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1. Background
In this paper, we propose 2 group-theoretic compact public-key cryptosystems - a key ecapsulation
mechanism (KEM) and a digital signature scheme (DSS). These cryptosystems are aimed at
achieving at least 192-bit post-quantum security. 

Previously, most practical compact cryptosystems are based on elliptic curves, whether it's the pre-
quantum ones based on EC discrete logarithm [SEC#1], or elliptic curve isogenies. The former are
vulnerable to Shor's algorithm on quantum computers; while the latter are suffering from some
performance problems. For example, SIKE [SIKE] is a NIST 3rd-round KEM/PKE alternate
candidate that executes in time that's an order of magnitude longer than lattice-based ones such as
Kyber [Kyber] and Saber [Saber] , although, such difference is not too noticable; likewise, a later
design that didn't manage to get into the NIST PQC project - SQISign [SQISign] from Oct 2020
has signing time that's over 2 seconds long on modern workstation PCs. 

Group-theoretic cryptography are, in the opinion of the author, still in its infancy - with closures of
various theoretical structures and properties being proposed and analyzed without anything
remarkable turning up. Algebraic Eraser [AE] being a prominent example based on braid group for
key agreement that had failed to be standardized in an ISO/IEC standard; WalnutDSA 
[WalnutDSA] being another prominent example that didn't pass the 1st round in the NIST PQC
project. Both due to security issues. 

Xifrat aims to provide PQC schemes that're compact through use of a class of groupoid with the
property of restricted-commutativity. Such groupoid was previously proposed in [NN21], however,
a critical error was made in designing the "mixing" function, which resulted in a total break, just
half a month after its publication. We retroactively name the scheme in that paper Xifrat0 (and
Xifrat0-Kex and Xifrat0-Sign). In this paper, we revisit the design decisions, and devise new
constructions that can be used securely (or more accurately: may be used securely if the underlying
primitive can be proven secure). 

2. Quasigroup and the Blk block
function
In this section, we present the quasigroup table, discuss the property of restricted commutativity and
its generalization (which we will be using in the PKC schemes), and present a construction that
enlarges the quasigroup. 
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2.1. The restricted commutative quasigroup

The quasigroup we're considering has the following properties: 

Non-Associative In General: that is, for most cases,  
Non-Commutative In General: that is, for most cases,  
Restricted-Commutativity: that is, for all cases,  

Additionally, some properties are needed for basic security: 

The quasigroup table should overall be not symmetric;
The quasigroup table should not have any fixed points;

We observed that, in Xifrat0, as well as the StackExchange post that sparked all these discussion,
the quasigroup tables had a regularity that, for each diagonal pair of equal table cells, the opposite
diagonal is also equal. This appears to be a necessary but not sufficient condition for a power-of-2
table to be restricted-commutative; as for non-power-of-2 tables, experiment had shown this
property does not apply to them. 

We used diagonal property for optimization and created a new program that searched for a random
quasigroup table with the seed "xifrat - public-key cryptosystem" which is the
same one that's used in Xifrat0. Although we had hoped for that our optimization can make it
possible to find a 16-by-16 quasigroup, the poly-exponential-time complexity ultimately convinced
us to give up. 

The source code for the new program can be found at our online git repository: https://github.com/
dannyniu/xifrat The new table is as follow: 

// Quasigroup generated using the new program //
  2   0   4   3   5   7   1   6
  1   5   3   4   0   6   2   7
  7   4   0   5   3   2   6   1
  0   2   7   6   1   4   5   3
  3   6   1   2   7   5   4   0
  6   3   5   0   4   1   7   2
  4   7   2   1   6   0   3   5
  5   1   6   7   2   3   0   4

The operation  evaluates to the table cell at a'th row and b'th column, in 0-based index. 

We propose the 1st open problem of this paper: Can we find a verifiably random 16-by-16
quasigroup table? Can we find one efficiently? 

2.2. The generalized restricted commutativity

Now we introduce an important property, that is both useful, and comes naturally from restricted-
commutativity: the generalized restricted commutativity. 

