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Abstract

We show direct and conceptually simple reductions between the classical learning with er-
rors (LWE) problem and its continuous analog, CLWE (Bruna, Regev, Song and Tang, STOC
2021). This allows us to bring to bear the powerful machinery of LWE-based cryptography to
the applications of CLWE. For example, we obtain the hardness of CLWE under the classical
worst-case hardness of the gap shortest vector problem. Previously, this was known only under
quantum worst-case hardness of lattice problems. More broadly, with our reductions between
the two problems, any future developments to LWE will also apply to CLWE and its downstream
applications.

As a concrete application, we show an improved hardness result for density estimation for
mixtures of Gaussians. In this computational problem, given sample access to a mixture of
Gaussians, the goal is to output a function that estimates the density function of the mixture.
Under the (plausible and widely believed) exponential hardness of the classical LWE problem, we
show that Gaussian mixture density estimation in Rn with roughly log n Gaussian components
given poly(n) samples requires time quasi-polynomial in n. Under the (conservative) polynomial
hardness of LWE, we show hardness of density estimation for nε Gaussians for any constant
ε > 0, which improves on Bruna, Regev, Song and Tang (STOC 2021), who show hardness for
at least

√
n Gaussians under polynomial (quantum) hardness assumptions.

Our key technical tool is a reduction from classical LWE to LWE with k-sparse secrets where
the multiplicative increase in the noise is only O(

√
k), independent of the ambient dimension n.
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1 Introduction

The learning with errors (LWE) problem [Reg09] is a versatile average-case problem with con-
nections to lattices, cryptography, learning theory and game theory. Given a sequence of noisy
linear equations (a, b ≈ 〈a, s〉 mod q) over a ring Z/qZ, the LWE problem asks to recover the se-
cret vector s (and the decisional version of the problem asks to distinguish between LWE samples
and uniformly random numbers mod q). Starting from the seminal work of Regev, who showed
that a polynomial-time algorithm for LWE will give us a polynomial-time quantum algorithm for
widely studied worst-case lattice problems, there has been a large body of work showing connec-
tions between LWE and lattice problems [Pei09, BLP+13]. Ever since its formulation in 2005,
LWE has unlocked a wealth of applications in cryptography ranging from fully homomorphic en-
cryption [BV14] to attribute-based encryption [GVW15] to, most recently, succinct non-interactive
argument systems for all of P [CJJ21]. LWE-based cryptosystems lie at the center of efforts by
the National Institute of Standards and Technology (NIST) to develop post-quantum cryptographic
standards. LWE has also had applications to learning theory, in the form of hardness results for
learning intersections of halfspaces [KS09], and in game theory, where the hardness of LWE implies
the hardness of the complexity class PPAD [JKKZ21]. Finally, LWE enjoys remarkable structural
properties such as leakage-resilience [GKPV10].

Motivated by applications to learning problems, Bruna, Regev, Song and Tang [BRST21] recently
introduced a continuous version of LWE which they called CLWE. (In the definition below and
henceforth, N (µ,Σ) is the multivariate normal distribution with mean µ and covariance matrix Σ

where the probability of a point x ∈ Rn is proportional to e−
1
2

(x−µ)TΣ−1(x−µ).)

Definition 1 (CLWE Distribution [BRST21], rescaled). Let γ, β ∈ R, and let S be a distribution
over unit vectors in Rn. Let CLWE(m,S, γ, β) be the distribution given by sampling a1, · · · ,am ∼
N (0, In×n), w ∼ S, e1, · · · , em ∼ N (0, β2) and outputting(

ai, bi := γ · 〈ai,w〉+ ei mod 1
)m
i=1
.

Unless otherwise specified, S is taken to be the uniform distribution over all unit vectors in Rn. We
refer to n as the dimension and m as the number of samples.

The search CLWE problem asks to find the secret vector w given CLWE samples, whereas the
decisional CLWE problem asks to distinguish between samples from the CLWE distribution and
samples with standard normal ai (just like the CLWE distribution) but now with independent bi
that are distributed uniformly between 0 and 1.

Bruna et al. [BRST21] showed the hardness of the CLWE problem, assuming the worst-case
quantum hardness of approximate shortest vector problems on lattices (such as gapSVP and SIVP).
Aside from being quantum, the reduction makes non-black-box use of the rather involved techniques
from [Reg09, PRS17]. A natural question is whether CLWE has a classical reduction from worst-
case lattice problems, in analogy with such reductions in the context of LWE [Pei09, BLP+13].
An even better outcome would be if we can “piggyback” on the rich literature on worst-case to
average-case reductions for LWE, without opening the box, hopefully resulting in a conceptually
simple worst-case to average-case connection for CLWE. The conceptually clean way to accomplish
all of this would be to come up with a direct reduction from LWE to CLWE, a problem that was
explicitly posed in the recent work of Bogdanov, Noval, Hoffman and Rosen [BNHR22].
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Our main conceptual contribution is a direct and simple reduction from LWE to CLWE. When
combined with Regev [Reg09], our reduction immediately gives an alternate proof of CLWE hardness
assuming worst-case quantum hardness of lattice problems, reproving one of the main results of
Bruna et al. [BRST21]. As another immediate application, by combining with the classical reduction
from worst-case lattice problems to LWE [BLP+13], we obtain classical worst-case hardness of
CLWE. Our main reduction also allows us to unlock powerful structural results on LWE [GKPV10,
BLP+13, Mic18, BD20] and derive improved hardness results for learning mixtures of Gaussians
with (log n)1+ε Gaussians instead of Ω(

√
n) in [BRST21] (for arbitrary ε > 0). We now describe

these results in turn.

1.1 Continuous LWE is as Hard as LWE

Our main result is a direct and conceptually simple reduction from LWE to CLWE. Recall that
in the decisional LWE problem [Reg09], we are given m samples of the form (ai, bi := 〈ai, s〉 +
ei mod q) where ai ∼ (Z/qZ)n is uniformly random, s ∈ Zn is the LWE secret vector, and the
errors ei ∼ N (0, σ2) are chosen from the one-dimensional Gaussian with standard deviation σ. The
decisional LWE assumption (parameterized by n,m, q and σ) postulates that these samples are
computationally indistinguishable from i.i.d. samples in (Z/qZ)n × R/qZ.

Theorem 1 (Informal Version of Theorem 6). Let S = Sr be an arbitrary distribution over Zn
whose support consists of vectors with `2-norm exactly r. Then, for

γ = Õ(r) and β = O

(
σ

q

)
,

(where Õ(·) hides various poly-logarithmic factors), there is a dimension-preserving and sample-
preserving polynomial-time reduction from decisional LWE, with parameters n,m, q, σ and secret
distribution S, to decisional CLWE with parameters n,m, γ and β, as long as σ � r.

Our main reduction, in conjunction with prior work, immediately gives us a number of corollaries.
First, letting S be the uniform distribution on {−1, 1}n, and invoking the hardness result for LWE
with binary secrets [BLP+13, Mic18, BD20], we obtain the following corollary. (The noise blowup
of
√
n in the corollary below comes from the aforementioned reductions from LWE to LWE with

binary secrets.)

Corollary 1 (Informal Version of Corollary 5). For

γ = Õ
(√
n
)
and β = O

(
σ
√
n

q

)
,

there is a polynomial (in n) time reduction from standard decisional LWE in dimension `, with n
samples, modulus q and noise parameter σ, to decisional CLWE in dimension n with parameters γ
and β, as long as n� ` log2(q) and σ � 1.

The generality of our main reduction allows us to unlock techniques from the literature on
leakage-resilient cryptography, specifically results related to the robustness of the LWE assump-
tion [GKPV10, BLP+13, Mic18, BD20], and go much further. In particular, using a variant of the
reduction of [Mic18] modified to handle k-sparse secrets (discussed further in Section 2) we show
the following corollary. In the corollaries, the condition n� ` log2 q (resp. k log2(n/k)� ` log2(q))
comes from the entropy of random ±1 vectors (resp. random k-sparse vectors).
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Corollary 2 (Informal Version of Corollary 6). For

γ = O
(√

k · log n
)

and β = O

(
σ
√
k

q

)
,

we have a polynomial (in n) time reduction from standard decisional LWE, in dimension `, with
n samples, modulus q, and noise parameter σ, to decisional CLWE in dimension n with k-sparse
norm-1 secrets and parameters γ and β, as long as k log2(n/k)� ` log2(q) and σ � 1.

Looking ahead, we note that Corollary 2 will help us derive improved hardness for the problem
of learning mixtures of Gaussians. Towards that end, it is worth stepping back and examining
how far one can push Corollary 2. The LWE problem is believed to be exponentially hard; that
is, in ` dimensions with a modulus q = poly(`) and error parameter σ = poly(`), LWE is believed
to be hard for algorithms that run in 2`

ε time using m = 2`
ε samples, for any ε < 1 (see, e.g.

