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Abstract. We explore the cryptographic power of arbitrary shared phys-
ical resources. The most general such resource is access to a fresh entan-
gled quantum state at the outset of each protocol execution. We call
this the Common Reference Quantum State (CRQS) model, in analogy
to the well-known Common Reference String (CRS). The CRQS model
is a natural generalization of the CRS model but appears to be more
powerful: in the two-party setting, a CRQS can sometimes exhibit prop-
erties associated with a Random Oracle queried once by measuring a
maximally entangled state in one of many mutually unbiased bases. We
formalize this notion as a Weak One-Time Random Oracle (WOTRO),
where we only ask of the m–bit output to have some randomness when
conditioned on the n–bit input.
We show that WOTRO with n − m ∈ ω(lgn) is black-box impossible
in the CRQS model, meaning that no protocol can have its security
black-box reduced to a cryptographic game. We define a (inefficient)
quantum adversary against any WOTRO protocol that can be efficiently
simulated in polynomial time, ruling out any reduction to a secure game
that only makes black-box queries to the adversary. On the other hand,
we introduce a non-game quantum assumption for hash functions that
implies WOTRO in the CRQ$ model (where the CRQS consists only of
EPR pairs). We first build a statistically secure WOTRO protocol where
m = n, then hash the output.
The impossibility of WOTRO has the following consequences. First, we
show the black-box impossibility of a quantum Fiat-Shamir transform,
extending the impossibility result of Bitansky et al. (TCC ’13) to the
CRQS model. Second, we show a black-box impossibility result for a
strenghtened version of quantum lightning (Zhandry, Eurocrypt ’19)
where quantum bolts have an additional parameter that cannot be changed
without generating new bolts.

1 Introduction

Cryptographic protocols can sometimes only be proven secure if some of their
components are assumed to be ideal. For example, some protocols that make
use of cryptographic hash functions can be proven secure if they are modelled as
ideal random functions provided as a black box; this is called the random oracle
model (ROM). Another, but weaker, idealized resource is the common random



string model (CRS), in which the participants get a freshly generated random
string at the outset of each protocol execution. Many cryptographic applications
have their most efficient protocols proven secure when provided access to such
extra resources, as all known protocols in the plain model are either inefficient,
or do not satisfy all security requirements.

The Random Oracle Model (ROM). Introduced by Bellare and Rogaway [5] as
a way to idealize cryptographic hash functions, the model has been shown to
provide formal security proofs for a wide variety of cryptographic protocols that
are not known to be secure under standard assumptions in the plain model. A
random oracle models a hash function as one whose value for every input is
chosen uniformly and independently at random and afresh before each proto-
col execution. This is meant to model the assumption that a hash function is
random, and that looking at its source code yields nothing useful beyond its
input-output behaviour. Rigorous security proofs for practical and efficient ap-
plications like Full Domain Hash signatures (FDH-Signatures), Optimal Asym-
metric Encryption Padding (OAEP), Schnorr’s signatures [41, 43], and Fischlin’s
NIZK-PoK [27] are easy to obtain in the ROM but are still missing in the plain
model. The random oracle is a powerful primitive that provides all the main
properties of a cryptographic hash function at once: collision resistance, preim-
age resistance, and pseudorandomness. It also has properties that can never
be satisfied by any hash function: programmability, (query) extractability (also
known as observability), and freshness.

Common Reference String Model. A CRS is nothing more than a fresh random
string that materializes upon each protocol execution (freshness) and to which
all players have access. This model was originally proposed by Blum, Feldman,
and Micali [9] to help remove interaction in zero-knowledge proof systems. In [8],
the model was shown to allow for non-interactive zero-knowledge for all NP lan-
guages. The works of [11, 13, 20] extend its use as a resource enabling universally
composable cryptographic primitives. The common reference string model comes
in two main flavours. The weakest consists of a random and uniform string of
polynomial length (in the security parameter) while the strongest consists of a
string of polynomial length picked from some efficiently sampleable distribution.
The first flavour will be denoted by the CR$ model (i.e. the Common Random
String Model) while the second flavour will be denoted by the CRS model (i.e.
the Common Reference String Model).

A customary application of both the CRS model and the ROM is the removal
of interaction in interactive proof systems. As mentioned above, the CRS model
was originally designed for that purpose [9]. Notice that a random oracle is a
much more powerful resource than a CRS, since it provides random access to
an exponential number of them. However, a random oracle is an immaterial
resource as its properties could never be satisfied by any efficient local process.
This is in sharp contrast to a CRS, which can be implemented in practice: we
only need a way to publish fresh and public random strings of polynomial length.

2



Unfortunately, some basic and useful cryptographic primitives are only known
to be securely realizable in the ROM.

In this paper, we consider a quantum version of the CRS model, called the
CRQS model, and we ask whether it could go beyond what the CRS model can
provide for the safe removal of interaction in cryptographic protocols.

The CRQS and CRQ$ Models. We consider models where a quantum state plays
the role of a common random string in a situation involving two parties. In
the CRQS (Common Reference Quantum State) model, each party receives one
half of a fixed pure quantum state at the beginning of each protocol execution.
The shared quantum state is of polynomial size and can be generated by some
polynomial size quantum circuit. In the CRQ$ model, each player is given halves
of polynomially many (in the security parameter) maximally entangled pairs of
qubits (or qudits in general). Although we could allow a CRQS or a CRQ$ to
be shared between more than two parties, in this work we only consider the
two-party case. Notice that the meaning of common in CRQS and CRQ$ is
narrower than for a CRS and CR$: even though a CRQS is common to both
parties involved in a protocol, it is completely unknown to anybody else, as
both players share a pure state. Even though a CRQS is obviously more difficult
to deploy in practice than a CRS, it remains a physical resource, unlike the
random oracle. Establishing limits on what a CRQS can provide would therefore
contribute to a better understanding of the cryptographic power provided by
the sharing of a physical resource between the parties involved in a protocol. In
this paper, we show fundamental limits on the abilities of the CRQS to remove
interaction in the two-party setting.

When a CRQ$ Behaves Like a Random Oracle. In order to see why a CRQS could
outperform a CRS in some settings, consider the following scenario where a
CRQ$ seems to provide as much randomness as the random oracle. Suppose
Alice and Bob are sharing a CRQ$ made out of n EPR pairs of qubits. Each
can then view their n qubits as an access to a weak random oracle implementing
a random function f : {0, 1}n → {0, 1}n. The value f(a) can be obtained the
following way. To each possible value a ∈ {0, 1}n, we associate a publicly known
orthonormal basis θa for n qubits. The value of f(a) is simply defined as the
outcome of the measurement of the n qubits owned by each party in basis θa.
Notice that this weak random oracle can be queried in only one place by each
party, as after the measurement is performed, the entangled pairs have collapsed
to a classical state. However, when both parties measure in the same basis θa
they obtain the same uniformly distributed outcome. Moreover, when the bases
{θa}a∈{0,1}n are chosen to be mutually unbiased [42, 46]3, the value f(a) does
not provide any information about f(a′) for any a 6= a′. In this particular set-
ting, n EPR pairs seem to contain as much randomness as a random oracle. It

3 {θa}a∈{0,1}n is a set of mutually unbiased bases for n qubits if for all |u〉 ∈ θa and
|v〉 ∈ θa′ with a 6= a′, we have |〈u|v〉|2 = 2−n. There are 2n + 1 mutually unbiased
bases for n qubits.
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is therefore tempting to believe that a CRQ$ of polynomial size could in certain
cases provide a cryptographic resource tantamount to the random oracle when
only one query (or just a few) has to be made by each player.

The Fiat-Shamir Transform. One very useful primitive that needs an idealized
cryptographic resource for establishing its security is the Fiat-Shamir transform,
also known as the Fiat-Shamir heuristic, introduced in the pioneering work of
Fiat and Shamir in [26] as a way to transform identification schemes of a given
form into practical digital signature schemes. More generally, the FS-transform
is a simple and efficient primitive allowing to convert sound interactive proof
systems of a particular form into non-interactive arguments for the same lan-
guage. Its primary use is to remove interaction in Σ–protocols. Σ–protocols [16,
18] are public-coin 3-message proof systems where, from public input x ∈ {0, 1}∗,
the prover sends a commitment a ∈ {0, 1}n to the verifier as the first message.
The verifier then replies with a random challenge c ∈R {0, 1}m (called public
coins) before the prover sends the answer z(x, a, c) that the verifier can check
for consistency. Henceforth, Σ–protocols with commitments of size n and public
coins of size m will be denoted by Σn,m–protocols. These proof systems can be
proofs of knowledge, like their use in identification schemes, or proofs of language
membership. In this paper, Σ–protocols are always considered perfectly correct
and special sound. Special soundness4 for proofs of knowledge means that from
any two successful conversations with the same commitment (a, c, z(x, a, c)) and
(a, c′, z(x, a, c′)) with c 6= c′, one can efficiently extract a witness w for x ∈ L.
For proofs of language membership, special soundness means that when x /∈ L
and for each commitment a, there exists at most one challenge c(a) for which a
third message z̃ can ever be found such that (a, c(a), z̃) is accepted by the ver-
ifier. The Fiat-Shamir transform applied to a Σ–protocol is implemented using
hash function hr : {0, 1}∗ → {0, 1}m picked according to CR$ r. The prover
then sends (a, hr(a), z(x, a, hr(a))) to the verifier. In other words, the verifier’s
challenge or public coin c in the Σ–protocol is replaced by c = hr(a)5. It is
straightforward to see that when hr is modelled by a random oracle, the trans-
form applied to a Σ–protocol produces a sound argument6. Notice that when
the hash function is modelled by a random oracle, the prover and the verifier
only have to query the oracle once at the same point. The family of hash func-
tions H = {hr}r∈D{0,1}`(n) , for D an efficiently sampleable distribution over

{0, 1}`(n), is a sound Σn,m–universal instantiation of the Fiat-Shamir transform
if hr converts the special soundness of any Σn,m–protocol (as a proof of language
membership) into a non-interactive argument.

4 Special soundness is called optimal soundness in [4].
5 Some works include the public instance x as input to hr, our results remain un-

touched if we include it. We leave it out for simplicity.
6 The hard part in [38] was showing that the Fiat-Shamir transform, when applied to

a Σ–protocol for a proof of knowledge, allows to extract a witness from all successful
provers (i.e. thanks to their Forking Lemma).
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The Fiat-Shamir Transform in the ROM and QROM. As mentioned above,
the Fiat-Shamir transform was shown secure in the ROM by Pointcheval and
Stern [38] in 1996. The soundness of the Fiat-Shamir transform is straightfor-
ward in the ROM. The challenging part was to show that it also provides non-
interactive proofs of knowledge. The same was shown to hold in the quantum
random oracle (QROM) independently and differently by Don, Fehr, Majenz,
and Schaffner in [25] and by Liu and Zhandry in [34].

Classical Impossibility Results for the Fiat-Shamir Transform. The Fiat-Shamir
transform does not guarantee computational soundness for all Σ–protocols in
the CRS model. In particular, Goldwasser and Kalai have shown that the Fiat-
Shamir transform applied to some (contrived) Σ–protocols is not sound for any
instantiation of the hash function (i.e. instantiated using a CRS) [30]. However,
this impossibility result requires the Σ–protocol to be a proof of knowledge.
Impossibility results for Σ–protocols used as proofs of language membership are
not known to be as strong as for proofs of knowledge. One reason being that
for language membership, the Fiat-Shamir transform is only asked to provide
computational soundness to a Σ–protocol with statistical soundness whereas
for a proof of knowledge the Σ–protocol is an argument. Remember that a
cryptographic game [31] is a standard way to define computational assumptions
by requiring that no adversary can win an interactive game against a challenger
with probability that is not overwhelmingly close to some constant value [31].
An assumption that can be formulated as a cryptographic game with an efficient
challenger is called a falsifiable assumption [28, 35]. Known impossibility results
for the Fiat-Shamir transform applied to Σ–protocols for proofs of language
membership are about the impossibility of reducing its computational soundness
to a cryptographic game.

In [6], Bitansky et al. provide two results on the impossibility of establishing
the computational soundness of the Fiat-Shamir transform in the CRS model.
First, if a language L /∈ BPP has an honest-verifier zero-knowledge (HVZK)
Σ–protocol (with small enough challenges) then the soundness of the Fiat-
Shamir transform applied to it cannot be established by a black-box reduction7

to a falsifiable assumption8. This impossibility result applies even to Fiat-Shamir
transforms tailor-made for specific Σ–protocols. Second, they show the impos-
sibility of black-box reducing the computational soundness of any universal in-
stantiation of the Fiat-Shamir transform to a cryptographic game, even a non
falsifiable one where the challenger is not required to run in polynomial time.

7 The security of protocol Π is black-box reduced to an assumption expressed as a
game if there exists an oracle polynomial-time machine RP

∗
that, with oracle access

to any successful adversary P ∗ for protocol Π, wins the game.
8 The reason why the result applies in the CRS model is because [6, 17] show how to

get, from such a Fiat-Shamir transform, a 2-message zero-knowledge proof system
for L where the verifier simply sends the identity of the hash function to the prover as
first message. This is equivalent to non-interactive schemes in the CRS model. These
proofs systems are shown impossible by an extension of the impossibility result for
2-round zero-knowledge for non-trivial languages by Goldreich and Oren [29].
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Our main contribution consists in showing that the second impossibility result
of [6] also holds in the CRQS model even though sharing an entangled quantum
state seems to provide enough randomness to mimic a (classical) random ora-
cle. In other words, the computational soundness of any universal Fiat-Shamir
implementation in the CRQS model cannot be black-box reduced to any cryp-
tographic game, just like in the CRS model.

Positive results & related work. A series of results have been focusing on achiev-
ing soundness of the Fiat-Shamir transform from a cryptographic assumptions
that cannot be black-box reduced to cryptographic games. Barak, Lindell and
Vadhan [4] introduce the notion of entropy preserving hash functions and show
that their existence prevents any constant-round auxiliary-input zero-knowledge
proof system for non-trivial languages. Later, Dodis, Ristenpart and Vadhan [24]
gave a construction for entropy preserving hash functions from robust random-
ness condensers with some extra properties but without providing any con-
struction for them. Canetti, Goldreich, and Halevi [14] introduce correlation in-
tractable families of hash functions. Correlation intractability is related to en-
tropy preservation as the latter implies the former. Therefore, a consequence
of [6] is that correlation intractability cannot be proven by black-box reduction
to a game. In [32], Kalai, Rothblum, and Rothblum provide a construction for
correlation intractable family of hash functions from a sub-exponentially secure
indistinguishability obfuscator, an exponentially secure input-hiding obfuscator
for the class of multi-bit point functions, and the existence of a sub-exponentially
secure puncturable PRF9. The sub-exponential indistinguishable security of the
IO-obfuscator and the exponential security of the multi-bit point functions ob-
fuscator allow to evade the impossibility result of [6]. In [12], Canetti, Chen,
Holmgren, Lombardi, Rothblum, and Rothblum show how to construct a uni-
versal instance of the Fiat-Shamir transform using correlation intractable hash
functions built from a strong version of KDM-encryption. The resulting Fiat-
Shamir transform also has security black-box reducible to a cryptographic game
with subexponential security.

The concept of shared entanglement as a setup was considered in previ-
ous works. In [15], Coladangelo, Vidick, and Zhang have shown how to design
zero-knowledge arguments for QMA (i.e. quantum NP), with preprocessing. The
preprocessing is essentially what we call here a CRQ$. Non-interactivity is ob-
tained from pre-shared EPR pairs used as a teleportation channel. This can be
viewed as a quantum version of the work of Peikert and Shiehian [37] and, as
such, is not a Σn,m–universal instantiation of the Fiat-Shamir transform. The
ability of a CRQS to provide zero-knowledge against quantum dishonest verifiers
has been investigated in [19]. It was shown that a CRQS allows quantum zero-
knowledge implementations of a Σ–protocols against a relaxed form of honest
verifiers, called non-oblivious.

9 Notice that the result of [32] is very general as it allows to apply securely the
Fiat-Shamir transform to any public-coin 3-message proof systems, not only to
Σ–protocols as we define them. Some of their assumptions can be relaxed a little
when the Fiat-Shamir transform is applied to Σ–protocols.
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Fiat-Shamir in the CRQS model? We investigate the question of whether or not
Fiat-Shamir has a secure and universal instantiation in the CRQS model. Why
would it be possible given the strong impossbility results in the CRS model?
For one thing, quantum entanglement is known to allow the reduction of inter-
action and achieve classically impossible tasks. Watrous [44] showed that every
language in PSPACE has 3-message proof systems. Another example would be
nonlocal games such as the magic square game [3, 2, 10], where a pair of entan-
gled non-interacting provers can win a game that would classically require them
to communicate.

The CRQS model provides quantum non-local correlations10 between the
prover and the verifier. The question we are addressing here is whether these non-
local quantum correlations can be harnessed to provide universal Fiat-Shamir
through the use of a CRQS. As we mentioned above, n shared EPR pairs mea-
sured in one of 2n mutually unbiased bases seems to provide a functionality
reminiscent of a random oracle queried at a single point, exactly as needed for
Fiat-Shamir. The correlated randomness available to the prover and the verifier
seems to contain as much randomness as the random oracle.

