
Verifiable Mix-Nets and Distributed Decryption
for Voting from Lattice-Based Assumptions

Diego F. Aranha1 ID , Carsten Baum1 ID ,

Kristian Gjøsteen2 ID , and Tjerand Silde2⋆ ID

1 Aarhus University, Denmark
{dfaranha,cbaum}@cs.au.dk

2 Norwegian University of Science and Technology, Norway
{kristian.gjosteen,tjerand.silde}@ntnu.no

Abstract. Cryptographic voting protocols have recently seen much in-
terest from practitioners due to their (planned) use in countries such as
Estonia, Switzerland and Australia. Many organizations also use Helios
for elections. While many efficient protocols exist from discrete log-type
assumptions, the situation is less clear for post-quantum alternatives such
as lattices. This is because previous voting protocols do not carry over
easily due to issues such as noise growth and approximate relations. In
particular, this is a problem for tested designs such as verifiable mixing
and decryption of ballot ciphertexts.
In this work, we make progress in this direction. We propose a new verifi-
able secret shuffle for BGV ciphertexts as well as a compatible verifiable
distributed decryption protocol. The shuffle is based on an extension of
a shuffle of commitments to known values which is combined with an
amortized proof of correct re-randomization. The verifiable distributed
decryption protocol uses noise drowning for BGV decryption, proving
correctness of decryption steps in zero-knowledge.
We give concrete parameters for our system, estimate the size of each
component and provide an implementation of all sub-protocols. Together,
the shuffle and the decryption protocol are suitable for use in real-world
cryptographic voting schemes, which we demonstrate with a prototype
voting protocol design.

Keywords: lattice cryptography · verifiable mix-nets · distributed de-
cryption · zero-knowledge proofs · cryptographic voting · implementation

1 Introduction

Mix-nets were originally proposed for anonymous communication [Cha81], but
have since been used extensively for cryptographic voting systems. A mix-net is
a multi-party protocol which gets as input a collection of ciphertexts and outputs
another collection of ciphertexts whose decryption is the same set, up to order.

⋆ Work done in part while visiting Aarhus University.

https://orcid.org/0000-0002-2457-0783
https://orcid.org/0000-0001-7905-0198
https://orcid.org/0000-0001-7317-8625
https://orcid.org/0000-0002-5455-0409

The mix-net will mix the ciphertexts so that the permutation between input and
output ciphertexts is hidden if at least one party is honest.

Mix-nets are commonly used in cryptographic voting. Here, encrypted bal-
lots are submitted to a bulletin board or ballot box with identifying information
attached. These ciphertexts must then be sent through a mix-net before decryp-
tion, to break the identity-ballot correlation.

In addition to breaking the correlation between input and output ciphertexts,
the correctness of the mix-net must be verifiable. In some cases, it is sufficient
that some auditor (possibly distributed) operating at the same time as the mix-
net can verify correctness, but for other applications the mix-net should provide
a proof of correctness that can be verified by anyone at any later point in time.

A shuffle of a set of ciphertexts is another set of ciphertexts whose decryption
is the same as the original set, up to order. A shuffle is secret if it is hard to
correlate input and output ciphertexts. A shuffle is verifiable if there is some
proof for the claim that the decryptions are the same.

If we have a verifiable secret shuffle for some cryptosystem, building a mix-
net is trivial. The nodes of the mix-net receive a set of ciphertexts as input,
shuffle them sequentially and provide a proof of correctness. The mix-net proof
then consists of the sets of intermediate ciphertexts along with the shuffle proofs.
If at least one node in the mix-net is honest, it is hard to correlate the inputs
and outputs.

For applications in cryptographic voting, we also need verifiable decryption
to ensure that the correct result can be obtained. The design of the voting
system must ensure that nobody has both the decryption key and the original
ciphertexts. One simple strategy for this is to use verifiable threshold decryption,
where the decryption key is secret-shared among a committee of decryption
parties.

Verifiable shuffling and verifiable distributed decryption protocols are well-
known for cryptosystems based on discrete log-type assumptions. For example,
Neff [Nef01] proposed the first efficient verifiable secret shuffle for ElGamal-
like cryptosystems. Distributed verifiable decryption can be achieved by giving
uniformly random shares of the secret key to a set decryption nodes, and have
each of them compute a partial decryption together with a proof of equality of
discrete logarithms [CP93] with respect to the secret key share.

Quantum-safety is critical for cryptographic voting systems, since elections
have a long-term need for privacy, and there is an urgent need for progress. Ver-
ifiable secret shuffles and verifiable distributed decryption are two long-standing
obstacles to delivering practical cryptographic voting schemes based on quantum-
safe computational problems such as lattice assumptions.

1.1 Our contributions

In this paper, we design a verifiable secret shuffle for BGV ciphertexts [BGV12]
that is suitable for cryptographic voting systems. The main obstacle to simply
adopting the ideas used by Neff for discrete logarithms to lattices is the lack
of suitable underlying proofs and techniques. We overcome these obstacles by

2

designing an extended version of the shuffle of commitments to known values
by Aranha et al. [ABG+21]. In our protocol, the shuffler gets input ciphertexts
c1, . . . , cτ . We let the shuffler commit to re-randomization ciphertexts ĉ1, . . . , ĉτ
using a suitable linearly homomorphic commitment scheme Com. Together with
an amortized proof of shortness of the randomness used for the committed re-
randomization ciphertexts, this gives us a verifiable shuffle:

1. First, the shuffler commits to the re-randomization ciphertexts ĉ1, . . . , ĉτ as
Com(ĉi) and shows that they are well-formed.

2. The shuffler computes di = ci+ĉi and sends shuffled elements L = (dπ(i))i∈[τ]
to the receiver.

3. Finally, the prover shows that L is a list of openings of the commitments
obtained from ci + Com(ĉi).

Towards implementing this, we use highly efficient lattice-based commitments
[BDL+18] together with a version of recent amortized proofs of shortness [BLNS21].

As explained, a verifiable secret shuffle on its own is usually not enough to
build a cryptographic voting system. We also need some way to decrypt the out-
put of the mix-net, without compromising the input ciphertexts or allowing a
decryption server to cheat. Our solution is to distribute the decryption operation
in a verifiable way. We hand out key-shares of the secret decryption key to each
decryption server, and all of them perform a partial decryption of each cipher-
text. In addition, we publish commitments to the key shares. The decryption
servers then add noise to the partial decryption to hide information about their
shares, called noise drowning [BD10]. Finally they publish the partial decryp-
tions together with a proof of correctness of the decryption (and boundedness
of the noise used), and the plaintexts are computed in public by combining all
the partial decryptions.

Lattice-based cryptography is very delicate with respect to noise-levels, bounds
and dimensions, and we have to be cautious when combining the sub-protocols
mentioned into a larger construction. Each shuffle adds extra noise to each ci-
phertext, which means that to ensure correctness of decryption we need to choose
specific parameters based on the number of shuffles and the norm of the noise
added in each shuffle. Here, the norm is guaranteed by the zero-knowledge proofs
of shortness accompanying each shuffle. Furthermore, each partial decryption
also adds noise to the ciphertexts to hide the secret key. Because of the noise
drowning technique, the norm must be quite large, influencing both the bounds
of the amortized zero-knowledge proof and the choice of parameters for the over-
all cryptosystem. In particular, it is important when measuring performance to
use parameters suitable for the complete system, not parameters optimized for
individual components only.

In order to provide proper context for our contributions, we provide a sketch
of a full cryptographic voting protocol. A simplified variant could be used as
a quantum-safe Helios [Adi08] variant. We give example parameters suitable
for this protocol with 4 mix-nodes and 4 decryption nodes. We have estimated
the size of each component with respect to the parameters for the full protocol
in addition to implementing all sub-protocols, showing that it can be used for

3

large-scale real-world elections where ballots typically are counted and verified
in batches of tens of thousands.

To summarize our implementation results, a ciphertext ballot is of size 80
KB, each mixing proof is of total size 370τ KB and each decryption proof is of
total size 157τ KB, where τ is the number of total ciphertexts. It takes only 2.5
ms to encrypt a ballot, while the mixing proof takes 1024τ ms and the decryption
proof takes 81.4τ ms. Note that the shuffle proof only takes 15.1τ ms, so the
time it takes to mix the ciphertexts is dominated by the time it takes to prove
correct re-randomization, which is 1009τ ms. Verification is much faster, only
20τ ms. These results improve on the state of the art considerably, see details in
Section 7.

1.2 Related work

Aranha et al. [ABG+21] provide a verifiable shuffle of known commitment open-
ings together with concrete parameters and an implementation of a complete
voting protocol. However, their trust model has the limitation that the ballot
box and the shuffle server must not collude to ensure privacy of the ballots, which
is too restrictive for most real-world settings. This is inherent for the protocol
which can not easily be extended to several shuffles unless layered encryption is
used, and this would heavily impact the performance.

Costa et al. [CMM19] design a more general shuffle with a straight-forward
approach similar to Neff [Nef01] based on roots of polynomials. Their protocol
requires committing to two evaluations of a polynomial, and then prove the
correctness of evaluation using a sequence of multiplication proofs which are
quite costly in practice. Farzaliyev et al. [FWK21] implements the mix-net by
Costa et al. [CMM19] using the amortization techniques by Attema et al. [ALS20]
for the commitment scheme by Baum et al [BDL+18]. Here, the proof size is
approximately 15 MB per voter, a factor 40 larger than our shuffle proof, even
for a smaller parameter set that does not take into account distributed decryption
afterwards. We expect our shuffle proof to be an additional factor 10 smaller than
what we presented above with optimal parameters for the shuffle only (q ≈ 232

and N = 1024). Furthermore, their proof generation takes approximately 1.5
seconds per vote, which is approximately 40 % faster than it takes to produce
our shuffle proof (when normalizing for clock frequency), with parameters that
do not take decryption into account.

Recently, Herranz et al. [HMS21] gave a new proof of correct shuffle based
on Benes networks and sub-linear lattice-based proofs for arithmetic circuit sat-
isfiability. However, the scheme is not implemented and the example parameters
do not take the soundness slack of the amortized zero-knowledge proofs into ac-
count. Moreover, [HMS21] does not consider decryption of ballots, which would
heavily impact the parameters of their protocol in practice.

A completely different approach to mix-nets is so-called decryption mix-nets.
The idea is that the input ciphertexts are actually nested encryptions. Each node
in the mix-net is then responsible for decrypting one layer of each ciphertext.
These can be made fully generic, relying only on public key encryption. Boyen

4

et al. [BHM20] carefully adapt these ideas to lattice-based encryption, resulting
in a very fast scheme. Decryption mix-nets are well-suited to applications in
anonymous communication. However, for voting applications they are often less
well-suited due to their trust requirements. An important goal for cryptographic
voting is universal verifiability: after the election is done, anyone should be able
to verify that the ballot decryption was done correctly without needing to trust
anyone. This trust issue generalizes to any situation where it is necessary to
convince someone that a shuffle has been done, but no auditor is available. Fast
or generic decryption mix-nets such as Boyen et al. [BHM20] need an auditor
(that can be distributed) to verify the mix-net, but the auditor must be trusted
during the mix-net operation. This conflicts with universal verifiability.

del Pino et al. [dLNS17] give a practical voting protocol based on homomor-
phic counting. They only support yes/no-elections, and the total size depends
directly on the number of candidates for larger elections. It was shown by Boyen
et al. [BHM21] that the protocol in [dLNS17] is not end-to-end verifiable unless
all tallying authorities and all voters’ voting devices are honest. This problem is
solved by [BHM21], but their construction still has the downside of only sup-
porting homomorphic tallying. Strand [Str19] built a verifiable shuffle for the
GSW cryptosystem, but this construction is too restrictive for practical use.
Chillotti et al. [CGGI16] uses fully homomorphic encryption, which for the fore-
seeable future is most likely not efficient enough to be considered for practical
deployment.

2 Preliminaries

Let N be a power of 2 and q a prime such that q ≡ 1 mod 2N . We define the
rings R = Z[X]/⟨XN +1⟩ and Rq = R/qR, that is, Rq is the ring of polynomials
modulo XN + 1 with integer coefficients modulo q. This way, XN + 1 splits
completely into N irreducible factors modulo q, which allows for very efficient
computation in Rq due to the number theoretic transform (NTT) [LN16]. We
define the norms of elements f(X) =

∑
αiX

i ∈ R to be the norms of the
coefficient vector as a vector in ZN :

||f ||1 =
∑
|αi|, ||f ||2 =

(∑
α2
i

)1/2
, ||f ||∞ = max

i∈[1,...,n]
{|αi|}.

For an element f̄ ∈ Rq we choose coefficients as the representatives in
[
− q−1

2 , q−1
2

]
,

and then compute the norms as if f̄ is an element in R. For vectors a =

(a1, . . . , ak) ∈ Rk we define the ℓ2 norm to be ∥a∥2 =
√∑

∥ai∥22, and analo-

gously for the ℓ1 and ℓ∞ norm. It is easy to see the following relations between
the norms of elements in Rq:

∥f∥∞ ≤ α, ∥g∥1 ≤ β, then ∥fg∥∞ ≤ αβ,

∥f∥2 ≤ α, ∥g∥2 ≤ β, then ∥fg∥∞ ≤ αβ.

We furthermore define the sets Sβ∞ = {x ∈ Rq | ∥x∥∞ ≤ β∞} as well as

C = {c ∈ Rq | ∥c∥∞ = 1, ∥c∥1 = ν} and C̄ = {c− c′ | c ̸= c′ ∈ C} .

5

2.1 The Discrete Gaussian Distribution

The continuous normal distribution over Rk centered at v ∈ Rk with standard
deviation σ is given by

ρNv,σ(x) =
1√
2πσ

exp

(
−||x− v||2

2σ2

)
.

When sampling randomness for our lattice-based commitment and encryption
schemes, we will need samples from the discrete Gaussian distribution. This
distribution is achieved by normalizing the continuous distribution over Rk by
letting

N k
v,σ(x) =

ρkNv,σ(x)

ρkNσ (Rk)
where x ∈ Rk and ρkNσ (Rk) =

∑
x∈Rk

ρkNσ (x).

When σ = 1 or v = 0, they are omitted. When x is sampled according to Nσ

(see Section 2.1 in [BBC+18]), then,

Pr[∥x∥∞ > γσ] ≤ 2e−γ
2/2 and Pr[∥x∥2 >

√
2γσ] < 2−γ/4.

2.2 Rejection Sampling

In lattice-based cryptography in general, and in our zero-knowledge protocols in
particular, we would like to output vectors z = y+v such that z is independent
of v, and hence, v is masked by the vector y. Here, y is sampled according to
a Gaussian distribution N k

σ with standard deviation σ, and we want the output
vector z to be from the same distribution. The procedure is shown in Figure 1.

Here, 1/M is the probability of success, and M is computed as

max
N k

σ (z)

N k
v,σ(z)

= exp

[
−2⟨z,v⟩+ ∥v∥22

2σ2

]
≤ exp

[
24σ∥v∥2 + ∥v∥

2
2

2σ2

]
= M, (1)

where we use the tail bound from Section 2.1, saying that |⟨z,v⟩| < 12σ∥v∥2 with
probability at least 1− 2100. Hence, for σ = 11∥v∥2, we get M ≈ 3. This is the
standard way to choose parameters, see e.g. [BLS19]. However, if the procedure
is only done once for the vector v, we can decease the parameters slightly, to the
cost of leaking only one bit of information about v from the given z.

In [LNS21], Lyubashevsky et al. suggest to require that ⟨z,v⟩ ≥ 0, and hence,
we can set M = exp(∥v∥2/2σ2). Then, for σ = 0.675∥v∥2, we get M ≈ 3. In
Figure 1, we use the pre-determined bit b to denote if we only use v once or
not, with the effect of rejecting about half of the vectors before the sampling of
uniform value u in the case b = 1, but allowing a smaller standard deviation.

6

Rej(z,v, b,M, σ)

1 : if b = 1 and ⟨z,v⟩ < 0: return 1

2 : µ←$ [0, 1)

3 : if µ >
1

M
· exp

[
−2⟨z,v⟩+ ∥v∥22

2σ2

]
: return 1

4 : else : return 0

Fig. 1. Rejection sampling

2.3 Knapsack Problems

We first define the Search Knapsack problem in the ℓ2 norm, also denoted as
SKS2. The SKS2 problem is exactly the Module-SIS problem in its Hermite
Normal Form.

Definition 1 (Search Knapsack problem). The SKS2n,k,β problem is to find

a short non-zero vector y satisfying [In A′] ·y = 0n for a random matrix A′.
An algorithm A has advantage ϵ in solving the SKS2n,k,β problem if

Pr

[
∥yi∥2 ≤ β ∧ A′ ←$ R

n×(k−n)
q ;[

In A′
]
· y = 0n 0 ̸= y = [y1, . . . , yk]

⊤ ← A(A′)

]
≥ ϵ.

Additionally, we define the Decisional Knapsack problem in the ℓ∞ norm
(DKS∞). The DKS∞ problem is equivalent to the Module-LWE problem when
the number of samples is limited.

Definition 2 (Decisional Knapsack problem). The DKS∞n,k,β problem is to

distinguish the distribution [In A′]·y for a short y from a bounded distribution
Sβ∞ when given A′. An algorithm A has advantage ϵ in solving the DKS∞n,k,β
problem if∣∣∣Pr[b = 1 | A′ ←$ Rn×(k−n)

q ;y ←$ Sk
β∞

; b← A(A′, [In A′] · y)]

− Pr[b = 1 | A′ ←$ Rn×(k−n)
q ;u←$ Rn

q ; b← A(A
′,u)]

∣∣∣ ≥ ϵ.

See [LS15] for more details about hardness problems over module lattices.

2.4 Public Key Encryption

We present definitions inspired by Goldwasser and Micali [GM82] for the secu-
rity of a (slightly additively homomorphic) public key encryption scheme. We
only present chosen plaintext (CPA) security here, as we need to randomize ci-
phertexts in our main protocol. To ensure full security one often requires chosen
ciphertext security, which can be achieved by combining a CPA secure scheme
with zero-knowledge proofs of correct encryption.

7

Definition 3 (Public Key Encryption Scheme). A public key encryption
scheme consists of three algorithms: key generation (KeyGen), encryption (Enc)
and decryption (Dec), where

- KeyGen, on input security parameter 1λ, outputs public parameters pp, a
public key pk, and a secret key sk,

- Enc, on input the public key pk and a message m, outputs a ciphertext c,
- Dec, on input the secret key sk and a ciphertext c, outputs a message m,

and the public parameters pp are implicit inputs to Enc and Dec.

Definition 4 (τ-Correctness). We say that the public key encryption scheme
is τ -correct if a sum of τ honestly generated ciphertext with overwhelming prob-
ability decrypts to the sum of the τ encrypted messages. Hence, we want that

Pr

Dec(sk, ∑
i∈[τ]

ci) =
∑
i∈[τ]

mi :
(pp, pk, sk)← KeyGen(1λ)

{ci}i∈[τ] ← Enc(pk, {mi}i∈[τ])

 ≥ 1− ϵ(λ),

where the probability is taken over the random coins of KeyGen and Enc.

