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Abstract

We show the following hold, unconditionally unless otherwise stated, relative to a random
oracle with probability 1:

e There are NP search problems solvable by BQP machines but not BPP machines.

e There exist functions that are one-way, and even collision resistant, against classical ad-
versaries but are easily inverted quantumly. Similar separations hold for digital signatures
and CPA-secure public key encryption (the latter requiring the assumption of a classically
CPA-secure encryption scheme). Interestingly, the separation does not necessarily extend
to the case of other cryptographic objects such as PRGs.

e There are unconditional publicly verifiable proofs of quantumness with the minimal rounds
of interaction: for uniform adversaries, the proofs are non-interactive, whereas for non-
uniform adversaries the proofs are two message public coin.

e Our results do not appear to contradict the Aaronson-Ambanis conjecture. Assuming this
conjecture, there exist publicly verifiable certifiable randomness, again with the minimal
rounds of interaction.

By replacing the random oracle with a concrete cryptographic hash function such as SHA2,
we obtain plausible Minicrypt instantiations of the above results. Previous analogous results
all required substantial structure, either in terms of highly structured oracles and/or algebraic
assumptions in Cryptomania and beyond.

*This work was done in part while the author was visiting Princeton University.
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1 Introduction

Can NP search problems have a super-polynomial speed-up on quantum computers? This is one of
the oldest and most important questions in quantum complexity.

The first proposals for such quantum advantage were relative to highly structured oracles.
Examples include Simon’s oracle [Sim97], or more generally periodic oracles, as well as the Bern-
stein—Vazirani oracle [BV93] and welded trees [CCDT03].

The first non-relativized quantum advantage for NP problems is due to Shor’s famous algorithm
for factoring integers and computing discrete logarithms [Sho94]. Since Shor’s algorithm, other non-
relativized NP problems with quantum advantage include solving Pell’s equation [Hal02] and matrix
group membership [BBS09]. While the technical details of all these examples are very different,
these problems can all be seen as non-relativizing instantiations of periodic oracles.

While the above non-relativizing problems are certainly easy on a quantum computer, the
classical hardness can only be conjectured since, in particular, the classical hardness would imply
P # NP, or an analogous statement if one considers probabilistic algorithms. The problem is
that, when instantiating an oracle with real-world computational tasks, non-black-box algorithms
may be available that render the problem classically easy, despite the oracle problem being hard.
For example, index calculus methods [AdI79] yield sub-exponential time attacks for factoring and
discrete logarithms, despite black box period-finding being exponentially hard.

To make matters worse, for the known NP search problems with plausible quantum advantage,
the classical hardness is widely believed to be a much stronger assumption than P # NP, since
the problems have significant algebraic structure and are not believed to be NP-complete. In
particular, all NP search problems we are aware of yielding a super-polynomial quantum advantage
are Cryptomania assumptions [Imp95], in the sense that their classical hardness yields public key
encryption.! This puts the assumptions needed for an NP quantum advantage quite high in the
assumption hierarchy.

Quantum speed-ups and structure. The above tasks demonstrating speed-ups, both rela-
tivized and non-relativized, all have one thing in common: significant “structure.” It is natural
to wonder whether such structure is necessary. In the oracle-free non-relativized setting, a nat-
ural interpretation of this question could be if Minicrypt assumptions—those that give symmet-
ric key but not public key cryptography—can be used to give a quantum advantage. Minicrypt
assumptions, such as the one-wayness of SHA2, lack the algebraic structure needed in typical
super-polynomial quantum speed-ups. In the oracle setting, this could mean, for example, proving
unconditional quantum advantage relative to a uniformly random oracle, which is generally seen
as beeing structure-less.

Prior work on this topic could be interpreted as negative. As observed above, all non-relativizing
NP problems demonstrating quantum advantage imply, or are closely related to problems that
imply, public key cryptography. In the random oracle setting, the evidence is even stronger. The
most natural problems to reason about—one-wayness and collision resistance of the random oracle,
and generalizations—provably only have a polynomial quantum advantage [BBBV97, AS04, Yuel4,
Zhal5]. Additional evidence is given by Aaronson and Ambanis [AA14], who build on work of Beals
et al. [BBCT98]. They consider the following conjecture, dating back to at least 1999:

'Matrix group membership includes discrete logarithms as a special case. For a public key system based on Pell’s
equations, see [Pad06].



Conjecture 1.1 (Paraphrased from [AA1l4]). Let Q be a quantum algorithm with
Boolean output that makes T queries to a random oracle O, and let €,6 > 0. Then
there exists a deterministic classical algorithm C' that makes poly(T,1/e,1/8) queries,
such that

Pr[CO0-PiQ70) =1]|<e] 210,
Where the expectation is over the randomness of Q.

Aaronson and Ambanis give some evidence for Conjecture 1.1, by reducing it to a plausible mathe-
matical conjecture closely related to known existing results. If Conjecture 1.1 is true, any quantum
decision algorithm @) making queries to a random oracle can be simulated classically with only
polynomially-more queries.

Note that the conjectured classical simulator may be computationally inefficient, and indeed
we would expect it to be if, say, @) ignored its oracle and just factored integers. But for any
particular algorithm @, proving computational inefficiency amounts to an unconditional hardness
result, which is beyond the reach of current complexity theory. Thus, Conjecture 1.1, if true,
essentially shows that random oracles are equivalent to the non-relativizing world with respect
to NP decision problems, and cannot be used to provide provable quantum advantage for such
problems.

1.1 Owur Results

In this work, we make progress toward justifying super-polynomial quantum advantage for NP
problems, under less structured oracles or milder computational assumptions. We show, perhaps
surprisingly, that for certain search problems in NP, random oracles do in fact give provable un-
conditional super-polynomial quantum speed-ups.

Random oracles. Our starting point is to prove the following theorem:

Theorem 1.2 (Informal). Relative to a random oracle with probability 1, there exists a non-
interactive proof of quantumness, with unconditional security against any computationally-unbounded
uniform adversary making a polynomial number of classical queries.

Here, a proof of quantumness [BCM™18] is a protocol between a quantum prover and classical
verifier (meaning in particular that messages are classical) where no cheating classical prover can
convince the verifier. By being non-interactive, our protocol is also publicly verifiable. Prior LWE-
based proofs of quantumness [BCM ™18, BKVV20] lacked verifiability. The only previous publicly
verifiable proof of quantumness [AGKZ20] required highly non-trivial structured oracles.

Remark 1. We note the restriction to uniform adversaries is mecessary in the non-interactive
setting, as a non-uniform adversary can simply have a proof hardcoded. Our protocol also readily
gives a two-message public coin (and hence also publicly verifiable) protocol against non-uniform
adversaries, which is the best one can hope for in the non-uniform setting.

Theorem 1.2 has a number of interesting immediate consequences:

Corollary 1.3. Relative to a random oracle, there exists an NP search problem that is solvable by
BQP machines but not by BPP machines.

Our construction also readily adapts to give one-way functions that are classically secure but
quantum insecure. We can alternatively use minimal-round proofs of quantumness generically to
give a one-way function separation, and even a collision resistance separation:



Theorem 1.4. Relative to a random oracle, there exists a compressing function that is collision
resistant against any computationally unbounded uniform adversary making a polynomial number
of classical queries, but is not even one-way against quantum adversaries.

Using results from [YZ21], we also obtain an unconditional analogous separation for digital
signatures and CPA-secure public key encryption (the latter requiring assuming classically CPA-
secure public key encryption). Previous such results required LWE (in the case of signatures) or
highly structured additional oracles (in the case of CPA-secure encryption).

Our results do not appear to contradict Conjecture 1.1, since they are for search problems
as opposed to decision problems. In particular, our quantum algorithm for generating proofs of
quantumness/breaking the one-wayness does not compute a function, but rather sample from a set
of possible values. Assuming Conjecture 1.1 shows that this is inherent. We leverage this feature
to yield the following:

Theorem 1.5. Assuming Conjecture 1.1, relative to a random oracle there exists a one- (resp. two-
) message certifiable randomness protocol against a single uniform (resp. mon-uniform) quantum
device. By adding a final message from the verifier to the prover, our protocols become public coin
and publicly verifiable.

Here, certifiable randomness [BCM™18] means the classical verifier, if it accepts, is able to
expand a small random seed s into a truly random bit-string x, || > |s|, with the aid of a single
quantum device. Conditioned on the verifier accepting,  remains truly random even if the device
is adversarial.

We note that our results are the best possible: if the final message is from prover to verifier, the
protocols cannot be publicly verifiable. Indeed, the prover could force, say, the first output bit to
be 0 by generating a candidate final message, computing the what the outputted string would be,
and then re-sampling the final message until the first output bit is 1. Our one- and two-message
protocols therefore require verifier random coins that are kept from the prover. In our protocols,
however, these secret random coins can be sampled and even published after the prover’s message.
The result is that, by adding a final message from the verifier, our protocols are public coin and
publicly verifiable.

Instantiating the random oracle. We next instantiate the random oracle in the above con-
struction with a standard-model cryptographic hash, such as SHA2. We cannot hope to prove
security unconditionally. Nevertheless, the resulting construction is quite plausibly secure. Indeed,
it is common practice in cryptography to prove security of a hash-based protocol relative to ran-
dom oracles [BR93], and then assume that security also applies when the random oracle is replaced
with a concrete well-designed cryptographic hash. While there are known counter-examples to the
random oracle assumption [CGH98], they are quite contrived and are not known to apply to our
construction.

We thus obtain a plausible assumption on, say SHA2, under which non-interactive proofs of
quantumness exist. This gives a completely new approach to non-relativized quantum advantage.
What’s more, it is widely believed that SHA2 is only capable of yielding symmetric key cryp-
tosystems. Impagliazzo and Rudich [IR89] show that there is no classical black box construction
of public key encryption from cryptographic hash functions, and no quantum or non-black box
techniques are known to overcome this barrier. In fact, what [IR89] show is that, in the world
of computationally unbounded but query bounded (classical) attackers, random oracles cannot be
used to construct public key encryption. But this is exactly the setting of the random oracle model
we consider.



Therefore, by instantiating the random oracle with a well-designed hash such as SHA2, we
obtain a Minicrypt construction of a proof of quantumness. We likewise obtain candidate Minicrypt
examples of NP search problems in BQP\ BPP, functions that are classically one-way but quantumly
easy, and even certifiable randomness.

1.2 Discussion

Other sources of quantum advantage. Other candidates for super-polynomial quantum speed-
ups are known. Aaronson and Arkhipov [AA11] and Bremner, Jozsa, and Shepherd [BJS10] give
a sampling task with such a speed-up, based on plausible complexity-theoretic constructions. Sim-
ilar sampling tasks are at the heart of current real-world demonstrations of quantum advantage.
More recently, Brakerski et al. [ BCM ™ 18] provided a proof of quantumness from the Learning With
Errors (LWE) assumption.

We note, however, that none of the these alternate sources of quantum advantage correspond
to NP search problems.

Why NP search problems? Most real-life problems of interest can be phrased as NP search
problems, so it is a natural class of problems to study. Our work gives the first evidence besides
period finding of a quantum advantage for this class.

Moreover, NP means that solutions can be efficiently verified. For existing sampling-based
demonstrations of quantum advantage [AA11, BJS10], verification is roughly as hard as classically
sampling. Proofs of quantumness from LWE [BCM™ 18] do admit verification, but the verifier must
use certain secrets computed during the protocol in order to verify. This means that only the
verifier involved in the protocol is convinced of the quantumness of the prover.

In contrast, using an NP problem means anyone can look at the solution and verify that it
is correct. Moreover, our particular instantiation allows for sampling the problems obliviously,
meaning we obtain a public coin proof of quantumness where the verifier’s message is simply
uniform random coins. Against uniform adversaries, we can even just set the verifier’'s message to
000 - - -, eliminating the verifier’s message altogether.

The QROM. In classical cryptography, the Random Oracle Model (ROM)[BR93] models a hash
function as a truly random function, and proves security in such a world. This model is very
important for providing security justifications of many practical cryptosystems.

Boneh et al. [BDFT11] explain that, when moving to the quantum setting, one needs to model
the random oracle as a quantum random oracle model (QROM). Many works (e.g. [Zhal2, TU16,
SXY18, KLS18, KYY18, LZ19, DFMS19, CMS19]) have been devoted to lifting classical ROM
results to the QROM. To date, most of the main classcal ROM results have successfully been lifted.
This leads to a natural question: do all ROM results lift to the QROM?

Recently, Yamakawa and Zhandry [YZ21], leveraging recent proofs of quantumness [BKVV20]
in the random oracle, give a counter-example assuming the hardness of learning with errors (LWE).
Their counter-examples were limited to highly interactive security models such as digital signatures
and CCA-secure public key encryption.

By relying on LWE, [YZ21] left open the possibility that unconditional ROM results may all
liftt to the QROM. Our proof of quantumness refutes this, showing that the ROM and QROM
are separated even in the unconditional setting. Our results also give separations for many more
objects, especially for objects like one-way functions and collision resistance which have essentially
non-interactive security experiments.



1.3 Overview

Let X be an exponentially-sized alphabet, and C' C 3" be an error correcting code over Y. Let
O : ¥ — {0,1} be a function. Consider the following function & : C — {0,1}" derived from C, O:

fg(cl, coyen) =(0(c1),...,0(cn))

In other words, fg simply applies O independently to each symbol in the input codeword. We
will model O as a uniformly random function. Note that if f were applied to arbitrary words in
™, then it would just be the parallel application of a function with one-bit outputs, which can be
trivially inverted. By restricting the domain to only codewords, we show, under a suitable choice
of code elaborated on below, that:

° fg is unconditionally one-way against classical probabilistic algorithms making polynomially-
many queries to O. It is even infeasible to find ¢ € C such that f&(c) = 0™.

e There exists a quantum algorithm which, given any y € {0, 1}", samples statistically close to
uniformly from the set of pre-images ¢ € C such that fg (c) =v.