Quantum non-local correlations provided by EPR pairs are often idealized
by NL-boxes [39]. One NL-box takes the first party’s input a ∈ {0, 1} and the
second party’s input b ∈ {0, 1} to provide u ∈ {0, 1} and v ∈ {0, 1} such that
u⊕ v = a ∧ b to the first and second party respectively. EPR pairs achieve this
functionality with probability of success cos2 (π8 ) while any CRS would not be
able to provide the correct answer with probability better than 3

4 . It is easy
to see that access to sufficiently many NL-boxes provides secure and universal
Fiat-Shamir (see details in Appendix D.2).

One might argue that the CRQS model is not currently realistic given the
technological difficulties associated with distributing and coherently storing quan-
tum entanglement (although this is rapidly improving). However, we ask a more
fundamental question on the power of setup assumptions. Does the random or-
acle, an idealized mathematical object, have a physical instantiation that allows
such applications as the Fiat-Shamir transform?

1.1 Our Contributions

We show a strong impossibility result for universal Fiat-Shamir in the CRQS
model. The statement we obtain is the extension of the classical impossibility
Fiat-Shamir of Bitansky et al. [6, 7], namely that there is no black-box reduction
from the security of Fiat-Shamir to a secure cryptographic game assumption. In
fact, our impossibility is more general than [6], even when restricted to the clas-
sical case. A CRQS captures asymmetric setups such as giving the verifier the

10 In quantum mechanics, a non-local correlation is the name given to the statistics of
local measurements applied to distinct parts of a quantum states when they cannot
be explained by a local realistic theory. Non-local correlations here (quantum or not)
means also that they do not allow for any form of communication as they must be
compatible with special relativity.
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trapdoor to some primitive the prover uses or pre-computed randomized oblivi-
ous transfers. We achieve this by following a different approach than [6]. Whereas
[6] shows the black-box impossiblity of so-called entropy preserving hash func-
tions and prove that they are necessary for a universal Fiat-Shamir transform,
we introduce a cryptographic primitive called a Weak One-Time Random Or-
acle, denoted WOTROn,m and defined by the box given in Fig. 1, which takes
place between a “prover” who controls the interfaces on the left-hand side of the
box, and a “verifier” who controls the interfaces on the right. This primitive is
intended to capture the minimal functionality sufficient for Fiat-Shamir. A pro-
tocol instantiating WOTROn,m is secure if for any function f(·), the adversary
can’t produce an output of the form (a, f(a)) on the verifier’s interfaces. This
directly implies Fiat-Shamir for Σ–protocols by having f(·) represent the “bad
challenge” function of the Σ–protocol. Our main contribution is showing that

WOTROn,mΓ

a ∈ {0, 1}n

c ∈R {0, 1}m

a

c

Fig. 1. Representation of the primitive WOTRO as a box. Here, the prover on the left
puts a chosen a ∈ {0, 1}n into the box, the box chooses a c ∈ {0, 1}m uniformly at
random, and outputs both a and c to the verifier on the right-hand side.

this primitive is black-box impossible in the CRQS model.

Theorem 1 (informal). If n−m ∈ ω(lg n), there is no protocol for WOTROn,m

that can have its security proven by black-box reduction to a cryptographic game
assumption unless that assumption is false.

Our impossibility uses a similar recipe as the classical impossibility [6, 7] of
Fiat-Shamir, but with quantum ingredients. We construct an inefficient attacker
against any protocol for WOTRO in the CRQS model and show that this attacker
can be efficiently simulated. Any black-box reduction from this attacker to the
security of a cryptographic game becomes an efficient algorithm for breaking the
game when given the simulator instead, ruling out either the existence of such
a reduction or the security of the game itself.

By applying these techniques to the Fiat-Shamir in the CRQS model, we
obtain a similar impossibility result.

Theorem 2 (informal). There is no instantiation of the Fiat-Shamir trans-
form that maps an n-bit first message to an m-bit challenge for n−m ∈ ω(lg n)
whose security can be reduced by black-box to a cryptographic game assumption,
unless that assumption is false.

Studying the WOTRO primitive instead of Fiat-Shamir directly has the ad-
vantage that our black-box impossibility result also applies to any cryptographic
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task which (black-box) implies WOTRO. For instance, we introduce a strength-
ened variant of Zhandry’s quantum lightning [47] that imply WOTRO. Quantum
lightning (QL) is a primitive that produces a quantum state and an associated
serial number such that no adversary can produce two states with the same serial
number (hence the name “lightning”). A consequence of this property is that se-
rial numbers are highly unpredictable. A natural question is whether some form
of metadata can be embedded into quantum lightning such that changing the
value of this metadata requires creating a new lightning state. This metadata
could for example contain ownership information and it would thus be impos-
sible, even to the emitter of the state, to change the owner of a state without
generating an entirely new state. It could also serve to encode a denomination
for quantum bank notes, such that not even the emitting bank could change the
denomiation of an existing quantum note.

We introduce a variant of quantum lightning that allows such metadata by
adding a classical input to the state generation procedure. We call this variant
typed quantum lightning (tQL) which is secure if the serial numbers remain un-
predictable conditioned on the input. We show that this variant implies WOTRO
and thus inherits the same black-box impossibility.

Theorem 3 (informal). There is no black-box reduction from the security of a
tQL scheme to the security of a cryptographic game assumption when type length
n and serial length m satisfy n−m ∈ ω(lg n), unless that assumption is false.

Why would tQL be a reasonable assumption? Clearly it is a very powerful
primitive, but how much of a leap is it from “vanilla” quantum lightning? While
we do not have a definitive answer to that question, we can show that QL implies
tQL with small types. More precisely, we construct in Appx. B a tQL scheme from
regular QL for types of O(lg(n)) bits.

Instantiating WOTRO from a non-game assumption. We show that it is possible
to construct a WOTRO protocol for which security is based on a cryptographic
assumption that does not fit the game formalism. Our result is based on a new
hardness assumption on cryptographic hash functions called collision-shelters.
Intuitively, a family of hash functions is a collision-shelter if no adversary can
produce many collisions in superposition. As such it is an intrinsically quantum
definition which cannot be framed as a game since no challenger can verify that
an adversary breaks the assumption. Using this assumption, we show that the
MUB-based construction for WOTRO sketched earlier can be turned into a secure
protocol. To prove the security of this protocol, we give bounds on the optimal
probability of distinguishing between states from many mutually unbiased bases
which might be of independent interest.

Theorem 4 (informal). Under the collision-shelter assumption, there are se-
cure instantiations of WOTROn,m in the CRQ$ model.
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2 Technical Overview

We call Weak One-Time Random Oracle, denoted WOTROn,m, the following
simple non-interactive primitive. To any a ∈ {0, 1}n, it provides a challenge
c ∈ {0, 1}m avoiding with good probability any function c : {0, 1}n → {0, 1}m.
We say that an implementation of WOTROn,m avoids function c if no (efficient)
dishonest prover is able to produce (a, c) such that c = c(a). An implementa-
tion of WOTROn,m is said to be κ–secure if it behaves like a random oracle
when the prover is honest and avoids any function c with probability at least
κ, when the prover is dishonest. It is easy to see that any non-interactive κ–
secure implementation of WOTROn,m can be used to implement the Fiat-Shamir
transform with computational soundness error upper-bounded by 1−κ (see Ap-
pendix D.1). Any implementation of WOTROn,m that avoids any function c(·)
would be a powerful cryptographic primitive to remove interaction. An imple-
mentation Πn,m

WRO = (P′,V′) of WOTROn,m in the CRQS model is defined by two
families of efficient POVMs P′ = {Pa}a and V′ = {Va,c,v}a,c,v with a ∈ {0, 1}n,
c ∈ {0, 1}m, and v is an auxiliary string announced to V′. Πn,m

WRO = (P′,V′) is
executed as folllows:

1. Upon input a ∈ {0, 1}n, P′ applies POVM Pa := {Pac,v}c,v to register P of
the CRQS to get classical outcome (c, v). P′ then announces (a, c, v) to V′.

2. V′ applies POVM Va,c,v := {Va,c,v0 ,Va,c,v1 } to register V of the CRQS and
accepts iff classical outcome 1 is obtained.

An adversary A against Πn,m
WRO takes no input and applies a POVM A :=

{Aa,c,v}a,c,v to register P of the CRQS to obtain a along with the message (c, v).
Notice that as defined, Πn,m

WRO requires the message transmitted to V′ to be clas-
sical. This can be done without loss of generality as a protocol asking P′ to send
a quantum message can be transformed into one where P′ only sends a classical
message by adding to the CRQS enough EPR pairs for the quantum message to
be teleported. The security of the original protocol remains untouched by this
transformation.

The security of WOTROn,m cannot be reduced to a game. Our main
contribution is that, in the CRQS model, WOTROn,m for any n,m that satisfy
n−m ∈ Ω(n) cannot be shown to avoid all functions via a black-box reduction
to any cryptographic game. The proof strategy is similar to Bitansky et al. in
[6, 7] when proving that there exists no black-box reduction from any successful
adversary against the entropy preserving property of a family of hash functions
to a cryptographic game. As any Σ–universal hash function was shown by Dodis,
Ristenpart, and Vadhan [24] to be entropy-preserving, the impossibility result
for establishing the soundness of a Σ–universal Fiat-Shamir transform (i.e a
hash functions family) follows. The proof in [6, 7] uses a strategy to conclude
the impossibility of a black-box reduction that was formalized by Wichs in [45],
but used several times prior [23, 31, 28, 36, 22]. We proceed the same way.
We first construct a possibly inefficient adversary that breaks any implementa-
tion of WOTROn,m, the existence of which is shown guaranteed by Ahlswede
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and Winter’s Operator Chernoff bound [1]. As with Bitansky et al.’s adversary
against any entropy preserving family of hash functions, our adversary against
WOTROn,m is simulatable by a stateful efficient quantum circuit. This prevents
the security of WOTROn,m to be established by a black-box reduction to any
cryptographic game as if there was such a reduction, the game would also be
won using the efficient simulator.

Σ–universal quantum Fiat-Shamir cannot be reduced to a game. We
then show that the black-box impossibility of WOTRO (indirectly) implies that
the soundness of any Σn,m–universal quantum Fiat-Shamir transform cannot
be established under the same conditions. As our basic impossibility result is
about the security of a cryptographic primitive rather than a property of a
family of hash functions (as in [6, 7]), we follow a different path. First, let us
discuss what distinguishes WOTROn,m from a Σn,m–universal quantum Fiat-
Shamir transform in the CRQS model. Consider a Σn,m–universal Fiat-Shamir
transform applied to a Σ–protocol Σ = (P,V) for membership in language L
with x ∈ L, a public input. Let P = (P1,P2) be the prover in Σ such that a← P1

and z ← P2(x, a, c) satisfies V(x, a, c, z) = 1 for all c ∈ {0, 1}m. A protocol for the
quantum Fiat-Shamir transform in the CRQS, denoted ΠQFS = (P∗,V∗), is given
by two families of efficient POVMs P∗ := {Pa}a and V∗ := {Va,c,v}a,c,v, where
Pa := {Pac,v}c,v and Va,c,v := {Va,c,v0 ,Va,c,v1 } exactly as it is for WOTROn,m.

Protocol ΠQFS[Σ] is executed as follows:

1. P∗ generates a ← P1, measures register P of the CRQS with POVM Pa to
obtain output (c, v) ∈ {0, 1}m×{0, 1}∗, computes z ← P2(x, a, c), and sends
(a, c, z, v) to V∗.

2. V∗ measures register V of the CRQS with POVM Va,c,v and accepts upon
outcome 1 and V(x, a, c, z) = 1.

Although ΠQFS is providing something very close to WOTROn,m in its inner
workings, it may not need to avoid all functions to be a computationally sound
Σ–universal implementation of the Fiat-Shamir transform. It only needs to avoid
functions c : {0, 1}n → {0, 1}m such that for some Σ–protocol Σ = (P,V)
for some language L, there exists x /∈ L for which upon commitment a, only
challenge c(a) has a third message z such that V(x, a, c(a), z) = 1. We show that
this relaxation on the functions to be avoided by any Σn,m–universal ΠQFS leads
to the same impossibility result than for WOTROn,m. The proof follows from the
existence of a Σ–protocol Σg = (P,Vg) for membership to the empty language,
where g : {0, 1}n → {0, 1}m is a random oracle. Although Σg only requires Vg

to have access to the oracle g(·) to run the protocol honestly, the adversary Ag
has also access to g(·) to mount its attack against the soundness of ΠQFS[Σg].
This is essentially the same adversary defined as the one against WOTROn,m

described above. Notice that if the soundness of ΠQFS was black-box reducible
to game G then there would be an efficient algorithm Bg, having oracle access to
g(·), that wins game G. The strategy used for WOTROn,m can then be applied.
A possibly inefficient adversary Ag is defined that almost all the time breaks
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the soundness of ΠQFS[Σg]. We finally show that both the adversary Ag and Vg

can be simulated by an efficient stateful simulator. As before, this prevents the
soundness of ΠQFS to be established by black-box reduction to a cryptographic
game unless the game is trivial.

A quantum assumption allowing for WOTROn,m. We introduce a strong
variant of collision resistant families of hash functions allowing for a computa-
tionally sound Σ–universal implementation of the Fiat-Shamir transform in the
CRQ$ model. We call Gn,m := {Gns }s ⊂ {0, 1}n ×{0, 1}n → {0, 1}m a collision-
shelter if, for any target function c : {0, 1}n → {0, 1}m, no efficient quantum
adversary can produce any state polynomially close to a state of the form

|ψ〉AX =
∑
a

αa|a〉A ⊗
∑

x:Gn(a,x)=c(a)

βax|x〉X ,

that contains collisions to c(a) when a is measured.
In order to show that collision-shelters are sufficient for a sound Σ–universal

Fiat-Shamir transform in the CRQ$ model, we start with the weak random oracle
implemented using n shared EPR pairs from the introduction. We modify the
scheme slightly to get an unconditionnally 1

4–secure11 implementation Πn,n
WRO =

(P′,V′) of WOTROn,n in the CRQ$ model. This forms the basis upon which
WOTROn,m, with m < n, is constructed using a collision-shelter. We prove that
Πn,n

WRO is 1
4–secure using shared maximally entangled pairs of qutrits as the CRQ$

to allow the use of a particular set {θa}a∈{0,1,2}n of mutually unbiased bases,
introduced by Wootters and Fields [46]. The set {θa}a is shown to prevent any

adversary A := {Aa,c,v}a,c,v from observing Aa,c(a),v⊗V
a,c(a),v
1 with probability

better than 3
4 when the CRQ$ is measured by P′ and V′. This result may be of

independent interest and is made possible as A’s success probability is given by
an instance of a Weil sum that can be upper bounded by Deligne’s resolution of
one of Weil’s conjectures [21].

A protocol Πn,m
WRO[Gn,m] = (P′′,V′′) for WOTROn,m with m < n can then

be constructed using a collision-shelter Gn,m in the obvious way. Upon input
a ∈ {0, 1, 2}n, P′′ runs P′ upon input a to get (c′, v) ∈ {0, 1}n × {0, 1}n. P′′

announces (a, c′, v) to V′′. The challenge produced by Πn,m
WRO is simply set to

c := Gns (a, c′) ∈ {0, 1}m for s a CRS. V′′ simply runs V′ on (a, c′, v) and accepts
if V′ accepts. It is not difficult to see that if Gn,m is a collision-shelter then
no efficient adversary A can do better against Πn,m

WRO than an unconditional
adversary against Πn,n

WRO. As a result, Πn,m
WRO avoids all functions with probability

1
4 . Negligible soundness error can then be achieved by parallel repetitions.

WOTRO and Quantum Lightning. Quantum lightning (QL), introduced by
Zhandry [47], is a quantum cryptographic task allowing anyone to generate quan-
tum states of which they can make exactly one copy. Informally, a QL scheme

11 By 1
4
–secure, we really mean

(
1
4
− negl(n)

)
–secure.
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consists of a quantum algorithm� instructing how to construct bolts |�〉 and of

a verification algorithm Ver that on input |�〉 returns a serial number s ∈ {0, 1}n

without disturbing state |�〉 such that no efficient adversary can create two
valid states with the same serial number. For this to hold, there must be un-
certainty in the serial number of newly created bolts: for every QPT adversary
A, |�〉 ← A(�) must satisfy H∞(Ver(|�〉)) ∈ ω(lg n), otherwise polynomi-
ally many tries would give two bolts with the same serial number, contradicting
uniqueness. Note that an efficient reduction does not necessarily exist in the
other direction: an adversary could for example produce two valid states with
identical serial numbers that each have maximal min-entropy. Such an adversary
appears useless for producing a single lightning state with low min-entropy in
the serial number.

We introduce a variant of quantum lightning where the bolt generation proce-
dure accepts an input. Typed quantum lightning (tQL) is a new primitive similar

to QL where � takes an additional parameter (or type) a ∈ {0, 1}n. Intuitively,
security asks that when we fix the type a, the resulting scheme still produces un-
predictable serial numbers. This is formalized by requiring that the conditional
min-entropy H∞(S | A) is large. We show that a tQL scheme with type length n
and serial number length m implies the existence of a protocol for WOTROn,m.
The scheme asks the prover to generate a typed QL state with type a and tele-
port that state to the verifier using EPR pairs from a CRQ$, the verifier accepts
if the teleported state is a valid tQL state. A consequence if this scheme is that
no tQL scheme satisfying n − m ∈ ω(lg n) can have its security be black-box
reducible to a cryptographic game assumption.

