
Verifiable Mix-Nets and Distributed Decryption for Voting from
Lattice-Based Assumptions∗

Diego F. Aranha

dfaranha@cs.au.dk

Aarhus University

Aarhus, Denmark

Carsten Baum

cabau@dtu.dk

DTU Compute and

Aarhus University

Copenhagen, Denmark

Kristian Gjøsteen

kristian.gjosteen@ntnu.no

Norwegian University of Science and Technology

Trondheim, Norway

Tjerand Silde
†

tjerand.silde@ntnu.no

Norwegian University of Science and Technology

Trondheim, Norway

ABSTRACT

Cryptographic voting protocols have recently seen much interest

from practitioners due to their (planned) use in countries such as

Estonia, Switzerland, France, and Australia. Practical protocols usu-

ally rely on tested designs such as the mixing-and-decryption para-

digm. There, multiple servers verifiably shuffle encrypted ballots,

which are then decrypted in a distributed manner. While several

efficient protocols implementing this paradigm exist from discrete

log-type assumptions, the situation is less clear for post-quantum

alternatives such as lattices. This is because the design ideas of the

discrete log-based voting protocols do not carry over easily to the

lattice setting, due to specific problems such as noise growth and

approximate relations.

In this work, we propose a new verifiable secret shuffle for BGV

ciphertexts and a compatible verifiable distributed decryption proto-

col. The shuffle is based on an extension of a shuffle of commitments

to known values which is combined with an amortized proof of

correct re-randomization. The verifiable distributed decryption pro-

tocol uses noise drowning, proving the correctness of decryption

steps in zero-knowledge. Both primitives are then used to instan-

tiate the mixing-and-decryption electronic voting paradigm from

lattice-based assumptions.

We give concrete parameters for our system, estimate the size of

each component and provide implementations of all important sub-

protocols. Our experiments show that the shuffle and decryption

protocol is suitable for use in real-world e-voting schemes.

1 INTRODUCTION

Mix-nets were originally proposed for anonymous communication

[18], but have since been used extensively for cryptographic voting

systems. A mix-net is a multi-party protocol that gets as input a col-

lection of ciphertexts and outputs another collection of ciphertexts

whose decryption is the same set, up to order. It guarantees that

the permutation between input and output ciphertexts is hidden

if at least one party is honest, while none of the servers involved

learns the plaintexts.

Mix-nets are commonly used in cryptographic voting. Here,

encrypted ballots are submitted to a bulletin board or ballot boxwith

∗
This is a preliminary full version of the paper being accepted at ACM CCS 2023.

†
Work done in part while visiting Aarhus University.

identifying information attached. These ciphertexts are then sent

through a mix-net before decryption, to break the identity-ballot

correlation. In addition to hiding the permutation, the correctness of

the mix-net output must be verifiable. In applications such as voting

it is important that the mix-net provides a proof of correctness that

can be verified by anyone at any later point in time, to ensure

universal verifiability.

A shuffle of a set of ciphertexts is another set of ciphertexts whose
decryption is the same as the original set, up to order. Compared to

a mix-net, it is performed by one server only (which does not learn

the plaintexts). As for mix-nets, a shuffle is secret if it is hard for

any external party to correlate input and output ciphertexts, and

verifiable if there is a proof that decryptions are the same.

If we have a verifiable secret shuffle for some cryptosystem,

then this can be used to construct a mix-net: for this, the nodes

of the mix-net receive a set of ciphertexts as input, shuffle them

sequentially and each provides a proof of correctness. The mix-net

proof then consists of the intermediate ciphertexts along with the

shuffle proofs. If at least one node in this chain is honest, it is hard

to correlate the inputs and outputs.

For applications in cryptographic voting, it must also be guar-

anteed that the correct result can be obtained from the mix-net

output, while nobody has the secret decryption key. One strategy

is to use verifiable threshold decryption, where the key is secret-

shared among a committee of decryption parties. Each of them

contributes to the decryption and proves that they did so honestly.

Verifiable shuffling and verifiable distributed decryption proto-

cols are well-known for cryptosystems based on discrete logarithm-

type assumptions. For example, Neff [39] proposed the first efficient

verifiable secret shuffle for ElGamal-like cryptosystems. Verifiable

decryption for ElGamal-like cryptosystems can be constructed us-

ing standard Verifiable Secret-Sharing and Σ-protocols.
While ample voting schemes have been constructed based on the

aforementioned outline, they essentially all rely on assumptions

that are not secure against quantum computers. Given the need

for the long-term privacy of elections, it is important to construct

verifiable shuffles and distributed decryption from quantum-safe

computational problems such as lattice assumptions. NIST recently

standardized post-quantum key-encapsulation mechanisms and

digital signatures based on lattices [35, 40, 42]. Using shuffles and

distributed decryption schemes based on the same assumptions,

1

https://orcid.org/0000-0002-2457-0783
https://orcid.org/0000-0001-7905-0198
https://orcid.org/0000-0001-7317-8625
https://orcid.org/0000-0002-5455-0409

Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde

it seems well-motivated to build a plausibly post-quantum voting

scheme following the aforementioned approach. The main obstacle

to simply adopting the protocols for discrete logarithms to lattices is

the (presumed) lack of suitable efficient techniques for verification,

as well as the problem of noise growth.

1.1 Our contributions

In this work, wemake progress in the direction of plausibly quantum-

secure voting. We design a verifiable secret shuffle for BGV cipher-

texts [17] that is suitable for cryptographic voting systems dealing

with arbitrary vote structures. In addition, we construct a verifiable

distributed decryption protocol by compiling previous passively-

secure constructions with zero-knowledge proofs and show how

to integrate these and other building blocks into a voting scheme.

Finally, we implemented the main parts of the verifiable shuffle and

distributed decryption protocols to demonstrate the viability and

efficacy of our overall design.

Lattice-based shuffle. To construct a mix-net for BGV ciphertexts

we extend the shuffle of commitments to known values by Aranha

et al. [4]. Their construction only works for BDLOP [7] commit-

ments of message length 1, while we generalize their construction

to an arbitrary length. Given such a generalized verifiable shuffle of

commitment openings, our verifiable shuffle for input ciphertexts

𝒄1, . . . , 𝒄𝜏 then works as follows: We let the shuffler commit to BGV

re-randomization ciphertexts 𝒄1, . . . , 𝒄𝜏 (encryptions of 0) using

the linearly homomorphic BDLOP commitment scheme Com. To-
gether with efficient proofs of well-formedness for the committed

re-randomization ciphertexts, this gives us a verifiable shuffle:

(1) The shuffler commits to the re-randomization ciphertexts

𝒄1, . . . , 𝒄𝜏 as Com(𝒄𝑖) and shows that they are well-formed

using zero-knowledge proofs.

(2) The shuffler computes 𝒅𝑖 = 𝒄𝑖 + 𝒄𝑖 and sends shuffled ele-

ments 𝐿 = (𝒅𝜋 (𝑖))𝑖∈[𝜏] to the receiver.

(3) Finally, the prover shows that 𝐿 is a list of openings of the

commitments obtained from 𝒄𝑖+Com(𝒄𝑖) using the extended
shuffle of commitments to known values.

To prove the well-formedness of the ciphertexts, we utilize proofs

of shortness where the proof size is sublinear in the number of

ciphertexts 𝜏 . For this, we use a version of recent amortized proofs of

shortness [13]. Unfortunately their construction as-is is suboptimal

for our setting, so we adapt and re-prove their protocol.

Verifiable distributed decryption. As explained, a verifiable secret
shuffle on its own is usually not sufficient to build a cryptographic

voting system. The ciphertexts must also be decrypted, without

introducing correctness and privacy problems. Our solution is to

distribute the decryption operation in a verifiable way. We hand out

key shares of the secret decryption key to each decryption server,

and all of them perform a partial decryption of each ciphertext.

In addition, we publish commitments to the key shares. The de-

cryption servers then add noise to the partial decryption to hide

information about their shares, in a process called noise drowning.

Finally, decryption servers publish the partial decryptions together

with a proof of correctness of the decryption, and the plaintexts

are computed in public by combining all the partial decryptions.

We use a decryption protocol for BGV ciphertexts that is similar

to existing works such as [22]. Their construction is only passively

secure. We, therefore, modify the protocol to be resistant to active

attacks even if all decryption servers are malicious, and prove it

secure. For this, we again utilize an (amortized) zero-knowledge

proof of shortness that allows each decryption server to show that

it behaved honestly during decryption.

Putting things together. Lattice-based cryptography is very del-

icate, and one has to be cautious when combining multiple sub-

protocols into a larger (voting) construction. This is mainly due to

noise in ciphertexts, which can lead to faulty decryptions, overly

large parameters, or both.

In our construction, each shuffle adds noise to the ciphertexts,

which means that to ensure the correctness of decryption we need

to choose parameters based on the number of shuffles and the

amount of noise added in each shuffle. Each partial decryption

also adds noise to the ciphertexts to hide the secret key. Because

of the noise drowning technique, the norm must be quite large,

influencing the choice of parameters for the overall construction

as well as the choice of zero-knowledge proof techniques involved.

In particular, it is important when measuring performance to use

parameters suitable for the complete system, not parameters opti-

mized for individual components only. In order to provide proper

context for our contributions, we give a sketch of a full crypto-

graphic voting protocol and provide example parameters. A simpli-

fied version could be used as a quantum-safe Helios [1] variant.

Implementation results. Our example parameters assume 4 mix-

nodes and 4 decryption nodes. We have estimated the size of each

component with respect to the parameters for the full protocol in

addition to implementing all sub-protocols, showing that it can be

used for large-scale real-world elections where ballots typically are

counted and verified in batches of several thousand.

To summarize our implementation results, a ciphertext ballot is

of size 80 KB (encoding a vote of size 4096 bits), each mixing proof is

of total size 370𝜏 KB and each decryption proof is of total size 157𝜏

KB, where 𝜏 is the number of total ciphertexts. It takes only 0.74 ms

to encrypt a ballot, while the mixing proof takes 133.6𝜏 ms and the

decryption proof takes 101.81𝜏 ms. Verification is much faster, with

only 12.9𝜏 ms for the mixing and 28.5𝜏 ms for the decryption. These

results improve on the state of the art considerably, see Section 7.

Quantum security. While our work constructs and implements a

voting scheme from post-quantum assumptions, we do not claim
that it is post-quantum secure. We discuss this in Appendix G.

1.2 Related work

Aranha et al. [4] provide a verifiable shuffle of known commitment

openings together with concrete parameters and implementation

of a complete voting protocol. However, their trust model has the

limitation that the ballot box and the shuffle server must not collude

to ensure the privacy of the ballots, which is too restrictive for most

real-world settings. This is inherent for the protocol which can not

easily be extended to several shuffles unless layered encryption is

used, and this would heavily impact the performance.

Costa et al. [20] design a shufflewith a straight-forward approach

similar to Neff [39] based on roots of polynomials. Their protocol

2

Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based Assumptions

requires committing to two evaluations of a polynomial and then

proving the correctness of the evaluation using a sequence of mul-

tiplication proofs which are quite costly in practice. Farzaliyev et al.

[27] implements the mix-net by Costa et al. [20] using the amorti-

zation techniques by Attema et al. [5] for the commitment scheme

by Baum et al. [7]. Here, the proof size is approximately 14 MB per

voter, a factor 40 larger than our shuffle proof, even for a smaller

parameter set that does not take into account distributed decryption

afterward. We expect our shuffle proof to be an additional factor

10 smaller than what we presented above with optimal parameters

for the shuffle only (𝑞 ≈ 2
32

and 𝑁 = 1024 instead of 𝑞 ≈ 2
78

and

𝑁 = 4096). Furthermore, their proof generation and verification

respectively take 1.54 and 1.51 second per vote, which is approx-

imately 18.5 times slower than it takes to produce and verify our

shuffle proof in sequence (when normalizing for clock frequency),

with parameters that do not take decryption into account.

Recently, Herranz et al. [31] gave a new proof of correct shuffle

based on Beneš networks and sub-linear lattice-based proofs for

arithmetic circuit satisfiability. However, the scheme is not imple-

mented and the example parameters do not take the soundness

slack of the amortized zero-knowledge proofs into account. More-

over, [31] does not consider the decryption of ballots, which would

heavily impact the parameters of their protocol in practice.

A completely different approach to mix-nets is the so-called de-

cryption mix-nets. The idea is that the input ciphertexts are actually

nested encryptions. Each node in the mix-net is then responsible

for decrypting one layer of each ciphertext. These can be made

fully generic, relying only on public key encryption. Boyen et al.

[15] carefully adapt these ideas to lattice-based encryption, result-

ing in a very fast scheme. Decryption mix-nets are well-suited to

applications in anonymous communication. However, for voting

applications, they are often less well-suited due to their trust re-

quirements. An important goal for cryptographic voting is universal

verifiability: after the election is done, anyone should be able to ver-

ify that the ballot decryption was done correctly without needing to

trust anyone. This trust issue generalizes to any situation where it

is necessary to convince someone that a shuffle has been performed

correctly, but no auditor is available. Fast and generic decryption

mix-nets such as Boyen et al. [15] need an auditor (potentially dis-

tributed) to verify the mix-net, but then it must be trusted during

the operation. This conflicts with universal verifiability.

del Pino et al. [24] give a practical voting protocol based on ho-

momorphic counting. They only support yes/no elections, and the

total size depends directly on the number of candidates for larger

elections. It was shown by Boyen et al. [16] that the protocol in

[24] is not end-to-end verifiable unless all tallying authorities and

all voters’ voting devices are honest. This problem is solved by [16],

but their construction still has the downside of only supporting

homomorphic tallying. Strand [45] built a verifiable shuffle for the

GSW cryptosystem, but this construction is too restrictive for prac-

tical use. Chillotti et al. [19] uses fully homomorphic encryption,

which for the foreseeable future is most likely not efficient enough

to be considered for practical deployment.

2 BUILDING BLOCKS

In this section, we define the building blocks that we use in our

construction of the voting scheme. Then, in Section 3 we show how

these can be put together.

Let 𝜅 be the computational and sec the statistical security pa-

rameter. We define the ring 𝑅𝑞 = Z𝑞 [𝑋]/⟨𝑋𝑁 + 1⟩, its norms, the

discrete Gaussian distributionN , rejection sampling, and knapsack

problems SKS2

𝑛,𝑘,𝛽
and DKS∞

𝑛,𝑘,𝛽
in the full version of the paper. We

use 𝑆𝐵 ⊆ 𝑅𝑞 to denote the subset of 𝑅𝑞 where each coefficient is

less or equal 𝐵.

2.1 PKE with Distributed Decryption

We first present a definition of a secure public key encryption (PKE)

scheme with a distributed decryption protocol. Such a scheme

works like a regular PKE scheme but additionally allows the secret

key to be shared among a set of decryption servers. Then, for a

given ciphertext, the decryption servers can compute decryption

shares using their key shares which, when combined, reveal the

plaintext. The goal here is that the decryption shares do not reveal

information about the secret key shares.

Definition 1 (PKE with Distributed Decryption). A PKE
scheme with distributed decryption consists of five algorithms: key
generation (KGen), encryption (Enc), decryption (Dec), distributed
decryption (DDec), and combine (Comb), where
KGen On input security parameter 1

𝜅 and number of key-shares 𝜉1,
outputs public parameters pp, a public key pk, a secret key
sk, and key-shares {sk𝑗 },

Enc On input pk and messages {𝑚𝑖 }, outputs ciphertexts {𝑐𝑖 },
Dec On input sk and ciphertexts {𝑐𝑖 }, outputs messages {𝑚𝑖 },

DDec On input a secret key share sk𝑗∗ and ciphertexts {𝑐𝑖 }, outputs
decryption shares {ds𝑖, 𝑗∗ },

Comb On input ciphertexts {𝑐𝑖 } and decryption shares {ds𝑖, 𝑗 }, out-
puts either messages {𝑚𝑖 } or ⊥,

and pp are implicit inputs to Enc, Dec, DDec and Comb.

For such a scheme, we requiremultiple security properties. (Thresh-

old) correctness and IND-CPA security are standard and we only

provide their definitions for completeness in the full version of the

paper. Of more interest are threshold verifiability and decryption

simulatability, which we define below.

Let 𝑃sk (𝑐) be an efficiently computable predicate that on input

secret key sk and a ciphertext 𝑐 outputs 1 or 0. Such a predicate

signals that the ciphertext is reliably decryptable - which we need

to consider as ciphertexts contain noise. We first define threshold

verifiability, which models that distributed decryption is secure

against active attacks.

Definition 2 (Threshold Verifiability). A PKE scheme with
distributed decryption is threshold verifiable with respect to 𝑃sk (·)
if an adversary Adv corrupting 𝐽 ⊆ [𝜉1] secret key shares {sk𝑗 } 𝑗∈ 𝐽
cannot convinceComb to accept maliciously created decryption shares
{ds𝑖, 𝑗 }𝑖∈[𝜏], 𝑗∈ 𝐽 . More concretely, the following probability is bounded
by a negligible 𝜖 (𝜅):

Pr


Dec(sk, {𝑐𝑖 }𝑖∈ [𝜏])

≠

Comb({𝑐𝑖 }𝑖∈ [𝜏] , {ds𝑖,𝑗 }
𝑗 ∈ [𝜉

1
]

𝑖∈ [𝜏])
≠
⊥

:

(pp, pk, sk, {sk𝑗 } 𝑗 ∈ [𝜉1
]) ← KGen(1𝜅 , 𝜉1)

({𝑐1, . . . , 𝑐𝜏 }) ← Adv(pp, pk, {sk𝑗 } 𝑗 ∈ 𝐽)
∀𝑖 ∈ [𝜏] : 𝑃sk (𝑐𝑖) = 1, ∀ 𝑗 ∉ 𝐽 :

{ds𝑖,𝑗 }𝑖∈ [𝜏] ← DDec(sk𝑗 , {𝑐𝑖 }𝑖∈ [𝜏])
{ds𝑖,𝑗 }𝑖∈ [𝜏], 𝑗 ∈ 𝐽 ← Adv({ds𝑖,𝑗 }𝑖∈ [𝜏], 𝑗∉𝐽)


,

3

Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde

where the probability is taken over KGen and DDec.

We moreover define a simulation property, that shows that de-

cryption shares do not leak any information about the secret key.

This models security against passive attackers.

Definition 3 (Distributed Decryption Simulatability). A
PKE scheme with distributed decryption is simulatable with respect
to 𝑃sk (·) if an adversary Adv corrupting 𝐽 ⊊ [𝜉1] secret key shares
{sk𝑗 } 𝑗∈ 𝐽 cannot distinguish the transcript of the decryption protocol
from a simulation by a simulator Sim which only gets {sk𝑗 } 𝑗∈ 𝐽 as
well as correct decryptions as input. More concretely, the following
probability is bounded by a negligible 𝜖 (sec):

|Pr


𝑏 = 𝑏′ :

(pp, pk, sk, {sk} 𝑗 ∈ [𝜉
1
]) ← KGen(1𝜅 , 𝜉1)

({𝑐1, . . . , 𝑐𝜏 }) ← Adv(pp, pk, {sk𝑗 } 𝑗 ∈ 𝐽)
∀𝑖 ∈ [𝜏] : 𝑃sk (𝑐𝑖) = 1

{ds0

𝑖,𝑗
} ← DDec({sk𝑗 } 𝑗 ∈ [𝜉1

] , {𝑐𝑖 }𝑖∈ [𝜏])
{ds1

𝑖,𝑗
} ← Sim(pp, {sk𝑗 } 𝑗 ∈ 𝐽 , {𝑐𝑖 ,Dec(sk, 𝑐𝑖) }𝑖∈ [𝜏])

𝑏
$← {0, 1}, 𝑏′ ← Adv({ds𝑏

𝑖,𝑗
}𝑖∈ [𝜏], 𝑗 ∈ [𝜉

1
])


− 1

2

|,

where the probability is taken over KGen,DDec, Sim.

2.1.1 Our instantiation. Let 𝑝 ≪ 𝑞 be primes, define 𝑅𝑞 and 𝑅𝑝
for a fixed 𝑁 , let 𝐵Key, 𝐵Err ∈ N be bounds. We use the BGV [17]

encryption scheme, which consists of three algorithms: key gener-

ation (KGen), encryption (Enc) and decryption (Dec), where:

KGen Samples a uniform element 𝑎
$← 𝑅𝑞 , a short 𝑠

$← 𝑆𝐵Key

and noise 𝑒
$← 𝑆𝐵Err . The algorithm outputs the public key

pk = (𝑎, 𝑏) = (𝑎, 𝑎𝑠 + 𝑝𝑒) and secret key sk = 𝑠 .

Enc On input the public key pk = (𝑎, 𝑏) and a message𝑚 ∈ 𝑅𝑝 ,

samples a uniform 𝑟
$← 𝑆𝐵Key , noise 𝑒′, 𝑒′′

$← 𝑆𝐵Err and

outputs the ciphertext 𝑐 = (𝑢, 𝑣) = (𝑎𝑟 + 𝑝𝑒′, 𝑏𝑟 + 𝑝𝑒′′ +𝑚).
Dec On input secret key sk = 𝑠 and ciphertext 𝑐 = (𝑢, 𝑣), outputs

message𝑚 = (𝑣 − 𝑠𝑢 mod 𝑞) mod 𝑝 .

The following theorem follows from [17] and [38].

Theorem 1. The BGV encryption scheme is correct if ∥𝑣 − 𝑠𝑢∥∞ ≤
𝐵Dec < ⌊𝑞/2⌋, and IND-CPA secure if the DKS∞

𝑁,2,𝛽
problem is hard

for some 𝛽 = 𝛽 (𝑁,𝑞, 𝐵Key, 𝐵Err, 𝑝).

We use this theorem to define the predicate 𝑃sk (𝑢, 𝑣) to be 1 iff

∥𝑣 − 𝑠𝑢∥∞ < 𝐵Dec and otherwise 0. Since each ciphertext consists

of 2 elements from 𝑅𝑞 , it can be represented using 2𝑁 log
2
𝑞 bits.

2.1.2 Threshold decryption. We quickly recap the passively secure

distributed decryption protocol by Damgård et al. [9, 21, 22]. Here,
the KGen algorithm on input 𝜉1 ∈ N additionally outputs uniformly

random shares sk𝑗 = 𝑠 𝑗 of the secret key sk = 𝑠 such that 𝑠 = 𝑠1 +
· · · + 𝑠𝜉1

in 𝑅𝑞 . This defines a passively secure threshold decryption

protocol by using the linearity of the decryption function:

DDec On input a secret key-share sk𝑗 = 𝑠 𝑗 and a ciphertext 𝑐 =

(𝑢, 𝑣), does the following:
(1) Compute𝑚 𝑗 = 𝑠 𝑗𝑢 and sample a uniformly random

𝐸 𝑗
$← 𝑅𝑞 such that

𝐸 𝑗

∞ ≤ 2
sec (𝐵Dec/𝑝𝜉1) for statis-

tical security parameter sec and noise-bound 𝐵Dec,

(2) Output ds𝑗 = 𝑡 𝑗 =𝑚 𝑗 + 𝑝𝐸 𝑗 .
Comb On input ciphertext 𝑐 = (𝑢, 𝑣) and set of decryption shares

{ds𝑗 = 𝑡 𝑗 } 𝑗∈[𝜉1] , outputs message 𝑚 = (𝑣 − 𝑡 mod 𝑞)
mod 𝑝 , where 𝑡 = 𝑡1 + · · · + 𝑡𝜉1

.

The following theorem follows from [21, 22].

Theorem 2. Let sec be the statistical security parameter. The dis-
tributed BGV encryption scheme is correct for input ciphertexts with
∥𝑣 − 𝑢𝑠 ∥∞ ≤ (1 + 2

sec)𝐵Dec < ⌊𝑞/2⌋, and is decryption simulatable

against passive adversaries (i.e fulfills Definition 3).

Each partial decryption consists of one element from 𝑅𝑞 , namely

the output ofDDec, which means that the output from the passively

secure protocol is of size 𝑁 log
2
𝑞 bits per party.

This scheme is not secure against active adversaries, i.e. it does

not have threshold verifiability. We, therefore, modify it in Section

6 to withstand active attacks.

2.2 Commitments

Commitment schemes were first introduced by Blum [11], and we

use these at multiple points in this work to achieve verifiability.

Definition 4 (Commitment Scheme). A commitment scheme
consists of three algorithms: key generation (Setup), commitment
(Com) and opening (Open), where
Setup On input security parameter 1

𝜅 , outputs public parameters
pp,

Com On input message𝑚, outputs commitment 𝑐 and opening 𝑟 ,
Open On input𝑚, 𝑐 and 𝑟 , outputs either 0 or 1,

and the public parameters pp are implicit inputs to Com and Open.

For the commitment scheme, we require that it is correct, binding,

and hiding. Correctness means that an honestly generated commit-

ment is always accepted by the opening algorithm. Binding requires
that no PPT adversary can provide two different valid openings

of a given commitment for different messages. Hiding means that

the commitment itself does not reveal any information about the

committed value. We provide these definitions for completeness in

the full version of the paper.

2.2.1 Our instantiation. In our work, we use the BDLOP [7] com-

mitment scheme. Let 𝑅𝑞 be defined as above and let N𝜎C be a

Gaussian distribution with standard deviation 𝜎C and 𝐵Com be a

noise bound. The algorithms are defined as follows:

Setup Outputs a pkwhich allows to commit to length-𝑙𝑐 messages

from 𝑅
𝑙𝑐
𝑞 using length-𝑘 randomness from 𝑆𝑘

𝐵Com
outputting

length-(𝑛 + 𝑙𝑐) vectors. For this, we define

𝑨C,1 =

[
𝑰𝑛 ̂𝑨C,1

]
where ̂𝑨C,1

$← 𝑅
𝑛×(𝑘−𝑛)
𝑞

𝑨C,2 =

[
0𝑙𝑐×𝑛 𝑰 𝑙𝑐

̂𝑨C,2

]
where ̂𝑨C,2

$← 𝑅
𝑙×(𝑘−𝑛−𝑙𝑐)
𝑞 ,

and let pk = 𝑨C =

[
𝑨C,1
𝑨C,2

]
. 𝑨C has height 𝑛 + 𝑙𝑐 and width

𝑘 .

