
Constant Size Secret Sharing: with General
Thresholds, Towards Standard Assumptions, and

Applications

Katarzyna Kapusta1,2, Matthieu Rambaud2, and Ferdinand Sibleyras3

1 Thales ThereSIS
2 Télécom Paris & Institut Polytechnique de Paris

3 NTT Social Informatics Laboratories

Abstract. We consider threshold Computational Secret Sharing Schemes,
i.e., such that the secret can be recovered from any t+ 1 out of n shares,
and such that no computationally bounded adversary can distinguish
between t shares of a chosen secret and a uniform string. We say that
such a scheme has Constant Size (CSSS) if, in the asymptotic regime of
many shares of small size the security parameter, then the total size of
shares reaches the minimum, which is the size of an erasures-correction
encoding of the secret with same threshold. But all CSSS so far have only
maximum threshold, i.e., t = n − 1. They are known as All Or Noth-
ing Transforms (AONT). On the other hand, for arbitrary thresholds
t < n − 1, the shortest scheme known so far is [Kra93, Crypto], which
has instead twice larger size in the previous regime, due to a size over-
head of n times the security parameter. The other limitation of known
CSSS is that they require a number of calls to idealized primitives which
grows linearly with the size of the secret.
Our first contribution is to show that the CSSS of [Des00, Crypto], which
holds under the ideal cipher assumption, looses its privacy when instan-
tiated with a plain pseudorandom permutation.
Our main contribution is a scheme which: is the first CSSS for any thresh-
old t, and furthermore, whose security holds, for the first time, under any
plain pseudorandom function, with the only idealized assumption being
in the key-derivation function. It is based on the possibly new observation
that the scheme of [Des00] can be seen as an additive secret-sharing of
an encryption key, using the ciphertext itself as a source of randomness.
A variation of our construction enables to improve upon known schemes,
that we denote as Encryption into Shares with Resilience against Key ex-
posure (ESKE), having the property that all ciphertext blocks are needed
to obtain any information, even when the key is leaked. We obtain the
first ESKE with arbitrary threshold t and constant size, furthermore in
one pass of encryption. Also, for the first time, the only idealized as-
sumption is in the key-derivation.
Then, we demonstrate how to establish fast revocable storage on an un-
trusted server, from any black box ESKE. Instantiated with our ESKE,
then encryption and decryption both require only 1 pass of symmetric
primitives under standard assumptions (except the key-derivation), com-
pared to at least 2 consecutive passes in [MS18, CT-RSA] and more in
[Bac+16, CCS].

We finally bridge the gap between two conflicting specifications of AONT
in the literature: one very similar to CSSS, which has indistinguishability,
and one which has not.

1 Introduction

1.1 Constant Size Secret Sharing: Applications and Limitations

A much investigated technique in distributed storage [Gar+00] consists in frag-
menting then dispersing data over multiple independent storage locations in
order to block an attacker unable to compromise all of them. On the other hand,
users seek for additional ways of confidentiality and availability reinforcements,
in case of data leakage, e.g., of secret keys [AGH12; KR19; KSLC18; KRM20]. A
secret sharing scheme with n shares and threshold t allows a dealer to transform
its plaintext secret into n bitstrings, denoted Shares, such that, if the dealer com-
puted them correctly, then (i) the secret can be efficiently reconstructed from
any t + 1 shares (ii) no information can be obtained on the secret from any t
shares.

Krawczyk [Kra93] was the first to evidence that secret sharing schemes can
achieve a total size of shares which is short, when basing security on computa-
tional assumptions. His scheme proceeds by the following steps: (i) generate a
symmetric encryption of the secret using a secret key K sampled at random,
(ii) apply t-erasure resilient Reed-Solomon encoding to the resulting ciphertext,
to form a codeword of n coordinates, denoted as the “fragments” (Fi)i∈[n], (iii)
then each share i consists in the concatenation of: Fi, with a secret share Ki of
the key K under a t out of n secret sharing scheme. [Krawczyk’s scheme was
then made robust in [BR07].] However there is a storage overhead in Krawczyk’s
scheme: in addition to the Reed-Solomon encoding of the ciphertext, which is
unavoidable for recoverability from any t + 1 shares, we see that n shares of
key need to be stored, all of them having same size as the key. This overhead is
critical when transforming the secret into a large number of shares, each of them
of small size, i.e., close to the key’s. This impacts the many use cases recalled
below, to which we add key exposure resilience and revocation (§1.2), since they
require this range of parameters. [Notice that the previous overhead is amortized
over multiple secrets in [Gar+00], at the cost that their reconstruction involves
processing of a common secret key which, if leaked to the adversary, compromises
the privacy of any secret of which it knows at least one share.]

In this paper, we define as Computational Constant Size Secret Sharing
(CSSS) schemes that overcome the size issue described above. All existing
CSSS so-far are limited to the specific threshold t = n− 1 out of n. In
this regime, the closest definition to secret sharing is the one in [Des00, Def. 4].
It is denoted as “AONT”, but this terminology is dangerous since employed for
conflicting definitions, see §1.2.5. The first known CSSS is denoted as “OAEP”,
which is used in the PKCS]1 [Lab12], we refer to [Boy99] for a description. There,
it is proven, under idealized assumption, that OAEP satisfies our definition of
CSSS (and even more, since it can handle shares of size a few bits instead of one

2

block). Notice that OAEP is given an (unpublished) proof of adaptive security
in Lemma 1 of the long version [MS17] of [MS18].

The first use case of CSSS was introduced by Rivest [Riv97], as the main
building block of his encryption scheme denoted “All Or Nothing”, in order to
slow down brute-force key search attacks performed on encrypted data. Notice
that the CSSS considered in [Riv97], under the name “All-Or-Nothing pack-
age transform”, can be viewed as a special case of “OAEP”, as evidenced in
[Boy99]. Later, [MPR96] introduced a public key encryption scheme consisting
in preprocessing of a plaintext with a CSSS before encrypting only one of the
obtained shares (of size of a block), which reduces the encryption cost in com-
parison to the Rivest’s proposal. This idea was then generalized in [Boy99, §1]
to any CSSS. [JSY99] stressed that this idea, of encrypting only one block, is
also relevant when symmetric encryption is performed by a device containing
the key, when one wants to minimize the communications and computations of
this device in order to avoid leakage. Another application of CSSS, due to Rivest
and proven in [BB00, §1.4], is a keyless compiler from: any ideal authentication
mechanism (a “MAC channel”), into: a symmetric encryption scheme with ind-
CPA. It consists in prepossessing the plaintext with a CSSS, then, applying the
costly information theoretic encryption scheme on the first share only (of size one
block), that takes every bit b to the pair (b correctly authenticated, b wrongly
authenticated).

However, we observe that all existing CSSS so far make a number of
calls to idealized primitives which is linear in the size of the plaintext:

- OAEP, as specified in [Boy99] applies an idealized hash function on a bitsize
equal to the whole length of the secret; and an idealized random generator that
outputs a bitlength equal to the whole length of the secret.

- Desai’s CSSS [Des00], denoted as “CTRT” and described in details in Section
3, holds in the ideal blockcipher model.

- A CSSS, denoted as “AONT-RS”, was proposed by Resch & Plank in [RP11].
The scheme is a combination of Rivest’s first step of the OAEP processing with
the Reed-Solomon coding. It was attacked, and then repaired in the Random
Oracle model, by [CLM17].

- Authors of [Can+00] consider a variation of CSSS which needs a part of the
output of the scheme - denoted as the private part, which is necessary for the
reconstruction - to be kept secret and never leaked. Their resilience against leak-
age of “all but one shares” is thus further conditioned to nonleakage of this
secret part. They consider constructions of this notion from black-box functions
denoted as ERF. Some of the ERF introduced in their work are claimed to hold
under standard assumptions. Fixing the problem of the secret part would lead to
a proper secret sharing scheme under standard assumptions. Such fix is indeed
provided by the authors , but at the cost of an increase of the output size, which
does not fit anymore in our requirement of Constant Size of the shares.

3

1.2 Contributions

1.2.1 Privacy of the CSSS of [Des00] under Standard Assumptions.
Idealized assumptions seem indispensable in all of the schemes reviewed above. In
§3 We illustrate its importance by taking the example of the CSSS of [Des00], for
which we show that, when instantiated under the standard assumption of plain
pseudorandom permutation (PRP), then an adversary can distinguish between
two secrets.