3 Notations & Preliminaries

We use n ∈ N as the security parameter throughout the paper. We use poly(n)
to denote a polynomial in n. A function f : N→ N is said to be negligible if for
all polynomials p(·) and for n ∈ N sufficiently large, f(n) ≤ 1/p(n). We denote
a negligible function by negl(·). We use “QPT” as a shorthand for quantum
polynomial time. We use log(·), ln(·) and lg(·) to respectively denote the base 10,
e and 2 logarithms.

For a set A, its cardinality is denoted |A| and its complement Ā. We write
x ∈R A to indicate that x is chosen uniformly at random from A.

We often use the notation f(·) to denote functions as a way to differentiate
them from variables. If f(·, ·) is a function of two arguments, we denote by f(x, ·)
the function of one argument defined by restricting the first argument to value
x. For two sets A and B, we denote the set of functions from A to B as A→ B.

For a random variable X, E [X ] denotes its expected value and for X(r) a
random variable function of r, Er [X ] denotes its expected value when r is picked
at random. Let ∆(A,B) = 1

2

∑
a |Pr[A = a] − Pr[B = a]| denote the statistical

distance between the distribution of two random variables A and B with the
same domain. For an operator A ∈ Cn×n, ‖A‖1 = tr(

√
A∗A) denotes its trace

norm.

13



3.1 Black-Box Impossibility Results

Definition 1 ([31, 6]). A cryptographic game is a tuple G = (Γ, c) composed of
an interactive Turing machine Γ and a constant c ∈ [0, 1]. On security parameter
n ∈ N, the challenger Γ (1n) interacts with an adversary An and outputs a bit
b. The output of this interaction is denoted by 〈An 
 Γ (1n)〉. The advantage of
the family of adversaries A = {An}n∈N in game G is defined as

AdvA,G(n) = Pr[〈An 
 Γ (1n)〉 = 1]− c .

A cryptographic game G is secure if for all PPT adversary A, the advantage
AdvA,G(n) is negl(n).

A black-box reduction from a cryptographic task to a cryptographic game G
is an oracle access machine R(·) such that for any adversary A that breaks the
security of the task, RA has advantage at least 1

poly(n) in game G.

In this paper, we show the impossibility of black-box reduction of some tasks
to a cryptographic games. Our proof employs the general technique of simu-
latable attacks formalized by Wichs [45] and applied by [6] to the Fiat-Shamir
transform. An inefficient adversary A against some task is simulatable if there
exists a simulator Sim such that no efficient algorithm can distinguish between
A and Sim from black-box query access. A cryptographic task that has a simu-
latable attack cannot be black-box reduced to a secure cryptographic game since
the reduction R(·) cannot distinguish between the inefficient A and the efficient
Sim, which means that RSim would yield an efficient algorithm for the game G
with non-negligible advantage, contradicting its security.

4 A Simple Non-Interactive Primitive

In this paper, we consider a simple non-interactive cryptographic primitive,
called a weak one-time random oracle (WOTROn,m) and illustrated in Fig. 1
where the prover inputs a ∈ {0, 1}n into the box and gets c ∈ {0, 1}m as output
while the verifier inputs nothing and gets (a, c) as output. An implementation of
this primitive is a protocol taking place between the prover and the verifier. The
verifier V is a machine that takes no input, interacts with the prover in the way
prescribed by the protocol, and either accepts and outputs (a, c) or rejects and
outputs ⊥. In an honest implementation, the prover is a machine P taking as
input an a ∈ {0, 1}n and interacts with the verifier as specified by the protocol,
in such a way that the verifier accepts and outputs the same c. The strings a
and c can then be determined from the transcript of the protocol. We can then
view the whole protocol in the honest case as a conditional distribution Π(c|a)
that tells us the probability of getting the challenge c given that the prover was
given a as input.

In a dishonest implementation, the prover P̃ takes no input at all (so the
prover is free to choose a) and might behave in a way that will cause the verifier
to reject. The protocol is then simply a joint probability distribution Π̃P̃(a, c, v),
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representing the distribution one obtains when P̃ runs the protocol with the
honest verifier V, and where v ∈ {0, 1} is 1 when the verifier accepts and 0 if
he rejects. Note that we only consider cheating provers in this paper and do not
consider cheating verifiers.

We now define correctness and security of an implementation. In a correct
implementation of this primitive,Π(c|a) will reflect exactly the same distribution
over a and c given by the ideal box, namely c will be uniformly distributed and
independent of a, and the verifier always accepts when the prover is honest:

Definition 2 (ε-correctness). A protocol Π is a ε-correct implementation of
WOTROn,mΓ if for all a ∈ {0, 1}n the conditional distribution Π(c|a) is (1 − ε)-
close (in statistical distance) to the uniform distribution over c and if V accepts
with probability at least 1 − negl(n) when the prover is honest. Π is said to be
statistically correct if it is (1− negl(n))–correct.

As for our security definition, it will be rather weak (hence the “weak” in the
name of the primitive): we will only require that in a secure implementation, a
dishonest prover P̃ cannot steer the choice of c towards a deterministic function
of a. Rather than require that c be almost uniform and independent, we will only
demand that there be some randomness left in this choice. We will formalize this
by the notion of a probability distribution on two random variables δ–avoiding
a function:

Definition 3 (δ–avoiding). For 0 ≤ δ ≤ 1, we say that a tuple of random
variables (A,C, V ) taking values in {0, 1}n×{0, 1}m×{0, 1} δ–avoids the function
c : {0, 1}n → {0, 1}m if

Pr [V = 1 ∧ C = c(A)] ≤ 1− δ .

This then leads to the following definition of security for an implementation
of WOTRO.

Definition 4 (δ–security). A protocol is a statistically (resp. computationally)
δ–secure implementation of WOTROn,mΓ if for all dishonest provers (resp. all

QPT dishonest provers) P̃, the random variable tuple (A,C, V ) with joint dis-
tribution Π̃P̃(a, c, v) δ–avoids all functions c : {0, 1}n → {0, 1}m. We say that a
protocol for WOTRO is statistically (resp. computationally) secure if it is sta-
tistically (resp. computationally) (1− negl(n))–secure.

Basic Facts About WOTRO. Observe that there is a trivial perfectly secure 2–
message protocol for WOTRO where P sends a and V sends a uniformly random
c. Therefore, we will focus on non-interactive (or 1–message) implementations of
WOTRO. A secure non-interactive WOTRO protocol provides enough conditional
randomness for sound instantiation of the Fiat-Shamir transform when applied
to public-coin special-sound 3–message interactive proofs (Σ–protocols).

In the bare model, there is no secure WOTRO protocol as the honest prover
program defines the output c as a function of a that can never be avoided. In
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the CR$ model, there exists a simple statistically (1− negl(m− n))–secure one-
message protocol when m > n, a statistically 1

e–secure protocol when m = n and
there is no protocol for m < n whose computational security can be black-box
reduced to a cryptographic game assumption, as a consequence of [6]. A detailed
examination of these facts is provided in Appx. D.

WOTRO in the CRQS Model. Since the object of study is the (im)possibility
of the WOTRO primitive in the CRQS model, we present a general form for a
1–message WOTRO protocol in this model.

Definition 5 (WOTRO in the CRQS model). A WOTROn,m protocol ΠWOTRO =
(PWOTRO,VWOTRO) in the CRQS model consists of

– A CRQS ΨPV ∈ D(HPV )

– A mapping of a ∈ {0, 1}n to an efficient POVM N a = {Na
x,w}(x,w)∈{0,1}m×`

on register P .

– A mapping of a ∈ {0, 1}n, x ∈ {0, 1}m and w ∈ {0, 1}` to an efficient POVM
Va,x,w = {V a,x,w0 , V a,x,w1 } on register V .

On input a ∈ {0, 1}n:

1. PWOTRO applies POVM N a on register P of ΨPV to obtain x and an auxili-
airy verification string w and sends (a, x, w) to the verifier.

2. VWOTRO applies POVM Va,x,w on register V of ΨPV , accepts and outputs
(a, x) if the result is 1, and rejects and outputs nothing if the result is 0.

Note that requiring the auxiliary verification string w to be classical is not a
restriction since the CRQS can contain EPR pairs for the teleportation of an
arbitrary quantum state from the prover to the verifier.

5 Black-Box Impossibility of WOTRO in the CRQS
Model

In this section, we show that there exist (inefficient) attacks against any 1–message
WOTROn,m protocol in the CRQS model for m (sufficiently) smaller than n. The
following definition describes a general strategy for an attack against WOTRO.

Definition 6. An attack Af against a WOTROn,m protocol (Def 5) is charac-
terized by a target function f : {0, 1}n → {0, 1}m and a (possibly inefficient)
POVM {P fa,x,w}(a,x,w)∈{0,1}n×m×` . The adversary performs this POVM on regis-
ter P of CRQS ΨPV and sends the result (A,X,W ) to the verifier. We say that
this attack hits function f with probability ε(Af ) if

ε(Af ) = Pr[X = f(A) ∧ V accepts] =
∑
a,w

tr
(

(P fa,f(a),w ⊗ V
a,f(a),w
1 )ΨPV

)
.
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We construct an attack whose success is based on the Chernoff bound for
operators proven by Ahlswede and Winter in [1] and stated below. For operators
A and B and 0 ≤ η ≤ 1, the notation A ∈ [(1 − η)B; (1 + η)B] means that
A ≥ (1− η)B and A ≤ (1 + η)B.

Lemma 1 (“Operator Chernoff bound”). Let X1, . . . , XM be i.i.d. random
variables taking values in the operators D(H) on the D–dimensional Hilbert space
H such that 0 ≤ Xj ≤ 1, with A = E[Xj ] ≥ α1, and let 0 < η ≤ 1/2. Then

Pr

 1

M

M∑
j=1

Xj 6∈ [(1− η)A; (1 + η)A]

 ≤ 2D exp

(
−M αη2

2 ln 2

)
. (1)

Theorem 5. Let n,m ∈ N. Let Πn,m
WOTRO be an arbitrary WOTROn,m protocol

described by CRQS ΨPV and POVM families N a = {Na
x,w}(x,w)∈{0,1}m×` and

Va,x,w = {V a,x,w0 , V a,x,w1 } for a ∈ {0, 1}n, x ∈ {0, 1}m and w ∈ {0, 1}`. Let
f : {0, 1}n → {0, 1}m be a uniformly random function and let 2k = dimP be the
dimension of the prover’s register of ΨPV .

1. There is some constant C > 0 such that with probability at least 1−negl(n−m)
over the choice of f , the operatorsP fa,f(a),w :=

Na
f(a),w

2n

2m + C
√
k 2n

2m


(a,w)∈{0,1}n×`

and P fa,x,w := 0 when x 6= f(a), together with P f⊥ = 1−
∑
a,w P

f
a,f(a),w, form

a POVM on the prover’s register P .
2. If protocol Πn,m

WOTRO is correct, the attack given by this POVM has average
success probability Ef [ε(Af )] that grows as 1− negl(n−m).

Proof. Let 2k be the dimension of register P . Consider the subset of measurement
operators Na

f(a),w from the honest POVM N a that yield the intended outcome

for the cheating prover, i.e. on input a gives outcome x = f(a), and define the
operators Xf

a =
∑
w∈{0,1}` N

a
f(a),w. We have that

Ef [Xf
a ] = Ef

∑
x,w∈{0,1}m×`

IEax (f) ·Na
x,w =

∑
x,w∈{0,1}m×`

Ef [IEax (f)] ·Na
x,w =

1

2m
1P

where IEax is the indicator function for the event Eax = {f | x = f(a)} which has
probability 1

2m for any x and a since every value for f(a) is equally likely.
Applying the Chernoff bound with D = 2k, M = 2m, and α = 1

2m to the
weighted sum over a of the operators Xf

a , we have

Pr
f

 1

2n

∑
a∈{0,1}n

Xf
a � (1 + η)

1

2m
1

 ≤ 2k+1 exp

(
− 1

2 ln 2
· 2n

2m
· η2

)
.
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This bound becomes a negligible function of n−m if we choose η = C ·
√
k 2m

2n

for some appropriate constant C > 0 (for example C =
√

4 ln 2 1
lg e ). Therefore,

except with probability negl(n−m),

1

2n

∑
a∈{0,1}n

Xf
a =

1

2n

∑
a∈{0,1}n

w∈{0,1}`

Na
f(a),w ≤ (1 + η)

1

2m
1 =

(
1 + C

√
k

2m

2n

)
1

2m
1

(2)
for an appropriate constant C. Define the ensemble of operators P fa,x,w by

P fa,f(a),w :=
Na
f(a),w

2n

2m + C
√
k 2n

2m

and P fa,x,w := 0 when x 6= f(a). Then when (2) holds, the set of operators

{P fa,f(a),w}a∈{0,1}n forms a POVM completed by P f⊥ = 1−
∑
a,w P

f
a,f(a),w.

The success probability of this attack corresponds to the probability of ob-
taining an outcome of the form (a, f(a), w), i.e. not ⊥, and of the verifier ac-
cepting that outcome:

ε(Af ) =
∑

(a,w)∈{0,1}n×`
tr
((
P fa,f(a),w ⊗ V

a,f(a),w
1

)
ΨPV

)
.

Letting c :=
(

2n

2m + C
√
k 2n

2m

)
, this probability is on average over f at least

Ef [ε(Af )] =
1

c
· Ef

 ∑
(a,w)∈{0,1}n×`

tr
((
Na,f(a),w ⊗ V

a,f(a),w
1

)
ΨPV

)
=

1

c

1

2m

∑
a∈{0,1}n

∑
(x,w)∈{0,1}m×`

tr ((Na,x,w ⊗ V a,x,w1 )ΨPV )

≥ 1

c

1

2m

∑
a∈{0,1}n

(1− negl(n))

=
2n

2m

(
2n

2m
+ C

√
k

2n

2m

)−1

· (1− negl(n))

=
(1− negl(n))

(1 + C
√
k2m−n)

≥ (1− C
√
k2m−n)(1− negl(n)) .

Where the first inequality above follows from the correctness of protocolΠn,m
WOTRO.

The above expression scales as 1− negl(n−m). �
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5.1 Simulating the Above Attack

For a WOTRO protocol to have its security reducible by black-box to a cryp-
tographic game assumption G, there must exist a reduction in the form of an
oracle machine R(·) that, given oracle access to an adversary A against WOTRO,
succeeds at game G. The most general attack against a WOTRO protocol in the
CRQS model (Def 6) is a POVM on the prover’s part of the CRQS that pro-
duces a classical message which makes the verifier accept the output c = f(a)
with high probability. The attack takes no input other than the prover regis-
ter of the CRQS and produces a classical outcome. We therefore model (Def 7)
black-box access to an adversary A against WOTRO as measurement device to
which an oracle access machine can send quantum queries and receive classical
answers. In particular, the oracle machine cannot purify the action of A.

We show that no reduction R(·) can exist to base the security of a WOTRO
protocol on a game assumption G. This is because the adversarial strategy de-
scribed in Thm 5 is simulatable. This means that there is an efficient algorithm
Sim such that no oracle machine can tell whether it is given oracle access to the
inefficient adversarial prover Af hitting function f(·) or to Sim that does not
know f(·). As mentioned in Section 3.1, this rules out any reduction from the
security of a WOTRO protocol to a cryptographic game assumption G since the
reduction R breaking game G with oracle access to Af would also break game G
with oracle access to the efficient Sim, otherwise Af and Sim could be efficiently
distinguished.

Definition 7 (Oracle Access Machine). A quantum oracle access machine
MO is a Turing machine that, on input 1n, outputs the description of a quantum
circuit over a universal set of quantum gates along with a special quantum gate
OnP→Q. We say MO makes q(n) oracle queries if we can represent the action of

circuit MO(1n) on initial state |0〉R as the CPTP map

MOn (|0〉〈0|R) :=Mq
n ◦ OnPq ◦ · · · ◦M

1
n ◦ OnP1

◦M0
n (|0〉〈0|R)

where Mi
n : D(HQiR)→ D(HPi+1R) are CPTP maps representing the action of

circuit MO(1n) between the calls to O.

Definition 8 (Simulatable Attack for WOTRO). Let n,m ∈ N and let Π
be a WOTROn,m protocol. A ε(n)–simulatable attack against Π consists of an

ensemble of (possibly inefficient) attacker CPTP map {Af,nP→AXW }f∈F,n∈N for a
family of functions F ⊆ {0, 1}n → {0, 1}m and a family of efficient CPTP map
{Simn

P→AXW }n∈N such that

– The success probability of Af,n is at least 1 − negl(n) on average over the
random choice of f ∈ F .

– For every (possibly inefficient) oracle acess machine M (·) making q(n) =

poly(n) queries to its oracle, the CPTP map M(·)
n describing the action of

the circuit M (·)(1n) satisfies

‖Ef [MA
f,n

n (|0〉〈0|R)]−MSimn

n (|0〉〈0|R)‖1 ≤ q(n) · ε(n) (3)
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Theorem 6. Let n,m and Πn,m
WOTRO be as in the statement of Thm 5. The attack

{Af}f∈F of Thm 5 is negl(n−m)–simulatable.