From these properties, we immediately obtain a weak version of Theorem 1.4 which only considers
classical one-wayness. We explain in Section 7.2 how to obtain the full Theorem 1.4. To prove
quantumness, one simply produces ¢ € C' such that fg (¢) = 0™, giving Theorem 1.2. Since one-way
functions are in NP, this also immediately gives Corollary 1.3. We now explain how we justify these
facts about fg.

Classical hardness. Assume C satisfies the following properties: (1) the set of symbols obtained
at each position are distinct, and (2) C is information-theoretically list-recoverable. Here, we
take list-recoverability to mean that, given polynomial-sized sets S;, i € [n] of possible symbols for
each position, there exist a sub-exponential sized (in n) list of codewords ¢ such that ¢; € \S; for all
i € [n]. The list size remains sub-exponential even if we include codewords such that ¢; ¢ S; for a
few positions.

Property (1) can be obtained generically by replacing ¥ +— [n] x 3, where (c1,...,¢,) —
((L,e1)y...,(n,cy)). Property (2) is satisfied by folded Reed-Solomon codes, as shown by Gu-
ruswami and Rudra [GROS].

Assuming (1) and (2), we can show classical hardness. Fix an image y. We can assume without
loss of generality that the adversary always evaluates fg (c) for any pre-image c it outputs. Suppose
for our discussion here that all queries to O were made in parallel. Then any polynomial-sized set
of queries corresponds to a collection of S;. List recoverability means that there are at most
2"° ¢ < 1 codewords consistent with the S;. For each consistent codeword, the probability of being
a pre-image of y is at most 27" over the choice of random oracle. Union-bounding over the list
of consistent codewords shows that the probability that any consistent codeword is a pre-image is
exponentially small. With some effort, we can show the above holds even for adaptively chosen
queries.

Remark 2. Haitner et al. [HIOS15] construct a very similar hash function from list-recoverable
codes. Their hash functions assumes a multi-bit O, but then XORs the results together, rather
than concatenating them. They prove that their hash function is collision-resistant. Our proof of
one-wayness is based on a similar idea to their proof of collision-resistance. Our novelty, and what
does not appear to be possible for their construction, is the quantum pre-image finder, which we
discuss next.



We note that we could, similar to [HIOS15], prove the collision resistance of fg by choosing C'
to have an appropriate rate. However, our quantum pre-image finder constrains C to having a rate
where we only know how to prove one-wayness. Proving Theorem 1.4 therefore requires a different
construction, which we elaborate on in Section 7.2.

Quantum easiness. Our algorithm can be seen as loosely inspired by Regev’s quantum reduction
between SIS and LWE [Reg05]. Given an image y, our goal will be to create a uniform superposition

over pre-images of y:
[yhoc D o)
CGC:fg(c) =y

We can view |¢,) as the point-wise product of two vectors:

|6) o< > e, and o Y o)

ceC CGE“:fg(c):y

Obseve that |7,) looks like [1y), except that the domain is no longer constrained to codewords.
Once we have the state |1),), we can simply measure it to obtain a random pre-image of y. We will
show how to construct [¢),) in reverse: we will show a sequence of reversible transformations that
transform [¢,) into states we can readily construct. By applying these transformations in reverse
we obtain |¢,). To do so, we will now impose that X is a vector space over F, for some prime
q, and that C is linear over F,. This means there is a dual code C*, such that ¢-d = 0 for all
ceC,deC+t.

We now consider the quantum Fourier transform QFT of |¢,). Write:

[6) == QFT[¢) o Y acle) = Y |e)

cexm ceC+

|7y) == QFT|7y) o Z By.cle)

cexmn

Above, we used the fact that the QFT of a uniform superposition over a liner space is just the
uniform superposition over the dual space. Then, by the Convolution Theorem, the QFT of |t,)

~

is the convolution of |¢) and |7,):

|1Zy> = QFT[py) o Z acfyelc+e) = Z By.e

c,e€XNn ceCL eexn

c+e)

The next step is to decode ¢ and e from ¢ + e; assuming we had such a decoding, we can apply it
to obtain the state proportional to

Z By@’cv €> = ’¢>|?y>
c€ECL ecxn

-~

We can then construct |¢) as the QFT of |¢), which we can generate using the generator matrix
for C. We will likewise construct |7,) as the QFT of |r,). To construct |7,), we note that |7,) is a
product of n states that look like:

g o< Y o)

ceX:0(0)=y;

6



Since each y; is just a single bit, we can construct such states by applying O to a uniform super-
position of inputs, measuring the result, and starting over if we obtain the incorrect y;.

It remains to show how to decode ¢, e from ¢+ e. We observe that |7;,,) has roughly half of
its weight on 0, whereas the remaining half the weight is essentially uniform (though with complex
phases) since O is a random function. This means we can think of e as a vector where each symbol
is 0 with probability 1/2, and random otherwise. In other words, ¢ + e is a noisy version of ¢
following an analog of the binary symmetric channel generalized to larger alphabets. If the dual
code C*+ were efficiently decodable under such noise, then can decode ¢ (and hence €) from ¢+ e.

Toward that end, we show that ¢ is uniquely information-theoretically decodable (whp) provided
the rate of C* is not too high. In our case where C is a folded Reed-Solomon code, C* is essentially
another Reed-Solomon code, and we can decode efficiently using list-decoding algorithms [GS99].
We can show that the list-decoding results in a unique codeword (whp) for the above described
error distribution assuming C' to have an appropriate rate.

There are a couple important caveats with the above. First is that, to use list-recoverability to
prove one-wayness, we actually needed to augment C, which broke linearity. This is easily overcome
by only applying the QFT to the linear part of C.

More importantly, and much more challenging, we can only decode ¢+ e as long as e has some-
what small Hamming weight. While such e occur with overwhelming probability, there will always
be a negligible fraction of decoding errors. The problem is that the constant of proportionality in
the Convolution Theorem is exponentially large, and therefore the negligible decoding errors from
our procedure could end up being blown up and drowning out [¢,). This is not just an issue with
our particular choice of decoding algorithm, as for large enough Hamming wieght decoding errors
are guaranteed. What this means is that the map |¢)|7,) — [1y) is not even unitary, and |1),) is
not even unit norm.

By exploiting the particular structure of our coding problem and the uniform randomness of
the oracle O, we are able to resolve the above difficulties and show that our algorithm does, in fact,
produce pre-images of y as desired.

Certifiable randomness. We next explain that any efficient quantum algorithm for inverting
fg likely produces random inputs. After all, suppose there was an alternative quantum algorithm
which inverted fg , such that its output on any given y is deterministic. If we look at any single
bit of the output, then Conjecture 1.1 would imply that this bit can be simulated by a polynomial-
query classical algorithm. By applying Conjecture 1.1 to every bit of output, we thus obtain a
classical query algorithm for inverting fg , which we know is impossible.

This immediately gives us a proof of entropy: the prover generates a pre-image c of an arbitrary
y (even y = 0"), and the verifier checks that f3(c) = y. If the check passes, the verifier can be
convinced that ¢ was not deterministically generated, and therefore has some randomness. By using
the fact that fg is one-way even against sub-exponential-query algorithms, we can show that the
min-entropy must be polynomial.

Once we have a string with min-entropy, we can easily get uniform random bits by having the
verifier extract using a private random seed.

Extension to non-uniform adversaries. Note that the above results all considered fixing an
adversary first, and then sampling a random oracle. A standard complexity theoretic argument
shows that, in the case of uniform adversaries, we can switch the order of quantifiers, and choose
the random oracle first and then the adversary.



For non-uniform adversaries, we have to work harder, and direct analogs of the results above
may in fact be impossible: for example, a non-uniform adversary (chosen after the random oracle)
could have a valid proof of quantumness hardcoded.

For proofs of quantumness, we can leverage the “salting defeats preprocessing” result of [CGLQ20]
to readily get a two-message public coin proof of quantumness against non-uniform attackers. For
certifiable entropy /randomness, this also works, except the known bounds would end up requiring
the verifiers message to be longer than the extracted string. This is a consequence of leveraging the
sub-exponential one-wayness of fg to obtain polynomially-many random bits. Since the verifier’s
message must be uniform, this would somewhat limit the point of a proof of randomness. We show
via careful arguments how to overcome this limitation, obtaining two message proofs of randomness
where the verifier’s message remains small.

1.4 Organization

The remainder of the paper is organized as follows. Section 2 gives some basic preliminaries,
including for quantum computation. Section 3 defines the various objects we will be considering
and gives some basic relations. Section 4 discusses the properties of error correcting codes we will
need. Section 5 gives a technical lemma that is needed to prove the correctness of our protocol,
that may be more broadly useful. Section 6 gives our proof of quantumness, while Section 7 uses
this to give separations for various cryptographic primitives. Finally, Section 8 gives our proofs of
randomness.

2 Preliminaries

Basic notations. We use A to mean the security parameter throughout the paper. For a set
X, |X] is the cardinality of X. We denote by = & X to mean that z is uniformly taken from
X. For a distribution D over a set X, we denote by x & D to mean that z € X is taken
according to the distribution D. For sets X and ), Func(X,))) denotes the set of all functions
from X to ). For a positive integer n, [n] means a set {1,...,n}. For a random variable X,
E[X] denotes its expected value. For random variables X and X', A(X, X’) denotes the statistical
distance between X and X’. For a random variable X, H,(X) denotes the min-entropy of X, i.e.,
H,(X) = —logmax, Pr[X = z|. For a quantum or randomized classical algorithm .4, we denote
Y & A(x) to mean that A outputs y on input . For a randomized classical algorithm A, we denote
y < A(z;r) to mean that A outputs y on input x and randomness r.

Notations for quantum states. For a not necessarily normalized state |¢), we denote by || [¢) ||
to mean its Euclidean norm. For not necessarily normalized quantum states |¢) and |¢) and € > 0,
we denote by [)) ~ [¢) to mean || [1))—[¢) || < €. We simply write |)) ~ |¢) to mean |¢)) Rpegi(r) |@)-
By the triangle inequality, if we have |¢)) =, |¢) and |¢) =5 |T), then we have |¢) ~cys5 |T).

For not necessarily normalized quantum states |¢)) and |¢), we denote by |¢)) x |¢) to mean
that |¢) = C'|¢) for some C € C.

Classical/quantum random oracle model. In the classical random oracle model (CROM) [BR93],
a random function H is chosen at the beginning, and every party (including honest algorithms of
a protocol whose security is analyzed and an adversary) can classically access H.2 The quan-

2The classical random oracle model is often just referred to as the ROM, but we call it CROM to emphasize that
the oracle access is classical.



tum random oracle model (QROM) [BDF'11] is defined similarly except that the access to H
can be quantum. In other words, a quantumly-accessible classical oracle that applies a unitary
|z) ly) — |x) |y ® H(x)) is available. See Section 3 for more detailed treatment of these models.

2.1 Finite Fields

For a prime power ¢ = p", F, denotes a field of order g. We use this notation throughout the
paper, and whenever we write F,, ¢ should be understood as a prime power. We denote by O
to mean (0,...,0) € Fy where n will be clear from the context. For x = (z1,...,z,) € Fy and

Yy = (Y1, yn) € Fy, we define x -y := o il

We often consider vectors x € X" over the alphabet ¥ = F¢*. We identify ¥" and Fy™ in the
canonical way, i.e., we identify ((z1,...,2Zm), -, (Z(—1)m+1>- -+ > Tnm)) € " and (21,22, . .., Tnm) €
Fp™. For x = (x1,...,%X,) € X" and y = (y1,...,yn) € X", we define x -y := Y 1" | x; - y;.

The trace function Tr : F, — [, is defined by?

r—1 )
)=
i=0
The trace function is Fy-linear, i.e., for any a,b € F,, and z,y € F,, we have
Tr(az + by) = aTr(x) 4+ bTr(y).
For any x € Iy \ {0}, we have
D> @Y =, M
yng

The multiplicative group Fj of F, is cyclic, and thus there is an element vy € Fy such that

{Vi}ie[qfl] = FZ

For x € Fy, we denote by hw(x) to mean the Hamming weight of x, i.e., hw(x) := [{i € [n] : 2; # 0}
where x = (21,...,2,). For x = (21,...,2,) € Fy and a subset S C [n], we denote by xg to mean

(7i)ies-

2.2 Quantum Fourier Transform over Finite Fields

We review known facts on quantum Fourier transform over finite fileds [dBCW02, vDHI06]. Though
it is usually considered over quantum systems whose alphabet is a finite filed F,, we consider those
over the alphabet ¥ = F" for some positive integer m. Since X" can be identified with Fy™, this
is no more than notational convention.

On a quantum system over X", a quantum Fourier transform is a unitary denoted by QFT such
that

QFT |x) = |2|n/2 > wpr ) |g)
zexn

where w), = e2mi/P A quantum Fourier transform over F, is known to be implementable by a
polynomial-size quantum circuit.

3Tt may not be immediately clear from the definition below that Tr(x) € F,, but this is a well-known fact.