1.2.2 Main Contribution: Constant Sized Secret Sharing for General
Thresholds, and Requiring one Single Call to an Idealized Function.
In §4 we completely remove the first limitation by allowing arbitrary thresholds
in CSSS, and address the second by making a significant step towards removing
the use of idealized primitives in CSSS. We achieve both claims in one single
construction. It is based on the simple but new observation that the scheme of
[Des00] can be seen as an additive perfect secret sharing of a secret blockcipher
key, with source of randomness equal to an encryption of the secret under this
key. For this idea to work, a fortiori when generalized to arbitrary thresholds, the
conditions of operation of perfect secret sharing must be guaranteed, in particular
that the randomness be independent from the secret, i.e., the key. Whereas this
was made possible in [Des00] by the use of encryption with an Ideal Cipher,
we instead achieve a construction that operates with any plain pseudorandom
function (including a PRP). We do still use an idealized transform, but called
only once on a constant small number of bits, equal to the security parameter,
for the purpose of key-derivation. We leave as an open problem to completely
remove idealized assumptions or, on the contrary, prove that the single-call to
an idealized primitive, that we do, is unavoidable.

1.2.3 Improved Encryption into Shares with Resilience against Key
Exposure (ESKE). The idea of Rivest’s encryption [Riv97], denoted “All
or Nothing”, was specified by [Des00, Def. 2] as “Non-Separability of Keys”.
Roughly speaking, a symmetric encryption scheme based on a blockcipher has
this property if and only if: let n be the number of blocks of a ciphertext, then an
adversary making at most n−1 oracle calls to the inverse of the blockcipher with
the correct secret key, cannot infer any information about the secret key. This
definition was given a more intuitive variant in [KSLC18], denoted “CAKE”.
There, the adversary, instead of making oracle calls, is: being leaked the secret
key, and allowed to learn at most n−2 ciphertext blocks. On the other hand their
recoverability is guaranteed only provided all n blocks. The definition was then
generalized in [KRM20] under the name “SAKE”. In Definition 5 we generalize
the definition into any threshold t, to which we give the possibly more intuitive
name of “ESKE”. A ESKE is a keyed randomized transform of a plaintext secret
into n shares, which is invertible from any t + 1 out of n shares, such that we
have both resiliences: (1) IND-CPA in the classical sense, i.e., indistinguishability
between two chosen plaintexts given all their shares, with respect to the secret

4

key Kacc; and (2) for any adversary being furthermore leaked the secret key Kacc,
then indistinguishability between two chosen secrets given any t shares, as for
secret sharing. Concretely, Kacc is the “access key” given to persons accredited to
learn the secret, and the scenario (2) deals with “exposure” of Kacc. [Notice also
a rich line of research, e.g., [Dzi06; GWZ22], with orthogonal specifications: their
adversary 2. has the capacity to download all ciphertexts, but can subsequently
store much less than all-but-one shares, before being leaked the key.]

Of course we have the generic solution to achieve ESKE which is: encrypt the
secret, then secret-share the ciphertext with a computational scheme. However
the whole requires at least two consecutive passes of symmetric primitives on
the length of the secret, thus in Table 1 we compare to a non-trivial line of
research that applies only one pass of primitives. Our contribution is that, using
our methods of §3, we build a ESKE using one pass of primitives, which: for
the first time, achieves general threshold t < n instead of only t = n − 1 as
previously, and for the first time achieves total constant size from a single call
to an idealized KDF of size the security parameter.

Scheme
Privacy

Resilience
[#shares]

Erasures
Tolerance
[#shares]

Total size
of shares

Assumptions

[KSLC18] Bastion n− 2 0 n
n−1

∣∣S∣∣ Ideal Cipher

[KRM20] SSAKE n− 1 0 2
∣∣S∣∣ Ideal Cipher

[KRM20] ROSSAKE n− 1 0 2
∣∣S∣∣ Random Oracle

§5, for any t < n t n− (t+ 1) n
t

∣∣S∣∣ PRP + ideal KDF

Table 1. Comparison between our (n, t) ESKE for any t, and the schemes of [KSLC18;
KRM20], which have fixed privacy (n− 1 or n− 2) and reconstruction (n) thresholds.∣∣S∣∣ denotes the bitsize of the secret, and for simplicity the sizes are expressed in the
asymptotic regime of “large secret divided in many small shares”, more specifically∣∣S∣∣ ∼= tκ for large t, where κ is the security parameter, which is typically the case in
the application of ESKE §1.2.4 for t = n − 1. See below Def. 3 for other asymptotics
(both SSAKE and ROSSAKE have same size as [Kra93]).

1.2.4 Faster Revocable Storage on an Untrusted Server. We consider a
secret owner Alice who has access to a storage place, denoted “server”, typically a
cloud provider. The server can only be trusted to correctly save or erase the data,
but not to perform access control on it. It can be seen as a public storage box to
which everyone can access. Every data stored on the server is assumed read by
what we denote as an “inner adversary” Ain, typically the cloud provider. The
first requirement is that Ain should not learn any plaintext secret. While giving
access to the secret without leaking it to Ain is simple, i.e., encrypting it and
then distributing the key to authorized persons, efficiently revoking access to a
person is a challenge.

Let us outline the idea of solution introduced in [Che+13] and popularized
by [Bac+16; MS18]. To store a secret, Alice transforms into a ciphertext, which

5

comes as a concatenation of logical units of small size, which we denote here as
“shares”, such that all but one shares give no information even if given the en-
cryption key. After uploading the transformed data to the server, Alice privately
gives the symmetric key, denoted “access key Kacc”, to the persons accredited to
learn the secret. To subsequently revoke a person, Alice: (i) chooses at random a
small number nmiss of shares (ii) re-encrypts them with a fresh symmmetric key,
(iii) gives the fresh key only to the non-revoked persons, along with the indices
of the re-encrypted shares. This operation prevents further access to the secret,
with a high rate of success, for any previously accredited person who: does not
have the new key, and who did not store all the re-encrypted shares locally in ad-
vance, see also [Wan+17]. For instance, as discussed in [Bac+16, §4], if the total
number of stored shares is n and this person stored locally only nloc shares, then
she is likely to be unable to learn the value of all re-encrypted shares, except with
probability lower than (nloc/n)nmiss . This probability is small, since it is sup-
posed that a person will not store the whole data, as it is an impractical solution.
[Let us furthermore make the observation that, after i consecutive revocations,
then this probability is raized to the power i. Thus, chances of success of pre-
viously revoked persons decrease exponentially with the number of subsequent
revocations.] In conclusion, this idea saves much bandwith and computation
costs, since each revocation operates only on shares of small constant size, by
comparison with the naive solution which would have consisted in re-encrypting
the whole secret at every revocation.

Then, [Bac+16] proposed an optimisation, using mechanisms known as “key-
regression”, that enables accredited persons to manage only the most recent fresh
key, from which all previous keys can be derived. The state of the art instantia-
tion of the idea is [MS18, §3], which reduce the encryption and decryption cost of
[Bac+16] down to 2 consecutive passes of symmetric primitives on the whole se-
cret (see the discussion in their §3). The symmetric encryption scheme of [MS18]
consists in (a) performing symmetric encryption on the secret (in detail: using
the scheme “Enc(k,m)” of [Eve+17, Figure 4]) (b) followed by a CSSS (which
they denote “AONT”, although with relaxed security of all-but-“`” shares).

Our contribution is the following very simple but apparently new scheme,
that relies only the specification of a black box (n, n− 1)-ESKE. Alice generates
an ESKE secret key Kacc, which she gives to the accredited persons. Then, to
give access to any subsequent secret to these accredited persons, she generates
a ESKE ciphertext of it with Kacc, then stores it on the server. Revocation of a
person from one or several files goes as in (i)(ii)(iii) (with the same fresh key for
all files). Although intuitive, in Theorem 7 we formalize and prove that the pre-
vious new scheme solves the problem with the same aforementioned probability
of success, as [Bac+16; MS18].

