
Is the JCJ voting system really coercion-resistant?
Véronique Cortier, Pierrick Gaudry, Quentin Yang

Université de Lorraine, Inria, CNRS
April 2022

Abstract—Coercion-resistance is a security property of elec-
tronic voting, often considered as a must-have for high-stake
elections. The JCJ voting scheme, proposed in 2005 by Juels,
Catalon and Jakobsson, is still the reference paradigm when
designing a coercion-resistant protocol. We highlight a weakness
in JCJ that is also present in all the systems following its general
structure. This comes from the procedure that precedes the tally,
where the trustees remove the ballots that should not be counted.
This phase leaks more information than necessary, leading to
potential threats for the coerced voters. Fixing this leads to the
notion of cleansing-hiding, that we apply to form a variant of JCJ
that we call CHide. One reason for the problem not being seen
before is the fact that the associated formal definition of coercion-
resistance was too weak. We therefore propose a definition that
can take into accounts more behaviors such as revoting or the
addition of fake ballots by authorities. We then prove that CHide
is coercion-resistant for this definition, and that JCJ is coercion-
resistant for a slightly weakened version of our definition, that
models the leakage of information in JCJ.

Index Terms—E-voting, coercion-resistance, JCJ protocol.

I. INTRODUCTION

Internet voting allows to take part into an election without
being physically present at a polling station. It can be used
for many reasons, such as providing people with low mobility
or expatriates with a way to vote beside postal voting, or as a
necessary alternative during the pandemic. As of today, elec-
tronic voting has been used for politically-binding elections
in several countries (Australia, Switzerland, Estonia, to name
but a few). For such high-stakes contexts, coercion may be
an important threat. Coercion occurs when an attacker forces
a voter to vote in a specific way, using a threat or a reward.
This phenomenon is known to exist in real-world elections,
with traditional voting at polling stations. An electronic voting
solution which is not designed to tackle coercion could allow
the attacker to coerce a larger number of voters, or to gain
a more convincing evidence that the coerced voters actually
obeyed. Since Internet voting is a remote voting process, this
introduces new attacks compared to voting at polling station.
The most basic attack is when the coercer asks the voter
to give them all the voting material that they received. The
classical verifiability mechanisms will then provide a proof to
the coercer that the voter did not cheat.

The JCJ protocol. A famous protocol with the aim to
counter this coercion threat was proposed in 2005 by Juels,
Catalano and Jakobsson [14]; they also provide a formalization
of the notion, allowing to give security arguments. This is
now called the JCJ protocol and remains the reference for the
research on coercion-resistance in electronic voting. The key

idea of JCJ is that voters can give fake voting material (a fake
credential) to the coercer, and pretend that it is genuine. The
coercer, who votes with the provided credential, should have
no way to detect whether the credential is valid or not. In order
to guarantee this, during the voting phase, ballots are accepted
in the ballot box regardless of the validity of their credentials;
those which use an invalid credential or a duplicate credential
are removed later, during a cleansing phase. The output of this
cleansing phase is a set of ballots that is tallied in the usual
way. The main security feature is that given a credential and
all the publicly available information, the coercer is unable to
tell whether the credential is real or fake. At the same time,
for the legitimate voters, verifiability is preserved.

For coercion-resistance, the cleansing phase is critical. In
JCJ, there is some unavoidable information that leaks, namely
the number of the ballots sent to the public board (the input
of the cleansing phase) and the number of ballots sent to
the tallying procedure (the output of the cleansing phase).
It is well known that the difference ∆ between these two
numbers can reveal some information to the coercer. Therefore
it is recognized as important to ensure some “noise”, coming
from revotes or dummy ballots, that would mask the action
of a voter resisting a coercer. Still, depending on its exact
definition, the cleansing phase could leak more than just this
difference. For instance, in [23], the authors propose a protocol
where the coercer can deduce the number of ballots which
pretend to be from each voter, and exploit this additional
information (which is not available in the original JCJ). To
protect from such an exploit, they propose that the authorities
add a random number of dummy ballots for each voter, which
mitigates the impact of the leakage.

A weakness in JCJ. In fact, we unveil that even in the
JCJ original protocol, the cleansing step leaks more than the
difference ∆ between the sizes of its input and output. Indeed,
first, the ballots with the same credentials (i.e. revotes) are
handled, keeping only one ballot per credential. Second, the
ballots corresponding to invalid credentials are eliminated. The
size of the intermediate ballot box is leaked. More than that,
anyone can observe the distribution of the number of revotes.
We provide a few examples where this allows the attacker
to fully break coercion-resistance, even if dummy ballots are
used. While these are extreme scenarios that are unlikely to
occur in practice, this highlights that in realistic scenarios,
the attacker could still gain a non-negligible advantage by
exploiting the leakage, in the sense that even though the
attacker is not 100% sure that the voter cheated, a hint is

given that should not exist if the cleansing procedure were
leaking only ∆. All the variants and improvements on JCJ
that we know of are also affected by this vulnerability.

A cleansing-hiding protocol. We propose a modification of
JCJ, that we call CHide, and that is not subject to this weak-
ness. The key modification is the introduction of a cleansing
hiding procedure, that replaces the original cleansing phase.
JCJ was using plaintext equivalence tests (PET) as a main
cryptographic tool. CHide relies on slightly more complex
MPC building blocks to be run between the trustees who hold
shares of the decryption key. Instead of PETs that return a bit
telling whether two ciphertexts represent the same cleartext,
we use a primitive Eq that returns an encrypted version of
this bit, in order to hide which ballots are removed and for
which reason (revote or fake credential). Then a few logical
gates primitives Or, And, etc. must be operated on encrypted
bits. At the end of the cleansing, for each (mixed and re-
randomized) input ballot, a bit is decrypted, and indicates
whether the ballot must be discarded (without revealing the
reason). As a consequence, in CHide, the adversary can only
learn minimal information from the cleansing phase, namely
the number ∆ of ballots that have been removed. Of course,
each step comes with a zero-knowledge proof that the expected
operation has been performed, so that anyone can check that
the result of the election is correct.

A stronger notion of coercion-resistance. The leakage of
JCJ was not noticed before because the original JCJ definition
of coercion-resistance was too weak. It was already remarked
in [11] that JCJ’s original definition was flawed in the sense
that it could never be realized. The fix proposed in [11] repairs
this flaw but both definitions do not consider the case where
voters may revote and hence miss the situation where JCJ
leaks too much information. These definitions also model the
addition of ballots with fake credentials in a contrieved way
in the sense that each fake ballot must be cast by a voter that
sacrifices her right to vote.

We propose a more general definition of coercion-resistance
that accounts for revoting as well as the addition of fake ballots
by authorities. We prove that CHide is coercion-resistant
according to this definition, and that JCJ is not, thus showing
that we indeed capture the weakness of the leakage during the
cleansing phase.

While JCJ does not verify our definition of coercion-
resistance, it does provide a certain level of security. We
identify the exact nature of the leakage in JCJ and propose
an alternative (weaker) definition of coercion-resistance that
is achieved by JCJ. Beyond giving a concrete description of
the leakage that occurs in the JCJ protocol, this demonstrates
that there are several shades of coercion-resistance depending
on the leakage which is considered acceptable. More generally,
for any variant of JCJ in the literature, if the leakage during
the cleansing is different from the one in JCJ, our definition
of coercion-resistance could (in principle) be weakened to
capture exactly this leakage. Still, CHide shows that a better
coercion-resistance can be achieved.

Summary of the contributions.

• We discovered a vulnerability in JCJ’s scheme, which
shows that it is not perfectly coercion-resistant, due to a
leakage during the cleansing phase, before the tally.

• We propose CHide, a cleansing-hiding variant of JCJ, that
is not subject to this problem.

• We propose a new definition of coercion-resistance,
which properly takes revoting and dummy ballots into
account.

• We prove that CHide is coercion-resistant for this def-
inition, while JCJ is not, thus showing the definition is
precise enough to capture the leakage during cleansing.

• We explain how our definition can be weakened to
describe precisely the level of coercion-resistance of JCJ-
like schemes, in particular the original JCJ.

Related work. To provide coercion-resistance, many authors
used the core idea of JCJ to allow the voters to provide the
coercer with a fake credential. Civitas [8] is one of the most
notable examples. It is widely considered as an important step
towards a practical version of JCJ. Among other things, Civitas
introduces the notion of ballot blocks, in order to mitigate the
cost of the cleansing phase that is quadratic in the original
JCJ. This reduces somehow its coercion-resistance, and this
reduction can be captured with our definition.

Other attempts were made to improve the efficiency of JCJ.
In [23], Spycher et al. claim a linear time cleansing, but this
gain of efficiency comes with a deterioration of the coercion-
resistance, as explained above. Later on, the same authors pro-
posed other schemes with a clear trade-off between efficiency
and coercion-resistance, thanks to anonymity sets [22].

Other improvements of JCJ include [1], where Araújo et
al. propose a way to perform the cleansing phase in linear
time, and [7], where Clark and Hengartner introduce the idea
of over-the-shoulder coercion-resistance. Both schemes would
suffer from the same cleansing leakage as JCJ, but it can be
observed directly from the public board, when the adversary
can still submit ballots. In contrast, the leakage in JCJ can only
be observed during the cleansing phase, when the adversary
can no longer submit ballots.

