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Abstract. The evolution of Smart Contracts in recent years inspired a
crucial question: Do Smart Contract evaluation protocols provide the re-
quired level of Privacy when executing contracts on the Blockchain? The
Hawk (IEEE S&P ’16) paper introduces a way to solve the problem of
Privacy in Smart Contracts by evaluating the contracts off-chain, albeit
with the trust assumption of a manager. To avoid the partially trusted
manager altogether, a novel approach named zkHawk (IEEE BRAINS
’21) explains how we can evaluate the contracts privately off-chain using a
Multi-Party Computation (MPC) protocol instead of trusting said man-
ager. This paper dives deeper into the detailed construction of a variant
of the zkHawk protocol titled V-zkHawk using formal proofs to construct
the said protocol and model its security in the Universal Composability
(UC) framework (FOCS ’01). The V-zkHawk protocol discussed here
does not support immediate closure, i.e, all the parties (n) have to send
a message to inform the blockchain that the contract has been executed
with corruption allowed for up to t parties, where t < n. In the most
quintessential sense, the V-zkHawk is a variant because the outcome of
the protocol is similar (i.e., execution of smart contract via an MPC
function evaluation) to zkHawk but we modify key aspects of the proto-
col essentially creating a small trade-off (removing immediate closure)
to provide UC (stronger) security. The V-zkHawk protocol leverages
joint Schnorr signature schemes, encryption schemes, Non-Interactive
Zero-Knowledge Proofs (NIZKs), and commitment schemes with CRS
assumptions, MPC function evaluations, and assumes the existence of
asynchronous, authenticated broadcast channels. We achieve malicious
security in a dishonest majority setting in the UC framework.

Keywords: zkHawk · Hawk · MPC · V-zkHawk · NIZKs · Universal
Composability

? This work is done as a part of First Author’s PhD Research. This publication has
emanated from research conducted with the financial support of Science Foundation
Ireland grants 13/RC/2106 (ADAPT) and 17/SP/5447 (FinTech Fusion).



2 A. Banerjee et al.

1 Introduction

Smart Contracts have existed for a long time prior to their integration with cryp-
tography and in cryptocurrencies. One of the oldest examples of smart contracts
is the vending machine [48]. The implementation of early vending machines dates
back to the 1st century AD in Egypt during the reign of the Roman Emperor
Augustus Caesar. But, modern vending machines as we know it did not come
into existence until the early 1880s. Fast-forwarding to the 21st century, interest
in smart contracts as a cryptographic application has risen dramatically in the
past decade. It all started with the 2013 [13] Ethereum paper that introduces
smart contract as a decentralized application and integrates the concept of smart
contract code evaluations in cryptocurrencies. Ethereum focused on evaluating
contracts on the public blockchain which resulted in a non-private smart contract
setting. This made a lot of Users apprehensive about including contracts having
sensitive information onto the Ethereum smart contracts. In terms of transac-
tion privacy, Zcash [47] became one of the leading cryptocurrencies to provide
a private, scalable, and fast coin transfer mechanism which took the concept
of privacy leaps and bounds ahead of Bitcoin. This was due to the significant
improvement in the domain of zk-SNARKs [3,31,32] (Zero-Knowledge Succinct
Non-Interactive Argument of Knowledge) in recent years.

The idea of Hawk [38] stemmed from uniting the concepts of transaction
privacy and execution of smart contracts. Hawk achieves transaction privacy
by evaluating contracts partially off-chain with the trust assumption of a man-
ager. The manager is minimally trusted and can be only trusted to evaluate the
smart contract and provide the correct output. The manager cannot be trusted
to maintain the security or privacy of the contract execution. The authors of
the Hawk protocol [38] made an observation that the manager can replaced by
running an MPC protocol between the parties. However, they pointed out that
this approach would be presently impractical. Indeed it can be easily seen that
by applying MPC to the design of Hawk as it is incurs the prohibitively expen-
sive overhead of executing a zk-SNARK proof [31, 32] within an MPC program
(a circuit in practice). Hence, we propose to remove the zk-SNARK proof from
the MPC program [4]. However, this leaves us with a considerable challenge -
How do we prove to the blockchain that the sum of the incoming balances in
the smart contract is equal to the sum of the outgoing balances? As a solution,
in V-zkHawk we compute a relatively practical KDK and 2-round MPC sum
check with broadcasting and allow signatures to prove within an MPC function
such that all parties contributed to the contract execution. The resulting effect
guarantees that the difference between the sum of the output balances and the
sum of the input balances is zero.

Recent implementations of MPC protocols including the MP-SPDZ frame-
work [36] have proven really efficient while proving security against malicious
security models. Starting from Yao’s protocols in the early 1980s [50] to the
GMW protocol in the late 80s [45] to more recent protocols like Danish Sugar
beet auction [6] or SPDZ [25] or MACE [1] for fault tolerance, the MPC jour-
ney has been profound. The applications of MPC grows each day and hence the
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motivation to apply MPC to solve the inherent privacy issues for evaluating a
private smart contract.

A Simple Private Smart Contract: For a clearer understanding on how a
private smart contract works let us consider the example of Crowdfunding (See

Figure 1). Consider the smart contract function f̂ as the lending platform. The
lenders (len1, . . . , lenk) and the borrower (bo) are the participants (n). The loan
amount required and lending amounts by each lender are kept as secret. Let the
required loan amount be $x and $bo← 0.

1.1 Our Contributions:

In this paper, we present V-zkHawk which is a variant of the zkHawk [4] protocol
such that the smart contracts are evaluated off-chain without the trust assump-
tion of a manager. This can be achieved using an MPC [6, 11, 25] function to
evaluate the smart contract and send the output back to the relevant party
off-chain. Such a protocol ensures a Strong Input/Output Privacy 3 guarantees.
We provide formal proofs for the construction of the V-zkHawk protocol. The
proofs and theorems in this paper are modeled in the Universal Composabil-
ity (UC) [14] Framework. We define the ideal functionalities for our real world
protocols that also interacts a simulator (mimicking an adversary in real world)
such that no PPT environment can distinguish between ideal and real worlds.
Our work utilizes commitment schemes which is impossible to prove UC secure
in the standard model [18]. Hence, we will be employing the CRS model [5, 14]
with a secure broadcast protocol for the setup/preprocessing stage. The CRS
and broadcast protocols also helps NIZK protocols realise the NIZK functional-
ities in the ideal world. We define security against malicious (active) adversaries
in the dishonest majority setting.