• (ab)c ≠ a(bc)
• ab ≠ ba
• (ab)(cd) = (ac)(bd)

• 
• 

ab
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Theorem 1. Left-associativity of distributiveness 

That is: 
 

Proof:

Observe a case of 3 pairs:  .
due to restricted commutativity:  , 
next, substitute  , we have: 

 , 
again, due to restricted commutativity, we have:  , 
substitute back, we have  , 
generalizing recursively, we have Theorem 1.

Property 1. Generalized Restricted-Commutativity 

That is: 

Proof: From Theorem 1., we have

 

 

2.3. The Blk block function

The Blk block function is defined to enlarge the quasigroup - it operates on vector of 21 tritet
bitstrings. This is 63-bit in total, which we fit in least-significant- bit&byte -first order. 

(a1 b1)(a2 b2) ... (an bn) = (a1 a2 ... an)(b1 b2 ... bn)

(ab)(cd)(ef)
(ac)(bd)(ef)

g=(ac) , h=(bd)
(gh)(ef)

(ge)(hf)
(ace)(bdf)

(x1,1 x1,2 ... x1,n) (x2,1 x2,2 ... x2,n) ... (xm,1 xm,2 ... xm,n) =
(x1,1 x2,1 ... xm,1) (x1,2 x2,2 ... xm,2) ... (x1,n x2,n ... xm,n)

(x1,1 x1,2 ... x1,n) (x2,1 x2,2 ... x2,n) ... (xm,1 xm,2 ... xm,n) =
((x1,1 x2,1)(x1,2 x2,2) ... (x1,n x2,n)) (x3,1 x3,2 ... x3,n) ... (xm,1 xm,2 ... xm,n) =
( ((x1,1 x2,1) x3,1) ((x1,2 x2,2) x3,2) ... (x1,n x2,n ... xm,n)) =
(x1,1 x2,1 ... xm,1) (x1,2 x2,2 ... xm,2) ... (x1,n x2,n ... xm,n)
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Figure 2.1. The algorithm for the Blk function 

Input: 

Output: 

Steps:

Programmatically,  and  are represented as the uint64_t data type, with the top bit clear.

There is one problem with the Blk function, that is, when it's given 2 vectors of repeated tritets, it
produces a vector of repeated tritet. This is due to such input would produce same array of
operations at every lane of output tritet. At the moment, we do not know if this is exploitable in the
actual KEM and DSS scheme. 

We propose the 2nd open problem of this paper: Is there other more efficient construction which is
similar to both Blk and Enc, in that such construction provides key-hiding and is restricted-
commutative over itself? 

3. The Enc and Mlt functions and
Xifrat1-Sign
In this section, we present the Enc and Mlt functions, argue the security property for Enc
empirically, and present construction for a digital signature scheme 

3.1. Restricted Commutativity of Mlt over Enc (and vice
versa)

The Enc function is designed to hide its right-hand operand, that is given  and  ,
it should be cryptographically impossible to discover  (assuming  is randomly generated). The
construction of Enc is inspired by the "sandwich" structure of some of the tweakable blockcipher
modes such as XEX (xor-encrypt-xor) and EME (encrypt-mask-encrypt). The way we design the
Enc function make it impossible to make it restricted-commutative with itself, so we introduced a
second Mlt function, which together with Enc have the following property: 

• A=(a0 a1 ... a20) , B=(b0 b1 ... b20)
• C=(c0 c1 ... c20)

• c0 = (a0 a1 ... a20) (b0 b1 ... b20) (a0 a1 ... a20) (b0 b1 ... b20)
• c1 = (a1 a2 ... a0) (b1 b2 ... b0) (a1 a2 ... a0) (b1 b2 ... b0)
• c2 = (a2 a3 ... a1) (b2 b3 ... b1) (a2 a3 ... a1) (b2 b3 ... b1)
• ...
• c20 = (a20 a0 ... a19) (b20 b0 ... b19) (a20 a0 ... a19) (b20 b0 ... b19)

A, B, C

P C = Enc(P,K)
K K
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As a conservative design decision, we choose to have a 7-slice Feistel-network-like structure for
cryptograms for Enc and Mlt, totalling 448 bits (441 effective), aiming at offering more than 192-
bit security. 