For a function f : X" — C, we define
f = |§”n/2 ZE: f
xexn
Then it is easy to see that we have
QFT 3 f()lx) = > f(z
xexn zeXn

For functions f : ¥ — C and g : ¥ — C, f - g and f x g denote the point-wise product and
convolution of f and g, respectively, i.e.,

(f - 9)(x )'=f( ) - g(x)
(fxg)x) = > fly)-gx—y).

yeXn
We have the following standard lemmas. We include the proofs for completeness.
Lemma 2.1 (Parceval’s equality). For any f : X" — C, we have
SR = Y 1) )
xeX™ FASNL

Proof. This immediately follows from the fact that QFT is a unitary, which is shown in [dBCW02,
vDHI06]. O

Lemma 2.2. Let m be a positive integer that divides n. Suppose that we have f; : 3 — C for
i € [n] and f: X" — C is defined by

= 11 5i=) (3)
i€[n]
where x = (X1, X2, ...,Xp). Then, we have
z) = | [ fi(=)
i€n
where z = (21,22, ..., Zp).
Proof. This can be proven by the following equalities:

Z |§”n/2 EE: f

XGE"

’E‘n/Q Z Z H filxi)w

X1EE xn€X iE€[n

H P ‘1/2 Z fi(Xz')wgf(xizi

i€[n] X;EX

where the second equality follows from Equation (3) and the linearity of Tr. O
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Lemma 2.3 (Convolution theorem). For functions f:¥" — C, g: X" — C, and h : ¥" — C, the

following equations hold.
— 1 A
f-9= W(f *g),
Frg=I5"*(f-9),

o —

flg=h)=(f*(g h).

Proof. For any x € ¥, we have

yeXn
- Z ( RE Z f(z yZ)> (|Z|n/2 Z
yEE" FASINL z'exn

Z Z Z f(z TY(XZ) T‘f( (z—2"))

yezn zZEXN 7 EEn

|§”n EZ: EE: f p %)

yeXn zekn

:Zfzgzwp(x'z)

FASINL

= |2["2(f - 9)(x)

IEI”

(- y)-z'>>

where the third equality follows from the linearity of Tr and the fourth equality follows from

Equation (1). This implies Equation (4).
For any x € X", we have

(f *9)(x) |Z|"/2 Z Fxg)( Trxz
zex"
TYxA Tr(x-(z—
\E!"/Q Z Z fly ( y)wp( (z—y))
zEXn yexn
1 .
= W Z f(Y)Wgr( v) <Z Q(Z/)Wp
yexn z'exn

= [Z"*(f - 9)(x)

where the second equality follows from the linearity of Tr. This implies Equation (5). Equation (6)

immediately follows from Equations (4) and (5).

2.3 Chernoff Bound

We rely on the following form of Chernoff bound.

O

Lemma 2.4 (Chernoff Bound). Let Xi,...,X,, be independent random variables taking values in

{0,1}, X == 3"cpy Xis and p:=E[X]. For any 6 > 0, it holds that

52u

Pr[X > (1+0)u] < e 2.
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3 Cryptographic Definitions in the Random Oracle Model

Here, we define various cryptographic notions we will be constructing. There is some subtlety in
defining these notions relative to random oracles, which we discuss here.

We associate the set of oracles H : {0,1}* — {0, 1} with the set of all infinite-length bit-strings
in the natural way: each input x € {0,1}* is bijectively mapped to an integer i, and the output of
H is the ith bit of the infinite string. Oracles with multi-bit outputs can be analogously associated
with infinite-length strings as well. Then a random oracle is the oracle associated with a random
infinite-length bit-string.

We now fix the computational models we will be considering. We consider three settings:

e Oracle-independent. Here, a query algorithm A is fixed, and then a random oracle H is
chosen. In this case, we always allow A unbounded computation, but require the number of
queries A makes to H to be polynomial in its input length. We consider such A “efficient.”
We distinguish between A that can make classical queries and A that can make quantum
queries. We say such A are efficient oracle-independent adversaries in the CROM or QROM,
respectively.

e Uniform oracle-dependent. Here, the random oracle H is chosen, and then finite-length
string a is chosen based on H. A then gets a as advice. Like before, efficient A are taken to
be those that are potentially computational unbounded but make only a polynomial (in their
input length) number of queries to H.

¢ Non-uniform oracle-dependent. Here, the random oracle H is chosen, and then for each
n, a string a, of length polynomial in n is determined based on H. A, on input of length
n, is additionally given a, as advice. Like before, efficient A are taken to be those that are
potentially computational unbounded but make only a polynomial (in their input length)
number of queries to H.

Remark 3. Note that the cryptographic literature typically (but not always) considers the oracle-
independent setting. On the other hand, complexity-theoretic results are often phrased in terms
of the oracle-dependent models. The oracle-dependent models are meant to capture the standard
model as closely as possible, where H is replaced with a fized hash function. In such a setting, the
adversary is designed potentially with H in mind, and so is chosen after H. Modeling in this way
captures trivial standard model impossibilities, such as the impossibility of keyless collision resistant
hash functions against non-uniform adversaries, which are not captured by the oracle-independent
model.

Definition 3.1 (Family of oracle-aided functions.). For functions lxey = liey(), lin = lin(\), lour =
lout(N), a family {fy : {0,1} 0% x {0,1}4 — {0, 1}fen} oy of efficiently computable oracle-aided
keyed functions relative to oracles H is a family of functions fy that is implemented by a polynomial-
time (deterministic) classical machine with an oracle access to H. The family of functions is keyless
if ley = 0. If we do not specify keyed or keyless, we mean keyless. We denote by f){{ to mean fy
relative to a specific oracle H.

One-way functions. We now define what it means for an oracle-aided function to be one-way
relative to a random oracle. We provide several definitions, capturing classical vs quantum compu-
tation, uniform vs non-uniform computation, and the order of quantitifiers between the choice of
oracle and choice of adversary.

12



For one-way functions, we only consider keyless functions, as it is well known that keyless and
keyed one-way functions are equivalent.

Definition 3.2 (One-way functions with random oracles). We say that a family {fy : {0,1} —
{O,l}ém})\eN of efficiently computable oracle-aided functions relative to oracles H is one-way
against oracle-independent adversaries in the CROM (resp. QROM) if for all unbounded oracle-
independent A that make poly(\) classical (resp. quantum) queries to H, there exists a nmegligible
function negl such that:

Prly = f'(a) 12 € {0, 1)y = [l (2), 2" & AF (1, y)] < negl(V). (7)

We say that {f\}a is one-way against uniform (resp. non-uniform) adversaries (in the CROM or
QROM) if, with probability 1 over the choice of H, it holds that for all oracle-dependent uniform
(resp. non-uniform) adversaries A, there exists a negligible negl such that inequality (7) holds.

Collision-resistance. We now define collision-resistant hashing. Paralleling the case of one-way
functions, we provide several definitions.

Definition 3.3 (Collision-resistance with random oracles). We say that a family {fy : {0, 1}%e x
{0, 1} — {0,1}eut} \cn of efficiently computable oracle-aided keyed functions relative to oracles
H is collision-resistant against oracle-independent adversaries in the CROM (resp. QROM) if for
all unbounded-time uniform adversaries A that make poly(X\) classical (resp. quantum) queries to
H, there exists a negligible function negl such that:

Izr[ff(k,:no) = f/{{(ki,l‘l) A g # x1 : (20, 71) & AH(k‘),k‘ + {0, 1}6‘@] = negl(\).

(Uniform and non-uniform) oracle-dependent collision-resistance is defined analogously.

A keyless hash function has f, = 0. Note that unlike one-way functions, keyless collision
resistant hash functions cannot have security against non-uniform oracle-dependent adversaries,
since a non-uniform adversary can have collisions for every security parameter hard-coded.

Proofs of quantumness. We now define proofs of quantumness, which have a quantum prover
prove that they are quantum to a classical verifier. Like before, we will consider various definitions.

Definition 3.4. A (keyed non-interactive publicly verifiable) proof of quantumness in the QROM
consists of algorithms (Prove, Verify).

Prove (k): This is a QPT algorithm that takes a key k € {0,1}% as input, makes poly(\) quantum
queries to the random oracle H, and outputs a classical proof m.

VerifyH(k:,ﬂ'): This is a deterministic classical polynomial-time algorithm that takes k and a proof
7, makes poly(\) queries to the random oracle H, and outputs T indicating acceptance or L
indicating rejection.

We require a proof of quantumness to satisfy the following properties.
Correctness. We have

Pr [VerifyH(k,w) =1: 7 & Provel (k) ] < negl(\).

)
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Soundness. A proof of quantumness is (Q(N), €(N))-sound against oracle-independent adversaries
if, for any unbounded-time oracle-independent adversary A that makes Q(\) classical oracle queries
to H, we have
Pr |Verify? (k,7*) =T : o+ & A (k) ] < e(N).

When we do not specify Q and €, we require the proof of quantumness to satisfy (Q(X\), negl(\))-
soundness for all polynomials Q. (Uniform and non-uniform) oracle-dependent soundness is defined
analogously.

A keyless proof of quantumness has lyey = 0, in which case all algorithms additionally take 1
as imnput.

Note that, as with collision resistance, there cannot be keyless proofs of quantumness with
soundness against non-uniform oracle-dependent adversaries. Indeed, a non-uniform adversary
could have a proof m hardcoded for every input length.

Proofs of randomness. We now define proofs of (min-)entropy and proofs of randomness, also
referred to as certifiable randomness. These are protocols by which a classical verifier with very
little entropy can produce significant entropy with the help of a potentially untrusted quantum
device.

We note that Brakerski et al.’s [BCM™ 18] work giving the first certifiable randomness protocol
relative to a single device actually did not provide a formal definition. The work of Amos et
al. [AGKZ20] provide a definition of certifiable min-entropy, but we observe that it is technically
unsatisfiable. Their definition says that, conditioned on the verifier accepting, the string produced
by the verifier must have min-entropy. We note, however, that a malicious device may always
output a deterministic value. This value may be accepted with negligible but non-zero probability.
Conditioned on accepting, the entropy remains zero. We give new definitions for certifiable entropy
and randomness, overcoming this limitation.

We also note that defining certifiable randomness relative to a random oracle is subtle, since the
random oracle itself is an infinite source of randomness. To accurately model entropy that comes
from the protocol as opposed to the random oracle, we insist that the random string produced by
the verifier has min-entropy or is uniformly random, even conditioned on the random oracle.

We note that for a proof of min-entropy, the situation is analogous to collision resistance where
it is potentially feasible in the uniform setting or with a key, but trivially impossible in the oracle-
dependent non-uniform keyless setting. However, for a proof of randomness, it is inherent in the
non-interactive setting that the verifier must have some local randomness. This is because, in the
non-interactive setting without verifier randomness, a malicious prover can keep generating samples
until, say, the first bit of the output is 0. Such a string clearly will not be uniformly random. This
shows that the actual string obtained by the verifier must be kept secret from the prover, at least
until after the prover’s message is sent.

We now give the definitions.

Definition 3.5. A (keyed non-interactive publicly verifiable) proof of min-entropy in the QROM
consists of algorithms (Prove, Verify).

Prove® (k,h): This is a QPT algorithm that takes a key k € {0, 1} as input, as well as a min-
entropy threshold h. It makes poly()\) quantum queries to the random oracle H, and outputs
a classical proof .
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VerifyH(k:,h,ﬂ';r): This is a potentially randomized polynomial-time algorithm that takes k,h, a
proof w, and random coins r; it makes poly(\) queries to the random oracle H, and outputs
either a string x, or L indicating rejection.

We require a proof of min-entropy to satisfy the following properties:

Correctness. This is identical to the correctness requirement of a proof of quantumness. The one
stipulation we make is that the length of the randomness r used by Verify should be poly(\) bits,
independent of h.

Min-entropy. A proof of min-entropy has uniform (resp. non-uniform) min-entropy against
oracle-independent adversaries if, for any polynomial h = h(\), any unbounded adversary A
that makes a polynomial number of quantum oracle queries to H, and for any inverse polyno-
mial &, there is a negligible negl such that the following holds. Let A?(k,h; r) be the distribution
Verify™ (k, h, A" (k,h);7), conditioned on the output not being L. Then:

Pr [Pr{Verify" (k, h, A" (k, h); ) # L] > 6(A) A Hoo (AT (k, hir) | b, H,r) < h(N)] < negl(\)
Uniform (resp. non-uniform) oracle-dependent min-entropy is defined as follows: with probability 1
over the choice of H, for any unbounded uniform (resp. mon-uniform) oracle-dependent adversary
A that makes a polynomial number of quantum oracle queries to H and any inverse polynomial 9,
there is a negligible negl such that the following holds:

Pr [Pr[Verify™ (k, h, A7 (k, h);7) # L] > 6(\) A Hoo (A (K, hyr) | k, H,7) < h(N)] < negl())

A keyless proof of min-entropy has lyey = 0, in which case all algorithms additionally take 1
as input.

Note that min-entropy and correctness together imply that the output of Verify when interacting
with the honest Prove algorithm must have min-entropy at least h.

A proof of randomness has the same syntax as a proof of min-entropy, except that we require the

output of VerifyH (k, h,m;7) to be exactly h bits. However, we upgrade the min-entropy requirements
to the following:
True randomness. A proof of randomness has true randomness if, for any polynomial h = h(\)
and any unbounded adversary A that makes a polynomial number of quantum oracle queries to H,
and for any inverse polynomial 9, there is a negligible negl such that the following holds. If for a
given k, H it holds that Pr[Verify (k, h, A”(k, h);r) # L] > 6, then

A((r,U), (r, A (k,h;7)) ) < negl())

Here, A is statistical distance and U is the uniform distribution over h-bit-strings. (Uniform and
non-uniform) oracle-dependent true randomness is defined analogously.