1.2 Existing Private Smart Contract Protocols

We already described above the motivation behind Hawk and how it works. In
this section, we will discuss a few more contemporary Private Smart Contract
(PSC) protocols apart from Hawk [38].

– zkay: zkay [49] extends on Ethereum smart contracts to allow users to share
encrypted data on the blockchain. This is not an off-chain protocol but rather
works on private data on chain to prove that data is correctly encrypted and
that the smart contract executions are correct.

– Arbitrum: Arbitrum [35], unlike Ethereum, uses Virtual Machines (VMs)
to implement Smart Contracts. Each party can create Smart contract func-
tionality by writing a code that the VMs then implement off-chain. Only ver-
ifiable digital signatures are needed to ensure that the parties have agreed on

3 Strong Input/Output Privacy is defined such that parties’ inputs/outputs are not
leaked to both the public and to each other throughout contract execution.
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Smart Contract Function f̂

– f̂($x, ($len1), . . . , ($lenn), $bo)
• $lenx ←

∑
i∈[n] $leni

• If $lenx > $x
∗ $bo← $lenx
∗ For i ∈ {1, . . . , n}

· $leni ← 0
Contract Closure:

• Return $leni to leni
• Send $bo to bo

Fig. 1. Example of a Crowdfunding Private Smart Contract function f̂

the VMs functionality. This ensures that the contract is executed off-chain.
But like Hawk, Arbitrum also relies on a manager who is one of the parties
to monitor the behaviour of the VMs. It also relies on an honest majority
setting for privacy guarantees.

– Kachina: Kachina [37], a more recent PSC protocol that models its security
in the Universal Composability model. This provides a more private and
secure PSC evaluation for Zcash privacy-preserving payment system. But, it
does not bode well with a dishonest majority in a malicious setting.

– Zether: Zether [12], being a retro-fitted privacy preserving smart contract
protocol for currency can be utilized only in places like sealed-bid auctions
or crowdfunding. This protocol cannot be utilised in non-monetary smart
contract applications like e-Voting, Rock-Paper-Scissors, etc.

– Shielded Computations in Smart Contracts: Recent work by V. Botta
et al. [10] leverages on-chain MPC protocols for executing smart contracts
by forking blockchains like Ethereum. It works for both honest and dishonest
majority setting.

– ShadowEth: ShadowEth [51] utilizes the Trusted Execution Environment
(TEE) to generate private smart contract evaluations for public blockchains
like Ethereum. It utilises the Intel SGX [23] hardware enclave to implement
the protocol that creates an isolated secure environment running parallel to
the OS.

1.3 Outline of the Paper

The paper starts with an introduction of smart contracts, zkHawk, contempo-
rary private smart contract protocols and what we are trying to achieve via
V-zkHawk. In Section 2 we define the notations used throughout the paper
along with definition of cryptographic primitives used in the V-zkHawk protocol
and a general overview of the UC framework. In Section 3 we elaborate on the
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construction of V-zkHawk protocol along with the subroutines that are running
inside the protocol such that an adversary can corrupt a party running a spe-
cific subroutine or protocol. In Section 4 we define the ideal functionalities for
the protocols defined in Section 3 and simulate its security using a simulator in
the UC framework. Finally, in Section 5 we conclude that the security achieved
via the proposed V-zkHawk smart contract protocol in UC secure [14] against
malicious, static adversaries for a dishonest majority and how we can further
refine this protocol in the Global UC (GUC) [2,17] model along with considering
further optimisations to the efficiency of the protocol.

2 Preliminaries

Let λ ∈ N be the security parameter. We denote the value [m] as an iteration of
values from 1 to m. Com is a commitment scheme used to establish input and
output coin commitments. PPT stands for probabilistic polynomial time. A ≈

C
B

denotes A is computationally indistinguishable from to a PPT observer (here
environment).

Let L be an NP-language and R be a binary witness relation in L such that
L = {x | ∃ w : R(x,w) = 1} ∀ (x,w) ∈ R where x is the statement to be proved
and w is the witness.

Definition 1 (Non-Interactive Zero Knowledge Proofs (NIZKs)). A
NIZK proof π is a tuple of algorithms (CRSGen,Prove,Verify) such that:

CRSGen(1λ) : This algorithm generates a common reference string CRS using
a security parameter λ as input.

Prove(CRS, x, w): This algorithm generates a proof φ from the common ref-
erence string CRS, x and w.

Verify(CRS, x, φ): This algorithm generates an output b ∈ {0, 1} leveraging
the proof φ,CRS and x.

We require our NIZKs to follow perfect completeness and perfect soundness
for the V-zkHawk protocol. Since, we are dealing with static adversaries we need
not worry about adaptive non-erasure or adaptive witness-indistinguishability
properties of NIZKs. For brevity sake we will not go too much into details of
these properties in this paper and defer the reader for further reading on NIZKs
to [28,33].

Let us consider a signature scheme Σsig = (KeyGen,Sign,Verify) such that
the secret key elements belong in some group (X,+) and public key elements
belong in some group (Y, ·). We require the signature scheme leveraged in V-
zkHawk (Schnorr [43,44] or BLS [8,9] or ECDSA [34]) to be secret key to public
key homomorphic. This concept was introduced in [27].