[LP11]). Breaking this sub-exponential barrier not only has wide-ranging consequences for lattice-
based cryptography, but also to the ongoing NIST post-quantum standardization competition [NIS]
where better algorithms for LWE will lead NIST to reconsider the current parameterization of
LWE-based encryption and signature schemes.

Assuming such a sub-exponential hardness of LWE, we get the hardness of CLWE with

γ = (log n)
1
2

+δ log logn

for an arbitrarily small constant δ = δ(ε). On the other hand, under a far more conservative
polynomial-hardness assumption on LWE, we get the hardness of CLWE with γ = nδ for an arbi-
trarily small δ > 0.

Combining our main reduction with the known classical reduction from worst-case lattice prob-
lems to LWE [BLP+13] gives us classical worst-case hardness of CLWE.

Corollary 3 (Classical Worst-case Hardness of CLWE, informal). There is an efficient classical
reduction from worst-case poly(n/β)-approximate gapSVP in

√
n dimensions, to decisional CLWE

in n dimensions with γ = Ω̃(
√
n) and arbitrary β = 1/poly(n).

Finally, in Appendix C, we also show a reduction in the opposite direction, that is, from (discrete-
secret) CLWE to LWE. Modulo the discrete secret requirement, this nearly completes the picture
of the relationship between LWE and CLWE. In turn, our reverse reduction can be combined with
the other theorems in this paper to show a search-to-decision reduction for (discrete-secret) CLWE.

1.2 Improved Hardness of Learning Mixtures of Gaussians

Bruna, Regev, Song and Tang [BRST21] used the hardness of CLWE to deduce hardness of problems
in machine learning, most prominently the hardness of learning mixtures of Gaussians. We use our
improved hardness result for CLWE to show improved hardness results for learning mixtures of
Gaussians. First, let us start by describing the problem of Gaussian mixture learning.

Background on Gaussian Mixture Learning The problem of learning a mixture of Gaussians
is of fundamental importance in many fields of science [TTM+85, MP00]. Given a set of g mul-
tivariate Gaussians in n dimensions, parameterized by their means µi ∈ Rn, covariance matrices
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Σi ∈ Rn×n, and non-negative weights w1, . . . , wg summing to one, the Gaussian mixture model
is defined to be the distribution generated by picking a Gaussian i ∈ [g] with probability wi and
outputting a sample from N (µi,Σi).

Dasgupta [Das99] initiated the study of this problem in computer science. A strong notion of
learning mixtures of Gaussians is that of parameter estimation, i.e. to estimate all µi, Σi and wi
given samples from the distribution. If one assumes the Gaussians in the mixture are well-separated,
then the problem is known to be tractable for a constant number of Gaussian components [Das99,
SK01, VW02, AM05, KSV05, DS07, BV08, KMV10, MV10, BS15, HP15, RV17, HL18, KSS18,
DKS18]. Moitra and Valiant [MV10] and Hardt and Price [HP15] also show that for parameter
estimation, there is an information theoretic sample-complexity lower bound of (1/γ)g where γ is
the separation parameter and g the number of Gaussian components.

Consequently, it makes sense to ask for a weaker notion of learning, namely density estimation,
where, given samples from the Gaussian mixture, the goal is to output a “density oracle” (e.g. a
circuit) that on any input x ∈ Rn, outputs an estimate of the density at x [FSO06]. The statistical
distance between the density estimate and the true density must be at most a parameter 0 ≤ ε ≤ 1.
The sample complexity of density estimation does not suffer from the exponential dependence in
g, as was the case for parameter estimation. In fact, Diakonikolas, Kane, and Stewart [DKS17]
show a poly(n, g, 1/ε) upper bound on the information-theoretic sample complexity, by giving an
exponential-time algorithm.

Density estimation seems to exhibit a statistical-computational trade-off. While [DKS17] shows
a polynomial upper bound on sample complexity, all known algorithms for density estimation,
e.g., [MV10], run in time (n/ε)f(g) for some f(g) ≥ g. This is polynomial-time only for constant
g. Furthermore, [DKS17] shows that even density estimation of Gaussian mixtures incurs a super-
polynomial lower bound in the restricted statistical query (SQ) model [Kea98, FGR+17]. Explicitly,
they show that any SQ algorithm giving density estimates requires nΩ(g) queries to an SQ oracle of
precision n−O(g); this is super-polynomial as long as g is super-constant. However, this lower bound
does not say anything about arbitrary polynomial time algorithms for density estimation.

The first evidence of computational hardness of density estimation for Gaussian mixtures came
from the work of Bruna, Regev, Song and Tang [BRST21]. They show that being able to output a
density estimate for mixtures of g = Ω(

√
n) Gaussians implies a quantum polynomial-time algorithm

for worst-case lattice problems. This leaves a gap between g = O(1) Gaussians, which is known to
be learnable in polynomial time, versus g = Ω(

√
n) Gaussians, which is hard to learn. What is the

true answer?

Our Results on the Hardness of Gaussian Mixture Learning Armed with our reduction
from LWE to CLWE, and leakage-resilience theorems from the literature which imply Corollaries 1
and 2, we demonstrate a rich landscape of lower-bounds for density estimation of Gaussian mixtures.

Using Corollary 1, we show a hardness result for density estimation of Gaussian mixtures that
improves on [BRST21] in two respects. First, we show hardness of density estimation for g = nε

Gaussians in n dimensions for any ε > 0, assuming the polynomial-time hardness of LWE. Combined
with the quantum reduction from worst-case lattice problems to LWE [Reg09], this gives us hardness
for nε Gaussians under the quantum worst-case hardness of lattice problems. This improves on
[BRST21] who show hardness for Ω(

√
n) Gaussians under the same assumption. Secondly, our

hardness of density estimation can be based on the classical hardness of lattice problems.
The simplicity and generality of our main reduction from LWE to CLWE gives us much more.
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Summary of GMM Hardness Results
LWE Assumption Gaussian Components Run-time Samples(samples, time, adv.)

Corollary 9
(
`1/ε, poly(`), 1

poly(`)

)
O
(
nε/2 · log n

)
nω(1) poly(n)

Corollary 8
(

2`
δ
, 2O(`ε), 1

2O(`δ)

)
O
(

(log n)
1
2

+ 1
2δ ·
√

log log n
)

Ω
(

2(logn)ε/δ
)

poly(n)

Corollary 8
(

2`
δ
, 2O(`ε), 1

poly(`)

)
O
(

(log n)
1
2δ · log logn

)
Ω
(

2(logn)ε/δ
)

poly(log n)

Figure 1: This tables summarizes our hardness results for density estimation of GMM. Throughout,
δ, ε ∈ (0, 1) are arbitrary constants with δ < ε, ` is the dimension of LWE, and the Gaussians live in
Rn. “Adv.” stands for the advantage of the LWE distinguisher. As an example, the first row says
for an arbitrary constant 0 < ε < 1, assuming standard, decisional LWE has no solver in dimension
` with 1/poly(`) advantage given `1/ε samples and poly(`) time, then any algorithm solving GMM
density estimation given access to poly(n) samples from an arbitrary Gaussian mixture with at most
O(nε/2 · log n) Gaussian components must take super-polynomial in n time.

For one, assuming the sub-exponential hardness of LWE, we show that density estimation of g =
(log n)1+ε Gaussians cannot be done in polynomial time given a polynomial number of samples
(where ε > 0 is an arbitrarily small constant). This brings us very close to the true answer: we
know that g = O(1) Gaussians can be learned in polynomial time; whereas g = (log n)1+ε Gaussians
cannot, under a standard assumption in lattice-based cryptography (indeed, one that underlies post-
quantum cryptosystems that are about to be standardized by NIST [NIS]).

We can stretch this even a little further. We show the hardness of density estimation for g =
(log n)1/2+ε Gaussians given poly(log n) samples (where ε > 0 is an arbitrary constant). This may
come across as a surprise: is the problem even solvable information-theoretically given such few
samples? It turns out that the sample complexity of density estimation for our hard instance, and
also the hard instance of [DKS17], is poly-logarithmic in n. In fact, we show (in Corollary 10) a
quasi-polynomial time algorithm that does density estimation for our hard instance with (log n)1+2ε

samples. In other words, this gives us a tight computational gap for density estimation for the
Gaussian mixture instances we consider.

These results are summarized below and more succinctly in Figure 1. The reader is referred to
Section 6 for the formal proofs.

Theorem 2 (Informal Version of Corollary 8 and Corollary 9). We give the following lower bounds
for GMM density estimation based on LWE assumptions of varying strength.