Proof (sketch). The proof is essentially a quantum version of the proof of impos-
sibility of Fiat-Shamir of [6] as it follows very similar steps, we therefore refer
to Appx. A.1 for the full proof. The simulator is constructed as follows: when
queried on a quantum register P , picks a random a that wasn’t seen before and
applies the honest prover POVM N a. The objective is to show that the action
of this simulator is close to that of the adversarial prover Af for a random f
for any q = poly(n) quantum queries. This is achieved using a hybrid argument
where q hybrid simulators {Simi}i∈[q] differ only in the ith query and such that

Sim0 = Af and Simq = Sim. The ith hybrid acts as Sim for the first i queries, and
acts as Af for the remainder where f is picked to be consistent with the answers
to the first i queries. Indistinguishability of the hybrids Simi and Simi+1 follows
from the fact that the function f picked to answer the remaining queries has
essentially the same distribution in both cases and that the simulator’s POVM
and the adversary’s POVM are close on average over this f . �

Thm 5 and Thm 6 give a simulatable attack against any WOTROn,m protocol
where n−m is superlogarithmic in the security parameter n. This attack succeeds
in hitting a function f(·) with probability at least 1 − negl(n) which rules out
black-box reduction of δ–security of a WOTRO protocol for any non-negligible
δ.

Corollary 1. Let G = (Γ, c) be a cryptographic game assumption and let Πn,m

be a WOTROn,m protocol with n−m ∈ ω(lg n). For any δ ≥ 1/poly(n) if there is
a black-box reduction showing that Πn,m δ–avoids all functions from the security
of the game G, then assumption G is false.

6 Black-Box Impossibility of Fiat-Shamir in the CRQS
Model

6.1 Σ–protocols and the Fiat-Shamir Transform.

Let R ⊆ {0, 1}∗ × {0, 1}∗ denote an arbitrary efficiently computable binary
relation such that if (x,w) ∈ R then |w| ≤ p(|x|) for some polynomial p(·). We
call x a public instance and w a witness for x. The condition above ensures that
the witness of any public instance can be conveyed efficiently. From the binary
relation R, we define the language LR = {x | (∃w)[(x,w) ∈ R]} ∈ NP of public
instances with witnesses for them.

Definition 9 (Σ–protocol [18]). A Σ–protocol Σ = (P,V) for a binary re-
lation R is a 3-message protocol with conversation alphabet {0, 1}. On public
input x ∈ LR and on private input w to P such that (x,w) ∈ R, the protocol
structure is as follows:

– The prover sends a message a = P1(x,w) ∈ {0, 1}n called the commitment.
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– The verifier sends a challenge c ∈ {0, 1}m.
– The prover sends a reply z = P2(a, x, w, c) ∈ {0, 1}∗, and the verifier outputs

V(x, a, c, z) ∈ {accept, reject}.

Moreover, the protocol satisfies the following requirements:

Random public coins: The challenge c ∈ {0, 1}m is chosen uniformly at ran-
dom in {0, 1}m without any extra processing (i.e. no need for private infor-
mation to generate c).

Perfect correctness: When x ∈ LR, V accepts P with probability 1.
Special soundness: When x ∈ LR, given two accepting conversations for the

same commitment (a, c, z) and (a, c′, z′) with c 6= c′, there exists a PPT
algorithm W such that (x,W(a, c, z, c′, z′)) ∈ R.

We should mention here that Σ–protocols are also often used as a synonym
of 3-message public-coins protocols (as in [32, 37], for instance) irrespectively
of whether the proof system satisfies perfect correctness or special soundness.
However, since we are proving a negative result, there is no loss in generality in
adopting the more restrictive definition of [18].

By special soundness, if x /∈ LR then for any commitment a ∈ {0, 1}n, there
is at most one challenge c ∈ {0, 1}m such that for some response z, (a, c, z) is
an accepting conversation. For some Σ–protocol ΣL for a language L and some
x /∈ L, we call the function that maps a to this one challenge c the bad challenge
function.

In the ROM, the Fiat-Shamir transform ΠFS[Σ] = (PFS,VFS) applied to a
Σ–protocol Σ = (P,V) with first message length n and challenge length m for
a proof of language membership is a non-interactive argument where, on public
input x ∈ L and random oracle H : {0, 1}n → {0, 1}m,

1. PFS runs a = P(x,w) computes c = H(a) and z = P2(a, x, w, c), and sends
(a, c, z) to VFS.

2. VFS rejects if c 6= H(a), otherwise outputs V(x, a, c, z).

In the CRS model, the protocol is the same with the random oracle replaced with
a family of cryptographic hash functionsH = {hr}r where hr : {0, 1}n → {0, 1}m
is sampled using a CRS.

In this section, we consider the natural extension of the Fiat-Shamir trans-
form in the CRQS model where the prover and verifier share an arbitrary en-
tangled state |ϕn,m〉, the prover performs some measurement specified by a on
its part of the CRQS, sends the result to the verifier who performs its own mea-
surement based on the prover’s message. Since a universal instantiation of the
Fiat-Shamir is required to transform any Σ–protocol into a sound argument,
the CRQS |ϕn,m〉, as well as the measurement operators of the prover and veri-
fier must be independent of the actual Σ–protocol and of the statement x. The
quantum Fiat-Shamir transform proceeds as follows:

1. PFS computes a = P(x,w) and performs some measurement N a on its part
of |ϕn,m〉 that yield classical outcomes (c, v). It computes z = P2(a, x, w, c),
and sends (a, c, v, z) to VFS.
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2. VFS performs a binary-outcome measurement Va,c,v on its part of |ϕn,m〉 and
rejects if the outcome is 0, and otherwise outputs V(x, a, c, z).

We consider without loss of generality that all communication remains classical,
since the CRQS could contain polynomially many EPR pairs allowing for the
teleportation of quantum states from the prover to the verifier.

An abstract Fiat-Shamir transform that captures all of the above would look
like the following. Since we are proving a negative result, we only ask that a uni-
versal instantiation of the Fiat-Shamir transform has constant soundness error
(instead of negl(n)).

Definition 10. The Fiat-Shamir transform is given by Πn,m
FS = (PFS,VFS) where

PFS takes as input the commitment a ∈ {0, 1}n and outputs a challenge c ∈
{0, 1}m and a auxiliary verification information v. VFS takes input (a, c, v) and
outputs accept or reject. For a Σ–protocol Σ = (PΣ ,VΣ), the Fiat-Shamir
transform applied to Σ is the non-interactive protocol Πn,m

FS [Σ] = (P,V) defined
as

1. P computes a = P1
Σ(x,w) and runs (c, v) ← PFS(a). It computes z =

P2
Σ(a, x, w, c), and sends (a, c, v, z) to V.

2. V runs VFS(a, c, v) and rejects if VFS rejects, and otherwise outputs VΣ(x, a, c, z).

The Fiat-Shamir transform Πn,m
FS is (n,m)–universal if for any Σ–protocol Σ,

Πn,m
FS [Σ] is an argument with soundness error bounded above by some constant

greater than zero.

Note that an instantiation of the Fiat-Shamir transform is also one for
WOTRO (and vice-versa). More precisely, the WOTRO protocol implied by Fiat-
Shamir is the protocol where PWOTRO invokes PFS, sends (a, c, v) to VWOTRO that
outputs (a, c) if VFS(a, c, v) accepts. The main distinction between the two is that
a secure protocol for WOTRO needs to avoid all functions, whereas a universal
instantiation of Fiat-Shamir only needs to avoid functions that are “bad chal-
lenges” functions for some Σ–protocol for language membership to L upon some
public parameter x /∈ L .

6.2 Black-Box Impossibility of Universal Fiat-Shamir in the CRQS
Model.

We begin by defining what is a black-box reduction from FS to a cryptographic
game assumption following along the lines of [6].

Definition 11 (Black-Box Reduction for Quantum Fiat-Shamir). Let
G = (Γ, c) be a cryptographic game assumption and let Πn,m

FS be an instantiation
of the Fiat-Shamir transform in the CRQS model. A black-box reduction showing
the (n,m)–QFS–universality of Πn,m

FS under the assumption G in the CRQS
model is an oracle-access machine B(·,·,·) such that the following holds. Let

1. Σ = (P,V) be a Σ–protocol for a language L with commitment length n and
challenge length m that has perfect completeness and special soundness, and
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2. A be a (possibly inefficient) attacker that breaks the computational soundness
of the non-interactive proof system Πn,m

FS [Σ] with advantage 1− negl(n).

The reduction B has black-box access to P, V and A, runs in time polynomial in
the running times of P, V and A, and BP,V,A has advantage at least 1/poly(n)
in game G.

As mentioned previously, a FS protocol is essentially a WOTRO protocol,
albeit satisfying a weaker notion of security. In particular, a WOTRO protocol
avoiding only the “bad challenge” functions of Σ–protocols would be enough for
FS. The impossibility to black-box reduce the security of WOTRO to a cryp-
tographic game, as expressed in Corollary 1, does not apply directly to Fiat-
Shamir.

To show black-box impossibility of FS in the CRQS model, we construct
a family of Σ–protocols {Σf}f :{0,1}n→{0,1}m such that Σf has bad challenge

function f(·) for any f . The verifier Vf in Σf is not necessarily efficient, but
we again exploit the simulation paradigm, where the inefficient adversary is
replaced by an efficient indistinguishable simulator, to simulate this verifier in a
way that is consistent with the adversarial prover. By definition of the reduction

B(·,·,·), if an adversary Af breaks the soundness of ΠFS[Σf ], BP,Vf ,Af wins game
G. By replacing (Vf ,Af ) with a pair of simulators (SimV,SimA) such that no
poly (n)–query machine can distinguish between the two pairs, we obtain an
efficient algorithm BP,SimV,SimA breaking the security of G. We formalize this
joint simulation below and then prove the black-box impossibility result using
the strategy outlined above and pictured in Fig. 6.2.

Definition 12 (Joint Simulatability). A family of (possibly inefficient) algo-
rithms {(Af , V f )}f that have access to the same (possibly inefficient) resource
f : {0, 1}n → {0, 1}m are jointly simulatable if there exist two QPT stateful
algorithms Sim1 and Sim2 that share a common state and such that for any
poly(n)–query oracle access machine M (·,·),∣∣∣∣Pr

f
[M (Af ,V f ) = 1]− Pr[M (Sim1,Sim2) = 1]

∣∣∣∣ ≤ negl(n) .

B

Γ

VfP Af

Sim

Fig. 2. Visualization of the proof of Thm 7. The black-box
reduction B(·,·,·) wins the game G = (Γ, c) if (P,Vf ) forms
a Σ–protocol Σf and Af breaks the soundness of ΠFS[Σf ].
Since Sim = (SimV, SimA) jointly simulates Vf and Af , nei-
ther B nor Γ can distinguish if Sim or (Vf ,Af ) is being used.
Since Sim is efficient, this means B(P,SimV,SimA) is an efficient
machine that wins game G.
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Theorem 7. Let G = (Γ, c) be a cryptographic game assumption, let n,m be
such that n − m ∈ ω(lg n) and let Πn,m

FS be a Fiat-Shamir instantiation in
the CRQS model. There does not exist a black-box reduction B(·,·,·) showing the
(n,m)–universality of Πn,m

FS from the security of game G, unless assumption G
is false.

Proof (sketch). The full proof can be found in Appx. A.2. The main idea behind
the proof is to construct a family of Σ–protocols that has bad challenge func-
tion f for any function f : {0, 1}n → {0, 1}m, but where the challenger is not
necessarily efficient. The Σ–protocol Σf defined below is an interactive proof
of language membership for the empty language where the verifier has oracle
access to the function f(·). On public input x,

1. P: does nothing.

2. Vf : interact with a potentially malicious prover in the following way.

(a) On first message a ∈ {0, 1}n, pick c ∈R {0, 1}m uniformly at random
and send c to the prover.

(b) On response z from the prover, accept iff c = f(a).

Next, we use the impossibility of WOTRO (Theorem 5) to build an inefficient
adversary Af against Σf . It follows that the reduction B(·,·,·) of Def 11 wins
game G when given oracle access to P, Vf and Af . The rest of the proof consists
of showing that Vf and Af can be jointly simulated (Def 12) by an efficient
simulator that does not know f(·). The existence of the simulator is mostly a
consequence of Theorem 6. Finally, replacing oracle access to Vf and Af with the
corresponding interfaces of the simulator in B(·,·,·) yields an efficient algorithm
against game G. An overview of the proof is presented in Fig. 6.2. �

7 A Quantum Assumption Allowing for WOTROn,m

In [4], Barak, Lindell, and Vadhan introduce a computational assumption allow-
ing for Σ–universal Fiat-Shamir in the CRS model. It assumes the existence of
a family of entropy preserving hash functions. In [24], Dodis, Ristenpart, and
Vadhan showed that a family of entropy preserving hash functions is neces-
sary for a Σ–universal implementation of Fiat-Shamir in the CRS model. Of
course, it follows from [4, 6] that this assumption cannot be black-box reduced
to any cryptographic game. In this section, we define a different computational
assumption allowing for WOTROn,m in the CRQ$ model (and therefore allow-
ing for Σ–universal Fiat-Shamir). Our assumption is a quantum assumption on
hash functions called a collision-shelter. We first show in Sect. 7.1 how to con-
struct WOTROn,n with unconditional security in the CRQ$ model. In Sect. 7.2,
we define the collision-shelter assumption and we show how to use it to convert
WOTROn,n into a computationally secure WOTROn,m as long as m ∈ Ω(n). We
conclude in Sect. 7.3 by a short discussion about some relations and distinctions
between collision-shelters and collision resistant families of hash functions.
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7.1 Unconditionally Secure WOTROn,n in the CRQ$ Model

Let us get back to the implementation of WOTROn,n roughly described in the
introduction. The result stated in Thm 8 requires the set of MUB to be the one
introduced by Wootters and Fields in [46]. These bases are for the tensor prod-
uct of n Hilbert spaces, each of odd prime dimension p. Let Γ = {0, . . . , p− 1}
denote the elements of the finite field Fp for p ≥ 3 prime. We refer to the
Wootters and Fields MUB for Γn as Θp,nWF = {θa}a∈Γn where θa = {|xa〉}x∈Γn
is an orthonormal basis for Γn that, by virtue of mutual unbiasedness, sat-
isfies |〈xa|x′a′〉| = p−

n
2 when a 6= a′. The formal definition of Θp,nWF can be

seen in Appx. C. The CRQ$ we use to implement WOTROn,n is composed of
3n p–dimensional EPR pairs, each denoted by |EPRΓ 〉PV := 1√

p

∑
j∈Γ |jj〉PV .

The CRQ$ is then set to |EPR3n
Γ 〉PV := |EPRΓ 〉

⊗3n
. Henceforth, we denote by

WOTROn,nΓ the primitive WOTROn,n where both the input and the output are
in Γn.

Before giving our protocol Πn,n
WRO = (P′,V′) for WOTROn,nΓ , we first consider

a simpler (but insecure) version of it where the CRQ$ is |EPRnΓ 〉PV rather than
|EPR3n

Γ 〉PV . Upon input a ∈ Γn, the simpler scheme asks the prover to measure
register P of the CRQ$ in basis θa ∈ Θp,nWF to obtain outcome c ∈ Γn. The prover
then announces (a, c) to the verifier who verifies that when measuring register V
of the CRQ$ the outcome c is obtained. If the test is perform with success then
the output of the primitive is set to c. This simple protocol cannot be proven
secure as it stands. Instead, Πn,n

WRO asks P′ to measure 3 batches of EPR pairs
|EPRnΓ 〉PV in the same basis θa to get outcomes x1, x2, x3 ∈ Γn. The challenge
produced by the primitive is then c = x3(x1 + x2)−1 (where the operations are
done in Fpn). This choice for determining c follows from our proof technique.
P′ announces (a, x1, x2, x3) that is checked by V′ after measuring register V for
each of the three instances of |EPRnΓ 〉PV in basis θa. If the test is successful then
the output of the primitive is set to c.

Protocol Πn,n
WRO for WOTROn,nΓ

Setup: A CRQ$ |EPR3n
Γ 〉PV .

Prover: On input a ∈ Γn,

1. Measures its part of |EPR3n
Γ 〉 in basis θ⊗3

a , let x = (x1, x2, x3) ∈ Γ 3n

be the result.
2. If x1 + x2 = 0, set c = 0. Otherwise, output c := x3(x1 + x2)−1 and

sends (a, x) to verifier.

Verifier: Upon reception of (a, x),

1. Measure its part of |EPR3n
Γ 〉 in basis θ⊗3

a , let x′ = (x′1, x
′
2, x
′
3) ∈ Γ 3n

be the result.
2. Output reject if x 6= x′ and output (a, c′) where c′ = x′3(x′1 +x′2)−1

otherwise.
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Next theorem establishes that Πn,n
WRO is 1

4–secure against all adversaries. The
proof is given in Appx. C and may be of independent interest. It consists in
showing that the best measurement to distinguish the state transmitted by a
quantum source that selects a basis a ∈R Γn at random and sends |x(a)a〉 for
any set {(a, x(a))}a∈Γn cannot be recognized with probability better than 3

4 .
Wootters and Fields’ MUBs are useful here as this probability is given by a Weil
sum that can be bounded by Deligne’s resolution of Weil third conjecture12 [21].

Theorem 8. Let Γ = {0, . . . , p− 1} be the set of elements in finite field Fp for
p ≥ 3 a prime number. Protocol Πn,n

WRO, presented above, is a statistically correct
and statistically ( 1

4 − negl(n))–secure implementation of WOTROn,nΓ .