Definition 2 (Secret to Public Key Homomorphic). We can say that a
signature scheme Σsig provides secret to public key homomorphism, if ∃ a map
δ: X→ Y such that:

– ∀ sk,s′k ∈ X it satisfies the relation δ(sk + s′k) = δ(sk) · δ(s′k)
– ∀ (sk, pk) ← KeyGen, it satisfies the relation pk = δ(sk)
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2.1 Universal Composability

A is the adversary in the real world which interacts with the real parties P and
S is the simulator in the ideal world imitating the adversary in the real world.
Further, we denote F(.) as the functionality in the ideal world interacting with
the dummy parties P ′ and the simulator S. Z is a PPT environment which
interacts with the ideal world protocol φ and real world protocol π as well as A
and S. In the UC framework, the environment Z interacts twice with the protocol
execution: Once before the execution of the protocol where it can provide inputs
to the parties and the adversary and Secondly when the protocol execution is
terminated, it collects the outputs from the adversary and the parties. Then, it
outputs a single bit which is basically Z specifying whether it thinks it interacted
with π or F . We define a UC− secure protocol as follows:

Definition 3. An n-party (where n ∈ N) protocol π is UC− secure ∀ Z if for
any A ∃ S:

– The protocol π UC− emulates φ, i.e, UC− IDEALφ,S,Z ≈
C

UC− REALπ,A,Z

– The protocol π UC− realizes F

Informally, we say that a protocol π securely emulates a protocol φ if for
any given input the probability that Z will output 1 after interacting with π and
A will differ negligibly to the probability that Z will output 1 after interacting
with φ and S. We also define that π UC− realizes F if given the adversary A
and Z interacts at any point during the execution of the protocol, Z still cannot
tell the difference whether it is interacting A and π or S and F .

Note: We write π UC− realizes F instead of π UC− realizes φ because all the
parties in φ are dummy parties P ′ and they just forward their input and output
to F for secure computation. Hence, we replace φ with F for most notations as
Z is basically interacting with F and not the other dummy parties in φ.

From [14,16], we borrow the knowledge of Interactive Turing Machines (ITMs)
to be leverages in the V-zkHawk protocol. Our computation consists of several
instances of ITMs M1, . . . ,Mn for n-parties that can write on the externally
writable tapes of each other. These are usually commands to activate a Turing
machine or run a certain protocol. An ITI is an instance of an ITM. To help
distinguish among different protocol executions in a system, we assume that the
contents of the identity tape of each party consists of two fields, namely a Session
ID (sid) and a Party ID (pid). We defer the reader to [14,16,19] for more detailed
understanding of ITMs and ITIs.

2.2 Smart Contract

In zkHawk/V-zkHawk, a coin is an anonymized marker of an amount of currency
used by the blockchain. A coin can be spent in a transaction such that it cannot
be linked to its owner. It has an associated value that is hidden. A coin is realized
with a commitment scheme; that is, a coin coin = Com($val, r) is a commitment
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to a value of currency $val with randomness r. The randomness r is only known
to the coin’s owner and is needed to spend the coin.

A coin has also a unique serial number sn which is computed by a party Pi
with its randomly sampled PRF secret key skPRF as sn ← PRFsnskPRF(pid||coin).
The serial number does not reveal the party that owns the coin. Assurance that
the same PRF key is used at all times by Pi is provided in the zero-knowledge
proofs by asserting that the public PRF key associated with P’s identity, which
we write as pkPRF := PRFskPRF(0).

Contracts stores the set of Session IDs (SIDs) of executed ITMs, the party IDs
(PIDs) and the phase message (freeze, compute or finalize). We can also imagine
this a set of different message that denotes which stage the zkHawk protocol is
at and which parties have executed which phase of the protocol. Coins denote the
set of input and output coin commitments. Computations denote which parties
(PIDs) have executed the given session (SID) of the MPC function evaluating
the smart contract function. SpentCoins consist of a set of serial number of coins
that that has been frozen by the blockchain. FrozenCoins is a user side set that
consists of the coin commitments that has been frozen by the blockchain.

Suppose a set of n parties P := {Pi}i∈[n]
4 wish to execute a smart contract

function f . Let P := {pid1, · · · , pidn} be the set of party IDs (PIDs) for each
{Pi}i∈[n].

Blockchain as a special protocol participant: We denote the blockchain
process as protocol participant B running a Turing machine (ITMB). In V-
zkHawk, we assume that the Blockchain takes the role of an Honest Verifier
(HV) and that it is publicly verifiable. To reduce complexity we also assume
that an adversary A can read the messages on the blockchain but cannot cor-
rupt the blockchain (i.e, write on the incoming or outgoing tape of the ITMB).
The Blockchain takes no part in the smart contract execution, hence we will
omit considering blockchain within the set P as well refrain from assigning a pid
to B. Since, no sensitive information is present on the blockchain and contract
execution occurs off-chain among the parties we ensure strong privacy guaran-
tees.

Deriving from [4], we define the set of valid votes V as the set of non-negative
integers less than a strict upper bound X. Mathematically, V := {$val ∈ Z : 0 ≤
$val < X}.

Assumption: We choose X as a power of 2 i.e. we let X = 2` for some
positive integer `.

Definition 4. An m-party smart contract is an m-ary function f : (V×{0, 1}∗)m →
(Vm × {0, 1}∗) ∪ {⊥} satisfying the following property:

– For all choices of $val, . . . , $valm ∈ V and in1, . . . , inm ∈ {0, 1}∗, one of the
following statements is true

1. z = ⊥
4 We assume there is a total order on the pseudonyms Pi so that a unique index may

be assigned to each party. Without loss of generality and for simplicity, when we
write Pi, we assume its index is i.
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2. z = ($val′1, . . . , $val′n, out)∧∑
i∈[m]

$val′i −
∑
i∈[m]

$vali = 0 (zero-sum constraint)

where z = f̂(($val1, in1), . . . , ($valm, inm)).

3 Variant zkHawk (V-zkHawk)

In this paper, we provide an elaborate and modify the construction of the zkHawk
[4] paper suggested by Banerjee et al. to design a variant zkHawk protocol.
zkHawk as explained is a private smart contract protocol leveraging the Hawk
protocol along with employing MPC functions to execute the contract instead of
a partially trusted manager. Specifically, we will describe how the contracts are
getting executed leveraging an MPC [6,25,40,42] function and its security in the
UC framework [14] with commitments, signatures, symmetric encryption, NIZK
arguments, assumption of CRS models and broadcast channels. To do this, we
will broadly divide the security into the real world and the ideal world scenario
with any PPT environment Z.

