi,q⟩ = yi mod p for Ci = Com(fi).

Proof. Since the Verifier accepts, we get an extractor that outputs an opening hint f ∈ Q(2, 3)l for the
commitment C.

Consider m different accepting transcripts, which differ in the random choice of z, call them z1, . . . , zm
(and the combined commitments as Di, i ∈ [m]). The extractor can obtain this efficiently by rewinding,
because we assume that the Prover succeeds with non-negligible probability.
For this paragraph, write the group equalities in additive notation, we get equations of the form

Di =

m∑
j=1

zj−1i Cj

We can think of these as m different linear equations, which are always guaranteed a solution, as the
coefficient matrix is a Vandermonde matrix. The solutions are of the form Cj =

∑m
i=1 bijDi for all

commitments Cj , where bij are the entries of the jth row of the inverse matrix.

bij =
(−1)n−ien−i({z1, z2, . . . , zm}{zj})∏m

h=1,h ̸=j(zj − zm)

where e·(·) is the elementary symmetric function. Note that |bij | < pm and the smallest non-negative
value it can take is > 1

pm−1 .

We can then check that since Di = g
∑l−1

k=0 fikα
2k

for fik ∈ Q(2, 3) (as TEST passes with high probability),
the coefficients gjk :=

∑m
i=1 bijfik in the exponent of Cj lie in the larger set Q(m2+m, 3mpm). Since α >

12mp2m
2+3m, these vectors are valid opening hints, and are within the binding space of the commitment

scheme. The openings can be computed as fi mod p.
To check that all these vectors satisfy ⟨fi,q⟩ = yi mod p, we can use the Schwartz-Zippel lemma on the
statement (which is true since Eval succeeds with high probability)

m∑
i=1

zi−1⟨fi,q⟩ =
m∑
i=1

zi−1yi mod p

for z ∈ Zp and since m≪ p, the above polynomial is the zero polynomial with high probability.
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4 Constant-size PCS with
√
l-time verifier

For the inner product scheme in Construction 3.1, note that the verifier has to do work proportional
to the length of the query vector. This seems to be the best we can do for inner products when the
query vector is allowed to be arbitrary. However, for a polynomial commitment scheme, since the query
vector is a function of a single evaluation point, we can hope to achieve significantly better verifier
efficiency.

The bottleneck for verifier computation is computing σ in the TEST and IPP protocols. In this section,
we redesign these protocols – specialising them to polynomial commitment schemes – such that σ can
be computed efficiently in both cases and the verifier’s work is now sublinear – concretely,

√
l – in the

length l of the vector (here, the degree of the polynomial). In Appendix B, we show how to generalize
these ideas to get complexity lϵ for any constant 0 < ϵ ≤ 1. Intuitively, in both these constructions,
we replace the random length-l query vector in TEST with a Kronecker product of random vectors of
length

√
l or l1/e, respectively. The technical arguments in this section and § B to prove correctness

of these modifications to TEST, however, work only for a constant e. These techniques can in fact be
further generalized to achieve a log l verification complexity (described in §5).

4.1 Construction of Polynomial Commitment Scheme sqPC

We define a PCS with constant sized proofs and sublinear verification by adapting our inner product
scheme from Section 3.1. The main differences are in the TEST2 and IPPsub protocols (which form
eval for sqPC), which are the same as TEST and IPP in Section 3.1 except for the query vectors as
described below.

1. TEST2: The random query vector z ∈ Zl
p in TEST2 is now defined5 as a function of 2

√
l uniformly

random elements (x1, . . . , x√l, y1, . . . , y
√
l) ∈ Z2

√
l

p :

For i, j ∈ [
√
l] zi

√
l+j

:= xiyj . (8)

Specifically, TEST2 is obtained by replacing the blue part of TEST in Figure 2 with the following:

z defined by (8) x,y←$Z
√
l

p

In the final protocol a PRG is used to generate these elements locally, and the Verifier simply
sends the seed to the Prover.

2. IPPsub : The query vector q in IPPsub is now defined by the single evaluation point x ∈ Zp. For
an index k, 0 ≤ k ≤ l− 1, (assume l is a power of 2), let k = (k0, . . . , klog l−1) denote the bit vector
from base-2 representation of k. Then, define

qk :=
∏

0≤j≤log l−1

(xkj2
j

mod p). (9)

Note that qk is an integer that is at most plog l.
Specifically, IPPsub is obtained by replacing the blue part of IPP in Figure 3 with the following:

q defined by (9) x←$Zp

These changes are made mainly to decrease the verifier’s computation complexity, more details are in
Theorem 4.5.

5Here and below, we can use Kronecker product notation to express such vectors.
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Polynomial Commitment Scheme sqPC. Our polynomial commitment scheme is essentially the
vector commitment scheme: we interpret a polynomial f(X) ∈ Fp[X] of degree d ≤ D as a vector of

coefficients of length l := d+ 1 and commit to the vector. Let f(X) =
∑d

i=0 fiX
i. We denote by f the

vector (f0, . . . , fd), and define sqPC = (setup, commit, open, eval) as follows:

• setup(1κ, D): pp← Setup(1κ, D + 1)

• commit(pp, f(X), d): (C, c̃)← Com(pp, f , d+ 1).

• open(pp, f, d, C, c̃) : b← Open(pp, f , d+ 1, C, c̃)

• eval(pp, C, d, x, v; f(X)): b = Eval(pp, C, d + 1,q, v; f), where q is defined in 9 as a function of x
and Eval is modified to use TEST2 and IPPsub described above instead of TEST and IPP.

4.2 Proofs of Security and Succinctness for sqPC

In this section, we prove completeness, soundness, and succinctness of our polynomial commitment
scheme sqPC. The most challenging is the proof of soundness, which we do by constructing extractors
for TEST2 and IPP as before. However, the structure of the extracted (rational, in general) vector is
lot more complex here than in the case of IPC since the query vectors have dependencies among their
coordinates. We are able to exploit this structure while still keeping the size of the commitment and
the number of class group elements communicated to be an absolute constant. We pay a price for the
structural complexity with a larger α.

For this section, we choose α > c1lp
c2
√
l for some absolute constants c1, c2 > 1 and α ≡

0 mod p.

For notational simplicity we also parametrise the definition of the set S to S(β1, β2) and extend the
domain of definition of χm, χn (defined before Theorem 3.3) to S(β1, β2).

S(β1, β2) :=

{
mα− n

k
: m,n, k ∈ Z, gcd(m, k) = gcd(k, p) = 1, 0 < m ≤ k < pβ1 ,−β2 < n < k + β2

}

Theorem 4.1 (Completeness). The polynomial commitment scheme sqPC (Def 4.1) satisfies Complete-
ness (Def 2.5) if α > lp1+logl.

This proof is similar to the proof of completeness of IPC (Theorem 3.1) and is omitted.

Theorem 4.2 (Extractability). The polynomial commitment scheme sqPC satisfies Extractability (Def
2.7) for (β1, β2) = (3, 5) in the Generic Group Model.

Proof. We again split the proof into two theorems; the first theorem (concerning TEST2) constructs
a partial extractor ExtT and proves some conditions on the extracted objects and the second theorem
(concerning IPPsub) using the results of the first theorem constructs the extractor Ext for eval.
More precisely, given a generic adversary A that makes the Verifier in eval (Def 4.1) accept with non-
negligible probability, we will construct a polynomial time extractor Ext that outputs (f(X), c̃) satisfying
Reval (in Def 2.7) with overwhelming probability.

Theorem 4.3 (TEST2 Extractor). Suppose the Verifier in TEST2 instantiated with α > c1lp
c2
√
l

accepts with probability > c3√
p over uniformly random (x,y) ∈ Z2

√
l

p , where c1, c2, c3 > 1 are some fixed
constants.

Then, there exists an efficient extractor ExtT in the GGM that outputs vectors c,d ∈ Zl
p satisfying the

following properties:

1. C = g
∑l−1

i=0(ci+αdi)α
2i

– proved in Lemma 3.10

2. d ∈ S(2, 4)l – proved in Lemma 4.7

3. DenLCM(χm(d)) < p2
√
l – proved in Lemma 4.8
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Theorem 4.4 (IPPsub Extractor). If the Verifier in IPPsub outputs accept with non-negligible prob-
ability for some evaluation point x, and given that the Verifier of TEST2 also did so, there exists an
efficient extractor Ext in the GGM that outputs an opening f(X) ∈ Zp[X] and an opening hint c̃ in
Q(3, 5)l for C such that v = f(x) mod p.

Theorem 4.5 (Proof Succinctness and
√
l Verification). The polynomial commitment scheme sqPC

satisfies proof succinctness as defined in Definition 2.8 and the Verifier in eval performs O(1) group
operations and O(

√
l) field operations (where l − 1 is the degree of the polynomial).

Proof. Proof succinctness is direct; the commitment is a single group element and the evaluation protocol
only communicates a constant number of group elements. Using the optimisations in § 3.5, the random
field elements xi, yj for 0 ≤ i, j <

√
l that form the query vector can be sent succinctly by using

a Pseudorandom Generator (PRG) with a short seed to generate the vector locally – this brings the
communication back to constant.

Similarly, we can see that the verifier still only does a constant number of group operations (interacting
with the Prover via PoEs for expensive exponentiations as argued in § 3.5) and the bottleneck for field
operations is the computation of σ mod q′ for a random prime q′ during PoE verification.
Here, we can analyse TEST2 and IPPsub separately. In TEST2, the definition of the query vector
implies that we can rewrite the computation of σ mod q′ in the following way:

σ mod q′ =

l−1∑
k=0

α2l−2−2jzj mod q′ = α2l−2

√
l−1∑
i=0

xi

α2i
√
l

√
l−1∑

j=0

yj
α2j

mod q′

This can be computed in O(
√
l) time. In IPPsub, the query vector is formatted in such a way that the

computation can be done in O(log l) time once α mod q′ is calculated.

σ mod q′ =

l−1∑
k=0

α2l−1−2jqk mod q′ = α2l−1
log l−1∏
i=0

(
1 +

x2i mod p

α2i+1

)
mod q′

Also note that for efficient computation, we need to compute α mod q′ and α−1 mod q′ (If α−1 mod q′

does not exist, then α = 0 mod q′ and computing these values becomes trivial). In this case, since

α = pO(
√
l), these quantities can be computed in O(

√
l) as well.

Note: If faster computation of α mod q′ is desired, we can fix α = pL (such that the bounds on α still
hold) for some integer L, which implies that α mod q′ = pL mod q′ can be computed efficiently - in
O(logL) time. This technique is necessary when we consider the sublinear and logarithmic versions of
our protocols (Theorem 5.8).

4.3 Proofs for TEST2 Extractor

In addition to the auxiliary lemmas from Section 3.3, we will make use of a combinatorial theorem in
our proofs in this section.

4.3.1 An Auxiliary Theorem on Forbidden Boxes:

Consider the set of (standard) integer lattice of points inside [n]d. How many points can we choose in
this cube such that no subset of 2d among them form the corners of a d-dimensional hyper-rectangle
(box)? Upper bounds on the number of such points are used in the extractability proofs in this section
and the next. A precise statement due to Rosenfeld [Ros16] of such a bound is stated below. In this
case of d = 2, such a bound also follows from the well-known Zarankiewicz problem in extremal graph
theory.
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Theorem 4.6 ([Ros16] - Theorem 4.1, Restated). Consider a d-dimensional 0-1 matrix M : [n]d → {0, 1}
such that

1∏
b1=0

· · ·
1∏

bd=0

M
(
ib11 , . . . ibdd

)
= 0 ∀ 1 ≤ i0j < i1j ≤ n, 1 ≤ j ≤ d.

The number of ones in such a matrix M is less than Cnd−2−d+1

where C = Cd is a constant that depends
only on d.

Now we can prove theorems 4.3 and 4.4 on TEST2 and IPPsub (proof of Extractabilty).

Lemma 4.7 (Part (2) of TEST2 extraction). If the prover succeeds with probability at least
√

2/p, then
for all 0 ≤ k ≤ l − 1, dk ∈ S(2, 4).

Proof. Fix an arbitrary index k in [0, l − 1] and represent it by the pair (i, j), where k = i
√
l + j –

equivalently the representation in base-
√
l of k is (i, j). Consider the partition of the space Z2

√
l

p by sets
of the form

Tq := {(xi, yj ,q) : xi, yj ∈ Zp} for q ∈ Z2
√
l−2

p .

Since the success probability of the prover is at least
√
2√
p , at least one of these sets, call it Tq0 , (which are

2-dimensional spaces) must have more than
√
2·p√p accepting points. Lemma 4.6 then implies that there

exists a rectangle of accepting points in this space, say (xi, yj), (xi +h, yj), (xi, yj + t), (xi +h, yj + t) for
0 < h, t < p ; the rest of the coordinates are identical given by c0. Call the query vectors in Zl

p generated
by these points according to Equation (8) as z1, z2, z3 and z4.

Now, Lemmas 3.6 and 3.7 give us equations corresponding to each of these accepting points zi, relating
c,d and zi, as below.

⟨d, z1⟩ mod α+

⌊
⟨c, z1⟩

α

⌋
+ u1 = 0 mod α (10)

⟨d, z2⟩ mod α+

⌊
⟨c, z2⟩

α

⌋
+ u2 = 0 mod α (11)

⟨d, z3⟩ mod α+

⌊
⟨c, z3⟩

α

⌋
+ u3 = 0 mod α (12)

⟨d, z4⟩ mod α+

⌊
⟨c, z4⟩

α

⌋
+ u4 = 0 mod α (13)

Consider the equation (13− 12)− (11− 10). Due to the choice of zi, i ∈ {1, 2, 3, 4} we get

di
√
l+j · ht = −

[⌊
⟨c, z4⟩

α

⌋
−
⌊
⟨c, z3⟩

α

⌋
+

⌊
⟨c, z1⟩

α

⌋
−
⌊
⟨c, z2⟩

α

⌋
+(u4 − u3 + u1 − u2)] mod α (14)

Call the term in the brackets on the RHS as n. Since for all x, x− 1 ≤ ⌊x⌋ < x and u ∈ {0, 1}, we can
see that −2 < n < ht+ 4. Now we can write

di
√
l+j =

mα− n

ht

where m ≤ ht < p2 (since di
√
l+j < α and α is large) and −2 < n < ht + 4. Hence, di

√
l+j ∈ S(2, 4).

Since the foregoing was proved for arbitrary k = (i, j), we must have d ∈ S(2, 4)l.

Lemma 4.8 (Part (3) of TEST2 extraction). If the prover accepts with probability ≥ 3
√
l/p, we must

have DenLCM(χm(d)) ≤ p2
√
l.

Proof. Suppose this was not the case, and DenLCM(χm(d)) > p2
√
l. Divide the l coordinates {di√l+j}i,j

into
√
l contiguous blocks of size

√
l, where each block corresponds to a single index i.
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Since each denominator (in the representation given by S(2, 4)) is smaller than p2 and there are
√
l ele-

ments in every block, there must exist at least one block such that the DenLCM of the set {χm(di
√
l+j)}j

the block is between p2 and p2
√
l. WLOG, let this be the first block (corresponding to the index 0).