In other words, provided that Verify actually outputs a string with inverse polynomial proba-
bility, that string will be statistically close to random.

3.1 Relations between Variants

We now discuss relations between variants of the various cryptographic definitions above. For one-
wayness and collision resistance, QROM security implies CROM security. Clearly, non-uniform
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oracle-dependent security implies uniform oracle-dependent security, which in turn implies oracle-
independent security. In the following, we discuss various results in the other direction. These
largely follow in a straightforward way from standard arguments, but we include them here for
completeness.

The first theorem shows uniform oracle-dependent security follows from oracle-independent
security.

Theorem 3.6. If {f\}\ is one-way against oracle-independent adversaries in the CROM (resp.
QROM), then it is also one-way against uniform oracle-dependent adversaries in the CROM (resp.
QROM). Analogous statements hold for collision resistance, proofs of quantumness, proofs of min-
entropy and proof of randomness.

Proof. In all cases, we first fix the advice a. Security in the oracle-independent setting implies that
the set of random oracles for which the adversary breaks security has measure 0. Unioning over
all countably many a results in the measure being 0. This then gives uniform oracle-dependent
security. ]

In the non-uniform case, the above fails. This is because the advice for A is now an infinite-
length string ai, a9, ..., and therefore the advice strings are uncountable. This, moreover, is in-
herent, with keyless collision resistance giving an example that is uniformly secure but not non-
uniformly secure. Moreover, in the case of one-way functions and proofs of quantumness, it is
not hard to come up with counter-example constructions that are uniformly secure, but not non-
uniformly secure.

However, by thinking of a,, as being a polynomial amount of advice about the oracle, we can use
known results in the pre-processing setting to lift from oracle-independent to non-uniform security.
Concretely, [CDGS18] and [CGLQ20] show that salting generically defeats pre-processing in the
classical and quantum random oracle models, respectively. Note that the results require it to be
efficiently verifiable when the adversary wins; this applies to one-way functions, collision resistance,
and proofs of quantumness, but not to proofs of min-entropy/randomness, where it cannot be
efficiently checked if the adversary produced a low entropy or non-uniform string.

Re-interpreting, the pre-processing results show that salting generically lifts oracle-independent
to non-uniform security. This salt can be interpreted as a key. In the case of one-way functions,
this salt can be thought of as another part of the input. We thus obtain the following as immediate
corollaries:

Theorem 3.7. If {fy\}\ is one-way against oracle-independent adversaries in the CROM (resp.
QROM), then {gr}r where gil(s,z) = stf(S”')(s,x) and where s € {0,1}* is one-way against
non-uniform oracle-dependent adversaries in the CROM (resp. QROM).

Theorem 3.8. If {fa}x is a potentially keyed function family that collision resistant against
oracle-independent adversaries in the CROM (resp. QROM), then the keyed function {gx}x where
ga(kollk1,x) = f(klll')(k‘o,x) and where ky € {0,1}* is collision resistant against non-uniform
oracle-dependent adversaries in the CROM (resp. QROM). Analogous statements hold for proofs

of quantumness.

We next discuss how salting actually does lift security for proofs of min-entropy and randomness
from the uniform to non-uniform case. We note that [CGLQ20] actually does work, by fixing a
particular string, and having the adversary win if it can cause the verifier to output that string.
This event occurs with exponentially-small probability, but [CGLQ20] would handle exponentially
small probabilities by setting the salt to be appropriately larger than the min-entropy requirement.
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This limits the utility of a proof of min-entropy, since the large salt could have just been used as
the source of randomness. In the following, we show that small salts can, in fact, be used, though
it requires a more careful proof and cannot simply rely on the prior theorem statements.

Theorem 3.9. If (Provey, Verify,) has min-entropy (resp. true randomness) against oracle-independent
adversaries in the QROM, then (Prove, Verify) has min-entropy (resp. true randomness) against

non-uniform oracle-dependent adversaries in the QROM, where Prove™ ( ko||k1,h ) = Provegl(kll")(ko, h+
1) and Verify® (ko||k1, h,7) = Verifyé{(kll")(ko, h+1,7) and where k; € {0,1}.

Proof. We prove the min-entropy case, the true randomness case being essentially identical. Con-
sider a non-uniform oracle-dependent adversary A for the min-entropy of (Prove, Verify).

Suppose A breaks min-entropy. This means there is a polynomial h, an inverse polynomial 9,
and a non-negligible € such that, the following simulteneously hold with probability at least € over
the choice of Hq, ko, k1:

Pr{Verify™ (kol k1, h + 1, A™ (an, kol k1, h 4+ 1) : 1) # L] = 5(3) (8)
Hoo (AT (ans kollka, b+ 15 7) | ans o, kr, Hiyr) < h+1 (9)

Above, a, = a,(H1) is the advice A is provided for oracle Hi, where n = |ko| + A, the length of
the input ko||k; to A.

Consider choosing a random set S C {0, 1}*\{k1} of size £—1, for an £ to be chosen momentarily.
We now consider a modified oracle

0 ifsesS

H{(Sv :U) = .
Hi(s,z) otherwise

Lemma 3.10. For any ¢ such that £/2" is negligible, there exists a negligible function negl such

that, with overwhelming probability over the choice of S, Equations 8 and 9 hold when making the

following replacements: Hy — Hj, 6 — & =0 —negl, e — € = e —negl, and h+ 1 — h.

Proof. This is a now-standard quantum query complexity argument. Consider the state |¢;) =
Y- azylx,y) of a quantum query algorithm when it makes its ¢-th quantum query. Define ¢, (|¢;))
to be the magnitude squared of x in the superposition of query ¢, that is g, (|¢:)) = Zy otz |2 Call
this the query magnitude of z. Let ¢, = >, ¢2(|¢+)) be the total query magnitude of x. For a set
S, let g5 = > g gz be the total query magnitude of S.

Since S is random but also a negligible fraction of all inputs, ¢gg is negligible with overwhelming
probability. H; and Hj only differ on points in S. We will now use the following lemmas to argue
that replacing Hy with H] negligibly affects the output distribution of A:

Lemma 3.11 ([BBBV97] Theorem 3.1). Let |¢) = |1)), performing any measurement measurement
on |¢) and |1) yields distributions with statistical distance at most 4e.

Lemma 3.12 ([BBBV97] Theorem 3.3). Let A be a quantum query algorithm making T queries
to an oracle O. Let ¢ > 0 and let S be a set such that qs < €2/T. Let O' be another oracle
that is identical to O on all points not in S. Let |§),|1)) be the final state of A when given O,0’,
respectively. Then |p) ~. |1))

Therefore, conditioned on the query amplitude being negligible, the output distribution of A is
negligibly affected. O
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Lemma 3.13. Assume £ is super-polynomial. Then with overwhelming probability over the choice
of S, k1, the following holds: conditioned on ay, the function Hy is statistically close to HY defined
as:
0 ifse S
H{(s,z) =< H(x) if s =k
Hi(s,x) otherwise

where H is an independent random oracle.

Proof. For a random S, ki, we can equivalently sample H] as follows: first choose a random set
T C {0,1}* of size ¢, and then set k; to be a random element of T and S = T \ {k1}.

Fix T. If we do not condition on a,, we know that the truth tables of Hj(s,-) for each s € T
are uniform and independent of each other as well as independent of Hi(s,-) for s ¢ T. When
we condition on a,, the entire set of |T'| truth tables only loses |a,| bits of entropy, a polynomial.
By sub-additivity, conditioning on a, only reduces the average entropy (over s) of the Hj(s,-) by
|an|/|T| = negl. This means that an overwhelming fraction of the Hj (s, -) have entropy reduced by
a negligible amount, and are therefore statistically close to uniform even conditioned on a,, and
even conditioned on Hi(s,-) for s ¢ T. Thus for a random s € T, we can replace Hi(s,-) with a
random and independent H (-) and only negligibly affect the distribution. O

An immediate consequence is the following:

Corollary 3.14. Assume { is such that (1) € is superpolynomial, and (2) £/2* is negligible. Then
there exists a negligible function negl such that, with overwhelming probability over the choice of S,
Equations 8 and 9 hold when making the following replacements: Hy — HY, 6 — & = & — negl,
e € =e—negl, and h+1+ h.

Now we construct an oracle-independent adversary B for the min-entropy of (Proveg, Verify,)
for parameter h. B(kp), which has access to random oracle H, chooses its own oracle H; as above
to satisfy Equations 8 and 9. Then it computes the advice a, that A would get if given H;. It
chooses a salt k; < {0,1}* and set S, and it defines H} as above. Note that B can simulate a
(quantum) query to HY using two quantum queries to H: one to compute the output, and another
to un-compute any scratch space needed to answer the query. B now runs A7 ! (ko||k1), and outputs
whatever A outputs.

If B were to choose S, k1 uniformly, then B perfectly simulates the view of A as in Corollary 3.14.
This means there must exist some S, ky such that if B runs A using this S, k1, with probability at
least €(\) — negl(\) over the choice of kg, H,

Pr(Verifyf (ko, h, BY (o), h;r) # L] > 6(A) — negl(\)
Ho (B (Ko, hi7) | ko, H,7) < h()) + negl())

B therefore breaks the oracle-independent security of Provey, Verify,,. O

From min-entropy to true randomness. Here we discuss how proofs of min-entropy imply
proofs of true randomness. This is an immediate application of extractors:

Theorem 3.15. If proofs of min-entropy against oracle-independent adversaries in the QROM
exist, then so to proofs of true randomness. If the proof of min-entropy is secure against uniform
or non-uniform oracle-dependent adversaries, then so is the proof of randomness. If the proof of
min-entropy is keyless, then so is the proof of randommness.
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Proof. We simply have a new Verify’ which chooses a random seed for a strong extractor, which it
applies to the result of Verify, outputting whatever the extractor outputs. By choosing the min-
entropy h sufficiently higher than the desired output length according to the parameters of the
extractor, the output of Verify’ will be statistically close to random and the desired length. O

We note that the verifier’s random seed for the extractor can be sampled after the prover’s
message, and can also be made public afterward. The result is that if the proof of min-entropy is
public coin and publicly verifiable, the proof of randomness will be as well, at the cost of a single
final message from the verifier.

4 Error Correcting Codes.

In this section, we first review basic definitions and facts on error correcting codes. Then, we state
requirements of codes that are needed for our purpose. Then, we show that such a code exists
based on known results.

4.1 Definitions
A code of length n € N over an alphabet ¥ (which is a finite set) is a subset C' C 3",

Linear codes. A code C is said to be a linear code if its alphabet is ¥ = F, for some prime
power ¢ and C' C F7 is a linear subspace of Fy. We call the dimension of C' as a linear subspace
the rank of C.

Folded linear codes. A code C is said to be a folded linear code [Kra03, GRO0S] if its alphabet
is X = Fy" for some prime power g and a positive integer m and ' C X" is a linear subspace of Fy™
where n is the length of C' and we embed C' into Fy™ in the canonical way. Linear codes are the
special case of folded linear codes where m = 1. For a linear code C' C Fy' and a positive integer m

that divides n, we define its m-folded version C'(™) as follows:

C = {((x1, s )y Tty oo Tom) « ooy (Tnemeg1s - o, Tn)) (21,0, 20) € OF.
Clearly, C(™) is a folded linear code. Conversely, any folded linear code can be written as C'™) for
some linear code C' and a positive integer m.

Dual codes. Let C be a linear code of length n and rank %k over F,. The dual code Ct of C is
defined as the orthogonal complement of C as a linear space over Fy, i.e.,

CJ‘::{ZEFZ:x-z:()foraHXEC}.

C™ is a linear code of length n and rank n — k over IFq.4
We define dual codes for folded linear codes similarly. That is, for a folded linear code C' € X"
over the alphabet 3 = F¢?, its dual C™ is defined as
Ct:={ze¥":x-z=0foral x e C}.

It is clear from the definition that (C1)(™) = (C(™)L for any linear codes C of length n and
positive integer m that divides n.

4Note that it does not always hold that Fo=Ca® C* since the bilinear form (x,y) — x -y does not satisfy the
axioms of the inner product (i.e., there may exist x # 0 such that x - x = 0).
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Lemma 4.1. For a folded linear code C C X", if we define

xe(C

)
otherwise

then we have
1 z e Ct

otherwise

Proof. For z € C*, we have

f Z |§Hn/2 EE: f

xeXn

|Z”wﬂ 2:

xeC

1
~ VICT

where the final equality follows from |C| - |CL| = |E[". f(z) = 0 for z ¢ C* immediately follows
from the above and Lemma 2.1. O

List recovery. We say that a code C C X" is ((,¢.L)-list recoverable if for any subsets S; C X
such that |.S;| < ¢ for i € [n], we have

H{(z1,...,zn) €C:|{i €n]:z; € S} > (1 —(n}| < L.

Note that list recoverability in the literature usually requires that the list of all codewords (x1, ..., x,) €
C satisfying [{i € [n] : z; € S;}| > (1 — {)n can be computed from {S; };c|, in time polynomial in
|3], n, £. However, we will not require this.

4.2 Suitable Codes

The following lemma claims the existence of codes that are suitable for our purpose.

Lemma 4.2 (Suitable codes). For any constants 0 < ¢ < ¢ < 1, there is an explicit family
{Cx}xen of folded linear codes over the alphabet ¥ = ;" of length n where || = 2/\9(1), n = 0(A),
and |Cy| > 2"t that satisfies the following.”