Apart from the fake credential paradigm, a natural approach
to address coercion is through deniable revoting, where the
coerced voter complies with the coercer but revotes later when
they have a moment of privacy. The ballot cast under coercion
is invalidated by the subsequent ballot, in such a way that
the coercer cannot tell whether the coerced voter revoted or
not. The Estonian voting system [19] completely relies on
revoting to mitigate coercion, and examples of recent academic
proposals based on revoting are VoteAgain by Lueks et al. [18]
and the scheme of Locher et al. [17]. This approach assumes
a weaker adversary than in the JCJ family since the adversary
can no longer submit ballots passed a certain point.

All these schemes (including JCJ) do not address the so-
called Italian attacks. Such coercion attacks exist indepen-
dently of the use of electronic voting. They are based on the
information given by the tally and can occur when the ballots

2

are complex enough, so that voters can “sign” their ballot
using a specific pattern on the low-stake parts of the answers.
When using electronic voting, the typical way to prevent such
attacks is tally hiding, i.e. to decrypt only the winners of
the election, without decrypting the individual ballots. The
challenge is then to preserve verifiability. Therefore tally-
hiding usually relies on homomorphic encryption, or more
generally on multiparty computation (MPC) techniques [3],
[9], [15]. Designing a tally-hiding scheme is out of scope of
this paper but interestingly, CHide could be easily coupled
with such tally-hiding schemes, right after the cleansing phase.

Regarding formal definition of coercion-resistance, we al-
ready mentioned the recent work of Haines and Smyth [11]
that attempts to survey and unify the various definitions of the
literature, starting with the one of JCJ where the adversary
must distinguish between a real and an ideal game modeling
the protocol.

Another approach to define coercion-resistance is given by
Küsters et al. in [16]. The authors define δ-coercion-resistance
with two conditions: first, the coerced voter must have a
strategy to meet their objective with overwhelming probability
(i.e. they can actually evade coercion and vote for the desired
candidate); second, the adversary cannot distinguish the case
when the voter uses their evasion strategy from the case where
the voter forwards all received messages to the adversary, with
an advantage greater than δ. This is therefore a way towards a
quantitative definition of coercion-resistance, giving more than
a yes/no answer.

II. UNVEILING A SHORTCOMING IN JCJ

We provide a high level description of the JCJ protocol
and show why coercion-resistance is undermined in case of
revoting.

A. Overview of JCJ

Setup. During the setup, the Election Trustees jointly gen-
erate the election public key pkT , that is sent to the public
board. Then, the Registrars jointly compute one credential σ
for each voter. Each credential is sent privately to the voter,
possibly with designated zero-knowledge proofs to guarantee
voters that their credential is valid. The Registrars send to the
public board the list R = {enc(σ1, pkT), . . . , enc(σn, pkT)}
of encrypted credentials, in some random order.

Voting phase. To cast a vote, a voter encrypts her vote ν with
the election public key pkT . She also encrypts her credential
σ and proves knowledge of ν, of σ, and proves that the two
encryptions are linked, yielding a proof π. The resulting ballot
b = (enc(ν, pkT), enc(σ, pkT), π) is sent anonymously to the
bulletin board.

The voting phase is depicted in Figure 1.

Tally phase. The tally phase is the key part of the JCJ
protocol. It consists of four steps.

1) Duplicates are removed using Plaintext Equivalence
Tests (PET). In case several ballots contain the same

Voter
σ, ν

Public board

pkT , enc(σ1, pkT), . . . , enc(σn, pkT)

. . .

. . .
b = (enc(ν, pkT), enc(σ, pkT), π)

. . .anonymous
channel

b

Fig. 1. Voting phase in JCJ.

credential, only one is kept, according to the revote
policy. Typically, the last submitted ballot is kept.

2) The trustees mix the ballots.
3) PETs are used again, to detect ballots that do not have

a valid credential, that is, that do not have a credential
that appears in the list R of encrypted credentials.

4) Finally, each remaining ballot is decrypted so that the
result can be computed.

Each step includes zero-knowledge proofs that the right oper-
ation is performed.

Evasion strategy. If Alice is under coercion, she simply
provides her coercer with a random (and fake) credential σ′.
Ballots containing σ′ will be removed at Step 3 of the tally
phase. Thanks to the mixing phase, the coercer will be unable
to learn that his ballot has been suppressed. Alice then uses
her real credential σ to cast her vote when she is not under
the control of her coercer.

B. Leakage in case of revoting

For a verifiable voting system, it seems unavoidable to leak
the total number of received ballots since ballots are visible
as soon as there is some public board. The number of valid
ballots is also leaked unless more sophisticated tally methods
are used such as tally-hiding schemes [3], [15]

However, JCJ leaks much more information in case of
revoting. Indeed, JCJ leaks:
• nb the total number of received ballots
• nv the total number of valid (and counted) ballots
• nr the total number of revotes
• and even the complete distribution of revotes, per (en-

crypted) credential.
This can be exploited by a coercer to detect when a coerced

voter disobeys. Observe first that there is no reason to assume
that revoting is independent from the choice of candidate.
Indeed, revoting is often due to voters changing their mind
between candidates, or even opting for some candidate C due
to some late announcements about C, in the press.

Attack against coercion-resistance. We consider an extreme
case, with two candidates A and B and such that voters voting
for A do not revote while voters voting for B always revote,
exactly once. We denote:
• rA the number of votes for A,

3

• rB the number of votes for B.
Due to the distribution of voting behaviors that we consider,
the number of revotes corresponds to the number of votes for
B sent by the honest voters.

Assume now that Alice wants to vote for B but is instructed
by her coercer to vote for A (or abstain).
• If Alice obeys, the coercer will observe rB = nr.
• If Alice disobeys and casts one ballot for B, the coercer

will observe that rB = nr + 1.
Hence the coercer will detect that Alice has disobeyed, which
breaks coercion-resistance.

One could argue that Alice, our coerced voter, should follow
a different evasion strategy and cast one ballot if she votes for
A and two ballots if she votes for B. This does not work
either. Indeed, assume now that Alice wants to vote for A, but
is instructed to vote for B (resp. abstain).
• If she obeys, she will provide her coercer with her real

credential σ. The coercer will then cast exactly one ballot
for B using σ (resp. zero).

• If she disobeys, she will provide a fake credential σ′, that
the coercer will use to vote for B (resp. not use). Alice
will vote for A using σ.

In the first case, rB = nr + 1, while in the second case,
rB = nr. Once again, the coercer is able to detect that Alice
disobeyed and coercion-resistance is broken.

Discussion. One possibility to correct this flaw is to define
other evasion strategies in case of revoting. The evasion
strategy devised in JCJ (vote once, with the correct credential)
is too weak. However, it seems very hard in practice to instruct
voters to use revoting, according to a certain distribution,
when they are under coercion. This is made even harder by
the fact that the strategy may evolve during time depending
on new events that could change the revoting distribution of
honest voters. We believe that this will not lead to any realistic
scheme.

Hence we propose another option, in Section III, that
consists in renforcing JCJ in case of revoting, such that there is
no leakage besides the total number of ballots and the number
of valid ballots.

One could also argue that the distribution considered for
the attack (voters always vote twice when they vote for B)
is very contrived, which is certainly true. But as soon as the
distribution of revotes is not independent from the distribution
of votes per candidate, the coercer will learn some information,
and hence will detect when a voter disobeys with some non
negligible probability. This can be amplified if the coercer
coerces several voters at the same time. Hence coercion-
resistance remains broken.

C. More noise is needed

A known issue of JCJ is the fact that fake ballots should
be randomly added, in order to hide to a coercer that her
ballot has been removed. Indeed, imagine a situation where in
several elections, absolutely no ballots with fake credentials
are removed at Step 3. Then in a new election with the same

set of voters, a coercer asks Alice to provide her credential
and observes that exactly one ballot is removed at step 3.
Very likely, Alice has disobeyed.

Hence, it is necessary that a non-deterministic number of
ballots is removed during the tally. In JCJ, this “noise” comes
from honest voters sending ballots with an invalid credential
(dummy ballots), but this source alone may not be sufficient.
A natural approach is to have the authorities add a random
number of dummies. This solution is proposed in [23], where it
is used to mitigate a leakage during the tally. This noise made
of fake ballots should however be calibrated carefully since the
computation overhead of additional ballots is important. In a
context where revoting is a well spread behavior, it could be
judicious to rely on revoting, at least partially, as an additional
source of noise. This is however not possible in JCJ since these
two sources of noise can be distinguished.

III. CHIDE: A CLEANSING-HIDING VARIANT OF JCJ

We propose a modification of JCJ. During the tally phase,
the trustees will perform the same tasks of cleansing, mixing
and decrypting, but in a hidden way, so that the coercer
(or anyone) does not learn how many ballots were deleted
because they correspond to revotes or to invalid credentials.
For this, we propose a novel cleansing algorithm based on
MPC primitives.