The MPC function defined in V-zkHawk protocol uses the classical concept
of secret sharing [24, 39, 42] to share the secret inputs among the parties and a
2-round broadcast [40] for summation thus checking zero-sum constraint. This
ensures that we achieve input privacy and the contracts are executed securely
using an MPC function.

To adhere to the task at hand and for brevity, we will not provide a detailed
mathematical proof of the inner workings of the MPC function although the
reader can look into any recent developments of MPC protocols which implies
secret sharing [6, 25]. We also observe that we can use Function Secret Sharing
(FSS) scheme [11] to share the MPC function among the different participants
of the smart contract.

Assumption: We aim to provide security for malicious, static adversaries
with dishonest majority in the UC model.

Definition 5. The V-zkHawk protocol π is a tuple (Com, B, U) where B =
(Preprocess,Freeze,Finalize) is the blockchain program (modelled as a tuple of
stateful PPT algorithms) and U = (Preprocess,Freeze,Compute,Finalize) is the
user program. The program B is passed to the blockchain program wrapper G,
defined in Figure 2, to produce a blockchain functionality. The program U is
passed to the user program wrapper H, defined in Figure 3 to specify user behav-
ior during execution of the protocol π.

On a high level, the goal of the V-zkHawk protocol for a set of participants
is to take an input (E.g., an amount of currency or votes) from each participant,
evaluate the smart contract (off-chain) using MPC function and output the
results of each of the party such that the input/output values remain hidden from
the blockchain as well other contract participants throughout the execution.
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Blockchain program wrapper G(B) :

Preprocess:
Contracts← {}
CRS generation and broadcast
Send blockchain state to A (read only).

Freeze: Z activates the Blockchain B
Upon receiving msg := (freeze, sid, P, ·) from Pi:
Send (msg, pid) to A (read only)
Assert pid ∈ P
If (sid, ·, ·, ·) /∈ Contracts:

Contracts← Contracts ∪ {(sid, P, P ′ := {}, freeze)}
Assert (sid, P, P ′, t := freeze) ∈ Contracts
Assert pid /∈ P ′
If B.Freeze(msg, pid) = 1: (i.e. Call program B)

If P ′ ∪ {pid} = P :
t← compute

Replace (id, P, P ′, freeze) in Contracts
with (id, P, P ′ ∪ {pid}, t)

Send blockchain state to A (read only)
Control goes back to Z

Finalize: Z activates the Blockchain B
Upon receiving msg := (finalize, sid, ·) from P:
Send (msg, pid) to A (read only)
Assert (sid, P, P ′, compute) ∈ Contracts
If B.Finalize(msg, pid) = 1:

If P ′ ∪ {pid} = P :
t← finalized
Replace (sid, P, P ′, compute) in Contracts
with (sid, P, P ′, finalized)

Send blockchain state to A (read only)
Control goes back to Z

Fig. 2. Blockchain program wrapper G(B) for V-zkHawk evaluation.

3.1 Preprocessing Phase

V-zkHawk protocol relies on the two-round MPC protocol for summation by
Kursawe, Danezis and Kohlweiss (KDK) [40]. In the discrete logarithm setting,
let G be a finite cyclic group of prime order p and let g be a generator of G. In
the preprocessing phase (a term borrowed from SPDZ [25]), a party Pi samples
a uniformly random vi ∈ Zp. Pi then broadcasts ui ← gvi ∈ G (as a part of
the CRS). We note that the ui and vi acts a public key and private key for
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User program wrapper H(U) :

Preprocess:
Computations← {}
Coins← {}
FrozenCoins← {}
CRS generation and broadcast

Freeze: Z activates party Pi or A (if corrupt)
Upon receiving message (freeze, f, P, $val, in):

r
$←− {0, 1}`

coin← Com($val, r)
Coins← Coins ∪ {coin}
FrozenCoins← FrozenCoins ∪ {(sid, coin)}
msg← U.Freeze(sid, coin, r, in)
Send msg to blockchain
If Pi was activated

Control goes back to Z
If A was activated

Activate Pi or return control to Z

Compute: Z activates party Pi or A (if corrupt)
Upon receiving message (compute, sid):
Define MPC function f ′ with input parameters x
Computations← Computations ∪ (f ′, P, sid)
Send (input, f ′, P, x) to U.Compute(sid)

Finalize: Upon receiving msg := (output, f ′, P, y) from
U.Compute(sid):
Assert (f ′, P, sid) ∈ Computations
Assert (sid, coin) ∈ FrozenCoins
(msg, coin′1, . . . , coin′n, out, ($val′, r′))← U.Finalize(sid, y)
Coins← (Coins \ {coin}) ∪ {($val′, r′)}
Send msg to blockchain
Remove (f ′, P, sid) from Computations
Remove (sid, coin) from FrozenCoins
If Pi was activated

Control goes back to Z
If A was activated

Activate Pi or return control to Z

Fig. 3. User program wrapper H(U) for V-zkHawk evaluation.

the signature scheme to be used in V-zkHawk. Also, we observe that in this
signature scheme setting the secret to public key homomorphic (as explained
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in Definition 2) property is satisfied. In the finalization phase specifically, Pi
first computes ti :=

∏
j<i u

−1
j ·

∏
i<j≤n uj and then sends zi := tvii · gmi to the

blockchain via secure side channels, where mi is Pi’s input to the summation.
Then evaluating the product

∏
i∈[n] zi gives g

∑
i∈[n]mi ; that is, the sum of the mi

is in the exponent and Pollard’s lambda algorithm can be used to extract it. In
our usage of KDK, the expected sum will be zero. Therefore we check whether∏
i∈[n] zi

?
= 1.

In this phase, the parties compute the CRS (Figure 4) and send the CRS to
each other via a UC broadcast protocol [30]. We assume the presence of authen-
ticated, asynchronous broadcast channels among the parties and the blockchain.
The broadcast protocol ΠASBC is defined in Figure 5.