Definition 5 (Chosen Plaintext Security). We say that the public key en-
cryption scheme is secure against chosen plaintext attacks if an adversary A,
after choosing two messages m0 and m1 and receiving an encryption c of ei-
ther m0 or m1 (chosen at random), cannot distinguish which message c is an
encryption of. Hence, we want that

|Pr

b = b
′

:

(pp, pk, sk)← KeyGen(1λ)
(m0,m1, st)← A(pp, pk)

b
$← {0, 1}, c← Enc(pk,mb)

b′ ← A(c, st)

− 1

2
| ≤ ϵ(λ),

where the probability is taken over the random coins of KeyGen and Enc.

2.5 Public Key Distributed Decryption

We now present a definition of a secure public key distributed decryption protocol
that is suitable for our voting application.

Definition 6 (Distributed Decryption Scheme). A public key distributed
decryption scheme consists of five algorithms: key generation (KeyGen), encryp-
tion (Enc), decryption (Dec), distributed decryption (DistDec) and combine (Comb),
where

- KeyGen, on input security parameter 1λ and number of key-shares ξ, outputs
public parameters pp, a public key pk, a secret key sk, and key-shares {skj},

- Enc, on input the public key pk and messages {mi}, outputs ciphertexts {ci},
- Dec, on input the secret key sk and ciphertexts {ci}, outputs messages {mi},
- DistDec, on input a secret key-share skj∗ and ciphertexts {ci}, outputs
decryption-shares {dsi,j∗},

- Comb, on input ciphertexts {ci} and decryption-shares {dsi,j}, outputs either
messages {mi} or ⊥,

8

and the public parameters pp are implicit inputs to Enc, Dec, DistDec and Comb.

Let Psk(u, v) be an efficiently computable predicate that on input secret key
sk = s and a ciphertext c = (u, v) outputs 1 or 0. For example, it outputs 1 if
∥v − su∥∞ < BDec ≪ ⌊q/2⌋ and otherwise 0 for the BGV scheme in Section 3.1.

Definition 7 (Threshold Correctness). We say that the public key distributed
encryption scheme is threshold correct with respect to to Psk(·) if

Pr

Comb({ci}i∈[τ], {dsi,j}i∈[τ],j∈[ξ])
=

Dec(sk, {ci}i∈[τ])
:

(pp, pk, sk, {skj}j∈[ξ])← KeyGen(1λ, ξ)
{c1, . . . , cτ} ← A(pp, pk)
∀i ∈ [τ] : Psk(ci) = 1

∀j ∈ [ξ] : {dsi,j}i∈[τ] ← DistDec(skj , {ci}i∈[τ])

 = 1,

where the probability is taken over the random coins of KeyGen and DistDec.

Definition 8 (Threshold Verifiability). We say that the public key distributed
encryption scheme is threshold verifiable with respect to Psk(·) if an adversary
A corrupting J ⊆ [ξ] secret key-shares {skj}j∈J cannot convince Comb to accept
maliciously created decryption-shares {dsi,j}i∈[τ],j∈J . More concretely:

Pr


Dec(sk, {ci}i∈[τ])

̸=
Comb({ci}i∈[τ], {dsi,j}i∈[τ],j∈[ξ])

̸=
⊥

:

(pp, pk, sk, {skj}j∈[ξ])← KeyGen(1λ, ξ)
({c1, . . . , cτ}, st)← A(pp, pk, {skj}j∈J)

∀i ∈ [τ] : Psk(ci) = 1
∀j ̸∈ J : {dsi,j}i∈[τ] ← DistDec(skj , {ci}i∈[τ])
{dsi,j}i∈[τ],j∈J ← A({dsi,j}i∈[τ],j ̸∈J , st)

 ≤ ϵ(λ),

where the probability is taken over the random coins of KeyGen and DistDec.

Definition 9 (Distributed Decryption Simulatability). We say that the
public key distributed decryption scheme is simulatable with respect to Psk(·) if
an adversary A corrupting J ⊊ [ξ] secret key-shares {skj}j∈J cannot distinguish
the transcript of the decryption protocol from a simulation by a simulator S which
only gets {skj}j∈J as well as correct decryptions as input. More concretely:

|Pr

b = b
′

:

(pp, pk, sk, {sk}j∈[ξ])← KeyGen(1λ, ξ)
({c1, . . . , cτ}, st)← A(pp, pk, {skj}j∈J)

∀i ∈ [τ] : Psk(ci) = 1
{ds0i,j} ← DistDec({skj}j∈[ξ], {ci}i∈[τ])

{ds1i,j} ← S(pp, {skj}j∈J , {ci, Dec(sk, ci)}i∈[τ])

b
$← {0, 1}, b′ ← A({dsbi,j}i∈[τ],j∈[ξ], st)

−
1

2
| ≤ ϵ(λ),

where the probability is taken over the random coins of KeyGen, DistDec and S.

2.6 Commitments

Commitment schemes were first introduced by Blum [Blu84], and have since
become an essential component in many advanced cryptography protocols.

Definition 10 (Commitment Scheme). A commitment scheme consists of
three algorithms: key generation (KeyGen), commitment (Com) and opening (Open),
where

- KeyGen, on input security parameter 1λ, outputs public parameters pp,

9

- Com, on input message m, outputs commitment c and opening r,
- Open, on input m, c and r, outputs either 0 or 1,

and the public parameters pp are implicit inputs to Com and Open.

Definition 11 (Completeness). We say that the commitment scheme is com-
plete if an honestly generated commitment is accepted by the opening algorithm.
Hence, we want that

Pr

[
Open(m, c, r) = 1 :

pp← KeyGen(1λ)
(c, r)← Com(m)

]
= 1,

where the probability is taken over the random coins of KeyGen and Com.

Definition 12 (Hiding). We say that a commitment scheme is hiding if an
adversary A, after choosing two messages m0 and m1 and receiving a commit-
ment c to either m0 or m1 (chosen at random), cannot distinguish which message
c is a commitment to. Hence, we want that

|Pr

b = b
′

:

pp← KeyGen(1λ)
(m0,m1, st)← A(pp)

b
$← {0, 1}, c← Com(mb)

b′ ← A(c, st)

− 1

2
| ≤ ϵ(λ),

where the probability is taken over the random coins of KeyGen and Com.

Definition 13 (Binding). We say that a commitment scheme is binding if an
adversary A, after creating a commitment c, cannot find two valid openings to
c for different messages m and m̂. Hence, we want that

Pr

 m ̸= m̂
Open(m, c, r) = 1
Open(m̂, c, r̂) = 1

:
pp← KeyGen(1λ)

(c,m, r, m̂, r̂)← A(pp)

 ≤ ϵ(λ),

where the probability is taken over the random coins of KeyGen.

2.7 Zero-Knowledge Proofs

These definitions are based on Goldwasser et al. [GMR85]. Let L be a language,
and let R be a NP-relation on L. Then, x is an element in L if there exists a
witness w such that (x,w) ∈ R. We let P, P∗, V and V∗ be polynomial time
algorithms.

Definition 14 (Interactive Proofs). An interactive proof protocol Π consists
of two parties: a prover P and a verifier V, and a setup algorithm (Setup), where
Setup, on input the security parameter 1λ, outputs public setup parameters sp.
The protocol consists of a transcript T of the communication between P and V,
with respect to sp, and the conversation terminates with V outputting either
1 or 0. Let ⟨P(sp, x, w), V(sp, x)⟩ denote the output of V on input x after its
interaction with P, who holds a witness w.

10

Definition 15 (Completeness). We say that a proof protocol Π is complete
if V outputs 1 when P knows a witness w and both parties follows the protocol.
Hence, for any efficient sampling algorithm P0 we want that

Pr

⟨P(sp, x, w), V(sp, x)⟩ = 1 :
sp← Setup(1λ)
(x,w)← P0(sp)

(x,w) ∈ R

 = 1,

where the probability is taken over the random coins of Setup, P and V.

Definition 16 (Knowledge Soundness). We say that a proof protocol Π is
knowledge sound if, when a cheating prover P∗ that does not know a witness w
is able to convince a honest verifier V, there exists a polynomial time algorithm
extractor E which, give black-box access to P∗, can output a witness w such that
(x,w) ∈ R. Hence, we want that

Pr

(x,w) ∈ R :
sp← Setup(1λ)

⟨P∗(sp, x, ·), V(sp, x)⟩ = 1

w ← EP
∗(·)(sp, x)

 ≥ 1− ϵ(λ),

where the probability is taken over the random coins of Setup, P∗ and E.

Definition 17 (Honest-Verifier Zero-Knowledge). We say that a proof
protocol Π is honest-verifier zero-knowledge if a honest but curious verifier V∗

that follows the protocol cannot learn anything beyond the fact that x ∈ L. Hence,
we want for real accepting transcripts T⟨P(sp,x,w),V(sp,x)⟩ between a prover P and
a verifier V, and a accepting transcript S⟨P(sp,x,·),V(sp,x)⟩ generated by simulator
S that only knows x, that

|Pr

b = b
′

:

sp← Setup(1λ)
T0 = T⟨P(sp,x,w),V(sp,x)⟩ ← Π(sp, x, w)
T1 = S⟨P(sp,x,·),V(sp,x)⟩ ← S(sp, x)

b
$← {0, 1}, b′ ← V∗(sp, x, Tb)

− 1

2
| ≤ ϵ(λ),

where the probability is taken over the random coins of Setup,S and V∗.

An interactive honest-verifier zero-knowledge proof protocol can be made
non-interactive using the Fiat-Shamir transform [FS87].

3 Background: Lattice-Based Cryptography

We start this section by presenting the BGV encryption scheme by Brakerski et
al. [BGV12], and continue by presenting the commitment scheme by Baum et
al. [BDL+18] and it’s respective zero-knowledge proofs of linear relations. Then,
we present two amortized zero-knowledge proofs of knowledge of short preimages.
First, we present a modification of the protocol due to Bootle et al. [BLNS21]
for proving knowledge of many instances when the secrets are very short, say,
all coefficients are ternary, and the proof must be exact. We also provide the
protocol due to Baum et al. [BBC+18] for proving knowledge of many bounded
instances where the proof is approximate.

11

3.1 BGV Encryption

Let p≪ q be primes, let Rq and Rp be defined as above for a fixed N , let D be a
bounded distribution over Rq, let B∞ ∈ N be a bound and let λ be the security
parameter. The (plain) BGV encryption scheme follows Definition 3 (in Section
2) and consists of three algorithms: key generation (KeyGen), encryption (Enc)
and decryption (Dec), where:

- KeyGen samples an element a ←$ Rq uniformly at random, samples a short
s ←$ Rq such that ∥s∥∞ ≤ B∞ and samples noise e ← D. The algorithm
outputs public key pk = (a, b) = (a, as+ pe) and secret key sk = s.

- Enc, on input the public key pk = (a, b) and an element m in Rp, samples a
short r ←$ Rq such that ∥r∥∞ ≤ B∞, samples noise e′, e′′ ← D, and outputs
the ciphertext c = (u, v) = (ar + pe′, br + pe′′ +m).

- Dec, on input the secret key sk = s and a ciphertext c = (u, v) in R2
q , outputs

the message m = (v − su mod q) mod p.

The following theorem for the BGV encryption scheme follows from Brakerski
et al. [BGV12, Section 3] and Lyubashevsky et al. [LPR13, Lemma 8.3].

Theorem 1 (Correctness and CPA Security of BGV). The BGV encryp-
tion scheme is 1-correct (Definition 4 in 2.4) if ∥v − su∥∞ ≤ BDec < ⌊q/2⌋, and
the scheme is secure against chosen plaintext attacks (Definition 5 in 2.4) if
the DKS∞N,2,β problem is hard for some β = β(N, q,B∞, σ, p). More general, the
scheme is τ -correct if τ ·BDec < ⌊q/2⌋.

Furthermore, we present the passively secure distributed decryption tech-
nique used in the MPC-protocols by Damg̊ard et al. [BD10,DKL+13,DPSZ12].
Here the KeyGen algorithm for 1 ≤ j ≤ ξ outputs uniformly random shares
skj = sj of the secret key sk = s such that s = s1 + s2 + · · · + sξ. This can be
used to define a passively secure threshold decryption algorithm as follows:

- DistDec, on input a secret key-share skj = sj and a ciphertext c = (u, v)
in R2

q , computes mj = sju, sample some uniform noise Ej ←$ Rq such that
∥Ej∥∞ ≤ 2sec(BDec/pξ) for statistical security parameter sec and noise-
bound BDec = max∥v − su∥∞, then outputs dsj = tj = mj + pEj .

- Comb, on input the ciphertext (u, v) and the set of decryption shares {dsj}j∈[ξ],
outputs the message m = (v− t mod q) mod p, where t = t1+ t2+ · · ·+ tξ.

The following theorem for the distributed decryption protocol follows from
the works by Damg̊ard et al. [DPSZ12, Theorem 4] and [DKL+13, Appendix G].

Theorem 2 (Correctness and Simulatability of Distributed BGV). Let
sec be the statistical security parameter. The distributed BGV encryption scheme
is correct (Definition 7 in 2.5) if ∥v − t∥∞ ≤ (1 + 2sec)BDec < ⌊q/2⌋, and is
decryption simulatable against passive adversaries (Definition 9 in 2.5).

12

3.2 Lattice-Based Commitments

Let Rq be defined as above for a fixed N and let NσC
be a Gaussian distribution

over Rq with standard deviation σC. The commitment scheme follows Defini-
tion 10 and consists of three algorithms: key generation (KeyGenC), committing
(Com) and opening (Open), where:

KeyGenC outputs a public key pk which allows to commit to messages in Rℓ
q

using randomness in Sk
BCom

. We define

A1 =
[
In A′1

]
whereA′1 ←$ Rn×(k−n)

q

A2 =
[
0ℓ×n Iℓ A′2

]
whereA′2 ←$ Rl×(k−n−ℓ)

q ,

for height n+ ℓ and width k and let pk be A =

[
A1

A2

]
.

Com commits to messages m ∈ Rℓ
q by sampling an rm ←$ Sk

BCom
and computes

Compk(m; rm) = A · rm +

[
0
m

]
=

[
c1
c2

]
= [[m]].

Com outputs commitment [[m]] and opening d = (m, rm, 1).

Open verifies whether an opening (m, rm, f), with f ∈ C̄, is a valid opening of
[[m]] for the public key pk by checking that ∥rm[i]∥ ≤ 4σC

√
N , for i ∈ [k],

and if

f ·
[
c1
c2

]
?
= A · rm + f ·

[
0
m

]
.

Open outputs 1 if all these conditions holds, and 0 otherwise.

For any commitment generated with Com, the algorithm Open will accept
(except with negligible probability) by setting f = 1.

The following theorem for the security of the commitment scheme follows
from Baum et al. [BDL+18, Lemma 6 and Lemma 7].

Theorem 3 (Hiding and Binding of the Commitment Scheme). The
commitment scheme is hiding (Definition 12 in 2.6) if the DKS∞n+ℓ,k,β∞

problem

is hard, and the scheme is binding (Definition 13 in 2.6) if the SKS2
n,k,16σC

√
νN

problem is hard.

The commitments [BDL+18] have a weak additively homomorphic property:

Proposition 1. Let [[m]] = Com(m; rm) be a commitment with opening (m, rm, f)
and let [[m′]] = Com(m′;0). Then [[m]]− [[m′]] has the opening (m−m′, rm, f).

The proof follows from the linearity of the verification algorithm.

13

Prover({(mi, ri)}i∈[n̂]; {αi}i∈[n̂−1], {[[mi]]}i∈[n̂]) Verifier({αi}i∈[n̂−1], {[[mi]]}i∈n̂)

yi ←$N k
σC

, i ∈ [n̂]

ti = A1yi, i ∈ [n̂]

u = A2((
∑
i ̸=n̂

αiyi)− yn̂)
{ti}i∈[n̂],u

β β
$← C

zi = yi + βri, i ∈ [n̂] û = u+ β((
∑
i̸=n̂

αici,2)− cn̂,2)

For all i in [n̂] :

Abort if Rej(zi, βri, σC) = 1.

{zi}i∈[n̂] return Accept iff:

1 : ∀i, j : ∥zi,j∥2
?

≤ B

2 : ∀i : A1zi
?
= ti + βci,1

3 : û
?
= A2((

∑
i ̸=n̂

αizi)− zn̂)

Fig. 2. Protocol ΠLin is a Sigma-protocol to prove the relation RLin.

3.3 Zero-Knowledge Proof of Linear Relations

Assume that there are n̂ commitments

[[mi]] =

[
ci,1
ci,2

]
, for 1 ≤ i ≤ n̂ where ci,2 ∈ Rℓ

q.

For the public scalar vector α = (α1, . . . , αn̂−1) ∈ Rn̂−1
q the prover wants to

demonstrate that the following relation RLin holds:

RLin =

{
(x,w)

∣∣∣∣ x = (pk, {[[mi]]}i∈[n̂],α) ∧ w = (f, {mi, ri}i∈[n̂]) ∧
∀i ∈ [n̂] : Openpk([[mi]],mi, ri, f) = 1 ∧mn̂ =

∑n̂−1
i=1 αimi

}
.

ΠLin in Figure 2 is a zero-knowledge proof of knowledge (ZKPoK) of this
relation (it is a directly extended version of the proof of linearity in [BDL+18]).
The relation RLin is relaxed because of the additional factor f in the opening,
which appears in the soundness proof. It does not show up in the protocol ΠLin,
because an honest prover will implicitly use f = 1.

The bound is B = 2σC

√
N and the ΠLin-protocol produces a proof transcript

of the form πLin = (({ti}i∈[n̂], u), β, ({zi}i∈[n̂])).
The following theorem for the security of zero-knowledge proof of linear re-

lations is a direct adaption of Baum et al. [BDL+18, Lemma 8].

Theorem 4 (Security of Zero-Knowledge Proof of Linear Relations).
The zero-knowledge proof of linear relations is complete (Definition 15 in 2.7)
if the randomness ri is bounded by BCom in the ℓ∞ norm, it is special sound

14

(Definition 16 in 2.7) if the SKS2
n,k,4σC

√
N

problem is hard, and it is statistical

honest-verifier zero-knowledge (Definition 17 in 2.7). The probability of success
is (1/M)n̂, where the constant M is computed as in Equation 1.

Even though the success probability is (1/M)n̂, we will only use this protocol
for small values of n̂ and choose parameters so that the total rejection probability
is small (around 1/3), which ensures that the protocol is efficient in practice.

When applying the Fiat-Shamir transform [FS87], we let β be the output of
a hash-function applied to the first message and x. Then, the proof transcript
is reduced to πL = (β, {zi}i∈[n̂]) where β is of 2λ bits and each zi is of size
kN log2(6σC) bits. We can compress zi to n̂(k−n)N log2(6σC) bits by checking
an approximate equality instead, as described in [ABG+21, Section 3.2]. We
denote by

πL ← ΠLin({(mi, ri)}i∈[n̂]; ({αi}i∈[n̂−1], {[[mi]]}i∈[n̂])), and

0 ∨ 1← ΠLinV({αi}i∈[n̂−1], {[[mi]]}i∈[n̂];πL),

the run of the proof and verification protocols, respectively, where the verification
protocol ΠLinV reconstructs the first message using β, performs the verification
as in the last step in Figure 2 and then checks that β was computed correctly
with respect to the statement and the first message.