Com On input 𝒎 ∈ 𝑅𝑙𝑐𝑞 samples 𝒓𝒎
$← 𝑆𝑘

𝐵Com
and computes

Compk (𝒎; 𝒓𝒎) = 𝑨C · 𝒓𝒎 +
[
0
𝒎

]
=

[
𝒄1

𝒄2

]
= ⟦𝒎⟧.

Com outputs ⟦𝒎⟧ and the opening 𝒅 = (𝒎, 𝒓𝒎, 1).
4

Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based Assumptions

Open Verifies whether an opening (𝒎, 𝒓𝒎, 𝑓), with 𝑓 ∈ ¯C, is a
valid opening of ⟦𝒎⟧ by checking that ∥𝒓𝒎 [𝑖] ∥ ≤ 4𝜎C

√
𝑁 ,

for 𝑖 ∈ [𝑘], and if

𝑓 ·
[
𝒄1

𝒄2

]
?

= 𝑨C · 𝒓𝒎 + 𝑓 ·
[
0
𝒎

]
.

It outputs 1 if all conditions hold, and 0 otherwise.

We define the set
¯C in the full version of the paper. The openings

generated by Com form a subset of those accepted by Open, which
is necessary for efficient zero-knowledge proofs on BDLOP com-

mitments. Observe that Open always accepts honestly generated

openings (except with negligible probability) by setting 𝑓 = 1. The

following theorem follows from Baum et al. [7].

Theorem 3. The aforementioned commitment scheme is computa-

tionally hiding if theDKS∞
𝑛+𝑙𝑐 ,𝑘,𝐵Com

problem is hard, and the scheme

is computationally binding if the SKS2

𝑛,𝑘,16𝜎C
√
𝜈𝑁

problem is hard.

Each commitment consists of 𝑛 + 𝑙𝑐 elements from 𝑅𝑞 and can

hence be represented using (𝑛 + 𝑙𝑐)𝑁 log
2
𝑞 bits.

2.3 Zero-Knowledge Proofs

Zero-Knowledge (ZK) proofs were first introduced by Goldwasser

et al. [30]. They are cryptographic protocols to show that a certain

statement is true, without revealing the witness. We use ZK proofs

in our constructions to achieve verifiability: protocol participants

show that they indeed followed the protocol steps correctly, while

not revealing any secret randomness that they used in the process.

Let L be a language, and let R be an NP-relation on L. Then, 𝑥 is

an element in L if there exists a witness𝑤 such that (𝑥,𝑤) ∈ R. We

let P, P∗,V andV∗ be polynomial time algorithms.

Definition 5 (Interactive Proofs). An interactive proof proto-
col Π consists of two parties: a prover P and a verifierV , and a setup
algorithm (Setup), where Setup, on input the security parameter 1

𝜅 ,
outputs public setup parameters sp. The protocol consists of a tran-
script T of the communication between P andV , with respect to sp,
and the conversation terminates withV outputting either 1 or 0. Let
⟨P(sp, 𝑥,𝑤),V(sp, 𝑥)⟩ denote the output of V on input 𝑥 after its
interaction with P, who holds a witness𝑤 .

We call an Interactive Proof a Zero-Knowledge proof
1
if it has

the following three properties:

Completeness: If P has a valid witness𝑤 such that (𝑥,𝑤) ∈
R, thenV accepts.

Knowledge Soundness: If P∗ can make an honest verifier

accept with large enough probability for statement 𝑥 , then

there exists a polynomial-time algorithm E that can, through
black-box access to P∗, extract𝑤 such that (𝑥,𝑤) ∈ R.

Honest Verifier Zero Knowledge: There exists a PPT algo-

rithm S, called simulator, that given only 𝑥 can create tran-

scripts whose distribution is indistinguishable from those

of an honest prover and verifier.

We give the formal definitions in the full version of the paper. Note

that an interactive honest-verifier zero-knowledge proof protocol

can be made non-interactive using the Fiat-Shamir transform [28].

1
More concretely, an Honest-Verifier Zero Knowledge Proof of Knowledge

2.3.1 Linear relations among commitments. Assume that there are

�̂� BDLOP commitments

⟦𝒎𝑖⟧ =
[
𝒄𝑖,1
𝒄𝑖,2

]
, for 1 ≤ 𝑖 ≤ �̂� where 𝒄𝑖,2 ∈ 𝑅𝑙𝑐𝑞 .

For the public scalar vector 𝜶 = (𝛼1, . . . , 𝛼�̂�−1
) ∈ 𝑅�̂�−1

𝑞 the prover

wants to prove that the following relation holds:

RLin =

(𝑥,𝑤)
����

𝑥 = (pk, {⟦𝒎𝑖⟧}𝑖∈[�̂�] ,𝜶) ∧
𝑤 = (𝑓 , {𝒎𝑖 , 𝒓𝑖 }𝑖∈[�̂�]) ∧

∀𝑖 ∈ [�̂�] : Openpk (⟦𝒎𝑖⟧,𝒎𝑖 , 𝒓𝑖 , 𝑓) = 1

∧𝒎�̂� =
∑�̂�−1

𝑖=1
𝛼𝑖𝒎𝑖

 .

We will require proof of this relation at multiple points in our

constructions. In the full version of the paper we provide a ZK

proof ΠLin for this relation, which is a directly extended version of

the linearity proof in [7]. It works like a standard Σ protocol when

adapted to lattices.

The relation RLin is relaxed because of the additional factor

𝑓 in the opening, which appears in the soundness proof. It does

not show up in protocol ΠLin, because an honest prover uses 𝑓 =

1. The bound is 𝐵 = 2𝜎C
√
𝑁 and the protocol produces a proof

transcript 𝜋Lin = (({𝒕𝑖 }𝑖∈[�̂�] , 𝑢), 𝛽, ({𝒛𝑖 }𝑖∈[�̂�])). We make ΠLin

non-interactive using the standard Fiat-Shamir transform.

2.3.2 Amortized Proofs of Boundedness. It is well-known that poly-

nomials in 𝑅𝑞 can be represented as vectors in Z𝑁𝑞 and multiplica-

tion by a polynomial 𝑎 in 𝑅𝑞 can be expressed as a matrix-vector

product with a nega-cyclic matrix in Z𝑁×𝑁𝑞 . Let 𝑨 be a publicly

known 𝑟 × 𝑣 matrix over 𝑅𝑞 , that is, a 𝑟𝑁 × 𝑣𝑁 matrix over Z𝑞 . We

will now consider how to prove generically in zero-knowledge that

𝒕𝑖 = 𝑨𝒔𝑖 for bounded 𝒔𝑖 and known 𝒕𝑖 over Z𝑞 . This is the same

as proving correct multiplication over the ring 𝑅𝑞 of the respec-

tive elements. We use proofs that are amortized, meaning that the

proof size is sublinear in the number 𝜏 of individual statements

that we prove. Both the BGV encryption and BDLOP commitment

can be expressed in this form and require bounds on inputs for

correctness, so this ZK proof can be used to show that encryptions

or commitments were honestly made.

Let 𝑨 be a publicly known 𝑟 × 𝑣-matrix over 𝑅𝑞 , let 𝒔1, 𝒔2, . . . , 𝒔𝜏
be bounded elements in 𝑅𝑣𝑞 and let 𝑨𝒔𝑖 = 𝒕𝑖 for 𝑖 ∈ [𝜏]. Letting
𝑺 be the matrix whose columns are 𝒔𝑖 and 𝑻 be the same matrix

for 𝒕𝑖 , but defined over Z𝑁𝑞 instead of 𝑅𝑞 , then [6] give an efficient

amortized zero-knowledge proof of knowledge for the relation

RBnd =

{
(𝑥,𝑤)

���� 𝑥 = (𝑨, 𝑻) ∧𝑤 = 𝑺 ∧ ∀𝑖 ∈ [𝜏] :

𝒕𝑖 = 𝑨𝒔𝑖 ∧ ||𝑠𝑖, 𝑗 | |2 ≤ 2 · 𝐵Bnd

}
.

Let

𝜋Bnd ← ΠBnd (𝑺; (𝑨, 𝑻 , 𝜎Bnd)), 0 ∨ 1← ΠBndV ((𝑨, 𝑻 , 𝐵Bnd);𝜋Bnd),

denote the run of the proof and verification protocols, respec-

tively, where the ΠBnd-protocol, using Fiat-Shamir, produces a

non-interactive proof of the form 𝜋Bnd = (𝑪,𝒁), where 𝑪 is the

output of a hash function, and theΠBndV-protocol verifies the NIZK.

N𝜎Bnd is a Gaussian distribution over Z with standard deviation

𝜎Bnd, and 𝐵Bnd =
√

2𝑁𝜎Bnd. See the full version for more details.

5

Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde

2.3.3 Exact Amortized Proofs of Shortness. As can be seen from

RBnd the non-exact amortized proof has the disadvantage of intro-

ducing a “slack” factor 𝐵Bnd =
√

2𝑁𝜎Bnd, meaning that the proven

bound is substantially larger than what an honest party would

generate. This ultimately leads to larger parameters for any applica-

tion that uses ΠBnd, as one always has to assume that dishonestly

provided encryptions or commitments only fulfill the larger bound.

We will therefore also use a tighter ZK amortized proof of short-

ness which shows RBnd for the ℓ∞-norm and with 𝐵Bnd being 1.

The disadvantage of this proof, over ΠBnd, is that it does not scale

as well with the number of statements that are proven as ΠBnd.

For our exact amortized proof, we use a version of the protocol

from Bootle et al. [13]. They give an efficient amortized sublin-

ear zero-knowledge protocol for proving the knowledge of short

vectors 𝒔𝑖 and 𝒆𝑖 over Z𝑞 satisfying 𝑨𝒔𝑖 + 𝒆𝑖 = 𝒕𝑖 . We adapt their

techniques for the case where 𝒆𝑖 is zero, and always prove that

∥𝒔𝑖 ∥∞ ≤ 1. Our amortized protocol will be denoted throughout

this work as (ΠSmall,ΠSmallV). These modifications are non-trivial

and require us to re-prove that the construction is a ZK proof. We

present more details in Section 4.

2.4 Verifiably Shuffling Ciphertexts

We construct a shuffle of BGV ciphertexts 𝒄1, . . . , 𝒄𝜏 as follows:

(1) The shuffle server creates encryptions 𝒄′
1
, . . . , 𝒄′𝜏 of 0 and

commits to each 𝒄′
𝑖
as Com(𝒄′

𝑖
). Then, by homomorphically

adding 𝒄𝑖 to Com(𝒄′𝑖) we obtain commitments Com(𝒄𝑖) to
the same plaintexts as in 𝒄1, . . . , 𝒄𝜏 , with “fresh” random-

ness.

(2) The shuffle server reveals the openings 𝒄𝑖 , but in random

order. It then runs the verifiable shuffle protocol of [4] to

prove that these openings are indeed the correct openings

of the commitments.

To make the full construction verifiable, we use additional zero-

knowledge proofs: the shuffle server will have to show that the

Com(𝒄𝑖) are valid BDLOP commitments with bounded noise and

contain well-formed encryptions of 0 (i.e. have small noise as well).

For this, we use the ZK proofs introduced in the previous subsection.

But this is not sufficient, because the protocol of [4] only supports

BDLOP commitments of single elements from 𝑅𝑞 , while BGV ci-

phertexts consist of two elements from 𝑅𝑞 . We, therefore, extend

the shuffle protocol by Aranha et al. to verifiably shuffle vectors in

𝑅
𝑙𝑐
𝑞 . The full construction is described in Section 5.

2.5 Verifiable Decryption

In the voting scheme, we verifiably decrypt the BGV ciphertexts

that contain the votes. In order to avoid a single party that has the

secret decryption key (and could decrypt the inputs into the mix-

net) we secret-share the key among multiple decryption servers.

The decryption algorithm introduced in Section 2.1 is only pas-

sively secure, but we assume that attackers may act maliciously

in the voting scheme. We, therefore, modify the passively secure

decryption protocol as follows:

• During key generation, a BDLOP commitment to each share

is generated and published. The opening information is

given to the shareholder.

• Each decryption share will additionally contain a proof

that the decryption share is well-formed; the decryption

algorithm proves that the decryption share is generated

using the committed key share and that the randomness

used is bounded. We will again use the ZK proofs in Section

2.3.

We fully describe these transformations and prove them secure

in Section 6. We do, however, not implement the (verifiable) key

generation for our construction, which can e.g. be obtained by

modifying a threshold key generation protocol such as [41].

3 THE VOTING SCHEME

The high-level architecture for the counting phase of our protocol

is shown in Figure 1. As it follows a standard design [44], we do not

describe its security properties further here, but refer the reader to

the full version of the paper for a more formal treatment. We also

have left out some aspects, such as voter authentication, to focus

on the core building blocks of our construction.

S1 S2
. . . S𝜉2

{𝒄 (0)
𝑖
} {𝒄 (1)

𝑖
} {𝒄 (2)

𝑖
}

𝜋S1
𝜋S2

𝜋S𝜉
2

D1

.

.

.

D𝑗

.

.

.

D𝜉1

{𝑚𝑖 }

{𝒄 (𝜉2)
𝑖
}

{𝒄 (𝜉2)
𝑖
}

{𝒄 (𝜉2)
𝑖
}

{(𝑡𝑖,1, 𝜋D1
)}

{(𝑡𝑖, 𝑗 , 𝜋D𝑗
)}

{(𝑡𝑖,𝜉1
, 𝜋D𝜉

1

)}

Figure 1: The high-level counting phase of our voting pro-

tocol. Each shuffle server S𝑘 receives a set of ciphertexts

{𝒄 (𝑘−1)
𝑖

}, shuffles them, and outputs a new set of ciphertexts

{𝒄 (𝑘)
𝑖
} and a proof 𝜋S𝑘 . When all shuffle proofs are verified,

each decryption server D𝑗 partially decrypts every cipher-

text and outputs the partial decryptions {𝑡𝑖, 𝑗 } and a proof

of correctness 𝜋D𝑗
. Votes {𝑚𝑖 } are reconstructed from the

partial decryptions.

The voting protocol requires a trusted set of players to run the

setup, a set of voters Voter𝑖 and their computers Comp𝑖 , a ballot box
Ballot, a collection of shuffle servers S𝑘 , a collection of decryption
servers D𝑗 and one or more auditors Audit. We will assume that

there are 𝜉2 shuffle servers and 𝜉1 decryption servers in total. The

voting protocol consists of a setup phase, a registration phase, a
casting phase, a counting phase as well as a verification algorithm

to check casting and counting.

Setup Phase. A trusted set of players runs the key generation

algorithm KGen of the PKE scheme with Distributed Decryption.

The key generation can either be done in a trusted fashion or dis-

tributed using the protocol by Rotaru et al. [41]. The derived public

parameters pk are given to every participant, while the decryption

key shares sk𝑗 are given to the decryption servers D𝑗 .

6

Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based Assumptions

A key pair (sk𝐵, vk𝐵) for a EUF-CMA-secure signature scheme

is also generated and given to the ballot box. The verification key

vk𝐵 is given to every participant.

Casting phase. Each voter Voter𝑖 instructs its computer Comp𝑖
which ballot to cast. The computer encrypts the ballot under the

public key pk and creates a ballot proof, and sends the encrypted

ballot and the ballot proof to the ballot box Ballot. The ballot proof
is tied to the voter’s identity and is supposed to stop copy-and-paste

attacks against privacy. In the security proof, the ballot proof must

allow us to extract ballots from adversarially generated encryptions.

Either we can use an argument of knowledge, but to simplify the

security proof we often encrypt the ballot under two distinct keys

and use an argument of equality. The ballot box will check the

proof and signs the encrypted ballot and the proof using sk𝐵 . This
signature 𝜎𝑖 is sent to the voter’s computer. The computer verifies

the signature 𝜎𝑖 from Ballot using vk𝐵 and only accepts if it is valid.

It then shows the encrypted ballot, proof, and signature to the voter,

which constitutes the voter’s receipt. The voter Voter𝑖 accepts the
ballot as cast iff the computer accepts it with a receipt.

Counting phase. The ballot boxBallot sends the encrypted ballots
and ballot proofs that it has seen to the auditor Audit as well as
every decryption server D𝑗 . Ballot then sorts the list of encrypted

ballots {𝒄 (0)
𝑖
} and sends this to the first shuffle server S1 and every

decryption server. If some voter has cast more than one ballot, only

the encrypted ballot seen last is included in this list.

The 𝜉2 shuffle servers S1,S2, . . . ,S𝜉2
consecutively use the shuf-

fle algorithm on the input encrypted ballots {𝒄 (𝑘−1)
𝑖

}, passing the
shuffled and re-encrypted ballots {𝒄 (𝑘)

𝑖
} to the next shuffle server.

They also pass the shuffled re-encrypted ballots {𝒄 (𝑘)
𝑖
} and the

shuffle proof 𝜋S𝑘 to Audit and every decryption server.

Each decryption server verifies that the data from Ballot as well
as each shuffle server is consistent (input-output wise), and that

every shuffle proof 𝜋S𝑘 verifies for the respective ciphertexts. Only

then will they run the distributed decryption algorithm DDec with
their decryption key share sk𝑗 and send their partial decryption

shares 𝑡𝑖, 𝑗 of each ballot 𝒄
(𝜉2)
𝑖

to the auditor as well as each recipient

of the output. Each recipient can then run Comb on the partial

decryption shares 𝑡𝑖, 𝑗 to obtain the result.

Verification. The auditor verifies the data from Ballot (it checks
that the ballot proofs of knowledge verify), that the encrypted

ballots received by the first shuffle are consistent with the data from

Ballot, that every shuffle proof verifies, and then runs the combining

algorithm Comb on the received partial decryption shares 𝑡𝑖, 𝑗 from

each D𝑗 . If all checks pass then the auditor accepts, otherwise it

rejects. Finally, Audit outputs the list of messages, including public

key material, as its transcript.

One can easily design a verification algorithm that takes as input

a transcript, a result, and optionally a receipt, and either accepts

or rejects. The verification algorithm simply runs the auditor with

the public key material and the messages listed in the transcript

and checks if the auditor’s result matches the input. If a receipt

is present, it also verifies the signature 𝜎𝑖 using the ballot box’

verification key vk𝐵 , checks that the encrypted ballot and ballot

proof is present in the ballot box data set, and that the encrypted

ballots are present in the first shuffle server’s input.

Note that there are many variations of this protocol. It can be used

with so-called return codes, which allow human verification of the

vote cast and detect a cheating computer Comp𝑖 of the voter.
Many comparable schemes are phrased in terms of an ideal bul-

letin board, where every player posts their messages. Implementing

a bulletin board is tricky in practice, so instead, we have described

the scheme as a conventional cryptographic protocol passing mes-

sages via a network.

It is worth noting that for our concrete scheme, anyone can redo

the auditor’s work (since no secret key material is involved) by run-

ning the verification algorithm (and parts of the code algorithm) on

the public data, making the voting protocol (universally) verifiable.

4 EXACT AMORTIZED ZK PROOFS

Bootle et al. [13] give an efficient amortized sublinear zero-knowledge

protocol for proving the knowledge of short vectors 𝒔𝑖 and 𝒆𝑖 over
Z𝑞 satisfying𝑨𝒔𝑖+𝒆𝑖 = 𝒕𝑖 . For our setting, we adapt their techniques

for the case where 𝒆𝑖 is zero, and prove that ∥𝒔𝑖 ∥∞ ≤ 1
2
.

We explain the main idea of [13] for proving knowledge of a

preimage 𝒔 of 𝒕 = 𝑨𝒔 and then generalize to an amortized proof for

𝜏 elements with sublinear communication.

The approach follows an ideal linear commitments-technique

with vector commitments ComL (·) over Z𝑞 . The prover initially
commits to the vector 𝒔 as well as an auxiliary vector 𝒔0 of equal

length. Implicitly, this defines a vector of polynomials 𝒇 (𝑋) =

𝒔0 (𝑋) + 𝒔 for the prover. Now consider the vector of polynomials

𝒇 (𝑋) ◦ (𝒇 (𝑋) −1) ◦ (𝒇 (𝑋) +1), where ◦ denote the coordinate-wise
product, then the coefficients of 𝑋 0

are exactly 𝒔 ◦ (𝒔 − 1) ◦ (𝒔 + 1)
and therefore 0 if and only if the aforementioned bound on 𝒔 holds.
In that case, each aforementioned polynomial in 𝒇 (𝑋) ◦ (𝒇 (𝑋) −
1) ◦ (𝒇 (𝑋) + 1) is divisible by 𝑋 . Therefore, the prover computes

the coefficient vectors

1/𝑋 · 𝒇 (𝑋) ◦ (𝒇 (𝑋) − 1) ◦ (𝒇 (𝑋) + 1) = 𝒗2𝑋
2 + 𝒗1𝑋 + 𝒗0

and commits to these. Additionally, define the value 𝒅 = 𝒕 −𝑨𝒇 =

−𝑨𝒔0, which the prover also commits to.

The verifier now sends a challenge 𝑥 , for which the prover re-

sponds with 𝒇 = 𝒇 (𝑥). The prover also uses the linear property of

the commitment scheme to show that:

(1) ComL (𝒔0) · 𝑥 + ComL (𝒔) opens to 𝒇 .
(2) ComL (𝒗2) · 𝑥2 + ComL (𝒗1) · 𝑥 + ComL (𝒗0) opens to the

value
1

𝑥 · 𝒇 ◦ (𝒇 + 1) ◦ (𝒇 − 1).
The prover additionally opens the commitment to 𝒅 and the verifier

checks that it opens to
1

𝑥 · (𝒕 −𝑨𝒇). Here, the first two commitment

openings allow us to deduce that the correct 𝑓 is sent by the prover

and that the values committed as 𝒔 are indeed commitments to

{−1, 0, 1}. Then, from opening 𝒅 we get that the committed 𝒔 is the
preimage of 𝒕 under 𝑨.

The ideal linear commitments in [13] get realized using an

Encode-then-Hash scheme. In this commitment scheme, the prover

commits to vectors 𝒙1, . . . , 𝒙𝑛 ∈ Z
𝑙msg
𝑞 :

2
The authors of [13] mention that this optimization is possible, but neither present

the modified protocol nor a proof.

7

Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde

(1) Sample 𝑛 random vectors 𝒓1, . . . , 𝒓𝑛 ∈ Z𝜂𝑞
(2) Let Encode be the encoding function of an [𝑙, 𝑙msg + 𝜂,𝑑]

Reed-Solomon Code with code-length 𝑙 , message length

𝑙msg+𝜂 andminimal distance𝑑 . Compute 𝒆𝑖 ← Encode(𝒙𝑖 ∥𝒓𝑖)
for each 𝑖 ∈ [𝑛].

(3) Construct matrix 𝑬 = RowsToMatrix(𝒆1, . . . , 𝒆𝑛) where 𝒆𝑖
is row 𝑖 .

(4) Commit to each column of 𝑬 using a hash, then compress

all commitments to Merkle root𝑀 .

(5) Send𝑀 to the verifier.

For the prover to show to the verifier that 𝒙 is an opening of the

linear combination

∑𝑛
𝑖=1

𝛾𝑖𝒙𝑖 :

(1) It computes 𝒓 =
∑𝑛
𝑖=1

𝛾𝑖 𝒓𝑖 and sends 𝒓 to the verifier.

(2) The verifier chooses a subset 𝐼 of size 𝜂 from [𝑙].
(3) The prover opens the commitment for each column 𝑖 ∈ 𝐼 of

𝑬 and proves that it lies in the Merkle tree𝑀 by revealing

the path.

(4) The verifier checks that Encode(𝒙 ∥𝒓) coincides at position
𝑖 with the respective linear combination of all 𝑛 opened

values in column 𝑖 of 𝑬 .

This is a proof of the respective statement due to the random choice

of the set 𝐼 . Intuitively, if each row of 𝑬 is in the code
3
, but they

do not sum up to 𝒙 , then the linear combination of the codewords

in 𝑬 must differ from Encode(𝒙 ∥𝒓) in at least 𝑑 positions, which

is the minimum distance of the code. By the random choice of 𝐼

and by setting 𝜂 appropriately, the verifier would notice such a

disagreeing entry with high probability. At the same time, because

only 𝜂 columns of 𝑬 are opened, this leaks no information about the

vectors 𝒙1, . . . , 𝒙𝑛 if the evaluation points of the output of Encode
are different from those of the input, i.e. if the code is not systematic.

For the case of more than one secret, the prover wants to show

that 𝒕𝑖 = 𝑨𝒔𝑖 for 𝜏 values 𝒕𝑖 known to the verifier, subject to 𝒔𝑖 again
being ternary vectors. The goal is to establish the latter for all 𝒕𝑖
simultaneously while verifying only one equation and sending only

one vector 𝒇 . Then the prover commits to 𝒔𝑖 as well as an additional

blinding value 𝒔0. Let 𝑎1, . . . , 𝑎𝜏 ∈ Z𝑞 be distinct interpolation

points and define the 𝑖th Lagrange polynomial

ℓ𝑖 (𝑋) =
∏
𝑖≠𝑗

𝑋 − 𝑎 𝑗
𝑎𝑖 − 𝑎 𝑗

.