1. Assuming standard polynomial hardness of LWE, any density estimator for Rn that can solve
arbitrary mixtures with at most nε Gaussian components, given poly(n) samples from the
mixture, requires super-polynomial time in n for arbitrary constant ε > 0.

2. For constant ε ∈ (0, 1), assuming `-dimensional LWE is hard to distinguish with advantage
1/2`

ε in time 2`
ε, any density estimator for Rn that can solve arbitrary mixtures with at most

roughly (log n)
1
2

+ 1
2ε Gaussian components, given poly(n) samples from the mixture, requires

super-polynomial in n.

3. For constant ε ∈ (0, 1), assuming `-dimensional LWE is hard to distinguish with advantage
1/poly(`) in time 2`

ε, any density estimator for Rn that can solve arbitrary mixtures with
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at most roughly (log n)
1
2ε Gaussian components, given poly(log n) samples from the mixture,

requires super-polynomial in n time.

1.3 Other Applications

Recent results have shown reductions from CLWE to other learning tasks as well, including learning
a single periodic neuron [SZB21], detecting backdoors in certain models [GKVZ22], and improperly
learning halfspaces in various error models [Tie22, DKMR22].1 Our main result allows these results
to be based on the hardness of LWE instead of CLWE.

In fact, we mention that our reduction can be used to show further hardness of the above learning
tasks. For example, Song, Zadik and Bruna [SZB21] directly show CLWE-hardness of learning single
periodic neurons, i.e., neural networks with no hidden layers and a periodic activation function
ϕ(t) = cos(2πγt) with frequency γ. Our reduction from LWE to CLWE shows that this hardness
result can be based directly on LWE instead of worst-case lattice assumptions, as done in [BRST21].
Furthermore, our results expand the scope of their reduction in two ways:

1. Their reduction shows hardness of learning periodic neurons with frequency γ ≥
√
n, while

ours, based on exponential hardness of LWE, applies to frequencies almost as small as γ =
log n, which covers a larger class of periodic neurons.

2. Second, the hardness of k-sparse CLWE from (standard) LWE shows that even learning sparse
features (instead of features drawn from the unit sphere Sn−1) is hard under LWE for appro-
priate parameter settings.

This flexibility in γ and in the sparsity of the secret distribution translates similarly for the other
learning tasks mentioned, namely detecting backdoors in certain models [GKVZ22] and improperly
learning halfspaces in various error models [Tie22, DKMR22]. For hardness of detecting back-
doors [GKVZ22], this flexibility means reducing the magnitude of undetectable backdoor perturba-
tions (in `2 and `0 norms). For hardness of learning halfspaces, this flexibility means that agnosti-
cally learning noisy halfspaces is hard even if the optimal halfspace is now sparse.2

1.4 Perspectives and Future Directions

The main technical contribution of our paper is a reduction from the learning with errors (LWE)
problem to its continuous analog, CLWE. A powerful outcome of our reduction is the fact that
one can now bring to bear powerful tools from the study of the LWE problem to the study of
continuous LWE and its downstream applications. We show two such examples in this paper: the
first is a classical worst-case to average-case reduction from the approximate shortest vector problem
on lattices to continuous LWE; and the second is an improved hardness result for the well-studied
problem of learning mixtures of Gaussians. We believe much more is in store.

For one, while we show a search-to-decision reduction for discrete-secret CLWE (see Appendix C),
we still do not know such a reduction for general CLWE. This is in contrast to multiple search-
to-decision reductions of varying complexity and generality for the LWE problem [Reg09, MM11].

1More precisely, Diakonikolas, Kane, Manurangsi and Ren [DKMR22] use our techniques to reduce from LWE
instead of CLWE.

2The Veronese map translates a k-sparse degree-d polynomial threshold function in dimension n to a
(
k+d
d

)
-sparse

linear threshold function (i.e., halfspace) in dimension
(
n+d
d

)
.
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Secondly, while there has been some initial exploration of the cryptographic applications of the
continuous LWE problem [BNHR22], constructing qualitatively new cryptographic primitives or
qualitatively better cryptographic constructions is an exciting research direction. A recent example
is the result of [GKVZ22] who show use the hardness of CLWE to undetectably backdoor neural
networks.

Finally, in terms of the hardness of learning mixtures of Gaussians, the question remains: what is
the true answer? The best algorithms for learning mixtures of Gaussians [MV10] run in polynomial
time only for a constant number of Gaussians. We show hardness (under a plausible setting of
LWE) for roughly

√
log n Gaussians.

In our hard instance, the Gaussian components live on a line, and indeed a one-dimensional
lattice. For such Gaussians, we know from Bruna et al. [BRST21] that there exists an algorithm
running in time roughly 2O(g2), which becomes almost polynomial at the extremes of our parameter
settings. Thus, we show the best lower bound possible for our hard instance. (In fact, for our hard
instance, we can afford to enumerate over all sparse secret directions to get a solver with a similar
run-time as [BRST21] but with much smaller sample complexity. See Corollary 10 for details.)

There remain three possibilities:

• There is a different hard instance for learning any super-constant number of Gaussians in
polynomial time, and hardness can be shown by reduction from lattice problems; or

• There is a different hard instance for learning any super-constant number of Gaussians in
polynomial time, but lattice problems are not the source of hardness; or

• We live in algorithmica, where the true complexity of Gaussian mixture learning is better than
nf(g) and looks perhaps more like poly(n)·2g2 , despite what SQ lower bounds suggest [DKS17].

If we believe in the first two possibilities, a natural place to look for a different hard instance
is [DKS17], who consider a family of g Gaussian pancakes centered at the roots of a Hermite
polynomial. This allows them to match the first 2g−1 moments with that of the standard Gaussian.
A tantalizing open problem is to try and prove hardness for their distribution for all algorithms,
not just SQ algorithms, possibly under some cryptographic assumptions or perhaps even lattice
assumptions.

2 Technical Overview

2.1 From Fixed-Norm LWE to CLWE

The goal of our main theorem (Theorem 1) is to reduce from the fixed-norm LWE problem to
CLWE. This involves a number of transformations, succinctly summarized in Figure 2. Given
samples (a, b = 〈a, s〉+ e (mod q)) ∈ Zn+1

q , we do the following:

1. First, we turn the errors (in b) from discrete to continuous Gaussians by adding a small
continuous Gaussian to the LWE samples, using the smoothing lemma [MR07].

2. Secondly, we turn the samples a from discrete to continuously uniform over the torus by
doing the same thing, namely adding a continuous Gaussian noise, and once again invoking
appropriate smoothing lemmas from [Reg09, MR07].

7



Reducing Fixed-Norm LWE to CLWE (Theorem 6)
Samples Secrets Errors

Fixed-Norm LWE U(Znq ) S DZ,σ1
Step 1 (Lemma 15) U(Znq ) S Dσ2

Step 2 (Lemma 16) U(Tnq ) S Dσ3

CLWE (Lemma 18) Dn
1

1
r · S Dβ

Figure 2: This table shows the steps in the reduction from fixed-norm LWE to CLWE (with discrete
secret distribution 1

r · S of unit norm; to reduce to continuous uniform unit-vector secrets, one can
apply Lemma 19). All of the reductions in the table are sample preserving, dimension preserving,
and advantage preserving (up to negl(λ) additive loss). To reduce from LWE with secrets s ∼ U(Znq )
(instead of a fixed-norm distribution), we first apply Theorem 7 and then we perform the steps above.

3. Third, we go from uniform samples a to Gaussian samples. Boneh, Lewi, Montgomery and
Raghunathan [BLMR13] give a general reduction from U(Znq ) samples to “coset-sampleable”
distributions, and as one example, they show how to reduce discrete uniform samples to
discrete Gaussian samples, at the cost of a log q multiplicative overhead in the dimension,
which is unavoidable information-theoretically. We improve this reduction and circumvent
this lower bound in the continuous version by having no overhead in the dimension, i.e. the
dimension of both samples are the same. The key ingredient to this improvement is a simple
Gaussian pre-image sampling algorithm, which on input z ∼ U([0, 1)), outputs y such that
y = z (mod 1) and y is statistically close to a continuous Gaussian (when marginalized over
z ∼ U([0, 1))). (See Lemma 17 for a more precise statement.)

4. This finishes up our reduction! The final thing to do is to scale down the secret and randomly
rotate it to ensure that it is a uniformly random unit vector.

We note that up until the final scaling down and re-randomization step, our reduction is secret-
preserving.

2.2 Hardness of Gaussian Mixture Learning

Bruna et al. [BRST21] show that a homogeneous version of CLWE, called hCLWE, has a natural
interpretation as a certain distribution of mixtures of Gaussians. They show that any distinguisher
between the hCLWE distribution and the standard multivariate Gaussian is enough to solve CLWE.
Therefore, an algorithm for density estimation for Gaussian mixtures, which is a harder problem
than distinguishing between that mixture and the standard Gaussian, implies a solver for CLWE.
The condition that g >

√
n is a consequence of their reduction from worst-case lattice problems.