Figure 3.1. The algorithm for the Enc function 

Input: 

Output: 

Steps:

... 

We put parentheses in, but it's just equivalent to the actual operation where all operands are just
evaluated in order. 

Figure 3.2. The algorithm for the Mlt function 

Input: 

Output: 

Steps:

3.2. The Xifrat1-Sign DSS

Now we present the Xifrat1-Sign digital signature scheme. The general structure is similar to
Xifrat0-Sign, but use Enc and Mlt functions to actually achieve unforgeability. 

As with Xifrat0-Sign, we use a hash function, which is instantiated with the XOF SHAKE-256.
We take its initial 448-bit output, interpret it as 7 64-bit unsigned integers in little-endian, and clear
each of their top bits. We denote this hash function as  . 

M( E(a,b), E(c,d) ) = E( M(a,c), M(b,d) )

• A=(A0 A1 ... A6) , B=(B0 B1 ... B6)
• C=(C0 C1 ... C6)

• C0 = (...((B0 A0 B0) B1 A1 B1) ... ) B6 A6 B6
• C1 = (...((B1 A1 B1) B2 A2 B2) ... ) B0 A0 B0
• C2 = (...((B2 A2 B2) B3 A3 B3) ... ) B1 A1 B1
• 
• C6 = (...((B6 A6 B6) B0 A0 B0) ... ) B5 A5 B5

• A=(A0 A1 ... A6) , B=(B0 B1 ... B6)
• C=(C0 C1 ... C6)

• Ci = Ai Bi , i ∈ { 0, 1, 2, 3, 4, 5, 6 }

Hx448-7(m)
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Figure 3.3. Xifrat1-Sign Key Generation 

Uniformly randomly generate 3 cryptograms:  and  , 
Compute  , 

Return public-key  and private-key 

 . 

Figure 3.4. Xifrat1-Sign Signature Generation 

Input:  - the message 
Compute  , 

Compute  , 
Return  , 

Figure 3.5. Xifrat1-Sign Signature Verification 

Input:  - the message ,  - the signature 
Compute  , 

Compute  , 

Compute  , 

If  return [VALID] ; otherwise return [INVALID].

The proof of correctness of the scheme is as follow: 

 

By restricted commutativity between Mlt and Enc,  

Parameters

private key bytes 168

public key bytes 168

signature bytes 56

1. C, K, Q
2. P1 = E(C,K) , P2 = M(K,Q)
3. pk = ( C , P1 , P2 )

sk = ( C , K , Q )

1. m
2. H = Hx448-7(m)
3. S = E(H,Q)
4. S

1. m S
2. H = Hx448-7(m)
3. T1 = M( P1 , S )
4. T2 = E( M(C,H) , P2 )
5. T1 = T2

T1 = M( P1 , S ) = M( E(C,K) , E(H,Q) )
T2 = E( M(C,H) , P2 ) = E( M(C,H) , M(K,Q) )

T1 = T2
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4. The Vec and Dup functions and
Xifrat1-Kex.I
In this section, we present the Vec and the Dup function, discuss the properties needed for
constructing key exchange from it, and present such construction. 

4.1. Restricted Commutativity of Vec and Dup over
themselves

The purpose of the Vec function is the same as that of the Blk function, except it works over a
different domain. The Vec function works over 2 cryptograms that's made up of 7 63-bit slices
similar to Enc and Mlt. The cryptogram is also 448-bit long with 441 effective bits. The
construction of Vec is structurally similar to Blk. 

Within the Vec function, each of the 63-bit slices are ''hashed'' in the Blk function, and applied
sequentially twice interlaced with the other operand. An obvious flaw is that, if we can individually
brutal-force the slices, then we can evaluate the key exchange maths, which is a fatal break. (This
had been an oversight in the previous versions of this paper, which we fix now, by appending the
Roman numeral ".I" to the name of the scheme.) 