Additionally, let ℓ0 (𝑋) =
∏𝜏

𝑖=1
(𝑋−𝑎𝑖). Then every 𝑓 ∈ Z𝑞 [𝑋]/ℓ0 (𝑋)

can be written uniquely as 𝑓 (𝑋) =
∑𝜏
𝑖=1

𝜆𝑖 ℓ𝑖 (𝑋) and any 𝑔 ∈
Z𝑞 [𝑋]/ℓ0 (𝑋)𝑏 as a linear combination of {ℓ𝑖 (𝑋)ℓ0 (𝑋) 𝑗 }𝑏−1

𝑗=0
. De-

fine the polynomial

𝒇 (𝑋) =
𝜏∑︁
𝑖=0

𝒔𝑖 ℓ𝑖 (𝑋),

and observe that 𝒇 (𝑋) ◦ (𝒇 (𝑋) − 1) ◦ (𝒇 (𝑋) + 1) is divisible by

ℓ0 (𝑋) iff all ℓ𝑖 (𝑋)-coefficients of 𝒇 (𝑋) for 𝑖 ∈ [𝜏] are 0. Additionally,

since ℓ𝑖 (𝑋) · ℓ𝑗 (𝑋) = 0 mod ℓ0 (𝑋) if 𝑖, 𝑗 ∈ [𝑛], 𝑖 ≠ 𝑗 this then also

implies that the 𝒔𝑖 are ternary. Moreover, we only have to commit

3
For the proof to work, the verifier additionally has to verify this claim or rather, that

all rows are close to actual codewords. One mechanism to achieve this is to commit to

an additional auxiliary row and also open a random linear combination of all rows,

including the auxiliary row.

to additional 3 · 𝜏 coefficients of {ℓ𝑖 (𝑋)ℓ0 (𝑋) 𝑗 }𝑏−1

𝑗=0
to prove well-

formedness of any evaluation of 𝒇 (𝑋) sent by the prover.

The protocol is described in detail in the full version of the paper.

As our construction substantially deviates from that of [13] we

show that the protocol indeed is a ZKPoK. In the full version of the

paper we show that the following holds:

Theorem 4. The amortized zero-knowledge proof of exact open-
ings is complete when the secrets 𝒔𝑖 has ternary coefficients, it is
special sound if the SKS2

𝑟,𝑣,1
problem is hard and the hash-function is

collision-resistant, and it is statistically honest-verifier zero-knowledge.

Towards defining the size of the proof, we see that the proof size

is dominated by the sending of the openings of the homomorphic

commitments (step 9 in Figure 4 in the full version) and the opening

of the column-wise commitments of 𝑬 via Merkle tree paths (step

11). More concretely:

• In step 9, prover sends polynomials which are openings

to the homomorphic commitments of total size 3𝑣𝑁 log
2
𝑞

and additional randomness of total size 3𝜂 log
2
𝑞.

• In step 11 the preimages of the hash column commitments

(𝑬 |𝐼) have length (3𝜏 + 2)𝜂 log
2
𝑞 while the Merkle tree

paths add another 2𝜅𝜂 (1 + log
2
𝑙) bits.

This leads to a proof of size

(3𝑣𝑁 + (3𝜏 + 2)𝜂) log
2
𝑞 + 2𝜅𝜂 (1 + log

2
𝑙) bits (1)

in total. The second part is essentially independent of 𝜏 , which after

fixing the lattice components decides how good the proof amortizes.

By setting 3𝑣𝑁 ≈ (3𝜏 + 2)𝜂 we get the optimal result.

5 VERIFIABLE SHUFFLE OF CIPHERTEXTS

The recent work by Aranha et al. [4] presents an efficient protocol

ΠShuf for a shuffle of openings of the lattice-based commitments

from Section 2.2 using proofs of linear relations. The protocol of [4]

only supports committed secrets coming from 𝑅𝑞 . We now extend

their protocol to verifiably shuffle vectors in 𝑅
𝑙𝑐
𝑞 .

5.1 The Extended Shuffle for Commitments

To prove a shuffle, both the prover and verifier are given a list

of commitments ⟦𝒎1⟧, . . . , ⟦𝒎𝜏⟧ as well as potential messages

(�̂�1, . . . , �̂�𝜏) from 𝑅
𝑙𝑐
𝑞 . The prover additionally obtains openings

𝒎𝑖 , 𝒓𝑖 , 𝑓𝑖 and wants to prove that the set of plaintext elements is

the same set as the underlying elements of the commitments for

some secret permutation 𝜋 of the indices in the lists. More formally,

our goal is to prove the following relation

R
Shuf

𝑙𝑐 =


(𝑥,𝑤)

𝑥 = (⟦𝒎1⟧, . . . , ⟦𝒎𝜏⟧, �̂�1, . . . , �̂�𝜏),
𝑤 = (𝜋, 𝑓1, . . . , 𝑓𝜏 , 𝒓1, . . . , 𝒓𝜏), 𝜋 ∈ 𝑆𝜏 ,

∀𝑖 ∈ [𝜏] : 𝑓𝑖 · ⟦𝒎𝜋−1 (𝑖)⟧ = 𝑓𝑖 ·
[
𝒄

1,𝜋−1 (𝑖)
𝒄

2,𝜋−1 (𝑖)

]
= 𝑨C𝒓𝑖 + 𝑓𝑖 ·

[
0
�̂�𝑖

]
∧ ||𝒓𝑖 [𝑗] | | ≤ 4𝜎𝐶

√
𝑁


.

Towards proving this relation, we observe that it is sufficient to

let the verifier choose a random element ℎ
$← 𝑅𝑞 . Then instead of

proving a shuffle on 𝒎1, . . . ,𝒎𝜏 , the prover instead performs the

same proof on ⟨𝒎1, 𝜌⟩, . . . , ⟨𝒎𝜏 , 𝜌⟩ where 𝜌 = (1, ℎ, . . . , ℎ𝑙𝑐−1)⊤.
The problemwith this approach is that wemust also be able to apply

8

Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based Assumptions

𝜌 to the commitments ⟦𝒎1⟧, . . . , ⟦𝒎𝜏⟧, without re-committing to

the inner product and proving correctness in zero-knowledge.

Since each commitment ⟦𝒎⟧ can be written as[
𝒄1

𝒄2

]
= 𝑨C𝒓 +

[
0
𝒎

]
we can write 𝒄1 = 𝑨C,1𝒓 and 𝒄2 = 𝑨C,2𝒓 + 𝒎. From this we can

create a new commitment ⟦⟨𝝆,𝒎⟩⟧ under the new commitment

key pk′ = (𝑨C,1, 𝜌𝑨C,2) where 𝒄′1 = 𝒄1 remains the same, while we

set 𝑐′
2
= ⟨𝜌, 𝒄2⟩. This does not increase the bound of the randomness

of the commitment. Since

𝑨C,2 =

[
0𝑙𝑐×𝑛 𝑰 𝑙𝑐

̂𝑨2

]
where ̂𝑨2 ∈ 𝑅𝑙×(𝑘−𝑛−𝑙𝑐)𝑞 ,

it holds that

𝒂′
2
= 𝝆𝑨C,2 =

[
0𝑛 𝝆⊤ 𝝆̂𝑨2

]
.

It is easy to see that breaking the binding property for pk′ is no
easier than breaking the binding property for pk.

Proposition 1. If there exists an efficient attacker Adv that breaks
the binding property on commitments under the key pk′ with proba-
bility 𝜖 , then there exists an efficient algorithm Adv′ that breaks the
binding property on pk with the same probability.

We can now construct the protocol Π𝑙𝑐
Shuf

:

(1) Initially, prover P and verifierV hold {⟦𝒎𝑖⟧, �̂�𝑖 }𝑖∈[𝜏] for
a public key pk = (𝑨C,1,𝑨C,2) while the prover additionally
hold secrets {𝒎𝑖 , 𝒓𝑖 }𝑖∈[𝜏] , 𝜋 ∈ 𝑆𝜏 .

(2) V chooses ℎ
$← 𝑅𝑞 and sends it to P. Both parties compute

𝝆 ← (1, ℎ, . . . , ℎ𝑙𝑐−1)⊤.
(3) P andV for each ⟦𝒎𝑖⟧ = (𝒄1,𝑖 , 𝒄2,𝑖) compute ⟦⟨𝝆,𝒎𝑖 ⟩⟧ =
(𝒄1,𝑖 , ⟨𝝆, 𝒄2,𝑖 ⟩) = (𝒄1,𝑖 , 𝒄′

2,𝑖
).

(4) P andV runΠShuf on input commitments {⟦⟨𝝆,𝒎𝑖 ⟩⟧}𝑖∈[𝜏]
and messages ⟨𝝆, �̂�𝑖 ⟩. P uses same permutation 𝜋 , random-

ness 𝒓𝑖 as before. The commitment key pk′ = (𝑨′C,1,𝑨
′
C,2)

is used by both.

(5) If ΠShuf accepts thenV accepts in Π𝑙𝑐
Shuf

, otherwise rejects.

We show the following in the full version of the paper:

Lemma 1. Assume that ΠShuf is an HVZK Proof of Knowledge
(PoK) for the relation RShuf with soundness error 𝜖′. Then Π𝑙𝑐

Shuf
is a HVZK PoK for the relation RShuf𝑙𝑐 with soundness error 𝜖 =

2𝜖′ + 3

(
𝑙𝑐−1

𝑞

)𝑁
.

5.2 Verifiable Shuffle of BGV Ciphertexts

We now implement the verifiable shuffle for ciphertexts that we

outlined in Section 2.4. To recap quickly, the idea behind the shuffle

of BGV ciphertexts 𝒄1, . . . , 𝒄𝜏 is as follows:

(1) The shuffle server creates encryptions 𝒄′
1
, . . . , 𝒄′𝜏 of 0 and

commits to each 𝒄′
𝑖
as Com𝒄′

𝑖
. Then, by homomorphically

adding 𝒄𝑖 to Com𝒄′
𝑖
we obtain commitments Com𝒄𝑖 to the

same plaintexts as in 𝒄1, . . . , 𝒄𝜏 , with “fresh” randomness.

(2) The shuffle server reveals the openings 𝒄𝑖 , but in random

order. It then runs the verifiable shuffle protocol from the

previous subsection to prove that these openings are indeed

the correct (permuted) openings of the commitments.

In the following, we describe the resulting approach in more detail.

Public parameters. Let 𝑝 ≪ 𝑞 be primes, let 𝑅𝑞 and 𝑅𝑝 be defined

as above for a fixed 𝑁 , and let 𝐵Key, 𝐵Err ∈ N be bounds for an

instance of our chosen PKE scheme. We assume properly generated

keys and ciphertexts according to the KeyGen and Enc algorithms

in Section 2.1.

The shuffle server S takes as input a set of 𝜏 publicly known

BGV ciphertexts {𝒄𝑖 }𝜏𝑖=1
, where the total noise in each ciphertext

is bounded by 𝐵Dec, i.e. each ciphertexts fulfills 𝑃sk (·).

Randomizing. First, S randomizes all the received ciphertexts.

Towards this it creates a new set of ciphertexts {𝒄′
𝑖
}𝜏
𝑖=1

:

𝒄′𝑖 = (𝑢
′
𝑖 , 𝑣
′
𝑖) = (𝑎𝑟

′
𝑖 + 𝑝𝑒

′
𝑖,1, 𝑏𝑟

′
𝑖 + 𝑝𝑒

′
𝑖,2),

where 𝑟 ′
𝑖

$← 𝑆𝐵Key and 𝑒
′
𝑖,1
, 𝑒′
𝑖,2

$← 𝑆𝐵Err as in fresh ciphertexts. This

corresponds to creating fresh, independent encryptions of 0. S will

not publish these 𝒄′
𝑖
.

Committing. S now commits to the 𝒄′
𝑖
. Towards this, we re-write

the commitment matrix from Section 2.2 for 𝑙𝑐 = 2 and add the

public key of the encryption scheme to get a (𝑛 + 2) × (𝑘 + 3) matrix

𝑨M, where 0𝑛 are row-vectors of length 𝑛, 𝒂1,1, 𝒂1,2 are column

vectors of length 𝑛, 𝒂2,3, 𝒂3,3 are row vectors of length 𝑘 −𝑛 − 2 and

𝑨1,3 is of size 𝑛 × (𝑘 − 𝑛 − 2). Then,
Com(𝑢′𝑖 , 𝑣

′
𝑖) = ⟦(𝑎𝑟

′
𝑖 + 𝑝𝑒

′
𝑖,1, 𝑏𝑟

′
𝑖 + 𝑝𝑒

′
𝑖,2)⟧ = 𝑨M𝒓 ′𝑖

=


𝑰𝑛 𝒂1,1 𝒂1,2 𝑨1,3 0 0 0

0𝑛 1 0 𝒂2,3 𝑎 𝑝 0

0𝑛 0 1 𝒂3,3 𝑏 0 𝑝



𝒓𝑖
𝑟 ′
𝑖

𝑒′
𝑖,1

𝑒′
𝑖,2

 ,
where 𝒓𝑖 ∈ 𝑅𝑘𝑞 is the randomness used in the commitment. Further,

let ⟦(𝑢𝑖 , 𝑣𝑖)⟧0 be the trivial commitment to (𝑢𝑖 , 𝑣𝑖) with no random-

ness. Then, given the commitment ⟦(𝑢′
𝑖
, 𝑣 ′
𝑖
)⟧ and ⟦(𝑢𝑖 , 𝑣𝑖)⟧0 we

can be compute a commitment

⟦(𝑢𝑖 , 𝑣𝑖)⟧ = ⟦(𝑢𝑖 , 𝑣𝑖)⟧0 + ⟦(𝑢′𝑖 , 𝑣
′
𝑖)⟧.

Thus, the commitments ⟦(𝑢𝑖 , 𝑣𝑖)⟧ contain re-randomized encryp-

tions of the original ciphertexts.S can therefore open a permutation

of the (𝑢𝑖 , 𝑣𝑖) and prove correctness of the shuffled opening using

algorithm Π𝑙𝑐
Shuf

. To ensure correctness we have to additionally

show that each 𝑢′
𝑖
, 𝑣 ′
𝑖
was created such that decryption is correct,

i.e. that it has small enough noise.

Proving correctness of commitments. Let𝑨M be the (𝑛+2)×(𝑘+3)
matrix defined above. Then S needs to prove that, for all 𝑖 , it knows

secret short vectors 𝒓 ′
𝑖
of length 𝑘 + 3 that are solutions to the

following equations:

𝒕𝑖 = 𝑨M𝒓 ′𝑖 = ⟦(𝑎𝑟
′
𝑖 + 𝑝𝑒

′
𝑖,1, 𝑏𝑟

′
𝑖 + 𝑝𝑒

′
𝑖,2)⟧,

𝒓 ′𝑖

∞ ≤ 𝐵∞ .

To show this, S runs the ΠSmall-protocol on 𝑨M, {𝒓 ′
𝑖
}𝜏
𝑖=1

, {𝒕𝑖 }𝜏𝑖=1
.

S uses Fiat-Shamir to ensure the non-interactivity of the proof.

The full protocol. We summarize this protocol as ΠMix:

(1) S obtains ciphertexts {𝒄𝑖 }𝑖∈[𝜏] = {(𝑢𝑖 , 𝑣𝑖)}𝑖∈[𝜏] .
(2) S for each 𝑖 ∈ [𝜏] samples 𝑟 ′

𝑖
, 𝑒′
𝑖,1
, 𝑒′
𝑖,2

as above. It then cre-

ates commitments {⟦𝑢′
𝑖
, 𝑣 ′
𝑖
⟧ = ⟦𝑎𝑟 ′

𝑖
+𝑝𝑒′

𝑖,1
, 𝑏𝑟 ′

𝑖
+𝑝𝑒′

𝑖,2
⟧}𝑖∈[𝜏]

using randomness 𝒓𝑖 for each such commitment.

9

Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde

(3) Let 𝒕𝑖 = ⟦(𝑢′
𝑖
, 𝑣 ′
𝑖
)⟧ and 𝒓 ′

𝑖
= [𝒓⊤

𝑖
, 𝑟 ′
𝑖
, 𝑒𝑖,1, 𝑒𝑖,2]⊤. Then S

computes 𝜋Small ← ΠSmall for matrix 𝑨M, input vectors

{𝒓 ′
𝑖
}, target vectors {𝒕𝑖 } and bound 𝐵∞.

(4) Let 𝒄𝑖 = (𝑢𝑖 + 𝑢′𝑖 , 𝑣𝑖 + 𝑣
′
𝑖
) and 𝐿 be a random permutation

of {𝒄𝑖 }𝑖∈[𝜏] . Then S computes 𝜋Shuf ← Π𝑙𝑐
Shuf

with in-

put commitments {⟦(𝑢𝑖 , 𝑣𝑖)⟧}𝑖∈[𝜏] , commitment messages

{𝒄𝑖 }𝑖∈[𝜏] , commitment randomness {𝒓𝑖 }𝑖∈[𝜏] and cipher-

texts 𝐿.

(5) S outputs ({𝒕𝑖 }𝑖∈[𝜏] , 𝜋Small, 𝐿, 𝜋Shuf).
Given such a string ({𝒕𝑖 }𝑖∈[𝜏] , 𝜋Small, 𝐿, 𝜋Shuf) from S as well

as ciphertext vector {𝒄𝑖 }𝑖∈[𝜏] any third partyV can now run the

following algorithm ΠMixV to verify the mix:

(1) Run the verification algorithm of ΠSmallV for 𝜋Small on

inputs 𝑨M, {𝒕𝑖 }𝑖∈[𝜏] and 𝐵∞. If verification fails: output 0.

(2) For ∀𝑖 ∈ [𝜏] set ⟦𝒄𝑖⟧ = ⟦𝒄𝑖⟧0 + 𝒕𝑖 .
(3) Run the verification algorithm of Π𝑙𝑐

ShufV
for 𝜋Shuf on in-

put {⟦𝒄𝑖⟧}𝑖∈[𝜏] , 𝐿. If the verification fails, then output 0.

Otherwise, output 1.

In the following, define noise bound 𝐵Mix to be the maximum

level of noise in ciphertexts 𝒄′
𝑖
, i.e. the maximal noise of the ran-

domness 𝑟 ′
𝑖
, 𝑒′
𝑖,1
, 𝑒′
𝑖,2

used to create the ciphertexts.

We want that the outputs of the mixing protocol fulfill the fol-

lowing relation RMix: (𝑥,𝑤)
𝑥 = (𝒄1, . . . , 𝒄𝜏 , 𝒄1, . . . , 𝒄𝜏 , ⟦𝒄′

1
⟧, . . . , ⟦𝒄′𝜏⟧),

𝑤 = (𝜋, 𝒓 ′
1
, . . . , 𝒓 ′𝜏 ,), 𝜋 ∈ 𝑆𝜏 ,∀𝑖 ∈ [𝜏] :

⟦𝒄′
𝑖
⟧ = 𝑨M𝒓 ′

𝑖
,

𝒓 ′

𝑖

∞ ≤ 𝐵Mix, 𝒄𝜋 (𝑖) = 𝒄𝑖 + 𝒄′𝑖

 .

If the noise-levels in all 𝒄𝑖 and 𝒄′
𝑖
are bounded by 𝐵Dec and 𝐵Mix

respectively, and (𝐵Dec + 𝐵Mix) < ⌊𝑞/2⌋, then all 𝒄𝑖 and 𝒄𝜋 (𝑖) will,
for some permutation 𝜋 , decrypt to the same message𝑚𝑖 under sk.
In the full version of the paper we analyze the guarantees of ΠMix

in more detail.

5.3 Communication of a BGV Shuffle

The mixing phase transcript contains 𝜏 new ciphertexts generated

by the server, which are of size 2𝜏𝑁 log
2
𝑞 bits.

The server must next provide a proof of shuffle and an amortized

proof of shortness for 𝑟 ′
𝑖
, 𝑒′
𝑖,1
, 𝑒′
𝑖,2
. Both proofs prove a relation about

commitments to the randomization factors 𝑢′
𝑖
, 𝑣 ′
𝑖
added to the old

ciphertexts to get the new ciphertexts. Each commitment to 𝑢′
𝑖
, 𝑣 ′
𝑖

is of size (𝑛 + 2)𝑁 log
2
𝑞 bits. We denote the proof by 𝜋Small.

The shuffle proof consists of𝜏 commitments of size (𝑛+1)𝑁 log
2
𝑞

bits, 𝜏 𝑅𝑞-elements of size 𝑁 log
2
𝑞 bits and a proof of linearity per

ciphertext. This adds up to an overall size of ((𝑛+2)𝑁 log
2
𝑞+2(𝑘−

𝑛)𝑁 log
2
(6𝜎C))𝜏 bits for the proof of shuffle, and in total

((2𝑛 + 6)𝑁 log
2
𝑞 + 2(𝑘 − 𝑛)𝑁 log

2
(6𝜎C))𝜏 + |𝜋Small | bits.

6 VERIFIABLE DISTRIBUTED DECRYPTION

In this section, we provide a construction for a PKE scheme with

distributed decryption which is secure against active attacks. To

achieve this, we combine the distributed decryption protocol from

Section 2.1 with zero-knowledge proofs. In a nutshell, the DDec
algorithm that we introduced in Section 2.1 first requires that each

decryption server chooses a uniformly random 𝐸 𝑗 from a bounded

distribution. Next, it outputs a linear combination 𝑡 𝑗 involving a

ciphertext element 𝑢, the decryption key share 𝑠 𝑗 as well as 𝐸 𝑗 . To

make this actively secure, we will let the key generation algorithm

output a commitment to 𝑠 𝑗 . Then, to show that it computed 𝑡 𝑗
correctly from 𝑢, the decryption server will reveal a commitment to

𝐸 𝑗 as well as two zero-knowledge proofs: i) it will show that 𝐸 𝑗 is

bounded as required, and ii) it will show that 𝑡 𝑗 is indeed computed

using a linear combination.

6.1 The Actively Secure Protocol

Let the ring 𝑅𝑞 , the statistical security parameter sec, and bounds

𝐵Err, 𝐵Com, 𝐵Dec be public information, together with the plaintext

modulus 𝑝 for the PKE scheme. Let 𝑨C be the public commitment

matrix of a BDLOP instance for message size 𝑙𝑐 = 1.

• KGen𝐴 (1𝜅 , 𝜉1):
(1) Get (pk, sk, 𝑠1, . . . , 𝑠𝜉1

) ← KGen(1𝜅 , 𝜉1) as in the pas-

sive distributed encryption protocol.

(2) ∀𝑗 ∈ [𝜉1] compute (⟦𝑠 𝑗⟧, 𝒅 𝑗) ← Com(𝑠 𝑗).
(3) Output pk𝐴 = (pk, ⟦𝑠1⟧, . . . , ⟦𝑠𝜉1

⟧) and finally sk𝐴 =

sk and sk𝐴,𝑗 = (𝑠 𝑗 , 𝒅 𝑗) for all 𝑗 ∈ [𝜉1].
• Enc𝐴 and Dec𝐴 works just like the original Enc and Dec in

the passively secure threshold encryption scheme, ignoring

additional information in pk𝐴 .
• DDec(sk𝐴,𝑗 , {𝑐𝑖 }𝑖∈[𝜏]) where 𝑐𝑖 = (𝑢𝑖 , 𝑣𝑖):

(1) For each 𝑖 ∈ [𝜏] compute𝑚𝑖, 𝑗 = 𝑠 𝑗𝑢𝑖 , sample uniform

noise 𝐸𝑖, 𝑗 ← 𝑅𝑞 such that

𝐸𝑖, 𝑗

∞ ≤ 2
sec (𝐵Dec/𝑝𝜉1)

and compute the decryption share 𝑡𝑖, 𝑗 =𝑚𝑖, 𝑗 + 𝑝𝐸𝑖, 𝑗 .
(2) For each 𝑖 ∈ [𝜏] compute (⟦𝐸𝑖, 𝑗⟧, 𝒓 ′′𝑖, 𝑗) ← Com(𝐸𝑖, 𝑗)

and use the ΠLin-protocol to compute a proof for the

linear relation 𝑡𝑖, 𝑗 = 𝑠 𝑗𝑢𝑖 + 𝑝𝐸𝑖, 𝑗 from

𝜋𝐿𝑖,𝑗 ← ΠLin (((𝑠 𝑗 , 𝒓 𝑗), (𝐸𝑖, 𝑗 , 𝒓 ′′𝑖, 𝑗));
(⟦𝑠 𝑗⟧, ⟦𝐸𝑖, 𝑗⟧, 𝑡𝑖, 𝑗), (𝑢𝑖 , 𝑝)) .

(3) Each commitment ⟦𝐸𝑖, 𝑗⟧ is of the form[
𝑰𝑛 𝒂1,1 𝑨1,2

0𝑛 1 𝒂2,2

]
· 𝒓 ′′𝑖, 𝑗 +

[
0

𝐸𝑖, 𝑗

]
=

[
𝑰𝑛 𝒂1,1 𝑨1,2 0

0𝑛 1 𝒂2,2 1

]
︸ ︷︷ ︸

𝑨D

[
𝒓 ′′
𝑖, 𝑗

𝐸𝑖, 𝑗

]
,

where

𝒓 ′′𝑖, 𝑗

∞ ≤ 𝐵Com is the randomness used in the

commitments. RunΠBnd ({(𝐸𝑖, 𝑗 , 𝒓 ′′𝑖, 𝑗 }𝑖∈[𝜏]); (𝑨D, {⟦𝐸𝑖, 𝑗⟧}𝑖∈[𝜏]))
to obtain the amortized zero-knowledge PoK 𝜋Bnd𝑗

.