3.4 Exact Amortized Zero-Knowledge Proof of Short Openings

It is well-known that polynomials in Rq can be represented as vectors in ZN
q

and multiplication by a polynomial â in Rq can be expressed as a matrix-vector

product with a nega-cyclic matrix Â in ZN×N
q . Let A be a r × v matrix over

Rq, that is, a rN × vN matrix over Zq. We will now consider how to prove
generically that ti = Asi for a bounded si, which is the same as proving correct
multiplication over the ring Rq of a public polynomial a and a secret and bounded
polynomials si resulting in public polynomials ti.

Bootle et al. [BLNS21] give an efficient amortized sublinear zero-knowledge
protocol for proving the knowledge of short vectors si and ei over Zq satisfying
Asi + ei = ti. Here we adapt their techniques for the case where ei is zero, and
prove that ∥si∥∞ ≤ 1. We further modify their protocol for amortized proofs
to benefit from smaller parameters due to the small bound on si, while their
amortized protocol was optimized for larger bounds3.

We first explain the main idea of [BLNS21] for proving knowledge of one
preimage s of t = As and then how it generalizes to an amortized proof for τ
elements with sublinear communication.

The approach follows an ideal linear commitments-technique with vector
commitments ComL(·) over Zq. The prover initially commits to the vector s as
well as an auxiliary vector s0 of equal length. Implicitly, this defines a vector

3 The authors of [BLNS21] mention that this optimization is possible, but neither
present the modified protocol nor a proof.

15

1 : P has input {si}τi=1; (A, {ti}τi=1) while V has input A, {ti}τi=1

2 : P samples s0 ←$ ZvN
q , h←$ Z2vN

q , r0 ←$ Zη
q , rh ←$ Zη

q and

ri,j ←$ Zη
q for each i ∈ [τ], j ∈ {0, 1, 2}.

3 : P computes f(X) =

τ∑
i=0

siℓi(X) and d = −As0 and defines vi,j using

1

ℓ0(X)
·

∏
h∈{−1,0,1}

[
f(X)− h · 1

]
=

2∑
j=0

τ∑
i=1

vi,jℓi(X)ℓ0(X)j

4 : P computes H0 ← Encode(s0,0, r0), H ← Encode(h, rh) as well as

Hi,j = Encode(δj · si,vi,j , ri,j) for each i ∈ [τ], j ∈ {0, 1, 2}.
5 : P computes E = RowsToMatrix(H,H0,H1,0,H1,1, . . . ,Hτ,2),

M = MerkleTree(CommitToColums(E)) and (cd, rd)← ComAux(d).

6 : P sendsM, cd to V

7 : V samples x←$ Z∗
q \ {a1, . . . , aτ} and β0, β1,0, . . . , βτ,2 ←$ Z∗

q and

sends x, β0, β1,0, . . . , βτ,2 to P

8 : P computes f̄ = f(x), r̄f = ℓ0(x)r0 +

τ∑
i=1

2∑
j=0

ℓi(x)ℓ0(x)
jri,j ,

h̄ = h+ β0s0 +

2∑
j=0

τ∑
i=1

βi,j(δj · si,vi,j), r̄h = rh + β0r0 +

2∑
j=0

τ∑
i=1

βi,jri,j

9 : P sends f̄ , r̄f , h̄, r̄h, rd to V

10 : V samples I ←$ [l]η, |I| = η and sends I to P

11 : P computes and sends E|I , MerklePathsI to V

12 : V runs Verify(E|I ,M, MerklePathsI) and checks that

OpenAux(cd,
1

ℓ0(x)
·

(
τ∑

i=1

tiℓi(x)−Af

)
, rd) = 1,

Encode

f̄ ,
1

ℓ0(x)
·

∏
h∈{−1,0,1}

[
f̄ − h · 1

]
, r̄f

∣∣∣
I

?
= ℓ0(x) ·H0

∣∣
I
+

τ∑
i=1

2∑
j=0

ℓi(x)ℓ0(x)
jHi,j |I

Encode
(
h̄, r̄h

) ∣∣∣
I

?
= H + β0H0

∣∣
I
+

τ∑
i=1

2∑
j=0

βi,jHi,j

∣∣
I

Fig. 3. The protocol ΠAEx is an exact amortized zero-knowledge proof of knowledge
of ternary openings. δx is 1 if x = 0 and 0 otherwise. (ComAux, OpenAux) is an arbitrary
commitment scheme.

16

of polynomials f(X) = s0(X) + s for the prover. Now consider the vector of
polynomials f(X)◦ (f(X)−1)◦ (f(X)+1), where ◦ denote the coordinate-wise
product, then we can see that the coefficients of X0 are exactly s◦(s−1)◦(s+1)
and therefore 0 if and only if the aforementioned bound on s holds. In that case,
each aforementioned polynomial in f(X) ◦ (f(X)− 1) ◦ (f(X) + 1) is divisible
by X. Therefore, the prover computes the coefficient vectors v2,v1,v0 of

1/X · f(X) ◦ (f(X)− 1) ◦ (f(X) + 1) = v2X
2 + v1X + v0

and commits to these. Additionally, define the value d = t−Af = −As0, which
the prover also commits to.

The verifier now sends a challenge x, for which the prover responds with
f = f(x). Additionally, the prover uses the linear property of the commitment
scheme to show that:

1. ComL(s0) · x+ ComL(s) opens to f .

2. ComL(v2) · x2 + ComL(v1) · x+ ComL(v0) opens to
1
x · f ◦ (f + 1) ◦ (f − 1).

The prover additionally opens the commitment to d and the verifier checks that
it opens to 1

x · (t −Af). Here, the first two commitment openings allow us to

deduce that the correct f is sent by the prover and that the values committed
as s are indeed commitments to {−1, 0, 1}. Then, from opening d we get that
the committed s is indeed the preimage of t under A.

The ideal linear commitments in [BLNS21] get realized using an Encode-then-
Hash commitment scheme. In this commitment scheme, the prover commits to
vectors x1, . . . ,xn ∈ Zg

q as follows:

1. Sample n random vectors r1, . . . , rn ∈ Zη
q

2. Let Encode be the encoding function of an [l, g + η, d] Reed-Solomon Code
with code-length l, message length g + η and minimal distance d. Compute
ei ← Encode(xi∥ri) for each i ∈ [n].

3. Construct the matrix E = RowsToMatrix(e1, . . . , en) where ei is row i.

4. Commit to each column of E using a cryptographic hash function, then
compress all m commitments into a Merkle tree rootM.

5. SendM to the verifier.

For the prover to show to the verifier that x is an opening of the linear combi-
nation

∑n
i=1 γixi:

1. The prover computes r =
∑n

i=1 γiri and sends r to the verifier.

2. The verifier chooses a subset I of size η from [l].

3. The prover opens the commitment for each column i ∈ I of E and proves
that it lies in the Merkle treeM by revealing the path.

4. The verifier checks that Encode(x∥r) coincides at position i with the respec-
tive linear combination of all n opened values in column i of E.

17

This is a proof of the respective statement due to the random choice of the set I.
Intuitively, if each row of E is in the code4, but they do not sum up to x, then
the linear combination of the codewords in E must differ from Encode(x∥r)
in at least d positions, which is the minimum distance of the code. By the
random choice of I and by setting η appropriately, the verifier would notice
such a disagreeing entry with high probability. At the same time, because only η
columns of E are opened, this leaks no information about the vectors x1, . . . ,xn.

For the case of more than one secret, the prover wants to show that ti = Asi
for τ values ti known to the verifier, subject to si again being ternary vectors.
Here, the goal is to establish the latter for all ti simultaneously while verifying
only one equation and sending only one vector f . Towards this, the prover as
before commits to si as well as an additional blinding value s0. Let a1, . . . , aτ ∈
Zq be distinct interpolation points and define the ith Lagrange interpolation
polynomial

ℓi(X) =
∏
i ̸=j

X − aj
ai − aj

.

Additionally, let ℓ0(X) =
∏τ

i=1(X − ai). Then every f ∈ Zq[X]/ℓ0(X) can
be written uniquely as f(X) =

∑τ
i=1 λiℓi(X) and any g ∈ Zq[X]/ℓ0(X)b as a

linear combination of {ℓi(X)ℓ0(X)j}b−1j=0. If we now, more generally, define the
polynomial

f(X) =

τ∑
i=0

siℓi(X),

then we observe that f(X) ◦ (f(X) − 1) ◦ (f(X) + 1) is divisible by ℓ0(X)
iff all ℓi(X)-coefficients of f(X) for i ∈ [τ] are 0. Additionally, since ℓi(X) ·
ℓj(X) = 0 mod ℓ0(X) if i, j ∈ [n], i ̸= j this then also implies that the si are
ternary. Moreover, we only have to commit to additional 3 · τ coefficients of
{ℓi(X)ℓ0(X)j}b−1j=0 to prove well-formedness of any evaluation of f(X) sent by
the prover.

The protocol is described in detail in Figure 3. As our construction substan-
tially deviates from that of [BLNS21] we show that the protocol indeed is a
ZKPoK. Perfect completeness is straightforward, so we focus on soundness and
special honest-verifier zero-knowledge.

Lemma 1 (Soundness in ΠAEx). Let Encode be the encoding function of
a Reed-Solomon code of dimension k′ = vN + η and length l. Furthermore,
let k′ ≤ k ≤ l < q. Suppose that there is an efficient deterministic prover P∗

convincing an honest verifier in the protocol in Figure 3 on input A, t1, . . . , tτ

4 For the proof to work, the verifier additionally has to verify this claim or rather,
that all rows are close to actual codewords. One mechanism to achieve this is to
commit to an additional auxiliary row and also open a random linear combination
of all rows, including the auxiliary row. This will be more clear in the soundness
proof of our protocol.

18

with probability

ϵ > 2·max

{
2

(
k

l − η

)η

,
1

q − τ
+

(
1− k − k′

6l

)η

, 2 ·
(
1− 2(k − k′)

3l

)η

,
18τ

q − τ

}
.

Then there exists an efficient probabilistic extractor E which, given access to P∗

either produces vectors si ∈ {−1, 0, 1}vN such that ti = Asi for all i ∈ [τ], or
breaks the binding property of the commitment scheme (ComAux, OpenAux), or finds
a hash collision in expected time at most 64T where

T :=
3

ϵ
+

k − η

ϵ/2− (k/(l − η))η

and running P∗ takes unit time.

The proof for Lemma 1 as well as a proof of the zero-knowledge property are
presented in Appendix C. The size of the amortized zero-knowledge proof in
Figure 3 in terms of prover-to-verifier communication is

|cd|+ |rd|+ |M|+ (2vN + (3τ + 4)η) log2 q + λη(1 + log2 l) bits. (2)

Theorem 5 (Security of Amortized Zero-Knowledge Proof of Exact
Openings). The amortized zero-knowledge proof of exact openings is complete
(Definition 15 in 2.7) when the secrets si has ternary coefficients, it is special
sound (Definition 16 in 2.7) if the SKS2r,v,1 problem is hard (see Lemma 1), and
it is statistically honest-verifier zero-knowledge (Definition 17 in 2.7).

3.5 Amortized Zero-Knowledge Proof of Bounded Openings

Let A be a publicly known r × v-matrix over Rq, let s1, s2, . . . , sτ be bounded
elements in Rv

q and let Asi = ti for i ∈ [τ]. Letting S be the matrix whose

columns are si and T be the same matrix for ti, but defined over ZN
q instead

of Rq as in the previous subsection, then Baum et al. [BBC+18] give a efficient
amortized zero-knowledge proof of knowledge for the relation

RANEx =

{
(x,w)

∣∣∣∣ x = (A,T , σANEx, BANEx) ∧ w = S ∧
∀i ∈ [τ] : ti = Asi ∧ ||si,j ||2 ≤ 2 ·BANEx

}
.

The protocol ΠANEx is depicted in Figure 4. We can use a challenge matrix C
with entries sampled from the set CANEx = {0, 1}, then this allows us to choose
the parallel protocol instances n̂ ≥ λ+ 2 for security parameter λ. Denote by

πANEx ← ΠANEx(S; (A,T , σANEx)), and 0 ∨ 1← ΠANExV((A,T , BANEx);πANEx),

the run of the proof and verification protocols, respectively, where the ΠANEx-
protocol, using Fiat-Shamir, produces a proof of the form πANEx = (C,Z), where
C is the output of a hash-function, and the ΠANExV-protocol consists of the two
checks in the last step in Figure 4. NσANEx

is a Gaussian distribution over Z with

19

Prover(S; (A,T , σANEx)) Verifier(A,T , BANEx)

∀i, j : yi,j ←$NσANEx

W = AY W

C ←$ CτN×n̂N
ANEx

C

Z ← Y + SC

Abort if Rej(Z,SC, σANEx) = 1.

Z 1 : ∀i, j : ∥zi,j∥2
?

≤ BANEx

2 : AZ
?
= TC +W

Fig. 4. Protocol ΠANEx is the approximate amortized zero-knowledge proof of knowl-
edge of bounded preimages for matrices and vectors over Zq.

standard deviation σANEx, and the verification bound is BANEx =
√
2NσANEx.

Note that σANEx, and hence BANEx, depends on the norm of S (see Section 2.2).
This means that the bound we can prove for each ∥si,j∥2 depends on the number
of equations τ in the statement to be proved.

The following theorem for the security of the amortized zero-knowledge proof
of bounded openings follows from Baum et al. [BBC+18, Lemma 3].

Theorem 6 (Security of Amortized Zero-Knowledge Proof of Bounded
Openings). The amortized zero-knowledge proof of bounded openings is com-
plete (Definition 15 in 2.7) if the secrets in S are bounded by BCom in the ℓ∞
norm, it is special sound (Definition 16 in 2.7) if the SKS2n,k,2kBANEx

problem
is hard, and is statistical honest-verifier zero-knowledge (Definition 17 in 2.7).
The probability of success is 1/M , as computed in Equation 1.

Finally, we note that this protocol can be generalized to check for different
norms (and using different standard deviation) in each row or column of Y and
Z depending on varying norms of the secrets si,j , see [BEPU+20, Section 5] for
details.

4 Verifiable Shuffle of BGV Ciphertexts

The recent work by Aranha et al. [ABG+21] presents an efficient protocol ΠShuf

for a shuffle of openings of lattice-based commitments using zero-knowledge
proofs of linear relations.

20

More concretely, the authors present a proof for the following relation RShuf:

RShuf =

 (x,w)

x = ([[m1]], . . . , [[mτ]], m̂1, . . . , m̂τ),
w = (π, f1, . . . , fτ , r1, . . . , rτ), π ∈ Sτ , m̂i ∈ Rq

∀i ∈ [τ] : fi · [[mπ−1(i)]] = fi ·
[
c1,π−1(i)

c2,π−1(i)

]
= Ari + fi ·

[
0
m̂i

]
∧ ||ri[j]|| ≤ 4σC

√
N

 .

In their work, they show the following result:

Theorem 7 (Security of ΠShuf). Assume that (KeyGenC, Com, Open) is a se-
cure commitment scheme with ΠLin as a HVZK Proof of Knowledge of linear
relation with soundness error ϵ. Then there exists a protocol ΠShuf that is an
HVZK PoK for the relation RShuf with soundness error (τ δ + 1)/|Rq|+ 4τϵ.

We now extend their protocol, allowing to verifiably shuffle elements that are
vectors in Rℓ

q instead of the original elements from Rq.

4.1 The Extended Shuffle Protocol

We are now in a situation where both prover and verifier are given a list of
commitments [[m1]], . . . , [[mτ]] as well as potential messages (m̂1, . . . , m̂τ) from
Rℓ

q. The prover additionally obtains openings mi, ri, fi and wants to prove that
the set of plaintext elements are the same set as the underlying elements of
the commitments for some secret permutation π of the indices in the lists. The
protocol of Aranha et al. does not work in this setting, as their technique crucially
requires that the plaintexts are from Rq. Thus, our goal is to prove

Rℓ
Shuf =

 (x,w)

x = ([[m1]], . . . , [[mτ]], m̂1, . . . , m̂τ),
w = (π, f1, . . . , fτ , r1, . . . , rτ), π ∈ Sτ , m̂i ∈ Rℓ

q

∀i ∈ [τ] : fi · [[mπ−1(i)]] = fi ·
[
c1,π−1(i)

c2,π−1(i)

]
= Ari + fi ·

[
0
m̂i

]
∧ ||ri[j]|| ≤ 4σC

√
N

 .

Towards proving this relation, we observe that instead of proving a shuffle
on the vectors directly, it is sufficient to let the verifier choose a random element
h ←$ Rq. Then instead of proving a shuffle on m1, . . . ,mτ , the prover instead
performs the same proof on ⟨m1, ρ⟩, . . . , ⟨mτ , ρ⟩ where ρ = (1, h, . . . , hℓ−1)⊤.
The problem with this approach is that we must also be able to apply ρ to the
commitments [[m1]], . . . , [[mτ]], without re-committing to the inner product and
proving correctness in zero-knowledge.

Since each commitment [[m]] can be written as[
c1
c2

]
= Ar +

[
0
m

]
,

we can write c1 = A1r and c2 = A2r + m. From this we can create a new
commitment [[⟨ρ,m⟩]] under the new commitment key pk′ = (A1, ρA2) where

21

c′1 = c1 remains the same, while we set c′2 = ⟨ρ, c2⟩. Note that this does not
increase the bound of the randomness of the commitment. Since

A2 =
[
0ℓ×n Iℓ A′2

]
whereA′2 ∈ Rl×(k−n−ℓ)

q ,

it holds that
a′2 = ρA2 =

[
0n ρ⊤ ρA′2

]
.

It is easy to see that breaking the binding property for pk′ is no easier than
breaking the binding property for pk.

Proposition 2. If there exists an efficient attacker A that breaks the binding
property on commitments under the key pk′ with probability ϵ, then there exists
an efficient algorithm A′ that breaks the binding property on pk with the same
probability.

Proof. Assume that A outputs two valid (r1,m1, f1), (r2,m2, f2) for pk′. This
in particular implies that f1c

′
2 = ⟨a′2, r1⟩ + f1m1 and f2c

′
2 = ⟨a′2, r2⟩ + f2m2.

Multiplying the first term with f2 and the second with f1 yields that

0 = ⟨a′2, (f2r1 − f1r2)⟩+ f1f2(m1 −m2).

Since m1 ̸= m2 we have that ⟨a′2, f2r1 − f1r2⟩ ≠ 0.
Let m1 = (f1c2 − A2r1)/f1 and m2 = (f2c2 − A2r2)/f2. It is clear that

(r1,m1, f1) and (r2,m2, f2) are valid openings for pk. We need to show that
indeed m1 ̸= m2.

Towards this, assume that m1 = m2. By multiplying the definition with f1f2
we get that 0 = A2(f1r2 − f2r1). This implies that

⟨ρ,A2(f1r2 − f2r1)⟩ = ⟨ρA2, f1r2 − f2r1⟩ = ⟨a′2, f1r2 − f2r1⟩ = 0

which is a contradiction. ⊓⊔

Shuffle protocol. Given the above, we can now construct the protocol Πℓ
Shuf:

1. Initially, P and V hold {[[mi]], m̂i}i∈[τ] for a public key pk = (A1,A2) while
the prover additionally has {mi, ri}i∈[τ], π ∈ Sτ .