1. Oy is (¢, ¢, L)-list recoverable where ¢ = Q(1), £ = 2" and L = 200)

2. There is an efficient deterministic decoding algorithm Decodesr for Ot that satisfies the
following. Let D be a distribution over 3 that takes O with probability 1/2 and otherwise takes
a uniformly random element of ¥\ {0}. Then, it holds that

Pr [vVx € C*, Decodess(x+€) =x] =1—279%0W,

mﬁD”

Ttem 3 is not needed for the construction of a proof of quantumness given in Section 6. It is used only in the
separation of one-way functions given in Section 7.1.
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) =n -] < ()"

A

3. For all j € [n—1], Pr s

Our instantiation of C) is just folded Reed-Solomon codes with an appropriate parameter
setting. Item 1 is a direct consequence of the list recoverability of folded Reed-Solomon codes
in a certain parameter regime [GR08, Rud07]. For proving Item 2, we first remark that the dual
of folded Reed-Solomon codes is folded generalized Reed-Solomon codes, which have efficient list
decoding algorithm [GS99]. Then, we prove that the list decoding algorithm returns a unique
decoding result when the error comes from the distribution D”. Item 3 follows from a simple
combinatorial argument. The proof of Lemma 4.2 is given in Section 4.3.

4.3 Proof of Lemma 4.2

In this subsection, we prove Lemma 4.2, i.e., we give a construction of codes that satisfy the
properties stated in Lemma 4.2.

4.3.1 Preparation

Before giving the construction, we need some preparations.

Generalized Reed-Solomon codes. We review the definition and known facts on (generalized)
Reed-Solomon codes. See e.g., [Linl0, Section 6] for more details.
A generalized Reed-Solomon code GRSp, kv over F, w.r.t. a generator v of Fy, the degree

parameter 0 < k < N, and v = (v1,...,un) € FZN where N := ¢ — 1 is defined as follows:

GRS]Fq,'y,k,v = {(vlf(7)7U2f(72)"'UNf(7N)) : f S Fq[-x]deggk}

where Fy[x]geg<i denotes the set of polynomials over F, of degree at most k.5 We remark that
GRSF, kv is a linear code over I, that has length N = ¢ — 1 and rank k£ + 1. A Reed-Solomon
code is a special case of a generalized Reed-Solomon code where v = (1,1,...,1). We denote it
by RSp, ~k (which is equivalent to GRSg,_  x,(1,1,..,1))- The dual of RSy, - x is GRSp, 4 N2, for
some v € FYY [Lin10, Claim 6.3].7

There is a classical polynomial-time deterministic list decoding algorithm GRSListDecoder, kv
for GRS, kv that corrects up to N — VKN errors [GS99].8 More precisely, for any z € Fév ,
GRSListDecoder, kv (z) returns the list of all x € GRSy, kv such that hw(x —z) < N — VEN.

Folded Reed-Solomon codes. Let m be a positive integer that divides N = ¢—1. The m-folded

version RSE{Z)W of RS,k is a folded linear code of length n = N/ m.? Tt is known that RSJ(F?)%IG

is list recoverable in the following parameter regime [GR08, Rud07].1?

5Reed-Solomon codes whose length N is smaller than g — 1 are often considered. But we focus on the case of
N=gq—-1.

"Recall that the rank of (generalized) Reed-Solomon codes is the degree parameter k plus one.

8[GS99] described the list decoding algorithm for Reed-Solmon codes, but that can be extended to one for gener-
alized Reed-Solomon codes in a straightforward manner since scalar multiplications in each coordinate do not affect
the decodability.

9We remark that the roles of n and N are swapped compared with [GR08, Rud07].

0The following lemma is based on Rudra’s PhD thesis [Rud07]. The same result is also presented in the journal
version [GRO8], but note that there is a notational difference in the definition of list recovery: the definition of
(¢, ¢, L)-list recovery of [GRO8] means ((1 — (), £, L)-list recovery of [Rud07] and this paper. Also remark Footnote 9.
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Lemma 4.3 ([Rud07, Sec. 3.6]). Let q be a prime power, v € F; be a generator, N := q — 1,
k < N be a positive integer, and m be a positive integer that divides N. For positive integers £, r,
and s <m and a real 0 < ( < 1, suppose that the following inequalities hold:

(1-¢)N > <1+ s) W/ Nks

d 10
m r/m—s+1 ( )

(r+s) ST/? <gq. (11)

Then, RSI(FZ)%,C is (¢, ¢, L)-list recoverable where L = ¢°.

4.3.2 Construction

We show that folded Reed-Solomon codes satisfy the requirements of Lemma 4.2 if we set parameters
appropriately. In the following, whenever we substitute non-integer values into integer variables,
there is an implicit flooring to integers which we omit writing. Fix 0 < ¢ < ¢/ < 1, which defines
¢ = 2*°. Our choices of parameters are as follows:

o g = 22llogA] (which automatically defines N = ¢ —1), m = ollogA] 1 and n = N/m =
gllogA] _ 1 11

e 7 is an arbitrary generator of Fy.

e k= aN for an arbitrary constant 5/6 < a < 1.

We set C), := RSI(FTEY - By the above parameter setting, it is easy to see that we have 3| = 2’\9(1),

n =0(\), and |Cy| = ¢**! > 2"t We show that {C)} ey satisfies the requirements of Lemma 4.2.
For notational simplicity, we omit A from the subscript of C.

First item. We prove Item 1 of Lemma 4.2. First, we remark that we only have to prove that
the requirement is satisfied for sufficiently large X since we can set L = ¢V for finitely many X for
which (¢, ¢, L)-list recoverability is trivially satisfied for any ¢ and ¢. We apply Lemma 4.3 with
the following parameters:

e s = \°. Note that this satisfies the requirement s < m in Lemma 4.3 for sufficiently large \
since m = Q(\) and ¢ < 1.

o =\ for a constant ¢ < ¢’ < 1.
e 0 <( <1—«isan arbitrary constant.

Based on the above parameter setting, we have limy oo(1 + %) = 1, limy_, ot = 1, and

limy oo “V? = 1 where we used ¢ = 22" and ¢ < ¢/. Therefore, Equation (10) can be rearranged
as follows:

1-¢>(1+0(1)) (;f[)* (12)

"This is an example of the parameter choice. Any prime power of the form ¢ = nm+ 1 where n and m are positive
integers such that n = Q(\) and m = Q(\) suffices.
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This is satisfied for sufficiently large s (which occurs for sufficiently large \) since we assume k = aN
and ( <1—q.

Similarly, by our choice of parameters, the LHS of Equation (11) is O(A°") and the RHS is
Q()\?). Since ¢’ < 1, Equation (11) also holds for sufficiently large .

Thus, by Lemma 4.3, RSI(FTL . With the above parameter setting is (¢, ¢, L)-list recoverable where
L=¢ < (A2)ACI — 200) | This means that Ttem 1 of Lemma 4.2 is satisfied.

Second item. Next, we prove Item 2 of Lemma 4.2. Since C = RSI(FT)7 i is a folded Reed-Solomon

code, its dual C* is a folded generalized Reed-Solomon code GRSI(Fm) N_k_oy for some v € FN.
qv’Yv sV q
In the following, we think of an element of > as an element of ]Fév in the canonical way. Then,

Ct =GRS{" ;. is identified with GRSz, , k2. Let d = N —k—2and 0 < e < 0.09 be
a constant specified later. We define Decode 1 as follows.

Decode1(z): On input z € Fév, it runs the list decoding algorithm GRSListDecoder, v n—x—2,v(2)
to get a list of codewords. If there is a unique x in the list such that hw(z —x) < (1/2+¢€)N,
it outputs x, and otherwise outputs _L.

We define a subset G C Fév as follows.
G:={ec Fév ‘hw(e) < (1/24+ )N A Yy € CH\ {0}, hw(e —y) > (1/2+ €)N}.

For any x € C and e € G, by the definition of G, x is the only codeword of C* whose Hamming
distance from x + e is smaller than or equal to (1/2+¢)N. Moreover, since k = aN for a > 5/6 and
€ < 0.09, it holds that N—+vdN = N—/(1 —a)N2 —2N > (1—y/1 —a)N > 0.59N > (1/2+¢)N.
Thus, for any x € C and e € G, the list output by GRSListDecode]Fq,%N,k,zv(X+ e) must contain
x, which implies

Decodeq1 (x + €) = x.

Thus, it suffices to prove

Pr [e ¢ G] =279

eﬁD"

where D is the distribution as defined in Lemma 4.2.'2 For e € Fév, we parse it as e = (eq,...,ey,) €
Y™ and define Se C [N] as the set of indices on which e; = 0, i.e.,

Se:=|J {G=Dm+1,6-m+2,... im}.
i€[n]:e;=0
By the definition of D and n = O(A), Chernoff bound (Lemma 2.4) gives

Pr [(1/2— €)N < |Se| < (1/2+ ¢)N] > 1 — 290,

e(ﬁ’D"
Therefore, it suffices to prove

Pr [e¢ G| Se =5 =29 (13)

e<Dn

12pn is defined as a distribution over 3", but its sample can be interpreted as an element of Fflv in the canonical
way.

23



for all S* C [N] such that (1/2—¢€)N < [S*| < (1/2+¢€)N. Fix such S*. When Se = S*, it is clear
that we have hw(e) < (1/2 + €)N since |S*| > (1/2 — €)N. Thus, when Se = S* and e ¢ G, there
exists y € C+\ {0} such that
hw(e —y) < (1/2 +¢€)N. (14)
Let S* := [N]\ S*. Then, it holds that!?
hw(e —y) = hw(eg- —ys+) + hw(eg- — yg-). (15)

Since we assume S* = S, we have eg~ = 0. On the other hand, since y # 0 and degree d non-zero
polynomials have at most d roots, y can take 0 on at most d indices. In particular, we have

hw(es — ys+) > |S*| — d. (16)
By combining Equations (14) to (16), we have
hw(eg. —yg«) < (1/2+¢)N — (|S*| —d) < d+ 2eN (17)

where we used |S*| > (1/2 — ¢)N. That is, conditioned on Se = S*, Equation (17) holds for some
y € C*+\ {0} whenever e ¢ G. Moreover, conditioned on Se = S*, the distribution of eg. is a
direct product of |S*|/m copies of the uniform distribution over Fy' \ {0} by the definition of D.
Since ¢™ = 29N the distribution is statistically 27N _close to the uniform distribution over Fév .
Combining these observations, it holds that'4
Prle¢G|Se=57< Pr [TyeC!hwleg —yg)<d+2eN]+27%N, (18)
e{iﬁ €gx iFIS*‘
When t_here exists y € Ct such that hw(eg. —yg«) < d+ 2eN, there is a subset T C S* such that
|T| = |S*| — [d+2eN] and er = y7.'> On the other hand, since a codeword of C* is determined
by values on d + 1 indices, for any fixed T' C S*, we have
Pr [3y € Ot ey = yr] = ¢ (717001 < ¢~ (53¢ N+2d51 (19)
egx ﬁFqS*
where we used |T| > |S*| —d — 2eN and |S*| > (1/2 — €)N. Since there are ((dglw) possible
choices of T, combined with Equation (19), it holds that

S*| (1_
1 o va) < < | o~ (3—3¢)N+2d+1
Pr ‘[ElyeC’ hw(eg. —yg) < d+ 2eN] < ([d o 1> qg \2

$ | S*
€egx (*]Fl‘]

< gdt2eN+l _q—(%—3e)N+2d+1
S q*(%*3(17Q)756)N74 (20)

where we used |S*| < N < ¢ in the second inequality and d = N —k —2 = (1 — )N — 2 in the third
inequality. Since 5/6 < a < 1, we can choose 0 < € < 0.09 in such a way that % —3(1—a)—5e > 0.
(For example, € := —; + s suffices.) Then, by combining Equations (18) and (20) together with
g =Q(\) and 3 — 3(1 — a) — 5e = (1), we obtain Equation (13).

"“Recall the notation xs = (z;)ics for x = (z1,...,on5) € FY and S C [N].

" We can take 3y € C* instead of Iy € C*\ {0} in the RHS since this does not decrease the probability. Indeed,
one can see that the probabilities are the same noting that eg. does not take 0 on any index and |S*| > d + 2¢N by
our parameter choices.

15We always have |S*| > [d + 2¢N] by our parameter choices. Even without checking this, we can assume it
without loss of generality since otherwise the probability in the RHS of Equation (18) is 0 and thus Equation (13)
trivially holds.
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Third item. Finally, we prove Item 3 of Lemma 4.2. For [%1 < j < n, there does not exist
a codeword x such that hw(x) = n — j. This is because if hw(x) = n — j, the corresponding
polynomial f to x has at least mj > k + 1 roots, which means that x = 0 since the degree of f is
at most k. This contradicts hw(x) =n —j > 0.

The case of j < [%} is proven below. In this case, since a polynomial of degree at most k is
determined by evaluated values on k 4 1 points, for any subset S C [n] such that |S| = j, xg is

uniformly distributed over ¥/ when x & Cy. Therefore, we have

Pr [hw(x)=n—j] < Z Pr [xg = 0]

$ 3
xCx SC[n] s.t. |S|=5 ¥ Cx

()=
=(m)

This completes the proof of Lemma 4.2.

5 Technical Lemma

We prepare a lemma, that is used in the proof of correctness of our proof of quantumness constructed
in Section 6. The lemma is inspired by the quantum step of Regev’s reduction from LWE to worst-
case lattice problems [Reg05].