Our direct reduction from LWE to CLWE opens up a large toolkit of techniques that were
developed in LWE-based cryptography. In this work, we leverage tools from leakage-resilient cryp-
tography [BLP+13, Mic18, BD20] to improve and generalize the hard instance of [BRST21]. The
key observation is that the number of Gaussians g in the mixture at the end of the day roughly
corresponds to the norm of the secrets in LWE. Thus, the hardness of LWE with low-norm secrets
will give us the hardness of Gaussian mixture learning with a small number of Gaussians.

Indeed, we achieve this by reducing LWE to k-sparse LWE. We call a vector s ∈ {+1, 0,−1}n
k-sparse if it has exactly k non-zero entries. We show the following result:
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Theorem 3 (Informal Version of Corollary 4). Assume LWE in dimension ` with n samples is hard
with secrets s ∼ Z`q and errors of width σ. Then, LWE in dimension n with k-sparse secrets is hard
for errors of width O(

√
k · σ), as long as k log2(n/k)� ` log2(q).

It turns out that for our purposes, the quantitative tightness of our theorem is important. Namely,
we require that the blowup in the noise depends polynomially only on k and not on other parameters.
Roughly speaking, the reason is that if we have a blow-up factor of r, for our LWE assumption, we
need q/σ � r for the resulting CLWE distribution to be meaningful. For our parameter settings, if
r depends polynomially on the dimension n (the dimension of the ambient space for the Gaussians)
or the number of samples m, then we require sub-exponentially large modulus-to-noise ratio in our
LWE assumption, which is a notably stronger assumption. Indeed, the noise blow-up factor of the
reduction we achieve and use is O(

√
k).

Our proof of this theorem uses a variant of the proof of [Mic18] to work with k-sparse secrets.3

We note that Brakerski and Döttling [BD20] give a general reduction from LWE to LWE with
arbitrary secret distributions with large enough entropy, but the noise blowup when applying their
results directly to k-sparse secrets is roughly

√
kmn = kω(1) for parameter settings we consider.

For a full description of the proof of Theorem 3, the reader is referred to Section 4.

3 Preliminaries

For a distribution D, we write x ∼ D to denote a random variable x being sampled from D. For
any n ∈ N, we let Dn denote the n-fold product distribution, i.e. (x1, . . . , xn) ∼ Dn is generated
by sampling xi ∼i.i.d. D independently. For any finite set S, we write U(S) to denote the discrete
uniform distribution over S; we abuse notation and write x ∼ S to denote x ∼ U(S). For any
continuous set S, we write U(S) to denote the continuous uniform distribution over S (i.e. having
support S and constant density); we also abuse notation and write x ∼ S to denote x ∼ U(S).

For distributions D1,D2 supported on a measurable set X , we define the statistical distance
between D1 and D2 to be ∆(D1,D2) = 1

2

∫
x∈X |D1(x)−D2(x)|dx. We say that distributions D1,D2

are ε-close if ∆(D1,D2) ≤ ε. For a distinguisher A running on two distributions D1, D2, we say
that A has advantage ε if ∣∣∣∣ Pr

x∼D1

[A(x) = 1]− Pr
x∼D2

[A(x) = 1]

∣∣∣∣ = ε,

where the probability is also over any internal randomness of A.
We let In×n ∈ {0, 1}n×n denote the n×n identity matrix. When n is clear from context, we write

this simply as I. For any matrix M ∈ Rm×n, we let M> be its transpose matrix, and for ` ∈ [n],
we write M[`] ∈ Rm×` to denote the submatrix of M consisting of just the first ` columns, and we
write M]`[ ∈ Rm×(n−`) to denote the submatrix of M consisting of all but the first ` columns.

For any vector v ∈ Rn, we write ‖v‖ to mean the standard `2-norm of v, and we write ‖v‖∞ to
denote the `∞-norm of v, meaning the maximum absolute value of any component. For n ∈ N, we
let Sn−1 ⊂ Rn denote the (n − 1)-dimensional sphere embedded in Rn, or equivalently the set of
unit vectors in Rn. By Zq, we refer to the ring of integers modulo q, represented by {0, . . . , q − 1}.

3The techniques of Brakerski et al. [BLP+13], who show the hardness of binary secret LWE, can also be easily
modified to prove k-sparse hardness, but the overall reduction is somewhat more complex. For this reason, we choose
to show how to modify the reduction of [Mic18].
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By Tq, we refer to the set R/qZ = [0, q) ⊆ R where addition (and subtraction) is taken modulo q
(i.e. Tq is the torus scaled up by q). We denote T := T1 to be the standard torus. By taking a
real number mod q, we refer to taking its representative as an element of Tq in [0, q) unless stated
otherwise.

Definition 2 (Min-Entropy). For a discrete distribution D with support S, we let H∞(D) denote
the min-entropy of D,

H∞(D) = − log2

(
max
s∈S

Pr
x∼D

[x = s]

)
.

Lemma 1 (Leftover Hash Lemma [HILL99]). Let `, n, q ∈ N, ε ∈ R>0, and let S be a distribution
over {−1, 0, 1}n ⊆ Znq . Suppose H∞(S) ≥ ` log2(q) + 2 log2(1/ε). Then, the distributions given by
(A,As (mod q)) and (A,b) where A ∼ Z`×nq , s ∼ S, b ∼ Z`q have statistical distance at most ε.

3.1 Lattices and Discrete Gaussians

A rank n integer lattice is a set Λ = BZn ⊆ Zd of all integer linear combinations of n linearly
independent vectors B = [b1, . . . ,bn] in Zd. The dual lattice Λ∗ of a lattice Λ is defined as the set
of all vectors y ∈ Rd such that 〈x,y〉 ∈ Z for all x ∈ Λ.

For arbitrary x ∈ Rn and c ∈ Rn, we define the Gaussian function

ρs,c(x) = exp
(
−π‖(x− c)/s‖2

)
.

Let Ds,c be the corresponding distribution with density at x ∈ Rn given by ρs,c(x)/sn, namely
the n-dimensional Gaussian distribution with mean c and covariance matrix s2/(2π) · In×n. When
c = 0, we omit the subscript notation of c on ρ and D.

For an n-dimensional lattice Λ ⊆ Rn and point c ∈ Rn, we can define the discrete Gaussian of
width s to be given by the mass function

DΛ+c,s(x) =
ρs(x)

ρs(Λ + c)

supported on x ∈ Λ + c, where by ρs(Λ + c) we mean
∑

y∈Λ ρs(y + c).
We now give the smoothing parameter as defined by [Reg09] and some of its standard properties.

Definition 3 ([Reg09], Definition 2.10). For an n-dimensional lattice Λ and ε > 0, we define ηε(Λ)
to be the smallest s such that ρ1/s(Λ

∗ \ {0}) ≤ ε.

Lemma 2 ([Reg09], Lemma 2.12). For an n-dimensional lattice Λ and ε > 0, we have

ηε(Λ) ≤
√

ln(2n(1 + 1/ε))

π
· λn(Λ).

Here λi(Λ) is defined as the minimum length of the longest vector in a set of i linearly independent
vectors in Λ.

Lemma 3 ([Reg09], Corollary 3.10). For any n-dimensional lattice Λ and ε ∈ (0, 1/2), σ, σ′ ∈ R>0,
and z,u ∈ Rn, if

ηε(Λ) ≤ 1√
1/(σ′)2 + (‖z‖/σ)2

,

then if v ∼ DΛ+u,σ′ and e ∼ Dσ, then 〈z,v〉+e has statistical distance at most 4ε from D√
(σ′‖z‖)2+σ2.
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Lemma 4 ([MR07], Lemma 4.1). For an n-dimensional lattice Λ, ε > 0, c ∈ Rn for all s ≥ ηε(Λ),
we have

∆(Ds,c mod P (Λ), U(P (Λ))) ≤ ε/2,

where P (Λ) is the half-open fundamental parallelepiped of Λ.

Lemma 5 ([MR07], implicit in Lemma 4.4). For an n-dimensional lattice Λ, for all ε > 0, c ∈ Rn,
and all s ≥ ηε(Λ), we have

ρs(Λ + c) = ρs,−c(Λ) ∈
[

1− ε
1 + ε

, 1

]
· ρs(Λ).

Now we recall other facts related to lattices.

Lemma 6 ([MP13], Theorem 3). Suppose v ∈ Zm with gcd(v) = 1, and suppose yi ∼ Dm
Z,σi for all

i ∈ [m]. As long as σi ≥
√

2‖v‖∞η ε
2m2

(Z) for all i ∈ [m], then we have y =
∑

i∈[m] yivi is O(ε)-close

to DZ,σ where σ =
√∑

i∈[m] σ
2
i v

2
i .