A. Cyrptographic primitives

ElGamal encryption scheme. We use the ElGamal encryp-
tion scheme on elliptic curves, which is convenient for its
efficiency and its homomorphic property. If g is the group
generator and pk the public key of the recipient, in order
to encrypt a message m, one chooses a random exponent
r and compute Enc(m, pk) = (gr, gm pkr). We impose the
message m to be taken in a small list of valid mesages, so that
decryption is feasible (in general recovering m from gm would
require to solve a discrete logarithm problem). An important
special case is when m is a bit, because this is the kind of
inputs used by the MPC primitives we mention below. For a
general message m, we call bit-wise encryption of m the list
of the encryptions of the bits in a binary encoding of m.

Distributed key generation / threshold decryption. A
DKG [10] is a protocol which allows the participants to
generate an ElGamal public key pk in such a way that each
participant gets a share of the secret key. The protocol also
generates a public commitment to each participant’s share.
A threshold t is set, with the following properties. If t or
less participants collude, they can not deduce any information
about the secret key, nor about any ciphertext. If t + 1 or
more participants collaborate, they can combine their shares
to recover the secret key. Furthermore, they can jointly run a
threshold decryption protocol, so that, using their shares, they
can jointly decrypt a ciphertext encrypted with pk, without
actually recovering the secret key nor revealing any informa-
tion about their secret share. The resulting decryption comes
with a zero-knowledge proof (ZKP) of correct decryption that
anyone can verify.

4

Designated Verifier Zero-Knowledge Proof (DVZKP). In
complement to traditional zero-knowledge proofs that anyone
can verify, the JCJ protocol requires a DVZKP [13]. A verifier
V holds a key pair. Using the public key, any prover can
produce a proof for a statement, so that only V is convinced
that the statement is true. This is achieved by allowing the
verifier to forge fake but valid DVZKPs for any statement,
using their private key.

Verifiable mixnets. A mixnet [24] allows the participants
to shuffle and reencrypt a list of ciphertexts. The participants
are not required to know the (shares of the) decryption key.
As soon as one participant is honest, the permutation remains
secret. The result comes with a zero-knowledge proof that the
resulting ciphertexts are re-encryptions of the ones given in
input, up to permutation.

Distributed random bit generation. A set of participants can
follow a random bit generation protocol RandBit, such that
they jointly produce an encrypted bit Enc(b, pk). Each partici-
pant gets a share bi of the bit b, in such a way that knowing all
these partial informations allows to reconstruct b. Furthermore,
the transcript of the communications of RandBit serves as a
proof that Enc(b, pk) is indeed the encryption of a bit, that is
unknown as soon as one of the participants is honest (assuming
the decryption key is unknown).

Logical operations on encrypted bits. There are MPC proto-
cols that allow the owners of the shares of the decryption key
to jointly perform logical operations on encrypted bits, based
on their threshold decryption protocol. This is done without
revealing the cleartexts to anyone, and in a verifiable manner
(the threshold decryption is not applied directly to the inputs).
The main building block we use is the CGate protocol [21],
that allows to compute an encryption of a logical and (a
conjunction) of the encrypted bits given in input. Combining
this with the homomorphic property of ElGamal encryption,
one can design various protocols for all the logical operations
on bits (e.g. negation, disjunction, exclusive or).

In the cleansing phase of our protocol, we will use specifi-
cally the Eq (equality test) and the Or (disjunction) protocols
that work on encrypted bits. The Eq protocol is extended to
bit-wise encrypted data, by computing the conjunction of all
the equality tests on encrypted bits.

In the appendix, we recall for completeness the crypto-
graphic primitives that were not already present in the original
JCJ protocol, namely the distributed random bit generation and
the logical operations on encrypted bits.

The security of all the primitives relies on the Decisional
Diffie-Hellman assumption, and all proofs are made in the
Random Oracle Model, in particular due to the use of the
Fiat-Shamir tranformation to get non-interactive ZKPs.

B. Description of the CHide protocol
Participants. The CHide protocol is similar to JCJ, and the

list of participants is the same. We recall them and emphasize
the trust assumptions on them.
• The public board. This is an append-only list of data

where all the other participants can write. At any time,

the content of the board can be read by anyone, and the
view is the same. The board is assumed to be honest.
See [12] for a possible realization of this.

• The auditors. Any entity can perform checks about the
consistency of the data present on the board. This includes
the validity of all the zero-knowledge proofs. We assume
that there is at least one honest auditor that will reveal
any problem that can be detected by reading the public
board.

• The registrars. A set of nR participants play the role
of registrars. They send voting material to the legitimate
voters. For privacy and verifiability, it is assumed that
at least one registrar is honest. For coercion resistance,
it is assumed that all of them are honest (no registrar
collaborates with the coercer).

• The election trustees. A set of nT participants play
the role of election trustees. They hold the key shares
and perform the cleansing and the tally. For privacy and
coercion-resistance, it is assumed that at most t dishonest
trustees can collaborate, where t < nT is the threshold
used in the DKG. For verifiability, there is no trust
assumption on them.

• The voters. There are nV voters. Some of them may be
dishonest and collude with the attacker. Honest voters
may be subject to a coercion attempt by the attacker.

Setup phase Setup. A security parameter κ is chosen.
The election trustees jointly run the DKG protocol, yielding
a public key pk guaranteeing security at this level. The DKG
also produces a list of commitments hi, one for each of the
nT trustees. All this public data (hi)1≤i≤nT

, together with pk
is sent to the public board. The secret shares are denoted by
(si)1≤i≤nT

.

Registration phase Register. In JCJ, the public board
contains the encrypted credentials. The main difference in
CHide is that the credentials are now encrypted bitwise.
The registrars produce credentials as follows. For all 1 ≤
i ≤ nV , they run κ times the RandBit protocol. The
resulting encrypted bits are denoted Ri = (Ri,1, . . . , Ri,κ),
and the proofs that they have been correctly generated are
denoted by ΠCred

i . The registrars send to the board the list
R = (Ri,ΠCred

i)1≤i≤nV
. Each registrar keeps the random

values they used in the RandBit protocol.
The voters authenticate themselves with the registrars. For

each voter, the registrars choose a random element in the list
R which was not chosen previously, and send to the voter
its index j in R and their shares of the bits. Each registrar
also produces and sends a DVZKP that their shares are correct.
We denote by ∆i,j = (∆i,j,1, . . . ,∆i,j,κ) the DVZKPs for the
data coming from registar i and sent to the voter who receives
the credential with index j, using an untapable channel.

Then, the voters combine the shares to recover the plaintexts
σ = (σ1, . . . , σκ), which form their credentials. They read
their entries in the public list R, and, via the DVZKPs, they
verify that these plaintexts correspond to their entries.

Voting phase Vote. During the voting phase, in order

5

to cast a vote for the option ν, a voter computes C1 =
Enc(ν, pk), and produces a ZKP π1 that the randomness of
the encryption is known and that ν is a valid voting option.
They also compute a bitwise encryption of their credential
C2 = (Enc(σ1, pk), . . . ,Enc(σκ, pk)). An additional ZKP
π2 is produced, that proves that C2 contain encryptions of
bits. It also links C1 and C2, so that the pair (C1, C2) is
non-malleable (concretely, since we use ZKPs based on Fiat-
Shamir, the data hashed to create the challenge contains this
pair). The ballot is (C1, C2, π1, π2). It is sent to the public
board by the voter, using an anonymous channel.

The voters check that their ballot is indeed present on the
public board.

The auditors verify that the ZKPs are valid and that all the
C1 and C2 parts of the ballots present in the public board are
unique.

Cleansing and tallying phase. Once the voting phase is
finished, the election trustees get the list of ballots published
on the board. They run the following cleansing procedure
Cleanse on them, where all the intermediate data and
verification transcripts are sent to the public board.

1) Discard all the ballots marked as invalid by the audit
procedure. Denote by B = (Ci1, C

i
2)i the remaining

ballots, without the ZKPs. Let nb be the size of this
list.

2) For 1 ≤ i ≤ nb and for all j > i, run the bit-
wise equality test protocol Eq(Ci2, C

j
2). This produces

encrypted boolean Di,j and verification transcripts ΠEq
i,j .

3) For 1 ≤ i ≤ nb, run the logical disjunction pro-
tocol Or(Di,i+1, · · · , Di,nb

). This produces encrypted
booleans Di and verification transcripts ΠOr

i . The ci-
phertext Di encrypts 1 if there is a ballot after ballot i
with the same credential, meaning that ballot i should
be removed since only the last ballot of a voter is kept.

4) For 1 ≤ i ≤ nb, and for 1 ≤ j ≤ nV , run the bit-
wise equality test protocol Eq(Ci2, Rj). This produces
encrypted booleans Ti,j and verification transcripts Π̃Eq

i,j .
Then run the disjunction protocol Or(Ti,1, · · · , Ti,nv

)
and produce the booleans Ti with verification transcripts
Π̃Or
i . The ciphertext Ti encrypts 1 if the credential of

ballot i appears in the Rj . Finally, for 1 ≤ i ≤ nb,
compute Fi = Not(Ti) (this is done homomorphically,
and does not require a ZKP). If Fi encrypts 1 then
ballot i should be removed since it contains an invalid
credential (since it does not appear in any Rj).