2. V chooses h←$ Rq and sends it to P. Both parties compute ρ← (1, h, . . . , hℓ−1)⊤.
3. P and V for each [[mi]] = (c1,i, c2,i) compute [[⟨ρ,mi⟩]] = (c1,i, ⟨ρ, c2,i⟩).
4. P, V now run ΠShuf on input commitments {[[⟨ρ,mi⟩]]}i∈[τ] and messages
⟨ρ,mi⟩. P uses the same permutation π, randomness ri as before. The com-
mitment key pk′ = (A1,ρA2) is used by both parties.

5. If the protocol ΠShuf accepts then V accepts, otherwise he rejects.

We now show the following:

Lemma 2 (Soundness in Πℓ
Shuf). Assume that ΠShuf that is an HVZK Proof

of Knowledge for the relation RShuf with soundness error ϵ′. Then Πℓ
Shuf is a

HVZK PoK for the relation Rℓ
Shuf with soundness error ϵ = 2ϵ′ + 3

(
ℓ−1
q

)N
.

22

Proof. Completeness and Zero-Knowledge of Πℓ
Shuf follow immediately from the

same properties of ΠShuf. Thus, we focus now on knowledge soundness.
Let P∗ be a prover that convinces a verifier on input x with probability ν > ϵ.

For the proof, we will use the standard definition of proof of knowledge where
there must exist an extractor E that succeeds with black-box access to P∗ running
in expected time p(|x|)/(ν − ϵ) where p is a polynomial.

Towards constructing a simulator E we know that there exists an extractor
E ′ for ΠShuf. We construct E as the following loop, which restarts whenever the
loop “aborts”:

1. Run random protocol instances with P∗ until a valid protocol instance with
challenge h was generated. Do this at most 2/ϵ steps, otherwise abort.

2. Run E ′ with the fixed h with P∗ until it outputs π, {fi, ri}i∈[τ]. If E ′ aborts,
then abort. In parallel, start a new loop instance until E ′ finishes.

3. Let m̃i = (fic2,i − A2ri)/fi. If m̃π−1(i) = m̂i for all i ∈ [τ] then output
π, {fi, ri}i∈[τ], otherwise abort.

First, by the definition we observe that m̃i = (fic2,i −A2ri)/fi is well-defined
because fi is invertible. If E outputs a value, then the output of E is a witness for
the relation Rℓ

Shuf. We now show a bound on the expected time per loop-instance,
and that each loop with constant probability outputs a valid witness.

In the first step, we expect to find an accepting transcript after 1/ϵ steps.
Since we run this step for 2/ϵ iterations, we will have found an accepting tran-
script with probability at least 1/2 by Markov’s inequality. Consider the matrix
H where the rows are indexed by all choices h and the columns by the choices of
the used shuffle proof. Then, by the heavy-row lemma [Dam10], with probability
≥ 1/2 we will have chosen a value h such that the row of H contains ϵ/2 > ϵ′ 1s.
In that case, E ′ will by definition output a valid witness in an expected number
of p(|x|)/(ν − ϵ′) < p(|x|)/(ν − ϵ) steps, which is within the runtime budget. For
the case it gets stuck, we start another loop which we run in parallel. Once E ′
has found an opening, then the computation in Step 3 is inexpensive. We now
have to compute the abort probability of this step.

First, assume that E ′ outputs the same opening with probability at least
1/2 in 2/3rds of the heavy rows. It can easily be shown that we can otherwise
construct an algorithm that breaks the binding property of the commitment
scheme with an expected constant number of calls to E ′ and by using Proposition

2. Moreover, by a counting argument, there must be > 3
2

(
ℓ−1
q

)N
heavy rows:

Assume to the contrary that there are at most 3
2

(
ℓ−1
q

)N
heavy rows. Let each

of the heavy rows have only ones (verifier always accepts), and each other row

be filled with ϵ/2 ones. This is the maximal case of having only 3
2

(
ℓ−1
q

)N
heavy

rows. But then the acceptance probability can be at most

3

2

(
ℓ− 1

q

)N

+

[
1− 3

2

(
ℓ− 1

q

)N
]
· ϵ/2 <

3

2

(
ℓ− 1

q

)N

+ ϵ/2 < ϵ.

23

Assume that E ′ extracts a valid witness π, {fi, ri}i∈[τ] for input commit-
ments {[[⟨ρ,mi⟩]]}i∈[τ] and messages ⟨ρ, m̂i⟩ while the extracted m̃i = (fic2,i −
A2ri)/fi do not form a permutation on the m̂i. Then there exists an i ∈ [τ]
such that

fi · ⟨ρ, c2,π−1(i)⟩ = ⟨ρA2, ri⟩+ fi⟨ρ, m̂i⟩

but

fi · c2,π−1(i) = A2ri + fi(m̂i + δ)

where m̃i = m̂i + δ for a non-zero vector δ. Combining both equations,
we get that 0 = ⟨ρ, δ⟩. This implies that the polynomial

∑ℓ−1
i=0 δ[i]X

i that has
coefficients from δ must be zero at point h whose powers generate the vector
ρ. Since this polynomial is of degree ℓ− 1, by [ABG+21, Lemma 2] it can be 0
in at most (ℓ − 1)N positions without being the 0-polynomial itself. But since
the transcript is extractable and thus accepting for strictly more than (ℓ− 1)N

choices of h (by our choice of the “default witness” from above), we must have
that δ was 0 to begin with. Therefore, Step 3 only aborts if we stumble upon a
witness π, {fi, ri}i∈[τ] for RShuf that is not the “default witness” which occurs
with constant probability only. ⊓⊔

Notation and communication. We denote by

πShuf ← Πℓ
Shuf(({(mi, ri)}τi=1, h); ({[[mi]]}τi=1, {m̂i}τi=1)), and

0 ∨ 1← Πℓ
ShufV(({[[mi]]}τi=1, {m̂i}τi=1);πShuf)

the run of the proof and verification protocols of the shuffle, respectively.
We refer to Section 7 for sizes, parameters and a concrete instantiation of

the shuffle protocol, as parameters depend on the full mix-net protocol and the
decryption protocol, such as the number of servers involved.

4.2 Verifiable Shuffle of BGV Ciphertexts

The following mixing protocol is for the relation RMix:

RMix =

 (x,w)

x = (A′′, c1, . . . , cτ , ĉ1, . . . , ĉτ , [[c
′
1]], . . . , [[c

′
τ]]),

w = (π, r′1, . . . , r
′
τ ,), π ∈ Sτ ,

∀i ∈ [τ] : ci = Enc(pk,mi), c
′
i = Enc(pk, 0),

[[c′i]] = A′′r′i, ∥r′i∥∞ ≤ B∞, ĉπ(i) = ci + c′i

 .

If the noise-level in all ci and c′i are bounded by BDec, and 2BDec < ⌊q/2⌋, then
all ci and ĉπ(i) will, for some permutation π, decrypt to the same message mi.

Public parameters. Let p≪ q be primes, let Rq and Rp be defined as above for
a fixed N , let D be a bounded distribution over Rq, and let B∞ ∈ N be a bound.
We assume properly generated keys and ciphertexts according to the KeyGen

and Enc algorithms in Section 3.1.

24

Let S be the shuffle algorithm. Then S takes as input a set of τ publicly
known BGV ciphertexts {ci}τi=1, where each ciphertext is of the form

ci = (ui, vi) = (ari + pei,1, bri + pei,2 +mi),

where mi in Rp is the encrypted message, ri ←$ Rq is a short element such that
∥ri∥∞ ≤ B∞, and ei,1, ei,2 ← D is some bounded random noise ensuring that the
total noise in the ciphertext is bounded by BDec.

Randomizing. First, S randomizes all the received ciphertexts and creates a new
set of ciphertexts {c′i}τi=1 of the form

c′i = (u′i, v
′
i) = (ar′i + pe′i,1, br

′
i + pe′i,2),

where r′i, e
′
i,1, e

′
i,2 are chosen as above. This corresponds to creating fresh, inde-

pendent encryptions of 0. Observe that S will not publish these c′i.

Committing. S now commits to the c′i. Towards this, we re-write the commit-
ment matrix from Section 3.2 for ℓ = 2 and add the public key of the encryption
scheme to get a (n + 2) × (k + 3) commitment matrix A′′, where 0n are row-
vectors of length n, a1,1,a1,2 are column vectors of length n, a2,3,a3,3 are row
vectors of length k − n− 2 and A1,3 is of size n× (k − n− 2). Then,

Com(u′i, v
′
i) = [[(ar′i + pe′i,1, br

′
i + pe′i,2)]] = A′′r′i

=

In a1,1 a1,2 A1,3 0 0 0
0n 1 0 a2,3 a p 0
0n 0 1 a3,3 b 0 p



ri
r′i
e′i,1
e′i,2

 ,

where ri ∈ Rk
q is the randomness used in the commitment. Further, let [[(ui, vi)]]0

be the trivial commitment to (ui, vi) with no randomness. Then, given the com-
mitment [[(u′i, v

′
i)]] and [[(ui, vi)]]0 we can compute a commitment

[[(ûi, v̂i)]] = [[(ui, vi)]]0 + [[(u′i, v
′
i)]].

Thus, the commitments [[(ûi, v̂i)]] contain re-randomized encryptions of the orig-
inal ciphertexts. S can therefore open a permutation of the (ûi, v̂i) and prove
correctness of the shuffled opening using algorithm Πℓ

Shuf. To ensure correctness
we have to additionally show that each u′i, v

′
i was created such that decryption

is still correct.

Proving correctness of commitments. Let A′′ be the (n + 2) × (k + 3) matrix
defined above. Then S needs to prove that, for all i, it knows secret short vectors
r′i of length k + 3 that are solutions to the following equations:

ti = A′′r′i = [[(ar′i + pe′i,1, br
′
i + pe′i,2)]], ∥r′i∥∞ ≤ B∞.

To show this, S runs theΠAEx-protocol for the inputsA
′′, {r′i}τi=1, {ti}τi=1. Here,

S uses the Fiat-Shamir transform to ensure non-interactivity of the proof.
We summarize the aforementioned in the following protocol ΠMix:

25

1. S obtains as input the ciphertexts {ci}i∈[τ] = {(ui, vi)}i∈[τ].
2. S for each i ∈ [τ] samples r′i, e

′
i,1, e

′
i,2 as mentioned above. It then creates

commitments {[[u′i, v′i]] = [[ar′i + pe′i,1, br
′
i + pe′i,2]]}i∈[τ] using randomness ri

for each such commitment.
3. Let ti = [[u′i, v

′
i]] and r′i = [r⊤i , r

′
i, ei,1, ei,2]

⊤. Then S computes πAEx ← ΠAEx

for matrix A′′, input vectors {r′i}, target vectors {ti} and bound B∞.
4. Let ĉi = (ui + u′i, vi + v′i) and L be a random permutation of {ĉi}i∈[τ].

Then S computes πShuf ← Πℓ
Shuf with input commitments {[[(ûi, v̂i)]]}i∈[τ],

commitment messages {(ui, vi)}i∈[τ], commitment randomness {ri}i∈[τ] and
openings L.

5. S outputs ({ti}i∈[τ], πAEx, L, πShuf).

Given such a string ({ti}i∈[τ], πAEx, L, πShuf) from S as well as ciphertext
vector {ci}i∈[τ] any third party V can now run the following algorithm ΠMixV

to verify the mix step:

1. Run the verification algorithm of ΠAExV for πAEx on inputs A′′, {ti}i∈[τ] and
B. If the verification fails, then output 0.

2. For all i ∈ [τ] set [[(ûi, v̂i)]] = [[(ui, vi)]]0 + ti where (ui, vi) = ci.
3. Run the verification algorithm of Πℓ

ShufV for πShuf on input
{[[(ûi, v̂i)]]}i∈[τ], L. If the verification fails, then output 0.

4. Output 1.

The following theorems refer to definitions of correctness, soundness and
honest-verifier zero-knowledge given in Section 2.7. The protocol ΠMix is essen-
tially a re-randomization and shuffle of a set of ciphertexts augmented with some
commitments and zero-knowledge proofs, carefully composed to give security.

In the following theorems, define the noise bound BDec to be the maximum
level of noise in a ciphertexts c′i = Enc(pk,m′i) when the randomness r′i, e

′
i,1, e

′
i,2

used to create the ciphertexts is bounded by B∞ and m′i is bounded by p in the
ℓ∞ norm. Let BDec satisfy 2BDec < ⌊q/2⌋.

Theorem 8 (Correctness). Let input ciphertexts have noise bounded by BDec,
and let the total noise added in ΠMix be bounded by BDec. Suppose the protocols
ΠAEx and Πℓ

Shuf are complete. Then the mixing protocol is correct.

We sketch the argument. Since 2BDec < ⌊q/2⌋, it follows that decryption is
correct. Furthermore, since ΠAEx and Πℓ

Shuf are complete, the arguments will
be accepted, which means that the mixing proof will be accepted.

Theorem 9 (Special Soundness). Let E1 be a knowledge extractor for the
protocol ΠAEx with success probability ϵ1 and let E2 be a knowledge extractor for
the protocol Πℓ

Shuf with success probability ϵ2. Then we can construct a knowledge
extractor E0 for the mixing protocol that succeeds with probability ϵ0 ≥ ϵ1 + ϵ2.
The runtime of E0 is essentially the same as the runtime of E1 and E2.

We sketch the argument. The main observation is that it is enough that either
of the extractors E1 and E2 succeeds.

26

If the extractor E1 succeeds, we are able to extract τ randomness vectors r′i
bounded by B∞, which gives us the randomness for both the commitments and
ciphertexts used in the protocol. Then we can directly extract the permutation π
by inspection, and hence, we have an extractor E0 for the mixing protocol ΠMix.

If the extractor E1 succeeds, we are able to extract both the permutation π
and τ randomness vectors ri used in the commitments and, indirectly, also the
committed randomness used to create the encryption of 0. Hence, we have an
extractor E0 for the mixing protocol ΠMix.

If neither of these strategies works, we have an attacker against the binding
property of the commitment scheme.

Theorem 10 (Honest-Verifier Zero-Knowledge). Suppose the protocol ΠAEx

and Πℓ
Shuf are honest-verifier zero-knowledge, that Com is hiding and that Enc is

CPA secure. Then there exists a simulator for the mixing protocol such that for
any distinguisher A0 for this simulator with advantage ϵ0, there exists an ad-
versary A3 against hiding for the commitment scheme with advantage ϵ3, an
adversary A4 against CPA security for the encryption scheme with advantage
ϵ4, and distinguishers A1 and A2 for the simulators for ΠAEx and Πℓ

Shuf, re-
spectively, with advantages ϵ1 and ϵ2, such that ϵ0 ≤ ϵ1+ϵ2+ϵ3+ϵ4. The runtime
of A1, A2, A3,A4 are essentially the same as A0.

We sketch the argument. The simulator is given the set of messages encrypted
by the input ciphertexts. The simulator simulates the zero-knowledge proofs
ΠAEx and Πℓ

Shuf using the appropriate simulators. It replaces the commitments
to the ciphertexts (u′i, v

′
i) by random commitments and the output ciphertexts

by fresh ciphertexts to the correct messages.
The claim about the simulator follows from a hybrid argument. We begin

with the verifiable shuffle protocol.
First, we replace the ΠShuf arguments by simulated arguments, which gives

us a distinguisher A2 for the ΠLin honest verifier simulator.
Second, we replace the ΠAEx arguments by simulated arguments, which gives

us a distinguisher A1 for the ΠAEx honest verifier simulator.
Third, we replace the commitments to ciphertexts by random commitments,

which gives us an adversary A3 against hiding for the commitment scheme.
Fourth, we replace the output ciphertexts by fresh ciphertexts, which gives

us an adversary A4 against CPA security.
After the changes, we are left with the claimed simulator for the actively

secure protocol, and the claim follows.

5 Verifiable Distributed Decryption

In this section we provide a construction for verifiable distributed decryption.
We combine the distributed decryption protocol from Section 3.1 with zero-
knowledge proofs to achieve an actively secure decryption protocol. In this pro-
tocol, the set of ciphertexts is given to a number of decryption servers each
holding a share of the secret key. All of the servers compute a partial decryption

27

of each ciphertext. Finally, they use noise drowning to hide the secret key and
their published shares are added and rounded to output the plaintext. The partial
decryption is a linear operation, and we prove correctness using zero-knowledge
proofs of linear relations from Section 3.3, and we use the amortized proof from
Section 3.5 to prove that the noise is bounded to ensure correct decryption.
Both proofs are computed using the commitment scheme from Section 3.2. We
also provide an optimistic distributed decryption protocol given in Appendix A
which is secure if not all decryption servers are colluding simultaneously.

5.1 The Actively Secure Protocol

Public parameters. Let the ring Rq, the bounded distribution D over Rq, the
statistical security parameter sec and error bounds BCom and BDec be public
system information, together with the plaintext modulus p for the encryption
system. Let A be the public commitment matrix for message size ℓ = 1 over Rq.

– KeyGenA(1
λ, ξ):

1. Compute (pk, sk, s1, . . . , sξ)← KeyGen(1λ, ξ) as in the passive protocol.
2. For each j ∈ [ξ] compute ([[sj]],dj)← Com(sj).
3. Output pkA = (pk, [[s1]], . . . , [[sξ]]), skA = sk and skA,j = (sj ,dj).

– EncA and DecA works just like the original Enc and Dec in the passively
secure threshold encryption scheme, ignoring additional information in pkA.

– DistDec(skA,j , {ci}i∈[τ]) where ci = (ui, vi):
1. For each i ∈ [τ] do the following. First, compute mi,j = sjui.
2. Sample uniform noise Ei,j ← Rq such that ∥Ei,j∥∞ ≤ 2sec(BDec/pξ).
3. Compute the message decryption share ti,j = mi,j + pEi,j .
4. Compute ([[Ei,j]], r

′′
i,j)← Com(Ei,j) and use theΠLin-protocol to compute

a proof for the linear relation ti,j = sjui + pEi,j by computing

πLi,j ← ΠLin(((sj , rj), (Ei,j , r
′′
i,j)); ([[sj]], [[Ei,j]], ti,j), (ui, p)).

5. The commitment to Ei,j is of the form

[[Ei,j]] =

[
In a1,1 A1,2

0n 1 a2,2

]
· r′′i,j +

[
0

Ei,j

]
=

[
In a1,1 A1,2 0
0n 1 a2,2 1

]
︸ ︷︷ ︸

A′′

[
r′′i,j
Ei,j

]
,

where
∥∥r′′i,j∥∥∞ ≤ BCom is the randomness used in the commitments. Run

theΠANEx-protocol, denoted asΠANEx({(Ei,j , r
′′
i,j}i∈[τ]); (A

′′, {[[Ei,j]]}i∈[τ])),
and obtain the amortized zero-knowledge proof of knowledge πANExj

=
(C ′′,Z ′′) with binary challenge matrix C ′′.

6. Output dsj = ({ti,j}τi=1, πDj
) where πDj

= ({[[Ei,j]]}τi=1, {πLi,j
}τi=1, πANExj

).