Now, consider a partition of the space Z2
√
l

p by sets of the form

Tq := {(x0,q) : x0 ∈ Zp}

for every q ∈ Z2
√
l−1

p . Now, we can bound the number of c such that Tq has more than two accepting
points. Denote the number of accepting points in Tq by ||Tq||.
Consider any set Tq such that ||Tq|| ≥ 2. Then, using Lemmas 3.6 and 3.7 we get two equations for
z ̸= z′ (WLOG let x0 > x′0):

⟨d, z⟩ mod α+

⌊
⟨c, z⟩
α

⌋
+ u = 0 mod α (15)

⟨d, z′⟩ mod α+

⌊
⟨c, z′⟩
α

⌋
+ u′ = 0 mod α (16)

=⇒ (x0 − x′0)

√
l−1∑
i=0

diyi = −
[⌊
⟨c, z⟩
α

⌋
−
⌊
⟨c, z′⟩
α

⌋
+ (u− u′)

]
mod α (17)

Call the quantity in the square brackets on the RHS as N ′. Then, we can use the characterisation of
d ∈ S(2, 4)l (each di =

miα−ni

ki
) to write Equation (17) as:

Mα−N = M ′α−N ′

M :=

√
l−1∑
i=0

mi

ki
(x0 − x′0)yi, N :=

√
l−1∑
i=0

ni

ki
(x0 − x′0)yi

where |N |, |N ′| < 2p2
√
l and M has maximum denominator p2

√
l. Using Lemma 3.8 and since α >

8lp2
√
l+2, we get that M = M ′ and N = N ′. More importantly, this implies that M ∈ Z. This implies

that

(x0 − x′0)

√
l−1∑
i=0

mi

ki
yi ∈ Z (18)

=⇒ (x0 − x′0)

√
l−1∑
i=0

miL

ki
yi = 0 mod L (19)

=⇒

√
l−1∑
i=0

miL

ki
yi = 0 mod L′, (20)

where L = LCM({ki}i) > p2, L′ | L and L′ > p. Since for all i, GCD(mi, ki) = 1, the GCD of all the
coefficients of the polynomial on the LHS with L′ is 1.

From Lemma 3.9, the probability that this event happens is at most
√
l

p + 1
L′ ≤ 2

√
l

p since L′ > p. In

other words, the fraction of solutions {yi}i to (20) is at most 2
√
l/p. However, notice that each set Tq

corresponds to only one choice of y. Furthermore, the same number (p
√
l−1, to be precise) of Tq would

arise from a given y. Hence, the fraction of sets Tq which contain more than 1 accepting value of z at

most 2
√
l/p. Since the size of each Tq is exactly p, the probability of acceptance by the prover is at most

(1 − 2
√
l/p) · (1/p) + 2

√
l/p · 1 < 3

√
l/p. This contradicts the hypothesis that the prover accepts with

probability ≥ 3
√
l/p. It follows that we must have DenLCM(χm(d)) ≤ p2

√
l.
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4.4 Proof of Theorem 4.4 – IPPsub extractor

We define the extractor Ext for eval (of sqPC defined in Section 4.1) using the extractor ExtT of TEST2.
Since the TEST2 verifier outputs accept with non-negligible probability, there exists ExtT that outputs
vectors c,d such that they satisfy the conditions in Theorem 4.3. Ext invokes ExtT and performs the
following computations on c,d:

1. Compute mi, ni, ki for every i such that di =
miα−ni

ki
.

2. Define vectors c′,d′ ∈ Zl
p as

c′i := ci +
mi−1

ki−1

d′i := −
ni

ki

(m−1 := 0, k−1 := 1)

3. Output c′ + αd′ as the opening hint, and define a polynomial f(X) ∈ Zp[X] using the coefficient
vector (c′ + αd′) mod p as the opening to the commitment.

Note that this extractor is indeed efficient, details are given in Lemma 4.9.

Lemma 4.9. The extractor Ext defined in Theorem 4.4 is efficient.

Proof. The extractor calls ExtT , which is efficient since the only computation done in ExtT is a constant
number of calls to the extractor of PoKPE, which is efficient and terminates in polynomial time [BBF19,
Theorem 7] when the adversary is assumed to be generic. In Ext above, the only non-trivial computations
done are in Step 1 above.

This can be done efficiently using a binary search algorithm on rationals with bounded denominator,
since we already know that there exists a representation for di of the form miα−ni

ki
with ki < p2 from

Theorem 4.3. For every i,

1. Compute q := di

α .

2. Find (mi, ki) as the rational representation equal to q (within a distance of 2
α - since this is negligible

compared to the rationals we’re searching for, we can use existing algorithms for exact rational
search to obtain (mi, ki)) with denominator at most p2. (This can be done in Θ(2 log p) [KM03,
Theorem 1])

3. Compute ni := miα− kdi.

4. Output (mi, ni, ki).

By construction, this is a valid opening hint, as d ∈ S(2, 4)l =⇒ c′ + αd′ ∈ Q(3, 5) and since it is just
a rearrangement of the coordinates of c and d,

C = g
∑l−1

i=0(c
′
i+αd′

i)α
2i

which is one of the required conditions.

Now, since the verifier accepts in IPPsub, Lemmas 3.6 and 3.7 along with the final check of the verifier
(Figure 3, Check 3) gives us equations corresponding to the coefficients of α2l−1 and α2l−2:

⟨d,q+⟩ mod α+

⌊
⟨c,q+⟩

α

⌋
+ u′ = 0 mod α (21)

⟨c,q⟩ mod α+

⌊
⟨d,q+⟩

α

⌋
+ u = v + np mod α (22)

where u, u′ ∈ {0, 1}, and the query vector q is as defined (as a function of the evaluation point x) in
Equation (24).
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Due to the bounds on coefficients of q, we know that Equation 21’s LHS must be either 0 or α. Also
define

M ′ :=

l−1∑
i=0

mi

ki
q+i , N ′ :=

l−1∑
i=0

ni

ki
q+i

1. If the LHS is 0, then so are each of the terms in the LHS, as they are all non-negative. Hence,
⟨d,q+⟩ = 0 mod α, and by definition, u = 0.
Hence, we can simplify Equation 22

v + np = ⟨c,q⟩ mod α+

⌊
⟨d,q+⟩

α

⌋
+ u mod α

= ⟨c,q⟩+ ⟨d,q
+⟩

α
mod α

= ⟨c,q⟩+M ′ − N ′

α
mod α

M ′ −N ′/α is an integer and since N ′ < α by choice of α and the query vector q =⇒ N ′ = 0.

v + np = ⟨c,q⟩+M ′ mod α

= ⟨c′,q⟩ mod α

=⇒ v = ⟨c′,q⟩ mod p

= ⟨c′,q⟩+ α⟨d′,q⟩ mod p

as α = 0 mod p and ⟨d′,q⟩ is invertible modulo p (or simply 0 mod p). In either case,

v = ⟨c′ + αd′,q⟩ mod p

2. If the LHS is α, we get that u = 1 by definition. From the properties of c and d, we know that

M ′ ∈ Q has a denominator of at most p2
√
l (in the reduced form). Write the equation 21 in the

form
⟨d,q+⟩ = Mα−N

by moving all the other (integer) terms to the RHS and calling it N . Since M,N ∈ Z Lemma 3.8

implies that M ′, N ′ ∈ Z (since α > 8lp2
√
l+1+log l).

Now,

v + np = ⟨c,q⟩ mod α+

⌊
⟨d,q+⟩

α

⌋
+ u mod α

= ⟨c,q⟩ mod α+

⌊
M ′ − N ′

α

⌋
+ 1 mod α

= ⟨c,q⟩ mod α+M ′ − 1 + 1

as N ′ < α. Hence, as in the previous step, we get that

v = ⟨c′ + αd′,q⟩ mod p

Our query vector q was chosen specifically to satisfy the property qk mod p = xk mod p for the eval-
uation point x ∈ Zp. Since the vector c′ + αd′ mod p is the coefficient vector of the polynomial f(X)
that the extractor outputs, y = f(x) mod p.

4.5 Improving verification to O(lϵ)

We can extend the techniques in this section to construct polynomial commitment schemes with better
verification complexity O(lϵ) for constant 0 < ϵ < 1. This extension uses the Box theorem (Theorem 4.6)
in its full generality for dimensions greater than 2. We elaborate on this in Appendix B.1.
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The construction of the scheme is very similar to sqPC, and the only change is the way in which the
TEST query vector is generated – we now use Kronecker products of e many l1/e-length vectors (el1/e

random elements) to construct the query vector z. When e = 2, this is the same process as sqPC.
This would then give us verifier complexity of O(l1/e) as the structure of the query vector simplifies the
computation of σ.
The proof of extraction proceeds almost identically to that of sqPC in Theorem 4.2, with the difference
being that we now argue the existence of a e-dimensional box in an appropriate space instead of a
rectangle, which gives rise to 2e equations.
This can be represented as a binary tree of depth e, and to obtain the necessary conditions on the d
vector we recursively subtract the 2e equations at the leaves. In addition, part 3 of Theorem 4.2 does
not generalise to higher dimensions, hence we use a weaker condition which can be easily satisfied at
the cost of making α = pO(el). This does not affect verifier efficiency though, as α is an exact power of
p.

However, due to the bound in the Box theorem becoming weaker as the dimension increases, this impacts
the Prover’s cheating probability – as the dimension increases, so does the probability that the Prover
breaks soundness (if the dimension is e, the cheating probability is < Ce

p2−e+1 ). Hence, this construction

can only be used as long as the cheating probability is negligible, which is satisfied for constant dimen-
sion e – specifically not when e = log l, and hence we need different techniques to obtain logarithmic
verification.

We give the proof of extraction in Appendix B.1. The proof is a direct generalisation of Theorem 4.2
using the Box theorem in its full generality.

5 Dew-PC – Constant-Sized PCS with Logarithmic Verifier

We prove our main result on PCS in this section. Recall that an IPC implies a PCS. Hence, our starting
point is IPC from §3. The challenge then is to reduce the linear verification time of that scheme to
logarithmic for the derived PCS, while retaining constant size. Our basic idea to achieve log-verification
is to use Kronecker products of log-many length-2 vectors for z in TEST and q in IPP protocols (cf.
Fig. 2 and 3). These modifications do help us reduce the verification time to logarithmic (Theorem 5.8
below). However, with this new choice for z, the extractability proof from §3 completely breaks down.
Proving extractability with Kronecker product z requires substantially new ideas. A crucial tool in our
proof is a new extremal combinatorial bound : we prove a tight bound on the maximum number of points
in the discrete cube [n]d that do not contain a subset called a d-structure (§ 5.2.2). A d-structure is
a generalization of a d-dimensional hyper-rectangle (box). In the special case of rectangles, extremal
combinatorial bounds are in fact known in the literature. For d = 2, this is the well-known Zarankiewicz
problem [Bol04] and for constant d > 2, a generalization was proved by Rosenfeld [Ros16].

Indeed, combining these earlier results with the Kronecker products idea, we can already get sublinear
verification time:

√
l using [Bol04] and lϵ for any constant ϵ > 0 using [Ros16]; see details in §4 and

Appendix B. Unfortunately, these bounds behave like nd−2−d+1

and hence rapidly approach nd as d
grows. At a very high level, that enables a cheating prover to succeed with non-negligible probability
on Kronecker products of a super-constant number of vectors. When we choose a set of points from a
universe, we say a forbidden configuration is a subset of points forming a structure that is not allowed to
be contained in the chosen set. By generalizing forbidden configurations from rectangles to d-structures
(which suffices for us), we obtain upper bounds of O(dnd−1) – a vanishingly small fraction of nd. This
improved bound enables a verifier to catch a cheating prover with high probability.

5.1 Our Polynomial Commitment Scheme : Dew-PC

To construct Dew-PC, we use ideas based on Kronecker products as test and query vectors to modify the
TEST and IPP protocols from §3 to logTEST and logIPP as defined below.

For notational simplicity, let the degree d of the polynomial be equal to l − 1.

For logTEST, the query vector z in Fig. 2 is defined using 2 log l random elements of Zp:
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1. Sample random x1,x2, . . . ,xlog l from Z2
p where xj = (xj,0, xj,1).

2. For 0 ≤ k ≤ l− 1, let (k0, . . . , klog l−1) be the base-2 representation of k so that k = k0 · 20 + · · ·+
klog l−1 · 2log l−1. Then,

zk ≡ zk0,...,klog l−1
:=

log l∏
j=1

xj,kj−1
. (23)

Also, for logIPP, the query vector q in Fig. 3 is defined by the single evaluation point x ∈ Zp by
setting

qk :=
∏

0≤j≤log l−1

(xkj2
j

mod p). (24)

Note that zk, qk are integers that are < plog l and qk mod p = xk mod p.

Our PCS Dew-PC = (setup, commit, open, eval) is now constructed as follows:

• setup(1κ, D): Here, κ is the security parameter and D is an upper bound on the degree of the
committed polynomial. Sample a group of unknown order (we use class groups) G← GGen(κ) and a

random g←$G. PRG : {0, 1}λ → Z2 log(D+1)
p is a pseudorandom generator. Define α := p5 log(D+1)

(p is a large prime such that len(p) = poly(κ)).
Return pp = (κ,G, g, PRG, p).

• commit(pp, D, f(X) ∈ Zp[X], l − 1): Define the commitment C := g
∑l−1

i=0 fiα
2i

, where fi are the
coefficients of the degree (l−1) polynomial f(X) considered as integers from [0, p−1] and the sum
is also over the integers. If l − 1 ≤ D, return (C, f), return error otherwise.

• open(pp, D, f(X) ∈ Zp[X], l − 1, C, f̃): Check that

(i) l − 1 ≤ D,

(ii)
∑l−1

i=0 f̃iα
2i ∈ Z, C = g

∑l−1
i=0 f̃iα

2i

and f̃ ∈ Q(1 + log l, 2l + 1)l.

Recall that

Q(β1, β2) :=
{a
b
: gcd(a, b) = 1, gcd(b, p) = 1, 0 < b < pβ1 , |a/b| ≤ β2α

}
,

where |a| denotes the absolute value of the integer a.

(iii) f̃i = fi mod p where fi ∈ Zp are the coefficients of f(X).

return 1 if all checks (i)-(iii) above pass, else return 0.

• eval(pp, D,C, l − 1, x, v; f(X)): The eval protocol consists of two sub-protocols logTEST and
logIPP as described in Figures 5 and 6 and

– If l − 1 > D, return 0

– Else Run logTEST(C, l − 1; f(X)) and logIPP(C, l − 1, x, v; f(X)).
return 1 if both these protocols accept else return 0.

The protocols logTEST and logIPP described in Figures 5 and 6 are simply variants of TEST and
IPP in Figures 2 and 3 by replacing the query vectors with kronecker products of shorter vectors as in
(23) and (24).

As written in Figures 5 and 6, the logTEST and logIPP protocols do not reach the claimed bounds
on communication and computation complexity. To obtain these, the Verifier sends a seed for the PRG
instead of the random query vector in logTEST and replace all expensive group exponentiations for the
verifier by invocations of Wesolowski’s PoE protocol. The full protocols in Figures 7 and 8 are expanded
versions of the protocols in Figures 5 and 6 thus obtained.
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CoeffSplit(α, a, b, i)

1. Write a · b in base α, call the resulting representation vector c.

2. Set v := ci , γ :=

i−1∑
j=0

cjα
j , λ :=

⌈logα ab⌉∑
j=i+1

cjα
j

3. Output the tuple (v, γ, λ).

Figure 4: CoeffSplit

logTEST

Prover Verifier

C := commit(pp, D, f(X) ∈ Zp[X], d) C

z defined by (23) x1, . . . ,xlog l ←$Z2
p

Computations in TEST

(Λ,Γ)

(Λ,Γ)
Checks

σ :=

l−1∑
j=0

α2l−2−2jzj

E :=
gα

2l−1

C
,∆ :=

gα
2l−1

Γ

1 : PoKPE(C) accepts

2 : PoKPE(E) accepts

3 : PoKPE(Λ) accepts

4 : PoKPE(Γ) accepts

5 : PoKPE(∆) accepts

6 : Cσ ?
= Λα2l

Γ

The blue colored parts are the changes from the TEST protocol in Figure 2.
“Computations in TEST” are steps (7, 8, 9) in Figure 7 (same as in Figure 2).

Figure 5: The logTEST Protocol

logIPP

Prover Verifier

q defined by (24) x is the evaluation point

Computations in logIPP

(v, n,Λ,Γ), N := gn

(v,N,Λ,Γ)
Checks

σ :=

l−1∑
j=0

α2l−1−2jqj

∆ :=
gα

2l−2

Γ

1 : v ∈ Zp

2 : PoKPE(Λ) accepts

3 : PoKPE(Γ) accepts

4 : PoKPE(∆) accepts

5 : PoKPE(N) accepts

6 : Cσ ?
= (gvNp)α

2l−1
Λα2l

Γ

The blue colored parts are the changes from the IPP protocol in Figure 3.
“Computations in logIPP” are steps (3, 4, 5) in Figure 8 (same as in Figure 3).