5) For 1 ≤ i ≤ nb, run the disjunction protocol Or(Di, Fi)
to obtain Ii and Πi. The ballots i such that Ii encrypts
1 are the invalid ballots.

6) Apply the mixnet protocol on the tuples (Ci1, I
i)i to

produce (C
′i
1 , I

′i) and a verification transcript ΠMixnet.
7) Decrypt all the I

′i’s. This reveals the plaintext z′i and a
ZKP of correct decryption ΠDec

i,1 .

The bit z′i tells whether the encrypted vote C
′i
1 corresponds to

an invalid ballots, without revealing whether a ballot has been
discarded because of a revote or an invalid credential.

The election trustees finally decrypt all the C
′i
1 such that

z′i = 0, and produce ZKPs of correct decryption ΠDec
i,2 .

The auditors check the validity of all the data published on
the board during this phase.

Evading coercion. When under coercion, a voter can lie
about the registration as follows. First, they generate nrκ
shares at random in {0, 1} and use the ciphertexts Rj for the
index j received during registration. Then they forge a fake
DVZKP that the ciphertexts are encryptions of the shares and
send the fake shares, the real index j, the real ciphertexts Rj
and the fake DVZKP to the coercer. We denote Fakecred
this procedure.

Assumptions on the communication channels. As in the
original JCJ protocol, the communications between the voters
and the registrars must be untapable, and the communication
between the voters and the public board must be anonymous.
This is required only for the coercion-resistance property.
Verifiability and vote secrecy do not rely on non-standard
communication channels assumptions.

For verifiability, we assume that honest voters check that
their ballots appear on the public board and complain as
soon as something unexpected happens. For weaker voters that
check their ballots only when they vote, the ballot order should
be enforced e.g. using chain of hash (see e.g. [2]).

Efficiency considerations. In terms of computational and
communication costs, the CHide system is slightly less ef-
ficient, but still in the same ballpark than JCJ. The encrypted
credentials are now formed by κ ciphertexts instead of a
single one. This κ factor is probably affordable by the au-
thorities since the task is highly parallel. For the voters, the
computational load increases but the total cost for realistic
parameters is around a thousand exponentiations, which should
be a matter of seconds with a standard implementation in
Javascript running within a modern browser.

For the talliers, the cleansing phase is more complex than
the one in JCJ, but still requires a number of exponentiations
that grows quadratically with the number of ballots received
on the board. The main difference is that due to the MPC
tools, the number of communication rounds between them is
no longer constant, but becomes logarithmic in the number of
ballots. This assumes that in steps 3 and 4 of the cleansing, the
implementation of the Or with multiple inputs is done with a
binary tree, each node corresponding to a bivariate Or.

IV. DEFINING COERCION-RESISTANCE

One of the reasons why the flaw was not discovered in
the original proposition of the JCJ protocol is the fact that the
definition of coercion-resistance itself was flawed, in the sense
that no scheme can be proved secure w.r.t. this definition. We
recall here this definition and discuss its issues, as well as the
ones of the variant proposed in [11]. We then introduce our
own definition, that is used to analyse the security of CHide.

A. Voting system

A voting system is a tuple of five functions or protocols
(PSetup,Register,Vote,Fakecred, Ptally) such that:

6

• PSetup(κ, nT , t) is a protocol run by nT authorities. They
take as input the security parameter κ and the threshold t
of authorities for decryption. The protocol computes the
public key of the election pk, as well as the secret and
public shares si, hi for each authority.

• Register(κ, pk, nV) generates a private credential ci
for each voter ∈ [1, nV]. It also returns some public infor-
mation R that contains the public part of the credentials,
and any necessary transcript for proving correctness.

• the function Vote(c, ν, pk) takes as input the public key
of the election pk, a credential c and a vote ν and returns
a ballot. The public key is often omitted for simplicity.

• Fakecred(c) takes as input a valid credential c and
returns a fake one c̃. Note that Fakecred may also take
as input some long term secret keys of the voters, as well
as some public information (e.g. R) as in JCJ but this is
left implicit for the sake of readability.

• Ptally(BB , pk, {hi, si}, t) is a protocol run by the au-
thorities that possess the secret shares {si}. It takes as
input a board BB , that is, a list of ballots, the public key
of the election pk, the threshold t and returns the result
X of the election together with a proof Π of correct tally.

Note that the registration phase is actually a protocol since it
is run by several authorities. However, for coercion-resistance,
we assume all the registrars to be honest hence we consider a
single function for registration.

B. The original definition of JCJ

The intuition of the JCJ definition of coercion-resistance
is that an adversary must not guess whether a coerced voter
obeyed or evaded coercion. When the voter obeys (b = 1
in the definition), she gives her real credential and abstains
from doing any other action. Note that a coercer may ask the
voter to cast some specific vote or to perform some specific
computations, but this is not considered in the definition as the
adversary might as well do it herself. When the voter evades
(b = 0 in the definition), she gives a fake credential and casts
a vote for the desired voting option (or abstains, depending on
her personal choice).

This yields the game RealJCJ presented in Algorithm 1,
where κ is the security parameter, nV denotes the total number
of voters while nA is the number of corrupted voters, under
the control of the adversary. Voting choices are represented
as integers between 1 and nC . The symbol φ represents the
choice to abstain. The adversary selects V , the set of corrupted
voters. She is given the corresponding private credentials
as well as all the public information R such as the set
of encrypted credentials in the JCJ protocol. The adversary
then choses (j, β). The number j designates the voter under
coercion. Voter j will try to vote β when she disobeys. The
evasion strategy is modeled in lines 11 and 12: when the voter
disobeys, she creates a fake credential and casts a vote for β.
Otherwise, she gives her real credential.

Honest voters votes according to a distribution D. The
distribution D takes as parameter the number of voting option
nC and returns a value that may be:

• any valid vote ν ∈ [1, nC],
• φ, which represents abstention,
• λ, which represents the case where a voter casts a vote

with an invalid credential.
By convention, we extend the Vote function to votes equal
to λ as follows

Vote(c, λ, pk) = Vote(c̃, ν, pk)

where c̃ = Fakecred(c) and ν is sampled from [1, nC].

It is worth noting that the advantage of an adversary in game
RealJCJ will always be non negligible since the adversary can
always compare the result of the tally with the expected result,
given the distribution D of the voting intentions. For example,
if the adversary wants to cast a vote for a very unlikely
candidate c, he may observe cases where her candidate c
does not appear in the result, which is a clear indication
that the coerced voter disobeyed. Hence, the JCJ definition
compares the advantage of an adversary in game RealJCJ with
the advantage in an ideal game IdealJCJ, where the adversary
has no other information than what is unavoidably leaked, that
is, the information leaked by the result. The game IdealJCJ is
presented in Algorithm 2. Compared to the original definition,
we present a slightly modified version that reasons on the
clear votes only. This simplifies the definition, focusing on
the information given to the adversary. All our claims and
remarks hold on the original definition as well.

Definition 1 (adapted from [14]). A voting system is JCJ-
coercion resistant if for all PPT adversary A, for all parame-
ters nT , t, nV , nA, nC , and for all distributions D, there exists
a PPT adversary B and a negligible function µ such that

|Pr(IdealJCJ(B, κ, nV , nA, nC ,D) = 1)

− Pr(RealJCJ(A, κ, nT , t, nV , nA, nC ,D) = 1)| ≤ µ(κ) .

As noticed in [11], this definition cannot be realized by
a scheme which uses a public board. The reason is that, in
the real game RealJCJ, the adversary observes the length nb
of the board which correspond to the total number of ballots
cast by non-corrupted voters. Then the adversary learns the
result and in particular its size nv , that is the number of valid
ballots counted. Hence the adversary learns the total number
∆ = nb−nv of ballots discarded, which is not available in the
ideal game IdealJCJ. The value of ∆ can be compared with its
expected number, according to the distribution D. Since there
is an additional ballot discarded (the one of the coercer) when
the voter evades coercion, the adversary has a non-negligible
advantage in the real game. For instance, if D is such that no
(or very few) voters cast a ballot with an invalid credential,
either nv = nb + 1 which means that the adversary’s ballot
has been counted, or nv = nb meaning that the adversary’s
ballot has been discarded and that the voter has disobeyed. Of
course, the same issue applies to the JCJ definition as stated
in [14].