Besides its generality, of using any black box ESKE, our scheme also clarifies
that only a single key Kacc needs to be managed by the accredited persons for
potentially multiple secrets, whereas [Bac+16; MS18] studied revocation for only
one secret under one key. The main benefits of our scheme then appear when
instantiated with our new ESKE of §3, with shares of size one block (typically

6

128 bits). First, it is the first proven scheme that requires only one call to an
idealized primitive, of small input and output, i.e., the size of a key. By contrast,
[MS18] required an AONT as sub-routine. But, before our main contribution
§1.2.2, all AONTs applied idealized primitives on the whole plaintext. Last but
not least, the new scheme requires only 1 pass of symmetric primitives, for
both initial encryption and subsequent decryptions. By constrast, access to a
plaintext in [MS18] costs 2 consecutive passes of symmetric primitives, thus not
in a parallelisable way, which thus doubles the latency.

1.2.5 Minor Contribution: a Posteriori Constant Size ESKE. We
could imagine the following more constrained use-case, denoted a posteriori
ESKE. Namely, consider that we are given an existing standard ciphertext, of
which we do not know the key, but we would like to upgrade it into an ESKE
ciphertext. A generic solution to would be to apply a CSSS on this ciphertext,
but we aim at cheaper transforms. Our new ESKE of §5, itself derived from §4,
is however not applicable here, since the secret-sharing is performed in a way
that requires knowledge of the encryption key. In Theorem 9 we make a move
towards the question. We show that CTR encryption with an ideal cipher, fol-
lowed by one linear transform denoted “AONT” by [Sti01], yields a ESKE. The
construction owes much to [KSLC18] and upgrades their privacy threshold into
n−1 shares. But it is not included in table 1, since it is strictly improved by our
new ESKE of §5 (which is however not a posteriori). The most important part
in Theorem 9 is actually the converse, which shows that any linear transform
having this property is an “AONT”.

Surprisingly, what is denoted “AONT” above, following the terminologies of
[Riv97] and [Sti01], does not guarantee indistinguishability of two chosen secrets,
for an adversary which is given on all but one shares of their transforms. So this
strongly conflicts with the ones of [Boy99; Des00], which are generalized by
the definition of secret sharing, as discussed below our Def. 2. [This conflict of
definitions was stressed by [Boy99, §1.3], we give some concrete examples under
Def. 8.]

2 Notations and Definitions

We make use of the following data structures that all can be represented as
strings string of

∣∣string∣∣ bits.
κ is our security parameter, typically of the size of a symmetric key.

Sampling K
$←− {0, 1}κ uniformly at random.

[M] := {1, . . . ,M} for any integer M .
Sum s+ pad is the sum of two binary vectors s and pad of same length, their
bitwise XOR. Sometimes we will denote c − pad to stress that we remove the
one-time pad.
Output of an Adversary P(AO → b) For a (possibly idealized) function O, a
bit b ∈ {0, 1} and a machine A, denoted Adversary, we denote AO → b the event

7

“A interacts with oracle O and then outputs 0”, then with a P the probability
of this event.
A Short Random Oracle (RO) f : {0, 1}κ −→ {0, 1}κ is an idealized func-
tion, that returns the same output when queried on the same input, and on
every input not queried before, returns a string of size κ sampled uniformly at
random. Alternatively, it can be seen as a function uniformly drawn at random
among the (2κ)(2

κ) possibilities
Pseudorandom Advantage of a Keyed Function (PRF). Let F. : {0, 1}κ×
{0, 1}κ −→ {0, 1}κ be a (keyed) function. For any key K ∈ {0, 1}κ and any
machine A interacting with either a Short Random Oracle f or with FK , we
denote ABCK and Af the output bit of A when interacting with the one or
the other. We define the PRF advantage of F., parametrized by any integers σ

and τ , as: given a secret key K
$←− {0, 1}κ sampled uniformly at random, the

maximum distinguishing advantage over adversaries A making at most σ oracle
accesses to FK and running in time τ :

(1) AdvF.
PRF(σ) := max

A
P(AFK → 0)− P(Af → 0)

If the PRF advantage is negligible for any polynomial τ , then we say that F is a
Pseudorandom Function (PRF). The pseudorandomness model is weaker than
the random oracle one but more realistic as it allows the inputs to be related
to the outputs. See §A.2 for an example of PRF: Pseudo-Random Permutations
(PRP), of which Ideal Ciphers.

2.1 Perfect Secret Sharing with Uniformity and Full Reconstruction.
We recall threshold perfect secret sharing, and give names to two additional
properties of the Shamir scheme, which are: uniformity of adversarial shares,
and reconstructibility of the randomness. The latter will be crucial to reach
thresholds t < n− 1 in §4 and §5. The former will enable our implementation of
CSS, in §4, to match the uniformity requirement of Definition 2.

Definition 1 (PSSUF). Let 0 ≤ t < n, and u and d, be some positive
integers. A Perfect Secret Sharing Scheme with Uniformity and Full reconstruc-
tion for secret space {0, 1}κ, randomness space {0, 1}uκ, shares space {0, 1}dκ,
threshold t and n shares, is a deterministic transformation:

φ : {0, 1}κ × {0, 1}uκ −→
(
{0, 1}dκ

)n
(2)

K , R −→ sh1, . . . , shn such that:

– for every fixed secret K ∈ {0, 1}κ, if R ∈ {0, 1}uκ varies uniformly at
random, then any fixed subset I ⊂ [n] of t shares (shi)i∈I varies uniformly

at random in
(
{0, 1}dκ

)t
;

– we have a map that reconstructs both K and R from any t+ 1 shares, i.e.,

FullReco :
{

(t+ 1)-subsets H ⊂ [n]
}
×
(
{0, 1}dκ

)t+1 −→ {0, 1}κ × {0, 1}uκ ,

such that for any K, R and H, FullRecoH
((
φ(K,R)i

)
i∈H

)
= (K,R).

8

Uniformity of any t shares implies all other alternative privacy requirements,
such as: [BGK20] any t shares have the same distribution for any secret, or
[CDN15, §11.9.2] do not diminish entropy of the secret.

The first example of PSSUF that we will use is the additive (n, n− 1)-
scheme, where u = n− 1 and d = 1. On input (K,R = (R1, . . . , Rn−1), output(
R1, . . . , Rn−1 , K −

∑n−1
j=1 Rj

)
.

The second example of PSSUF that we will use is the Shamir (n, t)-
scheme, where d = max(

⌈
dlog2(n)e/κ

⌉
, 1) and u = t. Embed the secret space

{0, 1}κ in some finite field Fq containing at least n elements, e.g., q = 2κ

if n ≤ 2κ. Consider any n fixed public distinct elements (αi)i∈[n] ∈ Fq de-
noted as “evaluation points”. φ is defined as the linear map that, on input
(K,R = (R1, . . . , Rt) ∈ Fq × Ftq, outputs the shares

(
K +

∑t
j=1Rj α

j
i

)
i∈[n].

Notice that shares can be seen as evaluations at the (αi)i∈[n] of the polynomial

P (X) = K +
∑t
j=1Rj X

j . For any (t+ 1)-sized H ⊂ [n], FullRecoH recovers the
polynomial P , and thus its coefficients (K,R), as a linear combination of the
shares with the Lagrange coefficients corresponding to H.

[For simplicity in the description above we considered that we had n + 1
evaluation points, since we implicitely considered that αi 6= 0 ∀i, since we en-
coded the secret K as P (0). This assumption can be removed by “evaluation at
infinity”, i.e., by encoding K instead as the coefficient of degree t of P .]

Finally, one can optimize the computational cost when n << 2κ by choosing
instead a smaller q = 2dlog2(n)e: divide the secret in

⌈
κ/dlog2(n)e

⌉
pieces, each

embedded in Fq, then perform the PSSUF of Shamir on each of them in parallel.

2.2 (Computational) Secret Sharing Schemes We introduce the defini-
tion of secret sharing that we will use, then compare it to the literature.

Definition 2 (CSS). Let 0 ≤ t < n, and d, be some positive integers. A
Computational Threshold Secret Sharing Scheme (with Uniformity) (CSS) with
n shares and threshold t is a pair an efficiently computable randomized function
Σ and a deterministic function SReco as follows. Σ takes as input any non
empty sequence of bits S ∈ {0, 1}∗, denoted the secret, and returns n bit-strings
(Shi := Σ(S)i)i∈[n], denoted as the Shares, whose sizes are only determined by∣∣S∣∣. SReco takes any (t+1)-sized subset H ⊂ [n] of indices, any (t+1) bitstrings.
There satisfy the two following guarantees:

- Recoverability against n− (t+1) erasure adversaries: for any S and (t+1)-
sized H ⊂ [n], we have SRecoH

[(
Σ(S)i

)
i∈H

]
= S.