Figure 6: The logIPP Protocol
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logTEST

1 : P computes C := commit(pp, D, f(X) ∈ Zp[X], l − 1), A := gα
2l−1

and sends C,A to V

2 : P and V run PoE(g,A, α2l−1) // Showing that A = gα
2l−1

3 : V samples a random seed s as input to the PRG and sends s to P.

4 : P and V compute PRG(s)→ (z1,0, . . . , zlog l,0, z1,1, . . . , zlog l,1) ∈ Z2 log l
p .

5 : P and V compute z as defined in equation 23.

6 : P computes (v, γ, λ)← CoeffSplit

(
α,

l−1∑
j=0

fjα
2j ,

l−1∑
j=0

α2l−2−2jzj , 2l − 1

)
(defined in Figure 4)

7 : P computes Λ := gλ, Γ := gγ and sends (Λ,Γ) to V

8 : P computes σ :=

l−1∑
j=0

α2l−2−2jzj

9 : V computes E := AC−1, ∆ := AΓ−1

10 : P and V run PoKPE(C),PoKPE(E),PoKPE(Λ),PoKPE(Γ),PoKPE(∆)

11 : P computes R := Λα2l

Γ and sends R to V

12 : P and V run PoE(Λ, R/Γ, α2l) // Showing that R = Λα2l

Γ

13 : P and V run PoE(C,R, σ) // Showing that Cσ = R

Figure 7: Full logTEST protocol - obtained from Figure 5 by replacing expensive verifier exponentiations
by PoE protocols and using a PRG for succinctness

logIPP

1 : P sends B := gα
2l−2

to V

2 : P and V run PoE(g,B, α2l−2) // Showing that B = gα
2l−2

3 : V sends the evaluation point x ∈ Zp to P.
4 : P and V compute q as defined in equation (24).

5 : P computes (v, γ, λ)← CoeffSplit

(
α,

l−1∑
j=0

fjα
2j ,

l−1∑
j=0

α2l−1−2jqj , 2l − 1

)
(defined in Figure 4)

6 : P computes Λ := gλ, Γ := gγ , N := gn and sends (v mod p,N,Λ,Γ) to V

7 : P computes σ :=

l−1∑
j=0

α2l−1−2jqj

8 : V computes ∆ := BΓ−1

9 : P and V run PoKPE(N),PoKPE(Λ),PoKPE(Γ),PoKPE(∆)

10 : P computes R := Λα2l

Γ, S := Cσ and sends R,S to V

11 : P and V run PoE(Λ, R/Γ, α2l) // Showing that R = Λα2l

Γ

12 : P and V run PoE(C, S, σ) // Showing that Cσ = S

13 : P and V run PoE(gvNp, S/R, α2l−1) // Showing that Cσ = (gvNp)α
2l−1

Λα2l

Γ

Figure 8: Full logIPP protocol - obtained from Figure 6 by replacing verifier expensive exponentiations
by PoE protocols and using a PRG for succinctness
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5.1.1 Non-interactive Dew-PC using Fiat-Shamir

Note that even though logTEST and logIPP are described as separate protocols for ease of exposition,
they are both run as part of eval. Protocol eval is public-coin and we can use the Fiat-Shamir heuris-
tic [FS87, CCH+19] to obtain a non-interactive version in the ROM. First, the prover applies the RO on
the commitment C to obtain a seed s for the PRG in logTEST. Then, s is expanded by the PRG to
obtain x1, . . .xlog l, and the random query vector z is computed as described in Eq (23).
The non-interactive (NI) transcript consists of all the elements communicated in both protocols along
with the NI versions of PoE and PoKPE from both protocols. Hence, the transcript communicated is
π = ((C,A,Λ,Γ, R)logTEST, (B,N,Λ,Γ, R, S)logIPP, πPoE, πPoKPE) where πPoE consists of NI transcripts
of steps (4, 20, 21) and (2, 16, 17, 18) in logTEST and logIPP respectively, and πPoKPE consists of NI
transcripts of steps (13, 14, 15, 16, 17) and (10, 11, 12, 13) in logTEST and logIPP respectively (from
Fig. 7 and 8).
It is easy to see that if an interactive protocol is succinct w.r.t. communication and verifier computation,
its non-interactive Fiat-Shamir transformed version will be succinct according to Definition 2.8.

We prove completeness, extractability, and succinctness of Dew-PC in §5.2. We also show how to achieve
hiding commitment and zero-knowledge evaluation in §7.1.

5.2 Proofs of Extractability and Succinctness of Dew-PC

We now prove the properties of our polynomial commitment scheme Dew-PC constructed in Section 5.1.
Proof of completeness is analogous (taking care of the new choices of parameters) to the IPP in Theo-
rem 3.1 and is deferred to Appendix C. Since the commitment scheme remains unchanged, the proof of
binding remains as in Theorem 3.2. Proof of succinctness is given in Section 5.2.4. Section 5.2.5 contains
concrete estimates of proof sizes.

Extractability of Dew-PC is the most nontrivial of the three properties to prove and hence we begin with
a sketch of the proof below. A detailed proof appears in Section 5.2.3.

5.2.1 Proof sketch of Extractability for Dew-PC

The high level structure of the extractability proof is similar to that of the linear verifier protocol IPC
in Theorem 3.3. The proof is structured into two parts, one concerning logTEST and the other for
logIPP which uses the extractor from the logTEST theorem to construct the final extractor.
The logTEST theorem consists of three parts: (1) extracting the exponent of the commitment using
the PoKPE extractor and parsing it as a vector of coefficients, (2) proving certain constraints on the
coefficients of the above vector and finally, (3) a global property of the coefficients that uses ideas from
(2) and a new result on extending the Schwartz-Zippel lemma for multilinear polynomials from [BF22].
Part (1) (extraction) is identical across both protocols, we can call the PoKPE extractor to output the
exponent of the commitment C and write it in base-α to get a vector of coefficients. Part (2) concerns
conditions on (a subset of) the extracted vector. Similar to the proof of part 2 (Lemma 3.11) of the
TEST theorem, we aim to show that the coefficients di in the above vector with odd indices are such that
di

α is a rational with “small” (≪ α) denominators. The statement differs from the one in Theorem 3.11
only in the “small”-ness desired as well as the size of α. However, the proof of this part is more involved:
Due to the structured query vector in logTEST (as opposed to the truly random query vector in TEST),
we save on computational complexity of the verifier, but we cannot use the same arguments in this proof.
Similar to equations (3), (4) in the proof of Lemma 3.11, we obtain equations relating the coefficients of
the vector to the query vector whenever the prover succeeds in convincing the verifier. Since the inner
product term in those equations are multilinear in the random variables (by choice of the query vector),
there are structured sets of l equations which can be folded by recursively subtracting the equations to
cancel out all terms except the one containing the coefficient of interest similar to Eq. (5). This structured
set is called a log l-structure; definitions and folding of equations are elaborated in §5.2.2.

Informally, d-structures are generalisations of parallelograms (in 2 dimensions) to d dimensions. For
instance, a 2-structure is a parallelogram, while a 3-structure can be seen as two parallel parallelograms
with the same base length and height (note that this is more general than a parallelepiped - in a
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parallelepiped, the two parallelograms have to be congruent). For higher dimensions, the construction is
recursive.

Fig. 10 shows two examples of 3-structures. To show that a log l-structure actually exists in the desired
space, we use a counting argument detailed in Theorem 5.2 that gives a lower bound on the number of
d-structures in a d-dimensional hypercube. This theorem is similar to the Box theorem (Theorem 4.6),
but these structures are more general than boxes and hence leads to significantly better (and tighter)
bounds.
The theorem states that in an [n]d integer lattice, we can choose at most (nd − (n − 1)d) points in the
matrix such that there exists no d-structure. In the extractability proof, we can argue that the prover
succeeds with non-negligible probability and hence must populate an appropriately chosen lattice with
more points than this lower bound, leading to the existence of a log l-structure.

This process is actually also done in the TEST proof, but only requires two equations (corresponding
to a 2-structure in the above framework), and the random points can be chosen such that they differ in
only one coordinate. Subtracting these two equations then gives us the required term. In the logTEST
proof, we instead have to fold l equations recursively two at a time.

Part (3) shows a global property of the vector d. From part (2), we know that each coefficient di is such
that di/α is close to a rational with “small” denominators, and this part shows a non-trivial bound B on
the LCM of all the denominators. The proof is by contradiction – assuming that the LCM of the vector
of denominators is larger than B, we first show that there exists a sub-vector of denominators for which
the LCM is between B and B2. Now, we can partition the randomness space, and use the fact that the
prover succeeds with non-negligible probability to argue the existence of τ -structures (for τ < log l). The
integer τ depends on the size of the sub-vector obtained in the first step. Now, similar to the techniques in
part (2), we can recursively subtract (fold) the equations given by the points of the τ -structure. However,
since τ < log l, we are left with multiple monomials and not a single coordinate like in part (2). We
can now use the bounds on the LCM of the sub-vector and a Schwartz-Zippel analogue for multilinear
polynomials from [BF22] to show that the prover succeeds with atmost negligible probability, which is a
contradiction.

5.2.2 Counting structures

Our proofs of extractability for constant size PCS with log-time verification rely on certain combinatorial
structures. We define those structures and describe some of their properties in this section. We prove
extractability and succinctness of our PCS in Section 5.2.3.

A d-structure is an object that can be embedded in an n× · · · × n binary (hyper)matrix of dimension d
(call such a binary hypermatrix an nd matrix). Any n× · · · × n matrix can be canonically (after fixing
an order on the dimensions) divided into n matrices of size nd−1 each and dimension (d − 1) such that
they are all parallel (along the “highest” dimension). This also gives a notion of distance between two
parallel matrices.

The structures are defined recursively and they are, informally, generalisations of parallelograms to
higher dimensions. For example, a 1-structure is simply two points marked 1 on a line, 2-structures is a
parallelogram in an n × n matrix with corners marked 1, and a 3-structure in an n3 matrix consists of
two parallelograms with the same height and base length in any two parallel submatrices of dimension 2
– note that the two parallelograms forming the 3-structure do not have to be congruent; they just satisfy
a notion of similarity defined below.

Definition 5.1 (d-structure and d-similarity). A d-structure is defined by the following two mututally
recursive definitions.

• A d-structure in an nd matrix is formed by two (d − 1)-similar (d − 1)-structures in two parallel
(d− 1)-dimensional matrices.
A 1-structure is defined by 2 entries numbered 1 in any 1-dimensional submatrix (line).

• Two d-structures in an nd matrix are d-similar if all the (d − 1)-structures that form them are
pairwise (d − 1)-similar and the distance between the (d − 1)-dimensional (parallel) submatrices
that they belong are the same for both the d-structures.
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[
· · 11 · · 12 · · · · 13 · · 14

]
(a) similar 1-structures are formed by (11, 12) and

(13, 14) (there are two other dissimilar 1-structures as
well)


· 11 · 12 · ·
· · · · · ·
13 · 14 · · ·
· · · · · ·
· · · 15 · 16
· · · · · ·


(b) similar 2-structures are

formed by (11, 12, 13, 14) and
(13, 14, 15, 16) (A dissimilar
2-structure is (11, 12, 15, 16))

Figure 9: Examples of 1-structures and 2-structures

(a) (b)

Figure 10: The 8 orange nodes in the two parallel planes form a 3-structure in each cube. Both the
3-structures (in (a) and (b)) are similar.
Note that (a) is an example of a 3-structure but is not a parallelepiped.

Two 1-structures are defined to be 1-similar if the distance between the two 1s in both structures
are equal.

Fig. 9 and 10 give examples of some 1-, 2-, and 3-structures. Since (a) and (b) of Fig. 10 are two 3-similar
3-structures, we obtain a 4-structure by placing them in two parallel submatrices of an n4 matrix.

An alternative, equivalent, view of d-structures is to think of an nd binary matrix as a set of points
with integer coordinates in [n]d, which we use to denote the set of points in Zd with coordinates in
{0, . . . , n− 1}. In this view, a d-structure D ⊆ [n]d may be inductively defined as follows.

1. For d = 1, any set of two distinct points in [n] is a 1-structure.

2. For d > 1, there exist yd ∈ [n], 0 < ad ∈ [n], and two (d− 1)-structures D0, D1 ⊆ [n]d−1 such that

(a) D = {(u, yd) : u ∈ D0} ∪ {(v, yd + ad) : v ∈ D1}, and

(b) D0 and D1 are (d− 1)-similar.

By unwinding the above definition, it is easy to see that a d-structure D defines a unique binary tree of
recursive decomposition into (d − 1)-, (d − 2)-, · · · 1-structures. At level h (root is at level d, leaves at
level 0) of this tree, we can assign a fixed “distance” value ah (the same ah for each of the 2d−h nodes
at that level), which is equal to the distance between the child (d− h− 1)-structures (as defined above)
of a (d − h)-structure at level h. Such a structure is naturally labeled by a binary string of length h
(e.g. left child of Ds is labeled by Ds0 and right child by Ds1, recursively starting with D at the root).
Furthermore, if Ds is such a structure at level h, where s ∈ {0, 1}h, then there is an integer yh,s such
that its two child (d − h − 1)-structures Ds0 and Ds1 live in parallel planes (in dimension d − h) at
indices yh,s and yh,s+ah respectively (as in the second part of the definition above). These observations
immediately lead to the following characterization of d-structures.

Observation: The set of points in a d-structure D ⊆ [n]d may be written as:{(
y1,i1,i2,...,id−1

+ ida1 , . . . , yj,i1,i2,...,id−j
+ id−j+1aj , . . . , yd + i1ad

)}
,

where yh,i ∈ [n], 0 < ah ∈ [n] for 1 ≤ h ≤ d, i := (i1, . . . , id−h) ∈ {0, 1}d−h.
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The figure below illustrates the above observations for d = 3.

D

(y111+a1,y21+a2,y3+a3)

(y111,y21+a2,y3+a3)

(y110+a1,y21,y3+a3)

(y110,y21,y3+a3)

(y101+a1,y20+a2,y3)

(y101,y20+a2,y3)

(y100+a1,y20,y3)

(y100,y20,y3)

Note: d-similarity is an equivalence relation on d-structures.

We now prove our main result on d-structures.

Theorem 5.2. The maximum number of 1s an nd binary matrix can contain such that there exists no
d-structure is Nd := nd − (n− 1)d. This bound is tight.

Proof. We will prove by induction on d the stronger claim that if an nd binary matrix contains M 1’s,
then it must contain at least M −Nd d-dissimilar d-structures.

When d = 1, the matrix is just a line of length n and Nd = 1. Clearly, if the number of 1s in the line
is 2 or more, the number of 1-structures is non-zero. Moreover, given N ones on a line, there are at
least N − 1 = (N −Nd) 1-dissimilar 1-structures. Suppose the statement were true for dimension d− 1.
For dimension d, let there be N > Nd ones in the nd matrix. Divide the nd matrix into n parallel nd−1

matrices and index them by j ∈ [n]. Since (d − 1)-similarity is an equivalence relation, let the set of
equivalence classes of pairwise (d− 1)-dissimilar (d− 1)-structures in the jth nd−1 matrix be Dj and the
number of 1s in the jth submatrix be Mj . All references to structures in the rest of the proof refer to
equivalence classes of structures.

Consider the subset of indices J for which Mj > Nd−1 (the Dj are then guaranteed to contain at least
(Mj−Nd−1) many (d−1)-structures by the inductive hypothesis). WLOG, let J = [m] for some m ≤ n.