28

– CombA({ci}τi=1, {dsj}j∈[ξ]):
1. Parse dsj as ({ti,j}τi=1, πDj).
2. Verify the proofs πLi,j : 0 ∨ 1← ΠLinV([[sj]], [[Ei,j]], ti,j), (ui, p);πLi,j).
3. Verify the proofs πANExj : 0∨ 1← ΠANExV(A

′′, {[[Ei,j]]}i∈[τ];πANExj).
4. If any verification protocol returned 0 then output ⊥. Otherwise compute

mi = (vi − ti mod q) mod p, where ti = ti,1 + · · ·+ ti,ξ for i = 1, . . . , τ,

and output the set of messages m1, . . . ,mτ .

Remark 1. The randomness r′′i,j has much smaller ℓ∞ norm than Ei,j , and hence,
we will run the ΠANEx protocol with small standard deviation σANEx for rows 1
to k, while row k + 1 will have large standard deviation σ̂ANEx, as noted in 3.5.

The following theorems refer to definitions of threshold correctness, threshold
verifiability and distributed decryption simulatability given in Section 2.5. It
is important to understand that the protocol is essentially a passively secure
distributed decryption protocol augmented with some commitments and some
zero-knowledge proofs, carefully composed to give active security.

In the following three theorems, let the noise bounds BDec and B̂ANEx satisfy
(1 +BDec) · 2sec < 2B̂ANEx < ⌊q/2⌋.

Theorem 11 (Threshold Correctness). Let ciphertexts have noise bounded
by BDec, and let the total noise added in DistDec be bounded by 2secBDec. Sup-
pose the passively secure protocol is threshold correct and the protocols ΠLin and
ΠANEx are complete. Then the actively secure protocol is threshold correct.

We sketch the argument. Since BDec+2secBDec < q/2, it follows that decryp-
tion is correct. Furthermore, since (1 + BDec) · 2sec < 2B̂ANEx < q/2 and ΠLin

and ΠANEx are complete, the arguments will be accepted, which means that the
decryption proof will be accepted.

Theorem 12 (Threshold Verifiability). Let A0 be an adversary against thresh-
old verifiability for the actively secure protocol with advantage ϵ0. Then there ex-
ists adversaries A1 and A2 against soundness for ΠLin and ΠANEx, respectively,
with advantages ϵ1 and ϵ2, such that ϵ0 ≤ ϵ1 + ϵ2. The runtime of A1 and A2

are essentially the same as the runtime of A0.

We sketch the argument. We need only consider ciphertexts with noise bounded
by BDec, so we may assume that the noise in any particular ciphertext is bounded
by BDec.

If the decryption is incorrect for a particular ciphertext, then for some j no
relation ti,j = sjui + pEi,j holds for an Ei,j of norm at most 2B̂ANEx.

This can happen in two ways: Either the argument for the linear combination
of the commitments to Ei,j and sj is incorrect, or the bound on Ei,j is incorrect.

In the former case, we trivially get an adversary A1 against soundness for
ΠLin. Similar for the latter case and ΠANEx.

29

Theorem 13 (Distributed Decryption Simulatability). Suppose the pas-
sively secure protocol is simulatable and ΠLin and ΠANEx are honest-verifier
zero-knowledge. Then there exists a simulator for the actively secure protocol
such that for any distinguisher A0 for this simulator with advantage ϵ0, there
exists an adversary A4 against hiding for the commitment scheme5, with advan-
tage ϵ4, and distinguishers A1, A2 and A3 for the simulators for the passively
secure protocol, ΠLin and ΠANEx, respectively, with advantages ϵ1, ϵ2 and ϵ3, such
that ϵ0 ≤ ϵ1 + ϵ2 + ϵ3 + ϵ4. The runtime of A1, A2, A3 and A4 are essentially
the same as the runtime of A0.

We sketch the argument. The simulator simulates the arguments and the pas-
sively secure distributed decryption algorithm, using the appropriate simulators.
Also, it replaces the commitments to the noise Ei,j by random commitments.

The claim about the simulator follows from a straight-forward hybrid argu-
ment. We begin with the distributed decryption algorithm.

First, we replace the ΠLin arguments by simulated arguments, which gives
us a distinguisher A2 for the ΠLin honest verifier simulator.

Second, we replace the ΠANEx arguments by simulated arguments, which
gives us a distinguisher A3 for the ΠANEx honest verifier simulator.

Third, we replace the commitments to the noise Ei,j by random commit-
ments, which gives us an adversary A4 against hiding for the commitment
scheme.

Fourth, we replace the passively secure distributed decryption algorithm by
its simulator, which gives us a distinguisher A1 for the simulator.

After the four changes, we are left with the claimed simulator for the actively
secure protocol, and the claim follows.

We refer to Section 7 for sizes, parameters and a concrete instantiation of the
distributed decryption, combining it with the mix-net described in Section 4.

6 A Cryptographic Voting System

Our voting protocol follows a fairly natural design paradigm of mixing and
threshold decryption. Common voting scheme security definitions such as [BCG+15]
do not model shuffles and distributed decryption. Following other works such as
e.g. [Scy,Gjø11] we therefore define ad hoc security definitions. The high-level
architecture for the counting phase of our protocol is shown in Figure 5.

We follow the standard approach for voting system analysis, which is to
consider a voting system to be fairly simple cryptographic protocol built on top
of a cryptographic voting scheme.

The verifiable cryptographic voting scheme with return codes, shuffles and
distributed decryption is described in Appendix B. It uses our shuffle and ver-
ifiable decryption as described previously as well as other primitives. We now
explain how our voting system can be described as a simple protocol on top of

5 A more careful argument could allow us to dispense with this adversary. We have
opted for a simpler argument, since the commitment scheme is also used elsewhere.

30

S1 S2 . . . Sι
{c(0)i } {c(1)i } {c(2)i }

πS1 πS2 πSι

D1

...

Dj

...

Dξ

{mi}

{c(ι)i }

{c(ι)i }

{c(ι)i }

{(ti,1, πD1)}

{(ti,j , πDj)}

{(ti,ξ, πDξ)}

Fig. 5. The high level counting phase of our voting protocol. Each shuffle server Sk
receives a set of ciphertexts {c(k−1)

i }, shuffles them, and outputs a new set of ciphertexts

{c(k)i } and a proof πSk . When all shuffle proofs are verified, each decryption server Dj

partially decrypts every ciphertext and outputs the partial decryptions {ti,j} together
with a proof of correctness πDj . All votes can be reconstructed to {mi} from the
partial decryptions. The full voting protocol also includes proofs of known messages
from voters and a return code protocol for verifiability, see details in the Appendix.

this cryptographic voting scheme. We define security notions for this cryptosys-
tem, sketch the security proof, and then informally discuss the voting protocol’s
security properties in terms of the cryptosystem’s security in the Appendix.

6.1 Voting Protocol

The voting protocol requires a trusted set of players to run setup and registration,
a set of voters Vi and their computers Pi, a ballot box B, a return code generator
R, a collection of shuffle servers Sk, a collection of decryption servers Dj and
one or more auditors A.

In the setup phase, a trusted set of players runs the setup algorithm. The key
generation can either be done in a trusted fashion, or in a distributed fashion
using the protocol by Rotaru et al. [RST+22] to get an actively secure robust
threshold sharing of the secret decryption key. The derived public parameters
are given to every participant, while the decryption key shares are given to the
decryption servers Dj . The code key is given to the return code generator R,
who will use the key to derive so-called return codes [CES02,HR16] that are sent
to the voter. (As detailed in the Appendix, these codes are human-verifiable and
can allow the voter to detect a cheating computer tampering with ballots.)

In the registration phase, a set of trusted players run the register algorithm to
generate verification and casting keys for each voter Vi, making every verification
key public and giving the voter casting key to the voter’s computer. Then the

31

return code generator chooses a PRF-key, and a set of trusted players compute
the return code table. The voter gets the return code table.

In the casting phase, each voter Vi instructs its computer Pi which ballot
to cast. The computer runs the casting algorithm, signs the encrypted ballot
and the ballot proof on the voter’s behalf, and sends the encrypted ballot, the
ballot proof and the signature to the ballot box B. The ballot box B sends the
encrypted ballot, the ballot proof and the signature to the return code generator
R, who runs the code algorithm. It uses the result to compute the return code
and sends it to the voter’s phone Fi, which sends it on to the voter Vi.

Both the ballot box and the return code generator will verify the voter’s
signature. After sending the return code, the return code generator countersigns
the encrypted ballot, the ballot proof and the voter’s signature, and sends the
countersignature to the ballot box, which in turns sends the countersignature to
the voter’s computer. The computer verifies the countersignature and only then
accepts, showing the encrypted ballot, the ballot proof, the signature and the
countersignature to the voter, which constitutes the voter’s receipt.

The voter Vi accepts the ballot as cast if and only if the computer accepts
with a receipt, and the voter’s phone shows a return code such that the pair is
in the return code table.

In the counting phase, the ballot box B and the return code generator R send
the encrypted ballots, ballot proofs and voter signatures they have seen to the
auditor A as well as every decryption server. The ballot box B then sorts the list
of encrypted ballots {ci} and sends this to the first shuffle server S1 and every
decryption server. In the event that some voter has cast more than one ballot,
only the encrypted ballot seen last is included in this list.

The shuffle servers S1,S2, . . . ,Sι use the shuffle algorithm on the input en-
crypted ballots, passing the shuffled and re-encrypted ballots to the next shuffle
server. They also pass the shuffled re-encrypted ballots and the shuffle proof to
the auditor and every decryption server.

Each decryption server verifies that the data from B and R is consistent
(similar to the auditor A), and that every shuffle proof verifies. Only then they
run the distributed decryption algorithm with their decryption key share and
send their partial decryption shares of each ballot as well as proofs of correct
decryption to the auditor.

If the data is consistent (that is, the same encrypted ballots, ballot proofs
and signatures appear in the same order in the data from both B and R, and
the signatures and the ballot proofs verify), the auditor A approves.

The auditor verifies the data from B and R (the same encrypted ballots,
ballot proofs and signatures appear in the same order in the two data sets,
and the voter signatures and the ballot proofs verify), that the encrypted ballots
received by the first shuffle are consistent with the data from B andR, that every
shuffle proof verifies, and then runs the combining algorithm on the received
ballot decryption shares. If the combining algorithm accepts then the auditor
accepts, otherwise it rejects. Finally, A outputs the complete list of messages
received, including the public key material, as its transcript.

32

There is a verification algorithm that takes as input a transcript, a result and
optionally a receipt, and either accepts or rejects. The verification algorithm sim-
ply runs the auditor with the public key material and the messages listed in the
transcript, and checks if the auditor’s result matches the input result. If a receipt
is present, it also verifies the countersignature and the voters’ signatures in the
receipt, that the encrypted ballot, the ballot proof and the voters’ signatures are
present in the ballot box data set, and that the encrypted ballots are present in
the first shuffle server’s input.

This concludes the description of the voting protocol in terms of a verifiable
cryptographic voting scheme with return codes.

Note that there are many variations of this protocol. It can be used without
return codes, simply by omitting return codes. Also, depending on the exact
setting and security required, the return code generator can be merged with the
ballot box.

Many comparable schemes are phrased in terms of an ideal (web) bulletin
board, where every player posts their messages. Implementing a bulletin board
is tricky in practice, so instead we have described the scheme as a conventional
cryptographic protocol passing messages via some network.

It is also worth noting that for our concrete scheme anyone can redo the
auditor’s work (since no secret key material is involved) by running the verifi-
cation algorithm (and parts of the code algorithm) on the public data, making
the voting protocol (universally) verifiable.

7 Performance

7.1 Size of the Submission Phase

Each BGV ciphertexts are of size 2N log2 q bits. We assume that the set of
input-ciphertexts to the mixing network are honestly generated. We can ensure
this by using e.g. the exact proofs by Beullens [Beu20] or Baum and Nof [BN20],
the efficient range proofs by Attema et al. [ALS20], or the new techniques from
Lyubashevsky et al. [LNS21,ENS20] to prove that the noise is bounded and that
the user knows the message.

7.2 Size of the Mixing Network

Let ι denote the number of mixing servers and let τ be the number of ciphertexts.
Each ciphertext consists of two elements in Rq, where each element can be
represented by N log2 q bits. The transcript of the mixing phase will contain ι
sets of τ new ciphertexts, and is of size 2ιτN log2 q bits.

For each shuffle the servers must provide a proof of shuffle and an amortized
proof of shortness. Both proofs prove a relation about commitments to the ran-
domization factors added to the old ciphertexts to get the new ciphertexts, and
each commitment is of size (n+ 2)N log2 q bits.

The shuffle proof consists of τ commitment of size (n+1)N log2 q bits, τ ring
elements of size N log2 q bits and a proof of linearity per ciphertext. The proof

33

Parameter Explanation Constraints

λ Security parameter At least 128 bits

N Degree of polynomial XN + 1 in R N a power of two

p Plaintext modulus p a small prime

q Ciphertext and commitment modulus Prime q = 1 mod 2N s.t. max∥v − su∥ ≪ q/2

k Width (over Rq) of commitment matrix

n Height (over Rq) of commitment matrix

ν Maximum l1-norm of elements in C
D Bounded distribution for noise in ciphertexts Chosen to be the uniform ternary distribution

σC Standard deviation for one-time commitments Chosen to be σC = 0.954 · ν · β∞ ·
√
kN

σ̂C Standard deviation for reusable commitments Chosen to be σ̂C = 22 · ν · β∞ ·
√
kN

σANEx Standard deviation for the one-time amortized proof Chosen to hide the commitment randomness r′′
i,j

σ̂ANEx Standard deviation for the one-time amortized proof Chosen to hide the noise-drowning values Ei,j

C Challenge space C =
{
c ∈ Rp | ∥c∥∞ = 1, ∥c∥1 = ν

}
C̄ The set of differences C − C excluding 0 C̄ = {c− c′ | c ̸= c′ ∈ C}

Sβ∞ Set of elements of ∞-norm at most β∞ Sβ∞ = {x ∈ Rp | ∥x∥∞ ≤ β∞}
n̂ Dimension of proof in ΠANEx n̂ ≥ λ+ 2

ι, ξ Number of shuffle- and decryption-servers

τ Total number of messages For soundness we need (τ δ + 1)/|Rq| < 2−128

Table 1. System parameters and constraints.

of linearity is of size 2(k − n)N log2(6σC) bits. The shuffle proof is then of size
((n+ 2)N log2 q + 2(k − n)N log2(6σC))τ bits.

The amortized proof of shortness depends on the bound, in our case B = 1,
but also on the ratio between the number of commitments and the size of the
modulus. We denote the proof by πAEx, and discuss it in more detail later based
on concrete parameters. The total bit-size of the mixing is

ι((2n+ 6)N log2 q + 2(k − n)N log2(6σC))τ + ι|πAEx|.

7.3 Size of the Distributed Decryption

Let ξ denote the number of decryption servers and let τ be the number of
ciphertexts. Each partial decryption consists of one element from Rq, which
means that the output of the decryption is of size ξτN log2 q bits.

Additionally, each decryption server outputs a commitment to the added
noise and a proof of linearity per ciphertext, and an amortized proof of shortness
for all the added noise values. Also, each server has a public commitment of their
decryption key-share to be used in the proof of linearity. Each commitment is of
size (n+1)N log2 q bits, and each proof of linearity is of size (k−n)N(log2(6σC)+
log2(6σ̂C) bits (because the partial decryption is given in the clear and one
commitment is re-used in all equations). Finally, each of the amortized proofs is
of size kn̂N log2(6σANEx) + n̂ log2(6σ̂ANEx) bits because of the different norms
of the secret values as noted in Remark 1. As the bounds in the amortized proof
depends on the number of commitments in the statement, we compute batched
proofs of N equations at once to control the growth.

34

The total size of the distributed decryption is

ξ((n+ 2)N log2 q + (k − n)N(log2(6σC) + log2(6σ̂C))

+kn̂ log2(6σANEx) + n̂ log2(6σ̂ANEx))τ bits.

7.4 Concrete Parameters and Total Size

Standard deviation. We let the success probability of each of the zero-knowledge
protocols to be 1/M ≈ 1/3. The algorithm in Section 2.2 is used for rejection
sampling. We will use the following parameters, where we note that the commit-
ments used in the shuffle and in the amortized proofs are only used once, while
the proof of linearity in the decryption protocol depends on a commitment to
the secret key-share each time. However, that is the only part that is reused,
and we can use a smaller standard deviation for the other commitment.

The proofs of linearity have two terms, which means that each of them must
have a success probability of 1/

√
3. This gives σC = 0.954νβ∞

√
kN . For the

re-usable commitments we get σ̂C = 22νβ∞
√
kN . The amortized proof also

have two checks, and we get standard deviation 0.954
∥∥S′C ′∥∥

2
, where σANEx

and σ̂ANEx are depending on the norm of the elements in the rows of S′.
For the encryption, we let D be the ternary distribution over Rq, where each

polynomial has coefficients in {−1, 0, 1} sampled uniformly at random. We let
the commitment randomness be bounded by BCom = 1.

Bounding the noise. To be able to choose concrete parameters for the mix-net,
we need to estimate how much noise that is added to the ciphertexts through the
two stages of the protocol: 1) the shuffle phase, and 2) the decryption phase. Each
part of the system contributes the following amount of noise to the ciphertexts:

- Original ciphertext: BStart = p(∥er∥∞ + ∥ei,2∥∞ + ∥−ei,1s∥∞) + ∥m∥∞.

- Additional noise per shuffle: BShuf = p(∥er′∥∞ +
∥∥e′i,2∥∥∞ +

∥∥−e′i,1s∥∥∞).

- Additional noise in partial decryption: BDistDec = pξ
∥∥E′i,j∥∥∞ ≤ 2secBDec,

where BDec = Bstart + ιBShuf is the upper bound of the noise added before the
decryption phase. This means that we have the following bounds on each of the
noise-terms above, when using ternary noise:

∥e∥1 ≤ N, ∥r∥∞ ≤ 1, ∥ei,2∥∞ ≤ 1, ∥ei,1∥1 ≤ N,

∥s∥∞ ≤ 1, ∥r′∥∞ ≤ 1,
∥∥e′i,2∥∥∞ ≤ 1,

∥∥e′i,1∥∥1 ≤ N.

Using the bounds from Section 2, we get upper bounds:

BStart = p(2N + 1) + ⌈(p− 1)/2⌉, BShuf = p(2N + 1),

which for ι shuffles gives us

BDec = (ι+ 1)p(2N + 1) + ⌈(p− 1)/2⌉.

35

Finally, we need to make sure that BDec + BDistDec < q/2, where BDistDec =
2pξB̂ANEx because of the soundness slack of the amortized proof of bounded val-
ues from Section 3.5. A honestly generated value Ei,j is bounded by 2sec(BDec/pξ),
but the proof can only guarantee that the values are shorter than some larger
bound 2B̂ANEx (following [BBC+18, Lemma 3]) that depends on the number of
equation in the statement. Define S′′ to be the first k rows of S′ and define S′′′

to be the last row of S′. For batches of N equations we then get that:

BANEx ≤
√
2N · σANEx ≤

√
2N · 0.954 ·max

∥∥S′′C ′∥∥
2

≤ 1.35 ·
√
N ·max

∥∥S′′∥∥
1
·max

∥∥C ′∥∥∞
≤ 1.35 · k ·

√
N ·N ·BCom,

and, similarly,

B̂ANEx ≤
√
2N · σ̂ANEx ≤ 1.35 ·

√
N ·N · ∥Ei,j∥∞,

with BANEx for rows 1 to k of Z and B̂ANEx for the last.