- Computational Privacy with uniformity against t-adversaries: for a given
bitsize

∣∣S∣∣, let us consider the two oracles OΣ and $. OΣ, when queried with:

S of size
∣∣S∣∣, and a t-subset I ⊂ [n] of indices, computes Σ(S) then returns the

shares
(
Σ(S)i

)
i∈I . The dummy oracle $ has the same interface, but on every

query S, it samples then returns a bitstring uniformly at random, of same length
as
(
Σ(S)i

)
i∈I , irrespectively of if S was already queried or not. Consider the

maximum distinguishing advantage over all adversaries A running in time τ and

9

making at most M oracle queries:

(3) max
A

Pr(AOΣ → 0)− Pr(A$ → 0)

Then the above maximum advantage is required to be negligible, for any (poly-
nomial)

∣∣S∣∣, over the adversaries with polynomial time τ .

Notice that PSSUF (Def. 1) implies CSS (Def. 2).
Let us compare to the definitions of [BR07], which are, among others, for-

malizations of [Kra93]. Recoverability against erasure adversaries is the same as
their “PR0” p6, for the class of adversaries, denoted “threshold” [BR07, p7],
which erase at most n− (t+ 1) shares. Notice that Recoverability against arbi-
trary adversaries is not under the scope of our Def. 2. It could be implemented by
having the dealer sign every share, but more efficient techniques for this purpose
can be found [CLM17; BR07] and [CDN15, §11.8].

Computational Privacy with Uniformity : implies the privacy guarantee de-
noted “CSS” [BR07, p6], i.e., indistinguishability between two chosen plain-
text secrets. Precisely, we consider the class of adversaries, denoted “threshold”
[BR07, p7], which learn at most t shares. Requiring uniformity is motivated by
[Des00], below its Def. 4, for the use-case of slowing down key-search attacks.

Let us compare to [Des00]. In the special case where: t = n− 1,
∣∣S∣∣ = tκ =

(n−1)κ, then Definition 2 is the [Des00, Def. 4] denoted “AONT”, with the only
difference that we allowed M oracle queries instead of 1. Notice that [Des00, Def.
4] makes n depend on

∣∣S∣∣ without precision, but his implementation, which we

recall in §3, considers only the particular case
∣∣S∣∣ = (n− 1)κ.

Definition 3 (CSSS). For any 0 ≤ t < n, assume furthermore that n < 2κ,
then we say that a CSS Σ is of Constant Size if, on input a secret of bitsize∣∣S∣∣ = (t + e)κ, where e is a positive integer, which stands for “extra-length”,
then the total size of shares is

(4)

n∑
i=1

∣∣Shi∣∣ ≤ nκ+
n

t+ 1
eκ .

The condition n ≤ 2κ is essentially unavoidable, by the information-theoretic
lower bound of [BGK20] in log2(t) on the size of shares. However it becomes
significant for a number of shares which is exponential in the security parameter,
whereas the definition of CSS is meaningful only for polynomial adversaries. By
“essentially”, we exclude the two cases: t � n, and t = n − 1, to which the
bound of [BGK20] does not apply, and thus for which the limitation n ≤ 2κ

could potentially be overcome. But as stressed above, these questions become
meaningful in a regime where our computational definitions are meaningless.

Let us compare to the scheme of [Kra93, §3], which is also a CSS with re-
coverability against erasures, also in the regime n ≤ 2κ. It has total shares size
equal to n

t+1 (t + e)κ + nκ. There, the left summand corresponds to the Reed-
Solomon encoding of the ciphertext, denoted as “Rabin’s Information Dispersal
Algorithm (IDA)”. Whereas the right summand corresponds to the n Shamir

10

shares of the key. Thus, in the regime where n > t � e, then Definition 3 of
CSSS requires size n

t

∣∣S∣∣, whereas the size of [Kra93, §3] is n
t+1

∣∣S∣∣+ n
t

∣∣S∣∣, which
is roughly twice larger. The terminology, of Constant Size, comes from the fact
that n

t
∼= n

t+1 is the best expectable expansion rate, since equal to the one of an
(n− (t + 1))-erasure-correcting Reed Solomon encoding of the plaintext secret.
On the other hand, in the regime where e� n > t, then Def. 3 does not require
a total size smaller than [Kra93].

3 Privacy of Desai’s CSSS under Standard Assumptions

Let us recall in our notations the scheme denoted as “CTRT” in [Des00, Theorem
2], which is a CSSS with threshold t := n − 1 out of n shares. It requires bc.
an Ideal Cipher, the definition of which is recalled in §A.2.3. For simplicity of
the description we consider it of blocksize β = κ. CTRT is described in [Des00]
for a secret of size (n− 1)κ, i.e., S = (S1, . . . , Sn−1) where ∀i,

∣∣Si∣∣ = κ. Sample

K
$←− {0, 1}κ then output:

(5) Shi := bcK(i) + Si for i ∈ [n− 1], and Shn := K +

n−1∑
i=1

Shi

For secrets of longer size (n − 1 + e)κ for some integer e > 0, anticipating
on our generalization of §4, one may generalize CTRT as: compute n shares
(Shski)i∈[n] from (S1, . . . , Sn−1) as previously, which are denoted as the Shares
of the Key, following the observation made in §1.2.2. Then compute the vector{
Sj +bcK(j) , j ∈ [n, . . . , e]

}
, divide it arbitrarily in n strings (Sh′i)i∈[n] denoted

Extra-Shares, then append them to the shares of the key.
Let us show that, when we replace the Ideal Cipher bc. by a specific plain

PRF, then CTRT enables an adversary to efficiently distinguish between two
chosen secrets, when given all but one share. By definition this then violates the
privacy guarantee denoted “CSS” in [BR07] (and thus, a fortiori, our slightly
stronger “Computational Privacy” guarantee of Def. 2). The PRF that we con-
sider is known as the Even-Mansour cipher, denoted BC., which is built from a
public Ideal Permutation π and a key K, and defined by BCK(i) := π(K+i)+K.
[Let us recall that BC. is proven to be a Pseudorandom permutation, the defi-
nition of which is recalled in §A.2.2, secure up to the birthday bound. Precisely,
given a κ-bit random keyK, it requires at least 2κ/2 encryptions or offline compu-
tations of the underlying permutation to distinguish BCK from an ideal permu-
tation. Hence BC. is indeed a PRF, by the PRP/PRF switching Lemma, recalled
in §A.2.2.] The attack is as follows. Consider an adversary A which chooses two

arbitrary secrets S(b) ∈ {0, 1}(n−1)κ for b ∈ {L,R} (for “left” and “right”), such
that: n ≥ 3, SL1 = SR1 = 0, and for at least one index j ∈ {2, . . . , n− 1} we have
SLj 6= SRj . Consider a secret bit b ∈ {L,R} sampled away from A. A is returned

all shares of CTRT (S(b)) except Sh
(b)
1 . Notice we could have chosen any other

missing index in [n − 1], provided a change of indices in the strategy above to

11

choose SL and SR. The shares are such that

(6) Sh
(b)
i := π(K + i) +K for i ∈ [n− 1], and Sh(b)n := K +

n−1∑
i=1

Sh
(b)
i .

The adversary is able to compute Sh
(b)
n −

∑n−1
i=2 Shi = K+Sh

(b)
1 = K+ (π(K+

1) +K) = π(K + 1) and thus can simply compute the inverse of π on this value

to recover K. Then it can decrypt Sh
(b)
j into S

(b)
j and thus determine b. This

attack shows that Desai’s CSSS necessarily relies on the cipher bc. being ideal,
which is a stronger requirement than pseudorandomness.