Lemma 7 ([Mic18], Lemma 2.2). For w ∼ U(Z`q), the probability that gcd(w, q) 6= 1 is at most
log(q)/2`.

Definition 4. We say that a matrix T ∈ Zk×m is primitive if TZm = Zk, i.e., if T : Zm → Zk is
surjective.

Lemma 8 ([Mic18], Lemma 2.6). For any primitive matrix T ∈ Zk×m and positive reals α, σ > 0,
if TT> = α2I and σ ≥ ηε(ker(T )), then T (DZm,σ) and DZk,ασ are O(ε)-close.

3.2 Learning with Errors

Throughout, we work with decisional versions of LWE, CLWE, and hCLWE.

Definition 5 (LWE Distribution). Let n,m, q ∈ N, let A be a distribution over Rn, S be a distri-
bution over Zn, and E be a distribution over R. We define LWE(m,A,S, E) to be distribution given
by sampling a1, · · · ,am ∼ A, s ∼ S, and e1, · · · , em ∼ E, and outputting (ai, s

>ai + ei (mod q))
for all i ∈ [m]. We refer to n as the dimension and m as the number of samples. (The modulus q
is suppressed from notation for brevity as it will be clear from context.)

We also consider the case where S is a distribution over Zn×j and E is a distribution over Rj.
In this case, the ouput of each sample is (ai, S

>ai + ei (mod q)), where S ∼ S and ei ∼ E.

Definition 6 (CLWE Distribution [BRST21]). Let n,m ∈ N, γ, β ∈ R, and let A be a distribution
over Rn and S be a distribution over Sn−1. Let CLWE(m,A,S, γ, β) be the distribution given by
sampling a1, · · · ,am ∼ A, s ∼ S, e1, · · · , em ∼ Dβ and outputting (ai, γ · 〈ai, s〉 + ei (mod 1)) for
all i ∈ [m]. Explicitly, for one sample, the density at (y, z) ∈ Rn × [0, 1) is proportional to

A(y) ·
∑
k∈Z

ρβ(z + k − γ · 〈y, s〉)

for fixed secret s ∼ S. We refer to n as the dimension and m as the number of samples. We omit
S if S = U(Sn−1), as is standard for CLWE.
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Definition 7 (hCLWE Distribution [BRST21]). Let n,m ∈ N, γ, β ∈ R, and let A be a distribution
over Rn×m and S be a distribution over Sn−1. Let hCLWE(m,A,S, γ, β) be the the distribution
CLWE(m,A,S, γ, β), but conditioned on the fact that for all samples second entries are 0 (mod 1).

Explicitly, for one sample, the density at y ∈ Rn is proportional to

A(y) ·
∑
k∈Z

ρβ(k − γ · 〈y, s〉)

for fixed secret s ∼ S. We refer to n as the dimension and m as the number of samples. We omit
S if S = U(Sn−1), as is standard for hCLWE.

Note that the hCLWE distribution is itself a mixture of Gaussians. Explicitly, for a secret s ∼ S,
we can write the density of hCLWE(1, D1, s, γ, β) at point x ∈ Rn as proportional to

ρ(x) ·
∑
k∈Z

ρβ(k − γ · 〈s,x〉) =
∑
k∈Z

ρ√
β2+γ2

(k) · ρ(πs⊥(x)) · ρ
β/
√
β2+γ2

(
〈s,x〉 − γ

β2 + γ2
k

)
, (1)

where πs⊥(x) denotes the projection onto the orthogonal complement of s. Thus, we can view
hCLWE samples as being drawn from a mixture of Gaussians of width β/

√
β2 + γ2 ≈ β/γ in the

secret direction, and width 1 in all other directions.

Definition 8 (Truncated hCLWE Distribution [BRST21]). Let n,m, g ∈ N, γ, β ∈ R, and let S be a
distribution over Sn−1. Let hCLWE(g)(m,S, γ, β) be the the distribution hCLWE(m,Dn

1 ,S, γ, β), but
restricted to the central g Gaussians, where by central g Gaussians, we mean the central g Gaussians
in writing hCLWE samples as a mixture of Gaussians, as in Eq. 1. Explicitly, for secret s ∼ S, the
density of one sample at a point x ∈ Rn is proportional to

b(g−1)/2c∑
k=−bg/2c

ρ√
β2+γ2

(k) · ρ(πs⊥(x)) · ρ
β/
√
β2+γ2

(
〈s,x〉 − γ

β2 + γ2
k

)
. (2)

Definition 9 (Density Estimation for the Gaussian Mixture Model (Definition 5.1 of [BRST21]).
We say that an algorithm solves GMM density estimation in dimension n with m samples and up to
g Gaussians if, when given m samples from an arbitrary mixture of at most g Gaussian components
in Rn, the algorithm outputs some density function (as an evaluation oracle) that has statistical
distance at most 10−3 from the true density function of the mixture, with probability at least 9/10
(over the randomness of the samples and the internal randomness of the algorithm).

The following theorem tells us that distinguishing a truncated version of the hCLWE Gaussian
mixture from the standard Gaussian is enough to distinguish the original Gaussian mixture from
the standard Gaussian. In particular, we can use density estimation to solve hCLWE since the
truncated version has a finite number of Gaussians.

Theorem 4 (Proposition 5.2 of [BRST21]). Let n,m ∈ N, γ, β ∈ R>0 with β < 1/32 and γ ≥ 1.
Let S be a distribution over Sn−1. For sufficiently large m and for g = 2γ

√
lnm/π, if there is an

algorithm running in time T that distinguishes hCLWE(2g+1)(m,S, γ, β) and Dn×m
1 with constant

advantage, then there is a time T + poly(n,m) algorithm distinguishing hCLWE(m,Dn
1 ,S, γ, β) and

Dn×m
1 with constant advantage. In particular, if there is an algorithm running in time T that solves

density estimation with in dimension n with m samples and g Gaussians, then there is a time
T + poly(n,m) algorithm distinguishing hCLWE(m,Dn

1 ,S, γ, β) and Dn×m
1 with advantage at least

1/2.
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We also use a lemma which says that if CLWE is hard, then so is hCLWE.

Lemma 9 (Lemma 4.1 of [BRST21]). Let δ ∈ (0, 1) be an input parameter. There is a randomized
poly(n,m1, 1/δ)-time reduction that maps m1 samples from CLWE(Dn

1 , s, γ, β) to m2 = Ω(δm1)
samples from hCLWE(Dn

1 , s, γ,
√
β2 + δ2) and maps m1 samples from Dn

1 × U(T1) to m2 samples
from Dn

1 , with failure probability at most 1/1000.

4 Hardness of k-sparse LWE

In this section, we modify the proof of [Mic18] to reduce from standard decisional LWE to a version
where secrets are sparse, in the sense that they have few non-zero entries. The main changes we
make to [Mic18] are that we slightly modify the gadget matrix Q and the matrix Z to handle sparse
secrets (using its notation).

For completeness, we give a self-contained proof.

Definition 10. For k, n ∈ N with k ≤ n, let Sn,k be the subset of vectors in {−1, 0,+1}n with
exactly k non-zero entries. We call s ∈ Zn k-sparse if s ∈ Sn,k.

Lemma 10. It holds that H∞(Sn,k) ≥ k log2(n/k).

Proof. Observe that |Sn,k| =
(
n
k

)
· 2k. Using the bound (n/k)k ≤

(
n
k

)
, we have

H∞(Sn,k) ≥ log2

((
2 · n

k

)k)
≥ k log2(n/k),

as desired.

Our main theorem in this section is the following:

Theorem 5. Let q,m, n, `, k ∈ N with 1 < k < n, and let σ, ε ∈ R>0. Suppose log(q)/2` =
negl(λ), σ ≥ 4

√
ω(log λ) + lnn+ lnm, and k log(n/k) ≥ (` + 1) log2(q) + ω(log λ). Sup-

pose there is no T + poly(n,m, log(q), log(λ)) time distinguisher with advantage ε − negl(λ) be-
tween LWE(n − 1,Z`q,Zm×`q , DZm,σ) and U(Z`×(n−1)

q × Zm×(n−1)
q ), and further suppose there is

no T + poly(n,m, log(q), log(λ)) time distinguisher with advantage ε − negl(λ) between LWE(n +

1,Z`+1
q ,Zm×(`+1)

q , DZm,2σ) and U(Z(`+1)×(n+1)
q ×Zm×(n+1)

q ). Then, there is no T time distinguisher
with advantage 2ε between LWE(m,Znq ,Sn,k, DZ,σ′) and U(Zm×nq × Zmq ), where σ′ = 2σ

√
k + 1.