N p q sec ι ξ n k ν BCom n̂ σC σ̂C σANEx σ̂ANEx B̂ANEx

4096 2 ≈ 278 40 4 4 1 ℓ+ 2 36 1 130 ≈ 212 ≈ 216.5 ≈ 213.5 ≈ 266 ≈ 272.5

Table 2. Concrete parameters estimated for λ ≈ 168 bits of security using the LWE-
estimator by Albrecht et al. [APS15].

We fix plaintext modulus p = 2, statistical security parameter sec = 40,
and need N = 4096 when q is large to provide proper security. This allows for
votes of size 4096 bits, which should be a feasible size for real-world elections.
We let the number of shuffle and decryption servers be ι = ξ = 4. It follows that
BDec < 217 and BDistDec < 276.5. We then set q ≈ 278, and verify that

max
i∈[τ]
∥vi − sui∥ < 2 · (217 + 276.5) < q.

Exact amortized proof. Finally, we must decide on parameters for the exact
proof of shortness from Section 3.4. The soundness of the protocol depends on
the ration between the number of equations and the size of the modulus, see
Lemma 1. We choose to compute the proof in batches of size N instead of
computing the proof for all τ commitments at once. Then we get 18N/(q −
N) ≈ 2−62, and hence, we must compute each proof twice in parallel to achieve
negligible soundness. Furthermore, we choose k ≈ 220, l ≈ 220.3, η = 325 to keep
the soundness ≈ 2−62. The total size of πAEx, by instantiating 2, is ≈ 20τ KB.

Total size. We give a complete set of parameters in Table 2, and the concrete
sizes of each part of the protocol in Table 3. Each voter submit a ciphertext

36

size approximately 80 KB. The size of the mix-net, including ciphertexts, com-
mitments, shuffle proof and proof of shortness, is approximately 370τ KB per
mixing node Si. The size of the decryption phase, including partial decryptions,
commitments, proofs of linearity and proofs of boundedness, is approximately
157τ KB per decryption node Dj .

c
(k)
i [[Rℓ

q]] πShuf πLi,j πAEx πANEx πSi πDj

80 KB 40(ℓ+ 1) KB 150τ KB 35 KB 20τ KB 2τ KB 370τ KB 157τ KB

Table 3. Size of the ciphertexts, commitments and proofs.

7.5 Implementation

In order to estimate the efficiency of our protocols, we developed a proof-of-
concept implementation to compare with previous results in the literature. Our
performance figures were collected on an Intel Skylake Core i7-6700K CPU ma-
chine running at 4GHz without TurboBoost. The results can be found in Tables 4
and 5, and we intend to release the code publicly in the near future.

First, we compare performance of the main building blocks with an imple-
mentation of the shuffle proof protocol proposed in [ABG+21]. That work used
the FLINT library to implement arithmetic involving polynomials of degree
N = 1024 with 56-bit coefficients, fitting a 64-bit machine word. Their param-
eters were not compatible with the fast Number Theoretic Transform (NTT),
so a CRT decomposition to two half-degree polynomials was used instead. The
code was made available, so a direct comparison is possible.

In this work, the degree is much larger (N = 4096) and coefficients are
multi-word (q ≈ 278), but the parameters are compatible with the NTT. We
implemented polynomial arithmetic with the efficient NFLlib [ABG+16] library
using the RNS representation for coefficients. The arithmetic is accelerated with
AVX2 instructions, especially the NTT transform and polynomial arithmetic. We
observed that our polynomial multiplication is around 19 times more efficient
than [ABG+21] (61, 314 cycles instead of 1, 165, 997), despite parameters being
considerably larger. We also employed the FLINT library for arithmetic routines
not supported in NFLlib, such as polynomial division, but that incurred some
non-trivial costs to convert representations between two libraries. For Gaussian
sampling, we adapted COSAC [ZSS20] and adjusted the standard deviation σ
accordingly.

Computing a commitment takes 0.45 ms on the target machine, which is
2x faster than [ABG+21]. Opening a commitment is slower due to conversions
between libraries for performing the norm test. Our implementation of BGV
encryption is much faster than the 69 ms reported for verifiable encryption

37

in [ABG+21], while decryption is improved by a factor of 7. Distributed de-
cryption with passive security costs additional 1.51 ms per party, but the zero-
knowledge proofs for active security increase the cost further. The shuffle proof
performance is at 30 ms per vote, thus close to [ABG+21].

For the other sub-protocols, we benchmarked executions with τ = 1000 and
report the execution time amortized per vote for both prover and verifier in
Table 5. In the case of ΠAEx, we only implement the performance-critical poly-
nomial arithmetic and commitment scheme, since this is already representative
of the overall performance. From the table, we can compute the cost of dis-
tributed decryption with active security as (10.7 + 30 + 15.7 + 25.0) = 81.4 ms
per vote, the cost of ΠMix as (0.45 + 1009 + 15.1) = 1024 ms and the cost of
ΠMixV as (20 + 16.1) = 36.1 ms per vote. This result compares very favorably
with the costs of 1.5 s and 1.49 s per vote to respectively generate/verify a proof
in the lattice-based shuffle proof of [FWK21] in a Haswell processor running at
approximately half the frequency. By considering space-time efficiency as a met-
ric, our total numbers are 1.4 times higher after adjusting for clock frequency
and negligible soundness, while storage overhead is much lower.

Primitive Commit Open Encrypt Decrypt DistDec

Time 0.45 ms 2.3 ms 2.5 ms 0.83 ms 1.51 ms

Table 4. Timings for basic cryptographic operations. Numbers were obtained by com-
puting the average of 104 consecutive executions of an operation measured using the
cycle counter available in the platform.

Protocol ΠLin +ΠLinV Πℓ
Shuf +Πℓ

ShufV ΠANEx +ΠANExV ΠAEx +ΠAExV

Time (10.7 + 15.7)τ ms (15.1 + 16.1)τ ms (30.0 + 25.0)τ ms (1009 + 20)τ ms

Table 5. Timings for cryptographic protocols, obtained by computing the average of
100 consecutive executions with τ = 1000.

8 Concluding Remarks

We have proposed a verifiable secret shuffle of BGV ciphertexts and a verifi-
able distributed decryption protocol. Together, these two novel constructions
are practical and solve a long-standing problem in the design of quantum-safe
cryptographic voting systems.

Verifiable secret shuffles for discrete logarithm-based cryptography has seen
a long sequence of incremental designs follow Neff’s breakthrough construction.
While individual published improvements were often fairly small, the overall im-
provement in performance over time was significant. We expect that our designs
can be improved in a similar fashion. In particular, we expect that the size of
the proofs can be significantly reduced. While it is certainly straight-forward
to download a few hundred gigabytes today (compare with high-quality video
streaming), many voters will be discouraged and this limits the universality of

38

verification in practice. It therefore seems reasonable to focus further effort on
reducing the size of the proofs.

The distributed decryption protocol does not have an adjustable threshold.
In practice, this is not much of a problem, since the key material will be secret
shared among many key holders. Only when counting starts is the key material
given to the decryption servers. Key reconstruction can then be combined with
a suitable distributed key distribution protocol.

Shuffles followed by distributed decryption is one paradigm for the design of
cryptographic voting systems. Another possible paradigm is to use key shifting in
the shuffles. This would then allow us to use a single party for decryption (though
it must still be verifiable, e.g., using the protocol by Gjøsteen et al. [GHM+21] or
by Silde [Sil22]). Key shifting can be done with many of the same techniques that
we use for distributed decryption, but there seems to be difficulties in amortizing
the proofs. This means that key shifting with just the techniques we use will be
significantly slower and of increased size, as we would have to add an additional
proof of linearity for each new ciphertext in each shuffle.

Finally, we note that our scheme and concrete instantiation using the NTT
is optimized for speed, and that it is possible to slightly decrease the parameters
by instantiating the encryption scheme based on the SKS2 and DKS∞ problems
in higher dimensions k using a smaller, but still a power of 2, ring-dimension N .
We leave this as future work. We also remark that lattice-based cryptography,
and especially lattice-based zero-knowledge proofs such as the recent preprint
by Lyubashevsky et al [LNP22], continuously improves the state-of-the-art, and
we expect future works to improve the concrete efficiency of our protocol.

References

ABG+16. Carlos Aguilar Melchor, Joris Barrier, Serge Guelton, Adrien Guinet,
Marc-Olivier Killijian, and Tancrède Lepoint. NFLlib: NTT-based fast
lattice library. In Kazue Sako, editor, Topics in Cryptology – CT-
RSA 2016, volume 9610 of Lecture Notes in Computer Science, pages 341–
356. Springer, Heidelberg, February / March 2016.

ABG+21. Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, Tjerand Silde, and
Thor Tunge. Lattice-based proof of shuffle and applications to electronic
voting. In Kenneth G. Paterson, editor, Topics in Cryptology – CT-
RSA 2021, volume 12704 of Lecture Notes in Computer Science, pages
227–251. Springer, Heidelberg, May 2021.

Adi08. Ben Adida. Helios: Web-based open-audit voting. In Paul C. van Oorschot,
editor, USENIX Security 2008: 17th USENIX Security Symposium, pages
335–348. USENIX Association, July / August 2008.

ALS20. Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. Practical prod-
uct proofs for lattice commitments. In Daniele Micciancio and Thomas
Ristenpart, editors, Advances in Cryptology – CRYPTO 2020, Part II, vol-
ume 12171 of Lecture Notes in Computer Science, pages 470–499. Springer,
Heidelberg, August 2020.

APS15. Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete hard-
ness of learning with errors. Journal of Mathematical Cryptology, 9(3):169–
203, 2015.

39

BBC+18. Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens
Groth, and Vadim Lyubashevsky. Sub-linear lattice-based zero-knowledge
arguments for arithmetic circuits. In Hovav Shacham and Alexandra
Boldyreva, editors, Advances in Cryptology – CRYPTO 2018, Part II, vol-
ume 10992 of Lecture Notes in Computer Science, pages 669–699. Springer,
Heidelberg, August 2018.

BCG+15. David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and
Bogdan Warinschi. SoK: A comprehensive analysis of game-based ballot
privacy definitions. In 2015 IEEE Symposium on Security and Privacy,
pages 499–516. IEEE Computer Society Press, May 2015.

BCG+17. Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad
Hajiabadi, and Sune K. Jakobsen. Linear-time zero-knowledge proofs for
arithmetic circuit satisfiability. In Tsuyoshi Takagi and Thomas Peyrin,
editors, Advances in Cryptology – ASIACRYPT 2017, Part III, volume
10626 of Lecture Notes in Computer Science, pages 336–365. Springer,
Heidelberg, December 2017.

BD10. Rikke Bendlin and Ivan Damg̊ard. Threshold decryption and zero-
knowledge proofs for lattice-based cryptosystems. In Daniele Micciancio,
editor, TCC 2010: 7th Theory of Cryptography Conference, volume 5978 of
Lecture Notes in Computer Science, pages 201–218. Springer, Heidelberg,
February 2010.

BDL+18. Carsten Baum, Ivan Damg̊ard, Vadim Lyubashevsky, Sabine Oechsner, and
Chris Peikert. More efficient commitments from structured lattice assump-
tions. In Dario Catalano and Roberto De Prisco, editors, SCN 18: 11th
International Conference on Security in Communication Networks, volume
11035 of Lecture Notes in Computer Science, pages 368–385. Springer, Hei-
delberg, September 2018.

BEPU+20. Carsten Baum, Daniel Escudero, Alberto Pedrouzo-Ulloa, Peter Scholl,
and Juan Ramón Troncoso-Pastoriza. Efficient protocols for oblivious lin-
ear function evaluation from ring-LWE. In Clemente Galdi and Vladimir
Kolesnikov, editors, SCN 20: 12th International Conference on Security
in Communication Networks, volume 12238 of Lecture Notes in Computer
Science, pages 130–149. Springer, Heidelberg, September 2020.

Beu20. Ward Beullens. Sigma protocols for MQ, PKP and SIS, and Fishy sig-
nature schemes. In Anne Canteaut and Yuval Ishai, editors, Advances in
Cryptology – EUROCRYPT 2020, Part III, volume 12107 of Lecture Notes
in Computer Science, pages 183–211. Springer, Heidelberg, May 2020.

BGV12. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (Leveled) fully
homomorphic encryption without bootstrapping. In Shafi Goldwasser, ed-
itor, ITCS 2012: 3rd Innovations in Theoretical Computer Science, pages
309–325. Association for Computing Machinery, January 2012.

BHM20. Xavier Boyen, Thomas Haines, and Johannes Müller. A verifiable and
practical lattice-based decryption mix net with external auditing. In
Liqun Chen, Ninghui Li, Kaitai Liang, and Steve A. Schneider, editors,
ESORICS 2020: 25th European Symposium on Research in Computer Se-
curity, Part II, volume 12309 of Lecture Notes in Computer Science, pages
336–356. Springer, Heidelberg, September 2020.

BHM21. Xavier Boyen, Thomas Haines, and Johannes Müller. Epoque: Practical
end-to-end verifiable post-quantum-secure e-voting. In IEEE European

40

Symposium on Security and Privacy, EuroS&P 2021, Vienna, Austria,
September 6-10, 2021, pages 272–291. IEEE, 2021.

BLNS21. Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor
Seiler. More efficient amortization of exact zero-knowledge proofs for lwe.
In Elisa Bertino, Haya Shulman, and Michael Waidner, editors, Computer
Security – ESORICS 2021, pages 608–627, Cham, 2021. Springer Interna-
tional Publishing.

BLS19. Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. Algebraic tech-
niques for short(er) exact lattice-based zero-knowledge proofs. In Alexan-
dra Boldyreva and Daniele Micciancio, editors, Advances in Cryptology –
CRYPTO 2019, Part I, volume 11692 of Lecture Notes in Computer Sci-
ence, pages 176–202. Springer, Heidelberg, August 2019.

Blu84. Manuel Blum. How to exchange (secret) keys. ACM Transactions on
Computer Systems, 1:175–193, 1984.

BN20. Carsten Baum and Ariel Nof. Concretely-efficient zero-knowledge argu-
ments for arithmetic circuits and their application to lattice-based cryp-
tography. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden, and
Vassilis Zikas, editors, PKC 2020: 23rd International Conference on The-
ory and Practice of Public Key Cryptography, Part I, volume 12110 of
Lecture Notes in Computer Science, pages 495–526. Springer, Heidelberg,
May 2020.

CES02. e-voting security study. CESG, United Kingdom, July 2002. Issue 1.2.
CGGI16. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.

A homomorphic LWE based E-voting scheme. In Tsuyoshi Takagi, edi-
tor, Post-Quantum Cryptography - 7th International Workshop, PQCrypto
2016, pages 245–265. Springer, Heidelberg, 2016.

Cha81. David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM, 24(2):84–88, 1981.

CMM19. Núria Costa, Ramiro Mart́ınez, and Paz Morillo. Lattice-based proof of
a shuffle. In Andrea Bracciali, Jeremy Clark, Federico Pintore, Peter B.
Rønne, and Massimiliano Sala, editors, FC 2019 Workshops, volume 11599
of Lecture Notes in Computer Science, pages 330–346. Springer, Heidel-
berg, February 2019.

CP93. David Chaum and Torben P. Pedersen. Wallet databases with observers.
In Ernest F. Brickell, editor, Advances in Cryptology – CRYPTO’92, vol-
ume 740 of Lecture Notes in Computer Science, pages 89–105. Springer,
Heidelberg, August 1993.

Dam10. Ivan Damg̊ard. On σ-protocols, 2010. https://cs.au.dk/~ivan/Sigma.

pdf.
DKL+13. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter

Scholl, and Nigel P. Smart. Practical covertly secure MPC for dishon-
est majority - or: Breaking the SPDZ limits. In Jason Crampton, Sushil
Jajodia, and Keith Mayes, editors, ESORICS 2013: 18th European Sym-
posium on Research in Computer Security, volume 8134 of Lecture Notes
in Computer Science, pages 1–18. Springer, Heidelberg, September 2013.

dLNS17. Rafaël del Pino, Vadim Lyubashevsky, Gregory Neven, and Gregor Seiler.
Practical quantum-safe voting from lattices. In Bhavani M. Thuraising-
ham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017:
24th Conference on Computer and Communications Security, pages 1565–
1581. ACM Press, October / November 2017.

41

https://cs.au.dk/~ivan/Sigma.pdf
https://cs.au.dk/~ivan/Sigma.pdf

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Mul-
tiparty computation from somewhat homomorphic encryption. In Rei-
haneh Safavi-Naini and Ran Canetti, editors, Advances in Cryptology –
CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages
643–662. Springer, Heidelberg, August 2012.

ENS20. Muhammed F. Esgin, Ngoc Khanh Nguyen, and Gregor Seiler. Practical
exact proofs from lattices: New techniques to exploit fully-splitting rings.
In Shiho Moriai and Huaxiong Wang, editors, Advances in Cryptology –
ASIACRYPT 2020, Part II, volume 12492 of Lecture Notes in Computer
Science, pages 259–288. Springer, Heidelberg, December 2020.

FS87. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In Andrew M. Odlyzko, editor,
Advances in Cryptology – CRYPTO’86, volume 263 of Lecture Notes in
Computer Science, pages 186–194. Springer, Heidelberg, August 1987.

FWK21. Valeh Farzaliyev, Jan Willemson, and Jaan Kristjan Kaasik. Improved
lattice-based mix-nets for electronic voting. In Information Security and
Cryptology – ICISC 2021. Springer International Publishing, 2021.

GHM+21. Kristian Gjøsteen, Thomas Haines, Johannes Müller, Peter Rønne, and
Tjerand Silde. Verifiable decryption in the head. Cryptology ePrint
Archive, Report 2021/558, 2021.

Gjø11. Kristian Gjøsteen. The norwegian internet voting protocol. In Aggelos
Kiayias and Helger Lipmaa, editors, E-Voting and Identity - Third Inter-
national Conference, VoteID 2011, volume 7187 of Lecture Notes in Com-
puter Science, pages 1–18. Springer, 2011.

GM82. Shafi Goldwasser and Silvio Micali. Probabilistic encryption and how to
play mental poker keeping secret all partial information. In Proceedings of
the Fourteenth Annual ACM Symposium on Theory of Computing, STOC
’82, page 365–377, New York, NY, USA, 1982. Association for Computing
Machinery.

GMR85. S Goldwasser, S Micali, and C Rackoff. The knowledge complexity of
interactive proof-systems. In Proceedings of the Seventeenth Annual ACM
Symposium on Theory of Computing, STOC ’85, page 291–304, New York,
NY, USA, 1985. Association for Computing Machinery.

HMS21. Javier Herranz, Ramiro Mart́ınez, and Manuel Sánchez. Shorter lattice-
based zero-knowledge proofs for the correctness of a shuffle. Cryptology
ePrint Archive, Report 2021/488, 2021.

HR16. Feng Hao and Peter Y. A. Ryan, editors. Real-World Electronic Voting:
Design, Analysis and Deployment. CRC Press, 2016.