The authors of [11] proposed a patch to the issue they
discovered: the length of the board should be given to the ad-

7

Algorithm 1: RealJCJ
Require: A, κ, nT , t, nV , nA, nC ,D

1 BB ←− ∅
2 pk, s1, h1, · · · , snT

, hnT
←− PA

Setup(κ, nT , t)
3 V ←− A()
4 {ci; i ∈ [1, nV]},R←− Register(κ, pk, nV)
5 (j, β)←− A({ci; i ∈ V },R)
6 if |V | 6= nA ∨ j 6∈ [1, nV]\V ∨ β 6∈ [1, nC]

⋃
{φ} then

7 Return 0

8 b
$←− {0, 1}

9 c̃←− cj
10 if b == 0 then
11 c̃←− Fakecred(cj)
12 BB ←− BB

⋃
{Vote(cj , β)}

13 for i ∈ [1, nV]\(V
⋃
{j}) do

14 νi ←− DnC
()

15 if νi 6∈ {φ, λ} then
16 BB ←− BB

⋃
{Vote(ci, νi)}

17 BB ←− BB
⋃
A(c̃,BB)

18

19

20 X,Π←− PA
tally(BB ,R, pk, {hi, si}, t)

21 b′ ←− A()
22 Return 1 if b′ == b else 0

Algorithm 2: IdealJCJ
Require: A, κ, nV , nA, nC ,D

1 D ←− ∅
2

3 V ←− A(κ)
4

5 (j, β)←− A()
6 if |V | 6= nA ∨ j 6∈ [1, nV]\V ∨ β 6∈ [1, nC]

⋃
{φ} then

7 Return 0

8 b
$←− {0, 1}

9

10 if b == 0 then
11 D = D

⋃
{β}

12

13 for i ∈ [1, nV]\(V
⋃
{j}) do

14 νi ←− DnC
()

15 if νi 6= φ then
16 D = D

⋃
{νi}

17 (νi)i∈V , β
′ ←− A()

18 if b == 1 then
19 D = D

⋃
{β′}

20 X ←− result(D
⋃

(νi)i∈V)
21 b′ ←− A(X)
22 Return 1 if b′ == b else 0

Fig. 2. JCJ definition of coercion resistance. κ is the security parameter, nT the number of talliers, t the threshold, nV the number of voters, nA the number
of corrupted voters, nC the number of voting options and D the distribution of votes.

versary in the ideal game as well. Intuitively, this corresponds
to simply rewriting line 17 of Algorithm 2 as follows:

(νi)i∈V , β
′ ←− A(|D|)

However, this patch still does not allow to detect the leakage
of the JCJ protocol during the tally. Indeed, the distribution
D fails to model several aspects, which in turn, renders the
comparison between the real and the idea games too weak:
there are cases where the cryptographic protocol may differs
from the ideal case and such cases are not explored by D.
More precisely, the distribution D fails to models two main
aspects.
• First, the addition of ballots with fake credentials is badly

modeled since it happens only when an honest voter uses
a fake credential, sacrificing her own vote. This is quite
unlikely in practice. In addition, D does not model the
case where ballots with fake credentials are added directly
by authorities, even if they do not own a valid credential.

• Second, revoting is not considered at all in D, which
explains why the leakage of the JCJ protocol was not
detected.

C. Taking the public board into account

If we compare the advantage of the adversary in the real
game with her advantage in the ideal one, we need to cover

a large family of vote distributions, otherwise, we may miss
security flaws. In particular, we need to cover cases explicitly
planned by the protocol such as revote and addition of ballots
with fake credentials.

Therefore, we consider a distribution B of sequence of pairs
of positive integers (j, ν) where ν ∈ [1, nc] represents a vote
and j represents either a valid voter (when j ∈ [1, nV] or a fake
voter, with a fake credential. The distribution B models both
revoting and the addition of fake votes, typically by authorities:
• revoting is reflected in B by the fact that a voter may

appear several time in the same sequence;
• additional fake voters are modeled by pairs (j, ν) where
j is not a valid voter (j /∈ [1, nV]). The additional fake
voters may be either added by authorities or voters that
wish to play with the protocol. Note that B even models
the case where authorities (or voters) revote with fake
credentials.

For example, the sequence (1, 1), (2, 1)(1, 2)(3, 2), (1, 1) with
nV = 2 represents a situation with two voters V1 and V2. V1
first votes 1, V2 votes 1 as well, then V1 revotes for 2, then a
fake vote for 2 is added, then V1 changes back her vote to 1.

Our Real game is similar to RealJCJ. Votes are drawn ac-
cording to B, yielding a sequence B. The sequence B typically
contains pairs (i, ν) with i /∈ [1, nV]. This corresponds to
the addition of fake credentials by authorities. We therefore

8

Algorithm 3: Real
Require: A, κ, nT , t, nV , nA, nC ,B

1 BB ←− ∅
2 pk, s1, h1, · · · , snT

, hnT
←− PA

Setup(κ, nT , t)
3 V ←− A()
4 {ci; i ∈ [1, nV]},R←− Register(κ, pk, nV)
5 (j, β)←− A({ci; i ∈ V },R)
6 if |V | 6= nA ∨ j 6∈ [1, nV]\V ∨ β 6∈ [1, nC]

⋃
{φ} then

7 Return 0

8 B ←− B(nV − nA, nC)
9 for (i, ∗) ∈ B, i /∈ [1, nV] do

10 ci ←− Fakecred(c1)

11 b
$←− {0, 1}

12 c̃←− cj
13 if b == 1 then
14 Remove all (j, ∗) ∈ B
15 else
16 Remove all (j, ∗) ∈ B but the last, which is

replaced by (j, β)
17 c̃←− Fakecred(cj)

18 A(c̃)
19 for (i, α) ∈ B (in this order) do
20 M ←− A(BB)
21 BB ←− BB

⋃
{m ∈M | m is valid}

22 BB ←− {Vote(ci, α, pk)}
23 M ←− A(BB)
24 BB ←− BB

⋃
{m ∈M | m is valid}

25 X,Π←− PA
tally(BB ,R, pk, {hi, si}, t)

26 b′ ←− A()
27 Return 1 if b′ == b else 0

Algorithm 4: Ideal
Require: A, κ, nV , nA, nC ,B

1

2

3 V ←− A(κ)
4

5 (j, β)←− A()
6 if |V | 6= nA ∨ j 6∈ [1, nV]\V ∨ β 6∈ [1, nC]

⋃
{φ} then

7 Return 0

8 B ←− B(nV − nA, nC)
9

10

11 b
$←− {0, 1}

12

13 if b == 1 then
14 Remove all (j, ∗) ∈ B
15 else
16 Remove all (j, ∗) ∈ B but the last, which is

replaced by (j, β)
17

18

19 (νi)i∈V , β
′ ←− A(|B|)

20 if (b == 1) ∧ (β′ 6= φ) then
21 B ←− B

⋃
{(j, β′)}

22 B ←− B
⋃
{(i, νi); i ∈ V, νi ∈ [1, nC]}

23

24

25 X ←− result(cleanse(B))
26 b′ ←− A(X)
27 Return 1 if b′ == b else 0

Fig. 3. Definition of coercion-resistance. κ is the security parameter, nT the number of talliers, t the threshold, nV the number of voters, nA the number
of corrupted voters, nC the number of voting options and B the distribution of the sequence of votes.

generate a fake credential for each such i at lines 9-10. If
b = 0, the coercer voter j obeys, hence any vote from j
is removed from B and the real credential of the voter is
provided to the adversary. If b = 1, the voter follows the
evasion strategy, namely he casts one vote for β and provides
a fake credential. Hence the votes from j in B are replaced
by a single vote for β. Then ballots are added according to
B. They correspond either to real votes (or revotes) or to fake
votes added by the authorities Compared to the original JCJ
definition, we also slightly improve the power of the adversary
by letting her observe the board after each vote and add ballots
if she wants too. This better reflects the reality.

Again, the advantage of the adversary needs to be compared
with a corresponding ideal game Ideal where the adversary
simply observes:
• the total number of ballots B,
• the result of the election.

We assume a function cleanse that removes votes from
invalid voters j /∈ [1, nV] and that takes care of revotes

according to the policy (typically, the last vote is kept). The
function result, given a set of valid votes, returns the result
of the election.

Definition 2. A voting system is coercion resistant if for all
PPT adversary A, for all parameters nT , t, nV , nA, nC , and
for all distribution B, there exists a PPT adversary B and a
negligible function µ such that

|Pr(Ideal(B, κ, nV , nA, nC ,B) = 1)

− Pr(Real(A, κ, nT , t, nV , nA, nC ,B) = 1)| ≤ µ(κ) .

The main difference between our definition and the original
definition is the fact that we consider a larger family of
distributions, which allows us to analyze a protocol in the
context of revotes and/or addition of fake ballots.

Another difference is the fact that we request that an adver-
sary does not gain any advantage for any distribution B, while
the JCJ definition defines coercion-resistance with respect
to a particular distribution. We believe that our approach is

9

preferable since intuitively, a protocol should be as secure as
the ideal one, whatever the considered distribution. It would
be quite counter-intuitive to design a cryptographic protocol
that resists only for particular distributions. Then of course, it
makes sense to analyze the exact advantage of the adversary in
the ideal game, for a particular distribution and devise whether
voters are reasonably protected in that case of not. But the
cryptographic protocol itself should be as solid as the ideal
one nevertheless.

D. CHide is coercion-resistant

Thanks to our modified cleansing procedure, we can show
that our CHide protocol achieves coercion-resistance. This also
shows that our definition can be realized.

Theorem 1. Under the DDH assumption and in the Random
Oracle Model, the voting system CHide is coercion-resistant.

Proof (sketch). We recall the notations of the definition: nT is
the number of trustees, t is the threshold, nV is the number of
voters, nC the number of voting options, and nA the number
of dishonest voters.

Let B be a distribution, and let A be an adversary that plays
the real game. We give to A the power to impersonate the last t
talliers. We construct an adversary B that plays the ideal game,
and that can interact with A by simulating the real game.