Definition 11. Let n, k ∈ Z with k ≤ n. For all i ∈ [n], we define ei to be the ith standard basis
column vector, i.e. having a 1 in the ith coordinate and 0s elsewhere. We then define u ∈ Zn to be
u =

∑k
i=1 ei, i.e. 1s in the first k coordinates and 0 elsewhere.

Lemma 11. There is a poly(n)-time computable matrix Q ∈ Zn×(2n+5) such that Q[n] is invert-
ible, u>Q[n] = e>1 , the vector v> = u>Q]n[ ∈ Zn+5 satisfies ‖v‖2 = 2

√
k and ‖v‖∞ = 2, and

Q]1[(DZ2n+4,σ) and DZn,2σ are negl(λ)/t close as long as σ ≥
√

6 ·
√
ω(log λ) + lnn+ ln t for a free

parameter t.

Proof. We use essentially the same gadget Q as in Lemma 2.7 of [Mic18], except we modify two
entries of the matrix and add two columns. Specifically, we set Qk,k+1 = 0 (instead of −1),
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Qk,n+k+1 = 0 (instead of 1), and add two columns to the end that are all 0 except for two en-
tries of 1 in Qk,2n+4 and Qk,2n+5.

We will give it explicitly as follows. Let the matrix X ∈ Zn×(n−1) be defined by

X =



−1
1 −1

. . . . . .
1 −1

1 0
1 −1

. . . . . .
1 −1

1


,

where the row with the abnormal 0 is the kth row. Similarly, let Y ∈ Zn×(n−1) be defined by

Y =



1
1 1

. . . . . .
1 1

1 0
1 1

. . . . . .
1 1

1


,

where the row with the abnormal 0 is again the kth row. We then define Q ∈ Zn×(2n+5) by

Q = [e1, X,−en, Y, en, e1, e1, ek, ek].

First, notice that Q[n] is invertible, since it is upper-triangular with 1s on the diagonal. Next, notice
that u>Q[n] = e>1 , as u>e1 = 1 and the sum of the first k entries in each column of X are all 0 by
construction. We can write v> = u>Q]n[ = [0, 2, 2, · · · , 2, 0, · · · , 0, 1, 1, 1, 1], which has `2 norm√

(k − 1) · 22 + 4 · 12 = 2
√
k.

It’s clear to also see that ‖v‖∞ = 2. All that is remaining to show is that Q]1[(DZ2n+4,σ) and DZn,2σ
are negl(λ)/t-close, which we do below.

To show that Q]1[(DZ2n+4,σ) and DZn,2σ are negl(λ)/t close, we first prove the preconditions of,
and then invoke, Lemma 8. Let T = Q]1[ ∈ Zn×(2n+4).

First, we show that T is primitive. It suffices to show that for every standard basis column vector
ei, there is some gi ∈ Z2n+4 such that ei = Tgi. For all j ∈ [2n + 4], we define fj to be the jth
standard basis column vector in R2n+4. Let g1 = f2n+1, and gk+1 = fk. It can be easily checked
that e1 = Tg1 and ek+1 = Tgk+1. Then, for all i such that 1 < i ≤ k and k + 1 < i ≤ n, let
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gi = fi−1 + gi−1. Using an inductive argument, and by the construction of T , it follows that

Tgi = T (fi−1 + gi−1)

= T fi−1 + Tgi−1

= (ei − ei−1) + ei−1

= ei.

It is easy to check that TT> = 4I. Finally, we bound the smoothing parameter of the lattice
Λ = ker(T ). Since T ∈ Zn×(2n+4) and T has full rank, its kernel Λ has dimension n + 4. The
columns of the following matrix give a basis for the lattice Λ.

V =



Ỹ e1 −ek−1

−X̃ −e1 −ek−1

1 1
1 −1

−Z̃k−1 1 1

−Z̃k−1 1 −1


∈ Z(2n+4)×(n+4),

where we define

X̃ =


−1
1 −1

. . . . . .
1 −1

 ∈ Zn×n,

Ỹ =


1
1 1

. . . . . .
1 1

 ∈ Zn×n, and

Z̃k−1 =
[
0 . . . 0 1 0 . . . 0

]
∈ Z1×n.

Here Z̃k−1 is the zero matrix except for the (k − 1)th column which has a 1 entry. By direct
computation, it is easy to see that the columns of V lie in ker(T ). To see that V is a basis for ker(T ),
we can show that its columns are linearly independent by constructing a matrix W ∈ Z(n+4)×(2n+4)

such that WV = 2I(n+4)×(n+4). Indeed, we can do so in the following way. We can first define
matrices

I+ =



1
. . .

1
0 1

1
. . .

1


∈ Zn×n, I− =



1
. . .

1
0 −1

1
. . .

1


∈ Zn×n,
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where the abnormal row is the (k − 1)th row, and then define

W =


I+ I−

1 1
1 −1

Z̃k −Z̃k 1 1
1 −1

 ∈ Z(n+4)×(2n+4),

where similarly to before, Z̃k ∈ Z1×n is the one-hot vector with a 1 in the kth column. It is
straightforward to verify that WV = 2I(n+4)×(n+4), showing that the columns of V are linearly
independent.

By looking at the columns of V , we have λn+4(Λ) ≤
√

6, so by Lemma 2, we have ηε(Λ) ≤√
6 ·
√
ω(log λ) + lnn+ ln t ≤ σ, where we set ε = negl(λ)/t. Therefore by Lemma 8, we get that

Q]1[(DZ2n+4,σ) and DZn,2σ are negl(λ)/t close if σ ≥
√

6 ·
√
ω(log λ) + lnn+ ln t.

Lemma 12. There is a poly(n) time algorithm that on input z ∈ Sn,k outputs a matrix Z ∈ Zn×n
(as a function of z) that satisfies the following properties:

• Z is a permutation matrix with signs, i.e. a permutation matrix where the non-zero entries
could be ±1 instead of just 1,

• Z = Z> = Z−1, and

• Zz = u.

Proof. We can define Z as follows. Let

T≤k = {i ∈ [k] : zi 6= 0}, T>k = {i ∈ [n] \ [k] : zi 6= 0},
T ∗≤k = {i ∈ [k] : zi = 0}, T ∗>k = {i ∈ [n] \ [k] : zi = 0}.

Intuitively, T≤k and T>k partition the non-zero coordinates of z based on whether they lie in the
first k coordinates, and T ∗≤k and T ∗>k partition the zero-coordinates of z based on whether they lie
in the first k coordinates. Note that by k-sparsity of z, we have

|T>k| = k − |T≤k| = |[k] \ T≤k| = |T ∗≤k|.

Therefore, we can choose an arbitrary bijection f : T>k → T ∗≤k.
For all i ∈ T≤k, we set Zi,i = zi ∈ {+1,−1}. For all i ∈ T ∗>k, we set Zi,i = 1. For all i ∈ T>k, we

set Zf(i),i = zi ∈ {+1,−1} and Zi,f(i) = Zf−1(f(i)),f(i) = zi ∈ {+1,−1}. We set all other entries of
Z to be 0. It’s clear from this definition that Z = Z>.

First, observe that Z is a signed permutation matrix. For all i ∈ T≤k∪T ∗>k, Z is the identity map
up to signs (on basis vectors ei), and for all i ∈ T>k, Z consists of signed transpositions Zei = zief(i)

and Zef(i) = zief−1(f(i)) = ziei. Therefore, Z is a signed permutation matrix, and furthermore we
have also shown Z2 = In×n. Therefore, Z = Z−1.

Lastly, we show Zz = u. We can decompose z as z = z≤k+z>k in the natural way by considering
the non-zero coordinates of z on [k] and [n] \ [k] respectively. We then have

Zz = Z(z≤k + z>k) = Zz≤k + Zz>k = 1T≤k + 1T ∗≤k = u,

as desired.
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Definition 12. We define a randomized mapping ϕ as follows. Let Q be as defined in Lemma 11.
We sample z ∼ Sn,k, s ∼ Zmq , a ∼ Zn−1

q , e ∼ DZm,2σ, G ∼ DZm×(n+5),σ. Let Z ∈ Zn×n be as defined

in Lemma 12 as a function of z. On input B ∈ Zm×(n−1)
q , we define

ϕ(B; z, s,a, e, G) =
[[
s, s · a> +B,G

]
Q>Z, s + e

]
.

First, we show that ϕ maps B ∼ U(Zm×(n−1)
q ) to LWE(m,Znq ,Sn,k, DZ,σ′).

Lemma 13. Assume the same hypothesis as Theorem 5. For B ∼ U(Zm×(n−1)
q ), we have ϕ(B) and

LWE(m,Znq ,Sn,k, DZ,σ′) are negl(λ)-close.