4 Threshold CSSS, with a Single Idealized Primitive Call

We consider f : {0, 1}κ −→ {0, 1}κ a Short Random Oracle. It is our idealized
model of a “key derivation” function. Notice that our result holds, with essen-
tially the same proof (adapt Game 4 below), when f is alternatively an ideal
permutation oracle. We now consider any Pseudorandom Function F., e.g., a
plain PRP, see §A.2. Denote φ a (n, t)-PSSUF (Def. 1). For sake of size we spec-
ify it to be the additive sharing if t = n − 1; and otherwise the Shamir secret
sharing if t < n − 1. Denote RS : ({0, 1}∗)e −→ ({0, 1}∗)n the Reed-Solomon
encoding into n coordinates, with resilience against the erasure of any n− (t+1)
coordinates. Notice that it is the identity function if t+1 = n. On input a secret
S = (Si)i∈[t+e] ∈ {0, 1}(t+e)κ for some integer e ≥ 0:

– sample the Secret-Shared key : Kss $←− {0, 1}κ;
– derive the PRF Key : Kprf := f(Kss);
– generate the Randomness: R :=

(
Rj := Sj + FKprf

m
(j)
)
j∈[t] ∈ {0, 1}

tκ;

– compute the Shares of the Key : (Shski)i∈[n] := φ(Kss,R) ∈ {0, 1}nκ;

– compute the Extra Shares: (Sh′i)i∈[n] := RS
({
Sj + FKprf (j)

}
j∈[t+1,...,t+e]

)
;

– output the Shares, which are the concatenations Shi := Shski ‖Sh′i for i ∈ [n].

For reconstruction from any (t+1)-subsetH ⊂ [n] of shares: decode the (Sh′i)i∈H
into the vector

{
Sj+FKprf (j)

}
j∈[t+1,...,e]

; reconstruct (Kss,R) from the (Shi)i∈H,

where recovery of R is enabled by Full Reconstruction; deduce Kprf = f(Kss);
decrypt all Sj + FKprf (j) into Sj for j ∈ [t+ e].

Notice that the CTRT scheme of [Des00], described in §3, would be recovered
by setting: Kprf := Kss, instead of Kprf := f(Kss); F. instantiated with an ideal
cipher bc., and S ∈ {0, 1}(n−1)κ.

Our construction now applies an idealized construction only once, just on
the key, and not, as in CTRT, on a long (counter) sequence of same length as
the whole secret. Our construction thus repairs the problem evidenced in §3, in
that the key Kprf is sampled independently of Kss, thanks to the idealized key
derivation function f. Thus, nonwithstanding Kss is the shared secret, we can
nevertheless apply the PRF property of F. with respect to Kprf , to conclude

12

that R is an eligible source of randomness to secret-share Kss. In the following
formal statement and proof, this last argument will be the transition to Game
2, while the set of events where it fails will be the transition to Game 3.

Theorem 4. The previous scheme, denoted Σ, is a CSSS. More precisely, de-
note AdvF

PRF the PRF advantage of F., then the computational privacy advan-
tage, of Definition 2, for any adversary A running in time t, making M queries
to its oracle and M ′ queries to f, is at most:

(7) MAdvF.
PRF (t+ e) + (M2 +M.M ′)/2κ .

Proof. For m ∈ [M], denote I(m) ⊂ [n] the t indices of the shares that the
adversary asks to see in response to its m-th query. Notice that the queries of
the Adversary to the public keyed function F. are incorporated in its time budget
τ . We proceed by a series of games starting from Game 0, where the adversary
is facing the dummy oracle $ of length ({0, 1}κ)t, up to OΣ, and we bound the
distinguishing advantage of each step. Let Ai be the adversary interacting with
the oracle of Game i.

Game 1 Now for each new query m ∈ [M], the oracle: samples uniformly

at random a pair of keys in its head
(
Kss

(m),K
prf
(m)

)
, each in {0, 1}κ; generates

the shares Sh
(m)
i as in the scheme, except that in the formulas, all variables

FKprf
(m)

(j) ∈ {0, 1}κ for j ∈ [t + e] for m ∈ [M] are replaced by random uniform

samplings, we denote them r(m)(j) ∈ {0, 1}κ. In particular the keys Kprf
(m) are not

used at all. Thus in detail, the shares (Sh
(m)
i)i∈I(m) received by the adversary

are the concatenation:

– of the (Sh
′ (m)
i)i∈I(m) , which are t codewords of a Reed-Solomon encoding of{

the one-time pad of part of part of the chosen secret vector (S
(m)
j)j∈[t+1,...,e]

with uniform randomness
(
r(m)(j)

)
j∈[t+1,...,e]

}
. Since any t (and even t+1)

evaluations at distinct points of a uniform random polynomial of degree t
vary uniformly at random, they vary uniformly at random;

– and of the (Sh
sk,(m)
i)i∈I(m) , which are t secret shares of Kss

(m) generated with

φ, using a source of randomness which is
(
r(m)(j)

)
j∈[t]. In particular, this

source of randomness varies uniformly independently of Kss
(m) and of the rest

of the view ofA, i.e., of the (Sh
(m)
i)i∈I(m) . Thus, by Definition of a PSSU, the

(Sh
sk,(m)
i)i∈I(m) vary uniformly at random in {0, 1}tκ, independently from

the (Sh
′ (m)
i)i∈I(m) .

In conclusion, the statistical distribution of the view of the adversary is the same
as in Game 0, thus

Pr(A1 → 0)− Pr(A0 → 0) = 0

Game 2 differs from Game 1 as the
(
r(m)(j)

)
j∈[t+e] are computed as

(
FKprf

(m)
(j)
)
j∈[t+e]

as in the scheme. To bound the distinguishing advantage, we proceed by the

13

following cascade of intermediary games m ∈ {0, 1 . . . ,M} where m = 0 corre-
sponds to Game 1 and, for m ≥ 1, in the m-th game, all queries up to m are
replaced as previously.

For each m ∈ {0, . . . ,M − 1}, we construct as follows an adversary A(m)
PRF

against the PRF game for F, whose distinguishing advantage is thus upper-
bounded by AdvF

PRF . Our goal is to show that its advantage is at least as large

as the maximum one between intermediary games m and m+1, as follows. A(m)
PRF

runs a copy of an adversary A(m) against the m-th intermediary game. For all

m′ ∈ [M], A(m)
PRF samples in its head a key pair (Kss

(m′),K
prf
(m′)).

- Ifm′ < m,A(m)
PRF answers the query as in Game 3, i.e., using

(
FKprf

(m′)
(j)
)
j∈[t+e].

- If m′ = m, A(m)
PRF answers the query using

(
chall(j)

)
j∈[t+e] where chall(j)

is obtained by querying on j its PRF oracle.

- If m′ > m, A(m)
PRF answers the query as in Game 2, i.e., using

(
r(m)(j)

)
j∈[t+e]

sampled uniformly at random.
Game 3 differs from Game 2 by two sorts of events, denoted G as “guess”:

Either, for each new query m ∈ [M], if Kss
(m) is equal to one of the previously

sampled keys Kss
(m′), then: replace Kprf

(m) by Kprf
(m′), and return the same output as

the one of the m′-th query. By the birthday paradox for the keys (Kss
(m))m∈[M],

the total probability of these events is upper-bounded by M2/2κ.
Or, when f is queried on some previously sampled key Kss

m then f outputs
Kprf
m instead of uniformly at random in {0, 1}κ; and conversely, when some Kss

(m)

is sampled equal a value previously requested to f, then Kprf
(m) is set to the

previous output of f on this value, instead of uniformly at random in {0, 1}κ.
By the (generalized) birthday paradox, the total probability of both sub-sorts of
events is bounded by M.M ′/2κ.

We thus have the actual scheme oracle OΣ.

5 Shorter ESKE, from Standard assumptions

Definition 5. Let t < n be fixed positive integers. A (n, t)-ESKE scheme is an
efficiently computable randomized transformation E that takes as input a secret
key Kacc and a plaintext S. It returns n strings (Shi)i∈[n], denoted ”shares”,

of bitsizes |Shi| depending only on
∣∣S∣∣, such that S is efficiently reconstructible

given any t+1 shares and Kacc. Privacy should be insured in two separate cases:

(1) We require IND-CPA as in [KL14, Def 3.22], for multiple challenges. Namely,
we consider the following two oracles OEL and OER, which stand for “left”

and “right”. They both sample a secret Kacc $←− {0, 1}κ, then answer up to
M queries, each query consisting in a pair of plaintexts (SL(m),S

R
(m)) of same

lengths. On every query, OEL returns E(SL) while OER returns E(SR). We
require that for any (polynomial) length

∣∣S∣∣, the maximum distinguishing

14

advantage, defined by:

(8) max
A

Pr(AOEL → 0)− Pr(AER → 0)

over all adversaries A running in time τ and making at most M oracle
queries, be negligible.

(2) For any A that knows the secret key Kacc, the scheme should be secure as
a (n, t)-CSS, Definition 2.

Theorem 6. Consider the scheme of §4, with the two following modifications:

initially sample Kacc $←− {0, 1}κ then, on every input S, modify the second step
[derive] as: Kprf := f(Kacc+Kss). Then it is an ESKE, with same distinguishing
advantage as given by equation (7), in both cases (1) and (2).