(4) Output ds𝑗 = ({𝑡𝑖, 𝑗 }𝜏𝑖=1
, 𝜋D𝑗

) with the decryption

proof 𝜋D𝑗
= ({⟦𝐸𝑖, 𝑗⟧}𝜏𝑖=1

, {𝜋𝐿𝑖,𝑗 }𝜏𝑖=1
, 𝜋Bnd𝑗

).
• Comb𝐴 ({𝑐𝑖 }𝜏𝑖=1

, {ds𝑗 } 𝑗∈[𝜉1]):
(1) Parse ds𝑗 as ({𝑡𝑖, 𝑗 }𝜏𝑖=1

, 𝜋D𝑗
).

(2) Verify the proofs 𝜋𝐿𝑖,𝑗 .

(3) Verify the proofs 𝜋Bnd𝑗
.

(4) If any verification protocol returned 0 then output ⊥.
Otherwise, compute

𝑚𝑖 = (𝑣𝑖 − 𝑡𝑖 mod 𝑞) mod 𝑝, where

𝑡𝑖 = 𝑡𝑖,1 + · · · + 𝑡𝑖,𝜉1
for 𝑖 = 1, . . . , 𝜏,

and output the set of messages𝑚1, . . . ,𝑚𝜏 .

10

Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based Assumptions

The randomness 𝒓 ′′
𝑖, 𝑗

has much smaller ℓ∞ norm than 𝐸𝑖, 𝑗 , and

hence, we will run the ΠBnd protocol with small standard deviation

𝜎Bnd for rows 1 to 𝑘 , while row 𝑘 + 1 will have large �̂�Bnd.This

trivially works for ΠBnd as all operations, also in the extractor for

the soundness-proof, are coordinate-wise.

The following theorems refer to definitions of threshold correct-

ness, threshold verifiability, and distributed decryption simulata-

bility given in Section 2.1. In the following theorems, let the noise

bounds 𝐵Dec and �̂�Bnd satisfy (1 + 𝐵Dec) · 2sec < 2�̂�Bnd < ⌊𝑞/2⌋.

Theorem 5. Let ciphertext-noise be bounded by 𝐵Dec, and let the
noise added in DDec be bounded by 2

sec𝐵Dec. Suppose the passively
secure protocol is threshold correct and the protocols ΠLin and ΠBnd
are complete. Then the actively secure protocol is threshold correct.

Informally, since 𝐵Dec + 2
sec𝐵Dec < 𝑞/2, it follows that decryp-

tion is correct. Furthermore, since (1 + 𝐵Dec) · 2sec < 2�̂�Bnd < 𝑞/2
and ΠLin and ΠBnd are complete, the arguments will be accepted,

which means that the decryption proof will be accepted.

Theorem 6. Let Adv0 be an adversary against threshold verifia-
bility for the actively secure protocol with advantage 𝜖0. Then there
exists adversaries Adv1 and Adv2 against soundness for ΠLin and
ΠBnd, respectively, with advantages 𝜖1 and 𝜖2, such that 𝜖0 ≤ 𝜖1 + 𝜖2.
The runtime of Adv1 and Adv2 are essentially the same as of Adv0.

We sketch the argument. We only consider ciphertexts with

noise bounded by 𝐵Dec, so we may assume that the noise in any

particular ciphertext is bounded by 𝐵Dec.

If the decryption is incorrect for a particular ciphertext, then for

some 𝑗 no relation 𝑡𝑖, 𝑗 = 𝑠 𝑗𝑢𝑖 + 𝑝𝐸𝑖, 𝑗 holds for an 𝐸𝑖, 𝑗 of the norm

at most 2�̂�Bnd. This can happen in two ways: Either the argument

for the linear combination of the commitments to 𝐸𝑖, 𝑗 and 𝑠 𝑗 is

incorrect, or the bound on 𝐸𝑖, 𝑗 is incorrect. In the former case, we

trivially get an adversary Adv1 against soundness for ΠLin. Similar

for the case of ΠBnd.

Theorem 7. Suppose the passively secure protocol is simulatable
and ΠLin and ΠBnd are honest-verifier zero-knowledge. Then there
exists a simulator for the actively secure protocol such that for any
distinguisher Adv0 for this simulator with advantage 𝜖0, there exists
an adversary Adv4 against hiding for the commitment scheme4, with
advantage 𝜖4, and distinguishers Adv1, Adv2 and Adv3 for the simu-
lators for the passively secure protocol, ΠLin and ΠBnd, respectively,
with advantages 𝜖1, 𝜖2, 𝜖3, such that 𝜖0 ≤ 𝜖1+𝜖2+𝜖3+𝜖4. The runtime
of Adv1, Adv2, Adv3 and Adv4 are essentially the same as of Adv0.

We sketch the argument. The simulator simulates the arguments

and the passively secure distributed decryption algorithm, using

appropriate simulators. It replaces the commitment to the noise

𝐸𝑖, 𝑗 by commitments to zero.

The claim about the simulator follows from a straightforward

hybrid argument. We begin with distributed decryption.

First, we replace the ΠLin arguments with simulated arguments,

which gives us a distinguisher Adv2 for the ΠLin honest verifier

simulator. Second, we replace the ΠBnd arguments by simulated

arguments, which gives us a distinguisherAdv3 for theΠBnd honest

4
A more careful argument could allow us to dispense with this adversary. We have

opted for a simpler argument since the commitment scheme is also used elsewhere.

verifier simulator. Third, we replace the commitments to the noise

𝐸𝑖, 𝑗 by random commitments, which gives us an adversary Adv4

against hiding for the commitment scheme. Fourth, we replace the

passively secure distributed decryption algorithmwith its simulator,

which gives us a distinguisher Adv1 for the simulator.

After four changes, we are left with the claimed simulator for

the actively secure protocol, and the claim follows.

6.2 Communication Complexity of DistDec

Each partial decryption consists of one element from 𝑅𝑞 , namely

the output ofDDec, which means that the output from the passively

secure protocol is of size 𝜉1𝜏𝑁 log
2
𝑞 bits.

Each decryption server outputs a commitment ⟦𝐸𝑖, 𝑗⟧ to the

added noise and proof of linearity per ciphertext, and an amortized

proof of shortness for all the added noise values. Each server has a

public commitment of their decryption key-share to be used in the

proof of linearity, but we neglect this as it is constant.

Each commitment ⟦·⟧ is of size (𝑛 + 1)𝑁 log
2
𝑞 bits, and each

proof of linearity is of size (𝑘 − 𝑛)𝑁 (log
2
(6𝜎C) + log

2
(6�̂�C) bits

because the partial decryption is given in the clear and one com-

mitment is re-used in all equations. Finally, each of the amortized

proofs is of size 𝑘�̂�𝑁 log
2
(6𝜎Bnd) + �̂� log

2
(6�̂�Bnd) bits because of

the different norms of the secret values as noted earlier. As the

bounds in the amortized proof depend on the number of commit-

ments in the statement, each amortized proof is for a batch of 𝑁

equations at once to control the growth of parameters.

The total size of the distributed decryption is

𝜉1 ((𝑛 + 2)𝑁 log
2
𝑞 + (𝑘 − 𝑛)𝑁 (log

2
(6𝜎C) + log

2
(6�̂�C))

+𝑘�̂� log
2
(6𝜎Bnd) + �̂� log

2
(6�̂�Bnd))𝜏 bits.

7 PERFORMANCE

We provide an overview of parameters and descriptions in Table 1.

Parameter Explanation Constraints

𝜅 Computational security parameter At least 128 bits

sec Statistical security parameter 40 bits

𝑁 Degree of polynomial 𝑋𝑁 + 1 in 𝑅𝑝 , 𝑅𝑞 𝑁 a power of two

𝑝 Plaintext modulus 𝑝 a small prime

𝑞 Ciphertext and commitment modulus Prime 𝑞 = 1 mod 2𝑁 s.t. max∥𝑣 − 𝑠𝑢∥ ≪ 𝑞/2
𝑘 Portion of homomorphic commitment vector dedicated to binding

𝑛 Length of commitment vector

C Challenge space for Linear ZK proofs of commitments C =
{
𝑐 ∈ 𝑅𝑝 | ∥𝑐 ∥∞ = 1, ∥𝑐 ∥

1
= 𝜈

}
𝜈 Maximum ℓ1-norm of elements in C

𝑆𝐵 Set of elements of∞-norm at most 𝐵 𝑆𝐵 = {𝑥 ∈ 𝑅𝑝 | ∥𝑥 ∥∞ ≤ 𝐵}
𝐵Com Bound on the commitment noise —

𝐵Key Bound for secret key in encryption scheme Chosen as 1

𝐵Err Bound for noise in ciphertexts Chosen as 1

𝜎C Standard deviation in linear ZK proofs for one-time commitments Chosen to be 𝜎C = 0.954 · 𝜈 · 𝐵Com ·
√
𝑘𝑁

�̂�C Standard deviation in linear ZK proofs for reusable commitments Chosen to be �̂�C = 22 · 𝜈 · 𝐵Com ·
√
𝑘𝑁

𝜎Bnd Standard deviation for the one-time amortized proof in mixing Chosen to hide the commitment randomness 𝒓 ′′
𝑖, 𝑗

�̂�Bnd Standard deviation for the one-time amortized proof in mixing Chosen to hide the decryption noise 𝐸𝑖, 𝑗

�̂� Dimension of proof in ΠBnd �̂� ≥ 𝜅 + 2

𝜉1, 𝜉2 Number of shuffle- and decryption-servers

𝜏 Total number of messages/number of voters For soundness we need (𝜏𝛿 + 1)/|𝑅𝑞 | < 2
−128

𝑙 Encoding length in ΠSmall —

𝑙𝑐 Length of the committed message in ΠSmall —

𝜂 Randomness of encodings in ΠSmall —

𝑔 Dimension of Reed-Solomon Code in ΠSmall —

Table 1: System parameters and constraints.

7.1 Concrete Parameters and Total Size

We begin by fixing the rejection-sampling parameter as 𝑀 = 3,

leading to a general abort probability of 1/3 for each proof that uses

11

Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde

𝒄 (𝑘)
𝑖

⟦𝑅𝑙𝑐𝑞 ⟧ 𝜋Shuf 𝜋𝐿𝑖,𝑗 𝜋Small 𝜋Bnd 𝜋S𝑖 𝜋D𝑗

80 KB 40(𝑙𝑐 + 1) KB 150𝜏 KB 35 KB 20𝜏 KB 2𝜏 KB 370𝜏 KB 157𝜏 KB

Table 2: Size of the ciphertexts, commitments, and proofs.

rejection sampling. This allows us to define the standard deviations

involved in all instances of the proofs.

We pick the noise in the BGV ciphertexts as well as in commit-

ments to come from ternary distributions, as this gives tight control

on the noise growth during the protocols.

To be able to choose concrete parameters for the mix-net, we

need to estimate howmuch noise is added to the ciphertexts through

the two stages of the protocol: 1) the shuffle phase, and 2) the decryp-

tion phase. This follows from a standard analysis that incorporates

the slacks of the ZK proofs involved in the protocols and will be one

lower bound on choosing 𝑞 as the noise should not wrap around

computations mod 𝑞.

For our example, we let the number of shuffle and decryption

servers be 𝜉1 = 𝜉2 = 4. We fix the plaintext modulus to be 𝑝 = 2,

statistical security parameter sec = 40 (a common choice in the

MPC literature), and need 𝑁 = 4096 when 𝑞 is chosen as outlined

above in order for the underlying lattice problems to be hard, see

details in Table 5. This allows for votes of size 4096 bits, which is a

feasible size for real-world elections representing a wide range of

voter options.

Finally, we must decide on parameters for the exact proof of

shortness from Section 4. The soundness of the protocol depends

on the ratio between the number of equations and the size of the

modulus. We choose to compute the proof in batches of size 𝑁

instead of computing the proof for all 𝜏 commitments at once and

will have to run each proof twice to achieve negligible soundness

error. After choosing appropriate parameters for code length and

the number of tested rows𝜂, the total size of 𝜋Small, by instantiating

equation 1, is ≈ 20𝜏 KB.

We summarize the concrete sizes of each part of the protocol in

Table 2. Each voter submits a ciphertext size of approximately 80

KB. The size of the mix-net, including ciphertexts, commitments,

shuffle proof, and proof of shortness, is approximately 370𝜏 KB

per mixing node S𝑘 . The size of the decryption phase, including

partial decryptions, commitments, proofs of linearity, and proofs of

boundedness, is approximately 157𝜏 KB per decryption node D𝑗 .

See Appendix F for more details on the choice of parameters.

7.2 Implementation

We developed a proof-of-concept implementation to compare with

previous results in the literature. Our performance figures were

collected on an Intel Kaby Lake Core i7-7700 CPU machine with

64GB of RAM running single-threaded at 3.6GHz, with Turbo Boost

disabled to reduce measurement variability.. The results can be

found in Tables 3 and 4. Our research prototype can be found

at https://github.com/dfaranha/lattice-verifiable-mixnet.

First, we compare the performance of the main building blocks

with an implementation of the shuffle-proof protocol proposed in

[4]. That work used the FLINT library to implement arithmetic

involving polynomials of degree 𝑁 = 1024 with 32-bit coefficients,

Primitive Commit Open Encrypt Decrypt DistDec

Time 0.45 ms 2.7 ms 0.74 ms 0.64 ms 1.56 ms

Table 3: Timings for cryptographic operations. Numberswere

obtained by computing the average of 10
4
executions mea-

sured using the cycle counter available on the platform.

fitting a single machine word. Their parameters were not compat-

ible with the fast Number Theoretic Transform (NTT), so a CRT

decomposition to two half-degree polynomials was used instead.

The code was made available, so a direct comparison is possible.

In this work, the degree is much larger (𝑁 = 4096) and coeffi-

cients are multi-word (𝑞 ≈ 2
78
), but the parameters are compatible

with the NTT. We implemented polynomial arithmetic with the

efficient NFLlib [2] library using the RNS representation for coeffi-

cients accelerated with AVX2 instructions. We observed that our

polynomial multiplication is around 19 times faster than [4] (61, 314

cycles instead of 1, 165, 997), despite parameters being considerably

larger. We also employed the FLINT library for arithmetic routines

not supported in NFLlib, such as polynomial inversion, but that

incurred some non-trivial costs to convert representations between

two libraries. We adapted [47] and [46] for Gaussian sampling and

adjusted the standard deviation 𝜎 accordingly.

Computing a commitment takes 0.45 ms on the target machine,

which is 2x faster than [4]. Opening a commitment is slower due

to conversions between libraries for performing the norm test.

Our implementation of BGV encryption at 0.74 ms is much faster

than the 69 ms reported for verifiable encryption in [4], while

decryption is improved by a factor of 10. Distributed decryption

with passive security costs an additional 1.56 ms per party, but the

zero-knowledge proofs for active security increase the cost. The

shuffle proof performance is 20.1 ms per vote, thus slightly faster

than the 27 ms reported in [4].

For the other sub-protocols, we benchmarked executions with

𝜏 = 1000 and report the execution time amortized per vote for

both prover and verifier in Table 4. In the case of ΠSmall, we imple-

ment the performance-critical polynomial arithmetic and encoding

scheme, since this is already representative of the overall perfor-

mance. From the table, we can compute the cost of distributed

decryption ΠDec with active security as (1.56+ 0.45+ 17.3+ 82.5) =
101.81 ms per vote, the cost of verification ΠDecV as (6.3 + 22.2) =
28.5 ms per vote, the cost of ΠMix as (0.74 + 0.45 + 112.3 + 20.1) =
133.6 ms and the cost ofΠMixV as (5.0+7.9) = 12.9 ms per vote. This

result compares quite favorably with the costs of 1.54 s and 1.51 s

per vote to respectively generate/verify a proof in the lattice-based

shuffle proof of [27] in a Kaby Lake processor running at a similar

frequency. Our total numbers are 18.5 times faster after adjusting

for clock frequency, while storage overhead is much lower.

8 CONCLUDING REMARKS

We have proposed a verifiable secret shuffle of BGV ciphertexts and

a verifiable distributed decryption protocol. Together, these two

novel constructions are practical and solve a long-standing problem

in the design of quantum-safe cryptographic voting systems.

Verifiable secret shuffles for discrete logarithm-based cryptogra-

phy has seen a long sequence of incremental designs follow Neff’s

12

https://github.com/dfaranha/lattice-verifiable-mixnet

Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based Assumptions

Protocol ΠLin + ΠLinV Π𝑙𝑐
Shuf
+ Π𝑙𝑐

ShufV

Time (17.3 + 6.3)𝜏 ms (20.1 + 7.9)𝜏 ms

Protocol ΠBnd + ΠBndV ΠSmall + ΠSmallV

Time (82.5 + 22.2)𝜏 ms (112.3 + 5.0)𝜏 ms

Table 4: Timings for cryptographic protocols, obtained by

computing the average of 100 executions with 𝜏 = 1000.

breakthrough construction. While individual published improve-

ments were often fairly small, the overall improvement in per-

formance over time was significant. We expect that our designs

can be improved in a similar fashion. In particular, we expect that

the size of the proofs can be significantly reduced. While it is cer-

tainly straight-forward to download a few hundred gigabytes today

(compare with high-quality video streaming), many voters will

be discouraged and this limits the universality of verification in

practice. It, therefore, seems reasonable to focus further effort on

reducing the size of the proofs.

The distributed decryption protocol does not have an adjustable

threshold. In practice, this is not much of a problem, since the keys

will be shared among many key holders. Only when counting starts

is the key material given to the decryption servers. Key reconstruc-

tion can then be combined with a key distribution protocol.

Shuffles followed by distributed decryption is one paradigm

for the design of cryptographic voting systems. Another possible

paradigm is to use key shifting in the shuffles. This would then

allow us to use a single party for decryption (though it must still

be verifiable, e.g., using the protocols [29, 43]). Key shifting can be

done with many of the same techniques that we use for distributed

decryption, but there seems to be difficulties in amortizing the

proofs. This means that key shifting with just the techniques we use

will be significantly slower and of increased size, as we would need

additional proofs of linearity for each ciphertext in each shuffle.

Follow-upwork byHøgåsen and Silde [32] shows how our voting

protocol can be combined with a return-code mechanism to achieve

individual voter verifiability against cheating ballot box.

Finally, we note that our scheme and concrete instantiation using

the NTT is optimized for speed, and that it is possible to slightly

decrease the parameters by instantiating the encryption scheme

based on the SKS2
and DKS∞ problems in higher dimensions 𝑘

using a smaller, but still a power of 2, ring-dimension 𝑁 . We leave

this as future work. We also remark that lattice-based cryptography,

and especially lattice-based zero-knowledge proofs such as the

recent work by Lyubashevsky et al. [36], continuously improves

the state-of-the-art, and we expect future works to improve the

concrete efficiency of our protocol.

REFERENCES

[1] Ben Adida. 2008. Helios: Web-based Open-Audit Voting. In USENIX Security 2008,
Paul C. van Oorschot (Ed.). USENIX Association, 335–348.

[2] Carlos Aguilar Melchor, Joris Barrier, Serge Guelton, Adrien Guinet, Marc-Olivier

Killijian, and Tancrède Lepoint. 2016. NFLlib: NTT-Based Fast Lattice Library. In

CT-RSA 2016 (LNCS, Vol. 9610), Kazue Sako (Ed.). Springer, Heidelberg, 341–356.

https://doi.org/10.1007/978-3-319-29485-8_20

[3] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. 2014. Quantum

Attacks on Classical Proof Systems: The Hardness of Quantum Rewinding. In

55th FOCS. IEEE Computer Society Press, 474–483. https://doi.org/10.1109/FOCS.

2014.57

[4] Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, Tjerand Silde, and Thor Tunge.

2021. Lattice-Based Proof of Shuffle and Applications to Electronic Voting. In

CT-RSA 2021 (LNCS, Vol. 12704), Kenneth G. Paterson (Ed.). Springer, Heidelberg,

227–251. https://doi.org/10.1007/978-3-030-75539-3_10

[5] Thomas Attema, Vadim Lyubashevsky, and Gregor Seiler. 2020. Practical Product

Proofs for Lattice Commitments. In CRYPTO 2020, Part II (LNCS, Vol. 12171),
Daniele Micciancio and Thomas Ristenpart (Eds.). Springer, Heidelberg, 470–499.

https://doi.org/10.1007/978-3-030-56880-1_17

[6] Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël del Pino, Jens Groth,

and Vadim Lyubashevsky. 2018. Sub-linear Lattice-Based Zero-Knowledge Ar-

guments for Arithmetic Circuits. In CRYPTO 2018, Part II (LNCS, Vol. 10992),
Hovav Shacham and Alexandra Boldyreva (Eds.). Springer, Heidelberg, 669–699.

https://doi.org/10.1007/978-3-319-96881-0_23

[7] Carsten Baum, Ivan Damgård, Vadim Lyubashevsky, Sabine Oechsner, and Chris

Peikert. 2018. More Efficient Commitments from Structured Lattice Assumptions.

In SCN 18 (LNCS, Vol. 11035), Dario Catalano and Roberto De Prisco (Eds.).

Springer, Heidelberg, 368–385. https://doi.org/10.1007/978-3-319-98113-0_20

[8] Carsten Baum, Daniel Escudero, Alberto Pedrouzo-Ulloa, Peter Scholl, and

Juan Ramón Troncoso-Pastoriza. 2020. Efficient Protocols for Oblivious Lin-

ear Function Evaluation from Ring-LWE. In SCN 20 (LNCS, Vol. 12238), Clemente

Galdi and Vladimir Kolesnikov (Eds.). Springer, Heidelberg, 130–149. https:

//doi.org/10.1007/978-3-030-57990-6_7

[9] Rikke Bendlin and Ivan Damgård. 2010. Threshold Decryption and Zero-

Knowledge Proofs for Lattice-Based Cryptosystems. In TCC 2010 (LNCS,
Vol. 5978), Daniele Micciancio (Ed.). Springer, Heidelberg, 201–218. https:

//doi.org/10.1007/978-3-642-11799-2_13

[10] David Bernhard, Véronique Cortier, David Galindo, Olivier Pereira, and Bogdan

Warinschi. 2015. SoK: A Comprehensive Analysis of Game-Based Ballot Privacy

Definitions. In 2015 IEEE Symposium on Security and Privacy. IEEE Computer

Society Press, 499–516. https://doi.org/10.1109/SP.2015.37

[11] Manuel Blum. 1984. How to Exchange (Secret) Keys. ACM Transactions on
Computer Systems 1 (1984), 175–193.

[12] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi, Jens Groth, Mohammad Ha-

jiabadi, and Sune K. Jakobsen. 2017. Linear-Time Zero-Knowledge Proofs for

Arithmetic Circuit Satisfiability. In ASIACRYPT 2017, Part III (LNCS, Vol. 10626),
Tsuyoshi Takagi and Thomas Peyrin (Eds.). Springer, Heidelberg, 336–365.

https://doi.org/10.1007/978-3-319-70700-6_12

[13] Jonathan Bootle, Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler.

2021. More Efficient Amortization of Exact Zero-Knowledge Proofs for LWE. In

Computer Security – ESORICS 2021, Elisa Bertino, Haya Shulman, and Michael

Waidner (Eds.). Springer International Publishing, Cham, 608–627.

[14] Jonathan Bootle, Vadim Lyubashevsky, and Gregor Seiler. 2019. Algebraic Tech-

niques for Short(er) Exact Lattice-Based Zero-Knowledge Proofs. In CRYPTO 2019,
Part I (LNCS, Vol. 11692), Alexandra Boldyreva and Daniele Micciancio (Eds.).

Springer, Heidelberg, 176–202. https://doi.org/10.1007/978-3-030-26948-7_7

[15] Xavier Boyen, Thomas Haines, and Johannes Müller. 2020. A Verifiable and Prac-

tical Lattice-Based Decryption Mix Net with External Auditing. In ESORICS 2020,
Part II (LNCS, Vol. 12309), Liqun Chen, Ninghui Li, Kaitai Liang, and Steve A.

Schneider (Eds.). Springer, Heidelberg, 336–356. https://doi.org/10.1007/978-3-

030-59013-0_17

[16] Xavier Boyen, Thomas Haines, and Johannes Müller. 2021. Epoque: Practical End-

to-End Verifiable Post-Quantum-Secure E-Voting. In IEEE European Symposium
on Security and Privacy, EuroS&P 2021, Vienna, Austria, September 6-10, 2021.
IEEE, 272–291. https://doi.org/10.1109/EuroSP51992.2021.00027

[17] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2012. (Leveled) fully

homomorphic encryption without bootstrapping. In ITCS 2012, Shafi Goldwasser

(Ed.). ACM, 309–325. https://doi.org/10.1145/2090236.2090262

[18] David Chaum. 1981. Untraceable Electronic Mail, Return Addresses, and Digital

Pseudonyms. Commun. ACM 24, 2 (1981), 84–88. https://doi.org/10.1145/358549.

358563

[19] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2016.

A Homomorphic LWE Based E-voting Scheme. In Post-Quantum Cryptography
- 7th International Workshop, PQCrypto 2016, Tsuyoshi Takagi (Ed.). Springer,
Heidelberg, 245–265. https://doi.org/10.1007/978-3-319-29360-8_16

[20] Núria Costa, Ramiro Martínez, and Paz Morillo. 2019. Lattice-Based Proof of

a Shuffle. In FC 2019 Workshops (LNCS, Vol. 11599), Andrea Bracciali, Jeremy

Clark, Federico Pintore, Peter B. Rønne, and Massimiliano Sala (Eds.). Springer,

Heidelberg, 330–346. https://doi.org/10.1007/978-3-030-43725-1_23

[21] Ivan Damgård, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and

Nigel P. Smart. 2013. Practical Covertly Secure MPC for Dishonest Majority - Or:

Breaking the SPDZ Limits. In ESORICS 2013 (LNCS, Vol. 8134), Jason Crampton,

Sushil Jajodia, and Keith Mayes (Eds.). Springer, Heidelberg, 1–18. https://doi.

org/10.1007/978-3-642-40203-6_1

[22] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. 2012. Multi-

party Computation from Somewhat Homomorphic Encryption. In CRYPTO 2012
(LNCS, Vol. 7417), Reihaneh Safavi-Naini and Ran Canetti (Eds.). Springer, Hei-

delberg, 643–662. https://doi.org/10.1007/978-3-642-32009-5_38

[23] Ivan Damgård. 2010. On Σ-protocols. https://cs.au.dk/~ivan/Sigma.pdf.