Proof. We fix a ∈ Zn−1
q , z ∈ Sn,k and we argue that ϕ(B) maps to LWE(m,Znq , z, DZ,σ′), i.e. the

LWE distribution with secret z. Averaging over a and z gives the desired result.
First, we show that X =

[[
s, s · a> +B,G

]
Q>Z

]
looks uniform. By construction, [s, s · a>+B]

has distribution U(Zm×nq ), by using the independent randomness of s and B. We can write

X = [s, s · a> +B]Q>[n]Z +GQ>]n[Z.

Since Q[n] and Z are invertible, by a one-time pad argument, we have X ∼ U(Zm×nq ), independent
of G and e.

Now, we have to argue that the conditional distribution on x = s + e is equal to Xz + e′ for
some Gaussian noise e′. We can directly write

x−Xz = s + e− ([s, s · a> +B]Q>[n]Z +GQ>]n[Z)z

= s + e− [s, s · a> +B]Q>[n]u−GQ
>
]n[u

= s + e− [s, s · a> +B]e1 −Gv
= e−Gv,

where we use the fact that Zz = u, u>Q[n] = e>1 and u>Q]n[ = v>.
For all j ∈ [m], let gj ∈ Zn+5 be the jth row of G. For each entry (row) ẽj of e − Gv, we can

write ẽj = ej − g>j v = 〈[ej ,gj ], [1,−v]〉 and apply Lemma 6 with the vector v′ = [1,−v] to argue

that ẽj is O(ε)-close to DZ,σ′ with σ′ =
√

(2σ)2 +
∑

i∈[n+5](σvi)
2 = σ

√
4 + ‖v‖22 = 2σ

√
k + 1, as

long as σ ≥
√

2‖v‖∞ηε/(2(n+6)2)(Z). Now, using the triangle inequality over all m rows to get overall
statistical distance negl(λ), we can set ε = negl(λ)/m, for which

σ ≥
√

2 · 2 · ηnegl(λ)/(mn2)(Z)

is sufficient. By Lemma 2, this holds as long as σ ≥ 4
√

lnm+ lnn+ ω(log λ), which we are given.

Next, we show ϕ maps the standard LWE (with matrices as secrets) to standard LWE in slightly
different dimensions, very much following the proof of Claim 3.3 of [Mic18].

Lemma 14. Assume the same hypothesis as Theorem 5. Let D1 denote the distribution of SA+E

(mod q), where A ∼ U(Z`×(n−1)
q ), S ∼ U(Zm×`q ), E ∼ Dm×(n−1)

Z,σ . Let D2 denote the distribution of

ŜÂ + Ê (mod q), where Â ∼ U(Z(`+1)×(n+1)
q ), Ŝ ∼ U(Zm×(`+1)

q ), Ê ∼ D
m×(n+1)
Z,2σ . Then, ϕ(D1) is

negl(λ)-close to D2.
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The proof goes exactly as in Claim 3.3 of [Mic18]. The only differences are in our matrices Q,Z,
and our distribution of secrets z ∼ Sn,k. The full differences are as follows.

• While our Z is different, since Z = Z> is a permutation matrix with signs, it still holds that
Z ·Dn

Z,2σ = Dn
Z,2σ due to symmetry.

• We have Q]1[(D
2n+4
Z,σ ) is negl(λ)/m-close to Dn

Z,2σ by Lemma 11.

• The probability that w (in their notation) is not primitive is at most log(q)/2` = negl(λ), as
desired.

• When applying leftover hash lemma (Lemma 1), the min-entropy of z ∼ Sn,k is now at
least k log2(n/k). Thus, we require k log2(n/k) ≥ (` + 1) log2(q) + ω(log λ) instead of n ≥
(`+ 1) log2(q) + ω(logm).

For completeness, we provide a self-contained proof, exactly following Claim 3.3 of [Mic18].

Proof of Lemma 14. Let B ∼ D1. Let Y = [s, sa> + B]. By linearity, we can decompose Y as
Y = Ys + Ye, where Ys = [s, sa> + SA] and Ye = [0, E]. Similarly, we can write

ϕ(B) =
[[
s, s · a> +B,G

]
Q>Z, s + e

]
= [Xs, s] + [Xe, e],

where Xs = YsQ
>
[n]Z and Xe = [Ye, G]Q>Z = [E,G]Q>]1[Z. Our goal is to now show that [Xs, s] is

statistically close to ŜÂ, and that [Xe, e] is statistically close to Ê, where ŜÂ+ Ê is a sample from
D2. If this holds, then ϕ(B) is statistically close to ŜÂ+ Ê, which completes the proof.

First, let us look at [Xe, e]. Note that e is a discrete Gaussian vector of width 2σ independent
of everything else, so the last column has the desired distribution. Furthermore, note that E and G
have entries that are discrete Gaussian of width σ, so [E,G] ∼ D

m×(2n+4)
Z,σ . By Lemma 11, setting

t = m, we can use the triangle inequality over all m rows to get that [E,G]Q>]1[ is negl(λ) close to
Dm×n

Z,2σ as long as σ ≥
√

6
√
ω(log λ) + lnn+ lnm. Since Z is a signed permutation, by symmetry,

we then know that Xe = [E,G]Q>]1[Z is negl(λ) close to Dm×n
Z,2σ , and thus [Xe, e] is negl(λ) close to

D
m×(n+1)
Z,2σ , which is the same distribution as Ê. Note that this depends only on e, G, and E.
To finish, we look at [Xs, s]. We now define

Ŝ =
[
s, S
]
W−1 ∈ Zm×(`+1)

q ,

where W is a uniformly random invertible matrix over Z(`+1)×(`+1)
q . Since W is invertible, using

the randomness of S and s, Ŝ is uniformly random independently of W . Next, we define

Â = WHQ>[n]Z
>[In×n, z] ∈ Z(`+1)×(n+1)

q , where

H =

[
1 a>

0 A

]
∈ Z(`+1)×n

q .

Note that we have the identity Q>[n]Z
>z = Q>[n]Zz = Q>[n]u = e1 by Lemmas 12 and 11, as well as

the identity ŜWH = [s, S]H = Ys. Therefore,

ŜÂ = ŜWHQ>[n]Z
>[In×n, z] = YsQ

>
[n]Z

>[In×n, z] = [YsQ
>
[n]Z, Yse1] = [Xs, s],
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as desired.
Now, we have to show that Ŝ and Â have the correct distributions. We have already shown that

Ŝ has the correct distribution (only depending on S and s), so it suffices to show that Â has the
correct distribution given S and s, using the randomness of A,a,W and z. First, let’s look at the
matrix WH. Let w be the first column of W . The first column of WH will be exactly w. Since
W is a uniformly random invertible matrix, w is distributed uniformly among all primitive vectors
in Z`+1

q , i.e. so that gcd(w, q) = 1. By Lemma 7, as long as log(q)/2` = negl(λ), which we have
assumed, then the distribution of w is negl(λ)-close to uniform over Z`+1

q . The remaining columns

of WH will be W
[
a>

A

]
, which by using the uniform randomness of a and A, and the invertibility

of W , will be uniformly random and independent of w. Therefore, WH ∈ Z(`+1)×n
q is negl(λ)-close

to uniformly random. Now, since Q>[n] and Z
> are invertible, we have WHQ>[n]Z

> is negl(λ)-close
to uniform, independently of z. Let A′ = WHQ>[n]Z

>, which we have just shown is negl(λ)-close to
uniform, independently of z. Note that

Â = A′[In×n, z] = [A′, A′z].

Applying the leftover hash lemma (Lemma 1) and Lemma 10, since k log2(n/k) ≥ (`+ 1) log2(q) +
ω(log λ), we know Â is negl(λ)-close to uniform, independently of Ŝ and Ê. This completes the
proof that ϕ(D1) and D2 are negl(λ)-close.

With the above claims, we are ready to prove the main theorem of this section.

Proof of Theorem 5. We will show the contrapositive. Suppose we have a T -time distinguisher
between LWE(m,Znq ,Sn,k, DZ,σ′) and U(Zm×nq × Zmq ) = U(Zm×(n+1)

q ) with advantage 2ε.
We have two cases. Suppose that this distinguisher distinguishes between U(Zm×nq × Zmq ) =

U(Zm×(n+1)
q ) and D2 as given in Lemma 14, with advantage ε. Then, we have a T time dis-

tinguisher between LWE(n + 1,Z`+1
q ,Zm×(`+1)

q , DZm,2σ) and U(Z(`+1)×(n+1)
q × Zm×(n+1)

q ) where we
simply discard the samples, i.e. the first part in Z(`+1)×(n+1)

q (the matrix Â).
Now, for the second case, suppose that this distinguisher does not distinguish between U(Zm×nq ×

Zmq ) = U(Zm×(n+1)
q ) and D2 with advantage ε. Then, we have a T -time distinguisher between

LWE(m,Znq ,Sn,k, DZ,σ′) and D2 with advantage ≥ 2ε − ε = ε by the triangle inequality. Now, we
can use this distinguisher to distinguish LWE(n−1,Z`q,Zm×`q , DZm,2σ) and U(Z`×(n−1)

q ×Zm×(n−1)
q ) by

once again discarding the samples, i.e. the first part in Z`×(n−1)
q (the matrix A), and then by applying

ϕ to the remaining part in Zm×(n−1)
q . Now, using Lemmas 13 and 14, the resulting distributions

coming out of ϕ when given U(Zm×(n−1)
q ) and D1 will be negl(λ)-close to LWE(m,Znq ,Sn,k, DZ,σ′)

and D2, respectively. Thus, our assumed distingiusher will be correct, where the only runtime
increase is in the randomized transformation ϕ, taking time poly(n,m, log(q), log(λ)).