LN16. Patrick Longa and Michael Naehrig. Speeding up the number theoretic
transform for faster ideal lattice-based cryptography. In Sara Foresti and
Giuseppe Persiano, editors, CANS 16: 15th International Conference on
Cryptology and Network Security, volume 10052 of Lecture Notes in Com-
puter Science, pages 124–139. Springer, Heidelberg, November 2016.

LNP22. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plancon. Lattice-
based zero-knowledge proofs and applications: Shorter, simpler, and more
general. Cryptology ePrint Archive, Report 2022/284, 2022. https://ia.
cr/2022/284.

LNS21. Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. Shorter
lattice-based zero-knowledge proofs via one-time commitments. In Juan
Garay, editor, PKC 2021: 24th International Conference on Theory and

42

https://ia.cr/2022/284
https://ia.cr/2022/284

Practice of Public Key Cryptography, Part I, volume 12710 of Lecture Notes
in Computer Science, pages 215–241. Springer, Heidelberg, May 2021.

LPR13. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-
LWE cryptography. In Thomas Johansson and Phong Q. Nguyen, editors,
Advances in Cryptology – EUROCRYPT 2013, volume 7881 of Lecture
Notes in Computer Science, pages 35–54. Springer, Heidelberg, May 2013.

LS15. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions
for module lattices. Des. Codes Cryptography, 75(3):565–599, June 2015.

Nef01. C. Andrew Neff. A verifiable secret shuffle and its application to e-voting.
In Michael K. Reiter and Pierangela Samarati, editors, ACM CCS 2001:
8th Conference on Computer and Communications Security, pages 116–
125. ACM Press, November 2001.

RST+22. Dragos Rotaru, Nigel P. Smart, Titouan Tanguy, Frederik Vercauteren,
and Tim Wood. Actively secure setup for spdz. J. Cryptol., 35(1), jan
2022.

Scy. Scytl. Scytl sVote, complete verifiability security proof report - software
version 2.1 - document 1.0.

Sil22. Tjerand Silde. Verifiable decryption for BGV. Workshop on Advances in
Secure Electronic Voting, 2022. https://ia.cr/2021/1693.

Str19. Martin Strand. A verifiable shuffle for the GSW cryptosystem. In Aviv
Zohar, Ittay Eyal, Vanessa Teague, Jeremy Clark, Andrea Bracciali, Fed-
erico Pintore, and Massimiliano Sala, editors, FC 2018 Workshops, volume
10958 of Lecture Notes in Computer Science, pages 165–180. Springer, Hei-
delberg, March 2019.

ZSS20. Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad. COSAC: COmpact
and scalable arbitrary-centered discrete gaussian sampling over integers. In
Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryptography -
11th International Conference, PQCrypto 2020, pages 284–303. Springer,
Heidelberg, 2020.

43

https://ia.cr/2021/1693

Appendix
A Verifiable Decryption Secure Against n − 1 Parties

A.1 Optimistic Decryption

We present a new verifiable decryption protocol secure against n − 1 parties.
The protocol is inspired by the information theoretic MAC used in the MPC-
protocols by Damg̊ard et al. [DPSZ12,DKL+13]. Here we start with an encrypted
message m, sample a secret MAC α as the sum of independent shares αj and
check that the decryption of αm is correct. We use homomorphic encryption and
standard commit-and-open techniques to ensure that the MAC value is honestly
generated. Assuming at least one honest party, then the probability that the
adversary can succeed is to guess the value of α before the decryption of αm is
revealed. This happens with probability 1/|Rp| = 1/pN , which is negligible in
the security parameter λ.

Note that this setting is usually not acceptable in an election, but it might
still have value in at least the two following situations.

Firstly, as the protocol above is expensive both in computational complexity
and memory consumption, it might be interesting to get a preliminary result
of the election quickly by running the more lightweight protocol first and then
heavier protocol afterwards. This way, we can within short time get a result with
good confidence, and later get a proof that the first output was indeed correct.

Secondly, some smaller elections are organized such that each party voting is
also computing a shuffle and a partial decryption, and hence, is both a voter and
an infrastructure player in the election. In this case one has neither privacy nor
integrity if everyone is colluding, and it makes sense to use a more lightweight
protocol to compute the tally.

A.2 Homomorphic Multiplication

We describe additional algorithms to extend the BGV encryption protocol from
Section 3.1 to include homomorphic multiplication of ciphertexts.

- KeyGenExt, runs KeyGen from Section 3 and outputs public key pk = (a, b) =
(a, as+ pe) and secret key sk = (s1, s2) = (s, s2).

- Mult, on input two ciphertexts c1 = (u1, v1) and c2 = (u2, v2), computes
d0 = v1 · v2, d1 = u1 · v2 + u2 · v1 and d2 = u1 · u2, and outputs the product
ciphertext d = (d0, d1, d2).

- DecExt, takes as input a product ciphertext d = (d0, d1, d2) and computes
m′ = (d0 − s1 · d1 + s2 · d2 mod q) mod p. The algorithm outputs m′.

The output of the decryption algorithm is correct if ∥d0 − s1 · d1 + s2 · d2∥∞ =
BDec < ⌊q/2⌋. Furthermore, we present the extended passively secure distributed

44

decryption technique used in the MPC-protocols by Damg̊ard et al. [DPSZ12,
DKL+13]. When decrypting, we assume that each decryption server Dj , for
1 ≤ j ≤ ξ, has a uniformly random share skj = (s1,j , s2,j) of the secret key
sk = (s1, s2) such that s1 = s1,1 + s1,2 + ...+ s1,ξ and s2 = s2,1 + s2,2 + ...+ s2,ξ.
Then they partially decrypt using the following algorithm:

- DistDecExt, on input a secret key-share skj and a ciphertext d = (d0, d1, d2),
computes mj = s1,j · d1 − s2,j · d2, sample some large noise Ej ←$ Rq such
that ∥Ej∥∞ ≤ 2sec(BDec/pξ), and then outputs tj = mj + pEj .

We obtain the full decryption of the ciphertext d = (d0, d1, d2) as m = (d0 − t
mod q) mod p, where t = t1 + t2 + ...+ tξ. This will give the correct decryption
as long as the noise ∥d0 − t∥∞ ≤ (1 + 2sec)BDec < ⌊q/2⌋.

A.3 Decryption Protocol

We use the same public parameters and ciphertexts as received in the decryption
protocol in Section 5. Each decryption server has a secret key-share as described
in KeyGenExt. Our verifiable decryption protocol works as following.

Partial decryption. Each party Dj run DistDec, as defined in Section 3.1, on
each ciphertext ci to produce partial decryptions ti,j . Output {ti,j}τi=1.

Commit to randomness. Each party samples a random αj ←$ Rp, run Enc with
message αj to produce ciphertext cαi

= (uαj
, vαj

), and commit to the message
and randomness as hj = H(αj , rαj

, eαj
, e′αj

), for a hash-function H. Output hj .

Output MAC shares. When each party Dj has published hj , output cαj .

Compute MAC. Each party gather the encrypted MAC shares {cαj} and sum
them together as cα = cα1 + ...+ cαξ

. Then, for each ciphertext ci, use Mult to
compute the homomorphic multiplication with cα denoted di = (di,0, di,1, di,2).

Commit to partial MAC decryption. Each party Dj runs the DistDecExt on
each ciphertext di to produce partial decryptions tαi,j

. Commit to the partial
decryption as hαj

= H(tα1,j
, ..., tατ,j

). Output hαj
.

Output partial MAC decryption. When each party Dj has published hαi,j , output
the partial MAC αj , randomness rαj , eαj , e

′
αj

and partial decryptions {tαi,j}τi=1.

Verify correct decryption. A verifier computes mi = (vi,0−ti mod q) mod p for
ti = ti,1+ ...+ti,ξ and mαi

= (di,0−tαi
mod q) mod p for tαi

= tαi,1
+ ...+tαi,ξ

for all i = 1, ..., τ . Also compute α = α1 + ... + αξ. Then, check that cαi
was

correctly computed, that hj and hαi,j
have valid openings and that mαi

= mi ·α
in Rp for all i. If all checks holds then output {mi}τi=1 and otherwise output ⊥.

45

A.4 Parameters and Size

Bounding the noise. We know from Section 7 that the amount of noise in each in-
put ciphertext ci is bounded by Bc = (ι+1)p(2N+1)+⌈(p−1)/2⌉. Furthermore,
the noise in each ciphertext cαj

is bounded by Bcα
= p(2N +1)+ ⌈(p−1)/2⌉. It

follows from Brakerski et al. [BGV12, Section 5.2] that the noise in each product
ciphertext di is bounded by Bd =

√
N ·Bc ·Bcα

. Using DistDecExt, noise of size
2secBd is added to di. To ensure correct decryption, we must choose q such that
(1+2sec)Bd < q/2. Inserting the parameters from Table 2 we get that Bd < 238,
and hence, we can choose q ≈ 278 as in Section 7.

Total size. Each partial decryption consists of one ring-element, and each ring
element can be represented with N log q bits. Each party Dj only sends two
hashes of size 256 bits and the elements αj , rαj , eαj , e

′
αj

which are of size 2N
bits each to generate the MAC, which is essentially negligible compared to the
ciphertexts and partial decryptions. The total size of the decryption protocol,
not counting the input ciphertexts, is ≈ 2ξτN log q. Using the parameters from
above we get that the concrete size is ≈ 80τ KB per decryption server.

B Security of the Voting Protocol

Here we provide a more formal description of the voting protocol described in
Section 6, give security notions, sketch a security proof and discuss the security
properties of the full voting protocol.

B.1 Verifiable Voting Schemes with Return Codes

A verifiable cryptographic voting scheme in our architecture is usually defined in
terms of algorithms for the tasks of election setup, casting ballots, counting cast
ballots and verifying the count. To support return codes, we also need algorithms
for voter registration and pre-code computation. Finally, to accurately model the
counting process, we need algorithms for shuffling and distributed decryption.

The setup algorithm Setup outputs a public key pk, decryption key shares
dki and a code key ck.

The register algorithm Reg takes a public key pk as input and outputs a
voter verification key vvk, a voter casting key vck and a function f from
ballots to pre-codes.

The cast algorithm Cast takes a public key pk, a voter casting key vck and
a ballot v, and outputs an encrypted ballot ev and a ballot proof πv.

The code algorithm Code takes a code key ck, an encrypted ballot ev and a
proof πv as input and outputs a pre-code r̂ or ⊥. (If the code key ck is ⊥,
the algorithm outputs 0 or 1.)

The shuffle algorithm Shuffle takes a public key pk and a sequence of en-
crypted ballots ev , and outputs a sequence of encrypted ballots ev ′ and a
proof of shuffle πs.

46

The verify algorithm Verify takes a public key pk, two sequences of en-
crypted ballots ev , and ev ′ and a proof πs, and outputs 0 or 1.

The distributed decryption algorithm DistDec takes a decryption key dki
and a sequence of encrypted ballots ev , and outputs a sequence of ballot
decryption shares svi and a decryption proof πd,i.

The combining algorithm Comb takes a public key pk, a sequence of en-
crypted ballots ev , ballot decryption share sequences sv1, sv2, . . . , svld with
proofs πd,1, πd,2, . . . , πd,ld , and outputs either ⊥ or a sequence of ballots
v1, v2, . . . , vlt .

A cryptographic voting scheme is ls-correct if for any (pk, {dki}, ck) output
by Setup and any (vvk1, vck1, f1), . . . , (vvklV , vcklV , flV) output by Reg(pk),

any ballots v1, . . . , vlV , any (ev
(0)
i , πv,i) output by Cast(pk, vcki, vi), i = 1, . . . , lV ,

any sequence of ls sequences of encrypted ballots ev (j) with proofs πs,j out-
put by Shuffle(pk, ev (j−1)), any ballot decryption shares sv1, . . . , svld with
proofs πd,1, . . . , πd,ld output by DistDec(dki, ev

(ls)), i = 1, 2, . . . , ld and any
(v′1, . . . , v

′
lV
) possibly output by Comb(pk, ev (ls), sv1, . . . , svld), πd,1, . . . , πd,ld),

then:

– Code(ck, vvki, ev i, πv,i) = fi(vi), Code(⊥, vvki, ev i, πv,i) = 1,
– Verify(pk, ev (j−1), ev (j), πs,j) = 1 for j = 1, 2, . . . , ls,
– Comb(pk, ev (ls), sv1, . . . , svld), πd,1, . . . , πd,ld) did not output ⊥, and
– v1, . . . , vlV equals v′1, . . . , v

′
lV
, up to order.

We also require that the distribution of ev i only depends on pk and vi, not vcki.
For any such scheme we define a decryption algorithm Dec that first applies a

number of shuffles (possibly zero) to the single ciphertext, then applies DistDec
and Comb in sequence. Note that this algorithm will not actually be used, but it
simplifies the definition of security.

B.2 Our Scheme

Our voting scheme combines the BGV encryption together with our shuffle (Sec-
tion 4) and distributed decryption (Section 5). We adapt the techniques from
Aranha et al. [ABG+21] to get extractability and code voting, but omit the
details.

– Setup computes pkC ← KeyGenC , (pkV , dkV) ← KeyGenVE , (pkR, dkR) ←
KeyGenVE , as well as key shares dkV,i for every decryption server. The public
key pk = (pkC , pkV , pkR), the decryption share is dk = (pkC , dkV,i) and the
code key is ck = (pkC , pkV , dkR).

– Reg takes pk = (pkC , pkV , pkR) as input. It samples a ←$ Rp and computes
(ca, da) ← Com(pkC , a). The voter verification key is vvk = ca, the voter
casting key is (a, ca, da), and the function f is v 7→ v + a.

– Cast takes pk = (pkC , pkV , pkR), vck = (a, ca, da) and v as input. It com-
putes v ← EncVE (pkV , v), r̂ ← a+ v and w ← EncVE (pkR, r̂), along with a

47

proof πv,0 that v and w are well-formed ciphertexts, and that ca is a com-
mitment to the difference of the decryptions. The encrypted ballot is ev = v,
while the ballot proof is πv = (w, πv,0).

– Code takes ck = (pkC , pkV , dkR), a voter verification key vvk, an encrypted
ballot ev = v and a ballot proof πv = (w, πv,0) as input. It verifies πv,0 and
outputs ⊥ if verification fails. Otherwise, it computes r̂ ← DecVE (dkR,w)
and outputs r̂. (If ck = ⊥, it outputs 1 if and only if it accepts πv,0.)

– The shuffle algorithm Shuffle and the verify algorithm Verify are as de-
scribed in Section 4. The distributed decryption algorithm DistDec and the
combining algorithm Comb are as described in Section 5.

It is straight-forward to verify that the scheme is correct.

B.3 Security Notions

Our notion of confidentiality is similar to the usual ballot box privacy no-
tions [BCG+15]. An adversary that sees both the contents of the ballot box,
the intermediate shuffles and the decrypted ballot shares should not be able to
determine who cast which ballot. This should hold even if the adversary can see
pre-codes, learn the code key, some voter casting keys and some decryption key
shares, insert adversarially generated ciphertexts into the ballot box, introduce
adversarially generated intermediate shuffles and publish adversarially chosen
decrypted ballot shares.

Our notion of integrity is again fairly standard, adapted to return codes.
An adversary should not be able to cause an incorrect pre-code or inconsistent
decryption or non-unique decryption, even if the adversary knows all of the key
material.

We define security notions for a verifiable cryptographic voting scheme using
an experiment where an adversary A is allowed to reveal keys, make challenge
queries, create ciphertexts, ask for ciphertexts to be shuffled, create shuffles,
and ask for ballot shares. We use this experiment to define games both for
confidentiality and for integrity. The experiment works as follows:

– Sample b,←$ {0, 1}. Set L,L′, L′′ to be empty lists.
– (pk, {dki}, ck) ← Setup. For i = 1, . . . , lV : (vvki, vcki, fi) ← Reg(pk). Send

(pk, vvk1, . . . , vvklV) to A.
– On a voter reveal query i, send (vcki, fi) to A. On a decrypt reveal query i,

send dki to A. On a code reveal query, send ck to A.
– On a challenge query (i, v0, v1), compute (ev , πv)← Cast(pk, vcki, vb),

r̂ ← Code(ck, vvki, ev , πv), append (i, v0, v1, ev , πv) to L. Send (ev , πv) to A.
– On a chosen ciphertext query (i, ev , πv), compute r̂ ← Code(ck, vvki, ev , πv).

If r̂ ̸= ⊥, append (i,⊥,⊥, ev , πv) to L. Send r̂ to A.
– On a shuffle query ev , compute (ev ′, πs) ← Shuffle(pk, ev), then record

(ev , ev ′, πs) in L′. Send (ev ′, πs) to A.
– On a chosen shuffle query (ev , ev ′, πs), we record it in L′ if and only if

Verify(pk, ev , ev ′, πs) = 1.

48

– On a ballot decryption share query (i, ev), we then compute (svi, πd,i) ←
DistDec(dki, ev), record (i, ev , svi, πd,i) in L′′ and send (svi, πd,i) to A.

– On a test query (ev , sv1, . . . , svld , πd,1, . . . , πd,ld), then compute the result ←
Comb(pk, ev , sv1, . . . , svld , πd,1, . . . , πd,ld) and send result to A.

Eventually, the adversary outputs a bit b′.
The confidentiality game follows the usual left-or-right game pattern, where

an adversary makes challenge queries and must determine the value of the bit b.
The test query is irrelevant for the confidentiality game.

The integrity game follows the usual pattern where the adversary’s goal is
to achieve certain inconsistencies, either during a code query or during a test
query. The inconsistencies are that a pre-code does not match the encrypted
ballot, that an outcome verifies as correct but is inconsistent with the challenge
ciphertexts chosen for counting, or that there is no unique decryption. (The
test query is not strictly needed. We could have had the adversary output its
encrypted ballots and ballot decryption shares instead of making a test query.
But the test query pattern is convenient in many similar settings, so we include
it.) The bits b, b′ are not really used in the game for integrity, nor is the shuffle
query. The challenge query is used to create honestly encrypted ballots.

Confidentiality fails trivially if the counting phase trivially reveals the chal-
lenge bit. This happens unless the left hand ballots and the right-hand ballots
are identical, up to order. (Recall that the adversary should figure out who cast
which ballots, not what ballots were cast.) Confidentiality also fails trivially if
the adversary makes more than one challenge query or chosen ciphertext query
for any given voter. And confidentiality fails trivially if the adversary reveals too
much key material. We should not count executions where confidentiality fails
trivially towards the adversary’s advantage. Technically, we count this using a
freshness event when evaluating the advantage.

In an execution of this experiment, we say that a sequence of encrypted
ballots ev is valid if tuples (i1, v01, v11, ev1, πv,1), . . . , (ilc , v0lc , v1lc , ev lc , πv,lc) in
L and L′ contains a sequence of tuples (ev (j−1), ev (j), πs,j), j = 1, 2, . . . , ls,
such that ev (0) = (ev1, . . . , ev lc) and ev (ls) = ev . In this case we also say
that ev derives from (i1, v01, v11, ev1, πv,1), . . . , (ilc , v0lc , v1lc , ev lc , πv,lc). A valid
sequence ev is honest if at least one of the tuples (ev (j−1), ev (j), πs,j) originated
with a shuffle query. A valid sequence ev is balanced if the ballot sequence
(v01, . . . , v0lc) equals (v11, . . . , v1lc), up to order.