First of all, B jointly runs the setup with A to generate
the public key pk, the secret shares s1, · · · , snT

and the
public commitments h1, · · · , hnT

. From these nT shares, B
reconstructs the secret key sk.

Then B calls A as in line 3 of the real game. B gets the set
V of dishonest voters chosen by A.

The next step for B is to call the Register function to
get the nV secret parts of the credentials c1, · · · , cnv and
the corresponding public list R. The secret credentials of the
corrupted voters are given to A, as in line 5 of the real game.
B gets in return the voter j that A chooses to coerce, and the
voting option β that models the initial intention of the coerced
voter.

In the ideal game, B can then send the same choices for V ,
j and β.

Afterwards, B calls A as in line 18 of the real game and
gives it the real credential c̃ = cj of the coerced voter. From
the ideal game, B gets the size of the ideal board |B| and will
start to emulate the board BB for the real game, initialized to
the empty set.

To simulate the for loop in lines 20-22 of the real game, B
performs the following steps, |B| times.
• B calls A with input the current BB to get M .
• For all valid ballots in M , B decrypts the voting option
ν and the credential c using sk and adds the ballot to
BB . If c corresponds to some credential ci, it sets νi to
ν (erasing any preexisting value).

• B chooses a random voter and a random valid voting
option and adds a ballot to BB using Vote.

The lines 23 and 24 are simulated in the same way.

In line 19 of the ideal game, B returns {νi; i > nV − nA},
all taken from the real game, and β′, which models the voting
option that the coercer wants to enforce. It can be read by B
in the real game by taking β′ = νj . Then, still in the ideal
game, B gets X (line 25), which is the result of the tally. We
denote by |X| the size of this tally.

At this point, in the real game, B must simulate the cleansing
phase to A. We refer to the full description of CHide in
Section III, where this phase is decomposed into 7 elementary
steps.

The first five steps consists of a sequence of calls to
CGate. The calls can be simulated thanks to the fact that
CGate is a SUC-secure protocol, as shown in [9]. SUC
refers to a Simpler version of the Universally Composable
framework [6], a composition framework inspired from the
Universally Composable framework [5] and well-suited for
MPC protocols. The principle is that an MPC protocol π
that is SUC-secure w.r.t. a functionality Φ can be emulated
simply by accessing the ideal functionality Φ. The strength of
this approach is that protocols can then easily be composed,
preserving security w.r.t. the composed functionalities. More
precisely, we consider TCGate be the ideal functionality which
takes as input two encryptions of either 0 or 1, decrypts them
and outputs a random encryption of their conjunction. It is
shown in [9] that there exists S which can simulate (in the
SUC setting) the real CGate protocol to A, given oracle
access to TCGate. Since B has the secret key sk, it can act
as TCGate and hence simulate the CGate protocols using S.

Then comes a mixnet step, that B can simply run for the
honest authorities, letting A play the dishonest trustees.

To simulate the seventh and last cleansing step, B simply
chooses |X| entries at random among all the (C

′i
1 , I

′i) and
simulate their partial decryption so that I

′i is decrypted into
0, and simulate the other partial decryptions so that I

′i is
decrypted into 1. This way there is exactly |X| valid ballots
in the simulated game, as in the ideal game.

Finally, to simulate the tally, B simulates all decryptions so
that the result is exactly X . This result and the corresponding
simulated proofs are sent to A which gives a guess bit in
return. This guess bit is forwarded by B in the ideal game.

We briefly explain why B’s simulation is indistinguishable
from the real game. The first difference is that in line 18 of
the real game, A gets the real κ-bit credential and the real
DVZKP when b = 1, and a random κ-bit credential and a
fake DVZKP when b = 0. In the simulation, A always has the
real credential and the real DVZKP. Since the real DVZKP
is indistinguishable from the fake and since c̃ is uniformly
random in both cases, A can distinguish the simulation from
the real game if and only if it can tell whether c̃ is the plaintext
of one of the encrypted credential or not, which is unfeasible
under DDH assumption. (Recall that the ElGamal encryption
scheme is IND-CPA under DDH assumption, even against an
adversary who can corrupt up to a threshold of key holders.)

The second difference is that, during the loop where the
voters submit their votes, B adds a ballot from a random

10

voter for a random voting option while, in the real game, the
ballot should correspond to the board B. Since the voter’s
credential and the voting option are encrypted, A cannot tell
the difference under DDH assumption.

A third difference is that, during the cleansing phase, B
uses the SUC simulator instead of the real CGate protocol.
However, by SUC-security, the simulator is indistinguishable
from the real protocol.

Another difference is that, in the simulation, the result
consists of all the final valid ballots cast by each honest voter
and the adversary. In the real game, the result of the tally can
be different if the last valid ballot cast by an honest voter is
discarded during the cleansing phase, which can only occur if
the adversary manages to send a valid ballot with the credential
of an honest voter. However, to submit a valid ballot, the
adversary has to create a valid proof of knowledge of the
credential used. Under DDH assumption and in the ROM, the
encryption scheme ElGamal + PoK [4] is NM-CPA, so that
submitting a valid ballot which has the same credential as an
honest voter is unfeasible.

Finally, the only remaining differences is that B simulates
the result of the decryption protocols, at the end of the
cleansing and during the final tally. This difference is not
noticeable in the ROM under the DDH assumption.

We can also check that JCJ is not coercion-resistant accord-
ing to our definition.

Proposition 1. The JCJ protocol is not coercion-resistant w.r.t.
Definition 2.

This is again due to the fact that in the real game, among
the total number of discarded ballots, the attacker can observe
the number of ballots removed due to an invalid credential or
due to revote.

V. A WEAKER DEFINITION OF COERCION-RESISTANCE

It may seem unfair to declare JCJ not coercion-resistant
“just” because the adversary can have a better information on
the number of ballots with fake credentials and hence she may
better guess whether the coerced voter has disobeyed or not.
Interestingly, our definition can easily be adapted to tolerate
some leakage, when there is a consensus that such a leakage is
acceptable by the voters. In particular, if we believe that it is
unimportant that the adversary learns the sequence of revotes,
we can simply pass this information in the ideal game.

In Definition 3, we define a weaker notion of coercion-
resistance. The real game is left unchanged and is repeated
just to help the comparison. In the ideal game, we generate
a pseudonym ci for each voter i occurring in B. The first
voter who votes is given pseudonym 1, the second one is
given pseudonym 2, and so on. The rest of the game is
left unchanged except that in line 20, we leak in I which
ballots correspond to the same credential (invalid or not). More
formally, I is a sequence of pseudonyms, each pseudonym
corresponding to the voter that has voted at this step. This is
exactly what can be observed in JCJ.

A voting system is weakly coercion-resistant if an adversary
does not have a better advantage in the real game than in the
modified ideal one.

Definition 3. A voting system is weakly coercion resistant if
for all PPT adversary A, for all parameters nT , t, nV , nA, nC ,
and for all distribution B, there exists a PPT adversary B and
a negligible function µ such that

|Pr(IdealW(B, κ, nV , nA, nC ,B) = 1)

− Pr(Real(A, κ, nT , t, nV , nA, nC ,B) = 1)| ≤ µ(κ) .

We can prove that JCJ satisfies this relaxed version of
coercion-resistance.

Theorem 2. Under the DDH assumption and in the Random
Oracle Model, the JCJ protocol is weakly coercion-resistant.

The proof follows the same lines than the proof of Theo-
rem 1 and is given in appendix.

VI. DISCUSSION

We conclude by discussing how our refined notion of
coercion-resistance can be adapted, in principle, to emphasize
the various quality of coercion-resistance provided by JCJ-like
schemes.

To illustrate our purpose, we start with the coercion-resistant
scheme presented by Araújo, Foulle and Traoré (AFT) in [1].
This is a scheme whose main feature is that it has a linear time
complexity for the cleansing and tallying phase. While they
use different cryptographic primitive from JCJ, their scheme
has a similar structure: voters are given credentials to vote
with, and can provide a fake credential to a coercer. Assuming
that the cryptography used in their scheme is perfect, let us
analyze the leakage and compare it with that of JCJ.

During the tally, both the number of duplicates and the
number of ballots which use a fake credential are revealed, just
as in JCJ. In addition, it is possible to deduce, by observing
the board, how many revotes each ballot has. In JCJ, this
information is only available during the tally, when it is no
longer possible for the adversary to submit a ballot. In the
AFT scheme, this information is available on the fly, during
the whole voting phase, and the adversary may exploit it
to submit ballots in a specific way. Consequently, the AFT
scheme provides a coercion-resistance level which is similar
to Definition 3, but where I is given to A at line 19 instead
of line 26 in the ideal game. This definition is slightly (but
strictly) weaker.