Proof. (2) The proof of privacy for the case where A knows Kacc is the same as
for Theorem 4 where we define the public random oracle as f ′(x) = f(Kacc + x).
Indeed if f is a public random oracle then also is f ′ even when Kacc is known.

(1) To prove privacy whenA gets all the shares but does not know Kacc, let us
prove the following stronger indistinguishability between: all shares of a chosen
plaintext, and a sample in a fixed distribution. Namely, we bound the maximum
distinguishing advantage between the two following oracles. The actual scheme
oracle OE returns the actual E(S) on every query S. The φ-dummy oracle Oφ$
has the same interface but on every query, returns a sample in the following

distribution: Dφ :=
{
φ(Kss,R) for (Kss,R)

$←− {0, 1}(t+1)κ
}

, independently of
the query S nor if it was already queried or not. The adversary makes M queries
to its respective game oracle, i.e., OE or Oφ$, and has also access to the oracle
f to which he makes M ′ queries. [Finally, we give strictly more information to
the adversary, in that, against the oracle OE, then after he has done all oracle
interactions, both to OE and to f, then we give to it Kacc before it decides on
an output. Symmetrically, when facing the dummy oracle Oφ$, we give to A a
randomly sampled Kacc after all interactions, although this provides no added
information, the goal is to keep the same interface as with OE.]

Game 0 The adversary is facing Oφ$. Namely: on every query, Oφ$ outputs
a sample in Dφ; then after all oracle interactions, the game randomly samples

Kacc $←− {0, 1}κ and gives it to the adversary before it makes its decision.
Game 1 Now, the oracle O1 replies to each query m ∈ [M] as in the actual

scheme, excepted that the
(
FKprf

(m)
(j)
)
j∈[t+e] are computed with aKprf

(m)

$←− {0, 1}κ

sampled uniformly at random for each m. The distinguishing advantage with
Game 0 is upper-bounded by MAdvF.

PRF (t + e), following the same cascade of
games as for Game 2 in the proof of Thm 4, excepted that all n shares are given
to A(m) instead of only those in I(m).

Game 2 is the real scheme OΣ where, after oracle interactions, the game
outputs Kacc. We Claim that the advantage of distinguishing Game 1 and Game
2 is bounded by total probability of the following two sorts of events, denoted
G:

15

Either, when drawing Kss
(m) for some m ∈ [M], we have that it collides with

a previous value, that is ∃m′ < m : Kss
(m) = Kss

(m′).
Or, when drawing Kacc, we have that the adversary has made a previous

query k to f such that ∃m ∈ [M] : Kss
(m) +Kacc = k. We bound the probability

of the latter with the randomness of Kacc. Overall, we obtain Pr(G) ≤ (M2 +
M ′ ·M)/2κ.

Finally, the Claim is because, if G does not occur, then the random sampling
of Kprf acts the same way as the random oracle f since Kacc + Kss

(m) is a fresh
input. Hence when G does not occur, Game 1 and Game 2 produce identically
distributed views.

6 Access Revocation from any Black Box ESKE

We formalize the new access granting and revocation scheme, presented in §1.2.4,
along with its properties, as security games against two adversaries. The first one
is denoted “inner adversary” Ain and models the cloud provider: it has unlimited
dowload and storage capacity but is not given access to any secret. The security
game against Ain is the one of case (1.) of Definition 5 of an ESKE.

The second one is denoted the “revocation” adversary Arev and models a
person to which access to multiple secrets was initially granted, and then is re-
voked as presented in §1.2.4. Arev must distinguish between the following two
oracles OL and OR, in the following game. We denote E any (n, n − 1)-ESKE
scheme. We denote AdvE(M) an upper bound on the distinguishing advantage
of any adversary in the case (2.) of definition 5. We denote by E any symmet-
ric encryption scheme, of which we denote AdvE(M) an upper bound in the
game consisting in distinguishing actual encryptions of a sequence of M chosen
plaintexts of size one block, with M random strings of same lengths.

- The game oracle samples Kacc $←− {0, 1}κ once for all, then gives it to Arev.
- Arev gives to the game oracle a sequence ofM pairs of plaintexts (SL(m),S

R
(m))i∈[M],

of same sizes. For each m ∈ [M], the OL oracle returns E(Kacc,SL), while the
OR oracle returns E(Kacc,SR).

- For each index m ∈ [M], Arev can adaptively query the game oracle to reveal
up to nloc ≤ n shares.

- The oracle then: samples a key Kmiss for E, selects at random nmiss share indices
at random in [n], independently of the previous queries, and replaces these shares
by encryptions of them under Kmiss, to which it appends a tag informing of their
re-encryption.

- Arev can then query the oracle to obtain all shares, of which the nmiss re-
encrypted ones instead of the original nmiss ones. A outputs a bit b′, and wins
if b = b′.

Notice that the previous game implicitely assumes that Arev does not com-
municate with Ain, i.e., can not retrieve the missing blocks as they were before

16

revocation, nor does it communicate with persons still accredited after its revo-
cation, i.e., is not given the new key Kmiss.

Theorem 7. The advantage of any adversary in the previous game is lower
than M(nloc/n)nmiss + 2AdvE(M) + AdvE(M).

Proof. Let us fix an index m ∈ [M]. Consider the event Gm such that all the
nmiss shares indices which were re-encrypted, are included in the nloc shares
indices. Since the choice of blocks re-encrypted is independant from the queries,
the probability of this event is lower than (nloc/n)nmiss . Then, the probability of
the union of these events for all indices m ∈ [M] is lower than M(nloc/n)nmiss .
Outside of these events, we have that, for each m, the view of the adversary is all
shares, of which at least one re-encrypted under Kmiss, of which it was not given
the value before re-encryption. Let us give more power to the adversary: we let it
choose one missing share index jm for each m, while giving to it all other shares
(even the ones not in the nloc previously queried ones). Let us now consider the
hybrid game where, for each m, instead of an actual re-encryption of the jm-th
share, the adversary is given a random string of same length. Then, for both
values of b, the output of the adversary in the hybrid game differs by at most by
AdvE(M) from the previous game. Finally, the distinguishing advantage of the
adversary A′ in this hybrid game is upper bounded by AdvE(M). This follows
from the trivial reduction where an adversary A in the case (2) of Definition
5 would play the role of the oracle towards A′, by sampling the missing share
uniformly at random.

7 Bridging the gap between two conflicting AONTs

We start with Stinson’s [Sti01] definition of an AONT, where an input vector
of information is multiplied by a random matrix, which has for goal to prevent
an adversary to recover a single element of the vector even if he has all but one
blocks of the multiplication result. Let Fq denote the finite field with q elements.

Definition 8. A Stinson’s AONT of size `+ 1 is an invertible linear transform
φ : F`+1

q −→ F`+1
q such that the following holds. For any index i0, and for any

image vector: −→y := (y1, . . . , yi0−1, Y, yi0+1, . . . , y`+1) where the yi for i 6= i0 are
fixed, what have that if Y varies uniformly at random, the input coordinate xj
of the pre-image vector −→x := φ−1(−→y) varies uniformly at random for any single
index j.

Note that this definition does not prevent two input coordinates xu and xv
from being correlated, which then gives some information about the whole input
vector. Another example is that, taking φ equal to the matrix of [Sti01, Cor
2.3], then an adversary learning the first coordinates of the output veector, thus
learns a fixed public linear combination on the blocks of the input vector. Thus
it can distinguish between two chosen inputs.

A Stinson’s AONT can be computed over F4 = F2(α) for any size `: the
matrix with ones, except α on the diagonal. We make the straightforward abuse

17

of notation consisting in applying a linear transformation φ ∈ F
(`+1)×(`+1)
q to

vectors of (`+ 1) blocks to output a vector of (`+ 1) blocks. The actual transfor-
mation that this means is: interpret the input sequence of bits, as a sequence of
elements in Fq (dlog2(q)e bits encode one element of Fq). Possibly pad the input
to have an exact number of elements of Fq. Then apply φ to every subsequence
of (`+ 1) elements of Fq.