Lemma 5.1. Let [¢) and |¢) be quantum states on a quantum system over an alphabet ¥ = Fy’
written as

W)=Y V(x)x)

xEXN"

@)= W(e)le).

eecxn

Let F : X" — X" be a function. Let GOOD C X" x X" be a subset such that for any (x,e) € GOOD,
we have F(x +e) = x. Let BAD be the complement of GOOD, i.e., BAD := (X" x ¥") \ GOOD.
Suppose that we have

Yo VW)l <e (21)

(x,e)eBAD

> Y VW(e)| <4 (22)
zeX" |(x,e)€BAD:x+e=z
Let Uygq and Ur be unitaries defined as follows:
Uadd Ur
|x)|e) == |x)|[x+e) — |x—F(x+e))|x+e).

Then we have

(I ® QFT ") UrUaaa(QFT ® QFT) [} [6)) ~ /o 5 =" D~ (V- W)(2) [0) |2)
zeXn
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Proof. Equations (21) and (22) immediately imply the following inequalities, respectively:

Y VEW(e)lx)le)|| < Ve

(x,e)eBAD

and

Y Vx)W(e) [x+e)|| < V6.

(x,e)eBAD

Since BAD is the complement of GOOD, the above imply the following:

Yo VW) x)le)re Y, VW(e)|x)le) (23)
(x,e)eX XL (x,e)eGOOD
and
Yoo VEWe) xte)rs > Vx)W(e)|x+e). (24)
(x,e)eXm x X" (x,)eGOOD

Then, we have

UpUaaa(QFT @ QFT) [¢) [¢) = Uplasa Y V(X)W (e) [x) [e)
(x,e)eX x XL

~ /e UrUadd Z V(x)W(e) |x)e)
(x,6)€GOOD

= Y VW) [0)x+e)

(x,e)eGOOD
X /5 Z V(x)W(e) |0)|x + e)

(x,e)eX x XL

= > (V«W)(2)[0)|z)

zeX"
= 223" (V- W)(2) [0) |2)
zexn
= I @QFT)[Z™2 3" (V- W)(2)|0) |2)

FASINL

where we used Equation (23) for the second line, Equation (24) for the fourth line, and the con-
volution theorem (Equation (4) in Lemma 2.3) for the sixth line. This completes the proof of
Lemma 5.1. Ul

6 Proofs of Quantumness

In this section, we give a construction of proofs of quantumness in the QROM, which is the main
result of this paper.

Theorem 6.1. There exists a keyless proof of quantumness in the QROM with soundness against
uniform oracle-dependent adversaries.
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By Theorem 3.8, we immediately obtain the following corollary.

Corollary 6.2. There exists a keyed proof of quantumness in the QROM with soundness against
non-uniform oracle-dependent adversaries.

The rest of this subsection is devoted to a proof of Theorem 6.1.

Construction. Let {C)}) be a family of codes over an alphabet ¥ = F;* that satisfies the
requirements of Lemma 4.2 with arbitrary 1 < ¢ < ¢ < 1. In the following, we omit A from the
subscript of C' since it is clear from the context. We use notations defined in Lemma 4.2 (e.g.,
n,m,(, ¢, L etc). Let H : ¥ — {0,1}" be a random oracle.!® For i € [n], let H; : ¥ — {0,1} be a
function that on input x outputs the i-th bit of H(x). Then, we construct a proof of quantumness
in the QROM as follows.

Prove® (1}): For i € [n], it generates a state

i) o > CHE

e; €Y s.t. Hi(ei)ZI

This is done as follows. It generates a uniform superposition over X, coherently evaluates H,
and measures its value. If the measurement outcome is 1, then it succeeds in generating the
above state. It repeats the above procedure until it succeeds or it fails A times. If it fails to
generate |¢;) within A trials for some ¢ € [n], it just aborts. Otherwise, it sets

|6) := [¢1) @ [¢2) ® ... ® [¢n) -

|6) o > le) .

e=(e1,...,en)EX" s.t.
H;(e;)=1 for all i€[n]

) o< Y [x).

xeC
Then it applies QFT to both [¢) and |¢). At this point, it has the state

Note that we have

It generates a state

) :== QFT [¢) ® QFT [¢) .
Let Usqqg and Ugecode be unitaries on the Hilbert space of |n) defined by the following:

%) |e) 2% [x) |x + e) %=, |x — Decoder (x +e)) |x + e)

where Decode . is the decoder for C* as required in Item 2 of Lemma 4.2. Then it applies
(I® QFT_I)UdecodeUadd to |n), measures the second register, and outputs the measurement
outcome x € X" as .

Verify (1%, 7): It parses m = x = (X1,...,X,) and outputs T if x € C' and H;(x;) = 1 for all i € [n]
and L otherwise.

16Strictly speaking, we consider a random oracle with the domain {0,1}*. However, since our construction only
makes queries to H on (bit representaions of) elements of 3 for a fixed security parameter, we simply denote by H
to mean the restriction of H to (bit representations of) 3.
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Correctness.
Lemma 6.3. II satisfies correctness.

Proof. Let TiHi C 3 be the subset consisting of e; € ¥ such that H;(e;) = 1 and TH .— TIH1 X TQH2 X

... X THrn C 3" Let H C Func(%, {0,1}") be the subset that consists of all H € Func(%, {0, 1}")
H;

such that 3 < |T|"E‘ | < 2 for all i € [n]. By the Chernoff bound (Lemma 2.4) and union bound, we can
see that (1—n-2-2=D)_fraction of H € (2, {0,1}") belongs to H. Since we have n-271% = negl())
by our parameter choices specified in Lemma 4.2, it suffices to prove the correctness assuming that
H is uniformly chosen from # instead of from Func(X, {0,1}"). We prove this below.

First, we show that the probability that Prove aborts is negligible. In each trial to generate
o

‘|
3

|}, the success probability is s < % Thus, the probability that it fails to generate |¢;) A times
is negligible.

Let V: 3" — C, WZHL : ¥ — C, and WH : ¥" — C be functions defined as follows:'”

1

V(x) = VIO

0 otherwise

xeC

1 e TzHl
0 otherwise

1 H
ecT
|TH

=
W
3

otherwise

Then we have

W)= > V(x)[x)

xexn

0) = > W(e)le)

ecyn

where [¢) and |¢) are as in the description of Prove. For using Lemma 5.1, we prove the following
claim.

Claim 6.4. For an overwhelming fraction of H € ﬁ, there is a subset GOOD C X" x X" such that
Decodeq . (x + €) = x for any (x,e) € GOOD and we have

Y VW (e)]? < negl(),
(x,e)eBAD
2

Z Z V(x)WH(e)| < negl()).

z€X" |(x,e)EBAD:x+e=z

where BAD = (X" x ¥") \ GOOD.

7Since we assume that H is sampled from H, we do not define them when |TiHi| = 0 for some 1.

28



We prove Claim 6.4 later. We complete the proof of Lemma 6.3 by using Claim 6.4. By
Lemma 5.1 and Claim 6.4 where we set F' := Decode, 1, for an overwhelming fraction of H € H,
we have

(I ® QFT?I)UdecodeUadd |77> ~ |E‘n/2 Z (V : WH)(X) ‘O> |X> (25)
xexn

where |n) is as in the description of Prove. Since (V - WH)(x) = 0 for x ¢ C NTH | if we measure
the second register of the RHS of Equation (25), the outcome is in C' N T with probability 1.
Thus, if we measure the second register of the LHS of Equation (25), the outcome is in C'N .S with
probability 1 — negl(\). This means that an honestly generated proof 7 passes the verification with
probability 1 — negl(\). O

To complete the proof of correctness, we prove Claim 6.4 below.

Proof of Claim 6.4. We use the notations defined in the proof of Lemma 6.3 above. For each
i € [n], let H; C Func(X,{0,1}) be the subset that consists of all H; € Func(X,{0,1}) such that

H;j ~ ~
% < ‘:\Fiz\ | < %.18 Choosing H EHois equivalent to choosing H; &, independently for each

i € [n]. In the following, whenever we write H or H; in subscripts of E, they are uniformly taken
from H or H,;, respectively.
By Lemma 4.1 and the definition of V', we have

1 x et

V(x) = ¢ Vict

0 otherwise
Let G C ¥™ be a subset defined as follows:
G:={eeX":V¥x e Ct, Decode,.(x+e)=x}.
Let B:= X"\ G. Item 2 of Lemma 4.2 implies
Pr [e € B] = negl(\) (26)
eSpn

where D is the distribution as defined in Item 2 of Lemma 4.2. We define GOOD := C+ x G
and BAD := (X" x ¥™) \ GOOD. Then, we have Decode,.(x + e) = x for all (x,e) € GOOD by
definition.

Noting that V(x) = 0 for x ¢ C1, it is easy to see that we have the following:

Y VW) => W (e)? (27)
(x,e)EBAD ecB

2

> >, VEWae)| => | Y. viwfie) . (28)

zeX" |(x,e)€BAD:x+e=z zEX" |xeCteeB
Xx+e=z

18 Mathematically, the set 7; does not depend on i. We index it by i for notational convenience.
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We should prove that values of Equations (27) and (28) are negligible for an overwhelming fraction
of H € H. By a standard averaging argument, it suffices to prove that their expected values are
negligible, i.e.,

E > (W (e)?| < negl()), (29)
= LeeB

r 2
EI> | D VW (e)| | < negl()). (30)
" zeX" |xeCtecB

L X+e=z

Before proving them, we remark an obvious yet useful claim.

Claim 6.5. Let 7 be a permutation over ¥ (resp. X"). Then, the distributions of H; and H; o
(resp. H and H o) are identical when H; <~ H; (resp. H < H).

Proof of Claim 6.5. Recall that H; is the set of all H; : ¥ — {0,1} such that % < |{e; € X :
H(e;)) =1} < @ Clearly, we have |{e; € ¥ : H(e;) = 1}| = |{e; € ¥ : H om(e;) = 1}|. Thus, 7
induces a permutation over 7—~[i,~ and thus H; o 7 is uniformly distributed over ﬁl when H; & ﬁl
A similar argument works for H as well. O

Then, we prove Equations (29) and (30).
Proof of Equation (29). First, we prove the following claim.

Claim 6.6. For alli € [n] and e, e’ € X\ {0}, it hold that

E [Wi(©)P] = 3 (31)
and
E[[Wie)P] = E |IWi(e)P?] . (32)

Proof of Claim 6.6. Equation (31) is proven as follows.

1 Ew [T

(Z) |E’ o

E o

‘ e
\% |E z€Y

Since e # 0, for any w € F,, the number of z € ¥ such that e -z = w is |X|/¢. A similar statement
holds for € too. Therefore, there is a permutation 7Te e : ¥ — X such that e -z = € - 7 ¢/(z) for
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all z € ¥. Then, Equation (32) is proven as follows.

2
E|Wie)P| = E || = °
H; H; ]E zeZE
i 2
H om / Tr(e' -7y o (2))
— ]E e,e 7Te7e/ (Z))wp e,e
- " )
- F o, ,e’ Tr(e’-z)
Hi ||/ ’E ZEZE
i 2
- F r(e-z)
Hi | |1/ ’Z ZEE;
— 37 (a2
=E )]
where the fourth equality follows from Claim 6.5. O
Claim 6.6 means that we have
D(ei) = E |Wi(e:)?] (33)

for all e; € ¥ where D(-) is the probability density function of the distribution D as defined in
Item 2 of Lemma 4.2. Moreover, for any e = (eq,...,e,) € X" and H € H, since we have
W (e) =TT, Wli(e:), by Lemma 2.2, we have

WH(e) = [ W/ (es). (34)
By combining Equations (33) and (34), we obtain

D'(e) = E | (e) 2] (35)

for all e € X" where D"(-) is the probability density function of D". By Equation (26), Equa-
tion (35), and the linearity of expectation, we obtain Equation (29).

Proof of Equation (30). We define a function B : ¥ — C so that B satisfies the following:'?

B(e):{l echB

0 otherwise

We prove the following claims.

Claim 6.7. For any H € ﬁ, it holds that

oI Y vewte) =Y (v (Bxwh) (@)

zEX™ |xeCt,ecB FASIIL
x+e=z

19That is, we first define B and then define B as its inverse discrete Fourier transform.
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Proof of Claim 6.7. For any z € ¥™, we have

Yo VWHe)= > V(B W) (e)
xeCt ecB xeX™ eex”
X+e=z X+e=z

— (V+(B-W))(2)
— (V- (B+WH))(2)

where we used V(x) = 0 for x ¢ C in the first equality and the convolution theorem (Equation (6)
in Lemma 2.3) in the third equality. Claim 6.7 follows from the above equation and Parceval’s
equality (Lemma 2.1). O

Claim 6.8. For any z € X", it holds that

% [1(B * WH)(Z)|2] < negl(A).

Proof of Claim 6.8. First, we observe that E [|(B *« WH)(zo)?| = Ep [|(B * W)(z1)|?] for any
Zo, Z1. Indeed, if we define a permutation 7 : ¥ — X" as 7(z) := z + zg — z1, we have

[ 2
E |[(B+W!)(20)| }

g -
=E xgn B(x)WH(zy —x)

- _2
:% Xgn B(x)WH°™ () — x)

— 97
:g; g;;;B(X)MfH(Zl—-X)
—E :|(B % WH)(zl)ﬂ

where the third equality follows from Claim 6.5.
Then, for any z € X", we have

%[‘(B*WH)(Z)‘Q}

s Z sl wmer

zGE"

1 2
:W% Z’B*WH ‘]

ZGE"

:|21|n% Z "E|n/2(B‘WH)(Z)‘2]

Lze>n

=i

zeB
<negl(M).