7.2 Collision-Shelters

We are now ready to define a quantum computational assumption that allows
for a secure implementation of WOTROn,m for m < n. A collision-shelter for
security parameter n, is is a family Gn,m = {Gns : Γn × Γn → Γm}s∈{0,1}`(n)

of hash functions that exhibits a strong quantum flavour of collision resistance.
Intuitively, Gn,m is a collision-shelter if, for any function c : Γn → Γm, no QPT
adversary can produce a state close to

|ψs〉 =
∑
a

αa|a〉A ⊗
∑

x:Gns (a,x)=c(a)

βax|x〉X ⊗ |ϕ(a, x)〉W , (4)

for s ∈R {0, 1}`(n) and in average over outcome a when register A is measured in
the computational basis,

∑
x:Gns (a,x)=c(a) β

a
x|x〉X ⊗|ϕ(a, x)〉W contains collisions

in superposition. Notice that no such state can be produced efficiently when the
number of possible a is in O(lg n) and Gns is collision resistant, as the generation
of 2 such states would provide a collision for Gns with good probability.

Definition 13. Let c : Γn → Γm be arbitrary and let Gns ∈ {0, 1}n × {0, 1}n →
{0, 1}m. Let

|ψ〉 =
∑
a

αa|a〉A ⊗
∑

x:Gns (a,x)=c(a)

βax|x〉X ⊗ |ϕ(a, x)〉W

be a state. Let x∗(a) be such that |βax∗(a)| = maxx {|βax|} for every a ∈ {0, 1}n

and let |ψ̃∗〉 =
∑
a αa|a〉A⊗βax∗(a)|x

∗(a)〉X ⊗ |ϕ(a, x∗(a))〉W be the corresponding

sub-normalized state obtained from |ψ〉. If |〈ψ|ψ̃∗〉|2 < 1 − δ then |ψ〉 is said to
be δ–colliding to c(·) under Gns .

A collision-shelter is a family of hash functions that prevents any QPT adversary
from generating a state close to be δ–colliding to some target function c(·) under
Gns when s ∈R {0, 1}n. By close here, we simply mean a state ρAXW such that
〈ψ|ρ|ψ〉 ≥ 1

poly(n) for some state |ψ〉 that is δ–colliding to c(·) under Gns .

12 Weil’s third conjecture is analogue to the Riemann hypothesis over finite fields and
is called as such.
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Definition 14. The hash function Gn,m is a collision-shelter if, for all δ > 0,
all functions c : Γn → Γm, and all QPT adversaries A = {An} where An has
input s ∈R {0, 1}`(n) and produces a state ρAXW , there exists no δ–colliding
state |ψ〉 to c(·) under Gns ∈ Gn,m such that 〈ψ|ρ|ψ〉 ≥ 1

poly(n) . The collision-

shelter assumption simply posits the existence of a collision-shelter Gn,m for
m ≤ (1− α)n with 0 < α < 1.

We now consider the obvious implementation of WOTROn,mΓ using Πn,n
WRO

using a function-shelter Gn,m that simply sets the challenge ĉ ∈ Γm as ĉ =
Gns (a, c) where c ∈ Γn is the challenge produced in Πn,n

WRO and s is a CR$. Let
us denote this implementation of WOTROn,mΓ by Πn,m

WRO[Gn,m] = (P′′,V′′). The
following theorem is an easy consequence of Def 14 and Thm 8.

Theorem 9. Assuming that Gn,m = {Gns }s is a collision-shelter, Πn,m
WRO[Gn,m]

is a negl(n)–correct and computationally
(

1
4 − o(1)

)
–secure implementation of

WOTROn,mΓ .

Proof (sketch). Let us view the adversary An against Πn,m
WRO[Gn,m] as a QPT

algorithm (an isometry) applied to the P–register of the CRQ$ followed by
measurements in the computational basis of registers A and X. Let |ψA〉 be the
state generated before the final measurements:

|ψA〉AXX′V =
√

1− |ε|2|ψs〉AXX′V + ε|Ξ〉AXX′V ,

where

|ψs〉AXX′V =
∑
a

αa|a〉A ⊗
∑

c:Gns (a,c)=c(a)

βac |c〉X ⊗
∑

x:x3(x1+x2)−1=c

γa,cx |x〉X′ ⊗ |(x)a〉V ,

and |Ξ〉AXX′V always results in either a rejection by V′′ or an acceptance upon
challenge Gns (a, c) 6= c(a). Above, |(x)a〉 denotes |(x1)a〉⊗|(x2)a〉⊗|(x3)a〉 ∈ θ⊗3

a .
Since Gn,m is a collision-shelter, Def 14 ensures that

|ψs〉AXX′V =
∣∣∣ψ̃∗〉

AXX′V
+ | 〉AXX′V ,

with |〈 | 〉|2 ∈ o(1) and 〈 |ψ̃∗〉 = 0. A state |ψ〉 of that form can easily be
shown to provide a probability of success no better than an additional o(1) to
the probability of success when using |ψA〉AXX′V in Πn,n

WRO to hit function x∗(·).
Thm 8 then guarantees a probability of success smaller than 3

4 +negl(n). Putting
things together, the result follows easily. �

7.3 Is the Collision-Shelter Assumption Realistic?

While h : Γ `(n) × Γn → Γm is entropy-preserving if no efficient adversary can,
given the first argument s ∈R Γ `(n) picked uniformly at random, find x ∈ Γn
such that h(s, x) has almost no entropy (when s has been forgotten), collision-
shelters prevent efficient quantum adversaries from preparing a state with en-
tropy in the second argument when the output of the hash function applied to
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both arguments is fixed to a function of its first argument. Why would it be
possible for collision-shelters to exist?

Suppose that for all a ∈ Γn, the hash function Gns (a, ·) is collision-resistant
against quantum adversaries. Let c(a) ∈ Γm be arbitrary. It follows that for
any a ∈ Γn, no efficient quantum adversary can produce a state of the form
|ψa〉 =

∑
x:Gns (a,x)=c(a) β

a
x|x〉X ⊗ |ϕ(a, x)〉 where |〈ψa|ψ̃∗a〉|2 < 1 − δ since two

states of that form would allow to find a collision with non-negligible probability.
This, of course, does not imply that {Gns (·, ·)}s is a collision-shelter as Gns (a, ·) =
Gns (a′, ·) =: hs(·) for all a, a′ ∈ Γn is such that Gns (a, ·) is collision-resistant
when hs(·) is collision-resistant but the following easy-to-generate state is o(1)–
colliding to c(a) = a1 . . . am when m < n:

p−n/2
∑
x

|x〉X ⊗ |hs(x)〉 → p−n+m
2

∑
a

∑
x:hs(x)=a1...am

|x〉X ⊗ |a〉A

= p−n/2
∑
a

|a〉A ⊗ p
−n+m

2

∑
x:Gns (a,x)=c(a)

|x〉X .

Such an attack seems difficult to conduct when {Gns (a, ·)}a is a set of collision
resistant hash functions that appear independent of each other as far as collisions
are concerned. What it means exactly for hash functions in {Gns (a, ·)}a to appear
independent is unclear. However, if Gns (a, ·) is modelled by a random oracle for
each a ∈ Γn then it can easily be shown to be a collision-shelter.

Notice that while any secure universal Fiat-Shamir transform in the CRS
model requires the existence of an entropy-preserving family of hash functions[24],
this does not seem to be the case for collisions-shelters with respect to WOTRO
in the CRQS model.

8 Black-Box Impossibility of a Flavour of Quantum
Lightning

In this section, we show that a secure WOTRO can be constructed from a quan-
tum lightning scheme that satisfies a slightly stronger security notion.

Quantum lightning was introduced by Zhandry in [47] as a primitive allow-
ing for publicly verifiable quantum money schemes, provable randomness and
blockchain-less cryptocurrencies.

Definition 15. A quantum lightning scheme is a tuple of algorithms (QLSetup,QLGen,QLVer)
where

– QLSetup(1n) samples a quantum storm �. A quantum storm is a classical
description of a procedure for producing and verifying lightning states.

– QLGen(�) generates a new quantum bolt |�〉 in a quantum register L.

– QLVer(�, |�〉) returns the serial number s or ⊥ if the state is invalid, and
a leftover quantum register Q.
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A quantum lightning scheme is correct if 1- the serial number is deterministic
given a quantum bolt issued by QLGen, i.e. E [H∞(S|Q)ρ] ≤ negl(n), and 2- bolt

verification does not noticeably affect the state: E
[
〈�|ρQ|�〉

]
≥ 1− negl(n)

A quantum lightning scheme has uniqueness if no QPT quantum algorithm A
can produce two lightning states with the same serial number, for any ρAL0L1

←
A(�) and ρSiQi ← Ver(�, ρALi), Pr [S0 = S1 6= ⊥] ≤ negl(n). Uniqueness im-

plies that bolt serial numbers are unpredictable. Let �← QLSetup(1n), |�〉 ←
A(�) and ρSQ ← Ver(�, |�〉), then for any polynomial p(·), w

Pr [H∞(S | S 6= ⊥) ≤ log p(n)] ≤ negl(n) .

8.1 Typed Quantum Lightning.

Quantum lightning provides some fresh randomness that even an adversarial
procedure cannot bias towards a certain value. We present a strenghtened version
of this property that requires that this randomness remains in the presence of
an input to the lightning generation procedure. This notion is sufficiently strong
to provide a secure WOTRO protocol.

Definition 16. A typed quantum lightning scheme is a tuple of QPT algorithms
(tQLSetup, tQLGen, tQLVer) where

– tQLSetup(1n) produces a storm �.

– tQLGen(�, a) takes an additional parameter a ∈ {0, 1}n, and produces a

lightning state |�a〉.
– tQLVer(�, |�〉) returns the type a, a serial number s or ⊥ if the state is not

valid, and a leftover quantum register.

Correctness is defined similarly to regular QL: serial numbers are deterministic
for honestly generated bolts and verification does not noticeably affect the bolt.
The security properties of a tQL scheme are as follows: For any QPT adversary
A producing |�〉 ← A(�), if we let ρQSA = tQLVer(�, |�〉), then

Pr [H∞(S | A ∧ (S 6= ⊥)) ≤ log p(n)] ≤ negl(n) .

Based on Def 16, typed quantum lightning provides randomness in the serial
number conditionned on the type. A natural WOTRO protocol in the CRS+CRQ$
model based on this new primitive is presented below.

Protocol Π tQL
WRO for WOTROn,m

Setup: A CRS containing�← tQLSetup(1n) for a tQL scheme with n–
bit types and m–bit serial numbers. A CRQ$ containing |EPR〉⊗q where
q is the qubit size of a tQL state.
1. On input a ∈ {0, 1}n, P calls |�a〉 ← tQLGen(�, a), sets ρQSA =

tQLVer(�, |�a〉), teleports register Q to V using the EPR pairs and
sends (A,S) to V.
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2. Upon reception of (a, s, ρQ), V calls σQ′S′A′ ← tQLVer(�, ρQ) and
tests that A′ = a and S′ = s. V aborts if the tests failed, otherwise
V sets c = s and outputs (a, c).

Theorem 10. The above protocol is a secure instantiation of WOTROn,m.

The proof is a direct consequence of the security of the tQL primitive.

Corollary 2. There is no black-box reduction from the security of a tQL scheme
with type length n and serial length m satisfying n−m ∈ ω(lg n) to the security
of a cryptographic game assumption, unless the assumption is false.

9 Conclusion and Open Problems

We have shown that in the CRQS model, the security of any implementation
of WOTROn,m cannot be established by a black-box reduction to any crypto-
graphic game as soon as n −m ∈ ω(lg n). We proved that this implies the im-
possibility to conclude, in the same model, the soundness of any Σn,m–universal
implementation of the Fiat-Shamir transform when n − m ∈ ω(lg n). We de-
fined the collision-shelter assumption that allows for Σn,m–universal implemen-
tation of the Fiat-Shamir transform in the CRQ$ model. The collision-shelter
assumption is a quantum assumption of the same flavour than the assump-
tion that entropy-preserving hash functions exist in the CRS model. However,
while entropy-preserving hash functions have been shown to be required for a
Σn,m–universal implementation of the Fiat-Shamir transform in the CRS model,
we do not expect this to be true for the collision-shelter assumption in the CRQS
model. It would be interesting to define a quantum assumption that allows for
WOTRO and that has to be true given any secure implementation of WOTRO.
Finally, we show that a variant of quantum lightning cannot have its security
black-box reduced to cryptographic games. This maybe an indication of why we
are still looking to find a satisfactory assumption under which vanilla quantum
lightning is possible[40].

ProtocolΠn,m
WRO[Gn,m] implementing WOTROn,mΓ from a collision-shelterGn,m

does not seem to require more than a single hash function Gn(·, ·) for its security
to hold, even though a single function cannot be a collision-shelter. We could
define a single function as a collision-shelter if for any target function c(·), no effi-
cient adversary can produce two copies of the same δ–colliding state to c(·) under
Gn. We don’t know whether such definition for a single function collision-shelter
makes Πn,m

WRO[{Gn}] a secure implementation of WOTROn,mΓ .
It would be of interest to define some flavours of the collision-shelter as-

sumption using extensions of the cryptographic games defined in Def 1. In [32]
and [12], secure universal Fiat-Shamir transforms are constructed from essen-
tially standard primitives with security captured by cryptographic games with
(sub)exponential security rather than polynomial. As a result, some known con-
structions of these primitives can be assumed to satisfy the security criteria ex-
pressed by those extended games. A similar approach to implement WOTROn,m
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in the CRQS model under simpler quantum assumptions would be a valuable
contribution.
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l’IHÉS 43 (1974), pp. 273–307.

[22] Y. Dodis, I. Haitner, and A. Tentes. “On the Instantiability of Hash-and-
Sign RSA Signatures”. In: Theory of Cryptography. Vol. 7194. Lecture
Notes in Computer Science. Springer, 2012, pp. 112–132.

[23] Y. Dodis, R. Oliveira, and K. Pietrzak. “On the Generic Insecurity of
the Full Domain Hash”. In: Advances in Cryptology — CRYPTO 2005.
Vol. 3621. Lecture Notes in Computer Science. Springer-Verlag, Aug. 2005.

[24] Y. Dodis, T. Ristenpart, and S. Vadhan. “Randomness Condensers for
Efficiently Samplable, Seed-Dependent Sources”. In: Proc. TCC. 2012,
pp. 618–635.

[25] J. Don, S. Fehr, C. Majenz, and C. Schaffner. “Security of the Fiat-
Shamir Transformation in the Quantum Random-Oracle Model”. In: Proc.
CRYPTO. Lecture Notes in Computer Science. Springer International Pub-
lishing, 2019, pp. 356–383.

[26] A. Fiat and A. Shamir. “How To Prove Yourself: Practical Solutions to
Identification and Signature Problems”. In: Proc. CRYPTO. 1986, pp. 186–
194.

[27] M. Fischlin. “Communication-Efficient Non-interactive Proofs of Knowl-
edge with Online Extractors”. In: Proc. CRYPTO. 2005, pp. 152–168.

[28] C. Gentry and D. Wichs. “Separating Succinct Non-interactive Arguments
from All Falsifiable Assumptions”. In: Proc. STOC. 2011, pp. 99–108.

[29] O. Goldreich and Y. Oren. “Definitions and Properties of Zero-knowledge
Proof Systems”. In: J. Cryptol. 7.1 (Dec. 1994), pp. 1–32.

[30] S. Goldwasser and Y. T. Kalai. “On the (In)Security of the Fiat-Shamir
Paradigm”. In: Proc. FOCS. IEEE Computer Society, 2003, pp. 102–.

[31] I. Haitner and T. Holenstein. “On the (Im)Possibility of Key Dependent
Encryption”. In: Proc. TCC. 2009, pp. 202–219.

[32] Y. T. Kalai, G. N. Rothblum, and R. D. Rothblum. “From Obfuscation to
the Security of Fiat-Shamir for Proofs”. In: CRYPTO. 2017, pp. 224–251.
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A Additional Proofs

A.1 Proof of Theorem 6

Fix n ∈ N, for improved readability we will omit specifying n below unless when
necessary. Let Af = {P fa,x,w}a,x,w∪{P

f
⊥} be the POVM operators for the attack

Af against Πn,m
WOTRO with success probability 1−negl(n−m) from Thm 5. Recall

the definition of these POVM operators:

P fa,f(a),w :=
Na
f(a),w

2n

2m + C
√
k 2n

2m
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and P fa,x,w = 0 for x 6= f(a) where C > 0 is some constant and k = lg dimP is the
qubit size of the prover register of the CRQS and whereN a = {Na

x,w}x,w∈{0,1}m×`
are the measurement operators for the honest prover in protocol Πn,m

WOTRO on in-
put a ∈ {0, 1}n. Instead of giving M(·) oracle access to Af for a random f , we
will give it oracle access to a stateful adversary A that picks the function that
it will hit at random before the first query. The action of this adversary on an
aritrary state of register P , conditionned on the overwhelmingly probable event
that the attack succeeds, is captured by the following CPTP map:

– On first query, pick a random function f : {0, 1}n → {0, 1}m.
– When queried on a quantum register P , apply the POVM Af to register P

and return the outcome (a, x, w).