First, we can rearrange some terms: define i(x) := |{j : x ∈ Dj}| for all (d−1)-structures x ∈
⋃

j∈[m] Dj .
It is easy to see that ∑

j∈[m]

|Dj | =
∑

x∈
⋃

j∈[m] Dj

i(x)

Notice that there can exist at most (n − 1)d−1 (d − 1)-dissimilar (d − 1)-structures. (Each d-structure
is defined by the distance between the two lower dimensional structures that form it - the number of
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possible distances is (n− 1) in an nd matrix.) Hence,

(n− 1)d−1 ≥

∣∣∣∣∣∣
⋃

j∈[m]

Dj

∣∣∣∣∣∣
=
∑
j∈[m]

|Dj | −
∑

x∈
⋃

j∈[m] Dj

[i(x)− 1]

≥
∑
j∈[m]

(Mj −Nd−1)−
∑

x∈
⋃

j∈[m] Dj

[i(x)− 1]

≥
∑
j∈[n]

(Mj −Nd−1)−
∑

x∈
⋃

j∈[m] Dj

[i(x)− 1]

= N − nNd−1 −
∑

x∈
⋃

j∈[m] Dj

[i(x)− 1]

=⇒
∑

x∈
⋃

j∈[m] Dj

[i(x)− 1] ≥ (N −Nd) +
(
Nd − nNd−1 − (n− 1)d−1

)
= N −Nd

where the last equality is given by the recurrence relation of Nd.

For any x, [i(x) − 1] is always non-negative. Also, if i(x) = k for some k > 1, we obtain at least k − 1
d-dissimilar d-structures made of (d − 1)-similar (d − 1)-structures (similar to x) which are in parallel
nd−1 matrices at different distances (this argument is similar to the d = 1 case). Hence, the number of
d-dissimilar d-structures is lower bounded by the LHS of the sum in the previous inequality, which is
larger than N −Nd.

For any d, constructing the lower bounding instance with Nd ones is simple by induction: the inductive
step divides the nd matrix into n parallel nd−1 matrices. Then, fill one matrix completely with ones
and fill the rest of the (n − 1) matrices with Nd−1 ones in a way that there exist no (d − 1)-structures
in any of them (possible by the inductive hypothesis on the previous step). Clearly, there can exist no
d-structure in this nd matrix, as (d − 1)-structures only exist in a single nd−1 submatrix. The number
of ones in the nd matrix is nd−1 + (n− 1)Nd−1 = Nd (by another recurrence relation for Nd).

In our application, each point in a d-structure will map to a monomial on its coordinates. When we add
all these monomials from d-structure with appropriate signs, namely recursively subtract the “shifted”
monomial from its unshifted sibling, we induce a lot of cancellations and end up with a monomial on
the “distances” ah defining d-structure. See the figure below for an illustration. We critically use this
cancellation property in the next section to vastly simplify a collection of equations among inner products
between the prover’s committed vector and the verifier’s test/query vector.

a1a2a3

a1a2(y3+a3)

a1(y20+a2)(y3+a3)
(y111+a1)(y21+a2)(y3+a3)

y111(y21+a2)(y3+a3)

a1y20(y3+a3)
(y110+a1)y21(y3+a3)

y110y21(y3+a3)

a1a2y3

a1(y20+a2)y3
(y101+a1)(y20+a2)y3

y101(y20+a2)y3

a1y20y3
(y100+a1)y20y3

y100y20y3

5.2.3 Extractability of Dew-PC

We are now ready to prove the extractability of our PCS Dew-PC.
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Define

Slog :=

{
mα− n

k
: m,n, k ∈ Z, gcd(m, k) = 1, 0 < m ≤ k < plog l, −l < n < k + l

}
and functions χm, χn : Sq

log −→ Qq which isolates the vector of fractions m/k and n/k from the elements
of Sq:

v ∈ Slog =⇒ v =

(
miα− ni

ki

)
i

, χm(v) :=

(
mi

ki

)
i

, and χn(v) :=

(
ni

ki

)
i

.

These functions can be made well-defined by fixing a representation of elements of S: for any d ∈ S,
consider the representation (m,n, k) as the one with the smallest denominator k and if there are multiple
such representations, we pick the one with the smallest m.

For a finite (multi-)set of rational numbers in reduced form

F ⊂
{a
b

: a ∈ Z, b ∈ Z+
}
,

define DenLCM(F ) as the LCM of the denominators of elements of F , lcm({b : a/b ∈ F}). For a vector
f , DenLCM(f) is defined to be the DenLCM of the set of its coefficients.

Theorem 5.3. The polynomial commitment scheme Dew-PC satisfies Extractability (Def. 2.7) in the
Generic Group Model.

Proof. The proof of this theorem consists of two theorems about the two protocols logTEST and
logIPP. Both theorems rely on the fact that the adversary is generic.

Theorem 5.4. If the Verifier in logTEST outputs accept with non-negligible probability over the choice
of the random z1, . . . , zlog l ∈ Z2

p, there exists an extractor that outputs vectors c,d ∈ Zl
p satisfying the

following properties:

1. C = g
∑l−1

i=0(ci+αdi)α
2i

2. d ∈ Sl
log

3. DenLCM(χm(d)) < p2 log l+1

Proof. We define the extractor ExtT to first invoke the PoKPE extractor for C, which outputs an exponent

c > 0 such that C = gc. Since E also passes the PoKPE protocol and C · E = gα
2l−1

, we infer that
c < α2l−1. Consider the base-α representation of c, which is a 2l-length vector. ExtT then outputs the
even indexed coordinates as c and the odd indexed coordinates as d.

Note that by definition, the first condition in the theorem is satisfied: C = g
∑l−1

i=0(ci+αdi)α
2i

. An honest
prover would clearly choose di = 0 and ci = xi, 0 ≤ ci ≤ p − 1 for 0 ≤ i ≤ l − 1 to commit to a vector
x ∈ Zl

p. However, with a cheating prover, we are only guaranteed (at this point) that 0 ≤ ci, di ≤ α− 1.

Now we use the checks done by the logTEST verifier to derive conditions on the above extracted vector
and show the second part of the theorem – d ∈ Sl

log.
Suppose the prover succeeds with a non-negligible probability over the random choice of z1, . . . , zlog l

from Z2
p.

Fix an arbitrary index 0 ≤ k ≤ l − 1, equivalently its binary representation (k1, . . . klog l). Consider the
partition of the space Z2 log l

p by sets of the form

Tq := {(x1,k1
, . . . , xlog l,klog l

,q) : xj,kj
∈ Zp, 1 ≤ j ≤ log l} for q ∈ Zlog l

p .

Since the success probability of the prover is non-negligible, it is at least log l
p . Hence, at least one of

these sets (which are log l-dimensional spaces) must have more than log lplog l−1 ≥ plog l − (p − 1)log l

accepting points, which implies by Theorem 5.2 that there exists a log l-structure in this space consisting
of l accepting points. A d-structure for any dimension d is a generalisation of a hyper-rectangle / box
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(see Section 5.2.2 for definition), which is structured in a way to allow for subtraction between pairs of
vertices.

For some fixed 1 < aj < p and for all g1g2 . . . gτ ∈ {0, 1}τ , let this log l-structure be represented by

B :={
(
y1,g1,g2,...,glog l−1

+ glog la1, . . . , yj,g1,g2,...,glog l−j
+ glog l−j+1aj , . . . , ylog l + g1alog l

)
:

1 ≤ j ≤ log l, y... ∈ Zp}

All the points in B can be considered as the leaves of a binary tree, with leaves indexed as g1g2 . . . glog l.
Starting from the root, at each node, the left child is labeled 1 and the right child is labeled 0. Thus the
leftmost leaf would have index 11 . . . 1, and the rightmost leaf will have index 00 . . . 0.

Now, Lemma 3.6 and 3.7 give us equations corresponding to each accepting point on the log l-structure
relating c,d (given by ExtT from Lemma 3.10) and the random variables xj,ij . We recall the definition
of the query vector z from Equation (23), where for each coordinate zi if the binary representation of
i = i1 . . . ilog l, then

zi ≡ zi1,i2,...,ilog l
:=

log l∏
j=1

xj,ij

⟨d, z⟩ mod α+

⌊
⟨c, z⟩
α

⌋
+ u1 mod α = 0 mod α

The term ⟨d, z⟩ mod α can be expanded as follows:

⟨d, z⟩ mod α =
∑

i1,i2,...,ilog l∈{0,1}

di1,i2,...,ilog l
·
log l∏
j=1,

xj,ij mod α

=
∑

i1,i2,...,ilog l∈{0,1}

di1,i2,...,ilog l
·
log l∏
j=1

xj,kj
·

log l∏
j=1,

ij ̸=kj

xj,ij mod α

=
∑

i1,i2,...,ilog l∈{0,1}

di1,i2,...,ilog l
·
log l∏
j=1

(
yj,g1,g2,...,glog l−j

+ glog l−j+1aj
)
·

log l∏
j=1,

ij ̸=kj

xj,ij mod α

This expansion holds at height log l (for all leaves g1g2 . . . glog l). To obtain the required conditions on
d, we subtract the l equations in a specific order to cancel out all but one term. This is possible due to
the fact that the coefficients of di1...ilog l

are multilinear in each of the randomly sampled variables.

More precisely, at any intermediate height in the binary tree, we obtain the equation at that node by
subtracting the equation at the right child from the equation at the left child. For instance, at height
(log l − 1), the first term takes the form :

a1
∑

i1,i2,...,ilog l−1∈{0,1}

dk1,i2,...,ilog l−1,ilog l
·
log l∏
j=2

(
yj,g1,g2,...,glog l−j

+ glog l−j+1aj
)
·

log l∏
j=2

ij ̸=kj

xj,ij mod α

In general, we get at height 0 ≤ t < log l,

log l−t∏
j=1

ai
∑

i1,i2,...,it∈{0,1}

dk1,k2,...,klog l−t,ilog l−t+1,...,ilog l
·

log l∏
j=log l−t+1

(
yj,g1,g2,...,glog l−j

+ glog l−j+1aj
)

·
log l∏

j=log l−t+1

ij ̸=kj

xj,ij mod α
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Notice that at the root, i.e., at height 0, we are left with the single term

a1 . . . alog l · dk1,k2,...,klog l

For the rest of the equation, we only use bounds on the other terms and not the exact expression. The
actual expression is a symbolic subtraction of the floor terms and the ‘u’ terms. This is similar to what
is done in Lemma 4.7 generalised to higher dimensions.
At level 0 ≤ t ≤ log l, indexing the l points/leaves by zg1g2...glog l

from left to right, we get the expression
for the remaining two terms (call this expression n) as ∑

g1,g2,...,glog l∈{0,1}

(−1)
∑log l

j=1 ij ·
⌊ ⟨c, zg1,g2,...,glog l

⟩
α

⌋
+

∑
g1,g2,...,glog l∈{0,1}

(−1)
∑log l

j=1 ij · ug1,g2,...,glog l

 mod α

For example, in the 3-dimensional case, labeling the 23 points/leaves by zi, we get the following expression

n :=

[(⌊
⟨c, z1⟩

α

⌋
−
⌊
⟨c, z2⟩

α

⌋)
−
(⌊
⟨c, z3⟩

α

⌋
−
⌊
⟨c, z4⟩

α

⌋)]
−
[(⌊
⟨c, z5⟩

α

⌋
−
⌊
⟨c, z6⟩

α

⌋)
−
(⌊
⟨c, z7⟩

α

⌋
−
⌊
⟨c, z8⟩

α

⌋)]
+ [(u1 − u2)− (u3 − u4)]− [(u5 − u6)− (u7 − u8)]

Since for all x, x− 1 ≤ ⌊x⌋ < x and u ∈ {0, 1}, we can see that for the above expression,

ci · a1a2a3
α

− 8 < n <
ci · a1a2a3

α
+ 8

=⇒ −8 < n < a1a2a3 + 8

In our general case, using the same bounds on the floor terms, we can show that the resulting equation
at the root node is of the form

a1 . . . alog l · dk1,...,klog l
= − (n) mod α

where −l < n <
∏log l

i=1 ai + l. Hence, there exists m such that

dk1,...,klog l
=

mα− n

a1 · · · alog l

where m ≤
∏log l

i=1 ai < plog l (as dk1,...,klog l
< α) and −l < n <

∏log l
i=1 ai + l as shown above.

Hence, dk1,...,klog l
∈ Slog. Since (k1, . . . , klog l) was arbitrary, d ∈ Sl

log.

The third part of the theorem is proved below in Lemma 5.6.

Before proving part (3) of the extraction theorem, we recall the statement of the extended Schwartz-
Zippel Lemma as given in [BF22]:

Theorem 5.5 (Corollary 2 from [BF22]). For all N such that logN ≥ 8µ2+log2(2µ)λ, we have for any
µ-linear polynomial f that is coprime with N ,

Prx←[0,m)µ [f(x) = 0 mod N ] ≤ 2−λ +
µ

m

Lemma 5.6 (Part (3) of logTEST extraction). If the prover accepts with non-negligible probability, we
must have DenLCM(χm(d)) ≤ p2 log l+1.
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Proof. Suppose the prover succeeds with non-negligible probability over the random choice of z1, . . . , zlog l

from Z2
p and that DenLCM(χm(d)) > p2 log l+1. For simplicity, denote P := p4 log l+2. We provide

an algorithm to find a specific sub-vector d∗ of d = (di)i∈[l] ≡ (di1...ilog l
)i1...ilog l∈{0,1}log l such that

p2 log l+1 < DenLCM(d∗) < P . Consider this algorithm:

0. If DenLCM(χm(d)) < P , HALT with output 0.

1. Divide the l-length vector d into two sub-vectors, where each sub-vector contains elements with
indices i such that i1 = 0 or i1 = 1 respectively. (Each sub-vector consists of l/2 elements)

1.5. Consider the sub-vector d∗ that satisfies DenLCM(χm(d∗)) > p2 log l+1.
If DenLCM(χm(d∗)) < P , HALT with output 1.

For every step τ ≥ 2, (if not already halted)

τ . Divide the sub-vector chosen in step τ −1 into two sub-vectors, corresponding to the elements with
indices such that iτ = 0 and iτ = 1 respectively. (Each sub-vector now consists of l/2τ elements)

τ.5. Consider the sub-vector d∗ that satisfies DenLCM(d∗) > p2 log l+1.
If DenLCM(χm(d∗)) < P , HALT with output τ .

We need to show that the algorithm is well-defined and that it terminates. Note that whenever the
algorithm moves to step τ for any τ , the previous halting condition was not satisfied, i.e., the sub-vector
d∗ in step τ will have DenLCM(χm(d∗)) > P . A simple application of the Pigeonhole Principle then
shows the existence of a further sub-vector satisfying the condition DenLCM > p2 log l+1, as required in
step τ.5.

We can also show that this algorithm will terminate in at most log l − 1 steps. Notice that at step
log l− 1, there exists a sub-vector with DenLCM > p2 log l+1 (by the above argument) with two elements
in it. However, from part (2) of Theorem 5.3, we know that each element di in the sub-vector satisfies
χm(di) < plog l, hence the sub-vector satisfies DenLCM(χm(d∗)) < P , and the algorithm will terminate,
if it had not already terminated by then. Hence, the termination occurs in at most log l − 1 steps.

Case 1: Suppose the algorithm halted with output τ = 0, which implies that the entire vector d
satisfies p2 log l+1 < DenLCM(χm(d)) < P . Now consider any accepting point z in the space Z2 log l

p .
Then, Lemma 3.6 and 3.7 give us an equation relating c,d and z:

⟨d, z⟩ mod α+

⌊
⟨c, z⟩
α

⌋
+ u1 mod α = 0 mod α (25)

=⇒ ⟨d, z⟩ mod α = −
(⌊
⟨c, z⟩
α

⌋
+ u1

)
mod α

=⇒ α ·

 ∑
i1,i2,...,ilog l∈{0,1}

mi1...ilog l

ki1...ilog l

log l∏
j=1

xj,ij

−
 ∑

i1,i2,...,ilog l∈{0,1}

ni1...ilog l

ki1...ilog l

log l∏
j=1

xj,ij

 = M ′α−N ′

using the fact that di = (miα − ni)/ki for each i ∈ [l] (from Theorem 5.4). Call the two terms on the
LHS M and N respectively. Then, since DenLCM(χm(d)) < P , we can use Lemma 3.8 to show that
M = M ′, N = N ′, and specifically M ∈ Z. This can be expanded as follows:

∑
i1,i2,...,ilog l∈{0,1}

mi1...ilog l

ki1...ilog l

log l∏
j=1

xj,ij ∈ Z

=⇒
∑

i1,i2,...,ilog l∈{0,1}

mi1...ilog l
· L

ki1...ilog l

log l∏
j=1

xj,ij = 0 mod L

Here, we have that L > p2 log l+1 and that the coefficients of the multilinear polynomial are coprime to
L (as L is the LCM of the ki1...ilog l

). Hence, using Theorem 2 (Inverse LCSZ) from [BF22] (restated
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here in Theorem 5.5), we can show that this equation is satisfied by at most negligible probability
ϵ ≤ (2−κ + log l/p) over the choice of xj,ij ∈ Zp as long as p2 log l+1 > 2κ(log l)κl8 log l - the condition
given in the theorem.
Hence, the prover can succeed for as many points as the number of solutions to the above equation;
which is a negligible fraction of points in the space Z2 log l

p , which is a contradiction.