This is why, another layer is needed, which we call Dup. The purpose of Dup is, yet again, the
same as Blk as well as Vec, but this time, the 7 slices are ''hashed'', requiring attacker to brutal force

 bits. While this is a overkill for almost every scenario, we leave this as an overhead
in case any powerful cryptanalytic attack is discovered. 

Figure 4.1. The algorithm for the Vec function 

Input: 

Output: 

Steps:

... 

7 × 63 = 441

• A=(A0 A1 ... A6) , B=(B0 B1 ... B6)
• C=(C0 C1 ... C6)

• C0 = (A0 A1 ... A6) (B0 B1 ... B6) (A0 A1 ... A6) (B0 B1 ... B6)
• C1 = (A1 A2 ... A0) (B1 B2 ... B0) (A1 A2 ... A0) (B1 B2 ... B0)
• C2 = (A2 A3 ... A1) (B2 B3 ... B1) (A2 A3 ... A1) (B2 B3 ... B1)
• 
• C6 = (A6 A0 ... A5) (B6 B0 ... B5) (A6 A0 ... A5) (B6 B0 ... B5)
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Figure 4.2. The algorithm for the Dup function 

Input: 

Output: 

Steps:

For ease of readability,  will be rewritten as  . 

4.2. The Xifrat1-Kex.I KEM

As we've had the generalized restricted-commutativity property, we can construct a 9-variable key
agreement scheme by laying out them in a square like this: 

 

For ease of visualized intuiation, we lay them graphically: 

// 9 variables //
a b c
d e f
g h i

The sum is identical regardless whether the matrix is evaluated row-first or column-first. Thus we
take the middle column as the public key and the middle row as the ciphertext;  as "server-
side" private key, and  as "client-side" secret share; The variables  are used as
public information. The public key and the ciphertext are both in some kind of "sandwich"
structure we mentioned in the previous section, which we believe makes recovering private keys
impossible. 

It is obvious at this point that the public information can be derived from a seed using some
extendable output function (XOF), (prior art: [NewHope]). We instantiate such XOF with
SHAKE-128. We take 448-bit in turn, interpret it as 7 64-bit unsigned integers in little-endian and
clear each of their top bits, and generate 5 of these and assign them to  in order. We
denote this XOF as  . 

• A=(A0 A1) , B=(B0 B1)
• C=(C0 C1)

• C0 = (A0 A1) (B0 B1) (A0 A1) (B0 B1)
• C1 = (A1 A0) (B1 B0) (A1 A0) (B1 B0)

D(D(a,b),c) (a ∙ b ∙ c)

(abc)(def)(ghi) = (adg)(beh)(cfi)

b, h
d, f a, c, e, g, i

a, c, e, g, i
Hx[448-7]×2(seed)
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Figure 4.3. Xifrat1-Kex.I Key Generation 

Uniformly randomly generate choose a  , 
Generate  using  , 

Uniformly randomly generate 2 cryptograms  , 
Compute  , 
Return  as the public key and 
as the private key. 

Figure 4.4. Xifrat1-Kex.I Encapsulation 

Expand  into  using  , 

Uniformly randomly generate 2 cryptograms  , 
Compute  , 
Compute  , 
Return  as shared secret and  as ciphertext . 

Figure 4.5. Xifrat1-Kex.I Decapsulation 

Return  as shared secret. 

Parameters

private key bytes 232

public key bytes 120

ciphertext bytes 112

Annex A. References
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1. seed
2. a, c, e, g, i Hx[448-7]×2(seed)
3. b, h
4. p = (b ∙ e ∙ h)
5. pk = ( seed , p ) sk = ( seed , b , h )

1. seed a, c, e, g, i Hx[448-7]×2(seed)
2. d, f
3. ss = (a ∙ d ∙ g) ∙ pk ∙ (c ∙ f ∙ i)
4. ct = (d ∙ e ∙ f)
5. ss ct

1. ss = (a ∙ b ∙ c) ∙ ct ∙ (g ∙ h ∙ i)

• 

• 

• 
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