=E
H
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where the third equality follows from the convolution theorem (Equation (5) in Lemma 2.3) and
Parceval’s equality (Lemma 2.1) and the final inequality follows from Equation (29). O

Then, we prove Equation (30) as follows:

- 2
E Z Z V(x)WH (e)
z€X™ |xeCt ecB
L X+e=z
—E| > \(v.(B*WH))(z)f]
LzeX"
[ 1 2
:E _;m ‘(B* WH))(Z)| ]
1 2
:‘C,z;g (B W )(2)[’]
<negl(\).

where the first equality follows from Claim 6.7, the second equality follows from the definition of
V', and the final inequality follows from Claim 6.8.
This completes the proof of Claim 6.4. O

Soundness.
Lemma 6.9. II satisfies (2)°, Q*Q(A))—soundness against uniform oracle-dependent adversaries.

Proof. By Theorem 3.6, we only have to prove (2", 2*9(’\))—soundness against oracle-independent
adversaries. We prove it below.

Let A be an oracle-independent adversary that makes Q < 2*° classical queries to H. Without
loss of generality, we assume that A queries x} to H at some point for all i € [n] where x* =
(x7,...,x5) € ¥" is A’s final output. Since a query to H can be replaced with queries to each of
Hy,...,Hp,, there is an adversary A’ that makes QQ queries to each of Hy,...,H, and succeeds with
the same probability as A. We denote A”’s total number of queries by Q' = n@Q. We remark that
A’ queries x} to H; at some point by our simplifying assumption on A.

For each i € [n] and j € [Q'], let Sg C X be the set of elements that A" ever queried to H;
by the point when it has just made the j-th query counting queries to any of Hy, ..., H, in total.
After the j-th query, we say that a codeword x = (x1,...,x,) € C' is K-queried if there is a subset
I € [n] such that |I| = K, x; € S for all ¢ € I, and x; ¢ S] for all i ¢ I. By our assumption,
the final output x* must be n-queried at the end. Since a K-queried codeword either becomes
(K + 1)-queried or remains K-queried by a single query, x* must be K-queried at some point of
the execution of A’ for all K =0,1,...,n.

We consider the number of codewords that ever become K-queried for K = [(1 — {)n] where
¢ is the constant as in Item 1 of Lemma 4.2. If x = (x1,...,x,) € C is [(1 — {)n]-queried at

some point, we have x; € SZ-Q/ for all ¢ € [n] since Sij C SiQ/ for all 4,j. By the construction of
A, we have |SiQ/| = @ < 2*°. On the other hand, C is ((, ¢, L)-list recoverable for £ = 2*° and
L= 20(/\6/) as required in Item 1 of Lemma 4.2. Thus, the number of codewords that ever become
[(1 — {)n]-queried is at most L = 200,
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Suppose that we simulate oracles Hy, ..., H,, for A’ via lazy sampling, that is, instead of uniformly
choosing random functions at first, we sample function values whenever they are queried by A’.
Suppose that a codeword x becomes [(1 — ¢{)n|-queried at some point of the execution of A’. Since
the function values on the unqueried [(n| positions are not sampled yet, x can become a valid

proof only if all those values happen to be 1, which occurs with probability (%) len) _ 2= by
¢ =Q(1) and n = Q(X). Since one of them is the output x*, by the union bound, the probability
that x* is a valid proof is at most L - (%) len] _ 90— by L = 20()‘6/) and ¢ < 1. This completes
the proof Lemma 6.9. O

Theorem 6.1 follows from Lemmas 6.3 and 6.9.

7 Separations for Cryptographic Primitives

In this section, we give constructions of cryptographic primitives that are secure in the CROM but
insecure in the QROM. They are easy consequences of our proof of quantumness in the QROM
constructed in Section 6.

7.1 Separation for One-Way Functions

We give a construction of a family of functions that is one-way in the CROM but not one-way in
the QROM. It is easy to generically construct such a one-way function from proofs of quantumness.
Indeed, we prove a stronger claim than that in Section 7.2. Nonetheless, we give a direct construc-
tion with a similar structure to the proof of quantumness presented in Section 6. An interesting
feature of the direct construction which the generic construction does not have is that it is not even
distributionally one-way in the QROM as explained in Remark 4.

Theorem 7.1 (Separation for one-way functions). There exists a family {f\}x of efficiently com-
putable oracle-aided functions that is one-way against non-uniform oracle-dependent adversaries in
the CROM but not one-way against oracle-independent adversaries in the QROM.

Proof. By Theorem 3.7, it suffices to give a construction of a family {f)} that is one-way against
oracle-independent adversaries in the CROM but not one-way against oracle-independent adver-
saries in the QROM. We prove this below.

The construction of f) is very similar to that of the proof of quantumness constructed in
Section 6. We rely on similar parameter settings as in Section 6, and use similar notations as in
Section 6.

We define f{f : C' — {0,1}" as follows:

f){q(xl, vy Xp) = (H1(X1), -, Hp(xp)).

where H; : ¥ — {0, 1} is the function that outputs the i-th bit of the output of H : ¥ — {0,1}".

The Prove algorithm in Section 6 can be understood as an oracle-independent algorithm to
invert f) for the image 1" in the QROM. This can be extended to find a preimage of any image
y € {0,1}" in a straightforward manner: We only need to modify the definition of T to the subset
consisting of e; € 3 such that H;(e;) = y; instead of H;(e;) = 1 in the proof of Lemma 6.3. The rest
of the proof works analogously. Thus, {f)} is not one-way against oracle-independent adversaries
in the QROM.

The proof of one-wayness in the CROM is similar to that of soundness of the proof of quan-
tumness in Section 6. By a straightforward extension of the proof of Lemma 6.9 where we replace
1™ with arbitrary y € {0,1}", we obtain the following claim.

34



Claim 7.2. For any oracle-independent adversaries A that makes poly(\) queries and y € {0,1}",
Prly = fi(x') : x' < AT (1Y, )] < negl()).

The above claim does not immediately imply one-wayness since in the one-wayness game, y is
chosen by first sampling x & C and then setting y = f/l\q (x) instead of fixing y independently of
H. Fortunately, we can show that the distribution of y is almost independent of H as shown in the
following claim.

Claim 7.3. We have
A((H,y),(H,y')) = negl(\)

where H < Func(X,{0,1}"),x & C, y = (%), and v & {o,1}".

By combining Claims 7.2 and 7.3, one-wayness against oracle-independent adversaries immedi-
ately follows.

For proving Claim 7.3, we rely on the following well-known lemma that relates the collision
probability and statistical distance from the uniform distribution.

Definition 7.4. For a random variable X over a finite set X, we define its collision probability as
Col(X) = >, Pr[X = 2%

Lemma 7.5. Let X be a random variable over a finite set X. For ¢ > 0, if Col(X) < ﬁ(l +€),
then
where Uy denotes the uniform distribution over X .

See e.g., [MV08, Lemma 4.5] for the proof of Lemma 7.5.

Then, we prove Claim 7.3 below.

Proof of Claim 7.3. By Lemma 7.5, it suffices to prove Col(H,y) = 2-(Z+1Dn . (1 4+ negl()\)) where
H & Func(2,{0,1}"),x & Cy = fH(x). We prove this as follows where H and H' are uniformly
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sampled from Func(X,{0,1}") and x and x’ are uniformly sampled from C.

Col(H,y) = Pr [H=H' A [I(x) = i ()]

— 9 Zn . py [ffl(x) = f)l\q(xl)]

H,xx,x/

=27 3" Prihw(x — x') = n — j]- 279
=0 X,X

= 97I1%In. ZPI‘[hW(X) =n—j]-27(n)
=0

< o—(Z+Dn |4 +

N 2n\?
< o—(Z[+Dn | q + =+ <>
Gl 2\

<o (mhn (14 20 f: <2>j
B [&X 12|

; z
7j=1
- (B)
— 9= ([E+D)n 14+ 2 + 2l
Gl 1= (%)
=2~ (B (1 4 negl(X))
where we used Prg[hw(x) = n| < 1 and Prglhw(x) = 0] = ‘C—i' for the fifth line, Item 3 of
Lemma 4.2 for the sixth line, and |X| = A = O()), and |Cy| > 2"F2 for the final line. This
completes the proof of Claim 7.3. 0
This completes the proof of Theorem 7.1. O

Remark 4 (On distributional one-wayness). It is worth mentioning that { fx}x is not even distri-
butionally one-way in the QROM. That is, one can find an almost uniformly distributed preimage
of y with quantum oracle access to H. This can be seen by observing that the proof of Lemma 6.3
actually shows that the proving algorithm outputs an almost uniformly distributed valid proof. This
corresponds to finding an almost uniformly distributed preimage of y for the above f.

7.2 Separation for Collision-Resistant Hash Functions.

We give a construction of a family of compressing functions that is collision-resistant in the CROM
but not even one-way in the QROM. It is a generic construction based on proofs of quantumness.

Theorem 7.6 (Separation for collision-resistant functions). There ezists a family {fr}x of ef-
ficiently computable oracle-aided compressing keyless (resp. keyed) functions that is collision-
resistant against uniform (resp. non-uniform) oracle-dependent adversaries in the CROM but not
even one-way against oracle-independent adversaries in the QROM.

Proof. Since the keyed version immediately follows from the keyless version by Theorem 3.8, we
prove the keyless version below.
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Let (Prove, Verify) be a keyless proof of quantumness with soundness against uniform oracle-
dependent adversaries that is shown to exist in Theorem 6.1, and let ¢, be its maximum proof
length.

We assume that the proof of quantumness uses a random oracle H : {0, 1} — {0,1}*
without loss of generality. We construct £ : {0, 1} — {0,1}* as follows:

T if Verify? (1}, 7) = T
() = S
H(z,7) otherwise

where the input is parsed as z € {0, 1}* and 7 € {0, 1}*". Collision-resistance of {f} against uni-
form oracle-dependent adversaries in the CROM is clear from the soundness of the proof of quantum-
ness. Indeed, an adversary with a classical access to H can output (z, ) such that Verify(1*,7) = T
only with a negligible probability. Assuming that this does not happen, an adversary has to find
a collision of H, which can be done only with probability at most @ 27 = negl(\) where
@ = poly(\) is the number of queries to H. On the other hand, the correctness of the proof of

quantumness gives a trivial way to invert f/{{ on any target y € {0, 1}>‘ with a quantum access to

H: one can just run m <~ Prove’(1*) and then output (y,7). We have fH(y,m) = y except for
a negligible probability by the correctness of the proof of quantumness. This means that {fy}, is
not one-way against oracle-independent adversaries in the QROM. O

7.3 Separations for Public Key Primitives

In [YZ21], they give separations between security in the CROM and QROM for public key en-
cryption (PKE) and digital signatures. Since their constructions are generic based on proofs of
quantumness, we can plug our proofs of quantumness given in Section 6 into their constructions to
obtain the following theorems.

Theorem 7.7. If there exists a PKE scheme that is IND-CPA secure in the CROM, then there
exists a PKE scheme that is IND-CCA secure in the CROM but not IND-CPA secure in the QROM.

Theorem 7.8. There exists a digital signature scheme that is EUF-CMA secure in the CROM but
not EUF-NMA secure in the QROM.

See [YZ21] for the formal definitions of PKE and digital signatures and their security. Note that
[YZ21] proved similar theorems relative to additional artificial classical oracles and weaker variants
of them assuming the LWE assumption. We significantly improve them by removing the necessity
of additional oracles or complexity assumptions.

7.4 A Remark on Pseudorandom Generators

One might think that we can also construct pseudorandom generators (PRGs) that are secure in
the CROM but insecure in the QROM because Theorem 7.1 gives one-way functions (OWFSs) that
are secure in the CROM but insecure in the QROM and there is a black-box construction of PRGs
from OWFs [HILL99]. However, we remark that this does not work. The reason is that PRGs
constructed from OWFs may be secure in the QROM even if the building block OWF is insecure
in the QROM. For example, there is no obvious attack against the PRG of [HILL99] even with an
inverter for the building block OWF.

Indeed, we believe that we can show that any black-box construction of PRGs from OWF's
may remain secure even if the building block OWF is insecure. We sketch the intuition below. Let
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f: X = X bea OWF. We augment the domain to X X R where R is an exponentially large space
by defining

fl(a,r) = f(x).

Then, it is clear that f’ is also a OWF. Suppose that we construct a PRG G by making black-box
use of f’. Since f'is a secure OWF, G is a secure PRG. For each r* € R, we define f. as follows:

: *
fre(z,r) = {f(:v) ifr #T .
x otherwise

Then, f/. clearly does not satisfy the one-wayness: for inverting y, one can just output (y,7*). On
the other hand, when we run G with respect to f/. instead of f’ for a randomly chosen 7*, there
would be a negligibly small chance of calling the second branch of f/. if the number of G’s queries
is polynomial. This means that G remains secure even though the building block function f. is
insecure as a OWF.

We observe that the (im)possibility of separating CROM and QROM for PRGs is closely related
to the Aaronson-Ambainis conjecture [AA14] (Conjecture 8.1). Very roughly speaking, the conjec-
ture claims that any single-bit output algorithm in the QROM can be simulated in the CROM with
a polynomial blowup on the number of queries. Since a PRG distinguisher’s output is a single-
bit, it is reasonable to expect that we can prove the equivalence of QROM security and CROM
security for PRGs under the Aaronson-Ambainis conjecture. Unfortunately, this does not work
as it is because a distinguisher takes a PRG value as its input, which may be correlated with the
random oracle, whereas the Aaronson-Ambainis conjecture only captures the case where no side
information of the random oracle is given. Nonetheless, we conjecture that QROM security and
CROM security for PRGs (against polynomial-query unbounded-time adversaries) are equivalent.
It is a fascinating direction for future work to reduce it to the Aaronson-Ambainis conjecture or its
reasonable variant.