Case 2: Now suppose the algorithm halted with output 1 ≤ τ ≤ log l − 1, with the sub-vector corre-
sponding to those elements of d with fixed indices k1, . . . , kτ . We also know from the above discussion
that this sub-vector d∗ of d satisfies p2 log l+1 < DenLCM(χm(d∗)) < P . Define L := DenLCM(d∗).
Consider the partition of Z2 log l

p by sets (τ -dimensional spaces) of the form

Tq := {(x1,k1
, . . . , xτ,kτ

,q) : xj,kj
∈ Zp, 1 ≤ j ≤ τ} for q ∈ Z2 log l−τ

p .

Denote by ||Tq|| the number of accepting points in Tq (accepting points are those values of z ∈ Z2 log l
p

for which the prover can succeed in logTEST). Now suppose for some q it holds that ||Tq|| > Nτ

(Nτ ≤ τpτ−1 is as defined in § 5.2.2). Then, by Theorem 5.2, there exists a τ -structure B of accepting
points in the τ -dimensional space Tq, where B can be represented by the set:

For some fixed 1 < aj < p and for all g1g2 . . . gτ ∈ {0, 1}τ , let this τ -structure be represented by

B := {
(
y1,g1,g2,...,gτ−1

+ gτa1, . . . , yj,g1,g2,...,gτ−j
+ gτ−j+1aj , . . . , yτ + g1aτ

)
: 1 ≤ j ≤ τ, y... ∈ Zp}

All the points in B can be considered as the leaves of a binary tree, with leaves indexed as g1g2 . . . gτ .
These points are just specific choices of the xj,ij in the following equations, which allow us to recursively
subtract (fold) them.

Now, Lemma 3.6 and 3.7 give us equations corresponding to each accepting point on the log l-structure
relating c,d (given by ExtT from Lemma 3.10) and the random variables xj,ij . We recall the definition
of the query vector z from Equation (23), where for each coordinate zi is the binary representation of
i = i1 . . . ilog l, then

zi ≡ zi1,i2,...,ilog l
:=

log l∏
j=1

xj,ij

⟨d, z⟩ mod α+

⌊
⟨c, z⟩
α

⌋
+ u1 mod α = 0 mod α (26)

The term ⟨d, z⟩ mod α can be expanded as follows (for z ∈ B):

⟨d, z⟩ mod α =
∑

i1,i2,...,ilog l∈{0,1}

di1,i2,...,ilog l
·
log l∏
j=1,

xj,ij mod α

=
∑

i1,i2,...,ilog l∈{0,1}

di1,i2,...,ilog l
·

τ∏
j=1

xj,kj
·

τ∏
j=1,

ij ̸=kj

xj,ij

log l∏
j=τ+1

xj,ij mod α

=
∑

i1,i2,...,ilog l∈{0,1}

di1,i2,...,ilog l
·

τ∏
j=1

(
yj,g1,g2,...,gτ−j + gτ−j+1aj

)
·

τ∏
j=1,

ij ̸=kj

xj,ij

log l∏
j=τ+1

xj,ij mod α

Similar to the process in part (2) of Theorem 5.4, we can define a binary tree of equations of height τ
and fold the equations using the subtraction operation. The inner product term at the root node can
then be written as:

τ∏
j=1

aj
∑

iτ+1,iτ+2,...,ilog l∈{0,1}

dk1,k2,...,kτ ,iτ+1,...,ilog l
·

log l∏
j=τ+1

xj,ij mod α
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We can then write the folded equation (26) as

τ∏
j=1

aj
∑

iτ+1,iτ+2,...,ilog l∈{0,1}

dk1,k2,...,kτ ,iτ+1,...,ilog l
·

log l∏
j=j+1

xj,ij mod α = −N ′ mod α

=⇒ α ·

 τ∏
j=1

aj
∑

iτ+1,...,ilog l∈{0,1}

m...

k...

log l∏
j=τ+1

xj,ij

−
log l∏

j=1

aj
∑

iτ+1,...,ilog l∈{0,1}

n...

k...

log l∏
j=τ+1

xj,ij

 = M ′α−N ′

≡Mα−N = M ′α−N ′

using the fact that di = (miα − ni)/ki for each i ∈ [l] (from Theorem 5.4) and where M,N are defined
as the terms in the brackets in the above equation. We can now use Lemma 3.8 and that L < P to show
that M = M ′, N = N ′ (this only requires α > 2l2p5 log l+2). Importantly, since M ′, N ′ ∈ Z, so are M
and N . Then write M ∈ Z as follows:

τ∏
j=1

aj
∑

iτ+1,...ilog l∈{0,1}

miτ+1,...ilog l

kiτ+1,...ilog l

xτ+1,iτ+1 . . . xlog l,ilog l
∈ Z

=⇒
τ∏

j=1

aj
∑

iτ+1,...ilog l∈{0,1}

miτ+1,...ilog l
· L

kiτ+1,...ilog l

xτ+1,iτ+1
. . . xlog l,ilog l

= 0 mod L

=⇒
∑

iτ+1,...ilog l∈{0,1}

miτ+1,...ilog l
L

kiτ+1,...ilog l

xτ+1,iτ+1
. . . xlog l,ilog l

= 0 mod L′

Here L′ is such that L′|L and L/
∏

j aj > plog l, as L > p2 log l+1 and each aj < p. In addition, since L is
the LCM of all the k..., we have the condition that the coefficients of the above multilinear polynomial
are coprime to L′.

Note that

1. the elements xj,ij are fixed by the vector q that defines each Tq, and

2. all τ -similar τ -structures have the same values of aj for 1 ≤ aj ≤ τ .

Hence, any bound on the number of solutions to this equation also bounds the total number of any
arbitrary equivalence class of τ -similar τ -structures over all choices of q (and hence Tq).

This equation is multilinear over the variables xj,ij and is of total degree at most log l. We can use
Theorem 2 (Inverse LCSZ) from [BF22] to show that this equation is satisfied by at most negligible
probability ϵ over the choice of xj,ij ∈ Zp as long as plog l > 2κ(log l)κl8 log l.
This argument holds for any arbitrary τ -structure. We can bound the number of τ -dissimilar τ -structures
over all Tq as ϵ ·pτ ·p2 log l−τ (as there are < pτ unique τ -structures). Then, we use the stronger statement
proved in Theorem 5.2 to obtain a bound on the number of accepting points in all the Tqs, which is

p2 log lϵ+ p2 log l−τ ·Nτ ≤
(
ϵ+

τ

p

)
p2 log l

The probability of success for the prover is then ϵ + τ/p which is negligible for all 0 ≤ τ ≤ log l − 1.
This contradicts the fact that the prover succeeds with non-negligible probability, hence DenLCM <
p2 log l+1.

Theorem 5.7. If the Verifier in logIPP outputs accept with non-negligible probability and the Verifier
of logTEST also did so, there exists an extractor that outputs an opening f̃ ∈ Zp[x] and an opening

hint c̃ in Q(log l + 1, l + 1) for C such that v = f̃(x).

Proof. We can define the extractor Ext for eval using the extractor ExtT of TEST. Since the TEST ver-
ifier outputs accept with non-negligible probability, there exists ExtT that outputs vectors c,d such that
they satisfy the conditions in Theorem 5.4. Ext invokes ExtT and performs the following computations
on c,d:
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1. Compute mi, ni, ki for every i such that di =
miα−ni

ki
.

2. Define vectors c′,d′ ∈ Zl
p as

c′i := ci +
mi−1

ki−1
and d′i := −

ni

ki
.

(mi−1 := 0, ki−1 := 1)

3. Output c′ + αd′ as the opening hint, and (c′ + αd′) mod p as the opening to the commitment.

Note that this extractor is indeed efficient, since ExtT is efficient and the only non-trivial computations
done are in Step 1 above. This can be done efficiently, details are given in Lemma 4.9.

By construction, this is a valid opening hint, as d ∈ Sl
log =⇒ c′ +αd′ ∈ Q(log l+1, 2l+1) and since it

is just a rearrangement of the coordinates of c and d, we have C = g
∑l−1

i=0(c
′
i+αd′

i)α
2i

, which is one of the
required conditions.

Now, since the verifier accepts in IPP, Lemmas 3.6 and 3.7 along with the final check of the verifier
gives us equations corresponding to the coefficients of α2l−1 and α2l−2:

⟨d,q+⟩ mod α+

⌊
⟨c,q+⟩

α

⌋
+ u′ = 0 mod α (27)

⟨c,q⟩ mod α+

⌊
⟨d,q+⟩

α

⌋
+ u = v + np mod α (28)

Due to the bounds on coefficients of z, we know that Equation 27’s LHS must be either 0 or α. Also
define

M ′ :=

l−1∑
i=0

mi

ki
q+i , and N ′ :=

l−1∑
i=0

ni

ki
q+i

1. If the LHS of Equation (27) is 0, then so are each of the terms in the LHS, as they are all non-
negative. Hence, ⟨d,q+⟩ = 0 mod α, and by definition, u = 0.
Hence, we can simplify Equation 28

v + np = ⟨c,q⟩ mod α+

⌊
⟨d,q+⟩

α

⌋
+ u mod α

= ⟨c,q⟩+ ⟨d,q
+⟩

α
mod α = ⟨c,q⟩+M ′ − N ′

α
mod α

M ′ −N ′/α is an integer and since N ′ < α by choice of α and the query vector q =⇒ N ′ = 0.

v + np = ⟨c,q⟩+M ′ mod α = ⟨c′,q⟩ mod α

=⇒ v = ⟨c′,q⟩ mod p = ⟨c′,q⟩+ α⟨d′,q⟩ mod p,

as α = 0 mod p and ⟨d′,q⟩ is invertible modulo p (or simply 0 mod p). In either case, v =
⟨c′ + αd′,q⟩ mod p.

2. If the LHS is α, we get that u = 1 by definition. From the properties of c and d, we know that
M ′ ∈ Q has a denominator of at most plog l (and coprime to α in the reduced form). Write Equation
27 in the form ⟨d,q+⟩ = Mα−N, by moving all the terms but the inner product to the RHS and
calling it N . Now, Lemma 3.8 implies that M ′, N ′ ∈ Z (since α = p5 log l).
Now,

v + np = ⟨c,q⟩ mod α+

⌊
⟨d,q+⟩

α

⌋
+ u mod α

= ⟨c,q⟩ mod α+

⌊
M ′ − N ′

α

⌋
+ 1 mod α

= ⟨c,q⟩ mod α+M ′ − 1 + 1 mod α

as N ′ < α. Hence, as in the previous step, we get that v = ⟨c′ + αd′,q⟩ mod p.
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Thus, the extracted opening equals the claimed inner product v in both cases.

5.2.4 Succinctness of Dew-PC

By the earlier remark about Fiat-Shamir, Theorem 5.8 below implies that the noninteractive version of
Dew-PC is succinct according to Def. 2.8.

Theorem 5.8 (Proof and Verifier Succinctness). In the PCS Dew-PC, the commitment and evaluation
proof sizes are poly(κ) and the Verifier runs in time poly(κ) · log(l).

Proof. Proof succinctness is easy to see; the commitment is a single group element and the evaluation
protocol only communicates a constant number of group elements (the PoE protocols are also constant-
sized) and the query vector elements x1, . . . ,xlog l. However, the 2 log l random field elements are sent
succinctly by using a Pseudorandom Generator (PRG) with a short seed to generate the vector locally
(steps 3, 4 in Fig.7) – this brings the communication back to constant.

To analyse the verifier computation, notice that the the only potentially expensive computations are the
computation of σ and raising group elements to large powers (the PoKPE protocols consist of a constant
number of PoKE protocols, which are efficient). The group exponentiations are made more efficient for
the verifier by engaging in a constant number of PoE protocols (Def 2.5) with the prover. The only
remaining bottleneck is the computation of σ mod q for some prime q in the invocation of Weslowski’s
PoE (this is true for σ in both logTEST and logIPP)

In logTEST, using the definition of the test vector in (23) and direct manipulation implies that σ
mod q can be computed in O(log l) time in the following way.

σ mod q =

l−1∑
k=0

α2l−2−2kzk mod q = α2l−2
log l∏
i=1

(
xi,0 + xi,1α

−2i+1
)

mod q

In logIPP, by a similar manipulation as above using the definition of the the query vector in (24), we
obtain

σ mod q =

l−1∑
k=0

α2l−1−2kqk mod q = α2l−1
log l−1∏
i=0

(
1 + (x2i mod p) α−2

i+1
)

mod q

Also note that for efficient computation, we need to compute α mod q and α−1 mod q (If α−1 mod q
does not exist, then α = 0 mod q and computing σ becomes trivial). In this case, since α = pL for some
L > 5 log l = O(l), computing α mod q = pL mod q can be efficiently done in O(logL) = O(log log l)
using repeated squaring. Once this is found, α−1 mod q can also be efficiently found using the Extended
Euclidean algorithm.

5.2.5 Concrete proof sizes

Using batching techniques from [BBF19] (as mentioned in §3.5), we can batch PoE and PoKPE proofs
using the PoKCR protocol to obtain a smaller evaluation proof for the Dew-PC protocol in Figures 7 and
8. Since the size of class group elements significantly dwarfs the sizes of field elements, the number of
group elements is a good measure of the concrete proof size. Recent work [DGS21] suggests that for
128-bit security (equivalent to 3072-bit RSA), the class group discriminant would have to be around
6784 bits in length, leading to group elements of size 5088 bits (after compression using techniques
from [DGS21]).

Each evaluation proof consists of 66 group elements after batching. We believe further optimisations
may be possible, and leave it to future work.
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6 Fixing the DARK PCS

In this section, we recover the DARK result [BFS20] by showing how to fill the gap in their proof of
security. As noted by [BHR+21], the proofs of Lemmas 8 (for instantiation with RSA groups) and 9
(for instantiation with class groups) in the DARK paper are flawed, which means we do not know of an
extractor for the DARK commitment scheme. The work of [BHR+21] does not resolve the gap; instead,
they give a modified construction.

Here, we define a commitment scheme that is very similar to the DARK scheme and achieves logarithmic
proof size and verification time from their paper under the same assumptions, but at the expense of a
quadratic prover time. We start from our PCS Dew-PC in Section 5 which is syntactically close to the
DARK commitment scheme. In both schemes, the commitment is an encoding of the evaluation of the
polynomial at some integer. The major difference between the PCS we present below and the DARK
scheme is the point of evaluation q (we use α2 instead), and its size. In DARK, the lower bound on q is
pO(log l), for a degree l polynomial, while we increase the bound, by setting α to be pO(l), which allows
us to prove extraction. However, the increased α also leads to an increased prover time. In addition, we
allow for rational opening hints unlike in DARK which only allows for integer opening hints, which is
crucial for the fix to Lemmas 8 and 9 from DARK.

As shown in Theorem 5.8, the verifier can be made efficient by a careful choice of α; specifically, an
exact power of p, say, α = p2l+log l+2. We also emphasize that simply increasing the bound on q in the
DARK construction does not resolve the problem; we additionally need the relaxation provided by our
commitment scheme to allow fractions as opening hints to show extraction.

We now define the PCS PC = (setup, commit, open, eval) as below:

• setup(1κ, D): G←$GGen(κ), g←$G. Return pp = (λ,G, g, p), set α := p2D+logD+2.