ΠCRS - CRS Generation Protocol

CRS Generation:

vi
$←− Zp

ui ← gvi

βi
$←− {0, 1}4`

Ki ← KeyGenSym(1λ)

skPRFi
$←− Zp

pkPRFi ← PRFskPRFi(0)

Output:
The common reference string is declared
as CRS = (ui, pkPRFi, βi)i∈[n]

Fig. 4. UC CRS generation protocol

3.2 Freeze phase

The first phase of the protocol is freeze phase. In order to execute a smart
contract, each participant must freeze its input coin to the contract so that it
cannot be spent.

After the CRS broadcast message to each of the parties, the freeze phase is
initiated by the parties in P as in Figure 6 message which generates a freeze to
be sent to the blockchain.

As in [4], we generate the coin commitments based on the Pederson committ-
ment scheme [46]. Let h1 and h2 be two generators of finite cyclic G of prime
order p as stated above. Let the value to be committed by c and the blinding
factor (or randomness here) be r. Then a Pedersen commitment is defined as

Com(x, r) = hx1 · hr2
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Broadcast Protocol ΠASBC

Input:
Pi receives activation (broadcast, CRS) from Z

Broadcast:
Pi sends CRS to all parties.
Upon receiving CRSi from Pi, Pk sends the value CRSi
to all other parties.
Pk waits to receive a message from every party (other than Pi).
Each party outputs (broadcast, pid, CRS) where
CRS = (ui, pkPRFi)i∈[n]

Fig. 5. UC Broadcast protocol for the CRS

We chose Pederson commitments because the commitments generated follow
the perfectly hiding and computationally binding properties. Each commitment
commits to a bit b ∈ {0, 1} as UCCOneTime in [18] and leverages the CRS to
commit and reveal the commitments.

The blockchain on receiving this message instantiates the blockchain freeze
protocol (as in Figure 7) to block/freeze coin commitments (by extension their
serial numbers) that are being sent to the blockchain. This ensures that the coin
is not double spent and once a party commits a coin to the smart contract they
cannot change the value of the coin mid-execution or re-use the coin.

User anonymity is maintained in the freeze phase as we use NIZK (which are
zero-knowledge) proofs to ensure whether a particular serial number of a coin
committment exists on the SpentCoins set or not. Thus, no information about r
or skPRF is revealed during the proof and finding which committment correspond
to a particular transaction from SpentCoins and Coins is like inverting the PRF
function which is assumed to be infeasible.

3.3 Computation phase

The computation phase where the smart contract function is executed using
an MPC function. Our approach permits the MPC function to be carried out
efficiently between the participants of the contract. In particular, the MPC pro-
gram does not have to compute an expensive zk-SNARK proof as in Hawk [38].
Consider a smart contract function f : (Z× {0, 1}∗)n → Zn × {0, 1}∗. Let $vali
and ini be the input currency value and input string of party Pi respectively.
Applying f , we have, (($val′1, . . . , $val′n), out)← f(($val1, in1), . . . , ($valn, inn)).

All parties obtain the tuple (sid, P, pid, ui, coini) from the blockchain. There
must be a tuple for each pid ∈ P in order for execution to proceed i.e. it is the
case that sid ∈ Contracts.

In this phase, each party Pi generates its own output coin coin′i after it learns
its output value $val′i. There are two key ideas underlying for this protocol. The
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U.Freeze() - User Function
Input:
Pi receives CRS from broadcast protocol ΠASBC
Parse CRS

Compute:

Pi computes ri
$←− {0, 1}`

coini ← Com($vali, ri)
Generates πi ← NIZK.Prove(CRS, x, w) where the statement
to prove x is (coini, sni) and witness w is skPRF for the relation
that checks

Assert sni = PRFsnskprf (pid||coini)

Output:
Pi sends a message to the blockchain
of the form (freeze, sid, pid, ui, coini, sni, πi,CRS)

Fig. 6. The User function for the freeze phase in V-zkHawk

B.Freeze() - Blockchain Function
Input:

Blockchain receives (freeze, sid, pid, ui, coini, sni, πi,CRS) from
party Pi

Compute:
Assert coini ∈ Coins
Assert sni /∈ SpentCoins
Assert NIZK.Verify(CRS, x, πi) where the statement to be verified
x is (coini, sni)
Add sni to SpentCoins

Output:
Store (sid, P, pid, ui, coini)
If a tuple has been stored for every Pj ∈ P

Add sid to Contracts.

Fig. 7. The Blockchain function for the freeze phase in V-zkHawk

first is that the MPC function generates and outputs the output coin for each
party. The second idea is that the MPC function computes a “joint” signature
(with the public keys of all parties) on the set of output coins. As a result, an
honest party can inform the blockchain of the set of jointly-signed new coins.
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The blockchain can detect if a malicious party sends a coin with a different
value than its correctly assigned output value and therefore such an action can
be appropriately penalized (explained later). However the extra complexity of
the MPC function means that its computation is considerably more expensive.

We therefore consider some optimizations. In the discrete logarithm setting,
we observe that for aggregate multi-signature Schnorr schemes without random
oracles [43], a signature with the modular sum of a set of secret keys is a sig-
nature associated with the modular product of the set of corresponding public
keys (Definition 2) and that aggregation in V-zkHawk takes place during sign-
ing. Hence, a single

∑
sig computation suffices to perform a “joint” signature

to validate the contract execution in V-zkHawk. For V-zkHawk, we require the
signature scheme to support unforgeability as in EUF-CMA and that it is uni-
versally composable according to [15]. We defer the reader to Figure 1 of [15] for
the ideal FSig functionality that holds in the UC model. We can also optimise
using elliptic pairing signature schemes like aggregate multi-signature BLS [8]
or compact BLS [7]. The compute function is defined as in Figure 8.