We construct a simulator Sim for this attack and show that eq. (3) is satisfied
by this simulator. The simulator’s action on a state σP is described as follows:

– On first query, initialize an empty set S = ∅
– When queried on a quantum register P , pick a ∈R {0, 1}n \S and apply the

POVM N a of the honest prover to get classical outcome (x,w). Add a to S
and return (a, x, w).

To show black-box indistinguishability of this simulator with the attacker A,
we consider hybrid simulations Sim(i) that apply the strategy of Sim for the first
i queries and answer the remaining q− i queries using the strategy of A in a way
that is consistent with the first i queries. These hybrid simulators Sim(i)(σP ) act
on a register P prepared by the distinguisher M as follows:

– On first query, initialize an initially empty set S and a partial mapping
f |S : {0, 1}n → {0, 1}m.

– Answer the first i queries as Sim: pick a ∈R {0, 1}n \ S and apply POVM
N a to register P . Let (x,w) be the result, add a to S, set f |S(a) = x and
output (a, x, w).

– Answer the rest of the queries as A: pick a function f uniformly from the set
of functions that extend f |S , apply the POVM Af to register P and return
the result (a, x, w).

By construction, we have that Sim(q) acts exactly as Sim and Sim(0) exactly
as A. By the triangle inequality, these hybrid simulations allow us to bound
eq. (3) for the adversary and simulator described above.∥∥∥MA(|0〉〈0|Q)−MSim(|0〉〈0|Q)

∥∥∥
1

(5)

≤
q−1∑
i=0

∥∥∥MSim(i+1)

(|0〉〈0|)−MSim(i)

(|0〉〈0|)
∥∥∥

1
(6)

Since A, Sim and every hybrid Sim(i) return classical variables, the above
quantity can be bounded by looking only at the statistical distance ∆(·, ·) be-

tween the values returned on each query. For i, j ∈ [q], let (A
(i)
j , X

(i)
j ,W

(i)
j )
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denote the random variables returned by the jth query to Sim(i). Note that the
answer to the jth query depends on the answers to queries 1, . . . , j in a way that
also depends on the distinguisher M. Then the ith term of the above sum can
be bounded above by∥∥∥MSim(i+1)

(|0〉〈0|)−MSim(i)

(|0〉〈0|)
∥∥∥

1

≤ ∆
(
{(A(i)

j , X
(i)
j ,W

(i)
j )}j∈[q], {(A

(i+1)
j , X

(i+1)
j ,W

(i+1)
j )}j∈[q]

)
.

Since Sim(i) and Sim(i+1) act identically on queries j = 1, . . . , i, we have that

∆
(

(A
(i)
j , X

(i)
j ,W

(i)
j ), (A

(i+1)
j , X

(i+1)
j ,W

(i+1)
j )

)
= 0 for j = 1, . . . , i .

Therefore we can fix the values of the first i queries and bound the statistical
distance of the remaining q − i query answers conditionned on those i values.

Let S ⊂ {0, 1}n and f |S be the set and partial mapping determined by the

answers to the first i queries of Sim(i). Then on the i+ 1th query, the behaviour
of Sim(i) and Sim(i+1) differs:

– Sim(i) picks f uniformly at random from the set of functions that extend f |S
and answers query i + 1 and all remaining queries by applying POVM Af
on register P .

– Sim(i+1) picks a ∈ {0, 1}n \ S, applies POVM N a to get (x,w) and answers
the i+1th query with (a, x, w). All remaining queries are answered using Af
for f picked uniformly from the set of functions that extend f |S restricted
to f(a) = x.

Since Sim(i) and Sim(i+1) answer queries i + 2, . . . , q in the same way, but with
different distributions for the function f , how these answers differ depends only
on the choice of f and on the answer to query i+1. Let F (i) and F (i+1) denote the
random variables for the choice of f on the hybrids (i) and (i+ 1), respectively.

∆
(
{(A(i)

j , X
(i)
j ,W

(i)
j )}j>i+1, {(A(i+1)

j , X
(i+1)
j ,W

(i+1)
j )}j>i+1

)
≤ ∆

(
(F (i), A

(i)
i+1, X

(i)
i+1,W

(i)
i+1), (F (i+1), A

(i+1)
i+1 , X

(i+1)
i+1 ,W

(i+1)
i+1 )

)
We now turn to calculating the distance between (F (i), A

(i)
i+1, X

(i)
i+1,W

(i)
i+1)

and (F (i+1), A
(i+1)
i+1 , X

(i+1)
i+1 ,W

(i+1)
i+1 ). Let σP be the state of the register P on

query i+ 1. Then

Pr[(F (i), A
(i)
i+1, X

(i)
i+1,W

(i)
i+1) = (f, a, f(a), w)] =

(
1

2m

)2n−i

·tr

 Na
f(a),w

2n

2m + C
√
k 2n

2m

· σ


and the probability is zero for any x 6= f(a) and any f that doesn’t extend f |S .
There is also the possibility of an outcome ⊥ capturing the event that the attack

35



Af fails (corresponding to the POVM element P f⊥). Since the probability of this
outcome is negligible (Thm 5), we will condition on the outcome being different

than ⊥ on every query. For Sim(i+1), these variables are distributed as

Pr[(F (i+1), A
(i+1)
i+1 , X

(i+1)
i+1 ,W

(i+1)
i+1 ) = (f, a, x, w)] =

(
1

2m

)2n−i−1

·tr
(
Na
x,w

2n − i
· σ
)

where a /∈ S, f extends f |S and f(a) = x. The probability is zero elsewhere.
Note that in both cases, x = f(a), but the distribution of f differs on how its
value x at point a is chosen.

Let ext(S) be the set of functions that extends f |S . The statistical distance
between both distributions is∑
a∈{0,1}n

w∈{0,1}`
x∈{0,1}m

∑
f∈ext(S)

∣∣∣Pr[(F (i), A
(i)
i+1, X

(i)
i+1,W

(i)
i+1) = (f, a, x, w)]

−Pr[(F (i+1), A
(i+1)
i+1 , X

(i+1)
i+1 ,W

(i+1)
i+1 ) = (f, a, x, w)]

∣∣∣
=

∑
a∈{0,1}n\S
w∈{0,1}`
x∈{0,1}m

f∈ext(S)∧f(a)=x

∣∣∣∣∣∣
(

1

2m

)2n−i

· tr

 Na
f(a),w

2n

2m + C
√
k 2n

2m

· σ

− ( 1

2m

)2n−i−1

· tr
(
Na
f(a),w

2n − i
· σ
)∣∣∣∣∣∣

+
∑

a∈{0,1}n\S
w∈{0,1}`
x∈{0,1}m

f∈ext(S)∧f(a)=x

∣∣∣∣∣∣
(

1

2m

)2n−i

· tr

 Na
f(a),w

2n

2m + C
√
k 2n

2m

· σ

∣∣∣∣∣∣ (7)

Above, we use the fact that for both distributions, it holds that f(a) = x for any
(f, a, x, w) with non-zero probability, and that only the variables corresponding
to the hybrid (i) have non-zero probability when a ∈ S. By replacing f(a) with
x, the terms are now independent of f , so we evaluate the sum over functions
f that extend a partial function defined on the i + 1 points S ∪ {a}. There are
(2m)2n−i−1 such functions.

(7) = (2m)2n−i−1
∑

a∈{0,1}n\S
w∈{0,1}`
x∈{0,1}m

∣∣∣∣∣∣
(

1

2m

)2n−i

· tr

 Na
x,w

2n

2m + C
√
k 2n

2m

· σ

− ( 1

2m

)2n−i−1

· tr
(
Na
x,w

2n − i
· σ
)∣∣∣∣∣∣

+ (2m)2n−i−1
∑
a∈S

w∈{0,1}`
x∈{0,1}m

∣∣∣∣∣∣
(

1

2m

)2n−i

tr

 Na
x,w

2n

2m + C
√
k 2n

2m

· σ

∣∣∣∣∣∣ (8)
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Distributing the factors and using the fact that
∑
x,w tr(Na

x,w · σ) = 1 for any a
since {Na

x,w}x,w forms a POVM, we obtain

(8) =
∑

a∈{0,1}n\S
w∈{0,1}`
x∈{0,1}m

∣∣∣∣∣∣
(

1

2m

)
· tr

 Na
x,w

2n

2m + C
√
k 2n

2m

· σ

− tr

(
Na
x,w

2n − i
· σ
)∣∣∣∣∣∣

+
∑
a∈S

w∈{0,1}`
x∈{0,1}m

∣∣∣∣∣∣
(

1

2m

)
· tr

 Na
x,w

2n

2m + C
√
k 2n

2m

· σ

∣∣∣∣∣∣
=

∑
a∈{0,1}n\S

∣∣∣∣∣∣
(

1

2m

)
· 1

2n

2m + C
√
k 2n

2m

− 1

2n − i

∣∣∣∣∣∣
∑
x,w

tr
(
Na
x,w · σ

)

+
∑
a∈S

∣∣∣∣∣∣
(

1

2m

)
· 1

2n

2m + C
√
k 2n

2m

∣∣∣∣∣∣
∑
x,w

tr
(
Na
x,w · σ

)

≤

∣∣∣∣∣∣
(

2n

2m

)
· 1

2n

2m + C
√
k 2n

2m

− 2n

2n − i

∣∣∣∣∣∣+

(
i

2m

)
· 1

2n

2m + C
√
k 2n

2m

(9)

By simplifying the above expression and using the bounds 1/(1 − x) < 1 + 2x
when 0 < x < 0.5 and 1 − 1/(1 + x) < x when x > 0, we obtain the following
upper-bound on the statistical distance.

(9) =

∣∣∣∣∣∣ 1

1 + C
√
k 2m

2n

− 1

1− i
2n

∣∣∣∣∣∣+
i

2n + C
√
k2n+m

≤ 1

1− i
2n

− 1

1 + C
√
k 2m

2n

+ i2−n

≤ C
√
k2m−n + 3i2−n

We complete the hybrid argument by bounding above every i by q and taking
the sum over the q hybrids:∥∥∥MA(|0〉〈0|Q)−MSim(|0〉〈0|Q)

∥∥∥
1
≤ q ·

(
C
√
k2m−n + 3q2−n

)
.

which is negligible in n−m. �

A.2 Proof of Theorem 7

Assume there exists a black-box reduction B(·,·,·) showing the (n,m)–universality
of Πn,m

FS from the security of game G. We will show that game G is insecure.
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We begin by constructing a family of Σ–protocols that has bad challenge
function f for any function f : {0, 1}n → {0, 1}m. The Σ–protocol Σf defined
below is an interactive proof of language membership for the empty language.
On public input x,
1. P: does nothing.
2. Vf : interact with a potentially malicious prover in the following way.

(a) On first message a ∈ {0, 1}n, pick c ∈R {0, 1}m uniformly at random
and send c to the prover.

(b) On response z from the prover, accept iff c = f(a).
This is indeed a Σ–protocol as it satisfies perfectly correctness and special sound-
ness.

Next, we build a dishonest prover that breaks the soundness of the QFS
transform Πn,m

FS [Σf ] of this Σ–protocol. Since ΠFS naturally implies a WOTRO

protocol, by Thm 6 there exists a negl(n−m)–simulatable attack {AfWOTRO}f
such that AfWOTRO produces (a, f(a), v) that VFS accepts with probability 1 −
negl(n−m). Let SimWOTRO be the simulator for {AfWOTRO}f . For a function
f : {0, 1}n → {0, 1}m, define the adversarial prover Pf that attacks protocol
Πn,m

FS [Σf ] as follows:

1. Invoke AfWOTRO on register P of the CRQS to obtain (a, c, v).
2. Send a, c, v and z = ⊥ to the verifier.
3. Recall that the verifier for Πn,m

FS [Σf ] runs VFS of ΠFS with message (a, c, v)
on register V of the CRQS and then runs Vf of Σf on input (a, c, v, z).

The probability that the verifier accepts in protocol Πn,m
FS [Σf ] is equal to the

probability that VFS accepts and that c = f(a), which by construction ofAfWOTRO

happens with probability at least 1− negl(n−m).

Plugging P, Vf and Pf into the reduction B(·,·,·) gives an algorithm BP,Vf ,Pf

that breaks the security of game G, and yet that is not efficient. Using the sim-
ulator SimWOTRO for the adversary AfWOTRO allows us to replace the inefficient
malicious prover Pf against the QFS transform with an indistinguishable effi-
cient simulator, but Vf is still not efficiently computable.

We now show how Pf and Vf can be jointly simulated (Def 12) using the

stateless simulator SimWOTRO for {AfWOTRO}f . The two stateful algorithms SimP
and SimV are defined as follows

1. Common State: a partial function fA : {0, 1}n → {0, 1}m defined on an
initially empty set A = ∅.

2. SimP : when invoked on a quantum register P , call the simulator SimWOTRO

for the family of adversaries {AfWOTRO}f . Let (a, c, v)← SimWOTRO, set A←
A ∪ {a} and fA(a) = c, and return (a, c, v,⊥). If SimWOTRO produces an a
that is already in A, the simulation fails.

3. SimV: when invoked on classical message (a, c, v, z) and quantum register
V , run VFS on register V of the CRQS with input (a, c, v). If a /∈ A, pick
x ∈R {0, 1}m uniformly at random, set A← A∪{a} and fA(a) = x. Output
reject if VFS rejects or if c 6= fA(a), otherwise output accept.
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Claim. The pair of stateful (with common state) algorithms (SimP ,SimV) jointly
simulates {(Pf ,Vf )}f .

Proof. Let M (·,·) be an oracle-access machine and let q = poly(n) be an upper-
bound on the number of queries made by M to either of its oracles. We first
bound the probability that the simulation fails and then condition on the simu-
lation succeeding. Let α denote the random variable of the value a produced by
SimWOTRO. Since α is uniformly distributed (by the definition of SimWOTRO in the
proof of Thm 6), on any given query, the probability that SimWOTRO produces a
that is already in the set A is upper-bounded by

Pr[α ∈ A] =
∑
a∈A

Pr[α = a] ≤ q · 2−n .

A union bound over the q queries allows us to upper-bound the probability that
any of the queries returns an a that was already in A by q2 ·2−n which is negl(n).

Conditionned on the event that SimWOTRO never produces a ∈ A, we show
that black-box query access to (SimP ,SimV) is indistinguishable on average over
f from black-box query access to (Pf ,Vf ). First, observe that SimP behaves

exactly as Pf , except that it invokes SimWOTRO instead of AfWOTRO. Therefore
the BB-indistinguishability of SimP and Pf follows from that of SimWOTRO and
AfWOTRO. Second, we note that SimV picks each new point of the partial function
fA uniformly at random, so that fA is idendically distributed to a random func-
tion f restricted to A. As a result, SimV perfectly simulates Vf . Finally, since
we condition on the event α /∈ A at every call of SimWOTRO, the answers of SimP
and SimV are always consistent with the same function f (i.e. the simulation
doesn’t fail).

Therefore, the probability thatM (·,·) distinguishes (Pf ,Vf ) from (SimP ,SimV)

is at most the probability that SimWOTRO and AfWOTRO can be distinguished plus
the probability that the simulation fails, which sum to at most negl(n−m). �

We are now ready to conclude the proof. Given the reduction B(·,·,·) we
construct an efficient algorithm for winning game G as follows. The machine
B(P,SimV,SimP) either:

1. wins game G, or
2. if it does not, allows to distinguish (SimV,SimP) from {(Vf ,Pf )}f .

Since we have established the black-box indistinguishability of (SimV,SimP) and
{(Vf ,Pf )}f , we conclude that a BB-reduction B(·,·,·) from the QFS-universality
of Πn,m

WOTRO to game G would allow to win the game.

B Justification for the tQL assumption.

Why is typed quantum lightning a realistic assumption? It turns out that the
tQL primitive can be built from “vanilla” QL for types of length O(lg n). We
present a construction of a tQL scheme for lg p(n) bits types for any polynomial
p(·) from an arbitrary (regular) QL scheme.
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Prerequisite: A QL scheme (QLSetup,QLGen,QLVer). A family of n ·
p(n)–wise independent hash functions H ⊂ {0, 1}n → {0, 1}lg p(n).

– tQLSetup(1n): Let � ← QLSetup(1n) and h←$H, output �
′

=

(�, h)

– tQLGen(�
′
, a) : Parse �

′
as (�, h). Do |�〉 ← QLGen(�) until

s = QLVer(�, |�〉) satisfies h(s) = a and output |�〉.
– tQLVer(�

′
, |�〉): Parse�

′
as (�, h). Compute ρSQ ← QLVer(�, |�〉)

and set A = h(S). Output ρASQ.

Theorem 11. (tQLSetup, tQLGen, tQLVer) is a tQL scheme of lg p(n) bits types.

Proof. Correctness follows from that of the underlying QL scheme: a state pro-
duced by tQLGen will be recognized as a valid state by tQLVer if QLGen produces
valid states.