• commit(pp, D, f , l): If l ≤ D, C := g
∑l−1

i=0 fiα
2i

, considering fi ∈ Zp as integers in the range [0, p−1].
Return (C, f).

• open(pp, D, f , l, C, c̃): Return 1 if all conditions hold, else return 0.

– l ≤ D

– C = g
∑l−1

i=0 c̃iα
2i

,
∑l−1

i=0 c̃iα
2i ∈ Z, c̃ ∈ Q(l, lplog l)l,

where the set Q(β1, β2) is defined as before:

Q(β1, β2) :=
{a
b
: gcd(a, b) = 1, gcd(b, p) = 1, 0 < b < pβ1 , |a/b| ≤ β2α

}
– c̃ = f mod p

• eval: The eval protocol is described in Fig. 11.

Note that this is exactly the same PCS as defined in Section B.1, except for eval. We construct eval using
the recursive divide and combine strategy along the lines of the DARK construction. Now, by relying on
the binding of our commitment scheme, we are able to combine extractor outputs at each level in a valid
way which is the heart of the DARK extraction procedure. Furthermore, without the need for PoKPE
in eval, we do not need GGM anymore, and can show extraction for PC by rewinding the prover under
the same assumptions as DARK.

We will now show a version of Lemma 9 from the DARK paper for the PCS PC and recover the proof of
extraction.

Lemma 6.1. Given commitments C,C ′, CL, CR such that C = Cγ
LCR, C

′ = Cγ′

L Cr for different γ, γ′ ∈
Zp, opening hints f , f ′ ∈ Q(β1, β2)

l for C and C ′, and v, v′ ∈ Zp such that v = f(z) mod p, v′ = f ′(z)
mod p, there exists an extractor that outputs opening hints fL, fR ∈ Q(2β1 + 1, 2pβ2)

l for CL and CR,
and vL, vR satisfying vL = fL(z) mod p, vR = fR(z) mod p or a fractional root of g or an element in
G of known order.
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Proof. Using the two equalities, we can write CL and CR as

CL =
(
C (C ′)−1

)1/(γ−γ′)
, CR =

(
Cγ′

(C ′)−γ
)1/(γ−γ′)

Now, since we have opening hints for both C and C ′, we can write the exponents of CL and CR as a
functions of f , f ′, γ, γ′ (or obtain an element of low order):

CL = g
∑l−1

k=0

fk−f′
k

γ−γ′ α2k

, CR = g
∑l−1

k=0

f′
kγ−fkγ′

γ−γ′ α2k

Call these coefficients fL,k and fR,k respectively. Then, we can check that
fL,k, fR,k ∈ Q(2β1 + 1, 2pβ2) for all k. If the exponents of g were not dyadic rationals, we would have a
valid fractional root of g, which breaks the Fractional Root Assumption (Assumption 3).

Protocol eval
Set parameter α > p2(D+logD)+1

eval(pp, D,C, l, z, v, β1, β2; f(X) ∈ Fp[X]):

1. If l < D, invoke evalBounded(pp, C, l, z, v, β1, β2; f(X) ∈ Q(β1, β2)[X]), else abort.

evalBounded(pp, C, l, z, v, β1, β2; f(X) ∈ Q(β1, β2)[X]):

if (l = 0) then
1. Prover sends f(X) to the Verifier
2. Verifier checks that f ∈ Q(0, 1)[X]
3. Verifier checks that f ≡ v mod p
4. Verifier checks that gf = C
5. Verifier outputs 1 if all checks pass, and 0 otherwise

end if
if (l + 1) is odd then

1. l′ = l + 1, C′ = Cα2

, v′ = v · x mod p, f ′(X) = X · f(X)
2. Invoke evalBounded(pp, C′, l′, z, v′, β1, β2; f

′(X))
else

1. Prover and Verifier compute l′ = l+1
2
− 1

2. Prover computes fL(X) =
∑l′

i=0 fiX
i, fR(X) =

∑l′

i=0 fl′+i+1X
i

3. Prover computes vL = fL(z) mod p, vR = fR(z) mod p

4. Prover computes CL = gfL(α2), CR = gfR(α2)

5. Prover sends vL, vR, CL, CR to the verifier
6. Verifier checks that v = vL + vR · zl

′+1 mod p, and outputs 0 if it fails

7. Prover and Verifier run PoE(CR, C/CL, α
2l′+2) to prove that C = CLC

(α2l′+2)
R

8. Verifier chooses random γ ←$Zp and sends to the Prover
9. Prover and Verifier compute v′ = γvL + vR mod p, C′ = Cγ

LCR, β
′
1 = 2β1 + 1, β′

2 = 2pβ2

10. Prover computes f ′(X) = γfL(X) + fR(X)
11. Invoke evalBounded(pp, C′, l′, z, v′, β′

1, β
′
2; f

′(X))
end if

Figure 11: eval

We can now show extraction by proving a theorem about witness-extended emulation as done in DARK.
This gives a correct proof of Theorem 2 from the DARK paper. The proof is along the lines of the
proof of Theorem 2 in DARK, except that we invoke Lemma 6.1 (Corrected Lemma 9) to combine the
polynomials extracted from child nodes into a polynomial for the next level.

Theorem 6.2. Let GGen generate groups G of unknown order such that the order of G is odd, and such
that there exists a PPT algorithm for taking square roots in G. The PCS (from Construction 6) for
polynomials in Zp[X] of degree at most l = poly(κ), instantiated using α > p2(l+log l)+1 and GGen, has
witness-extended emulation if the Adaptive root assumption and the 2-Strong RSA Assumption hold for
GGen.

Proof. We will show security by extracting a polynomial f(X) ∈ Q(l, lplog l)[X], which is inside the

binding space of the commitment scheme. We will also show that gf(α
2) = C and f(z) mod p = v. The
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proof will use the general forking lemma to show witness-extended emulation.
In particular, given a transcript with 2 challenges per round (i.e., < 2(l+1) transcripts), we can construct
an extractor that outputs either an opening to the commitment C, or an element of known order, or a
fractional root of g.

First, we can replace all PoEs by true statements in each transcript. From Lemma 7 in DARK, the
resulting eval protocol where the verifier makes the check in step (7) directly instead of invoking a PoE
results in an identical eval protocol.
Given a tree of accepting transcripts with branching factor 2 as in the general forking lemma, we will
extract a witness at each node of the tree, when given witnesses for each of the node’s children. Each
level corresponds to an invocation of evalBounded. Denote the inputs to evalBounded with subscripts
(superscripts for polynomials) indicating the round: (Ci, z, vi, li, f

(i)(X)).
In each round, we will extract a polynomial f (i)(X) ∈ Q(β1, β2)[X] that is an opening hint for Ci of
degree at most li and such that f i(z) = vi mod p.

Starting from the leaves of the tree, we can extract directly from the transcript the llog l = 0 degree
(constant) polynomial such that f(X) ∈ Q(0, 1), and v = f(z) mod p and gf = C.
Now, we show how to compute the witness at every level i− 1 given witness for level i.

• If li + 1 is odd: We have that Cα2

i−1 = Ci = gf
i(α2), we must have f i(α2) = fi−1(α2)

α2 . If this is not
an integer, we obtain a fractional root of g.
If the fraction above is an integer, we have our required polynomial of degree li−1 = li − 1, such

that Ci−1 = gf
i−1(α2) and f i−1(z) = z−1 · f i(z) mod p = z−1 · vi mod p = vi−1 mod p.

• If di + 1 is even: We can call Lemma 6.1 on the children of the node to obtain f i
L, f

i
R, y

i
L, y

i
R.

Defining f i(X) = fL(X) + X
li+1

2 fR(X) and vi = viL + z
li+1

2 viR mod p, we obtain the required
properties on f i.

Note that Lemma 6.1 is called at most log l times, as there are log l rounds (when li + 1 is odd, the
bounds on the coefficients do not change, they’re just shifted.). Since β1 and β2 are defined by the check
in the last round (done directly by the verifier), we have that β1 = 0 and β2 = 1.
Hence, the final opening hints are in Q(l, lplog l)[X]. Theorem 3.2 gives a lower bound on α for this
opening hint to be within the binding range of the PCS; α > p2(l+log l)+1 suffices.

7 Dew – Transparent zkSNARKs from Dew-PC

As a corollary of our PCS, we get concrete instantiations of new transparent succinct arguments by
applying the now standard compilation process to compile an information theoretic proof in an idealized
model using into a succinct argument using a PCS.

The modular approach advocated for designing efficient arguments consists of two steps; constructing an
information theoretic protocol in an abstract model (PCP, linear PCP, IOP etc.), and then compiling
the information-theoretic protocol via a cryptographic compiler to obtain an argument system. Many
recent constructions of zkSNARKs [BFS20, CHM+20, GWC19] follow this approach where the informa-
tion theoretic object is an algebraic variant of IOP, and the cryptographic primitive in the compiler is a
polynomial commitment scheme. Marlin [CHM+20] uses an IOP abstraction called algebraic holographic
proofs (AHP), and [BFS20] uses an abstraction called polynomial IOPs (PIOPs). In both these abstrac-
tions, the prover and the verifier interact where the prover provides oracle access to a set of polynomials,
and the verifier sends random challenges. Then, the verifier asks for evaluations of these polynomials
at these challenge points and decides to accept or reject based on the answers. PLONK [GWC19] uses
an abstraction called idealized low degree protocols (ILDPs) that proceeds in a similar way except that
at the end of the protocol, the verifier checks a set of polynomial identities over the oracles sent by the
prover. Polynomial Holographic IOP (PHP) [CFF+21] specializes the IOP notion in two ways (i) it is
holographic – that is, the verifier has access to a set of oracle polynomials created during the setup phase
that encode the relation, (ii) the verifier can directly check polynomial identities. The high level idea
to build a zkSNARK with universal SRS starting from PIOPs/AHPs/ILDPs/PHPs is the following: the
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argument prover commits to the polynomials obtained from the information-theoretic prover, and then
uses the evaluation opening property of the polynomial commitment scheme to respond to the evaluation
queries of the verifier in a verifiable way.

We present concrete instantiations of zkSNARKs obtained by using our transparent PCS to crypto-
graphically compile the AHP underlying the constructions of Sonic, Marlin and PLONK. The AHPs
underlying PLONK and Sonic were given in in [ABC+21]. The choice of abstraction of AHP is not
important, and one could use our polynomial commitment scheme to compile similar notions like PIOPs
and PHPs as well.

7.1 Hiding Commitments and Zero-Knowledge Evaluation

Our constructions in Sections 3, 4.1, and 5 are not hiding and do not have zero-knowledge evaluation,
but there are known techniques from [BFS20] which would allow us to convert these protocols into hiding
and zero-knowledge evaluation variants.

We define hiding and HVZK below and show how to make our PCS hiding as well as the evaluation
protocol zero knowledge, using the techniques from [BFS20].

Definition 7.1 (Hiding). A polynomial commitment scheme PC is hiding if for all PPT A = (A0,A1),
the probability of distinguishing between commitments of different messages is negligible in κ:∣∣∣∣∣∣∣∣∣∣

1− 2 · Pr

b̂ = b :

pp← setup(1κ, D)
(f0(X), f1(X), d, st)← A0(pp)

b
$← {0, 1}

(C, c̃)← commit(pp, fb(X), d)

b̂← A1(st, C)


∣∣∣∣∣∣∣∣∣∣
≤ negl(κ).

Definition 7.2 (HVZK for interactive arguments). Let View⟨P (x,w),V (x)⟩ denote the view of the verifier
in an interactive protocol for some relation R on common input x and prover witness input w. The
interactive protocol has δ-statistical honest verifier zero-knowledge if there exists a probabilistic polynomial
time algorithm S such that for every (x,w) ∈ R, the distribution S(x) is δ-close to View⟨P (x,w),V (x)⟩ (as
distributions over the randomness of P and V ).

Hiding Commitments: The PCS can be converted into variants with hiding commitments by adding
a degree d+1 term with a large random coefficient. This technique is proven to give a statistically hiding

polynomial commitment scheme if ⟨g⟩ = ⟨gα2d+2⟩ but [BFS20] requires a subgroup indistinguishability
assumption on the group of unknown order to prove this claim.

Formally, the commitment algorithm has to be modified as follows:

• commitH(pp, f(X), d)→ (C, c̃): Where f(X) is lifted to f̂(X) ∈ [0, p−1] and then a random integer

r is sampled as r
$← [0, B · 2κ). Now compute f̃ = f̂(X) + r ·Xd+1 and return (C ← gf̃(α

2), f̃).

Theorem 7.3 (Proof of Statistical Hiding). The commitment scheme Γ = (setup, commitH, open) is

statistically hiding if B ≫ |G| and if ⟨g⟩ = ⟨gα2d+2⟩. It is binding if the commitment described in
Sections 3, 4.1, B.1 and 5 are binding.

Proof. The hiding commitment is a commitment to a degree d + 1 polynomial. So it directly inherits
the binding property from the non-hiding scheme.

To show hiding, we will use the fact that the uniform distributions [0, b] and [a, a + b] have statistical

distance
a

b
, i.e., the probability that any algorithm can distinguish the distributions from a single sample

is less than
a

b
. Similarly C ← gf̂(α

2)+r·α2d+2

for r
$← [0, B · 2κ) has statistical distance at most 2−κ from

a uniform element generated by g if B ≥ |⟨g⟩|. This means that two polynomial commitments can be
distinguished by any algorithm with probability at most 2−κ+1.
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evalZK(pp, C, d, x, v; f(X), r)

1 : P samples a random degree d k(X)
$← [0, (p− 1)2 · 2κ][X] and rk

$← [0, B · 2κ)
and computes

R← gk(α
2)+rk·α2d+2

and yk ← k(z) mod p

2 : P sends R and yk to V

3 : V samples random c
$← [0, p− 1] and sends it to P

4 : P computes s(X)← k(X) + c · f(X), as well as rs ← rk + c · r.
5 : P sends rs to V

6 : P and V compute Cs ← R · Cc · g−α2d+2·rs

and ys ← yk + c · y mod p // Cs = gs(α
2)

7 : P and V run eval(pp, Cs, d, z, y; s(X)) // s(z) mod p = ys

Figure 12: Protocol for evalZK

Unfortunately, in a setting without a trusted setup, gα
2d+2

might only generate a subgroup of ⟨g⟩. The
commitment then becomes computationally hiding under a Subgroup Indistinguishability Assumption
[BG10]: the precise assumption is that no efficient adversary can distinguish a random element of ⟨h⟩
from ⟨g⟩ for any non-trivial h ∈ ⟨g⟩.

Theorem 7.4 (Proof of Computational Hiding). The commitment scheme Γ = (setup, commitH, open)
is computationally hiding if B ≫ |G| and if the Subgroup Indistinguishability Assumption [BG10] holds.
It is binding if the commitment described in Sections 3, 4.1, B.1 and 5 are binding.

Proof. The proof of binding remains as above.

The proof of computational hiding is as follows. Suppose there exists a non-uniform distinguisher Df,g

that can distinguish freshly generated commitments to f and g with non-negligible probability, then a
non-uniform adversary Af,g may be constructed as follows: upon receipt of g′ sampled either from ⟨g⟩
or from ⟨gα2d+2⟩, it sends gf(α2)g′ and gg(α

2)g′ to the distinguisher Df,g and returns its answer. In the

case that g′ was sampled from ⟨gα2d+2⟩ this is a statistical simulation of a pair of commitments to f and
g respectively, hence the distinguisher will succeed with non-negligible probability.

In the case that g′ was sampled from ⟨g⟩, the pair is actually statistically indistinguishable, and thus
the distinguisher must fail. Thus, Af,g is able to distinguish from which group g′ was sampled with
non-negligible probability, contradicting the Subgroup Indistinguishability Assumption.