13

https://doi.org/10.1007/978-3-319-29485-8_20
https://doi.org/10.1109/FOCS.2014.57
https://doi.org/10.1109/FOCS.2014.57
https://doi.org/10.1007/978-3-030-75539-3_10
https://doi.org/10.1007/978-3-030-56880-1_17
https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-319-98113-0_20
https://doi.org/10.1007/978-3-030-57990-6_7
https://doi.org/10.1007/978-3-030-57990-6_7
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1007/978-3-642-11799-2_13
https://doi.org/10.1109/SP.2015.37
https://doi.org/10.1007/978-3-319-70700-6_12
https://doi.org/10.1007/978-3-030-26948-7_7
https://doi.org/10.1007/978-3-030-59013-0_17
https://doi.org/10.1007/978-3-030-59013-0_17
https://doi.org/10.1109/EuroSP51992.2021.00027
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1145/358549.358563
https://doi.org/10.1145/358549.358563
https://doi.org/10.1007/978-3-319-29360-8_16
https://doi.org/10.1007/978-3-030-43725-1_23
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-40203-6_1
https://doi.org/10.1007/978-3-642-32009-5_38
https://cs.au.dk/~ivan/Sigma.pdf

Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde

[24] Rafaël del Pino, Vadim Lyubashevsky, Gregory Neven, and Gregor Seiler. 2017.

Practical Quantum-Safe Voting from Lattices. In ACM CCS 2017, Bhavani M.

Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM Press,

1565–1581. https://doi.org/10.1145/3133956.3134101

[25] Jelle Don, Serge Fehr, and Christian Majenz. 2020. The Measure-and-Reprogram

Technique 2.0: Multi-round Fiat-Shamir and More. In CRYPTO 2020, Part III
(LNCS, Vol. 12172), Daniele Micciancio and Thomas Ristenpart (Eds.). Springer,

Heidelberg, 602–631. https://doi.org/10.1007/978-3-030-56877-1_21

[26] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. 2022. Efficient

NIZKs and Signatures from Commit-and-Open Protocols in the QROM. IACR

Crypto 2022. https://eprint.iacr.org/2022/270 https://eprint.iacr.org/2022/270.

[27] Valeh Farzaliyev, JanWillemson, and Jaan Kristjan Kaasik. 2021. Improved Lattice-

Based Mix-Nets for Electronic Voting. In Information Security and Cryptology –
ICISC 2021. Springer International Publishing.

[28] Amos Fiat and Adi Shamir. 1987. How to Prove Yourself: Practical Solutions to

Identification and Signature Problems. In CRYPTO’86 (LNCS, Vol. 263), AndrewM.

Odlyzko (Ed.). Springer, Heidelberg, 186–194. https://doi.org/10.1007/3-540-

47721-7_12

[29] Kristian Gjøsteen, Thomas Haines, Johannes Müller, Peter Rønne, and Tjerand

Silde. 2022. Verifiable Decryption in the Head. In Information Security and
Privacy, Khoa Nguyen, Guomin Yang, Fuchun Guo, and Willy Susilo (Eds.).

Springer International Publishing, Cham, 355–374.

[30] S Goldwasser, S Micali, and C Rackoff. 1985. The Knowledge Complexity

of Interactive Proof-Systems. In Proceedings of the Seventeenth Annual ACM
Symposium on Theory of Computing (Providence, Rhode Island, USA) (STOC
’85). Association for Computing Machinery, New York, NY, USA, 291–304.

https://doi.org/10.1145/22145.22178

[31] Javier Herranz, Ramiro Martínez, and Manuel Sánchez. 2021. Shorter Lattice-

Based Zero-Knowledge Proofs for the Correctness of a Shuffle. In International
Conference on Financial Cryptography and Data Security. Springer, 315–329.

[32] Audhild Høgåsen and Tjerand Silde. 2022. Return Codes from Lattice Assump-

tions. E-VOTE-ID (2022). https://doi.org/10.15157/diss/025

[33] Adeline Langlois and Damien Stehlé. 2015. Worst-Case to Average-Case Reduc-

tions for Module Lattices. Des. Codes Cryptography 75, 3 (June 2015), 565–599.

https://doi.org/10.1007/s10623-014-9938-4

[34] Patrick Longa and Michael Naehrig. 2016. Speeding up the Number Theoretic

Transform for Faster Ideal Lattice-Based Cryptography. In CANS 16 (LNCS,
Vol. 10052), Sara Foresti and Giuseppe Persiano (Eds.). Springer, Heidelberg,

124–139. https://doi.org/10.1007/978-3-319-48965-0_8

[35] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,

Gregor Seiler, Damien Stehlé, and Shi Bai. 2020. CRYSTALS-DILITHIUM. Techni-

cal Report. National Institute of Standards and Technology. available at https:

//csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions.

[36] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Maxime Plancon. 2022. Lattice-

Based Zero-Knowledge Proofs and Applications: Shorter, Simpler, and More

General. IACR Crypto 2022. https://ia.cr/2022/284.

[37] Vadim Lyubashevsky, Ngoc Khanh Nguyen, and Gregor Seiler. 2021. Shorter

Lattice-Based Zero-Knowledge Proofs via One-Time Commitments. In PKC 2021,
Part I (LNCS, Vol. 12710), Juan Garay (Ed.). Springer, Heidelberg, 215–241. https:

//doi.org/10.1007/978-3-030-75245-3_9

[38] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. 2013. A Toolkit for Ring-

LWE Cryptography. In EUROCRYPT 2013 (LNCS, Vol. 7881), Thomas Johansson

and Phong Q. Nguyen (Eds.). Springer, Heidelberg, 35–54. https://doi.org/10.

1007/978-3-642-38348-9_3

[39] C. Andrew Neff. 2001. A Verifiable Secret Shuffle and Its Application to e-Voting.

In ACM CCS 2001, Michael K. Reiter and Pierangela Samarati (Eds.). ACM Press,

116–125. https://doi.org/10.1145/501983.502000

[40] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim

Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte,

and Zhenfei Zhang. 2020. FALCON. Technical Report. National Institute of

Standards and Technology. available at https://csrc.nist.gov/projects/post-

quantum-cryptography/round-3-submissions.

[41] Dragos Rotaru, Nigel P. Smart, Titouan Tanguy, Frederik Vercauteren, and Tim

Wood. 2022. Actively Secure Setup for SPDZ. J. Cryptol. 35, 1 (jan 2022), 32 pages.

https://doi.org/10.1007/s00145-021-09416-w

[42] Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède

Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor Seiler, and Damien

Stehlé. 2020. CRYSTALS-KYBER. Technical Report. National Institute of Stan-
dards and Technology. available at https://csrc.nist.gov/projects/post-quantum-

cryptography/round-3-submissions.

[43] Tjerand Silde. 2022. Verifiable Decryption for BGV. Workshop on Advances in

Secure Electronic Voting. https://ia.cr/2021/1693.

[44] Kristian Gjøsteen. 2022. Practical Mathematical Cryptography. CRC Press.

[45] Martin Strand. 2019. A Verifiable Shuffle for the GSW Cryptosystem. In FC 2018
Workshops (LNCS, Vol. 10958), Aviv Zohar, Ittay Eyal, Vanessa Teague, Jeremy

Clark, Andrea Bracciali, Federico Pintore, and Massimiliano Sala (Eds.). Springer,

Heidelberg, 165–180. https://doi.org/10.1007/978-3-662-58820-8_12

[46] Raymond K. Zhao, Sarah McCarthy, Ron Steinfeld, Amin Sakzad, and Máire

O’Neill. 2021. Quantum-safe HIBE: does it cost a Latte? Cryptology ePrint

Archive, Report 2021/222. https://eprint.iacr.org/2021/222.

[47] Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad. 2020. COSAC: COmpact

and Scalable Arbitrary-Centered Discrete Gaussian Sampling over Integers. In

Post-Quantum Cryptography - 11th International Conference, PQCrypto 2020, Jintai
Ding and Jean-Pierre Tillich (Eds.). Springer, Heidelberg, 284–303. https://doi.

org/10.1007/978-3-030-44223-1_16

A PRELIMINARIES

Let 𝑁 be a power of 2 and 𝑞 a prime such that 𝑞 ≡ 1 mod 2𝑁 . We

define the rings 𝑅 = Z[𝑋]/⟨𝑋𝑁 + 1⟩ and 𝑅𝑞 = 𝑅/𝑞𝑅, that is, 𝑅𝑞 is

the ring of polynomials modulo 𝑋𝑁 + 1 with integer coefficients

modulo 𝑞. This way, 𝑋𝑁 + 1 splits completely into 𝑁 irreducible

factors modulo 𝑞, which allows for very efficient computation in

𝑅𝑞 due to the number theoretic transform (NTT) [34]. We define

the norms of elements 𝑓 (𝑋) = ∑
𝛼𝑖𝑋

𝑖 ∈ 𝑅 to be the norms of the

coefficient vector as a vector in Z𝑁 :

| |𝑓 | |1 =
∑︁
|𝛼𝑖 |, | |𝑓 | |2 =

(∑︁
𝛼2

𝑖

)
1/2

, | |𝑓 | |∞ = max{|𝛼𝑖 |}.

For an element
¯𝑓 ∈ 𝑅𝑞 we choose coefficients as the representatives

in

[
−𝑞−1

2
,
𝑞−1

2

]
, and then compute the norms as if

¯𝑓 is an element

in 𝑅. For vectors 𝒂 = (𝑎1, . . . , 𝑎𝑘) ∈ 𝑅𝑘 we define the ℓ2 norm to

be ∥𝒂∥
2
=

√︃∑∥𝑎𝑖 ∥22, and analogously for the ℓ1 and ℓ∞ norm. It is

easy to see the following relations between the norms of elements

in 𝑅𝑞 :

∥ 𝑓 ∥∞ ≤ 𝛼, ∥𝑔∥
1
≤ 𝛽, then ∥ 𝑓 𝑔∥∞ ≤ 𝛼𝛽,

∥ 𝑓 ∥
2
≤ 𝛼, ∥𝑔∥

2
≤ 𝛽, then ∥ 𝑓 𝑔∥∞ ≤ 𝛼𝛽.

We also define the sets 𝑆𝐵 = {𝑥 ∈ 𝑅𝑞 | ∥𝑥 ∥∞ ≤ 𝐵} as well as

C =
{
𝑐 ∈ 𝑅𝑞 | ∥𝑐 ∥∞ = 1, ∥𝑐 ∥

1
= 𝜈

}
, ¯C =

{
𝑐 − 𝑐′ | 𝑐 ≠ 𝑐′ ∈ C

}
.

A.1 The Discrete Gaussian Distribution

The continuous normal distribution over R𝑘 centered at 𝒗 ∈ R𝑘
with standard deviation 𝜎 is given by

𝜌𝑁𝒗,𝜎 (𝒙) =
1

√
2𝜋𝜎

exp

(
−||𝒙 − 𝒗 | |2

2𝜎2

)
.

When sampling randomness for our lattice-based commitment and

encryption schemes, we will need samples from the discrete Gauss-
ian distribution. This distribution is achieved by normalizing the

continuous distribution over 𝑅𝑘 by letting

N𝑘
𝒗,𝜎 (𝒙) =

𝜌𝑘𝑁𝒗,𝜎 (𝒙)
𝜌𝑘𝑁𝜎 (𝑅𝑘)

for 𝒙 ∈ 𝑅𝑘 , 𝜌𝑘𝑁𝜎 (𝑅𝑘) =
∑︁
𝒙∈𝑅𝑘

𝜌𝑘𝑁𝜎 (𝒙) .

When 𝜎 = 1 or 𝒗 = 0, they are omitted. When 𝒙 is sampled accord-

ing to N𝜎 (see Section 2.1 in [6]), then,

Pr[∥𝒙 ∥∞ > 𝛾𝜎] ≤ 2𝑒−𝛾
2/2

and Pr[∥𝒙 ∥
2
>

√︁
2𝛾𝜎] < 2

−𝛾/4 .

A.2 Rejection Sampling

In lattice-based cryptography in general, and in our zero-knowledge

protocols in particular, we would like to output vectors 𝒛 = 𝒚 + 𝒗
such that 𝒛 is independent of 𝒗, and hence, 𝒗 is masked by the vector

𝒚. Here, 𝒚 is sampled according to a Gaussian distributionN𝑘
𝜎 with

14

https://doi.org/10.1145/3133956.3134101
https://doi.org/10.1007/978-3-030-56877-1_21
https://eprint.iacr.org/2022/270
https://eprint.iacr.org/2022/270
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1145/22145.22178
https://doi.org/10.15157/diss/025
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/978-3-319-48965-0_8
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://ia.cr/2022/284
https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-030-75245-3_9
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1007/978-3-642-38348-9_3
https://doi.org/10.1145/501983.502000
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://doi.org/10.1007/s00145-021-09416-w
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://ia.cr/2021/1693
https://doi.org/10.1007/978-3-662-58820-8_12
https://eprint.iacr.org/2021/222
https://doi.org/10.1007/978-3-030-44223-1_16
https://doi.org/10.1007/978-3-030-44223-1_16

Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based Assumptions

Rej(𝒛, 𝒗, 𝑏,𝑀, 𝜎)
1 : if 𝑏 = 1 and ⟨𝒛, 𝒗⟩ < 0 : return 1

2 : 𝜇
$← [0, 1)

3 : if 𝜇 >
1

𝑀
· exp

[
−2⟨𝒛, 𝒗⟩ + ∥𝒗 ∥2

2

2𝜎2

]
: return 1

4 : else : return 0

Figure 2: Rejection sampling

standard deviation 𝜎 , and we want the output vector 𝒛 to be from

the same distribution. The procedure is shown in Figure 2.

Here, 1/𝑀 is the probability of success, and𝑀 is computed as

max

N𝑘
𝜎 (𝒛)

N𝑘
𝒗,𝜎 (𝒛)

≤ exp

[
24𝜎 ∥𝒗∥

2
+ ∥𝒗∥2

2

2𝜎2

]
= 𝑀 (2)

where we use the tail bound from Section A.1, saying that |⟨𝒛, 𝒗⟩| <
12𝜎 ∥𝒗∥

2
with probability at least 1 − 2

−100
. Hence, for 𝜎 = 11∥𝒗∥

2
,

we get𝑀 ≈ 3. This is the standard way to choose parameters, see

e.g. [14]. However, if the procedure is only done once for the vector

𝒗, we can decrease the parameters slightly, to the cost of leaking

only one bit of information about 𝒗 from the given 𝒛.
In [37], Lyubashevsky et al. suggest to require that ⟨𝒛, 𝒗⟩ ≥ 0,

and hence, we can set𝑀 = exp(∥𝑣 ∥
2
/2𝜎2). Then, for 𝜎 = 0.675∥𝒗∥

2
,

we get𝑀 ≈ 3. In Figure 2, we use the pre-determined bit 𝑏 to denote

if we only use 𝒗 once or not, with the effect of rejecting about half

of the vectors before the sampling of uniform value 𝜇 in the case

𝑏 = 1 but allowing a smaller standard deviation.

A.3 Knapsack Problems

We first define the Search Knapsack problem in the ℓ2 norm, also

denoted as SKS2
. The SKS2

problem is exactly the Module-SIS prob-

lem in its Hermite Normal Form.

Definition 6. The SKS2

𝑛,𝑘,𝛽
problem is to find a short non-zero

vector 𝒚 satisfying [𝑰𝑛 𝑨′] · 𝒚 = 0𝑛 for a random matrix 𝑨′. An
algorithm Adv has advantage 𝜖 in solving the SKS2

𝑛,𝑘,𝛽
problem if

the following probability is equal to 𝜖 :

Pr

[
∥𝑦𝑖 ∥2 ≤ 𝛽∧ 𝑨′

$← 𝑞𝑛×(𝑘−𝑛) ;
[𝑰𝑛 𝑨′] · 𝒚 = 0𝑛 0 ≠ [𝑦1, . . . , 𝑦𝑘]⊤ ← Adv(𝑨′)

]
.

Additionally, we define the Decisional Knapsack problem in the

ℓ∞ norm (DKS∞). The DKS∞ problem is equivalent to the Module-

LWE problem when the number of samples is limited.

Definition 7. The DKS∞
𝑛,𝑘,𝛽

problem is to distinguish the distri-
bution [𝑰𝑛 𝑨′] · 𝒚 for a short 𝒚 from a bounded distribution 𝑆𝐵
when given 𝑨′. An algorithm Adv has advantage 𝜖 in solving the
DKS∞

𝑛,𝑘,𝛽
problem if����Pr[𝑏 = 1 | 𝒚 $← 𝑆𝑘𝐵 ;𝑏 ← Adv(𝑨′, [𝑰𝑛 𝑨′] · 𝒚)]

− Pr[𝑏 = 1 | 𝒖 $← 𝑅𝑛𝑞 ;𝑏 ← Adv(𝑨′, 𝒖)]
���� = 𝜖,

for a uniformly sampled 𝑨′
$← 𝑅

𝑛×(𝑘−𝑛)
𝑞 .

See [33] for more details about module lattice problems.

A.4 Security of Distributed Decryption

Definition 8 (Chosen Plaintext Security). We say that the
public key encryption scheme is secure against chosen plaintext

attacks if an adversary A, after choosing two messages𝑚0 and𝑚1

and receiving an encryption 𝑐 of either𝑚0 or𝑚1 (chosen at random),
cannot distinguish which message 𝑐 is an encryption of. Hence, we
want that

|Pr

𝑏 = 𝑏′ :

(pp, pk, sk) ← KGen(1𝜅)
(𝑚0,𝑚1, st) ← A(pp, pk)

𝑏
$← {0, 1}, 𝑐 ← Enc(pk,𝑚𝑏)

𝑏′ ← A(𝑐, st)

 −
1

2

| ≤ 𝜖 (𝜅),

where the probability is taken over KGen and Enc.

Definition 9 (Threshold Correctness). We say that the public
key distributed encryption scheme is threshold correct with respect
to 𝑃sk (·) if the following probability equals 1:

Pr


Comb({𝑐𝑖 }𝑖∈ [𝜏] , {ds𝑖,𝑗 }

𝑗 ∈ [𝜉
1
]

𝑖∈ [𝜏])
=

Dec(sk, {𝑐𝑖 }𝑖∈ [𝜏])
:

(pp, pk, sk, {sk𝑗 } 𝑗 ∈ [𝜉1
]) ← KGen(1𝜅 , 𝜉1)

{𝑐1, . . . , 𝑐𝜏 } ← Adv(pp, pk)
∀𝑖 ∈ [𝜏] : 𝑃sk (𝑐𝑖) = 1, ∀ 𝑗 ∈ [𝜉1] :

{ds𝑖,𝑗 }𝑖∈ [𝜏] ← DDec(sk𝑗 , {𝑐𝑖 }𝑖∈ [𝜏])

 ,
where the probability is taken over KGen and DDec.

A.5 Security Definitions for Commitments

Definition 10 (Hiding). We say that a commitment scheme is
hiding if an adversary A, after choosing two messages𝑚0 and𝑚1

and receiving a commitment 𝑐 to either𝑚0 or𝑚1 (chosen at random),
cannot distinguish which message 𝑐 is a commitment to. Hence, we
want that

|Pr

𝑏 = 𝑏′ :

pp← Setup(1𝜅)
(𝑚0,𝑚1, st) ← A(pp)

𝑏
$← {0, 1}, 𝑐 ← Com(𝑚𝑏)

𝑏′ ← A(𝑐, st)

 −
1

2

| ≤ 𝜖 (𝜅),

where the probability is taken over Setup and Com.

Definition 11 (Binding). We say that a commitment scheme is
binding if an adversary A, after creating a commitment 𝑐 , cannot
find two valid openings to 𝑐 for different messages𝑚 and �̂�. Hence,
we want that

Pr

[
𝑚 ≠ �̂�

Open(𝑚,𝑐, 𝑟) = 1

Open(�̂�, 𝑐, 𝑟) = 1

:

pp← Setup(1𝜅)
(𝑐,𝑚, 𝑟, �̂�, 𝑟) ← A(pp)

]
≤ 𝜖 (𝜅),

where the probability is taken over the random coins of Setup.

A.6 Security Definitions for ZK Proofs

Definition 12 (Completeness). We say that a proof protocol
Π is complete ifV outputs 1 when P knows a witness 𝑤 and both
parties follow the protocol. Hence, for any efficient sampling algorithm
P0 we want that

Pr

[
⟨P (sp, 𝑥, 𝑤),V(sp, 𝑥) ⟩ = 1 :

sp← Setup(1𝜅)
(𝑥, 𝑤) ← P0 (sp)
(𝑥, 𝑤) ∈ R

]
= 1,

where the probability is taken over Setup,P andV .

Definition 13 (Knowledge Soundness). We say that a proof
protocol ˝ is knowledge sound if, when a cheating prover P∗ that
does not know a witness𝑤 is able to convince an honest verifierV ,
there exists a polynomial time algorithm extractor E which, give
black-box access to P∗, can output a witness𝑤 such that (𝑥,𝑤) ∈ R.
Hence, we want that

Pr

(𝑥, 𝑤) ∈ R :

sp← Setup(1𝜅)
⟨P∗ (sp, 𝑥, ·),V(sp, 𝑥) ⟩ = 1

𝑤 ← EP∗ (·) (sp, 𝑥)

 ≥ 1 − 𝜖 (𝜅),

where the probability is taken over Setup,P∗ and E.
15

Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde

Definition 14 (Honest-Verifier Zero-Knowledge). We say
that a proof protocol Π is honest-verifier zero-knowledge if an hon-
est but curious verifier V∗ that follows the protocol cannot learn
anything beyond the fact that 𝑥 ∈ L. Hence, we want for real ac-
cepting transcripts T⟨P (sp,𝑥,𝑤),V(sp,𝑥) ⟩ between a prover P and a
verifierV , and a accepting transcript S⟨P (sp,𝑥,·),V(sp,𝑥) ⟩ generated
by simulator S that only knows 𝑥 , that

|Pr

𝑏 = 𝑏′ :

sp← Setup(1𝜅)
T0 = T⟨P (sp,𝑥,𝑤),V(sp,𝑥)⟩ ← ˝(sp, 𝑥, 𝑤)
T1 = S⟨P (sp,𝑥,·),V(sp,𝑥)⟩ ← S(sp, 𝑥)

𝑏
$← {0, 1}, 𝑏′ ← V∗ (sp, 𝑥, T𝑏)

 −
1

2

| ≤ 𝜖 (𝜅),

where the probability is taken over Setup,S andV∗.

B PROOFS OF LINEAR RELATIONS AND

AMORTIZED NON-EXACT ZKPOPK

B.1 Zero-Knowledge Proof of Linear Relations

Prover({ (𝒎𝑖 , 𝒓𝑖) }𝑖∈ [�̂�] ; {𝛼𝑖 }𝑖∈ [�̂�−1] , {⟦𝒎𝑖⟧}𝑖∈ [�̂�]) Verifier({𝛼𝑖 }𝑖∈ [�̂�−1] , {⟦𝒎𝑖⟧}𝑖∈�̂�)

𝒚𝑖

$← N𝑘
𝜎
C

, 𝑖 ∈ [�̂�]
𝒕𝑖 = 𝑨C,1𝒚𝑖 , 𝑖 ∈ [�̂�]

𝒖 = 𝑨C,2 ((
∑︁
𝑖≠�̂�

𝛼𝑖𝒚𝑖) − 𝒚�̂�)
{𝒕𝑖 }𝑖∈ [�̂�] , 𝒖

𝛽
𝛽

$← C

𝒛𝑖 = 𝒚𝑖 + 𝛽𝒓𝑖 , 𝑖 ∈ [�̂�] �̂� = 𝒖 + 𝛽 ((
∑︁
𝑖≠�̂�

𝛼𝑖𝒄𝑖,2) − 𝒄�̂�,2)

For all 𝑖 in [�̂�] :
Abort if Rej(𝒛𝑖 , 𝛽𝒓𝑖 , 𝜎C) = 1.

{𝒛𝑖 }𝑖∈ [�̂�] return Accept iff :

1 : ∀𝑖, 𝑗 :

𝑧𝑖,𝑗

2

?

≤ 𝐵

2 : ∀𝑖 : 𝑨C,1𝒛𝑖
?

= 𝒕𝑖 + 𝛽𝒄𝑖,1

3 : �̂�
?

= 𝑨C,2 ((
∑︁
𝑖≠�̂�

𝛼𝑖𝒛𝑖) − 𝒛�̂�)

Figure 3: ΠLin is a Sigma-protocol to prove the relation RLin.

Assume that there are �̂� commitments

⟦𝒎𝑖⟧ =
[
𝒄𝑖,1
𝒄𝑖,2

]
, for 1 ≤ 𝑖 ≤ �̂� where 𝒄𝑖,2 ∈ 𝑅𝑙𝑐𝑞 .