The expected running time of tQLGen is exponential in lg p(n) and thus
polynomial in n. Since h is sampled from a family of n·p(n)–pairwise independent
hash functions, the probability that tQLGen does not produce an output after
n · p(n) steps is at most

Pr[h(s1) 6= a ∧ · · · ∧ h(sn·p(n)) 6= a] =

(
1− 1

p(n)

)n·p(n)

≤ e−n

For security (Def 16), let A be an attacker against the min-entropy of the

tQL scheme, i.e. A produces with inverse polynomial probability a state |�〉
such that ρASQ ← tQLVer(ρ) has logarithmic min-entropy in S conditioned on
A:

Pr
[
H∞(S | A ∧ (S 6= ⊥)) ≤ lg nr

]
≥ 1

nk
(10)

for some r, k > 0. We construct an adversary B against the uniqueness of the
original lightning scheme from this A. The strategy of B is as follows: call A(1n)

twice to obtain |�1〉 and |�2〉, if QLVer(|�1〉) = QLVer(|�2〉) halt and output

|�1〉 and |�2〉, otherwise repeat. We now show that this strategy will produce
a collision for the underlying QL scheme with an expected polynomial number
of calls to A.

Let ā be such that H∞(S | (A = ā)∧ (S 6= ⊥)) ≤ lg nr and such that Pr[A =

ā] ≥ 1
q(n) for some polynomial q(·) when ρASQ is obtained from tQLVer(A(�)).

Note that since a is lg p(n) in length, such an ā must exist for (10) to hold
(otherwise all a that have low conditional min-entropy have negligible probability
of being produced by A). Then for each pair of invocations of A, the following

40



holds with probability at least 1
nk

:

Pr[QLVer(|�1〉) = QLVer(|�2〉)]

≥ 1

q(n)2
Pr[QLVer(|�1〉) = QLVer(|�2〉) | A1 = ā ∧A2 = ā]

≥ 1

q(n)2
2−H2(QLVer(ρ)|A=ā)

≥ 1

q(n)2
2−H∞(QLVer(ρ)|A=ā)

≥ 1

q(n)2

1

nr
.

The probability that B halts and succeeds is therefore at least (q(n)2nr·k)−1. �

C Proof of Theorem 8

We use a set of mutually unbiased bases (MUBs) introduced by Wootters and
Fields in [46]. These bases of dimension pn are for n instances of p–level quantum
mechanical systems with p ≥ 3 prime. The construction is as follows:

Definition 17 (Mutually Unbiased Bases of [46]). Let p ≥ 3 be prime.
Define the set of mutually unbiased bases Θ[Fpn ] = {θa}a∈Fpn for a Hilbert space
of dimension pn where θa = {|u〉a}u∈Fpn is composed of vectors |u〉a expressed
in the computational basis as

|u〉a = p−
n
2

∑
x∈Fpn

exp

(
2πi

p
· tr
(
ax2 + ux

))
|x〉 , (11)

where tr : Fpn → Fp denotes the field trace tr(x) := x+ xp + xp
2

+ · · ·+ xp
n−1

.

Notice that Klappenecker and Rötteler in [33] have shown a very similar con-
struction for the case p = 2 (mutually unbiased bases of qubits). Unfortunately,
our results do not apply to this construction as Weil sums need a field of odd
characteristics.

Theorem 12. Let n ≥ 1 and let Γ = Fp for prime p ≥ 3. The protocol Πn,n

presented in Section 7 with the family of MUBs of Def 17 is a negl(n)–correct
and statistically ( 1

4 − negl(n))–secure implementation of WOTROn,n.

Proof. For correctness, observe that if both parties are honest, their measure-
ment triplets X and X ′ will be uniformly distributed and perfectly correlated
unless X1 + X2 = 0. Since X1 + X2 is a random element of Γn due to it being
the result of the measurement of EPR pairs, it holds that this event occurs with
probability at most |Γ |−n, which is negligible in n.

Now onto security. Let c : Γn → Γn be an arbitrary target function. In
order to cheat, i.e. to bias the output challenge towards c(a), a dishonest prover
must produce a basis selected by a (the commitment) and measurement outcome
x1, x2, x3 such that
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1. x3(x1 + x2)−1 = c(a) and
2. V obtains the same outcomes x1, x2, x3 when he measures his part of |EPR3n

Γ 〉
in basis θ⊗3

a .

We say that x is a bad outcome if x3(x1 + x2)−1 = c(a). Let B(a) ⊆ Γ 3n denote
the set of bad outcomes for commitment a. Note that |B(a)| = p2n for any
a ∈ Γn.

The most general strategy for the prover is to apply a POVM {Ma,x}a∈Γn,x∈Γ 3n

to its part of the EPR pairs to determine its message to V. The probability that
P can bias the output towards c(a) when V accepts is then the probability that
it can produce a commitment (i.e. a basis) such that a bad outcome will be
observed by V in that basis.

Pw = Pr[X ∈ B(A)] (12)

=
∑

a∈Γn,x∈B(a)

tr
(
(|x〉〈x|a ⊗Ma,x) ·

∣∣EPR3n
Γ

〉〈
EPR3n

Γ

∣∣) (13)

=
1

p3n

∑
a∈Γn,x∈B(a)

tr (Ma,x|x〉〈x|a) . (14)

To simplify our computations, we have slightly abused notation by writing
|x〉a := |x1〉a ⊗ |x2〉a ⊗ |x3〉a when x ∈ Γ 3n and x1, x2, x3 ∈ Γn. Using this
notation, for x, y ∈ Γ 3n we have |〈x|a|y〉b|2 = p−3n whenever a 6= b.

The optimal cheating strategy for P can be framed as the solution to the
following semidefinite program (SDP):

max
{Ma,x}

1

p3n

∑
a∈Γn

∑
x∈B(a)

tr (Ma,x|x〉〈x|a)

s.t.
∑
a∈Γn

∑
x∈B(a)

Ma,x ≤ 1 .
(15)

The dual of this SDP is:

min
Z ≥ 0

1

p3n
tr (Z)

s.t. ∀a ∈ Γn, x ∈ B(a) |x〉〈x|a ≤ Z .

(16)

By the duality of semidefinite programming, a feasible solution to the dual will
yield an upper-bound on the optimal solution of the primal. We now show how
to construct a feasible solution that has constant value for p−3n tr(Z).

Let S =
∑
a∈Γn,x∈B(a) |x〉〈x|a and define fα(x) = x

α+x for α ∈ R. Since fα is

an operator monotone function (meaning that A ≤ B ⇒ fα(A) ≤ fα(B) for A,B
positive semidefinite), we have that 1

α+1 |x〉〈x|a ≤ fα(S) for any 0 < α ≤ 1. The
operator Z = (α+ 1)fα(S) is thus a feasible solution to the dual with associated
value α+1

p3n tr(fα(S)).
We now proceed to upper-bound this probability. Since fα is difficult to deal

with directly, we will bound it using Taylor’s theorem, yielding powers of Z that
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will then be easier to compute. To get a good bound, we will use a third degree
Taylor bound for fα centered around λ ∈ R:

fα(x) ≤ λ

α+ λ
+

α

(α+ λ)2
(x− λ)− α

(α+ λ)3
(x− λ)2 +

α

(α+ λ)4
(x− λ)3 .

Using the Taylor approximation defined above,

1

p3n
tr (Z) ≤ α+ 1

p3n
tr (fα(S))

≤ α+ 1

p3n

(
λ

α+ λ
tr (1) +

α

(α+ λ)2
tr (S − λ1)

− α

(α+ λ)3
tr
(
(S − λ1)2

)
+

α

(α+ λ)4
tr
(
(S − λ1)3

))
.

(17)

We can rewrite the above traces in the powers of S − λ1 in the following way.

tr (1) = p3n ,

tr (S − λ1) = tr (S)− λp3n ,

tr
(
(S − λ1)2

)
= tr

(
S2
)
− 2λ tr (S) + λ2p3n ,

tr
(
(S − λ1)3

)
= tr

(
S3
)
− 3λ tr

(
S2
)

+ 3λ2 tr (S)− λ3p3n .

 (18)

We refer to Lemmas 2, 3 and 4 below for the computation of tr(S), tr(S2)
and tr(S3) and we use here the values obtained:

tr (S) = p3n, tr
(
S2
)

= 2 · p3n − p2n and tr(S3) ≤ 4p3n + p2n .

Choosing to center the Taylor approximation around λ = 1 gives the following
bounds for (18):

tr (1) = p3n ,

tr (S − λ1) = 0 ,

tr
(
(S − λ1)2

)
= 2p3n − p2n − 2p3n + p3n

= p3n − p2n , and

tr
(
(S − λ1)3

)
≤ 4p3n + p2n − 3(2p3n − p2n) + 3p3n − p3n

= 4p2n .

Substituting these values into (17), we get

Pw ≤
1

p3n
tr (Z) ≤ α+ 1

p3n

(
p3n

α+ 1
− α(p3n − p2n)

(α+ 1)3
+
α · 4p2n

(α+ 1)4

)
.

Looking only at the non-negligible terms, we have

Pw ≤ 1− α

(α+ 1)2
+ negl(n)
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which is minimized at α = 1 with value Pw ≤ 3
4 +negl(n). Since this probability

is the same for all functions c(·), it follows that the protocol ( 1
4−negl(n))–avoids

all functions.
�

We now proceed to compute the tr(S), tr(S2) and tr(S3) values used in the
proof of Thm 8.

Lemma 2. tr(S) = p3n.

Proof. Since |B(a)| = p2n,

tr (S) =
∑
a∈Γn

∑
x∈B(a)

tr (|x〉〈x|a) = p3n .

�

Lemma 3. tr(S2) = 2p3n − p2n.

Proof.

tr
(
S2
)

=
∑

a,b∈Γn

∑
x∈B(a),y∈B(b)

tr(|x〉〈x|a|y〉〈y|b)

=
∑
a∈Γn

 ∑
x∈B(a)

1 +
∑
b 6=a

∑
x∈B(a),y∈B(b)

|〈x|a|y〉b|
2


=
∑
a∈Γn

|B(a)|+ p−3n
∑
b 6=a

|B(a)| · |B(b)|


=
∑
a∈Γn

p2n + p−3n
∑
b6=a

p4n


=
∑
a∈Γn

p2n + pn
∑
b 6=a

1


= pn

(
p2n + pn(pn − 1)

)
= 2p3n − p2n

�

Upper-bounding tr(S3) will require a little more machinery. We introduce a
theorem of Deligne [21] and some of its corollaries before proceeding with the
proof.

Theorem 13 ([21], Theorem 8.4). Let Q be a polynomial of n variables
x1, . . . , xn and of degree d on Fq, let Qd be the homogeneous part of degree d
of Q and let ψ : Fq → C∗ be an additive non-trivial character on Fq. Assume
that
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1. d is coprime with p, the characteristic of Fq, and
2. the hypersurface H0 of Pn−1

Fq defined by Qd is smooth,

then ∣∣∣∣∣∣
∑

x1,...,xn∈Fq

ψ (Q(x1, . . . , xn))

∣∣∣∣∣∣ 6 (d− 1)nqn/2 .

In the above, the second condition boils down to ensuring that there is no point
at which the ∂Q

∂xi
all vanish simultaneously. Here is a version that is closer to

what we will need:

Corollary 3. Let m ≤ k, A a k ×m matrix with rank m in Fq, and let C be a
k × k matrix in Fq. Then, if AᵀCA is non-singular,∣∣∣∣∣∣

∑
v,x=Av

ψ (xᵀCx)

∣∣∣∣∣∣ 6 qm/2 .

In other words, we take the sum over all (x1, . . . , xk) that satisfy a system of
k −m independent linear equations.

Proof. Let Q = xᵀCx = vᵀAᵀCAv, and observe that

∂Q

∂vi
= eᵀiA

ᵀCAv + vᵀAᵀCAei = 2eᵀiA
ᵀCAv .

Condition 2 of Thm 13 is thus equivalent to

AᵀCAv = 0⇔ v = 0 ,

which amounts to saying that AᵀCA is non-singular. �

Here is now a version that is more directly relevant to our case.

Corollary 4. Let m ≤ k and let B ∈ F(k−m)×k
q and C ∈ Fk×kq be full rank

matrices. Then, ∣∣∣∣∣ ∑
x:Bx=0

ψ (xᵀCx)

∣∣∣∣∣ 6 qm/2 .

Proof. Let Bc ∈ Fm×kq such that M :=

[
B
Bc

]
∈ Fk×kq has full rank. Then con-

dition Bx = 0 is equivalent to x = M−1

[
0
v

]
for some v ∈ Fmq . We can thus

define P :=

[
0
1

]
and apply corollary 3 with A = M−1P , while observing that

P ᵀM−1ᵀCM−1P has full rank, since M−1ᵀCM−1 also has full rank. �
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Lemma 4. tr(S3) ≤ 4p3n + p2n

Proof. Let’s first write out the expression of interest:

tr
(
S3
)

=
∑

a,b,c∈Γn

∑
x∈B(a)

∑
y∈B(b)

∑
z∈B(c)

tr (|x〉〈x|a|y〉〈y|b|z〉〈z|c)

=
∑
a=b=c

∑
x

1 + 3
∑
a 6=b

∑
x,y

|〈x|a|y〉b|
2 +

∑
a 6=b6=c

∑
x,y,z

〈x|a|y〉b〈y|b|z〉c〈z|c|x〉a

(19)

where the middle term groups the three cases a 6= b, a 6= c and b 6= c that all
have the same value. We know how to upper-bound the first two sums using
the same techniques as Lemma 3. Most of the proof is dedicated to finding an
upper-bound to the third term.

Recall our construction of mutually unbiased bases θa presented in Def 17.
For r ∈ Fpn and a ∈ Fpn :

|r〉a = p−
n
2

∑
u∈Fpn

exp

(
2πi

p
· tr(au2 + ru)

)
|u〉 .

Extending this basis to 3 systems through θ⊗3
a yields vectors of the form

|x〉a = p−3n/2
∑
u∈F3

pn

exp

(
2πi

p
tr (auᵀu+ xᵀu)

)
|u〉 ,

where xᵀ denotes the transpose of x ∈ F3
pn ' Γ 3n. Here, we slightly abuse

notation by writing |x〉a for a vector in basis θ⊗3
a .

The inner product of two such vectors is given by the expression

〈y|b|x〉a = p−3n
∑
u∈F3

pn

exp

(
2πi

p
tr ((a− b)uᵀu+ (x− y)ᵀu)

)
.

Combining the three inner products in the expression of interest (19), we have

〈x|a|y〉b〈y|b|z〉c〈z|c|x〉a = p−9n
∑

u,v,w∈F3
pn

exp

2πi

p
tr

 (a− b)uᵀu+ (x− y)ᵀu
+(b− c)vᵀv + (y − z)ᵀv
+(c− a)wᵀw + (z − x)ᵀw


We introduce some notation that will allow us to present the above expression
in a more compact, albeit more complicated form. Let c : Fpn → Fpm and for
a ∈ Fpn , define

Ba =

[
1 0 c(a)
0 1 c(a)

]
∈ F2×3

pn (20)

such that for x1, x2 ∈ Fpn , the expression

[x1, x2] ·Baᵀ = [x1, x2, c(a)(x1 + x2)]ᵀ ∈ F3
pn (21)
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is a sequence of measurement outcomes that leads to the bad outcome c(a) in
the protocol.

For a, b, c ∈ Fpn , write

Ba,b,c :=

−Ba 0 Ba
0 Bb −Bb
Bc −Bc 0

 ∈ F6×9
pn ,

and

Ca,b,c :=

(c− a)1F3×3
pn

0 0

0 (b− c)1F3×3
pn

0

0 0 (a− b)1F3×3
pn

 ∈ F9×9
pn . (22)

The previous operators are defined such that∑
x∈B(a)
y∈B(b)
z∈B(c)

〈x|a|y〉b〈y|b|z〉c〈z|c|x〉a

= p−9n
∑
%∈F6

pn

∑
ξ∈F9

pn

exp

(
2πi

p
tr (ξᵀCa,b,cξ + %ᵀBa,b,cξ)

)

with the goal of bounding above the right-hand side using Corollary 4. The
construction of Ba,b,c appears more complex than necessary because we want it
to have a large rank.

Equipped with the above, we are now ready to upper-bound the third term
in (19) with Corollary 4.∑

a6=b 6=c

∑
x∈B(a)
y∈B(b)
z∈B(c)

〈x|a|y〉b〈y|b|z〉c〈z|c|x〉a

= p−9n
∑
a 6=b6=c

∑
%∈F6

pn

∑
ξ∈F9n

pn

exp

(
2πi

p
tr (ξᵀ · Ca,b,c · ξ + %ᵀ ·Ba,b,c · ξ)

)

= p−9n
∑
a 6=b6=c

∑
%∈F6

pn

∑
ξ∈F9n

pn

Ba,b,c·ξ=0

exp

(
2πi

p
tr (ξᵀ · Ca,b,c · ξ)

)
(23)

≤ p−9n
∑
a 6=b6=c

∑
%∈F6

pn

p2n (24)

= p−9n
∑
a 6=b6=c

p6np2n

= p−n(pn)(pn − 1)(pn − 2) .

Equality (23) above follows from the observation that once ξ is fixed, if Ba,b,c ·ξ is
non-zero then the sum over % will span all pth roots of unity in equal proportions
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which sums to 0. In more details, letting α = ξᵀ · Ca,b,c · ξ ∈ Fpn and 0 6= v =
Ba,b,c · ξ ∈ F6

pn ,

∑
%∈F6

pn

exp

(
2πi

p
tr (α+ %ᵀ · v)

)
= p5n

∑
β∈Fpn

exp

(
2πi

p
tr (α+ β)

)

= p6n−1
∑
γ∈Fp

exp

(
2πi

p
γ

)
= 0 .