Zero-Knowledge Evaluation: Let f(X) be the committed polynomial, using the hiding commitment
scheme. The prover wants to convince the verifier that f(z) mod p = y. To do this the prover commits
to a degree d polynomial k(X) with random coefficients. The prover also reveals y′ ← k(z) mod p.
The verifier then sends a random challenge c and the prover and verifier can compute a commitment to
s(X) ← k(X) + c · f(X). The random polynomial k(X) ensures that s(X) is distributed statistically
close to a random polynomial. The verifier must now check that s(z) mod p = y′+ c ·y mod p. Instead
of sending s(X) in the clear, the prover just sends the commitment randomness to provide the verifier
with a non-hiding commitment to s(X). The prover and verifier can then use the standard Eval protocol
to efficiently evaluate s at z.

Theorem 7.5 (Proof of Zero-Knowledge Evaluation). Let eval have perfect completeness and extractabil-
ity. Assuming that commitH is statistically hiding and both the order assumption and the strong RSA
assumption hold for GGen the protocol EvalZK has perfect completeness, extractability and δ-statistical
honest-verifier zero-knowledge for δ ≤ (d+ 1) · 2−κ.

Proof. The proof of completeness is straightforward.
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We can see that the protocol maintains witness extended emulation, as the extractor can use two tran-
scripts with different c, c′ along with two calls to the extractor of the original eval protocol to extract
f(X) in evalZK or break an assumption from these two transcripts, in the same way as in Theorem 3.13.
This might lead to a slight growth in the bound on α for binding to hold. However the final bound on
α is that required for extractability, which is usually higher than the bound required for binding, and so
the final bound will usually remain unaffected.

We can construct the simulator S to show zero-knowledge as follows. Start with a polynomial s(X)
$←

[0, (p − 1)2 · 2κ][X] with uniform random coefficients, and a blinding factor rs
$← [0, B · p · 2κ). The

simulator S then chooses a random challenge c
$← [0, p− 1] and computes R = gs(α

2)+rsα
2d+2 ·C−c. The

simulator then performs the rest of the Eval protocol honestly using s(X) as the witness.

The simulator’s rs is distributed identically to the honest rs. So by the hiding property of the commitment
scheme, R is statistically indistinguishable from any other commitment. The simulated and the honest
s(X) have statistical distance at most 2−κ from a random polynomial. The coefficients of c · f(x) are in
[0, (p− 1)2], and the coefficients of the blinding polynomial k(X) are sampled from a range that is larger
by a factor 2κ. So the distribution of coefficients of s(X) = k(X)+ c · f(X) is at a statistical distance at
most 2−κ away from the uniform distribution over [0, (p−1)2 ·2κ]. Since the distributions of simulated and
real coefficients have a statistical distance of at most 2−κ, the statistical distance between the simulated
s(X) and the real s(X) is at most (d+ 1) · 2−κ. The evaluation with Eval cannot leak more than s(X)
itself. Therefore the views of the simulated and real transcripts are δ-close with δ ≤ (d+1) · 2−κ. Thus,
the protocol is δ-statistically honest verifier zero-knowledge.

7.2 Algebraic Holographic Proof

Definition 7.6 (AHP [CHM+20]). An Algebraic Holographic Proof (AHP) over a field family F for an
indexed relation R is specified by the following tuple:

AHP = (k, s, d, I,P,V)

where k, s, d : {0, 1}∗ → N are polynomial-time computable functions; I,P,V are the indexer, prover,
and verifier algorithms; k specifies the number of rounds, s specifies the number of polynomials in each
round, and d specifies degree bounds on these polynomials. The protocol proceeds as follows:

• Offline phase The indexer I receives as input a field F ∈ F , index i for R, and outputs s(0)
polynomials p0,1, . . . , p0,s(0) ∈ F[X] of degrees at most d(|i|, 0, 1), . . . , d(|i|, 0, s(0)) respectively. The
offline phase does not depend on the instance or witness, and simply consists of encoding the given
index i.

• Online phase The prover P receives (F, i, x,w), for an instance x and witness w such that (i, x,w) ∈
R. The verifier V receives (F, x) and oracle access to the polynomials output by I(F, i). The prover
P and the verifier V interact over k = k(|i|) rounds. In the i-th round, i ∈ [k], the verifier V
sends a message ρi ∈ F∗ to the prover P; the prover P responds with s(i) oracle polynomials
pi,1, . . . , pi,s(i) ∈ F[X]. After k rounds, the verifer outputs additional randomness ρk+1 ∈ F∗ which
is an auxiliary input to V in subsequent phases.

• Query phase Let p = (pi,j)i∈[k],j∈[s(i)] be a vector consisting of all the polynomials sent by the
prover P. The verifier can query any of the polynomials it has received any number of times.
Concretely, V executes a subroutine QV that receives (F, x; ρ1, . . . , ρk+1) and outputs a query set
Q consisting of tuples ((i, j), z) to be interpreted as “query pi,j at z ∈ F”. We denote a vector
consisting of query answers by p(Q).

• Decision phase The verifier outputs “accept” or “reject” based on the answers to the queries and
the verifier’s randomness. Concretely, V executes a subroutine DV that receives (F, x,p(Q); ρ1, . . . , ρk+1)
as input, and outputs a decision bit.
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The function d determines which provers to consider for the completeness and soundness properties of the
proof system. A (potentially malicious) prover P̃ is considered admissible for AHP if, in interaction with
the verifier V, it holds that for every round i ∈ [k] and oracle index j ∈ [s(i)] we have deg(pi,j) ≤ d(|i|, i, j).
The honest prover P is required to be admissible under this definition. An AHP satisfies completeness,
knowledge soundness and zero-knowledge as defined below.

• Completeness: An AHP is complete if for all F ∈ F and any (i, x,w) ∈ R, the decision bit returned
by VI(F,i)(F, x) after interacting with an honest P(F, i, x,w) is 1.

• Knowledge soundness: An AHP is ϵ-knowledge-sound if there exists a polynomial-time knowledge
extractor Ext such that for any admissible prover P∗, field F ∈ F , relation i, instance x and auxiliary
input z:

Pr
[
(i, x,w)∈ R : w← ExtP

∗
(F, i, x, z)

]
≥ Pr[⟨P∗(F, i, x, z),VI(F,i)(F, x)⟩=1]− ϵ

where Ext has oracle access to P∗, i.e., it can query the next message function of P∗, rewind it to
obtain all the messages and polynomials returned by it.

• Zero-knowledge: Let b be a bound on the number of evaluation queries made by V. Let C be a
circuit that tests that the evaluation queries are admissible. An AHP is zero-knowledge if there
exists an efficient simulator that can interact with a verifier and can effectively simulate when the
verifier makes b queries, and these queries satisfy an admissible test that is efficiently checked by
the circuit C. An algorithm is called (b,C)-query if it makes at most b queries to the oracles it has
access to, and each query individually leads the checker C to output 1. Formally, AHP is (b,C)-
zero-knowledge if there exists a probabilistic polynomial time simulator Sim such that for every field
F ∈ F , every (i, x,w) ∈ R, and (b,C)-query algorithm V∗, the following two random variables are
identical:

1. View⟨P(F,i,x,w),V∗(x)⟩, which is the view of the verifier, given by (r, a1, . . . , aq) where r is the
random tape of V and a1, . . . , aq are the responses to V’s queries from the oracles sent by P.

2. SimV
∗
(F, i, x) which is the output of the simulator, appended to the random tape r of the

verifier. Sim can interact with V and answer V’s oracle queries, without rewinding V.

7.3 Transparent preprocessing SNARK with universal SRS

We obtain concrete instantiations of new transparent succinct arguments by applying our polynomial
commitment scheme from Sec. 5 to compile different AHPs like Sonic, PLONK, Marlin. Then, applying
the Fiat–Shamir transformation to the resulting public-coin preprocessing argument yields a preprocess-
ing zkSNARK with universal SRS in the ROM.

Using the compilation process in [BFS20, CHM+20], AHP = (I,P,V) for R can be turned into a
preprocessing argument system with universal SRS, denoted by AoK = (S, I,P,V) for R. We note that
our PCS indeed has the property that the extracted polynomial satisfies a prescribed degree bound D as
shown in the proof of extractability. In addition, our protocol can also enforce different degree bounds
di for different polynomials as long as di ≤ D. This guarantee suffices for compilation of AHP into a
succinct argument. In the reduction, a cheating argument prover can be used to construct an admissible
AHP prover – the extractor that outputs polynomials within a prescribed degree bound guarantees that
the AHP prover is admissible. We outline the compilation process of [CHM+20] in Fig. 13.

Theorem 7.7 ( [CHM+20]). Let F be a field family and R be an indexed relation. Consider the following
components:

• AHP = (k, s, d, I,P,V) is a knowledge sound AHP for R

• PC = (setup, commit, open, eval) is a succinct polynomial commitment over F with binding and
extractability

Then, the construction AoK = (S, I,P,V) is a preprocessing argument system for the relation R, and
satisfies the following properties:
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Compiler from AHP to AoK
Let AHP = (I,P,V) be an AHP for R. Let PC = (setup, commit, open, eval) be a polynomial commitment
scheme. Construct an argument system AoK = (S, I,P,V) as follows:

• Setup S(1κ): Run pp← setup(1κ) and output srs := pp.

• Preprocessing I: On input i, I runs the AHP indexer I to obtain polynomials (p0,j)
s(0)
j=1 ∈ F[X], and

computes commitments to these polynomials; (c0,j)
s(0)
j=1 = commit((p0,j)

s(0)
j=1). The indexer I outputs

ipk := ((p0,j)
s(0)
j=1, (c0,j)

s(0)
j=1) and ivk := ((c0,j)

s(0)
j=1).

• Prover P and Verifier V: For every round i ∈ [k], P and V simulate the interaction between the AHP
prover P(F, i, x,w) and verifier V(F, i, x). In the i-th round:

1. V talks to P and internally runs V. V receives ρi ∈ F from V, and forwards it to P.

2. P interacts with V and internally runs P. P forwards the received ρi to P, and receives s(i)
polynomials pi,1, . . . , pi,s(i) ∈ F[X]. P invokes the polynomial commitment scheme to commit to
each of these polynomials.

Ci,j = commit(pi,j), for j = 1, . . . , s

P sends the vector of commitments C = {Ci,j} to V.

• P and V simulate the query phase of the AHP.

1. Let p = (pi,j)i∈[k],j∈[s(i)] denote the vector consisting of all the polynomials sent by P, and C
the vector of commitments to p. V executes QV(F, x; ρ1, . . . , ρk+1) and outputs a query set Q
consisting of tuples ((i, j), z). V forwards the set of query points ((i, j), z) to P.

2. P sends v, a vector of all the claimed evaluations for query points in Q. P and V run
eval(srs,C, d, z,v;p) where z is the vector of all query points in Q. In the above, eval is the
batched evaluation protocol of the polynomial commitment scheme that proves the evaluation of
multiple polynomial commitments.

• Decision phase:

1. V runs V’s decision algorithm DV(F, x,v; ρ1, . . . , ρk+1) to receive a decision bit b1.

2. Let b2 be the decision bit of V from the execution of eval.

3. V accepts if both b1 and b2 are 1.

Figure 13: Compiler from [CHM+20]

• Preprocessing complexity: Indexer time of AHP plus time to commit to s(0) polynomials in PC.

• Communication complexity: Oκ(q) bits where q is the query complexity of AHP.

• Verification complexity: Verifier time of AHP plus time to batch verify q evaluations in PC.

• Prover complexity: Prover time of AHP plus time to commit to
∑k

i=1 s(i) polynomials in PC, plus
the time to produce batch evaluation proofs for q queries in PC.

In the above theorem, if PC is hiding with zero-knowledge evaluation protocol, and if AHP is (b,C)-zero-
knowledge where b is the query complexity of AHP and C is a polynomial-time query checker, then AoK
is zero knowledge.

7.4 Concrete Instantiations

Theorem 7.8 (PLONK [GWC19]). There exists a 3-round AHP for NP relation R, where the verifier
makes 12 queries to 11 polynomials at 2 distinct points. The indexer complexity is O(n) to preprocess 6
univariate polynomials of degree n, where n is the arithmetic circuit complexity of R.

Corollary 1 (Succinct Transparent AoK). For an NP relation with arithmetic complexity n, construc-
tion 13 instantiated with our PCS with constant proof size and logarithmic verification Dew-PC (Sec-
tion 5) and PLONK’s AHP is a O(1) round interactive argument of knowledge as per Definition 2.10 in
the GGM and satisfies the following properties:

• Preprocessing complexity: Õ(n)

• Communication complexity: Oκ(1)

54



• Verification complexity: O(log n)

• Prover complexity: Õ(n2)

Theorem 7.9 (Marlin [CHM+20]). There exists a 4-round AHP for NP relation R that makes 21 queries
at 3 distinct query points to 21 polynomials. The indexer complexity is O(n) to preprocess 9 univariate
polynomials of degree n, where n is the R1CS complexity of R.

Corollary 2 (Succinct Transparent AoK). For an NP relation with R1CS complexity n, construction 13
instantiated with our PCS with constant proof size and logarithmic verification Dew-PC (Section 5), and
Marlin’s AHP is a O(1) round interactive argument of knowledge as per Definition 2.10 in the GGM,
and satisfies the following properties:

• Preprocessing complexity: Õ(n)

• Communication complexity: Oκ(1)

• Verification complexity: O(log n)

• Prover complexity: Õ(n2)

We compare the SNARKs resulting from our PCS with different succinct arguments in Figure 14, and give
an estimate of SNARK proof sizes resulting from our PCS. As estimated in § 5.2.5, our PCS evaluation
proofs use 66 group elements and given our batching techniques in § 3.5, we can combine all queries to
all polynomials into a single evaluation proof. This adds an overhead of only the number of polynomials
given by the AHPs. Therefore, the SNARK from Corollary 1 has a proof size of 77 group elements (66
group elements for a batched evaluation proof plus 11 groups elements for committing to 11 polynomials).
Similarly, the SNARK from Corollary 2 has a proof size of 87 group elements. The proof also includes
a constant number of field elements. However, since each field element is orders of magnitude smaller
than a group element, we ignore them in our size estimates.

Protocol Setup |pp| Verifier Proof size Assumption

Groth16 [Gro16] private O(n) O(1) O(1) GGM
Basilisk [RZ21b] updatable O(n) O(log n) O(1) AGM, q-DL

STARK [BBHR19] public O(1) O(log2 n) O(log2 n) CRHF
BulletProofs [BBB+18] public O(n) O(n) O(log n) DL

Block et al. [BHR+21] public O(1) O(logk n) O(logk n) HO

CS Proof (Merkle tree compiler) [Kil92b, Mic94b] public O(1) O(log n) O(log n) CRHF

CS Proof (VC compiler) [LM19] public Õ(n) O(1) O(1) AR

Protocols in this work:
DARK-Fix (§6) public O(1) O(log n) O(log n) AR, S-RSA

Dew (from Dew-PC in §5) public O(1) O(log n) O(1) GGM

Figure 14: Comparison between the SNARKs resulting from this work and other zero-knowledge suc-
cinct argument protocols. Public setup indicates that the SNARK is transparent. We omit the prover
complexity in the table since our focus is on verifier and communication complexity. Dew has Õ(n)
prover complexity after preprocessing, while the construction from §6 incurs Õ(n2) prover complexity.
In the table, n denotes the size of the NP statement. k is some constant. The security parameter λ is
omitted for clarity. We compare with Basilisk as it is one of the state-of-the-art SNARKs with private
but updatable setup. The asymptotics of Supersonic, as presented in [BFS20] using the broken DARK
polynomial commitment scheme, are recovered using our scheme (as shown in Section 6). AR = Adaptive
Root, S-RSA = Strong RSA, HO = Hidden Order, CR = Collision Resistant Hash Function.
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Appendix

A Proofs of Auxiliary Lemmas

Lemma A.1 (Lemma 3.6 restated). . Given a group G and g ∈ G, if there exist group elements
W,X1, . . . , Xm such that W =

∏m
i=1 Xi and a prover succeeds in convincing a PoKPE verifier for all of

these elements w.r.t. the base g, either

1. the prover knows exponents w, x1, . . . , xm such that w, xi > 0 for all i and w =
∑m

i=1 Xi. OR

2. the prover knows (a multiple of) the order of g, and can break the Order Assumption (Assumption
1).