Another interesting example is Civitas [8], a scheme con-
sidered as an implementation of JCJ, which has a similar
level of security regarding coercion-resistance. Among the
few differences that could have an impact, let us concentrate
again on the leakage during the cleansing and tallying phase.
Interestingly, Civitas actually leaks more information than JCJ.
First, Civitas provides the same leakage as the AFT protocol:
the number of revotes for each ballot can be directly deduced
from the board. Furthermore, in order to reduce the (quadratic)
number of PETs, Civitas proposes to group voters by blocks:

11

Algorithm 5: Real
Require: A, κ, nT , t, nV , nA, nC ,B

1 BB ←− ∅
2 pk, s1, h1, · · · , snT

, hnT
←− PA

Setup(κ, nT , t)
3 V ←− A()
4 {ci; i ∈ [1, nV]},R←− Register(κ, pk, nV)
5 (j, β)←− A({ci; i ∈ V },R)
6 if |V | 6= nA ∨ j 6∈ [1, nV]\V ∨ β 6∈ [1, nC]

⋃
{φ} then

7 Return 0

8 B ←− B(nV − nA, nC)
9 for (i, ∗) ∈ B, i /∈ [1, nV] do

10 ci ←− Fakecred(c1)

11 b
$←− {0, 1}

12 c̃←− cj
13 if b == 1 then
14 Remove all (j, ∗) ∈ B
15 else
16 Remove all (j, ∗) ∈ B but the last, which is

replaced by (j, β)
17 c̃←− Fakecred(cj)

18 A(c̃)
19 for (i, α) ∈ B (in this order) do
20 M ←− A(BB)
21 BB ←− BB

⋃
{m ∈M | m is valid}

22 BB ←− {Vote(ci, α, pk)}
23 M ←− A(BB)
24 BB ←− BB

⋃
{m ∈M | m is valid}

25 X,Π←− PA
tally(BB ,R, pk, {hi, si}, t)

26 b′ ←− A()
27 Return 1 if b′ == b else 0

Algorithm 6: IdealW
Require: A, κ, nV , nA, nC ,B

1

2 k ←− 1
3 V ←− A()
4

5 (j, β)←− A()
6 if |V | 6= nA ∨ j 6∈ [1, nV]\V ∨ β 6∈ [1, nC]

⋃
{φ} then

7 Return 0

8 B ←− B(nV − nA, nC)
9 for (i, ∗) ∈ B do

10 if ci == ⊥ then ci ←− k; k ←− k + 1

11 b
$←− {0, 1}

12

13 if b == 1 then
14 Remove all (j, ∗) ∈ B
15 else
16 Remove all (j, ∗) ∈ B but the last, which is

replaced by (j, β)
17

18

19 (νi)i∈V , β
′ ←− A(|B|)

20 I ←− {ci; (i, ∗) ∈ B} in this order, with duplicates
21 if (b == 1) ∧ (β′ 6= φ) then
22 B ←− B

⋃
{(j, β′)}

23 B ←− B
⋃
{(i, νi); i ∈ V, νi ∈ [1, nC]}

24

25 X ←− result(cleanse(B))
26 b′ ←− A(X, I)
27 Return 1 if b′ == b else 0

Fig. 4. Definition of weak coercion-resistance. κ is the security parameter, nT the number of talliers, t the threshold, nV the number of voters, nA the
number of corrupted voters, nC the number of voting options and B the distribution of the sequence of votes.

each credential is publicly assigned to one block, and the voter
indicates their block in clear when casting their ballot. To
summarize, compared to JCJ, the adversary still learns how
many revotes each ballot has and how many invalid ballots
there is, but also has access to this information block by
block. Modelling the exact security of Civitas would require
to weaken the coercion-resistance definition compared to the
one we sketched for AFT. In particular, the definition would
have to take the number of blocks as a parameter, so that the
ideal game could leak a list of K information sets similar to I .

Finally, for voting schemes that are not based on JCJ, the
adaptation is less immediate. For instance, in the VoteAgain
system [18], the paradigm for coercion-resistance is different,
since the voters are assumed to be able to vote after the coercer.
The idea of revoting is key to the security and needs to be
reflected in the definition of coercion-resistance by preventing
the adversary to vote at any time. Even though the situation
is too different from what we have presented in our work to

be applied directly, the amount of information revealed during
the cleansing phase should also be carefully assessed when
analysing its resistance to coercion.

REFERENCES

[1] R. Araújo, S. Foulle, and J. Traoré. A practical and secure coercion-
resistant scheme for remote elections. In Frontiers of Electronic Voting.
IBFI, 2007.

[2] S. Baloglu, S. Bursuc, S. Mauw, and J. Pang. Provably Improving
Election Verifiability in Belenios. In 6th International Joint Conference
on Electronic Voting (E-Vote-ID’21). Springer, 2021.

[3] J. Benaloh, T. Moran, L. Naish, K. Ramchen, and V. Teague. Shuffle-
sum: coercion-resistant verifiable tallying for STV voting. IEEE Trans.
Inf. Forensics Secur., 4(4):685–698, 2009.

[4] D. Bernhard, O. Pereira, and B. Warinschi. How Not to Prove Yourself:
Pitfalls of the Fiat-Shamir Heuristic and Applications to Helios. In
Advances in Cryptology (ASIACRYPT’12). Springer, 2012.

[5] R. Canetti. Universally Composable Security: A New Paradigm for
Cryptographic Protocols. In 42nd Annual Symposium on Foundations
of Computer Science (FOCS’01). IEEE Computer Society, 2001.

[6] R. Canetti, A. Cohen, and Y. Lindell. A simpler variant of universally
composable security for standard multiparty computation. In 35th
Annual Cryptology Conference (CRYPTO’15), volume 9216 of Lecture
Notes in Computer Science, pages 3–22. Springer, 2015.

12

[7] J. Clark and U. Hengartner. Selections: Internet Voting with Over-
the-Shoulder Coercion-Resistance. In 15th International Conference on
Financial Cryptography and Data Security (FC’11). Springer, 2011.

[8] M. Clarkson, S. Chong, and A. Myers. Civitas: Toward a Secure Voting
System. In IEEE Symposium on Security and Privacy (S&P’08). IEEE
Computer Society, 2008.

[9] V. Cortier, P. Gaudry, and Q. Yang. A toolbox for verifiable tally-hiding
e-voting systems. Cryptology ePrint Archive, Report 2021/491, 2021.
https://ia.cr/2021/491.

[10] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Secure Distributed
Key Generation for Discrete-Log Based Cryptosystems. In International
Conference on the Theory and Application of Cryptographic Techniques
(EUROCRYPT’99). Springer, 1999.

[11] T. Haines and B. Smyth. Surveying definitions of coercion resistance.
Cryptology ePrint Archive, Report 2019/822, 2019. https://ia.cr/2019/
822.

[12] L. Hirshi, L. Schmid, and D. Basin. Fixing the Achilles Heel of
E-Voting: The Bulletin Board. In 34th IEEE Computer Security
Foundations Symposium (CSF’21). IEEE Computer Society, 2021.

[13] M. Jakobsson, K. Sako, and R. Impagliazzo. Designated Verifier Proofs
and Their Applications. In International Conference on the Theory and
Application of Cryptographic Techniques (EUROCRYPT’96). Springer,
1996.

[14] A. Juels, D. Catalano, and M. Jakobsson. Coercion-Resistant Electronic
Elections. In ACM Workshop on Privacy in the Electronic Society
(WPES’05). ACM, 2005.

[15] R. Küsters, J. Liedtke, J. Müller, D. Rausch, and A. Vogt. Ordinos: A
Verifiable Tally-Hiding E-Voting System. In IEEE European Symposium
on Security and Privacy (EuroS&P’20). IEEE Computer Society, 2020.

[16] R. Küsters, T. Truderung, and A. Vogt. A Game-Based Definition of
Coercion-Resistance and Its Applications. In 23rd IEEE Computer
Security Foundations Symposium (CSF’10). IEEE Computer Society,
2010.

[17] P. Locher, R. Haenni, and R. E. Koenig. Coercion-Resistant Internet
Voting with Everlasting Privacy. In 20th International Conference on
Financial Cryptography and Data Security (FC’16). Springer, 2016.

[18] W. Lueks, I. Querejeta-Azurmendi, and C. Troncoso. Voteagain: A scal-
able coercion-resistant voting system. In USENIX Security Symposium
(USENIX’20), 2020.

[19] Ü. Madise and T. Martens. E-voting in Estonia 2005. The first Practice of
Country-wide binding Internet Voting in the World. In 2nd International
Workshop in Electronic Voting (EVOTE’06). GI, 2006.

[20] E. McMurtry, O. Pereira, and V. Teague. When is a test not a
proof? In 25th European Symposium on Research in Computer Security
(ESORICS’20), pages 23–41. Springer, 2020.

[21] B. Schoenmakers and P. Tuyls. Practical Two-Party Computation Based
on the Conditional Gate. In Advances in Cryptology (ASIACRYPT’04).
Springer, 2004.

[22] O. Spycher, R. Koenig, R. Haenni, and M. Schläpfer. Achieving
Meaningful Efficiency in Coercion-Resistant, Verifiable Internet Voting.
In 5th International Conference on Electronic Voting (EVOTE’12). GI,
2012.

[23] O. Spycher, R. E. Koenig, R. Haenni, and M. Schläpfer. A New
Approach towards Coercion-Resistant Remote E-Voting in Linear Time.
In 15th International Conference on Financial Cryptography and Data
Security (FC’11). Springer, 2011.

[24] D. Wikström. A Commitment-Consistent Proof of a Shuffle. In
Information Security and Privacy (ACISP’09). Springer, 2009.