For the public scalar vector 𝜶 = (𝛼1, . . . , 𝛼�̂�−1
) ∈ 𝑅�̂�−1

𝑞 the prover

wants to prove that the following relation holds:

RLin =

(𝑥,𝑤)
����

𝑥 = (pk, {⟦𝒎𝑖⟧}𝑖∈[�̂�] ,𝜶) ∧
𝑤 = (𝑓 , {𝒎𝑖 , 𝒓𝑖 }𝑖∈[�̂�]) ∧

∀𝑖 ∈ [�̂�] : Openpk (⟦𝒎𝑖⟧,𝒎𝑖 , 𝒓𝑖 , 𝑓) = 1

∧𝒎�̂� =
∑�̂�−1

𝑖=1
𝛼𝑖𝒎𝑖

 .

ΠLin in Figure 3 is a zero-knowledge proof of knowledge (ZKPoK)

of this relation (it is a directly extended version of the linearity proof

in [7]). It works like a standard Σ-protocol when adapted to lattices,

and we, therefore, do not explain its inner workings further and

instead refer the reader to [7].

The relation RLin is relaxed because of the additional factor 𝑓

in the opening, which appears in the soundness proof. It does not

show up in protocol ΠLin, because an honest prover uses 𝑓 = 1. The

bound is 𝐵 = 2𝜎C
√
𝑁 and the protocol produces a proof transcript

of the form 𝜋Lin = (({𝒕𝑖 }𝑖∈[�̂�] , 𝑢), 𝛽, ({𝒛𝑖 }𝑖∈[�̂�])).
The following is a direct adaption of Baum et al. [7, Lemma 8].

Prover(𝑺; (𝑨,𝑻 , 𝜎Bnd)) Verifier(𝑨,𝑻 , 𝐵Bnd)

∀𝑖, 𝑗 : 𝑦𝑖,𝑗
$← N𝜎

Bnd

𝑾 = 𝑨𝒀 𝑾

𝑪
$← C𝜏𝑁 ×�̂�𝑁

Bnd

𝑪

𝒁 ← 𝒀 + 𝑺𝑪
Abort if Rej(𝒁 , 𝑺𝑪, 𝜎Bnd) = 1.

𝒁
1 : ∀𝑖, 𝑗 :

𝑧𝑖,𝑗

2

?

≤ 𝐵Bnd

2 : 𝑨𝒁
?

= 𝑻𝑪 +𝑾

Figure 4: ΠBnd is an approximate amortized zero-knowledge

proof of knowledge of bounded preimages for Z𝑞-matrices.

Theorem 8. The zero-knowledge proof of linear relations is com-

plete if the randomness 𝒓𝑖 is bounded by 𝐵Com in the ℓ∞ norm, it is
2-special sound if the SKS2

𝑛,𝑘,4𝜎C
√
𝑁

problem is hard, and it is sta-

tistical honest-verifier zero-knowledge. The probability of abort is
1−(1/𝑀)�̂� (where𝑀 is a parameter showing up in Rejection Sampling
as defined in Equation 2).

Even though the success probability is (1/𝑀)�̂� , we will only

use this protocol for small values �̂� and choose parameters so that

the rejection probability is small (≈ 1/3), which ensures that the

protocol is efficient in practice.

When applying the Fiat-Shamir transform [28] to make the proof

non-interactive, we let 𝛽 be the output of a hash function applied

to the first message and 𝑥 . Then, the proof transcript is reduced

to 𝜋𝐿 = (𝛽, {𝒛𝑖 }𝑖∈[�̂�]). To estimate the size of the transcript, we

assume that due to the Gaussian distribution of 𝒚𝑖 the size of 𝒛𝑖
is within 6 standard deviations of the distribution. Using this, one

obtains that each 𝒛𝑖 is of size 𝑘𝑁 log
2
(6𝜎C) bits. To improve the

efficiency of the proof one can compress 𝒛𝑖 to �̂�(𝑘 −𝑛)𝑁 log
2
(6𝜎C)

bits by checking an approximate equality instead, which was e.g.

described in Aranha et al. [4, Section 3.2] in more detail.

B.2 Bounded Amortized Zero-Knowledge Proof

We now introduce a Zero-Knowledge Proof for a statement similar

to the one considered in 4, except that the bounds shown on the

secret do not have to be as accurate. This is sufficient in certain

situations, and such proofs can be much more efficient (in terms of

computation and communication) than those from Section 4.

Let 𝑨 be a publicly known 𝑟 × 𝑣-matrix over 𝑅𝑞 , let 𝒔1, 𝒔2, . . . , 𝒔𝜏
be bounded elements in 𝑅𝑣𝑞 and let 𝑨𝒔𝑖 = 𝒕𝑖 for 𝑖 ∈ [𝜏]. Letting 𝑺
be the matrix whose columns are 𝒔𝑖 and 𝑻 be the same matrix for

𝒕𝑖 , but defined over Z𝑁𝑞 instead of 𝑅𝑞 as in the previous subsection,

then Baum et al. [6] give an efficient amortized zero-knowledge

proof of knowledge for the relation

RBnd =

{
(𝑥,𝑤)

���� 𝑥 = (𝑨, 𝑻) ∧𝑤 = 𝑺 ∧ ∀𝑖 ∈ [𝜏] :

𝒕𝑖 = 𝑨𝒔𝑖 ∧ ||𝑠𝑖, 𝑗 | |2 ≤ 2 · 𝐵Bnd

}
.

The protocolΠBnd is depicted in Figure 4. We can use a challenge

matrix 𝑪 with entries sampled from the set CBnd = {0, 1}, then this

16

Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based Assumptions

allows us to choose the parallel
5
protocol instances �̂� ≥ 𝜅 + 2 for

security parameter 𝜅. Let

𝜋Bnd ← ΠBnd (𝑺; (𝑨, 𝑻 , 𝜎Bnd)), and
0 ∨ 1← ΠBndV ((𝑨, 𝑻 , 𝐵Bnd);𝜋Bnd),

denote the run of the proof and verification protocols, respectively,

where the ΠBnd-protocol, using Fiat-Shamir, produces a proof of

the form 𝜋Bnd = (𝑪,𝒁), where 𝑪 is the output of a hash function,

and the ΠBndV-protocol consists of the two checks in the last step

in Figure 4. N𝜎Bnd is a Gaussian distribution over Z with standard

deviation 𝜎Bnd, and the verification bound is 𝐵Bnd =
√

2𝑁𝜎Bnd.

Note that 𝜎Bnd, and hence 𝐵Bnd, depends on the norm of 𝑺 (see

Section A.2). This means that the bound we can prove for each

𝑠𝑖, 𝑗

2
depends on the number of equations 𝜏 in the statement.

The following theorem follows from Baum et al. [6, Lemma 3].

Theorem 9. The amortized zero-knowledge proof of bounded open-
ings is complete if the secrets in 𝑺 are bounded by 𝐵Com in the ℓ∞
norm, it is special sound if the SKS2

𝑛,𝑘,2𝑘𝐵Bnd
problem is hard and

is statistical honest-verifier zero-knowledge. The probability of an
abort is 1 − 1/𝑀 .

Each amortized proof is of size 𝑣�̂�𝑁 log
2
(6𝜎Bnd) bits, excluding

the challenge 𝑪 which can be compressed into 2𝜅 bits for a NIZK

using Fiat-Shamir. Note that the protocol can be generalized to

check for different norms in each row of 𝑺 depending on varying

norms of the secrets, as the protocol is entirely linear, see [8].

C FIGURE AND PROOFS FOR AMORTIZED

ZKPOPK

The full protocol ΠSmall is defined in Figure 5.

Perfect completeness of the protocol is straightforward, so we

focus on soundness and special honest-verifier zero-knowledge.

C.1 Soundness

Lemma 2. Let Encode be the encoding of a Reed-Solomon code of
dimension 𝑔′ = 𝑣𝑁 + 𝜂 and length 𝑙 . Furthermore, let 𝑔′ ≤ 𝑔 ≤ 𝑙 < 𝑞.
Suppose that there is an efficient deterministic prover P∗ convincing
an honest verifier in the protocol in Figure 5 on input 𝑨, 𝒕1, . . . , 𝒕𝜏
with probability

𝜖 > 2 ·max

{
2

(
𝑔

𝑙 − 𝜂

)𝜂
,

1

𝑞 − 𝜏 +
(
1 − 𝑔 − 𝑔′

6𝑙

)𝜂
,

2 ·
(
1 − 2(𝑔 − 𝑔′)

3𝑙

)𝜂
,

18𝜏

𝑞 − 𝜏

}
.

Then there exists an efficient probabilistic extractor Ext which, given
access to P∗ either produces vectors 𝒔𝑖 ∈ {−1, 0, 1}𝑣𝑁 such that 𝒕𝑖 =
𝑨𝒔𝑖 for all 𝑖 ∈ [𝜏], or breaks the binding property of the commitment
scheme (ComAux, OpenAux), or finds a hash collision in expected time
at most 64𝑇 where

𝑇 :=
3

𝜖
+ 𝑔 − 𝜂
𝜖/2 − (𝑔/(𝑙 − 𝜂))𝜂

and running P∗ takes unit time.
5
This bound only applies to the interactive version of the proof. To apply the Fiat-

Shamir transform, it has to be increased to at least 2𝜅

1 : P has input {𝒔𝑖 }𝜏𝑖=1
; (𝑨, {𝒕𝑖 }𝜏𝑖=1

) while V has input 𝑨, {𝒕𝑖 }𝜏𝑖=1

2 : P samples 𝒔0

$← Z𝑣𝑁𝑞 , 𝒉
$← Z2𝑣𝑁

𝑞 , 𝒓0

$← Z𝜂𝑞, 𝒓ℎ
$← Z𝜂𝑞 and

𝒓𝑖,𝑗
$← Z𝜂𝑞 for each 𝑖 ∈ [𝜏], 𝑗 ∈ {0, 1, 2} .

3 : P computes 𝒇 (𝑋) =
𝜏∑︁
𝑖=0

𝒔𝑖 ℓ𝑖 (𝑋) and 𝒅 = −𝑨𝒔0 and defines 𝒗𝑖,𝑗 using

1

ℓ0 (𝑋)
·

∏
ℎ∈{−1,0,1}

[
𝒇 (𝑋) − ℎ · 1

]
=

2∑︁
𝑗=0

𝜏∑︁
𝑖=1

𝒗𝑖,𝑗 ℓ𝑖 (𝑋)ℓ0 (𝑋) 𝑗

4 : P computes 𝑯 0 ← Encode(𝒔0, 0, 𝒓0), 𝑯 ← Encode(𝒉, 𝒓ℎ) as well as
𝑯 𝑖,𝑗 = Encode(𝛿 𝑗 · 𝒔𝑖 , 𝒗𝑖,𝑗 , 𝒓𝑖,𝑗) for each 𝑖 ∈ [𝜏], 𝑗 ∈ {0, 1, 2} .

5 : P computes 𝑬 = RowsToMatrix(𝑯 ,𝑯 0,𝑯 1,0,𝑯 1,1, . . . ,𝑯𝜏,2),
𝑀 = MerkleTree(CommitToColums(𝑬)) and (𝑐𝒅 , 𝑟𝒅) ← ComAux (𝒅) .

6 : P sends𝑀,𝑐𝒅 to V

7 : V samples 𝑥
$← Z∗𝑞 \ {𝑎1, . . . , 𝑎𝜏 } and 𝛽0, 𝛽1,0, . . . , 𝛽𝜏,2

$← Z∗𝑞 and

sends 𝑥, 𝛽0, 𝛽1,0, . . . , 𝛽𝜏,2 to P

8 : P computes
¯𝒇 = 𝒇 (𝑥), 𝒓 𝑓 = ℓ0 (𝑥)𝒓0 +

𝜏∑︁
𝑖=1

2∑︁
𝑗=0

ℓ𝑖 (𝑥)ℓ0 (𝑥) 𝑗 𝒓𝑖,𝑗 ,

¯𝒉 = 𝒉 + 𝛽0𝒔0 +
2∑︁
𝑗=0

𝜏∑︁
𝑖=1

𝛽𝑖,𝑗 (𝛿 𝑗 · 𝒔𝑖 , 𝒗𝑖,𝑗), 𝒓ℎ = 𝒓ℎ + 𝛽0𝒓0 +
2∑︁
𝑗=0

𝜏∑︁
𝑖=1

𝛽𝑖,𝑗 𝒓𝑖,𝑗

9 : P sends
¯𝒇 , 𝒓 𝑓 , ¯𝒉, 𝒓ℎ, 𝑟𝒅 to V

10 : V samples 𝐼
$← [𝑙]𝜂 , |𝐼 | = 𝜂 and sends 𝐼 to P

11 : P computes and sends 𝑬 |𝐼 , MerklePaths𝐼 to V
12 : V runs Verify(𝑬 |𝐼 , 𝑀, MerklePaths𝐼) and checks that

OpenAux (𝑐𝒅 ,
1

ℓ0 (𝑥)
·
(

𝜏∑︁
𝑖=1

𝒕𝑖 ℓ𝑖 (𝑥) − 𝑨𝒇

)
, 𝑟𝒅) = 1,

Encode
©­«¯𝒇 ,

1

ℓ0 (𝑥)
·

∏
ℎ∈{−1,0,1}

[
¯𝒇 − ℎ · 1

]
, 𝒓 𝑓

ª®¬
���
𝐼

?

= ℓ0 (𝑥) · 𝑯 0

��
𝐼
+

𝜏∑︁
𝑖=1

2∑︁
𝑗=0

ℓ𝑖 (𝑥)ℓ0 (𝑥) 𝑗𝑯 𝑖,𝑗 |𝐼

Encode
(
¯𝒉, 𝒓ℎ

) ���
𝐼

?

= 𝑯 + 𝛽0𝑯 0

��
𝐼
+

𝜏∑︁
𝑖=1

2∑︁
𝑗=0

𝛽𝑖,𝑗𝑯 𝑖,𝑗

��
𝐼

Figure 5: The protocol ΠSmall is an exact amortized zero-

knowledge proof of knowledge of ternary openings. 𝛿𝑥 is

1 if 𝑥 = 0 and 0 otherwise. (ComAux, OpenAux) is an arbitrary

commitment scheme.

Proof. First, we construct an extractor Ext as in [13] which

does the following 8 times:

(1) First, run P∗ on random challenges from V until an ac-

cepting transcript is found. Abort if none is found after 8/𝜖
steps.

(2) Let 𝐼1 be the challenge set where P∗ responded and let

𝑬 |𝐼1 , MerklePaths𝐼1 be the opened columns and Merkle

tree paths. Fixing the other challenges, Ext adaptively re-

runs the proof for different challenges 𝐼2, 𝐼3, . . . that contain

so far unopened columns and collects these. If any collision

in the Merkle tree is found then Ext outputs the hash colli-

sion and terminates, otherwise it continues until it has col-

lected a set 𝐽 of at least 𝑔 columns, or until 8
𝑔−𝜂

𝜖/2−(𝑔/(𝑙−𝜂))𝜂
time passed.

17

Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde

(3) Finally, Ext re-runs P∗ 16/𝜖 times with completely fresh

challenges, obtaining new 𝑬 |𝐼 , MerklePaths𝐼 . If for some

of these instances, the accepting transcript contains a hash

collision in theMerkle tree (colliding with 𝐽) or 𝑐𝒅 is opened

with a different opening than in the first step, then output

the hash collision or the respective two different openings

of 𝑐𝒅 .

Using a standard heavy-row argument, [13] shows that Ext’s total
runtime is bounded by the termmentioned in the Lemma. Moreover,

define 𝑆 as the event that P∗ outputs a valid proof in the last step

and 𝐶 be the event that the values P∗ outputs to Ext in the last

step of the extractor are consistent (i.e. no hash collisions and the

commitment was not opened differently than before). Then [13]

show that it must hold that Pr[𝑆 ∧𝐶] > 𝜖/2. We now show that

if we cannot use 𝐽 to decode to a valid witness, then the success

probability of P∗ must be lower than the given bound.

Define𝐶′ as the RS code obtained from𝐶 (generated by Encode)
when restricted to the indices of 𝐽 . As |𝐽 | = 𝑔, 𝐶′ has length 𝑔 and

minimum distance 𝑑′ = 𝑔 − 𝑔′ + 1. For any 𝒙 ∈ Z𝑔𝑞 we define the

minimum distance of 𝒙 to 𝐶′ as 𝑑′ (𝐶′, 𝒙) = min𝒄∈𝐶′ 𝑑 (𝒄, 𝒙).
Let 𝑬∗ := 𝑬 | 𝐽 be the matrix that was extracted by the extractor

and let 𝒅∗ be the opening message of the commitment. Assume

that there exists 𝒙 ∈ Z3𝜏+4
𝑞 such that 𝑑′ (𝐶′, 𝒙𝑬∗) ≥ 𝑑′/3. Then by

Bootle et al. [12, Appendix B], any random linear combination of

𝑬∗ (in particular, we compute and output such a combination in

the proof as 𝒉) has distance ≥ 𝑑′/6 from𝐶′ except with probability

1/(𝑞 − 𝜏). Similar to in [13] we can use this to deduce that in such

a case, it must hold that

𝜖/2 <
1

𝑞 − 𝜏 +
(
1 − 𝑔 − 𝑔′

6𝑙

)𝜂
which contradicts the bound on 𝜖 in this lemma. Therefore, each

row of 𝑬∗ must be within 𝑑′/3 of 𝐶′, meaning that it is efficiently

decodable. Let 𝒉∗, 𝒔∗
0
, 𝒔∗
𝑖, 𝑗
, 𝒗∗

0
, 𝒗∗

𝑖, 𝑗
be the respective decoded values

and 𝒓∗
ℎ
, 𝒓∗

0
, 𝒓𝑖, 𝑗∗ be the randomness. We consider the composition

of the aforementioned row values as 𝑽 and the randomness used

in the encoding as 𝑹, By applying another result from Bootle et al.

[12, Appendix B] we have that for any vector 𝒚 ∈ Z3𝜏+4
𝑞 it holds

that 𝑑′ (Encode𝐽 (𝒚𝑽 ,𝒚𝑹),𝒚𝑬∗) < 𝑑′/3. In other words, any linear

transformation 𝒚 when applied to the possibly noisy codewords 𝑬∗

is within distance 𝑑′/3 of the codeword obtained from encoding

𝑽 , 𝑹 after applying the same transformation 𝒚. That means that 𝒇
is constructed from 𝒔∗

0
, 𝒔∗
𝑖, 𝑗

as we would expect.

Similar as in Bootle et al. [13, Corollary 3.7] one can show that

if there are ≤ (𝜖/4) (𝑞 − 𝜏) choices of 𝑥 such that

𝒇 = ℓ0 (𝑥)𝒔∗0 +
𝜏∑︁
𝑖=1

2∑︁
𝑗=0

ℓ𝑖 (𝑥)ℓ0 (𝑥) 𝑗 𝒔∗𝑖, 𝑗 (3)

1

ℓ0 (𝑥)
· ¯𝒇 ◦

[
¯𝒇 − 1

]
◦

[
¯𝒇 + 1

]
(4)

= ℓ0 (𝑥)𝒗∗0 +
𝜏∑︁
𝑖=1

2∑︁
𝑗=0

ℓ𝑖 (𝑥)ℓ0 (𝑥) 𝑗𝒗∗𝑖, 𝑗 (5)

then 𝜖 < 4(1− 2(𝑔−𝑔′)
3𝑙
)𝜂 , contradicting the bound on 𝜖 in the lemma.

By multiplying 4 with ℓ0 (𝑋) we obtain the equation

¯𝒇 ◦ (¯𝒇 − 1) ◦ (¯𝒇 + 1) − ℓ0 (𝑋)2𝒗∗0 −
𝜏∑︁
𝑖=1

2∑︁
𝑗=0

ℓ𝑖 (𝑋)ℓ0 (𝑋) 𝑗+1𝒗∗𝑖, 𝑗 , (6)

which equals 0. Replacing ¯𝒇 according to Equation 3 means that

the above expression is of degree at most 9 · 𝜏 . But it is 0 for more

choices of 𝑥 because 𝜖 > 36𝜏/(𝑞 − 𝜏), meaning that the expression

itself must be the zero-polynomial. Reducing Equation 6 modulo

ℓ0 (𝑋) and knowing that all ℓ𝑖 (𝑋) are independent, it follows that
for all 𝑖 ∈ [𝜏] the value 𝒔∗

𝑖,0
is in {−1, 0, 1}𝑣𝑁 .

Additionally, we have that

𝒅∗ =
1

ℓ0 (𝑋)
·
(

𝜏∑︁
𝑖=1

𝒕𝑖 ℓ𝑖 (𝑋) −𝑨𝒇
)

and replacing again
¯𝒇 with Equation 3 yields 𝒅∗ to equal

−𝑨𝒔∗
0
+ 1

ℓ0 (𝑋)
· ©­«

𝜏∑︁
𝑖=1

𝒕𝑖 ℓ𝑖 (𝑋) −𝑨

𝜏∑︁
𝑖=1

2∑︁
𝑗=0

ℓ𝑖 (𝑥)ℓ0 (𝑥) 𝑗 𝒔∗𝑖, 𝑗
ª®¬

Since 𝒅∗ has been committed to before 𝑥 is chosen, it must be that

𝒅∗ is the constant of the polynomial on the right, so we have that

𝒅∗ = −𝑨𝒔∗
0
and therefore

𝜏∑︁
𝑖=1

2∑︁
𝑗=0

ℓ𝑖 (𝑥)ℓ0 (𝑥) 𝑗𝑨𝒔∗𝑖, 𝑗 =
𝜏∑︁
𝑖=1

𝒕𝑖 ℓ𝑖 (𝑋).

Again reducing modulo ℓ0 (𝑋) reveals that
𝜏∑︁
𝑖=1

ℓ𝑖 (𝑥)𝑨𝒔∗𝑖,0 =

𝜏∑︁
𝑖=1

𝒕𝑖 ℓ𝑖 (𝑋)

and by the independence of the ℓ𝑖 (𝑋) modulo ℓ0 (𝑋) we have that
𝒕𝑖 = 𝑨𝒔∗

𝑖,0
for all 𝑖 ∈ [𝜏], which proves the claim. □

C.2 Zero-Knowledge

Lemma 3. There exists an efficient simulator Sim which, given
𝑥, 𝛽0, 𝛽1,0, . . . , 𝛽𝜏,2, 𝐼 outputs a protocol transcript of the protocol in
Figure 5 whose distribution is indistinguishable from a real transcript
between an honest prover and honest verifier.

Proving Honest-Verifier Zero-Knowledge is sufficient for our

application, as we will use the Fiat-Shamir transform to generate

the challenges in ΠSmall.

Proof. Towards constructing a simulation, observe that

(1) 𝑀 and its opened paths do not reveal any information about

the unopened columns as the commitment scheme used in

creating𝑀 is hiding.

(2)
¯𝒇 , 𝒓 𝑓 , ¯𝒉, 𝒓ℎ are uniformly random due to the uniform choice

of 𝒔0, 𝒓0,𝒉, 𝒓ℎ .
(3) Each encoded row of 𝑬 uses 𝜂 bits of randomness, so re-

vealing 𝜂 columns does not leak any information about the

message being committed in the respective row.

Thus, for the proofwe let Sim choose uniformly random
¯𝒇 , 𝒓 𝑓 , ¯𝒉, 𝒓ℎ .

This allows the prover also to compute 𝒅 consistently as
1

ℓ0 (𝑥) ·
(∑𝜏

𝑖=1
𝒕𝑖 ℓ𝑖 (𝑥) −𝑨𝒇), which has the same uniform distribution as in

the real protocol and thereby fix 𝑐𝒅 . Next, we let Sim choose all but

18

Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based Assumptions

the first two rows of 𝑬 |𝐼 uniformly at random. The second row will

be computed according to 𝑥 thus fulfilling the check on the encod-

ing of
¯𝒇 , 𝒓 𝑓 , while the first row is computed according to 𝛽0, 𝛽𝑖, 𝑗

for the encoding of
¯𝒉, 𝒓ℎ . Sim now fixes the remaining columns of

𝑬 as 0 and commits honestly to these as in the protocol. □

D PROOF OF LEMMA 1

Proof. Completeness and Zero-Knowledge of Π𝑙𝑐
Shuf

follow im-

mediately from the same properties of ΠShuf. Thus, we focus now

on knowledge soundness.

Let P∗ be a prover that convinces a verifier on input 𝑥 with prob.

𝜈 > 𝜖 . For the proof, we will use the standard definition of proof of

knowledge where there must exist an extractor Ext that succeeds
with black-box access to P∗ running in expected time 𝑝 (|𝑥 |)/(𝜈−𝜖)
for polynomial 𝑝 .

Towards constructing a simulator Ext, we know that an extractor

Ext′ exists for ΠShuf. We construct Ext as the following loop, which
restarts whenever the loop “aborts”:

(1) Run random protocol instances with P∗ until a valid pro-

tocol instance with challenge ℎ was generated. Do this at

most 2/𝜖 steps, otherwise abort.
(2) Run Ext′ with the fixedℎwithP∗ until it outputs𝜋, {𝑓𝑖 , 𝒓𝑖 }𝑖∈[𝜏] .

If Ext′ aborts, then abort. In parallel, start a new loop in-

stance that runs until Ext′ finishes.
(3) Let �̃�𝑖 = (𝑓𝑖 𝒄′

2,𝑖
−𝑨′C,2𝒓𝑖)/𝑓𝑖 . If �̃�𝜋−1 (𝑖) = �̂�𝑖 for all 𝑖 ∈ [𝜏]

output 𝜋, {𝑓𝑖 , 𝒓𝑖 }𝑖∈[𝜏] , otherwise abort.
First, by the definition we observe that �̃�𝑖 = (𝑓𝑖 𝒄2,𝑖 −𝑨C,2𝒓𝑖)/𝑓𝑖 is
well-defined because 𝑓𝑖 is invertible. If Ext outputs a value, then the

output of Ext is a witness for the relation R
Shuf

𝑙𝑐 . We now show a

bound on the expected time per loop instance, and that each loop

with constant probability outputs a valid witness.