We first define the MPC function f ′ in this phase:

– f ′((K1, $val1, s1, v1, in1), . . . , (Kn, $valn, sn, vn, inn)):
• (($val′1, . . . , $val′n), out)← f(($val1, in1), . . . , ($valn, inn))
• For all j ∈ [n]:

∗ coin′j ← Com($val′j ; sj)
• σ ←

∑
sig .Sign(

∑
j∈[n] vj , coin′1 ‖ · · · ‖ coin′n)

• Return ((ψ1 := Enc(K1, $val′1), . . . , ψn := Enc(Kn, $val′n)),
(coin′1, . . . , coin′n), σ, out)

U.Compute() - User Function
Input:

Party Pi receives (compute, sid, P, pid, ui, coini) from the blockchain

Compute:

Pi computes si
$←− {0, 1}`

The parties in P jointly compute an MPC function:
((ψ1, . . . , ψn), (coin′1, . . . , coin′n), σ, out)
← MPC(f ′, (K1, $val1, s1, v1, in1), . . . , (Kn, $valn, sn, vn, inn))

Output:
Return ((ψ1, . . . , ψn), (coin′1, . . . , coin′n), σ, out)

Fig. 8. The User function for the computation phase in V-zkHawk
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3.4 Finalization Phase

In the V-zkHawk protocol, a single honest party sending a finalize message,
which contains the jointly-signed coins (coin′1, . . . , coin′n), prevents a malicious
party Pi from convincing the blockchain to accept a different coin generated by
Pi. However in order for contract closure to take place, all parties must send a
finalize message since the blockchain requires a zi (with associated NIZK proof)
from each party to validate the zero-sum constraint (as shown in Figure 9). A
finalize message is said to be accepted from party Pi if the blockchain stores the
tuple (sid, pid, zi, coin′i) (see Output part in Figure 10).

3.5 Incentives for honest and financial penalties for malicious
parties

To incentivize parties to send a finalize message that is accepted by the blockchain,
we can impose a financial penalty on parties which fail to send such a message
within a certain time span. A blockchain can derive a measure of discrete units
of time (e.g.: each block in the blockchain is one time unit). We can therefore
specify a timeout for contract closure. We define the following behavior. When
the timeout is reached and contract closure has not occurred, only the frozen
coins {coinj}j∈[n] belonging to the parties who had a finalize message accepted
are refunded. Hence, a malicious party Pi who fails to send such a message loses
the entire value of its frozen coin coini. There is however one special case where
this outcome serves to inadequately incentivize malicious party Pi from sending
a finalize message. This is the case where Pi loses the entire value of its input
coin in accordance with the contract i.e. $val′i = 0. To resolve this problem, we
can introduce the precondition of deposits. More precisely, when a party freezes
its input coin, it must prove as part of the NIZK proof sent to the blockchain
that the value of its input coin is greater than some fixed threshold (the deposit
amount). A party Pi’s deposit is refunded if one of the following conditions is
met: (1). contract closure is reached; (2). the timeout is reached, an insufficient
number of finalize messages have been accepted, and an accepted finalize mes-
sage has been received from party Pi. Therefore, even in the event of a contract
deciding an output value of val′i = 0 for party Pi, there is still an incentive for
Pi to participate (i.e. the return of its deposit).

4 Ideal Functionalities and UC Security Analysis

In this section, we discuss the UC security of the V-zkHawk protocol designed in
the section above. The task at hand is to design the different functionalities F(.)
which can be emulated any protocol Π that are used in V-zkHawk construction.
Thereby also mimicking an adversary A using a simulator S in ideal V-zkHawk
construction. In line with UC security, the environment Z provides the input
to the parties P1, . . . ,Pn and can interact with A and S anytime during the
protocol execution. Let J = {j1, . . . , jn} be the set of all parties executing the
zk-Hawk protocol and I = {i1, . . . , it} be the set of indices of the t ≤ n corrupted
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U.F inalize() - User Function
Input:

Party Pi receives ((ψ1, . . . , ψn), (coin′1, . . . , coin′n), σ, out)
from the MPC function evaluation

Compute:
Pi computes:

$val′i ← Dec(Ki, ψi)
coin′i ← Com($val′i; si)
ti :=

∏
j<i u

−1
j ·

∏
i<j≤n uj

zi := tvii · g
$val′i−$vali

Generates π′i ← NIZK.Prove(CRS, x, w) where the statement to prove
x is (coini, coin′i, ui, (uj)j∈[n], zi) with the witness w
($vali, $val′i, ri, si, vi) for the relation that checks

Assert coini = Com($vali; ri)
Assert coin′i = Com($val′i; si)
Assert ui = gvi

Assert zi = tvii · g
$val′i−$vali

Output:
Pi sends the message (finalize, sid, pid, (coin′1, . . . , coin′n), σ, coin′i, zi, π

′
i,

CRS) to the Blockchain

Fig. 9. The User function for the finalization phase in V-zkHawk

parties. Additionally, we let Ī = [n] \ I = {̄i1, . . . , īn−t} be the set of indices of
the honest parties.

As explained in Section 2.1, in UC framework, a set of ITMs interact with
each other in the real and ideal worlds. As in [14, 41] we elaborate on the real
and ideal world executions:

Real World Execution: The protocol Π is realised by a set of ITMs
M1, . . . ,Mn that are executed by the n-parties {Pj}j∈[n] ∈ P. Since, we are
working with static adversaries, at the beginning of the protocol execution A
corrupts certain parties among P1, . . . ,Pn. Then, A and Z run in parallel with
Mī for every honest party Pī. The honest parties Pī relay the queries and an-
swers between Z andMī. A party Pi corrupted by A ignores any further input
and instead all the messages are sent to A. Furthermore, A can pretend to run
any Mj (Turing machines operated by a corrupted party) via any corrupted
party. At some point, Z stops the execution and outputs a bit.