Inequality (24) follows from Corollary 4 by observing that rank(Ba,b,c) ≥ 4. To
see this, note that by removing columns 3, 6 and 9 from Ba,b,c (those corre-
sponding to c(a), c(b) or c(c)), we are left with the matrix1 0 −1

0 1 −1
1 −1 0

 .

Taking linear combinations of the above we can obtain1 0 −1
0 1 −1
0 0 0


and hence Ba,b,c has rank at least that of the above matrix, which is equal to 4
since each of the identities act on F2

pn .

We can now complete the proof by taking the expected value over g. Con-
tinuing from (19),

tr
(
S3
)

=
∑
a=b=c

∑
x∈B(a)

1 + 3
∑
a 6=b

∑
x∈B(a)
y∈B(b)

|〈x|a|y〉b|
2 +

∑
a 6=b6=c

∑
x∈B(a)
y∈B(b)
z∈B(c)

〈x|a|y〉b〈y|b|z〉c〈z|c|x〉a

≤ p3n + 3p2n(pn − 1) + (pn − 1)(pn − 2) ≤ 4p3n + p2n .

�

D Properties of WOTRO

Proposition 1. The 2-message protocol in which P sends a ∈ Γn directly to V,
and V then chooses c ∈R Γm at random, sends it to P and always accepts is a
correct and δ–secure implementation of WOTROn,mΓ for δ = 1 − 1

|Γ |m and for

any alphabet Γ and n,m > 1.

Proof. Let Π(c|a) denote the conditional distribution of the protocol output.
Indeed, correctness is obvious as a and c are correctly distributed with Π(c|a) =
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1
#Γm . For security, let A be the random variable produced by P̃ and C be the
random variable produced by V, and let c : Γn → Γm be some function. Then,

Pr [V = 1 ∧ C = c(A)] = Pr [C = c(A)]

=
1

|Γ |m
.

�

Proposition 2. Let Γ be an arbitrary finite alphabet, let m,n ≥ 1 and let
0 < δ ≤ 1. There is no correct and δ–secure 1-message implementation of
WOTROn,mΓ in the bare model. Moreover, there is no such δ–secure non-interactive
implementation of WOTROn,mΓ common random string (resp. random oracle)
model if the function c from Def 4 can depend on the CR$ r (resp. the random
oracle O).

Proof. Consider the message sent from the prover P to the verifier V. Without
loss of generality, it is of the form (a, c, w) where a is P’s input, c is the joint
output and w is additional information for V to decide whether to accept or
reject. Let Π = (P,V) (resp. Πr = (Pr,Vr) and ΠO = (PO,VO)) be a correct
implementation of WOTRO in the bare model (resp. CR$ model and ROM).
Define the first message of the prover in each model by

P (a, s) := (a, c(a, s), w(a, s)) (bare)

P r(a, s) := (a, cr(a, s, r), wr(a, s, r)) (CR$)

PO(a, s) := (a, cO(a, s, v), wO(a, s, v)) (ROM)

where s is the random tape of the prover, r is the value of the CR$ and v =
(O(a1),O(a2), . . . ,O(aκ(n))) where a1, . . . , aκ(n) ∈ Γn are chosen using s for
some upper bound κ(n) on the number of oracle queries performed by P in ΠO.

Since the protocol is correct, it must hold that

Pr[V (P (A,S)) = 1] = Pr[V r(P r(A,S)) = 1] = Pr[V O(PO(A,S)) = 1] = 1
(25)

where the probability is taken over the values of A and S. Then for each a with
non zero probability, there exist a value s(a), sr(a) and sO(a) such that

V (P (a, s(a))) = V r(P r(a, sr(a))) = V O(PO(a, sO(a))) = 1 (26)

Define malicious prover P̃ (resp. P̃r and P̃O) that on input a uses random tape
value s(a) (resp. sr(a) and sO(a)). Then the protocol Π (resp. Πr and ΠO)
does not avoid the functions c(a) := c(a, s(a)) (resp. cr(a) := cr(a, sr(a), r) and
cO(a) := cO(a, sO(a), v) ). �

Proposition 3. Let m > n. The protocol for WOTROn,mΓ in the CR$ model
where both parties output the CR$ r ∈ Γm for any a ∈ Γn and V always accepts
is correct and δ–secure, for δ = 1− |Γ |n−m.
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Proof. Correctness is obvious, and security is easy to prove as well: suppose that
P̃ wants to steer the output of the protocol towards some function c. He must
then look at the CR$ r, and announce an a such that c(a) = r. Hence, r must
happen to be in the image of c. However, since c is a function from Γn to Γm

and m > n, there are at most |Γ |n strings in the image of c, and the probability
that a uniformly chosen r falls into that set is at most |Γ |n−m. �

Proposition 4. Let Γ be an arbitrary finite alphabet of size q ≥ 2. Then, for
any m,n with m ≤ n, there exists no exp (−qn−m)–secure implementation of
WOTROn,mΓ in the ROM.

Proof. We will show that a cheating prover that is unbounded in time can search
for an a that will satisfy V. Consider a dishonest prover P̃ who uses the following
strategy: run the honest prover P on all possible inputs a in lexicographic order,
and declare victory if it ever outputs c(a). We will also assume that function c(·)
is chosen uniformly at random, and show that the expected winning probability
of the cheating prover is at least 1− exp(−qn−m). We have the following:

Pr
O,c

[P̃ loses] = Pr
O,c

[
P̃ loses at step a = 0 ∧ P̃ loses at a = 1 ∧ . . .

]
=
∏
a∈Γn

Pr
O,c

[
P̃ loses at step a

∣∣∣P̃ loses at all steps before a
]

=
∏
a∈Γn

Pr
O,c

[
P does not output c(a) on input a

∣∣∣P̃ loses at all steps before a
]

=
∏
a∈Γn

qm − 1

qm

=

(
1− 1

qm

)qn

=

[(
1− 1

qm

)qm]qn−m
< exp(−qn−m).

since c(a) is chosen uniformly at random for each a. Hence, P̃’s winning proba-
bility is at least 1− exp(−qn−m) as advertised, and there must exist a choice of
function c(·) that achieves this bound. �

Proposition 5. The protocol for WOTROn,mΓ in the ROM model where both
parties output the O(a) for any a ∈ Γn and V always accepts is correct and
statistically δ–secure, for δ = 1− |Γ |n−m.

The proof is identical to that of Proposition 3 by considering r = O(a).

Proposition 6. The protocol described in Proposition 5 is 1 − negl(n)–secure
in the ROM against polynomial-time provers as long as m is at least linear in n.
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Proof. Let `(n) be a polynomial which bounds the number of oracle queries
that P̃ can make. Furthermore, without loss of generality we will assume that P̃
never makes the same oracle call twice. Then, given any function c : Γn → Γm,
in order to cheat successfully, P̃ must be able to find an a such that O(a) = c(a).

Now, let A1, · · · , A`(n) be random variables taking values in Γn where Ai
represents the ith query to the oracle (if P̃ makes fewer than `(n) queries, let Ai
be any string that was not queried so far). These random variables are functions
of the oracle O, in that they can depend on the results of previous queries. We
then have by the union bound that

Pr
O

[
P̃ wins

]
6 Pr

[
O(A1) = c(A1) ∨ O(A2) = c(A2) ∨ . . . ∨ O(A`(n)) = c(A`(n))

]
6
`(n)∑
i=1

Pr [O(Ai) = c(Ai)]

= `(n)q−m

6 negl(n) .

�

Proposition 7. There are one-message implementations of WOTROn,nΓ arbi-
trarily close to be 1

e –avoiding against unbounded provers in the CR$ model.

Proof. Let `(n) be the length of the CR$ (i.e. r ∈R Γ `(n)) upper bounded by
some polynomial. Let Pr : Γn → Γm × Γ ∗ denote P’s message to V upon
CR$ r and input a ∈ Γn. For a ∈ Γn and CR$ r ∈ Γ `(n), we have Pr(a) =
(c(r, a), v(r, a)) which defines announcement (a, c(r, a), v(r, a)) to V. The veri-
fier’s algorithm Vr : Γn × Γn × Γ ∗ → {0, 1} upon CR$ r accepts (α, β, γ) when
Vr(α, β, γ) = 1. The prover’s algorithm can be considered deterministic given r,
all randomness being provided by r. For {1, . . . , pn} = Γn an enumeration of all
elements in Γn, let

Cr := c(r, 1)‖c(r, 2)‖c(r, 3)‖ . . . ‖c(r, pn)

be the sequence of all challenges announced by P upon CR$ r, one for each
possible input a ∈ Γn. Let C := {Cr}r∈Γ `(n) . For ω ∈ (Γn)p

n

, we define

Hω := {C ∈ C | (∃j ∈ [pn]) [Cj = ωj ]}

as the set of sequences containing challenges hitting ω somewhere. If Π is δ–
avoiding then for all ω ∈ (Γn)p

n

, |Hω| ≤ δ · p`(n).
We define Π and then show it is 3

4–avoiding using a CR$ r ∈ (Γn)2. Π is
simply defined from r = r1‖r2 ∈ (Γn)2 as

Cr = r1, r1, . . . , r1︸ ︷︷ ︸
pn

2 times

, r2, r2, . . . , r2︸ ︷︷ ︸
pn

2 times

.
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We denote the elements of Γn by {1, 2, . . . , pn}. Let ω∗ ∈ (Γn)p
n

be defined as

ω∗ := 1, 2, 3, . . . ,
pn

2
, 1, 2, 3, . . . ,

pn

2
.

It is not difficult to see that ω∗ maximizes the probability to be hit by CR. We
have,

Pr
[
CR ∈ Hω∗

]
= Pr

[(
R1 ≤

pn

2

)
∨
(
R2 ≤

pn

2

)]
= 1− Pr

[(
R1 >

pn

2

)
∧
(
R2 >

pn

2

)]
= 1− 1

4
=

3

4
.

By considering longer CR$ r = r1, r2, . . . , r`(n) where ri ∈ Γn, it is possible to

get arbitrarily close to a correct 1
e –avoiding scheme with

Cr = r1, r1, . . . , r1︸ ︷︷ ︸
pn

`(n)
times

, r2, r2, . . . , r2︸ ︷︷ ︸
pn

`(n)
times

, . . . , r`(n), r`(n), . . . , r`(n)︸ ︷︷ ︸
pn

`(n)
times

.

�

D.1 WOTRO to Implement the Fiat-Shamir Heuristic

Let RL be a relation for a language L and let ΣL = (PL,VL) be a Σ–protocol
for RL with commitments in Γn and challenges in Γm. Consider a secure imple-
mentation ΠWOTRO = (PWOTRO,VWOTRO) of WOTROn,mΓ . We construct a non-
interactive zero-knowledge proof (argument) system for L by applying the Fiat-
Shamir transform to ΣL using the protocol ΠWOTRO as the instantiation of the
hash function.

Protocol ΠWOTRO[ΣL]
Setup: A Σ–protocol ΣL = (PL,VL) where PL = (P1

L,P
2
L) with com-

mitments of size n and challenges of size m and a protocol ΠWOTRO =
(PWOTRO,VWOTRO) for WOTROn,mΓ .

Prover message: on public input x ∈ L and private input w
1. compute a← P1

L(x,w),
2. compute c← PWOTRO(a),
3. compute z = P2

L(a, x, w, c) and
4. send z to the verifier.

Verification: on public input x ∈ L and upon reception of z,
1. compute (a, c)← VWOTRO()
2. if VWOTRO rejected, output reject else output VL(x, a, c, z).
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Theorem 14. If ΣL is a Σ–protocol for language L and if ΠWOTRO is a sta-
tistically (resp. computationally) (1 − δ)–secure and correct implementation of
WOTRO, then ΠWOTRO[ΣL] is a statistically (resp. computationally) sound (with
soundness error δ) and perfectly correct non-interactive proof system for lan-
guage membership in L.

Proof. We first show correctness. By the correctness of ΠWOTRO, it holds that
the challenge c ∈ Γm produced by ΠWOTRO is uniformly distributed. When
both parties are honest, the probability that VL accepts when c is taken as the
output of ΠWOTRO in protocol ΠWOTRO[ΣL] is the same as the probability that
VL accepts in an execution of ΣL. Since Σ–protocols are perfectly correct by
definition, this probability is one.

Now for soundness, again by the definition of Σ–protocols, protocol ΣL sat-
isfies special soundness. That is, for x /∈ L, for any commitment a ∈ Γn, there
exist at most one challenge c ∈ Γm that leads to an accepting conversation. Let
c : Γn → Γm be the function that maps commitment a to this unique challenge
c that makes VL accept. If ΠWOTRO is a statistically (1− δ)–secure implementa-
tion of WOTROn,m, then the output of ΠWOTRO (1− δ)–avoids any function for
any dishonest P̃WOTRO. The probability that V for protocol ΠWOTRO[ΣL] accepts
when x /∈ L is equal to the probability that VWOTRO accepts output (A,C) and
that VL accepts on input (x,A,C, Z) for some Z. By special soundness, this
probability is at most the probability that P̃WOTRO can make VWOTRO accept the
output (A, c(A)). By the statistical (1− δ)–security of ΠWOTRO, this probability
is at most δ.

The reasoning for computational soundness is the same, but where we instead
restrict to QPT adversarial provers P̃WOTRO against ΠWOTRO. �

D.2 WOTRO from Non-Local Correlations

A non-local box (NL-box) is a hypothetical device distributed between two par-
ties such that party A inputs x ∈ {0, 1} into the device and gets an output
u ∈ {0, 1} and party B inputs y ∈ {0, 1} and gets v ∈ {0, 1}. The input/output
behaviour of the NL-box is described by

Pr[u, v | x, y] =

{
1
2 if u⊕ v = x ∧ y
0 otherwise.

Let C : {0, 1}n → {0, 1}N be an error correcting code with minimum distance
εn (for any distinct x, x′ ∈ {0, 1}n, the Hamming distance between C(x) and
C(x′) is at least εn). Let {hr : {0, 1}N → {0, 1}m}r∈R be a universal2 family of
hash functions. The WOTROn,m protocol is as follows:

1. On CR$ r, and using N NL boxes,
2. Prover: on input a ∈ {0, 1}n, compute codeword x := C(a) and input x into

its interface of the N NL boxes. Let u ∈ {0, 1}N be the result. Send (a, x, u)
to the verifier and use (a, hr(u)) as output.
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3. Verifier: On reception of a, x, check that x = C(a). Pick y ∈ {0, 1}N uniformly
at random and input y into its interface of the N NL boxes. Let v ∈ {0, 1}N
be the result. Check that u ⊕ v = x ∧ y. If any of the checks failed, output
⊥, otherwise output (a, hr((x ∧ y)⊕ v)).

Theorem 15. The above protocol avoids every function c : {0, 1}n → {0, 1}m.

Proof. We begin by describing the most general strategy for an adversary A
against the protocol. A can input arbitrary values in the NL boxes in any order
an such that input bits can depend on the CR$ r and on the boxes’ outputs
to previous inputs. Let x̂ ∈ {0, 1}N and û ∈ {0, 1}N denote the input and
output bits to the N NL boxes, respectively. A is then free to choose a, x and u
adaptively based on x̂ and û and send (a, x, u) to the verifier. Since the verifier
checks that x = C(a) and aborts otherwise, we can assume that x is indeed the
codeword that corresponds to a.

We show that A has little freedom in the choice of a due to the error-
correcting code and input/output behaviour of the NL boxes. Since C has mini-
mal distance εn, there is at most one codeword x0 such that d(x0, x̂) ≤ ε

2n. Let
a0 = C−1(x0). If A tries to send (a, x = C(a), u) for any a 6= a0, then the verifier
will abort with overwhelming probability as the following argument shows. Let
(y, v) denote the input/output pair of the verifier. Then,

Pr[x ∧ y = u⊕ v]

= Pr[x ∧ y = u⊕ (û⊕ x̂ ∧ y)]

= Pr[x ∧ y ⊕ u = x̂ ∧ y ⊕ û]

=
∏
i

Pr[xi ∧ yi ⊕ ui = x̂i ∧ yi ⊕ ûi] .

Now, consider the set of positions where x̂ and x differ: S = {i : x̂i 6= xi}. For
any i ∈ S,

– When yi = 0, the expression becomes ui = ûi.
– When yi = 1, the expression becomes xi ⊕ ui = x̂i ⊕ ûi and it is satisfied

when ui 6= ûi.

Since y is chosen independently and uniformly at random by the verifier, for
every i ∈ S, the expression xi ∧ yi ⊕ ui = x̂i ∧ yi ⊕ ûi has probability 1

2 of not
being satisfied. Therefore since |S| ≥ ε

2n whenever x 6= x0, the verifier rejects
with probability at least 2−

ε
2n.

Finally, since A is obligated to send a0 and x0 as described above and u that
satisfies u⊕ v = x0 ∧ y as argued above, the output of the verifier satisfies

Pr[c = c(a0)] = Pr[hr(u) = c(a0)] = Pr[hr(v ⊕ x0 ∧ y) = c(a0)]

= Pr[v ⊕ x0 ∧ y ∈ h−1
r (c(a0))] =

|h−1
r (c(a0))|

2−N

since v ⊕ x0 ∧ y is uniformly distributed. On average over the choice of hr, the
above expression equals 2−m because the universal2 condition implies Er|h−1

r (z)| =
2N−m for any z ∈ {0, 1}m. �
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