APPENDIX A: CRYPTOGRAPHIC PRIMITIVES

The encryption scheme used is ElGamal in a group of
order q. A message m is encrypted as: Enc(m, r, pk) =
(gr, gm pkr), where r is a random value in Zq and pk is
the public key. The randomness can be left implicit by using
the notation Enc(m, pk). We denote by E0, E1 and E−1 the
encryptions of 0, 1 and −1 using the current public key pk
and the randomness 0.

Re-encryption can be done as usual by multiplying by an
encryption of 0, using the homomorphy property of ElGamal.
We therefore denote ReEnc(X, r, pk) = X Enc(0, r, pk),

where X should be a ciphertext X = Enc(m, r0, pk). The
result is equivalent to Enc(m, r + r0, pk).

We assume that pk has been produced by a DKG, and that
the participants who own the shared decryption key can apply
a decryption protocol Dec, that additionally produces a ZKP
of correct decryption.

The framework in which we do the security proof is univer-
sal composability. This leads to technical constraints and there-
fore the protocols often finish with a joint re-randomization
step performed by the participants, which guarantees that no
single participant can force any specific form of the output.

In all the following algorithms, we denote by a the number
of participants and pk the public encryption key. Typically,
a is the number of registrars nR in the RandBit protocol,
and the number of talliers nT in the CGate protocol. All
the algorithms require O(a) exponentiations and O(1) rounds
of communications between the participants. The size of the
verification transcript is in O(a) times the size of a group
element.

Algorithm 7: RandBit
The participants don’t need the shared decryption key.

1 X0 ←− E0

2 for i = 1 to a do
3 Participant i chooses ri

$← Zq and si
$← {0, 1}

4 They compute
Xi = Xi−1(E1/X

2
i−1)siEnc(0, ri, pk)

5 They reveal Xi and a ZKP πi of well-formedness

6 Each participant verifies all the proofs
7 The participants jointly rerandomize Xa into X ′,

which produces a transcript ΠReEnc

8 return X ′ and verification transcript
ΠReEnc||(Xa, πa)|| · · · ||(X1, π1)

In the context of the CHide protocol, the registrars use
RandBit to produce the credentials. Therefore, they keep
the values ri and si picked at line 3. The si are sent to the
voter, who can then reconstruct the cleartext bit corresponding
to X ′ by computing the exclusive or of all the si.

The registrars also send a DVZKP that the public transcript
corresponds to the values si. This works as follows. Each
registrar will produce a ZKP that disjunction of two statements
is true. The first one is the knowledge of the secret key of the
voter, and the second one is the knowledge of ri such that the
statement on line 4 is correct, for the given value of si. The
registrar can produce the proof because they know the value
ri, and the voter can produce the proof because they know
their secret key. We do not give further details, since this is a
rather classical Chaum-Pedersen ZKP, very similar to the one
used in JCJ and Civitas.

The CGate protocol that we present in Algorithm 8 is
taken from [21], in the re-reandomized version of [9]. It
allows to compute the conjunction (And) of two encrypted
bits. The Not operator can be implemented by homomorphy:

13

https://ia.cr/2021/491
https://ia.cr/2019/822
https://ia.cr/2019/822

Algorithm 8: CGate
The participants need the shared decryption key.

Require: X,Y such that X (resp. Y) is an encryption
of x (resp. y), with y ∈ {0, 1}

Ensure: Z, an encryption of xy
1 Compute Y0 = E−1Y

2, set X0 at X
2 for i = 1 to a do
3 Participant i chooses r1, r2 ∈r Zq and

s ∈r {−1, 1}
4 They compute Xi = ReEnc(Xs

i−1, r1, pk) and
Yi = ReEnc(Y si−1, r2, pk)

5 They reveal Xi, Yi and a ZKP πi that Xi and Yi
are well formed

6 We denote Π = (Xa, Ya, πa)|| · · · ||(X1, Y1, π1)
7 Each participant verifies all the proofs
8 The participants jointly rerandomize Xa and Ya into

X ′ and Y ′, which produces a transcript ΠReEnc

9 They collectively compute ya = Dec(Y ′) and a
transcript ΠDec.

10 return Z = (XX ′ya)
1
2 and verification transcript

(ya,Π
Dec)||(X ′, Y ′,ΠReEnc)||Π

Not(X) = E1/X . The disjunction (Or) can then be easily
deduced as Or(X,Y) = Not(CGate(Not(X),Not(Y))).

The equality-test Eq between two encrypted bits is the
negation of the exclusive or. Again, it can be deduced by
combining homomorphic properties and the And. We propose
the following: Eq(X,Y) = Not(X Y/CGate(X,Y)2).

The other cryptographic primitives used in CHide were
already present in JCJ and we do not recall them here.

APPENDIX B: PROOF THAT JCJ IS WEAKLY
COERCION-RESISTANT

We provide here a proof of Theorem 2, namely that the
original JCJ scheme is weakly coercion-resistant, according to
Definition 3, with the real and ideal games given in Figure 4.
This is very similar to the proof of Theorem 1 and some
parts are verbatim copies of the proof that CHide is coercion-
resistant.

We recall the notations of the definition: nT is the number
of trustees, t is the threshold, nV is the number of voters, nC
the number of voting options, and nA the number of dishonest
voters.

Let B be a distribution, and let A be an adversary that plays
the real game. We give to A the power to impersonate the last t
talliers. We construct an adversary B that plays the ideal game,
and that can interact with A by simulating the real game.

First of all, B jointly runs the setup with A to generate the
public key pk, the secret shares s1, · · · , snT

and the public
commitments h1, · · · , hnT

. From these shares, B reconstructs
the secret key sk.

Then B calls A as in line 3 of the real game. B gets the set
V of dishonest voters chosen by A.

The next step for B is to call the Register function to
generate the nV secret parts of the credentials c1, · · · , cnv and
the corresponding public list R. The secret credentials of the
corrupted voters are given to A, as in line 5 of the real game.
B gets in return the voter j that A chooses to coerce, and the
voting option β that models the initial intention of the coerced
voter.

In the ideal game, B can then send the same choices for V ,
j and β.

Afterwards, B calls A as in line 18 of the real game and
gives it the real credential c̃ = cj of the coerced voter. From
the ideal game, B gets the size of the ideal board |B| and will
start to emulate the board BB for the real game, initialized to
the empty set.

To simulate the for loop in lines 20-22 of the real game, B
performs the following steps, |B| times.
• B calls A with input the current BB to get M .
• For all valid ballots in M , B decrypts the voting option
ν and the credential c using sk and adds the ballot to
BB . If c corresponds to some credential ci, it sets νi to
ν (erasing any preexisting value).

• B chooses a random voter and a random valid voting
option and adds a ballot to BB using Vote.

The lines 23 and 24 are simulated in the same way.
In line 19 of the ideal game, B returns {νi; i > nV − nA},

all taken from the real game, and β′, which models the voting
option that the coercer wants to enforce. It can be read by B
in the real game by taking β′ = νj . Then, still in the ideal
game, B gets X and I (line 25), which is the result of the
tally, together with the leakage due to the cleansing phase. We
denote by |X| the size of the tally.

Now, B must simulate the cleansing phase. The first step of
the cleansing phase consists of pair-wise PETs. To simulate a
PET, B run the protocol honestly but simulate the decryption
so that B can decide whether the result is 1 (which stands
for an equality of the plaintexts), or random (which stands for
different plaintexts). To decide the result of a PET, B denotes
a and b the indexes of the credentials to be compared, in BB.
The algorithm is as follow.
• If the two corresponding ballots were added by the adver-

sary, B performs the decryption honestly (the adversary
knows the real result of these PETs, so that the simulator
cannot lie).

• If a (resp. b) was added by the adversary while b (resp.
a) was added by a non-corrupted voter, B simulates the
decryption so that the result of the PET is a random.

• If a and b were added by a non-corrupted voter, B looks
at the indexes a′ and b′ that they would have in the board
if the adversary did not send any ballot. It then simulates
the decryption to match the equality test between Ia′ and
Ib′ , so that the result of the PET is exactly the same as
in the ideal game.

Then comes a mixnet step, that B can simply run for the
honest authorities, letting A play the dishonest trustees.

The last step of the cleansing phase consists of pairwise
PETs between the ballots of the board and the encrypted

14

credentials R. B simulates this phase by choosing |X| random
ballots of the board which will be valid, and simulate the PETs
so that those ballots are marked as valid while the others are
marked as invalid.

Finally, B simulates the tally by simulating the decryptions,
so that the result is exactly X .

The argument to prove that B’s simulation is indistin-
guishable from the real game is similar as for the proof of
Theorem 1, without the complication due to the use of CGate.

We remark that the original PET mechanism used in JCJ
had some weakness. For the proof, we assume that the version
of [20] is used; the reduction would not be possible with the
original one.

15

	Introduction
	Unveiling a Shortcoming in JCJ
	Overview of JCJ
	Leakage in case of revoting
	More noise is needed

	CHide: A Cleansing-Hiding Variant of JCJ
	Cyrptographic primitives
	Description of the CHide protocol

	Defining coercion-resistance
	Voting system
	The original definition of JCJ
	Taking the public board into account
	CHide is coercion-resistant

	A weaker definition of coercion-resistance
	Discussion
	References