Ideal World Execution: Owing to the assumption of static adversaries, S
corrupts certain parties in {Pj}j∈[n] ∈ P by notifying them and F . Z,S and Z
then execute in parallel. During the execution there is no direct communication
between F and Z. The parties P1, . . . ,Pn instead interact with Z and responds
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B.F inalize() - Blockchain Function
Input:

Blockchain receives (finalize, sid, pid, (coin′1, . . . , coin′n), σ, coin′i, zi, π
′
i,

CRS) from party Pi

Compute:
Assert that id ∈ Contracts
Let (sid, P, pid, ui, coini) for pid ∈ P be the stored tuples
in the freeze phase.
Assert NIZK.Verify(CRS, x, π′i) where the statement to be verified
x is (coini, coin′i, ui, (uj)j∈[n], zi)
Assert

∑
sig .Verify(

∏
j∈[n] uj , σ, (coin′1 ‖ · · · ‖ coin′n))

If coin tuple stored:
Assert (coin′1, . . . , coin′n) same as coin tuple stored

Else:
Store (coin′1, . . . , coin′n)

Output:
Store the tuple (sid, pid, zi, coin′i)
If a tuple (above) has been stored for every pid ∈ P

Assert
∏
j∈[n] zj = 1

For all j ∈ [n], add coin′j to Coins

Fig. 10. The Blockchain function for the finalization phase in V-zkHawk

to the queries inquired by Z. An honest party Pī forwards the queries to F and
returns the answer it gets from F to Z. A corrupted party Pi has no part to
play here again as S freely communicates with F and Z. Again, at some point,
Z stops the execution and outputs a bit.

The output bit that we get from Z is the guess of Z that whether it interacted
with the real world protocol or the ideal world functionality.

We start by defining the the broadcast functionality from [19, 30] FASBC
in Figure 11. From [18, 20] we borrow the idea of a non-interactive committ-
ment schemes and define the commitment functionality FCom (Figure 12). The
Blockchain B acts as the receiver who receives the committed value from the
functionality for each party Pi and later verifies it in the reveal phase. Next, we
define the ideal NIZK functionality FNIZK (Figure 14) and the ideal CRS func-
tionality FCRS (Figure 13). We leverage these functionalities as shown in [33].
The UC- NIZK arguments defined in the previous section for different phases of
the V-zkHawk realises the FNIZK functionality in the FCRS-hybrid model. The
commitment functionality FCom is also realised in the FCRS-hybrid model.

Finally, we design the ideal MPC functionality FMPC which computes the
MPC function to execute the smart contract in the ideal world process. This is
designed as a black box functionality which takes in input from all the parties
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Ideal Functionality FASBC

Upon receiving the message (broadcast, P, sid, ui) from Pi, send
(broadcast,Pi, sid, ui)
to all the parties in P and to the simulator S.
Halt.

Fig. 11. The ideal functionality for broadcasting among the parties

FCom - Commitment Functionality

Commit Phase:
On receiving the message (Commit, sid, pid,B, b) from Pi, where
b ∈ {0, 1}, record the tuple (sid, pid,B, b) and send message
(Received, sid, pid,B) to S and B. Ignore any further Commit
messages from Pi to B with the same sid.

Reveal Phase:
On receiving the message (Reveal, sid) from Pi:

If tuple (sid, pid,B, b) is previously recorded
Send message (Reveal, sid, pid,B, b) to B and S.

Else
Ignore the message

Fig. 12. The ideal commitment functionality

FCRS - Ideal CRS Functionality

Input:

On input (Input,sid), run CRS← ΠCRS(1λ).

Output:
Send (crs, sid, CRS) to all parties.
Halt.

Fig. 13. The ideal CRS functionality

via a secure channel, executes the smart contract and send the output values
after the smart contract execution back to the respective parties (Figure 15).
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FNIZK - Ideal NIZK Functionality

Prove:
Party Pi waits to receive (crs, sid, CRS) from FCRS
On input (Prove, sid, x, w) such that x(w) = 1,
run ΠNIZK ← NIZK.Prove(CRS, x, w)
Output (Proved, sid,ΠNIZK).

Verify:
Blockchain B waits to receive (crs, sid, CRS) from FCRS
On input (Verify, sid, x, w) run b← NIZK.Verify(CRS, x,ΠNIZK)
Output (Verified, sid, b), where b ∈ {0, 1}

Fig. 14. The ideal NIZK functionality

FMPC - Ideal Functionality

Init:
Inputs← {}

Input: Upon receiving (input, f, pid, P, xi) from Pi:
Assert pid ∈ P
Remove (f, P, pid, ·) from Inputs if it exists
Inputs← Inputs ∪ (f, P, pid, xi)
If (f, P, pid, xi) ∈ Inputs ∀ pid ∈ P :
y ← f(x1, . . . , xn′) where n′ = |P |
Send (output, f, P, y) to Pi ∀ pid ∈ P

Fig. 15. Idealized MPC functionality FMPC that executes the smart contract
function on inputs supplied by the set of parties.

Theorem 1. Let t be the number of static corrupted parties. Assuming a UC-
secure MPC protocol UC-realises an ideal FMPC functionality, a UC-secure Com
protocol and a UC-secure NIZK protocol UC-securely realises an ideal FCom func-
tionality and an ideal FNIZK functionality respectively in the (FCRS ,FASBC)-
hybrid model, an n-party V-zkHawk protocol is UC-secure ∀ t < n.

Proof. We prove the theorem via a hybrid argument. Our goal is to move to a
hybrid that shows that running the entire real world process with static adversary
A is indistinguishable from an ideal world process with simulator S to a PPT
environment Z. This signifies that for the desired hybrid we no longer depend
on the inputs of the honest parties i.e. (xi := ($vali, ini))i∈Ī . Recall that we
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assumed the Blockchain to be an honest verifier B which cannot be corrupted
an adversary A (or S) but A (or S) can read its input/output tape.

Simulating communication with the environment Z: Every input value
A receives from Z is written on the input tape of S as if Z is interacting with
S. Similarly, every output value written by A on its own output tape is copied
to S’s output tape to be read by the environment Z.

Hybrid 0: This is the real system with static adversary A and the parties
P1, . . . ,Pn

Hybrid 1: In this hybrid, S simulates the ideal functionality broadcast FASBC
instead broadcast protocol being executed via asynchronous authenticated broad-
cast channels.