In the first step, we expect to find an accepting transcript after

1/𝜖 steps. Since we run this step for 2/𝜖 iterations, we will have

found an accepting transcript with a probability of at least 1/2 by

Markov’s inequality. Consider the matrix 𝑯 where the rows are

indexed by all choices ℎ and the columns by the choices of the used

shuffle proof. Then, by the heavy-row lemma [23], with probability

≥ 1/2 wewill have chosen a valueℎ such that the row of𝑯 contains

𝜖/2 > 𝜖′ 1s. In that case, Ext′ will by definition output a valid

witness in an expected number of 𝑝 (|𝑥 |)/(𝜈 − 𝜖′) < 𝑝 (|𝑥 |)/(𝜈 − 𝜖)
steps, which is within the runtime budget. In the case that it gets

stuck, we start another loop which we run in parallel. Once Ext′ has
found an opening, then the computation in Step 3 is inexpensive.

We compute the abort probability of Step 3.

First, assume that Ext′ outputs the same opening with a proba-

bility of at least 1/2 in 2/3rds of the heavy rows. It can easily be

shown that we can otherwise construct an algorithm that breaks

the binding property of the commitment scheme with an expected

constant number of calls to Ext′ and by using Proposition 1. More-

over, by a counting argument, there must be > 3

2

(
𝑙𝑐−1

𝑞

)𝑁
heavy

rows: Assume to the contrary that there are at most
3

2

(
𝑙𝑐−1

𝑞

)𝑁
heavy rows. Let each of the heavy rows have only ones (verifier

always accepts), and each other row be filled with 𝜖/2 ones. This is

the maximal case of having only
3

2

(
𝑙𝑐−1

𝑞

)𝑁
heavy rows. But then

the acceptance probability can be at most

3

2

(
𝑙𝑐 − 1

𝑞

)𝑁
+

[
1 − 3

2

(
𝑙𝑐 − 1

𝑞

)𝑁]
𝜖/2 <

3

2

(
𝑙𝑐 − 1

𝑞

)𝑁
+ 𝜖/2

which contradicts the assumption that P∗ has success > 𝜖 .

Assume that Ext′ extracts a valid witness 𝜋, {𝑓𝑖 , 𝒓𝑖 }𝑖∈[𝜏] for input
commitments {⟦⟨𝝆,𝒎𝑖 ⟩⟧}𝑖∈[𝜏] and messages ⟨𝝆, �̂�𝑖 ⟩ while the

extracted �̃�𝑖 = (𝑓𝑖 𝒄2,𝑖 −𝑨C,2𝒓𝑖)/𝑓𝑖 do not form a permutation on

the �̂�𝑖 . Then there exists an 𝑖 ∈ [𝜏] such that

𝑓𝑖 · ⟨𝜌, 𝒄2,𝜋−1 (𝑖) ⟩ = ⟨𝜌𝑨C,2, 𝒓𝑖 ⟩ + 𝑓𝑖 ⟨𝝆, �̂�𝑖 ⟩

but

𝑓𝑖 · 𝒄′
2,𝜋−1 (𝑖) = 𝑨′C,2𝒓𝑖 + 𝑓𝑖 (�̂�𝑖 + 𝜹)

where �̃�𝑖 = �̂�𝑖 + 𝜹 for a non-zero vector 𝜹 . Combining both

equations, we get that 0 = ⟨𝝆, 𝜹⟩. This implies that the polynomial∑𝑙𝑐−1

𝑖=0
𝜹 [𝑖]𝑋 𝑖

that has coefficients from 𝜹 must be zero at point ℎ

whose powers generate the vector 𝝆. Since this polynomial is of

degree 𝑙𝑐 − 1, by Aranha et al. [4, Lemma 2] it can be 0 in at most

(𝑙𝑐 − 1)𝑁 positions without being the 0-polynomial itself. But since

the transcript is extractable and thus accepting for strictly more

than (𝑙𝑐 − 1)𝑁 choices of ℎ as we have a constant fraction more

rows that are heavy, we must have that 𝜹 was 0 to begin with. □

E BGV MIXING SECURITY

First, we define completeness, soundness and simulatability for a

mixing protocol ΠMix executed by a prover P, with respect to a

generic encryption scheme E = (KGen, Enc,Dec).

Definition 15 (Mixing Completeness). We say that the mixing
protocol ΠMix is complete if for honest PPT parties P and V that
follows the protocol then P on input a set of honestly generated ci-
phertexts will output a new set of ciphertexts together with a proof
such thatV accepts the proof and the output ciphertexts decrypt to
the same set of messages as the input ciphertexts. Hence, we want
that

Pr


{𝑚𝑖 }𝑖∈ [𝜏] = Dec(sk, {𝑐𝑖 }𝑖∈ [𝜏]

1← V(pp, pk, {𝑐𝑖 }𝑖∈ [𝜏] , {𝑐𝑖 }𝑖∈ [𝜏] , 𝜋)
:

(pp, pk, sk) ← KGen(1𝜅)
{𝑐𝑖 }𝑖∈ [𝜏] ← Enc(pk, {𝑚𝑖 }𝑖∈ [𝜏])

({𝑐𝑖 }𝑖∈ [𝜏] , 𝜋) ← P(pp, pk, {𝑐𝑖 }𝑖∈ [𝜏])

 ≤ 1 − 𝜖 (𝜅),

where the probability is taken over KGen, Enc and P.

Definition 16 (Mixing Soundness). We say that the mixing
protocol ΠMix is sound if a dishonest PPT adversary A that can
behave arbitrarily on input a set of honestly generated ciphertexts will
not be able to output a new set of ciphertexts together with a proof
such that an honest V accepts the proof but the output ciphertexts
decrypt to a different set of messages than the input ciphertexts. Hence,
we want that

Pr


{𝑚𝑖 }𝑖∈ [𝜏] ≠ Dec(sk, {𝑐𝑖 }𝑖∈ [𝜏]

1← V(pp, pk, {𝑐𝑖 }𝑖∈ [𝜏] , {𝑐𝑖 }𝑖∈ [𝜏] , 𝜋)
:

(pp, pk, sk) ← KGen(1𝜅)
{𝑐𝑖 }𝑖∈ [𝜏] ← Enc(pk, {𝑚𝑖 }𝑖∈ [𝜏])

({𝑐𝑖 }𝑖∈ [𝜏] , 𝜋) ← A(pp, pk, {𝑐𝑖 }𝑖∈ [𝜏])

 ≤ 𝜖 (𝜅),

where the probability is taken over KGen, Enc and A.

Definition 17 (Mixing Simulatability). We say that the mix-
ing protocol ΠMix is simulatable if a PPT adversary A that on input
a set of honestly generated ciphertexts can not distinguish between
a real execution of the mixing protocol with accepting output and
a protocol execution from a PPT simulator S (given a set honestly
mixed output ciphertexts) producing a simulated mixing proof. Hence,

19

Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde

we want that

|Pr


𝑏 = 𝑏′ :

(pp, pk, sk) ← KGen(1𝜅) ;𝑏 $← {0, 1}
{𝑐𝑖 }𝑖∈ [𝜏] ← Enc(pk, {𝑚𝑖 }𝑖∈ [𝜏])

({𝑐𝑖 }𝑖∈ [𝜏] , 𝜋 (0)) ← P(pp, pk, {𝑐𝑖 }𝑖∈ [𝜏])
(𝜋 (1)) ← S(pp, pk, {𝑐𝑖 }𝑖∈ [𝜏] , {𝑐𝑖 }𝑖∈ [𝜏])
𝑏′ ← A(pp, pk, {𝑐𝑖 }𝑖∈ [𝜏] , {𝑐𝑖 }𝑖∈ [𝜏] , 𝜋 (𝑏))


− 1

2

| ≤ 𝜖 (𝜅),

where the probability is taken over KGen, Enc, P, S and A.

Next, we state the security of ΠMix where the encryption scheme

is instantiated with the BGV scheme in Section 2 and the mixing

protocol is instantiated with the verifiable shuffle in Section 5.

Theorem 10 (Completeness). If the protocols ΠSmall and Π
𝑙𝑐
Shuf

are complete, then ΠMix always terminates. Moreover, if the input
ciphertexts 𝒄𝑖 have noise bounded by 𝐵Dec, and the total noise added
in ΠMix is bounded by 𝐵Mix such that (𝐵Dec + 𝐵Mix) < ⌊𝑞/2⌋, then
the output ciphertexts 𝒄𝑖 decrypt to the same set of messages as 𝒄𝑖 .

We sketch the argument. Since ΠSmall and Π𝑙𝑐
Shuf

are complete,

the protocol instance will finish and any verifier will accept the mix-

ing outputs. Since (𝐵Mix +𝐵Dec) < ⌊𝑞/2⌋, it follows that decryption
is correct. We conclude that ΠMix is complete.

Theorem 11 (Knowledge Soundness). Let Ext1 be a knowledge
extractor for the protocol ΠSmall with success probability 𝜖1 and let
Ext2 be a knowledge extractor for the protocol Π𝑙𝑐

Shuf with success
probability 𝜖2. Then we can construct a knowledge extractor Ext0 that
succeeds with probability 𝜖0 ≤ 𝜖1 ·𝜖2 at extracting a witness for RMix
for the outputs of ΠMix. The runtime of Ext0 is essentially the product
of that of Ext1 and Ext2.

We sketch the argument. The main observation is that it is nec-

essary that both extractors Ext1 and Ext2 succeed.

If the extractor Ext1 succeeds, we are able to extract 𝜏 random-

ness vectors 𝒓 ′
𝑖
bounded by 𝐵Mix, which gives us the randomness

for both the commitments and ciphertexts used in the protocol.

However, if the adversary is able to cheat in Π𝑙𝑐
Shuf

then the output

ciphertexts will be different than the ciphertexts we extract from

ΠSmall, and hence, we have not yet extracted a witness for ΠMix.

If the extractor Ext2 succeeds, we are able to extract both the

permutation 𝜋 and 𝜏 randomness vectors 𝒓𝑖 used in the commit-

ments. However, if the adversary is able to cheat in ΠSmall then the

output ciphertexts might have more noise than (𝐵Dec + 𝐵Mix) and
lead to decryption failures, and hence, we have not yet extracted a

witness for ΠMix.

We conclude that it is both necessary and sufficient that both

extractors succeed at the same time to extract witnesseswith respect

to the same set of output ciphertexts and proofs to extract both the

randomness used to encrypt, the randomness used to commit, and

the permutation used to shuffle, and hence, to extract a witness for

the relation RMix.

Theorem 12 (Simulatability). Suppose the protocol ΠSmall and
Π𝑙𝑐
Shuf are honest-verifier zero-knowledge, that Com is hiding and that

Enc is CPA secure. Then there exists a simulator for ΠMix such that
for any distinguisher Adv0 for this simulator with advantage 𝜖0, there
exists an adversary Adv3 against hiding of the commitment scheme
with advantage 𝜖3, an adversary Adv4 against CPA security of the
encryption scheme with advantage 𝜖4, and distinguishers Adv1,Adv2

for the simulators of ΠSmall and Π
𝑙𝑐
Shuf, respectively, with advantages

𝜖1, 𝜖2, such that 𝜖0 ≤ 𝜖1 + 𝜖2 + 𝜖3 + 𝜖4. The runtime of Adv1, Adv2,
Adv3,Adv4 are essentially the same as of Adv0.

We sketch the argument. The simulator is given a set of input

ciphertexts and a set of output ciphertexts from an honest shuffle.

The simulator simulates the zero-knowledge proofs ΠSmall and

Π𝑙𝑐
Shuf

using the appropriate simulators. It replaces the commit-

ments to the ciphertexts with commitments to zero and the shuffled

output ciphertexts by the given ciphertexts to the correct messages.

The claim about the simulator follows from a hybrid argument.

We begin with the verifiable shuffle protocol.

First, we replace theΠShuf arguments with simulated arguments,

which gives us a distinguisher Adv2 for the ΠShuf honest verifier

simulator. Second, we replace the ΠSmall arguments by simulated

arguments, which gives us a distinguisher Adv1 for ΠSmall. Third,

we replace the commitments to ciphertexts with commitments

to zero, which gives us an adversary Adv3 against hiding for the

commitment scheme. Fourth, we replace the output with given

ciphertexts to the same messages, which gives us an adversary

Adv4 against CPA security.

After the changes, we are left with the claimed simulator for the

actively secure protocol and the claim follows.

F CHOOSING PARAMETERS CONCRETELY

We let the success probability of each of the zero-knowledge proto-

cols be 1/𝑀 ≈ 1/3. We will use the following parameters, where

we note that the commitments used in the shuffle and in the amor-

tized proofs are only used once, while the proof of linearity in the

decryption protocol depends on a commitment to the secret key

share each time. However, that is the only part that is reused, and

we can use a smaller standard deviation for the other commitment.

The proofs of linearity have two terms, and each of them must

have a success probability of 1/
√

3. This gives𝜎C = 0.954𝜈𝐵Com
√
𝑘𝑁 .

For the re-usable commitments we get �̂�C = 22𝜈𝐵Com
√
𝑘𝑁 . The

amortized proof also has two checks, and we get a standard de-

viation 0.954∥𝑺′𝑪 ′∥
2
, where 𝜎Bnd and �̂�Bnd are depending on the

norm of the elements in the rows of 𝑺′.
For the encryption, we let the noise bounds 𝐵Key = 𝐵Err = 1.

To be able to choose concrete parameters for the mix-net, we

need to estimate howmuch noise is added to the ciphertexts through

the two stages of the protocol: 1) the shuffle phase, and 2) the

decryption phase. Each part of the system contributes the following

amount of noise to the ciphertexts:

- Fresh ciphertext: 𝐵Start = 𝑝

𝑒𝑟 + 𝑒𝑖,2 − 𝑒𝑖,1𝑠

∞ + ∥𝑚∥∞.

- Noise per shuffle: 𝐵Shuf = 𝑝 (∥𝑒𝑟 ′∥∞ +

𝑒′𝑖,2

∞ +

−𝑒′𝑖,1𝑠

∞).

- Noise in partial decryption:𝐵DDec = 𝑝𝜉1

𝐸′𝑖, 𝑗

∞ ≤ 2
sec𝐵Dec,

where 𝐵Dec = 𝐵Start + 𝜉2𝐵Shuf is the upper bound of the noise

added before the decryption phase. This means that we have the

following bounds on each of the noise terms above, when using

ternary noise:

∥𝑒 ∥
1
≤ 𝑁, ∥𝑟 ∥∞ ≤ 1,

𝑒𝑖,2

∞ ≤ 1,

𝑒𝑖,1

1
≤ 𝑁,

∥𝑠 ∥∞ ≤ 1,

𝑟 ′

∞ ≤ 1,

𝑒′𝑖,2

∞ ≤ 1,

𝑒′𝑖,1

1

≤ 𝑁 .

20

Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based Assumptions

𝑁 𝑝 𝑞 sec 𝜉2 𝜉1 𝑛 𝑘

4096 2 ≈ 2
78

40 4 4 1 𝑙𝑐 + 2

𝜈 𝐵Com �̂� 𝜎C �̂�C 𝜎Bnd �̂�Bnd �̂�Bnd

36 1 130 ≈ 2
12 ≈ 2

16.5 ≈ 2
13.5 ≈ 2

66 ≈ 2
72.5

Table 5: Concrete parameters estimated for 𝜅 ≈ 168 bits of

DKS∞ security using the LWE-estimator and 𝜅 ≈ 262 bits of

SKS2
security (by computing the Hermite root value to be

1.00225 from the dimension, modulus, and 2-norm of the

secret vector).

We get the following upper bounds:

𝐵Start = 𝑝 (2𝑁 + 1) + ⌈(𝑝 − 1)/2⌉, 𝐵Shuf = 𝑝 (2𝑁 + 1),
which for 𝜉2 shuffles gives us

𝐵Dec = (𝜉2 + 1)𝑝 (2𝑁 + 1) + ⌈(𝑝 − 1)/2⌉ .
Finally, we need to make sure that 𝐵Dec + 𝐵DDec < 𝑞/2, where
𝐵DDec = 2𝑝𝜉1�̂�Bnd because of the soundness slack of the amortized

proof of bounded values. A honestly generated value 𝐸𝑖, 𝑗 is bounded

by 2
sec (𝐵Dec/𝑝𝜉1), but the proof can only guarantee that the values

are shorter than some larger bound 2�̂�Bnd (following Baum et al.

[6, Lemma 3]) that depends on the number of equations in the

statement. Define 𝑺′
1,𝑘

to be the first 𝑘 rows of 𝑺′ and define 𝑺′
𝑘+1 to

be the last row of 𝑺′. For batches of 𝑁 equations, we then get that:

𝐵Bnd ≤
√

2𝑁 · 𝜎Bnd ≤
√

2𝑁 · 0.954 ·max

𝑺′
1,𝑘

𝑪 ′

2

≤ 1.35 ·
√
𝑁 ·max

𝑺′
1,𝑘

1

·max

𝑪 ′

∞
≤ 1.35 · 𝑘 ·

√
𝑁 · 𝑁 · 𝐵Com,

and, similarly,

�̂�Bnd ≤
√

2𝑁 · �̂�Bnd ≤ 1.35 ·
√
𝑁 · 𝑁 ·

𝐸𝑖, 𝑗

∞,
with 𝐵Bnd for rows 1 to 𝑘 of 𝒁 and �̂�Bnd for the last.

We fix plaintext modulus 𝑝 = 2, statistical security parameter

sec = 40, and need 𝑁 = 4096 when 𝑞 is large to provide proper

security. This allows for votes of size 4096 bits, which should be a

feasible size for real-world elections. We let the number of shuffle

and decryption servers be 𝜉2 = 4. It follows that 𝐵Dec < 2
17

and

𝐵DDec < 2
76.5

. We then set 𝑞 ≈ 2
78
, and verify that

max

𝑖∈[𝜏]
∥𝑣𝑖 − 𝑠𝑢𝑖 ∥ < 2 · (217 + 2

76.5) < 𝑞.

Finally, we must decide on parameters for the exact proof of

shortness. The soundness of the protocol depends on the ratio

between the number of equations and the size of the modulus.

We choose to compute the proof in batches of size 𝑁 instead of

computing the proof for all 𝜏 commitments at once. Then we get

18𝑁 /(𝑞−𝑁) ≈ 2
−62

, and hence, we must compute each proof twice

in parallel to achieve negligible soundness. Furthermore, we choose

𝑔 ≈ 2
20, 𝑙 ≈ 2

20.3, 𝜂 = 325 to keep the soundness ≈ 2
−62

. The total

size of 𝜋Small, by instantiating 1, is ≈ 20𝜏 KB.

We give a complete set of parameters in Table 5, and the concrete

sizes of each part of the protocol in Table 2. Each voter submits

a ciphertext size of approximately 80 KB. The size of the mix-net,

including ciphertexts, commitments, shuffle proof, and proof of

shortness, is approximately 370𝜏 KB per mixing nodeS𝑖 . The size of
the decryption phase, including partial decryptions, commitments,

proofs of linearity, and proofs of boundedness, is approximately

157𝜏 KB per decryption node D𝑗 .

G SECURITY IN THE QUANTUM RANDOM

ORACLE MODEL

In this work, we have chosen parameters for all primitives such

as to make our voting protocol secure against all known classical

attacks. Since we only use assumptions that are assumed to be

post-quantum secure, it is obvious to ask if our construction is also

post-quantum secure. We cannot answer this within this work, due

to the complexity of proving such a statement.

As a “second-best” approach, we can alternatively look at the

post-quantum security of the individual building blocks. Here, of

particular importance are the NIZKs that this work uses. We use

two different types of proofs, namely those exploiting the homomor-

phism of an underlying OWF (such as ΠLin,ΠBnd) and those that

rely only on commitments and a combinatorial argument (ΠSmall).

Both of these are made non-interactive in the ROM using the Fiat-

Shamir transform, which becomes the QROM in the quantum set-

ting. Here, the recent work of [26] could be used to show that

ΠSmall is online-extractable in the QROM and therefore still secure,

for adjusted parameters.

Unfortunately, the situation is a bit more problematic for the

homomorphism-based proofs. There, the most efficient QROM Fiat-

Shamir approach that we are aware of is [25], which applies to

Σ-protocols. Their work implies a large loss in parameters that

they show to be inherent, and this loss grows with the number of

rounds of the protocol. Even worse, new techniques would have to

be developed to prove the security of ΠBnd as it seems unlikely that

[25] applies to it. To achieve provable security of all these NIZKs in

the QROM, it would be better to replace the homomorphic OWF-

based protocols with Commit-and-Open-based proofs following

ΠSmall. We expect that this would come at a significant cost in

proof size as well as prover runtime, impacting the practicality of

our construction.

A more optimistic view, which we share, is that known coun-

terexamples in the QROM on NIZKs such as [3] are contrived and

that there are no known attacks (beyond Grover’s algorithm) for the

NIZKs that we use. One could therefore argue that our construction

is plausibly post-quantum. We leave a more detailed post-quantum

security analysis, which also includes parameter choices to with-

stand attacks based on Grover’s algorithm, for future work.

H SECURITY OF THE VOTING PROTOCOL

Here we provide a more formal description of the voting protocol

described in Section 3, give security notions, sketch a security proof,

and discuss the security properties of the full voting protocol.

H.1 Verifiable Voting with Return Codes

A verifiable cryptographic voting scheme in our architecture is usu-

ally defined in terms of algorithms for the tasks of election setup,

casting ballots, counting cast ballots, and verifying the count. To

21

Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde

support return codes, we also need algorithms for voter registra-

tion and pre-code computation. Finally, to accurately model the

counting process, we need algorithms for shuffling and distributed

decryption.

The setup algorithm Setup outputs a public key pk, decryp-
tion key shares dk𝑖 and a code key ck.

The register algorithm Reg takes a public key pk as input

and outputs a voter verification key vvk, a voter casting key
vck and a function 𝑓 from ballots to pre-codes.

The cast algorithm Cast takes a public key pk, a voter cast-
ing key vck and a ballot 𝑣 , and outputs an encrypted ballot
ev and a ballot proof 𝜋𝑣 .

The code algorithm Code takes a code key ck, an encrypted

ballot ev and a proof 𝜋𝑣 as input and outputs a pre-code 𝑟

or ⊥. (If the code key ck is ⊥, the algorithm outputs 0 or 1.)

The shuffle algorithm Shuffle takes a public key pk and a

sequence of encrypted ballots ev, and outputs a sequence

of encrypted ballots ev′ and a proof of shuffle 𝜋𝑠 .

The verify algorithm Verify takes a public key pk, two se-

quences of encrypted ballots ev, and ev′ and a proof 𝜋𝑠 ,

and outputs 0 or 1.

The distributed decryption algorithm DistDec takes a de-
cryption key dk𝑖 and a sequence of encrypted ballots ev,
and outputs a sequence of ballot decryption shares 𝒔𝒗𝑖 and
a decryption proof 𝜋𝑑,𝑖 .

The combining algorithm Comb takes a public key pk, a
sequence of encrypted ballots ev, ballot decryption share

sequences 𝒔𝒗1, 𝒔𝒗2, . . . , 𝒔𝒗𝑙𝑑 with proofs 𝜋𝑑,1, 𝜋𝑑,2, . . . , 𝜋𝑑,𝑙𝑑 ,

and outputs either ⊥ or a sequence of ballots 𝑣1, 𝑣2, . . . , 𝑣𝑙𝑡 .

A cryptographic voting scheme is 𝑙𝑠 -correct if for any (pk, {dk𝑖 }, ck)
output by Setup and any (vvk1, vck1, 𝑓1), . . . , (vvk𝑙𝑉 , vck𝑙𝑉 , 𝑓𝑙𝑉) out-
put by Reg(pk), any ballots 𝑣1, . . . , 𝑣𝑙𝑉 , any (ev

(0)
𝑖

, 𝜋𝑣,𝑖) output by
Cast(pk, vck𝑖 , 𝑣𝑖), 𝑖 = 1, . . . , 𝑙𝑉 , any sequence of 𝑙𝑠 sequences of en-

crypted ballots ev (𝑗) with proofs𝜋𝑠,𝑗 output by Shuffle(pk, ev (𝑗−1)),
any ballot decryption shares 𝒔𝒗1, . . . , 𝒔𝒗𝑙𝑑 with proofs 𝜋𝑑,1, . . . , 𝜋𝑑,𝑙𝑑
output by DistDec(dk𝑖 , ev (𝑙𝑠)), 𝑖 = 1, 2, . . . , 𝑙𝑑 and any (𝑣 ′

1
, . . . , 𝑣 ′

𝑙𝑉
)

possibly output by Comb(pk, ev (𝑙𝑠) , 𝒔𝒗1, . . . , 𝒔𝒗𝑙𝑑), 𝜋𝑑,1, . . . , 𝜋𝑑,𝑙𝑑),
then:

• Code(ck, vvk𝑖 , ev𝑖 , 𝜋𝑣,𝑖) = 𝑓𝑖 (𝑣𝑖), Code(⊥, vvk𝑖 , ev𝑖 , 𝜋𝑣,𝑖) =
1,

• Verify(pk, ev (𝑗−1) , ev (𝑗) , 𝜋𝑠,𝑗) = 1 for 𝑗 = 1, 2, . . . , 𝑙𝑠 ,

• Comb(pk, ev (𝑙𝑠) , 𝒔𝒗1, . . . , 𝒔𝒗𝑙𝑑), 𝜋𝑑,1, . . . , 𝜋𝑑,𝑙𝑑) did not out-

put ⊥, and
• 𝑣1, . . . , 𝑣𝑙𝑉 equals 𝑣 ′

1
, . . . , 𝑣 ′

𝑙𝑉
, up to order.