8 Proofs of Randomness

In this section, we construct proofs of randomness assuming the Aaronson-Ambainis conjecture [AA14].
Roughly speaking, the Aaronson-Ambainis conjecture claims that for any algorithm A with a

quantum access to a random oracle, there is an algorithm B that approximates the probability that

A outputs a particular output with a classical access to the random oracle, and the number of

queries of A and B are polynomially related. A formal claim is stated below.

Conjecture 8.1 (Aaronson-Ambainis conjecture [AA14, Theorem 22]). Lete,d > 0 be reals. Given
any quantum algorithm A that makes Q quantum queries to a random oracle H : {0,1}" — {0,1}™,
there exists a deterministic classical algorithm B that makes poly(Q,m,e 1,61 classical queries
and satisfies

Pr ([PuAt() 1] =BT <4214
HE Func({0,1}7,{0,1}m)

Remark 5. We remark that the way of stating the conjecture is slightly different from that in
[AA14, Theorem 22], but they are equivalent. The difference is that [AA1}] considers oracle ac-
cess to Boolean inputs whereas we consider an oracle access to functions. They are equivalent by
considering a function as a bit string concatenating outputs on all inputs. We remark that a straight-
forward rephrasing would result in an oracle with 1-bit outputs, but their conjecture is equivalent in
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the setting with m-bit output oracles since an m-bit output oracle can be seen as a concatenation
of m 1-bit output oracles. We note that the number of B’s queries in the above conjecture depends
on m unlike theirs due to this difference.

We also remark that Aaronson and Ambainis [AA1}] reduce the above conjecture to another
seemingly unrelated conjecture in Fourier analysis. In the literature, the latter conjecture is often
referred to as Aaronson-Ambainis conjecture. On the other hand, we call Conjecture 8.1 Aaronson-
Ambainis conjecture since this is more relevant to our work.

The main theorem we prove in this section is the following.

Theorem 8.2. If Conjecture 8.1 is true, there exists keyless (resp. keyed) proofs of randomness
in the QROM that has true randomness against uniform (resp. non-uniform) oracle-dependent
adversaries.

By Theorems 3.6, 3.9 and 3.15, it suffices to prove the following theorem for proving Theo-
rem 8.2.

Theorem 8.3. If Conjecture 8.1 is true, there exists keyless proofs of min-entropy in the QROM
that has min-entropy against oracle-independent adversaries.

In the following, we prove Theorem 8.3.

From proofs of quantumness to proofs of min-entropy. Our proof of quantumness con-
structed in Section 6 has a large entropy in proofs. We can easily show that this is inherent assuming
Aaronson-Ambainis conjecture. This is because if the proving algorithm is almost deterministic, it
can be simulated by a polynomial-query classical algorithm, which breaks soundness. The following
theorem gives a generalization of the above argument.

Theorem 8.4. If Conjecture 8.1 is true, the following holds. Let (Prove, Verify) be a keyless proof of
quantumness relative to a random oracle H : {0,1}" — {0,1}" that satisfies (Qpoqs €poq) -SOUNANESS.
Let A be an oracle-independent adversary that makes Q4 quantum queries. Let € 4,04 > 0 be reals
(that may depend on the security parameter). There exists a polynomial p such that if we have

onq > p()‘7 Qa, 6;117 521)

and
€poq < 5./4/47 20

then we have

Pr max PrlAT(1Y) = 7] <eq| > 1—-d4.
HﬁFunc({O,l}",{O,l}m) * s.t. Verifyd (1A 75)=T

We defer the proof of Theorem 8.4 to the end of this section. By plugging the proofs of quan-
tumness in Section 6 into Theorem 8.4, we obtain proofs of min-entropy, which proves Theorem 8.3.

Proof of Theorem 8.3. For any polynomial h()), there exists a constant C' such that Qpoq =
2C(h(M+A) and €poq = 27772 satisfy the requirements of Theorem 8.4 for Q4 = poly(\), €4 =
2= (MN+X and §4 = 27*. As shown in Lemma 6.9, our proof of quantumness constructed in
Section 6, which we denote by (Provepeq, Verify,.,), satisfies subexponential security. Thus, by

20In fact, it suffices to require €poq < ¢4 for any constant ¢ < 1.
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standard complexity leveraging, there is a polynomial h’'(\) such that if we replace the security
parameter with h'()) in (Provepeq, Verify,,,), then it satisfies (2€(hN+A) 9=A=2) soundness. By
Theorem 8.4, we have

Pr

max Pr[A7 (1Y) = 7] < 27PN | > 1 972 (36)
Hﬁpunc({071}n7{071}m) 7 s.t. Verify[L (1M (N 7r6)=T

Then, we construct proofs of min-entropy (Prove, Verify) as follows.

Prove (1}, () := ProvefL (1"'(V)

Verify® (1}, h(\), 7): If Verifyg{,q(lh/()‘),ﬂ) = 1, it outputs L. Otherwise, it outputs .

Suppose that (Prove, Verify) does not have min-entropy against oracle-independent adversaries.
Then, there exist an oracle-independent adversary .4 that makes poly(\) queries and a polynomial
h(\) such that we have

Pr|Verify (1%, h(), A7 (1Y) # 1] > 1/poly(\) A Hoo (AZ(1%)) < h()) (37)

for a non-negligible fraction of H. It is easy to see that Equation (37) implies

max Pr[A" (1Y) — 7% > 27" /poly(N).

7 s.t. Verifyf (1M () 76)=T

Since this holds for a non-negligible fraction of H, this contradicts Equation (36). Therefore,
(Prove, Verify) has min-entropy against oracle-independent adversaries. O

Intuition for the proof of Theorem 8.4. Towards a contradiction, we assume that

Pr max PrlAZ(1%) = 7% > eq| > 4.
HﬁFunc({()’l}n,{O,l}m) 7% s.t. Verifyf (12 o0)=T

We have to construct a classical adversary that breaks the soundness of the proof of quantumness.
If eq =~ 1, it is easy: We consider an algorithm 4; that outputs the j-th bit of A’s output for
J € [¢x] where £ is the length of a proof in the proof of quantumness. For ¢ 4-fraction of H, A;’s
output is almost deterministic for all j. Then, we can classically simulate A; for all j by invoking
Conjecture 8.1 for e << 1 and § << 0.4/¢,. This breaks the soundness of the proof of quantumness.

When €4 << 1, such a simple bit-by-bit simulation attack does not work. The reason is that
mixing up bits of multiple valid proofs does not result in a valid proof in general. To deal with such
a case, we attempt to convert A into an almost deterministic attacker. If this is done, the same
idea as the case of €4 ~ 1 works. For making A almost deterministic, our first idea is to consider
an modified adversary A’ that outputs the smallest valid proof 7 in the lexicographical order such
that A outputs m with probability at least € 4. If we can efficiently construct such A’, then this idea
works. However, the problem is that A’ cannot exactly compute the probabilities that A outputs
each 7 with a limited number of queries. What A’ can do is to run A many times to approximate
the probabilities up to a 1/poly error.?!’ Now, a problem occurs if there are multiple 7 such that
the probability that A outputs 7 is within e4 + 1/poly.

2Ipoly means a polynomial in the number of repetition of .4 run by A’.
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To deal with this issue, we rely on an idea to randomly decide the threshold.?? That is, A’
outputs the lexigographically smallest valid proof 7w such that the approximated probability that
A outputs 7 is at least ¢ for some randomly chosen threshold t € (€4/2,€4). If we choose ¢ from a
sufficiently large set and set the approximation error to be sufficiently small, we can show that it is
impossible that there are multiple 7 such that the probability that A outputs 7 is within ¢ 4 1/poly
for a large fraction of ¢t by a simple counting argument. This resolves the above problem.

Proof of Theorem 8.4. In the rest of this section, we give a formal proof of Theorem 8.4. We
first show the following simple lemma.

Lemma 8.5. Let A be a (possibly quantum) algorithm that outputs an £-bit string z. For any
€,6 > 0, there is an algorithm Approx(A,e,d) that runs A O(¢log(6-1)e2) times and outputs a
tuple {P:}.cq0,1y¢ such that

Pr vz € {0,1}¢ |P, — PrlA() — 2| Se} >1-6

where {P;}.cr01y¢ & Approx(A, e,0). We say that Approx(A, e, d) succeeds if the event in the above
probability occurs.

Proof. Approx(A,e,d) works as follows. It runs A() N times where N is an integer specified later.
For each z, let K, be the number of executions where A outputs z. Then it outputs {P, :=
%}ze{m}f-

If we set N > Cllog(6~1)e~? for a sufficiently large constant C, by Chernoff bound (Lemma 2.4),
for each z, we have

)
Pri|P, — Prl[A() = z]| < ¢ >1— o
By the union bound, we obtain Lemma 8.5. O
Then, we prove Theorem 8.4.
Proof of Theorem 8.4. Towards a contradiction, we assume that
Pr max PrlAT (1Y) = 7%] > e4| > 04. (38)

1 H * ) —
HiFunc({O,l}",{O,l}m) m* s.b. Verify (1A, 7r%)=T

It suffices to prove that there exists a classical adversary B that makes p(Q 4, m, e;ll, 521) quantum
queries and satisfies

Pr [Verify? (10, 7) = T . & BI(1Y)] > 64/4
HEFunc({0,137,{0,1}m)

for some polynomial p. Let M := [é]. For i € [M], we consider a quantum adversary A; that
works as follows.

22This idea is inspired by [CCY20).
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AZ(1): Tt runs {Pr}rcfoyen & Approx(A, 4 1) where (; is the length of a proof. Then it

outputs the smallest 7 in the lexicographical order that satisfies

Verify? (1, m) = T

¢ 9 — 1
P> <1 .
>2< * 2M)

and

The number of queries by A; is Q4, = poly(\, Q 4, e;ll) since £, = poly(\). For each H, let 77 be
the most lilkely output of A (1*).23 We prove the following claim.

Claim 8.6. For at least (%“)—fmction of H € Func({0,1}",{0,1}"™) and i € [M], it holds that
Pr[Af(1%) — nH] > 4/5.
Proof of Claim 8.6. By Equation (38), at least d 4-fraction of H satisfies

max PrlA7(1%) = 7%] > e. (39)
7* s.t. Verify (1A, 75)=T

Fix such H. Then, for at least 3-fraction of i € [M], there does not exist 7 satisfying

21— 1 €A
PrlAf (1Y) 5 x] — 24 (1 A 40
O e e E s vval |y (40)
This can be seen by a simple counting argument. First, we remark that if 7 satisfies Equation (40)
for some i € [M], then we have Pr[A”(1") — 7] > e4/2. Therefore, the number of such 7 is at
most 2/e4. Second, we remark that each 7 can satisfy Equation (40) for at most one i. Therefore,
the fraction of i € [M] such that there is 7 that satisfies Equation (40) is at most 2/(e4M) < 1/2.

Therefore, for at least (%)—fraction of H and i, Equation (39) holds and there does not exist

7 satisfying Equation (40). For such H and i, if Approx(A, 157, %) succeeds, which occurs with

probability at least %, then A; outputs the smallest 7 in the lexicographical order that satisfies
Verify? (1A 7) =T

and

oo ea 2 — 1
Pr[A" (1%) — 7] > 5 <1+ Wi >

Since the above 7 is output with probability larger than 4/5, this is the most likely output 7TI-H .
Thus, for at least <%A>—fraction of H and i, A returns 71 with probability larger than 4/5. This
completes the proof of Claim 8.6. O

For j € [(:], let A;; be the algorithm that runs 4; and outputs the j-th bit of the output of
A;. Since A; ; makes the same number of queries as A;, its number of queries is Qu,; = Q4;, =
poly()\,QA,e;tl). We apply Conjecture 8.1 to A; ; where € := 1/5 and ¢ := gﬁ. Then, Conjec-
ture 8.1 ensures that there exists a deterministic classical algorithm B; ; that makes poly(Q 4, ;, m, Lo h =
poly(A, Q 4, e;ll, 5;‘1) classical queries and satisfies

Pr Hpr[A{f.(ﬂ) 1] - Bﬁ(l)‘)‘ < 1/5} S04
0 . . J J 40,
+Func({0,1}",{0,1}™)

23If there is a tie, we choose the smallest one in the lexicographical order.
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By the union bound, we have
o
Pr [Vj e (6] ‘Pr[A{Ij(F) 1] - B{Ij(ﬂ)‘ < 1/5] >1- 24, (41)
HE Func({0,1}7,{0,1}m) 4
Now, we give the classical adversary B.

BH(1*): It randomly chooses i < [M]. For j = 1,2, ..., x, it runs ij(lk) and sets 7; := 1 if the
output is larger than 1/2 and 7; := 0 otherwise. Then it outputs 7 := m||ma]|...| |7, .

By the construction, we can see that B makes poly(\, @ 4, e;\l, 5;\1) queries. By combining Claim 8.6
and Equation (41), for at least (%)—fraction of H € Func({0,1}",{0,1}™) and ¢ € [M], if the j-th

bit of 7TZ~H is 1, we have
. H 1\

and otherwise
vV j € [tx], BS(1Y) < 2/5.

Since we have Verify (1%, 7/1) = T for all i € [M], we have

94
4,

Pr Verify? (1), ) = T : w & B (1)) >

HE Func({0,137,{0,1}m)

This contradicts the soundness of the proof of quantumness. This completes the proof of Theo-
rem 8.4. O
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