The hybrids Hybrid 0 and Hybrid 1 are indistinguishable because of asyn-
chronous UC functionalities it is hard to distinguish how a party Pi receives
the broadcast values from remaining the (n− 1) parties.

Hybrid 2: In this hybrid, S simulates the ideal MPC functionality FMPC in-
stead of the MPC protocol. Here, the honest parties send their inputs to FMPC

and receive their outputs via a secure channel. Additionally, the input of the cor-
rupt parties controlled by the adversary is also sent to the functionality and they
receive their outputs as well. This is done by triggering the (input, ·) message to
FMPC and the parties receive (output, ·) as their output which also consists of

y as their output value for the smart contract as in the real MPC function f̂ .

The hybrids Hybrid 1 and Hybrid 2 are indistinguishable from each other be-
cause an environment cannot determine whether the MPC protocol or the ideal
functionality was run to compute the smart contract function and receive out-
puts.

Hybrid 3: In this hybrid, S simulates the ideal committment functionality in-
stead of FCom instead of the committment protocol using FCRS. We observe that
as in real protocol, the functionality and notifies the blockchain and ideal world
adversary of the committed value. Then, on receiving reveal message they open
the values to blockchain and the adversary for verification of the commitment.

The hybrids Hybrid 2 and Hybrid 3 are indistinguishable from each other because
of the blinding property of Pederson commitments and any PPT environment
interacting with S or A cannot determine whether the committed value or the
opening value was generated from a committment scheme or ideal committment
functionality.

Hybrid 4 We now modify the NIZK proof π for verifying serial numbers for coin
commitments with the ideal NIZK functionality using ideal CRS functionality.

This is hybrid is indistinguishable from Hybrid 3 because of the perfect zero-
knowledge property of the NIZK proofs.

Hybrid 5 In this hybrid, we modify the NIZK proof π′ for proving the zero-sum
constraint with the ideal NIZK functionality using the ideal CRS functionality.
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This hybrid is indistinguishable from Hybrid 4 because of the perfect zero-
knowledge property of the NIZK proofs.

SIM This is the ideal world process running with FNIZK , FMPC , FCom, FASBC
and the simulator S.

Hybrid 5 is very similar to the ideal process. Honest Provers in Hybrid 5 run
the proof π′ in the same way that S does without the knowledge of the witness.
Similarly for π in Hybrid 4, S runs the ideal functionality NIZK in the same
way as honest provers without knowledge of the secret key of the PRF function.
Both these hybrids are indistinguishable from the real worlds as well as SIM.
From Hybrid 3, we observe that S simulating the ideal commitment functionality
without knowledge of the value is similar to an honest party committing its
value. Hence, Hybrid 3 is indistinguishable from SIM. This forms a chain of
indistinguishable hybrids which follows that Hybrid 2 is indistinguishable from
Hybrid 3 and Hybrid 2 is indistinguishable from real world and finally Hybrid
1 is indistinguishable from the real world. This proves that running π,π′,MPC,
ΠASBC and Com with A in the real world Hybrid 0 is indistinguishable from
the running the ideal process as defined in SIM.
We do not provide a separate hybrid setup for replacing FSig with

∑
Sig as the

signature schemes are proved and verified within the MPC function. Hence, if
UC security holds for the MPC functionality, we assume UC security holds for
the signature functionality as well. �

5 Conclusion and Future Directions

The V-zkHawk protocol draws inspiration from Hawk and zkHawk and con-
structs a private smart contract protocol based on MPC evaluation. We have
constructed the protocol in the UC security framework assuming CRS-hybrid
functionality, presence of authenticated, asynchronous broadcast channels among
parties, secure side channels with the blockchain. The adversary setting is mali-
cious and static. The corruption is focused a dishonest majority situation where
any t < n parties can be corrupted. The worst case situation is of course n − 1
parties being corrupted but the protocol works for that situation as well as only
honest party is enough to execute the entire protocol. The paper by Damg̊ard
et. al [26] described an interesting approach to work on 2-round broadcast MPC
with minimal setup. It would be interesting to observe how we can modify the
designed V-zkHawk broadcast 2-round MPC method with said method [26] as
well as other 2-round broadcast optimal methods [21,22]. We can further improve
the security of our protocol by extending it work for adaptive adversaries [29].
The Global setup UC model (GUC) [2,17] solves the deniability and malleability
problem of running multiple protocols using the same CRS setup by achieving
a global setup that can be used by all malicious protocols running concurrently
with given protocol π. Our protocol relies on the FCRS ,FASBC-hybrid model
which assumes the presence of secure channels among parties and that each
CRS is generated during and destroyed after protocol execution thus. We aim
to optimize this using GUC leveraging a Global Setup.
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A Definitions

A.1 Pseudorandom functions

Definition 6 (PRF). Let f : A × B → X be a family of functions and let Y
be the set of all functions B → X. f is a pseudorandom function (PRF) family
if it is efficiently executable and ∀ PPT distinguisher D it holds that:∣∣∣Pr

[
a

$←− A,Dfa(.)(1
λ)
]
− Pr

[
y

$←− Y,Dy(.)(1
λ)
]∣∣∣ ≤ negl(λ)

where negl(λ) is a negligible function in the security parameter λ

A.2 EUF-CMA One-Time signatures

Definition 7. A one-time aggregate multi-signature scheme
∑
sig is strong EUF-

CMA, if ∀ PPT adversaries A

Pr
[
(sk, pk)← KeyGen(1λ), (m∗, σ∗)← ASign(sk,·)(pk) :

Verify(pk,m
∗, σ∗) = 1 ∧ (m∗, σ∗) /∈ QSign

]
≤ negl(λ)

where Z keeps track of the queries to the signing oracle via QSign and the
Sign(sk, ·) query can be called once.

B UC Framework

Fig. 16. Overview of the Real/Ideal World Execution in the UC Framework. The dot-
ted lines symbolizes the interaction with the environment Z. The solid lines indicates
interaction among the parties (honest/corrupted)