Theorem 9. Let us consider an invertible linear map φ acting on vectors of
size ` + 1. We consider an Ideal Blockcipher bc. and any key K ∈ {0, 1}κ.
Consider the following scheme, consisting in counter-mode encryption followed
by a Stinson’s linear AONT:

- On every input S of ` blocks: S1, . . . ,S`, each of size β = κ;

- sample iv
$←− {0, 1}|K| (denoted as “initialization vector”)

- compute the blocks F0 := iv and Fi := bcK(iv + i) + Si for i = 1 . . . `

- output Σ(S) := Sh1, . . . , Sh`+1 the `+ 1 output blocks of φ(F0, . . . , F`).

Consider a model where this key K is given to the adversary. Namely,
(
bcK , bc

−1
K

)
is now a publicly accessible Ideal Permutation Oracle, denoted from now

(
π, π−1

)
.

Then, in this model, we have:{
Σ defines a CSSS

}
if and only if

{
φ is a Stinson’s linear AONT

}
.

We now prove the Theorem. We denote Mφ the matrix of φ, acting on the
right on line vectors. By construction we have:

Σ(S) :=(Sh1, . . . , Sh`+1) = (F0, . . . , F`) ·Mφ thus:(9)

(F0, . . . , F`) = Σ(S) ·M−1φ(10)

7.1 Necessary Condition on φ

The result follows from the next Lemma, since [Sti01, Theorem 2.1] then implies
that φ is a Stinson’s linear AONT.

Lemma 10. If, in this model where the Adversary is given access to
(
π, π−1

)
,

we have that Σ defines a CSSS, then, all entries of M−1φ are nonzero.

Proof. Suppose by contradiction that there exists an entry M−1φ containing a
zero. Denote (row, col) its row and column indices. The key point is that this
then implies, from Equation (10), that the block Fcol is a linear combination
of ` + 1 − 1 = ` shares, namely, of the {Shi}i 6=row. Both (row, col) and the
coefficients of the combination are fixed and public since M−1φ is public. Then A
has the following winning strategy in the game of Definition 2. He chooses S := 0
equal to a bit string with 0’s only. Then, asks to be challenged with share indices
j ∈ {1, . . . `+1}\{row}. Denote Shj the shares that he obtains. He has to guess if
they are bogus, or actual outputs from Σ(0). He first reconstructs a speculative

18

F ′col using the shares {Sh′i}i 6=row he received. Then he computes a speculative
initialization vector iv′ := π−1(F ′col). Finally, using this speculative iv′ he can
compute all the speculative ciphertext blocks F ′0 := iv and F ′j := π(iv′ + j) for
all j ∈ {1, . . . , `}. And finally deduce speculative shares Sh′i by applying φ. If
they are equal to the ones Shi received, then he outputs b = 0: that he received
the real ones. Otherwise he outputs b = 1: that he received bogus shares.

7.2 Sufficient Condition on φ

Let φ be a Stinson’s linear AONT map acting on vectors of size `+ 1. Consider
any set IA of ` columns in Mφ. The matrix being invertible, these columns are
of rank `. By elementary operations on columns, they can be put in column-wise
strong echelon form EchIA , such that there are at least ` distinct pivot indices.
Thus, there exists ` lines containing exactly a single 1 entry and 0 everywhere
else, and such that these 1 are all on distinct columns:

(11) EchIA =


0 1 0 0 . 0
1 0 0 0 . 0
0 0 1 0 . 0
∗ ∗ ∗ ∗ . ∗
0 0 0 0 . 1
.
0 0 0 1 . 0


The line with the ∗ is the only one not to be a pivot line, let i∗ be its index.

Lemma 11. If φ be a Stinson’s linear AONT then the i∗ line contains no zero
entry.

Proof. By contradiction, suppose that there is a zero entry, that is there exists
a column of index j0 such that Echi∗,j0 = 0. By definition of columnwise ech-
elon form, this implies that the j0 column contains exactly a single 1 (and 0
otherwise): denote i0 this row index.

Denote −→y = (y1, y2, . . . , y`+1) an image vector in F`+1
q . Notice that the

elementary columns operations that transform MIA into EchIA is the linear
combination of the image values (that are in the ` indices in IA) needed to
build the pre-image vector −→x := φ−1(−→y) which will further depend on the value
whose index is not in IA if and only if the i∗ entry is not zero. In particular,
we have that the i0 coordinate of pre-image, xi0 , is independent from the image
value whose index is not in IA. Thus this is incompatible with the requirement
of Definition 8.

Let us deduce from Lemma 11 that φ being a linear AONT is a sufficient con-
dition for Σ to be a CSSS. Consider the elementary invertible matrix of column
operations NIA , of size `×`, that puts Mφ in echelon form: EchIA = MIA ·NIA ,
where the subscript IA means that we restrict to the column indices in IA. Then
in the game of Definition 2, consider the situation where the adversary receives
actual shares Shi(S) of his chosen secret `, with IA the set of ` indices that he
chose to see. The adversary chooses S and an index j and receives the key k

19

and ` shares. We note the block cipher under a known key as π(·) as it’s akin
to a public permutation. Let us notice that the initial vector (F0, . . . , F`) can be
decomposed in a fixed known/chosen part, plus a variable part:

(12) (F0, . . . , F`) :=
[
0κ,S

]
+
[
iv, π(iv + 1), . . . , π(iv + `)

]
Let us multiply the vector of shares received by the adversary by the invert-

ible matrix NIA on the right. We obtain the coordinates in IA of the vector
(F0, . . . , F`)MφNφ whose variable part is:

(13)
−→
V (iv)A :=

[
iv, π(iv + 1), . . . , π(iv + `)

]
IA
MIANIA︸ ︷︷ ︸
EchIA

Let us express it explicitly: let e0, . . . , e` (same ` indices as IA) be the entries
of the special line i∗ of EchIA , proven to be all nonzero in Lemma 11. Let
i0, . . . , i` (same indices as IA) be the row indices of the successive pivots (the
1 entries) in the columns of the matrix EchIA . They are by definition different
from i∗. Then we have, abusing of notation “π(iv + 0)”:= iv:

(14)
−→
V (iv)A =

(
e1π(iv + i∗) + π(iv + i1) ,

e2π(iv + i∗) + π(iv + i2), . . . , e`π(iv + i∗) + π(iv + i`)
)
.

We can conclude by:

Proposition 12. Under the Ideal Permutation assumption for
(
π, π−1

)
, the

ei∈IA being all nonzero, then the function iv −→
−→
V (iv)A is a PRG (§A.1).

Informally, considering polynomial adversaries and only forward queries, the

permutation π behaves like a short random oracle. Thus, to distinguish
−→
V (iv)A

from a PRG an adversary has to perform inverse queries, but relevant inverse
queries are hard to find when all ei are nonzero, as there are only given sums of
two seemingly random outputs, as formally proven in [KRM20, Prop. 1].

References

[AGH12] Adi Akavia, Shafi Goldwasser, and Carmit Hazay. “Distributed Public Key Schemes Secure
against Continual Leakage”. In: PODC. 2012.

[Bac+16] Enrico Bacis et al. “Mix&Slice: Efficient Access Revocation in the Cloud”. In: CCS. 2016.
[BB00] Mihir Bellare and Alexandra Boldyreva. “The Security of Chaffing and Winnowing”. In:

Advances in Cryptology — ASIACRYPT 2000. Springer Berlin Heidelberg, 2000.
[BGK20] Andrej Bogdanov, Siyao Guo, and Ilan Komargodski. “Threshold Secret Sharing Requires a

Linear-Size Alphabet”. In: Theory Comput. (2020).
[Boy99] Victor Boyko. “On the Security Properties of OAEP As an All-or-Nothing Transform”. In:

CRYPTO. 1999.

20

[BR06] Mihir Bellare and Phillip Rogaway. “The Security of Triple Encryption and a Framework
for Code-Based Game-Playing Proofs”. In: EUROCRYPT. 2006.

[BR07] Mihir Bellare and Phillip Rogaway. “Robust Computational Secret Sharing and a Unified
Account of Classical Secret-sharing Goals”. In: CCS. 2007.

[Can+00] Ran Canetti et al. “Exposure-resilient Functions and All-or-nothing Transforms”. In: EU-
ROCRYPT. 2000.

[CDN15] Ronald Cramer, Ivan Bjerre Damg̊ard, and Jesper Buus Nielsen. Secure Multiparty Compu-
tation and Secret Sharing. Cambridge University Press, 2015.

[Che+13] Y. Cheng et al. “Efficient revocation in ciphertext-policy attribute-based encryption based
cryptographic cloud storage”. In: Journal of Zhejiang University SCIENCE C (2013).