We define events related to confidentiality and integrity. Let Eg be the event
that b = b′. Let Ef denote the event that an execution is fresh, which is true
if the following are satisfied: there is no decrypt reveal query for at least one i;
for any i, there is either no challenge query, or at most one challenge query and
no voter reveal query or chosen ciphertext query; and for any ballot decryption
share query (·, ev), the sequence ev is balanced and honest at the time of the
ballot decryption share query.

Let Fi (incorrect pre-code) be the event that for some chosen ciphertext
query (i, ev , πv) where Code(ck, vvki, ev , πv) = r̂ ̸= ⊥, we have that either
Dec({dki}, ev) = ⊥ or Dec({dki}, ev) = v and fi(v) ̸= r̂.

49

Let Fc (count failure) be the event that a test query gets result = ⊥ when
ev is valid and (ev , svi, πd,i) is in L′′ for i = 1, . . . , ld.

Let Fd (inconsistent decryption) be the event that a test query (ev , sv1, . . . ,
svld , πd,1, . . . , πd,ld) with result = (v1, . . . , vlc), where ev derives from (i1, v01, v11,
ev1, πv,1), . . . , (ilc , v0lc , v1lc , ev lc , πv,lc), there is no permutation π on {1, 2, . . . , lc}
such that vb,k = ⊥ or vb,k = vπ(k) for k = 1, 2, . . . , lc. Let Fu (no unique de-
cryption) be the event that two test queries (ev , sv1, . . . , svld , πd,1, . . . , πd,ld)
and (ev , sv′1, . . . , sv

′
ld
, πd,1

′, . . . , πd,ld
′) for some valid ev get results result and

result ′ that are not equal up to order, and neither of which are equal to ⊥. The
advantage of the adversary is

max{2 · |Pr[Eg ∧ Ef]− Pr[Ef]/2|,Pr[Fi ∨ Fc ∨ Fd ∨ Fu]}.

B.4 Security Proof Sketch

We briefly sketch a proof for how to bound the advantage of an adversary against
the cryptographic voting scheme in terms of adversaries against the shuffle,
the distributed decryption scheme, the commitment scheme or the encryption
scheme.

Confidentiality. We begin by analyzing the confidentiality event Pr[Eg ∧ Ef].
The proof would proceed as a sequence of games, where the first game is the

interaction between the experiment and the adversary.
In the next game, we stop the adversary with a forced guess b′ = 0 imme-

diately upon any query that would make the execution non-fresh. Note that a
query that makes the execution non-fresh can be recognized with no secret infor-
mation, and at the time the query is made. A brief computation shows that this
changes nothing, but in the further analysis we may assume that the execution
remains fresh.

We next simulate all the zero knowledge proofs involved, which is straight-
forward in the random oracle model since all our proofs are HVZK.

Next, we change the challenge query so that instead of computing the precode
as r̂ = a+ v, it samples r̂ uniformly at random. If this change is observable, we
get an adversary against hiding for the commitment scheme.

Next, for any ballot decryption share query for a sequence (ev1, . . . , ev lc),
we decrypt ev i to vi, then use the HVZK simulator from Section 5 to simulate
the decryption share given the decryption vi. This change is unobservable. (To
get an adversary, we guess a decryption key share i for which the adversary
will never make a decrypt reveal query, and simulate the other decryption key
shares as random shares. When the adversary makes a ballot decryption share
query for i, we compute the ballot decryption shares for the other decryption
key shares and compute the ith ballot decryption share to give the correct result
when combined.)

Next, for chosen ciphertext queries, we decrypt the w using dkR and subtract
a to recover v, and then record (i, v, v, ev , πv) instead of (i,⊥,⊥, ev , πv). By the

50

soundness of the ballot proof (details omitted), we now have that every tuple
(i, v0, v1, ev , πv) in L satisfies Dec(dkV , ev) = vb.

Next, for any ballot decryption share query for an honest and balanced se-
quence (ev1, . . . , ev lc) deriving from (·, v01, v11, ·, ·), . . . , (·, v0lc , v1lc , ·, ·), sample
a permutation π on {1, 2, . . . , lc} and use vi = v0π(i) instead of decrypting ev i.
If this change is observable, we either get an adversary against soundness for
the shuffle (when the decryption of the output of a shuffle is not equal to the
decryption of the input to the shuffle, up to order) or an adversary against the
encryption scheme (when the adversary notices that the ballot decryption shares
are inconsistent with the encrypted ballots). The latter adversary re-randomizes
the shuffle with random values instead of encryptions of zero.

At this point, the decryption key shares {dki} are no longer used. Also, the
pre-code encrypted in the challenge query is independent of the challenge ballots.

Finally, for challenge queries we encrypt a random ballot instead of the left
or right ballot. If this change is observable, we get a real-or-random adversary
against the encryption scheme.

At this point, the challenge bit b is no longer used. It follows that the adver-
sary has no advantage in this game. By the above arguments, the claim that the
difference between Pr[Eg ∧ Ef] and Pr[Ef]/2 is appropriately bounded follows.

Integrity. Next, we analyze the integrity events. In this case, the adversary may
have revealed every secret key, and there is no need for the execution to be fresh.

If a chosen ciphertext query results in an incorrect pre-code, then we immedi-
ately get an adversary against the soundness of the ballot proof (details omitted).
It follows that the probability of Fi happening is appropriately bounded.

In the event that Fc happens, note that every encrypted ballot either origi-
nates with a challenge query or a chosen ciphertext query, the shuffles applied to
the encrypted ballots originate with shuffle queries or chosen shuffle queries, and
the ballot decryption shares all originate with ballot decryption share queries. By
the completeness and soundness of the various arguments, and the bound on the
number of shuffles, we get that the probability of Fc happening is appropriately
bounded.

In the event that Fd happens, then either the output of some shuffle does
not decrypt to the same as the input to the shuffle, in which case we get an
adversary against the soundness of the shuffle, or the distributed decryption does
not decrypt correctly, in which case we get an adversary against the soundness
of the distributed decryption. It follows that the probability of Fd happening is
appropriately bounded.

In the event that Fu happens, then either the decryption of the encrypted
ballots is not unique, in which case we get an adversary against the soundness of
the proofs ensuring valid ciphertexts (in the ballot proofs and the shuffle proofs),
or one or both results are incorrect, in which case we get an adversary against
the soundness of the shuffle. It follows that the probability of Fu happening is
appropriately bounded.

The claim that Pr[Fi ∨ Fc ∨ Fd ∨ Fu] is appropriately bounded follows.

51

B.5 Voting System Security Properties

Integrity. Integrity for a voting system is modeled using a game between an
adversary and a set of voters, some of which may be corrupt. The adversary
tells the honest voters what ballots to cast. If the count phase eventually runs
and ends with a result, the adversary wins if the result is inconsistent with the
ballots accepted as cast by the honest voters. (Recall that only the voter’s last
ballot cast is counted, so if the voter first accepts a ballot as cast, and then tries
to cast another ballot and this fails, the end result is that they have not accepted
a ballot as cast.)

We can define a variant notion called ϵ-integrity where we allow a small
error, and say that the adversary wins if the result is inconsistent with any
(1 − ϵ) fraction of the ballots accepted as cast by the honest voters. (We need
this since return codes for a single voter must be human-comparable, and can
therefore collide with some non-negligible probability.)

Analysis. The voter will only accept the ballot as cast if the correct return code
is received. If the correct return code is received, then the correct pre-code must
have been computed at some point (except with some small probability due to
collisions in the PRF).

If the return code generator R is honest, integrity of the cryptographic voting
scheme implies that this can only happen if the correct ballot has been encrypted.
If the auditor A is honest, the result will only be accepted if the encrypted ballot
has been included among those sent to the first shuffler. By the integrity of the
cryptographic voting system, all such ballots must then be included in the result.

If the voter’s computer P and the ballot box B and the auditor A are honest,
the the encrypted ballot will be included among those sent to the first shuffler.
By the integrity of the cryptographic voting system, all such ballots must then
be included in the result.

If a voter receives a return code without casting a ballot, the voter will no
longer accept their ballot as cast.

In summary, ϵ-integrity holds if the auditor and either both the voters’ phones
and the return code generator are honest, or both the voters’ computers and the
ballot box are honest.

Verifiability. In a verifiable voting protocol, every voter gets a receipt after ac-
cepting a ballot as cast. Also, the auditor outputs a result and a transcript. Also,
there is an algorithm for verifying either a transcript, a result and optionally a
receipt.

Consider an execution of the voting protocol where the auditor outputs a
result and a transcript. Then there is a set of honest voters with honest computers
that accept their ballot as cast with some receipt, and for which the verification
algorithm accepts the transcript, the result and their receipt. We say that a
system is verifiable if the result is consistent with the list of these voters’ ballots
being included in the result.

52

Note that verifiability in and of itself does not guarantee anything about
the correctness of the result. Instead, verifiability is best thought of as a tool
that can be used to achieve trust in election integrity under fairly weak trust
assumptions. For instance, one can prove that if a sufficiently large and hard to
guess subset of voters run the verification algorithm on the transcript, result and
their receipt, then the overall election has ϵ-integrity for some ϵ. (The “hard to
guess” part is instrumental in proving this result. If the set of voters verifying an
election is not hard to guess, achieving election integrity is much more difficult,
at least without strong trust assumptions.)

Note also that we assume that the honest voter’s computer is honest in the
definition. If the voter’s computer is corrupted, we are left with considering
integrity as above, which can be achieved conditional on other players being
honest.

Analysis. Verifiability for our protocol follows by integrity for the underlying
cryptosystem, since the execution of our protocol can be thought of as an inter-
action with the experiment for the underlying cryptosystem, where the honest
computer’s actions correspond to challenge queries, and part of the verifica-
tion algorithms’ work correspond to a test query. The structure of the protocol
then ensures that if the result output by a test query is inconsistent with cor-
responding ballots output by challenge queries, integrity fails for the underlying
cryptosystem.

In summary, if the underlying cryptosystem has integrity, the voting protocol
is verifiable.

Privacy. Privacy for a voting protocol is modeled as a left-or-right game with
an adversary and a set of voters, some of which may be corrupt. The adversary
gives pairs of ballots to honest voters, and they will all either cast the left ballot
or the right ballot. The adversary must decide which they cast. (This essentially
amounts to deciding who cast which ballot.)

The adversary can corrupt players and also control the network. We shall
assume that players use secure channels to communicate. This means that only
the fact that players are communicating and the length of their communications
leak. Since message flows and message lengths are fixed and public knowledge,
we can ignore the network in the subsequent analysis.

We want to avoid adversaries that deduce the honest voters’ ballots trivially
from the result, so we require that the adversary organizes the pairs of ballots
given to the honest voters in such a way that the ballots cast by the honest
voters are independent of whether the voters cast the left or the right ballot.

Analysis. If some honest voter’s computer P is compromised, the adversary can
trivially win the privacy game.

If every shuffle server is compromised, the adversary learns the correspon-
dence between decrypted ballots and voters, and can trivially win the privacy
game.

53

If every decryption server is compromised, the adversary learns the decryp-
tion key, and can trivially win the privacy game.

If a voter casts more than one ballot, a compromised return code generator
or voter phone will always be able to decide if they are the same or not by
observing the return code sent to the voter. If the ballots are distinct, the return
code generator will learn information about which ballots were submitted, and
typically learn both ballots. (We could prove privacy when the voter casts more
than one ballot and the return code generator and the voter phone are both
honest, but this requires adding a restricted challenge query that does not reveal
the precode to the cryptosystem experiment.)

Suppose the honest voters cast at most one ballot each, their computers re-
main honest, and at least one shuffle server and one decryption server is honest.
Then privacy follows from confidentiality of the cryptographic voting system,
since the protocol execution can be interpreted as an interaction with the cryp-
tosystem experiment and the protocol together with our assumptions ensure a
fresh execution.

Note that cut-and-paste attacks against confidentiality, which commonly af-
fect this type of voting protocol, do not work against this protocol because the
ballot proof includes an encryption of the return code and a proof that the return
code is correct which is tied to the voter’s public key material. Cut-and-paste
attacks would anyway constitute a valid attack on the cryptosystem.

In summary, privacy holds if the honest voters’ computers are honest, there
is at least one honest shuffle server and one honest decryption server, and no
honest voter casts more than one ballot.

C Proofs for Amortized Exact ZKPoPK

C.1 Proof of Lemma 1.

Proof. First, we construct an extractor E as in [BLNS21] which does the following
8 times:

1. First, run P∗ on random challenges from V until an accepting transcript is
found. Abort if none is found after 8/ϵ steps.

2. Let I1 be the challenge set where P∗ responded and let E|I1 , MerklePathsI1
be the opened columns and Merkle tree paths. Fixing the other challenges, E
adaptively reruns the proof for different challenges I2, I3, . . . that contain so
far unopened columns and collects these. If any collision in the Merkle tree
is found then E outputs the hash collision and terminates, otherwise it con-
tinues until it collected a set J of at least k columns, or until 8 k−η

ϵ/2−(k/(l−η))η
time passed.

3. Finally, E re-runs P∗ 16/ϵ times with completely fresh challenges, obtaining
new E|I , MerklePathsI . If for some of these instances the accepting tran-
script contains a hash collision in the Merkle tree (colliding with J) or cd is
opened with a different opening than in the first step, then output the hash
collision or the respective two different openings of cd.

54

Using a standard heavy-row argument, [BLNS21] show that E ’s total runtime
is bounded by the term mentioned in the Lemma. Moreover, define S as the
event that P∗ outputs a valid proof in the last step and C be the event that
the values P∗ outputs to E in the last step of the extractor are consistent (i.e.
no hash collisions and the commitment was not opened differently than before).
Then [BLNS21] show that it must hold that Pr[S ∧C] > ϵ/2. We now show that
if we cannot use J to decode to a valid witness, then the success probability of
P∗ must be lower than the given bound.

Define C ′ to be the RS code obtained from C (generated by Encode) when
restricted to the indices of J . As |J | = k, C ′ has length k and minimum distance
d′ = k − k′ + 1. For any x ∈ Zk

q we define the minimum distance of x to C ′ as
d′(C ′,x) = minc∈C′ d(c,x).

Let E∗ := E|J be the matrix that was extracted by the extractor and let
d∗ be the opening message of the commitment. Assume that there exists x ∈
Z3τ+4
q such that d′(C ′,xE∗) ≥ d′/3. Then by [BCG+17, Appendix B], any

random linear combination of E∗ (in particular, we compute and output such
a combination in the proof as h) has distance ≥ d′/6 from C ′ except with
probability 1/(q − τ). Similar as in [BLNS21] we can use this to deduce that in
such a case, it must hold that

ϵ/2 <
1

q − τ
+

(
1− k − k′

6l

)η

which contradicts the bound on ϵ in this lemma. Therefore, each row of E∗ must
be within d′/3 of C ′, meaning that it is efficiently decodable. Let h∗, s∗0, s

∗
i,j ,v

∗
0,v
∗
i,j

be the respective decoded values and r∗h, r
∗
0, ri,j∗ be the randomness. We con-

sider the composition of the aforementioned row values as V and the randomness
used in the encoding as R, By applying another result from [BCG+17, Appendix
B] we have that for any vector y ∈ Z3τ+4

q it holds that d′(EncodeJ(yV ,yR),yE∗) <
d′/3. In other words, any linear transformation y when applied to the possibly
noisy codewords E∗ is within distance d′/3 of the codeword obtained from en-
coding V ,R after applying the same transformation y. That means that f is
constructed from s∗0, s

∗
i,j as we would expect.

Similar as in [BLNS21, Corollary 3.7] one can show that if there are ≤
(ϵ/4)(q − τ) choices of x such that

f = ℓ0(x)s
∗
0 +

τ∑
i=1

2∑
j=0

ℓi(x)ℓ0(x)
js∗i,j (3)

1

ℓ0(x)
· f̄ ◦

[
f̄ − 1

]
◦
[
f̄ + 1

]
= ℓ0(x)v

∗
0 +

τ∑
i=1

2∑
j=0

ℓi(x)ℓ0(x)
jv∗i,j (4)

55

then ϵ < 4(1− 2(k−k′)
3l)η, contradicting the bound on ϵ in the lemma. By multi-

plying 4 with ℓ0(X) we obtain the equation

f̄ ◦ (f̄ − 1) ◦ (f̄ + 1)− ℓ0(X)2v∗0 −
τ∑

i=1

2∑
j=0

ℓi(X)ℓ0(X)j+1v∗i,j = 0. (5)

Replacing f̄ according to Equation 3 means that the above expression is of degree
at most 9 · τ . But it is 0 for more choices of x because ϵ > 36τ/(q− τ), meaning
that the expression itself must be the zero-polynomial. Reducing Equation 5
modulo ℓ0(X) and knowing that all ℓi(X) are independent, it follows that for
all i ∈ [τ] the value s∗i,0 is in {−1, 0, 1}vN .

Additionally, we have that

d∗ =
1

ℓ0(X)
·

(
τ∑

i=1

tiℓi(X)−Af

)

and replacing again f̄ with Equation 3 yields

d∗ = −As∗0 +
1

ℓ0(X)
·

 τ∑
i=1

tiℓi(X)−A

 τ∑
i=1

2∑
j=0

ℓi(x)ℓ0(x)
js∗i,j


Since d∗ has been committed to before x is chosen, it must be that d∗ is the
constant of the polynomial on the right, so we have that d∗ = −As∗0 and there-
fore

τ∑
i=1

2∑
j=0

ℓi(x)ℓ0(x)
jAs∗i,j =

τ∑
i=1

tiℓi(X).

Again reducing modulo ℓ0(X) reveals that

τ∑
i=1

ℓi(x)As∗i,0 =

τ∑
i=1

tiℓi(X)

and by the independence of the ℓi(X) modulo ℓ0(X) we have that ti = As∗i,0
for all i ∈ [τ], which proves the claim. ⊓⊔

C.2 Zero-Knowledge

Lemma 3. There exists an efficient simulator S which, given x, β0, β1,0, . . . , βτ,2, I
outputs a protocol transcript of the the protocol in Figure 3 whose distribution
is indistinguishable from a real transcript between an honest prover and honest
verifier.

Proving Honest-Verifier Zero-Knowledge is sufficient for our application, as we
will use the Fiat-Shamir transform to generate the challenges in ΠAEx.

Proof. Towards constructing a simulation, observe that

56

1. M and its opened paths do not reveal any information about the unopened
columns as the commitment scheme used in creatingM is hiding.

2. f̄ , r̄f , h̄, r̄h are uniformly random due to the uniform choice of s0, r0,h, rh.
3. Each encoded row of E uses η bits of randomness, so revealing η columns

does not leak any information about the message being committed in the
respective row.

Thus, for the proof we let S choose uniformly random f̄ , r̄f , h̄, r̄h. This allows
the prover also to compute d consistently as 1

ℓ0(x)
· (
∑τ

i=1 tiℓi(x)−Af), which

has the same uniform distribution as in the real protocol, and thereby fix cd.
Next, we let S choose all but the first two rows of E|I uniformly at random.
The second row will be computed according to x thus fulfilling the check on the
encoding of f̄ , r̄f , while the first row is computed according to β0, βi,j for the
encoding of h̄, r̄h. S now fixes the remaining columns of E as 0 and commits
honestly to these as in the protocol. ⊓⊔

57

	Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based Assumptions