We also require that the distribution of ev𝑖 only depends on pk and

𝑣𝑖 , not vck𝑖 .
For any such scheme we define a decryption algorithm Dec that

first applies a number of shuffles (possibly zero) to the single cipher-

text, then applies DistDec and Comb in sequence. Note that this

algorithm will not actually be used, but it simplifies the definition

of security.

H.2 Our Scheme

Our voting scheme combines the BGV encryption together with

our shuffle (Section 5) and distributed decryption (Section 6). We

adopt the techniques from Aranha et al. [4] to get extractability

and code voting, but omit the details.

• Setup computes pk𝐶 ← KeyGen𝐶 , (pk𝑉 , dk𝑉) ← KeyGenVE ,
(pk𝑅, dk𝑅) ← KeyGenVE , as well as key shares dk𝑉 ,𝑖 for ev-

ery decryption server. The public key pk = (pk𝐶 , pk𝑉 , pk𝑅),
the decryption share is dk = (pk𝐶 , dk𝑉 ,𝑖) and the code key

is ck = (pk𝐶 , pk𝑉 , dk𝑅).
• Reg takes pk = (pk𝐶 , pk𝑉 , pk𝑅) as input. It samples𝑎

$← 𝑅𝑝
and computes (𝒄𝑎, 𝑑𝑎) ← Compk𝐶 , 𝑎. The voter verifica-
tion key is vvk = 𝒄𝑎 , the voter casting key is (𝑎, 𝒄𝑎, 𝑑𝑎), and
the function 𝑓 is 𝑣 ↦→ 𝑣 + 𝑎.

• Cast takes pk = (pk𝐶 , pk𝑉 , pk𝑅), vck = (𝑎, 𝒄𝑎, 𝑑𝑎) and 𝑣

as input. It computes 𝒗 ← EncVE (pk𝑉 , 𝑣), 𝑟 ← 𝑎 + 𝑣 and
𝒘 ← EncVE (pk𝑅, 𝑟), along with a proof 𝜋𝑣,0 that 𝒗 and 𝒘
are well-formed ciphertexts, and that 𝒄𝑎 is a commitment

to the difference of the decryptions. The encrypted ballot

is ev = 𝒗, while the ballot proof is 𝜋𝑣 = (𝒘, 𝜋𝑣,0).
• Code takes ck = (pk𝐶 , pk𝑉 , dk𝑅), a voter verification key

vvk, an encrypted ballot ev = 𝒗 and a ballot proof 𝜋𝑣 =

(𝒘, 𝜋𝑣,0) as input. It verifies 𝜋𝑣,0 and outputs ⊥ if verifica-

tion fails. Otherwise, it computes 𝑟 ← DecVE (dk𝑅,𝒘) and
outputs 𝑟 . (If ck = ⊥, it outputs 1 if and only if it accepts

𝜋𝑣,0.)

• The shuffle algorithm Shuffle and the verify algorithmVerify
are as described in Section 5. The distributed decryption al-

gorithm DistDec and the combining algorithm Comb are

as described in Section 6.

It is straightforward to verify that the scheme is correct.

H.3 Security Notions

Our notion of confidentiality is similar to the usual ballot box pri-

vacy notions [10]. An adversary that sees both the contents of the

ballot box, the intermediate shuffles and the decrypted ballot shares

should not be able to determine who cast which ballot. This should

hold even if the adversary can see pre-codes, learn the code key,

some voter casting keys, and some decryption key shares, insert

adversarially generated ciphertexts into the ballot box, introduce

adversarially generated intermediate shuffles and publish adversar-

ially chosen decrypted ballot shares.

Our notion of integrity is again fairly standard, adapted to return

codes. An adversary should not be able to cause an incorrect pre-

code or inconsistent decryption or non-unique decryption, even if

the adversary knows all of the key material.

We define security notions for a verifiable cryptographic voting

scheme using an experiment where an adversary A is allowed

to reveal keys, make challenge queries, create ciphertexts, ask for

ciphertexts to be shuffled, create shuffles, and ask for ballot shares.

We use this experiment to define games both for confidentiality

and integrity. The experiment works as follows:

• Sample 𝑏,
$← {0, 1}. Set 𝐿, 𝐿′, 𝐿′′ to be empty lists.

• (pk, {dk𝑖 }, ck) ← Setup. For 𝑖 = 1, . . . , 𝑙𝑉 : (vvk𝑖 , vck𝑖 , 𝑓𝑖) ←
Reg(pk). Send (pk, vvk1, . . . , vvk𝑙𝑉) to A.

• On a voter reveal query 𝑖 , send (vck𝑖 , 𝑓𝑖) toA. On a decrypt
reveal query 𝑖 , send dk𝑖 to A. On a code reveal query, send
ck to A.

22

Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based Assumptions

• On a challenge query (𝑖, 𝑣0, 𝑣1), compute (ev, 𝜋𝑣) ←
Cast(pk, vck𝑖 , 𝑣𝑏), 𝑟 ← Code(ck, vvk𝑖 , ev, 𝜋𝑣), append
(𝑖, 𝑣0, 𝑣1, ev, 𝜋𝑣) to 𝐿. Send (ev, 𝜋𝑣) to A.

• On a chosen ciphertext query (𝑖, ev, 𝜋𝑣), compute 𝑟 ←
Code(ck, vvk𝑖 , ev, 𝜋𝑣). If 𝑟 ≠ ⊥, append (𝑖,⊥,⊥, ev, 𝜋𝑣) to 𝐿.
Send 𝑟 to A.

• On a shuffle query ev, compute (ev′, 𝜋𝑠) ← Shuffle(pk, ev),
then record (ev, ev′, 𝜋𝑠) in 𝐿′. Send (ev′, 𝜋𝑠) to A.

• On a chosen shuffle query (ev, ev′, 𝜋𝑠), we record it in 𝐿′ if
and only if Verify(pk, ev, ev′, 𝜋𝑠) = 1.

• On a ballot decryption share query (𝑖, ev), we then compute

(𝒔𝒗𝑖 , 𝜋𝑑,𝑖) ← DistDec(dk𝑖 , ev), record (𝑖, ev, 𝒔𝒗𝑖 , 𝜋𝑑,𝑖) in
𝐿′′ and send (𝒔𝒗𝑖 , 𝜋𝑑,𝑖) to A.

• On a test query (ev, 𝒔𝒗1, . . . , 𝒔𝒗𝑙𝑑 , 𝜋𝑑,1, . . . , 𝜋𝑑,𝑙𝑑), then com-

pute the result ← Comb(pk, ev, 𝒔𝒗1, . . . , 𝒔𝒗𝑙𝑑 , 𝜋𝑑,1, . . . , 𝜋𝑑,𝑙𝑑)
and send result to A.

Eventually, the adversary outputs a bit 𝑏′.
The confidentiality game follows the usual left-or-right game

pattern, where an adversary makes challenge queries and must

determine the value of the bit 𝑏. The test query is irrelevant to the

confidentiality game.

The integrity game follows the usual pattern where the adver-

sary’s goal is to achieve certain inconsistencies, either during a

code query or during a test query. The inconsistencies are that a

pre-code does not match the encrypted ballot, that an outcome

verifies as correct but is inconsistent with the challenge ciphertexts

chosen for counting, or that there is no unique decryption. (The

test query is not strictly needed. We could have had the adversary

output its encrypted ballots and ballot decryption shares instead

of making a test query. But the test query pattern is convenient

in many similar settings, so we include it.) The bits 𝑏,𝑏′ are not
really used in the game for integrity, nor is the shuffle query. The

challenge query is used to create honestly encrypted ballots.

Confidentiality fails trivially if the counting phase trivially re-

veals the challenge bit. This happens unless the left-hand ballots

and the right-hand ballots are identical, and up to order. (Recall

that the adversary should figure out who cast which ballots, not

what ballots were cast.) Confidentiality also fails trivially if the ad-

versary makes more than one challenge query or chosen ciphertext

query for any given voter. And confidentiality fails trivially if the

adversary reveals too much key material. We should not count exe-

cutions where confidentiality fails trivially towards the adversary’s

advantage. Technically, we count this using a freshness event when
evaluating the advantage.

In the execution of this experiment, we say that a sequence of

encrypted ballots ev is valid if tuples (𝑖1, 𝑣01, 𝑣11, ev1, 𝜋𝑣,1), . . . ,
(𝑖𝑙𝑐 , 𝑣0𝑙𝑐 , 𝑣1𝑙𝑐 , ev𝑙𝑐 , 𝜋𝑣,𝑙𝑐) in 𝐿 and 𝐿′ contains a sequence of tuples
(ev (𝑗−1) , ev (𝑗) , 𝜋𝑠,𝑗), 𝑗 = 1, 2, . . . , 𝑙𝑠 , such that ev (0) = (ev1, . . . , ev𝑙𝑐)
and ev (𝑙𝑠) = ev. In this case we also say that ev derives from
(𝑖1, 𝑣01, 𝑣11, ev1, 𝜋𝑣,1), . . . , (𝑖𝑙𝑐 , 𝑣0𝑙𝑐 , 𝑣1𝑙𝑐 , ev𝑙𝑐 , 𝜋𝑣,𝑙𝑐). A valid sequence

ev is honest if at least one of the tuples (ev (𝑗−1) , ev (𝑗) , 𝜋𝑠,𝑗) origi-
nated with a shuffle query. A valid sequence ev is balanced if the

ballot sequence (𝑣01, . . . , 𝑣0𝑙𝑐) equals (𝑣11, . . . , 𝑣1𝑙𝑐), up to order.

We define events related to confidentiality and integrity. Let 𝐸𝑔
be the event that𝑏 = 𝑏′. Let 𝐸𝑓 denote the event that an execution is
fresh, which is true if the following are satisfied: there is no decrypt

reveal query for at least one 𝑖; for any 𝑖 , there is either no challenge

query, or at most one challenge query and no voter reveal query or

chosen ciphertext query; and for any ballot decryption share query

(·, ev), the sequence ev is balanced and honest at the time of the
ballot decryption share query.

Let 𝐹𝑖 (incorrect pre-code) be the event that for some chosen

ciphertext query (𝑖, ev, 𝜋𝑣) where Code(ck, vvk𝑖 , ev, 𝜋𝑣) = 𝑟 ≠ ⊥,
we have that either Dec({dk𝑖 }, ev) = ⊥ or Dec({dk𝑖 }, ev) = 𝑣 and

𝑓𝑖 (𝑣) ≠ 𝑟 .

Let 𝐹𝑐 (count failure) be the event that a test query gets result = ⊥
when ev is valid and (ev, 𝒔𝒗𝑖 , 𝜋𝑑,𝑖) is in 𝐿′′ for 𝑖 = 1, . . . , 𝑙𝑑 .

Let 𝐹𝑑 (inconsistent decryption) be the event that a test query

(ev, 𝒔𝒗1, . . . ,

𝒔𝒗𝑙𝑑 , 𝜋𝑑,1, . . . , 𝜋𝑑,𝑙𝑑) with result = (𝑣1, . . . , 𝑣𝑙𝑐), where ev derives

from (𝑖1, 𝑣01, 𝑣11,

ev1, 𝜋𝑣,1), . . . , (𝑖𝑙𝑐 , 𝑣0𝑙𝑐 , 𝑣1𝑙𝑐 , ev𝑙𝑐 , 𝜋𝑣,𝑙𝑐), there is no permutation 𝜋 on

{1, 2, . . . , 𝑙𝑐 } such that 𝑣𝑏,𝑘 = ⊥ or 𝑣𝑏,𝑘 = 𝑣𝜋 (𝑘) for 𝑘 = 1, 2, . . . , 𝑙𝑐 .

Let 𝐹𝑢 (no unique decryption) be the event that two test queries

(ev, 𝒔𝒗1, . . . , 𝒔𝒗𝑙𝑑 , 𝜋𝑑,1, . . . , 𝜋𝑑,𝑙𝑑) and (ev, 𝒔𝒗
′
1
, . . . , 𝒔𝒗′

𝑙𝑑
, 𝜋𝑑,1

′, . . . , 𝜋𝑑,𝑙𝑑
′)

for some valid ev get results result and result′ that are not equal up
to order, and neither of which is equal to ⊥. The advantage of the
adversary is

max{2 · | Pr[𝐸𝑔 ∧ 𝐸𝑓] − Pr[𝐸𝑓]/2|, Pr[𝐹𝑖 ∨ 𝐹𝑐 ∨ 𝐹𝑑 ∨ 𝐹𝑢]}.

H.4 Security Proof Sketch

We briefly sketch a proof for how to bound the advantage of an

adversary against the cryptographic voting scheme in terms of

adversaries against the shuffle, the distributed decryption scheme,

the commitment scheme or the encryption scheme.

Confidentiality. We begin by analyzing the confidentiality event

Pr[𝐸𝑔 ∧ 𝐸𝑓].
The proof would proceed as a sequence of games, where the first

game is the interaction between the experiment and the adversary.

In the next game, we stop the adversary with a forced guess

𝑏′ = 0 immediately upon any query that would make the execution

non-fresh. Note that a query that makes the execution non-fresh

can be recognized with no secret information, and at the time the

query is made. A brief computation shows that this changes nothing,

but in further analysis, we may assume that the execution remains

fresh.

We next simulate all the zero-knowledge proofs involved, which

is straight-forward in the random oracle model since all our proofs

are HVZK.

Next, we change the challenge query so that instead of computing

the precode as 𝑟 = 𝑎 + 𝑣 , it samples 𝑟 uniformly at random. If this

change is observable, we get an adversary against hiding for the

commitment scheme.

Next, for any ballot decryption share query for a sequence

(ev1, . . . , ev𝑙𝑐), we decrypt ev𝑖 to 𝑣𝑖 , then use the HVZK simulator

from Section 6 to simulate the decryption share given the decryp-

tion 𝑣𝑖 . This change is unobservable. (To get an adversary, we guess

a decryption key share 𝑖 for which the adversary will never make a

decrypt reveal query, and simulate the other decryption key shares

as random shares. When the adversary makes a ballot decryption

share query for 𝑖 , we compute the ballot decryption shares for the

23

Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, and Tjerand Silde

other decryption key shares and compute the 𝑖th ballot decryption

share to give the correct result when combined.)

Next, for chosen ciphertext queries, we decrypt the 𝒘 using

dk𝑅 and subtract 𝑎 to recover 𝑣 , and then record (𝑖, 𝑣, 𝑣, ev, 𝜋𝑣)
instead of (𝑖,⊥,⊥, ev, 𝜋𝑣). The soundness of the ballot proof (details
omitted), we now have that every tuple (𝑖, 𝑣0, 𝑣1, ev, 𝜋𝑣) in 𝐿 satisfies

Dec(dk𝑉 , ev) = 𝑣𝑏 .

Next, for any ballot decryption share query for an honest and

balanced sequence (ev1, . . . , ev𝑙𝑐) deriving from (·, 𝑣01, 𝑣11, ·, ·), . . . ,
(·, 𝑣

0𝑙𝑐 , 𝑣1𝑙𝑐 , ·, ·), sample a permutation 𝜋 on {1, 2, . . . , 𝑙𝑐 } and use

𝑣𝑖 = 𝑣
0𝜋 (𝑖) instead of decrypting ev𝑖 . If this change is observable, we

either get an adversary against soundness for the shuffle (when the

decryption of the output of a shuffle is not equal to the decryption

of the input to the shuffle, up to order) or an adversary against

the encryption scheme (when the adversary notices that the ballot

decryption shares are inconsistent with the encrypted ballots). The

latter adversary re-randomizes the shuffle with random values

instead of encryptions of zero.

At this point, the decryption key shares {dk𝑖 } are no longer used.
Also, the pre-code encrypted in the challenge query is independent

of the challenge ballots.

Finally, for challenge queries, we encrypt a random ballot instead

of the left or right ballot. If this change is observable, we get a real-

or-random adversary against the encryption scheme.

At this point, the challenge bit 𝑏 is no longer used. It follows

that the adversary has no advantage in this game. By the above

arguments, the claim that the difference between Pr[𝐸𝑔 ∧ 𝐸𝑓] and
Pr[𝐸𝑓]/2 is appropriately bounded follows.

Integrity. Next, we analyze the integrity events. In this case, the

adversary may have revealed every secret key, and there is no need

for the execution to be fresh.

If a chosen ciphertext query results in an incorrect pre-code,

then we immediately get an adversary against the soundness of the

ballot proof (details omitted). It follows that the probability of 𝐹𝑖
happening is appropriately bounded.

In the event that 𝐹𝑐 happens, note that every encrypted ballot ei-

ther originates with a challenge query or a chosen ciphertext query,

the shuffles applied to the encrypted ballots originate with shuffle

queries or chosen shuffle queries, and the ballot decryption shares

all originate with ballot decryption share queries. By the complete-

ness and soundness of the various arguments, and the bound on

the number of shuffles, we get the probability of 𝐹𝑐 happening is

appropriately bounded.

In the event that 𝐹𝑑 happens, then either the output of some

shuffle does not decrypt to the same as the input to the shuffle,

in which case we get an adversary against the soundness of the

shuffle or the distributed decryption does not decrypt correctly, in

which case we get an adversary against the soundness of the dis-

tributed decryption. It follows that the probability of 𝐹𝑑 happening

is appropriately bounded.

In the event that 𝐹𝑢 happens, then either the decryption of the

encrypted ballots is not unique, in which case we get an adversary

against the soundness of the proofs ensuring valid ciphertexts (in

the ballot proofs and the shuffle proofs), or one or both results are

incorrect, in which case we get an adversary against the soundness

of the shuffle. It follows that the probability of 𝐹𝑢 happening is

appropriately bounded.

The claim that Pr[𝐹𝑖 ∨ 𝐹𝑐 ∨ 𝐹𝑑 ∨ 𝐹𝑢] is appropriately bounded

follows.

H.5 Voting System Security Properties

H.5.1 Integrity. Integrity for a voting system is modeled using a

game between an adversary and a set of voters, some of which may

be corrupt. The adversary tells the honest voters what ballots to

cast. If the count phase eventually runs and ends with a result, the

adversary wins if the result is inconsistent with the ballots accepted

as cast by the honest voters. (Recall that only the voter’s last ballot

cast is counted, so if the voter first accepts a ballot as cast and then

tries to cast another ballot and this fails, the end result is that they

have not accepted a ballot as cast.)

We can define a variant notion called 𝜖-integrity where we al-

low a small error, and say that the adversary wins if the result is

inconsistent with any (1−𝜖) fraction of the ballots accepted as cast

by honest voters. (We need this since return codes for a a single

voter must be human-comparable, and can therefore collide with

some non-negligible probability.)

Analysis. The voter will only accept the ballot as cast if the

correct return code is received. If the correct return code is received,

then the correct pre-code must have been computed at some point

(except with some small probability due to collisions in the PRF).

If the return code generator R is honest, the integrity of the

cryptographic voting scheme implies that this can only happen if

the correct ballot has been encrypted. If the auditor A is honest,

the result will only be accepted if the encrypted ballot has been

included among those sent to the first shuffler. By the integrity

of the cryptographic voting system, all such ballots must then be

included in the result.

If the voter’s computer Comp and the ballot box B and the

auditor A are honest, the encrypted ballot will be included among

those sent to the first shuffler. By the integrity of the cryptographic

voting system, all such ballots must then be included in the result.

If a voter receives a return code without casting a ballot, the

voter will no longer accept their ballot as cast.

In summary, 𝜖-integrity holds if the auditor and either both the
voters’ phones and the return code generator are honest, or both the
voters’ computers and the ballot box are honest.

H.5.2 Verifiability. In a verifiable voting protocol, every voter gets

a receipt after accepting a ballot as cast. Also, the auditor outputs
a result and a transcript. Also, there is an algorithm for verifying

either a transcript, a result, and optionally a receipt.

Consider an execution of the voting protocol where the auditor

outputs a result and a transcript. Then there is a set of honest

voters with honest computers that accept their ballot as cast with

some receipt, and for which the verification algorithm accepts the

transcript, the result, and their receipt. We say that a system is

verifiable if the result is consistent with the list of these voters’

ballots being included in the result.

Note that verifiability in and of itself does not guarantee anything

about the correctness of the result. Instead, verifiability is best

thought of as a tool that can be used to achieve trust in election

24

Verifiable Mix-Nets and Distributed Decryption for Voting from Lattice-Based Assumptions

integrity under fairly weak trust assumptions. For instance, one can

prove that if a sufficiently large and hard-to-guess subset of voters

run the verification algorithm on the transcript, result, and their

receipt, then the overall election has 𝜖-integrity for some 𝜖 . (The

“hard to guess” part is instrumental in proving this result. If the

set of voters verifying an election is not hard to guess, achieving

election integrity is much more difficult, at least without strong

trust assumptions.)

Note also that we assume that the honest voter’s computer is

honest in the definition. If the voter’s computer is corrupted, we

are left with considering integrity as above, which can be achieved

conditional on other players being honest.

Analysis. Verifiability for our protocol follows by integrity for the
underlying cryptosystem, since the execution of our protocol can

be thought of as interaction with the experiment for the underlying

cryptosystem, where the honest computer’s actions correspond to

challenge queries, and part of the verification algorithms’ work

corresponds to a test query. The structure of the protocol then

ensures that if the result output by a test query is inconsistent with

corresponding ballots output by challenge queries, integrity fails

for the underlying cryptosystem.

In summary, if the underlying cryptosystem has integrity, the
voting protocol is verifiable.

H.5.3 Privacy. Privacy for a voting protocol is modeled as a left-or-

right gamewith an adversary and a set of voters, some of whichmay

be corrupt. The adversary gives pairs of ballots to honest voters,

and they will all either cast the left ballot or the right ballot. The

adversary must decide which they cast. (This essentially amounts

to deciding who cast which ballot.)

The adversary can corrupt players and also control the network.

We shall assume that players use secure channels to communicate.

This means that only the fact that players are communicating and

the length of their communications leak. Since message flows and

message lengths are fixed and public knowledge, we can ignore the

network in the subsequent analysis.

We want to avoid adversaries that deduce the honest voters’

ballots trivially from the result, so we require that the adversary

organizes the pairs of ballots given to honest voters in such a way

that the ballots cast by honest voters are independent of whether

the voters cast the left or the right ballot.

Analysis. If some honest voter’s computer Comp is compromised,

the adversary can trivially win the privacy game.

If every shuffle server is compromised, the adversary learns the

correspondence between decrypted ballots and voters, and can

trivially win the privacy game.

If every decryption server is compromised, the adversary learns

the decryption key, and can trivially win the privacy game.

If a voter casts more than one ballot, a compromised return code
generator or voter phone will always be able to decide if they are the
same or not by observing the return code sent to the voter. If the

ballots are distinct, the return code generator will learn information

about which ballots were submitted, and typically learn both ballots.

(We could prove privacy when the voter casts more than one ballot

and the return code generator and the voter phone are both are

honest, but this requires adding a restricted challenge query that

does not reveal the precode of the cryptosystem experiment.)

Suppose the honest voters cast at most one ballot each, their

computers remain honest, and at least one shuffle server and one

decryption server are honest. Then privacy follows from the con-

fidentiality of the cryptographic voting system since the protocol

execution can be interpreted as an interaction with the cryptosys-

tem experiment and the protocol together with our assumptions

ensure a fresh execution.

Note that cut-and-paste attacks against confidentiality, which

commonly affect this type of voting protocol, do not work against

this protocol because the ballot proof includes an encryption of

the return code and proof that the return code is correct which is

tied to the voter’s public key material. Cut-and-paste attacks would

anyway constitute a valid attack on the cryptosystem.

In summary, privacy holds if the honest voters’ computers are
honest, there is at least one honest shuffle server and one honest
decryption server, and no honest voter casts more than one ballot.

25

	Abstract
	1 Introduction
	1.1 Our contributions
	1.2 Related work

	2 Building Blocks
	2.1 PKE with Distributed Decryption
	2.2 Commitments
	2.3 Zero-Knowledge Proofs
	2.4 Verifiably Shuffling Ciphertexts
	2.5 Verifiable Decryption

	3 The Voting Scheme
	4 Exact Amortized ZK Proofs
	5 Verifiable Shuffle of Ciphertexts
	5.1 The Extended Shuffle for Commitments
	5.2 Verifiable Shuffle of BGV Ciphertexts
	5.3 Communication of a BGV Shuffle

	6 Verifiable Distributed Decryption
	6.1 The Actively Secure Protocol
	6.2 Communication Complexity of DistDec

	7 Performance
	7.1 Concrete Parameters and Total Size
	7.2 Implementation

	8 Concluding Remarks
	References
	A Preliminaries
	A.1 The Discrete Gaussian Distribution
	A.2 Rejection Sampling
	A.3 Knapsack Problems
	A.4 Security of Distributed Decryption
	A.5 Security Definitions for Commitments
	A.6 Security Definitions for ZK Proofs

	B Proofs of linear relations and amortized non-exact ZKPoPK
	B.1 Zero-Knowledge Proof of Linear Relations
	B.2 Bounded Amortized Zero-Knowledge Proof

	C Figure and Proofs for Amortized ZKPoPK
	C.1 Soundness
	C.2 Zero-Knowledge

	D Proof of Lemma 1
	E BGV mixing security
	F Choosing parameters concretely
	G Security in the Quantum Random Oracle Model
	H Security of the Voting Protocol
	H.1 Verifiable Voting with Return Codes
	H.2 Our Scheme
	H.3 Security Notions
	H.4 Security Proof Sketch
	H.5 Voting System Security Properties