[CLM17] Liqun Chen, Thalia M. Laing, and Keith M. Martin. “Revisiting and Extending the AONT-
RS Scheme: A Robust Computationally Secure Secret Sharing”. In: AFRICACRYPT. 2017.

[Des00] Anand Desai. “The Security of All-or-Nothing Encryption: Protecting Against Exhaustive
Key Search”. In: CRYPTO. 2000.

[Dzi06] Stefan Dziembowski. “On Forward-Secure Storage”. In: CRYPTO. 2006.
[Eve+17] Adam Everspaugh et al. “Key Rotation for Authenticated Encryption”. In: CRYPTO. 2017.
[Gar+00] Juan A. Garay et al. “Secure Distributed Storage and Retrieval”. In: Theor. Comput. Sci.

243.1-2 (July 2000), pp. 363–389.
[GWZ22] Jiaxin Guan and Daniel Wichs and Mark Zhandry. “Incompressible Cryptography”. In:

EUROCRYPT. 2022.
[HKT11] Thomas Holenstein, Robin Künzler, and Stefano Tessaro. “The Equivalence of the Random

Oracle Model and the Ideal Cipher Model, Revisited”. In: STOC. 2011.
[JSY99] Markus Jakobsson, Julien P. Stern, and Moti Yung. “Scramble All, Encrypt Small”. In: FSE.

1999.
[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, second edition.

Chapman & Hall/CRC, 2014.
[KR19] Yael Tauman Kalai and Leonid Reyzin. “A Survey of Leakage-Resilient Cryptography”. In:

Providing Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio
Micali. ACM, 2019.

[Kra93] Hugo Krawczyk. “Secret Sharing Made Short”. In: CRYPTO. 1993.
[KRM20] Katarzyna Kapusta, Matthieu Rambaud, and Gerard Memmi. “Revisiting Shared Data Pro-

tection Against Key Exposure”. In: AsiaCCS. 2020.
[KSLC18] G. O. Karame et al. “Securing Cloud Data under Key Exposure”. In: IEEE Transactions on

Cloud Computing (2018).
[Lab12] RSA Laboratories. PKCS]1 v2.2: RSA cryptography standard. Tech. rep. EMC Corporation,

2012.
[MPR96] S Matyas, Mohammad Peyravian, and Allen Roginsky. Encryption of long blocks using a

short-block encryption procedure. Tech. rep. IBM. 1996.
[MS17] Steven Myers and Adam Shull. Efficient Hybrid Proxy Re-Encryption for Practical Revo-

cation and Key Rotation. Cryptology ePrint Archive, Report 2017/833. https://eprint.
iacr.org/2017/833. 2017.

[MS18] Steven Myers and Adam Shull. “Practical Revocation and Key Rotation”. In: CT-RSA.
2018.

[Riv97] Ronald Rivest. “All-or-Nothing Encryption and the Package Transform”. In: FSE. 1997.

21

https://eprint.iacr.org/2017/833
https://eprint.iacr.org/2017/833

[RP11] J. Resch and J. Plank. “AONT-RS: Blending Security and Performance in Dispersed Storage
Systems”. In: Proceedings of the 9th USENIX Conference on File and Stroage Technologies.
FAST’11. San Jose, California: USENIX Association, 2011. isbn: 978-1-931971-82-9.

[Sho04] Victor Shoup. “Sequences of games: a tool for taming complexity in security proofs”. In:
IACR Cryptol. ePrint Arch. 2004 (2004), p. 332.

[Sti01] Douglas R. Stinson. “Something About All or Nothing”. In: Des. Codes Cryptogr. (2001).
[Wan+17] C. Wang et al. “Insecurity of Cheng et al.’s Efficient Revocation in Ciphertext-Policy Attribute-

Based Encryption Based Cryptographic Cloud Storage”. In: ISPA & IUCC. 2017.

A PRG and Examples of PRF: Ideal Cipher and
Pseudo-Random Permutations

A.1 Pseudorandom Generator (PRG)

PRG : X ∈ {0, 1}κ −→ {0, 1}∗, in the sense of [KL14, Def 3.15] can be defined
as a deterministic function such that, when its input X is sampled at random
and hidden from the Adversary, then he cannot distinguish the output from a
bit string sampled uniformly at random. in this paper it shows up with Long
Output size: this setting is also known as “Streamcipher” and may be instan-
tiated (against a polynomial adversary) with a keyed blockcipher running in
counter mode. This notion will also show up when X is the second input of a
“pseudorandom function”, as defined just below.

A.2 Examples of PRF: Pseudorandom Permutation and Ideal
Ciphers.

A Block ∈ {0, 1}β is a string of bits of fixed size β, which for simplicity we
consider to be a submultiple of κ, e.g., κ = 256 and β = 128.

A.2.1 Ideal Permutation is an oracle such that, when initialized, then it
draws a permutation π : {0, 1}β −→ {0, 1}β uniformly at random. That is,
among all the (2β)! possible permutations. Then the oracle anwser any evaluation
queries to π and to its inverse π−1.

An Ideal Permutation can equivalently be defined as a random oracle with
two interfaces (π, π−1) as follows. On every input x ∈ {0, 1}β to π such that: x
was not not queried before to π nor returned by a previous request to π−1, then:
sample uniformly at random an output in

{
the values of {0, 1}β which: were not

output before, and were not queried before to π−1
}

.
It has the symmetric behavior on every query y ∈ {0, 1}β to π−1 which was

not queried before nor returned by π.
When π or π−1 is queried again on the same input, then it returns the same

output.
When π is queried on a previously output image x of π−1, then returns the

input of π−1 for which it previously returned x. The same holds symmetrically
for π−1 when queried on a previously output image y of π.

22

A.2.2 Pseudorandom Advantage of a Keyed Permutation (PRP),
dubbed as “plain Blockcipher” ([KL14, Definition 3.28] or [Sho04, §5.2])
Consider a function BC. : {0, 1}κ × {0, 1}β −→ {0, 1}β such that BCK :=
BC(K, .) defines a permutation for every K. We denote it keyed permutation,
dubbed as “blockcipher”. Consider an adversary with black box forward access

either to BCK , where K
$←− {0, 1}κ, or to a permutation p drawn at random

among the (2β)! possibilities. Forward access means that the adversary has not
access to the inverses, i.e., BC−1K and p−1. The PRP security of BC is the
following maximum over all A running in time τ and making σ queries to its
oracle:

PRPBC(σ) = max
A

P(ABCK → 0)− P(Ap → 0)

If the PRP advantage is negligible, then we say that BC is a Pseudorandom
Permutation (PRP).
“PRP/PRF” switching Lemma ([BR06, §2]): a PRP is a PRF up to O(2β/2)
oracle calls. More concretely, consider a publicly accessible PRP BC., then

(15) AdvBCPRF (σ) ≤ PRPBC(σ) + σ(σ − 1)/2β+1

where PRPBC(σ) is the PRP security of BC against adversaries making σ
blockcipher calls and running in time τ .

A.2.3 An Ideal Cipher in the sense of Shannon’s, can be seen as a random
oracle such that, when initialized, draws a function bc. : {0, 1}κ × {0, 1}β −→
{0, 1}β at random in the space of functions satisfying that, for all K ∈ {0, 1}κ,

bcK := bc(K, .) is a permutation. (This space has thus cardinality κ(2
β)!). The

only difference between bcK and the “keyed-” Short Random Oracle fK of length
β, is that bcK is a permutation for every K. Equivalence of the Ideal Cipher and
Random Oracle models, is proven in [HKT11].

A Ideal Cipher can equivalently be defined as a random oracle Obc.,bc−1.
that answers two type of queries: evaluation of bc. on some input (K,m) ∈
{0, 1}κ × {0, 1}β ; and evaluation of bc−1. on some input (K,m) ∈ {0, 1}κ ×
{0, 1}β . When queried (K,m) with a left argument K that was not queried
before, then it privately initializes a fresh Ideal Permutation Oracle ObcK ,bc−1

K
as

defined in A.2.1. Subsequently, Obc.,bc−1. passes to ObcK ,bc−1
K

every request with

left argument K, and forwards the result. By this latter equivalent definition,
we thus have PRPbc. = 0.

23

	Constant Size Secret Sharing: with General Thresholds, Towards Standard Assumptions, and Applications-0.2cm