Proof. Since the verifier accepts all the PoKPE proofs, there exists an extractor (that uses the PoKPE
extractor) that outputs positive w, x1, . . . , xm as exponents to W,X1, . . . , Xm with base g respectively.
Construct an adversary A for the Order assumption that uses the extractor to obtain these exponents
and computes k := w −

∑m
i=1 xi. If this is non-zero, then notice that gk = W∏m

i=1 Xi
= 1, which the

adversary can use to break the Order assumption.

Lemma A.2 (Lemma 3.7 restated). Suppose K =
∑k

i=0 Miα
i where Mi’s are not necessarily < α, but

we have a bound Mi < α(α− 1) ∀ i. Then, we can write K =
∑k+1

i=0 Uiα
i where each Ui < α, and

Ui :=


(M0 mod α+ u0) mod α if i = 0

(Mi mod α+
⌊
Mi−1

α

⌋
+ ui) mod α if 1 ≤ i ≤ k

(
⌊
Mk

α

⌋
+ uk+1) if i = k + 1

ui :=


0 if i = 0, 1⌊

Mi−1 mod α+
⌊

Mi−2
α

⌋
+ui−1

α

⌋
if 1 ≤ i ≤ k + 1

Also, ∀ i ui ∈ {0, 1}.

Proof. We first prove the last part: ui ∈ {0, 1} by induction. We already have u0 = u1 = 0. Let
ui−1 ∈ {0, 1}. Then

ui :=

Mi−1 mod α+
⌊
Mi−2

α

⌋
+ ui−1

α


≤
⌊
α+ α− 2 + 1

α

⌋
< 2

Since ui ∈ Z+, the conclusion holds.
Also, notice that

Uk+1 =

⌊
Mk

α

⌋
+ uk+1

< (α− 1) + 1

< α

Hence, Uk+1 < α, and the other Ui are already < α due to them being computed mod α.
The equality between the sums follows by telescoping and the repeated use of the identity

a mod b = a− b
⌊a
b

⌋
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Lemma A.3 (Lemma 3.8 restated). Suppose for some α, M ′α − N ′ = Mα − N , where M ′, N ′ ∈ Q
and M,N ∈ Z.
If |N |, |N ′| < B, and M ′ = x

y for the smallest possible y and y < α
2B , then M ′ = M and N ′ = N .

Proof. Consider the equivalent equation α(M ′ −M) = N − N ′. Clearly, |N − N ′| < 2B. WLOG let
M ′ > M . Then, least positive value (M ′ −M) can take is 1

y , as M is an integer

But if M ′ ̸= M , then

α(M ′ −M) >
α

y
> 2B > |N −N ′|

for any N,N ′, which is a contradiction. Hence, M = M ′, N = N ′.

Lemma A.4 (Lemma 3.9 restated). Given k, p ∈ Z and n < p
2 , then any polynomial f(x1, . . . , xn) :=∑n

i=1 mixi is such that for all c ∈ Zp and b = GCD(m1, . . . ,mn, k),

Pr
xi ←$Zp

(
n∑

i=1

mixi = c mod k

)
≤ b

k
+

n

p
.

Proof. Proof proceeds by induction on n. Fix an arbitrary c ∈ Zk. WLOG, let b = 1, else we can divide
all coefficients and c, and consider the probability mod k/b. (If c is not divisible by b, the probability
is 0, which is smaller than the required upper bound anyway.)
When n = 1, this is trivial, when k ≥ p,

Pr
x1∈Zp

(x1 = c mod k) =

{
1
p c < p

0 p ≤ c < k

and when k < p,

Pr
x1∈Zp

(x1 = c mod k) =

{
1
p + 1

k c < p mod k
1
k p mod k ≤ c < p

Suppose the statement is true for n− 1. For n, we can write

Pr
xi∈Zp

(

n∑
i=1

mixi = c mod k) =
1

p

∑
θ∈Zp

Pr
xi∈Zp

(

n−1∑
i=1

mixi = c−mnθ mod k)

Let b′ be the GCD of all mi with k except mn. Since b = 1, b′ must be coprime to mn.
Now we claim that the maximum number of θ ∈ Zp for which b′|(c − mnθ) (which is an arithmetic
progression on integers) is

⌈
p
b′

⌉
. This is because any two θ1, θ2 are such that b′|mn(θ1 − θ2). Since mn

is coprime to b′, θ1 and θ2 must differ by at least b′, hence lower bounding the common difference of the
arithmetic progression.

Then, using the inductive hypothesis and the fact that there are at most
⌈
p
b′

⌉
θ ∈ Zp such that the

probability on the RHS is non-zero,

1

p

∑
θ∈Zp

Pr
xi∈Zp

(

n−1∑
i=1

mixi = c−mnθ mod k) ≤ 1

p
·
⌈ p
b′

⌉
·
(
n− 1

p
+

b′

k

)

<
1

p
·
( p
b′

+ 1
)
·
(
n− 1

p
+

b′

k

)
=

n− 1

b′p
+

1

k
+

n− 1

p2
+

b′

kp

<
n− 1

p
+

1

k
+

1

2p
+

1

2p

=
n

p
+

1

k
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B Constant-size PCS with lϵ-time verifier

In this section, we generalize the ideas from Section 4 to improve the verifier complexity from O(
√
l) to

O(lϵ) for any constant 0 < ϵ < 1.

B.1 Construction of Polynomial Commitment Scheme sPC

We will define a family of protocols TESTe parametrized by an integer e > 1 to replace the TEST
protocol, with the only difference being the query vector z ∈ Zl

p that is being sent. The modified query
vector z is generated as follows:

1. Sample random x1,x2, . . . ,xe from Zl1/e

p . Coordinates of xj are denoted by xj,n for 0 ≤ n < l1/e.

2. Any index k from 0 to l − 1 can be written in base – l1/e, consider the e-bit representation as
i1i2 . . . ie. Then,

zk ≡ zi1,i2,...,ie :=

e∏
j=1

xj,ij . (29)

Specifically, we replace blue part of the TEST protocol in Figure 2 with the following:

z defined by (29) x1, . . . ,xe←$Zl1/e

p

We will also use the IPPsub protocol as defined in Section 4.1 from a single random x←$Zp and
modifying the blue part of the IPP protocol (Figure 3) as explained in Section 4.1.

These changes are to ensure that σ in both TESTe and IPPsub are efficiently computable, details are
given in Theorem B.5.

Polynomial Commitment Scheme sPC. The polynomial commitment sPC we use in this section is
essentially the same as sqPC defined in Section 4.1 except that we replace TEST2 protocol in sqPC with
TESTe protocol to get sPC.

For this section, we assume α = pL for an L = O(el).

Before we present the proof of extractability, for notational simplicity we parametrise the definition of
the set S to S(β1, β2) and extend the domain of definition of χm, χn to S(β1, β2) defined before Theorem
3.3.

S(β1, β2) :=

{
mα− n

k
: m,n, k ∈ Z, gcd(m, k) = 1, 0 < m ≤ k < pβ1 ,−β2 < n < k + β2

}

Theorem B.1. The polynomial commitment scheme sPC (parametrised by e) satisfies Extractability
(Def. 2.7) for (β1, β2) = (e + 1, 2e + 1) and α > 2e+1pel+1+log l, α = 0 mod p in the Generic Group
Model.

Proof. This proof proceeds similar to the proof of extractability of the inner product scheme 3.1, we
again have two theorems concerning TESTe and IPPsub.

Theorem B.2. If the Verifier in TESTe instantiated with α > 2e+1pel+1+log l outputs accept with non-
negligible probability over the choice of the random z ∈ Zl

p, there exists an efficient extractor in the GGM

that outputs vectors c,d ∈ Zl
p satisfying the following properties:

1. C = g
∑l−1

i=0(ci+αdi)α
2i

(proved in Lemma 3.10)

2. d ∈ S(e, 2e)l (proved in Lemma B.4)

3. DenLCM(χm(d)) < pel
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Note that part 3 of the above Theorem is trivial from part 2 and the fact that the vector d is of length l.
Since part 1 is also proved earlier, we only provide the proof of part 2 below, in Lemma B.4. The proof
is a direct generalisation of the ideas in Lemma 4.7 using the higher dimensional box theorem.

Theorem B.3. If the Verifier in IPPsub instantiated with α such that
α > 2e+1pel+1+log l, α = 0 mod p outputs accept with non-negligible probability for some query vector q,
and given that the Verifier of TESTe also did so, there exists an efficient extractor in the GGM that
outputs an opening f̃ ∈ Zp[x] and an opening hint c̃ in Q(e+1, 2e+1) for C such that v = ⟨f ,q⟩ mod p.

We do not repeat the proof of Theorem B.3 as it is almost identical to that of Theorem 3.5. The only
changes are in some of the parameters, specifically α being much larger and the query vector elements
being as large as plog l.

Lemma B.4. If the success probability of the prover is at least Ce · p−2
−e+1

, for some constant Ce > 1,
then for all 0 ≤ i ≤ l − 1, di ∈ S(e, 2e).

Proof. Suppose the prover succeeds with a non-negligible probability (> Ce · p−2
−e+1

) over the random

choice of z from elements of Zel1/e

p .

Fix an arbitrary 0 ≤ i ≤ l − 1, equivalently the e-digit representation in base l1/e: (i1, . . . ie). Consider

the partition of the space Zel1/e

p by sets of the form

Tq := {(x1,i1 , . . . , xe,ie ,q) : xj,ij ∈ Zp, 1 ≤ j ≤ e} for q ∈ Zel1/e−e
p .

Since the success probability of the prover is at least Ce

p2−e+1 , at least one of these sets (which are e-

dimensional spaces) must have more than Ce · pe−2
−e+1

points. Let such a set be denoted Tq∗ . Now,
Lemma 4.6 gives an e-dimensional cube of accepting points in such a Tq∗ . Let that e-dimensional cube
in Tq∗ be given by

B := B(a1, . . . , ae) := {(x∗1,i1 + a1b1, . . . , x
∗
e,ie + aebe) : bj ∈ {0, 1}},

for some fixed 0 < ai < p and x∗jij ∈ Zp.

Finally, let zb ∈ Zl
p be the 2e vectors constructed as in (29) from the vertices of the cube B above c∗.

Now, Lemma 3.6 and 3.7 give us equations corresponding to each accepting point, relating c,d and zb.

Consider the complete binary tree of depth e, with the left child labeled 1 and the right child labeled 0 for
each node. This gives a e-bit representation for all leaf nodes. Since we have 2e equations corresponding
to the points (x∗1,i1 + a1b1, . . . , x

∗
e,ie

+ aebe) for some 0 < aj < p and every bj ∈ {0, 1}, we have a natural
assignment of points (x∗1,i1 + a1b1, . . . , x

∗
e,ie

+ aebe) to leaves b1b2 . . . be. Define the equation at the leaf
node by considering the difference of the left child equation and the right child equation. We can then
combine equations at all non-leaf nodes in a higher dimensional analog of the process in the proof of
Lemma 4.7.

Using such combinations as we move up the tree, the equation at the root node can be computed to be
of the form

a1 . . . ae · di1,...,ie = − (n) mod α

where n is the expression for the root term consisting of the floor parts and the u terms from the equations
for each individual part.

This is the same process done in Lemma 4.7 generalised to higher dimensions. For example, when e = 3,
n is of the form (and labeling the 23 points/leaves by zi for 0 ≤ i < 8)[(⌊

⟨c, z1⟩
α

⌋
−
⌊
⟨c, z2⟩

α

⌋)
−
(⌊
⟨c, z3⟩

α

⌋
−
⌊
⟨c, z4⟩

α

⌋)]
−
[(⌊
⟨c, z5⟩

α

⌋
−
⌊
⟨c, z6⟩

α

⌋)
−
(⌊
⟨c, z7⟩

α

⌋
−
⌊
⟨c, z8⟩

α

⌋)]
+ [(u1 − u2)− (u3 − u4)]− [(u5 − u6)− (u7 − u8)]
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Since for all x, x− 1 ≤ ⌊x⌋ < x and u ∈ {0, 1}, we can see that for the above expression,

ci · a1a2a3
α

− 8 < n <
ci · a1a2a3

α
+ 8

=⇒ −8 < n < a1a2a3 + 8

In general, we get

−2e < n <

e∏
i=1

ai + 2e

Since we already know that di1,...,ie < α, we can write the above as

di1,...,ie =
mα− n

a1 · · · ae

where m ≤ a1 · · · ae and −2e < n < a1 · · · ae + 2e. Hence, di1,...,ie ∈ S(e, 2e). Since (i1, . . . , ie) was
arbitrary, d ∈ S(e, 2e)l.

Theorem B.5. The polynomial commitment scheme sPC (parametrised by e) satisfies proof succinctness
as defined in Definition 2.8 and the Verifier in eval performs O(1) group operations and O(l1/e) field
operations (where l − 1 is the degree of the polynomial, and e > 1 is any constant).

Proof. Proof succinctness follows from the same arguments as in Theorem 5.8. Similarly, we can see that
the verifier still only does a constant number of group operations and we now have two bottlenecks w.r.t
field operations; the computation of σ mod q for a random prime q and α mod q for the same q.
Again, we need to analyse TESTe and IPPsub separately. In TESTe, the definition of the query vector
implies that we can rewrite the computation of σ mod q in the following way:

σ mod q =

l−1∑
k=0

α2l−2−2jzj mod q = α2l−2
e∏

i=1

l1/e−1∑
j=0

xi,j

α2l1−i/ej
mod q

This can be computed in O(l1/e) time given α mod q. In IPPsub, the query vector is formatted in such
a way that the computation can be done in O(log l) time (given α mod q), the analysis is the same as
in Theorem 4.5,

σ mod q =

l−1∑
k=0

α2l−1−2jqk mod q = α2l−1
log l−1∏
i=0

(
1 +

x2i mod p

α2i+1

)
mod q

Now, for efficient computation, we need to compute α mod q. Since we pick α = pO(l), this cannot be
done in sublinear time for arbitrary α. Hence, we fix α = pL for some L > el + 1 + log l = O(l). Then,
computing α mod q = pL mod q, which can be efficiently done in O(logL) = O(log l) using repeated
squaring. Once this is found, α−1 mod q can also be efficiently found using the Extended Euclidean
algorithm.

C Completeness of Dew-PC

Theorem C.1 (Completeness). The polynomial commitment scheme Dew-PC satisfies Completeness
(Def 2.5).

Proof. Note that by definition of CoeffSplit and completeness of PoKPE, all the PoKPE checks will accept.

To show that the last checks in logTEST and logIPP hold, it suffices to show that v = 0 in TEST and
v = f(x) mod p in IPP. We will show this by expanding the computations done in CoeffSplit (defined

64



in Figure 1).
In logTEST, direct manipulation shows

l−1∑
j=0

fjα
2j ×

l−1∑
j=0

α2l−2−2jzj

= α2l

∑
j′>j

α2(j′−j)−2fj′zj


︸ ︷︷ ︸

λ

+

∑
j′<j

α2l−2−2(j−j′)fj′zj +
∑
j′=j

α2l−2fjzj


︸ ︷︷ ︸

γ

and notice that since α > p2l log l, these are indeed the γ, λ returned by CoeffSplit, and v = 0.

And, in logIPP, for the query vector q defined in (24)

l−1∑
j=0

fjα
2j ×

l−1∑
j=0

α2l−1−2jqj = α2l−1


l−1∑
i=0

fjqj mod p︸ ︷︷ ︸
v

+p

⌊∑l−1
i=0 fjqj
p

⌋
︸ ︷︷ ︸

n



+ α2l−2(0) + α2l


∑
j′>j

α2(j′−j)−1fj′qj︸ ︷︷ ︸
λ

+


∑
j′<j

α2l−1−2(j−j′)fj′qj︸ ︷︷ ︸
γ


Here, again since α > p2l log l, (v + np, λ, γ) above coincide with the output of CoeffSplit, and v = ⟨f ,q⟩
mod p.
Note: The coefficients we ask for in CoeffSplit is 2l − 1 for both logTEST and logIPP as the query
vectors are appropriately shifted in the definition of σ – the honest answer we expect in logTEST is 0,
while in logIPP it is the evaluation of the polynomial.
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