Now, we state a simpler version of Theorem 5 that is easier to use.

Corollary 4. Suppose log(q)/2` = negl(λ), σ ≥ 4
√
ω(log λ) + lnn+ lnm, and k log2(n/k) ≥ (` +

1) log2(q) + ω(log λ). Then, if LWE(n,Z`q,Z`q, DZ,σ) and U(Z`×nq × Znq ) have no T + poly(n,m, q, λ)
time distinguisher with advantage ε, then LWE(m,Znq ,Sn,k, DZ,σ′) and U(Zn×mq × Zmq ) have no T -
time distinguisher with advantage 2εm+ negl(λ), where σ′ = 2σ

√
k + 1.
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Proof. If LWE(n,Z`q,Z`q, DZ,σ) and U(Z`×nq × Znq ) cannot be distinguished with advantage ε, then
by a hybriding argument, the version where the secrets are matrices (with dimension m instead of
1) cannot be distinguished with advantage εm. Then, applying Theorem 5, LWE(m,Znq ,Sn,k, DZ,σ′)
and U(Zn×mq ×Zmq ) cannot be distinguished with advantage 2εm+negl(λ), where we reparameterize
to absorb small additive factors, with the observation that LWE is harder when the dimension and
noise grow, and easier when the number of samples grows.

5 Reducing LWE to CLWE

Our main result in this section is a reduction from decisional fixed-norm LWE to decisional CLWE:

Theorem 6 (Fixed-Norm LWE to CLWE). Let r ∈ R≥1, and let S be an arbitrary distribution
over Zn where all elements in the support of S have `2 norm r. Then, for

γ = r ·
√

ln(m) + ln(n) + ω(log λ), and

β = O

(
σ

q

)
,

if there is no T + poly(n,m, log(q), log(σ), log(λ)) time distinguisher between LWE(m,Znq ,S, DZ,σ)
and U(Zn×mq ×Zmq ) with advantage at least ε−negl(λ), then there is no T -time distinguisher between
CLWE(m,Dn

1 ,
1
r ·S, γ, β) and Dn×m

1 ×U(Tm) with advantage ε, as long as σ ≥ 3r
√

ln(m) + ln(n) + ω(log λ).

See Figure 2 for a summary of the steps. We note that the dimension and number of samples
remains the same in this reduction, and the advantage stays the same up to additive negl(λ) factors.
We also remark that to keep the theorem general, the final distribution is not exactly the CLWE
distribution, as the secret distribution is 1

r · S instead of U(Sn−1). However, using Lemma 19, it is
straightforward to reduce from 1

r · S secrets to U(Sn−1) secrets.
This reduction goes via a series of transformations, which we briefly outline below:

1. Starting from standard decisional LWE, with samples a ∼ U(Znq ), (fixed) secret s ∼ S (where
the support of S has fixed norm), and errors e ∼ DZ,σ, we convert discrete Gaussian errors e
to continuous Gaussian errors e ∼ Dσ2 for σ2 slightly larger than σ.

2. We convert discrete uniform samples a ∼ U(Znq ) to continuous uniform samples a ∼ U(Tnq )
with errors from Dσ3 , where σ3 is slightly larger than σ2.

3. We convert uniform a ∼ U(Tnq ) to Gaussian a ∼ Dn
1 ; viewing it as a CLWE distribution, we

scale such the secret s is a unit vector (i.e. s ∼ 1
r · S), γ ≈ r, and the noise distribution

becomes Dβ where β = σ3/q.

Setting of parameters. If we start with dimension n and m samples with error width σ:

1. After the first step, we get σ2 = O(σ), as long as σ ≥ 2
√

lnm+ ω(log λ).

2. After the second step, we get σ3 = O(σ2) = O(σ), as long as σ2 ≥ 3r
√

lnn+ lnm+ ω(log λ).

3. After the third step, we get γ = r ·
√

lnn+ lnm+ ω(log λ) and β = σ3/q = O(σ/q).
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Step 1: Converting discrete errors to continuous errors. First, we make the error distri-
bution statistically close to a continuous Gaussian instead of a discrete Gaussian. Essentially, all
we do is add a small continuous Gaussian noise to the second component and argue that this makes
the noise look like a continuous Gaussian instead of a discrete one.

This sort of reduction is standard in the literature, but we provide it here for completeness.

Lemma 15. Let n,m, q ∈ N, σ ∈ R>0, and suppose σ >
√

4 lnm+ ω(log λ). For any distribution S
over Zn, suppose there is no distinguisher between LWE(m,Znq ,S, DZ,σ) and U(Zn×mq ×Zmq ) running
in time T + poly(m,n, log(q), log(σ)). Then, there is no T -time distinguisher LWE(m,Znq ,S, Dσ′)
and U(Zn×mq )× U(Tmq ) with an additive negl(λ) advantage loss, where

σ′ =
√
σ2 + 4 ln(m) + ω(log λ) = O(σ).

Proof. We run our original distinguisher for LWE(m,Znq ,S, Dσ′) and U(Zn×mq )×U(Tmq ). For every
sample (a, b) (from either LWE(m,Znq ,S, DZ,σ) or U(Zn×mq ×Zmq )), we sample a continuous Gaussian
e′ ∼ Dσ′′ where σ′′ will be set later, and send (a, b+ e′ (mod q)) to the distinguisher.

By Lemma 4, we know that the distribution of e′ (mod 1) has statistical distance at most ε to
U([0, 1)) as long as σ′′ ≥ ηε(Z). Therefore, if we are given samples from U(Zn×mq × Zmq ), due to
symmetry of b ∼ Zq, we can set ε = λ−ω(1)/m to have b + e′ (mod q) look negl(λ)/m-close to Tq,
making it look like samples from U(Zn×mq )× U(Tmq ).

If we are given samples from LWE(m,Znq ,S, DZ,σ), then the second component can be seen as hav-
ing noise e+e′, where e ∼ DZ,σ and e′ ∼ Dσ′′ . Applying Lemma 3, as long as 1/

√
1/σ2 + 1/(σ′′)2 ≥

ηε(Z), then e + e′ will look O(ε)-close to D√
σ2+(σ′′)2

. Thus, as long as σ, σ′′ ≥
√

2 · ηε(Z), it all
goes through, as taking errors mod q (i.e. in Tq instead of R) can only decrease statistical distance.
Now, applying Lemma 2, we can set ε = λ−ω(1)/m and σ′′ =

√
4 ln(m) + ω(log λ), and as long as

σ >
√

4 ln(m) + ω(log λ), all goes through. Now, doing the triangle inequality over all m samples,
we get negl(λ)-closeness of all samples.

Step 2: Converting discrete to continuous samples. Now, we convert discrete uniform
samples a ∼ Znq to continuous uniform samples a ∼ Tnq .

Lemma 16. Let n,m, q ∈ N, σ ∈ R. Let S be a distribution over Zn where all elements in the
support have fixed norm r, and suppose that

σ ≥ 3r
√

lnn+ lnm+ ω(log λ).

Suppose there is no T+poly(m,n, log(q), log(σ))-time distinguisher between the distributions LWE(m,Znq ,S, Dσ)
and U(Zn×mq )×U(Tmq ). Then, there is no T -time distinguisher between the distributions LWE(m,Tnq ,S, Dσ′)
and U(Tn×mq × Tmq ) with an additive negl(λ) advantage loss, where we set

σ′ =
√
σ2 + 9r2(lnn+ lnm+ ω(log λ)) = O(σ).

Proof. We run our distinguisher for LWE(m,Tnq ,S, Dσ′) and U(Tn×mq ×Tmq ). Let ε = negl(λ)/m, and
let σ′′ ≥

√
2 · ηε(Zn). For each sample (a, b) (from either LWE(m,Znq ,S, Dσ) or U(Zn×mq )×U(Tmq )),

we sample a continuous Gaussian a′ ∼ (Dσ′′)
n and send (a+a′ (mod q), b) to the distinguisher. By

Lemma 4, we know that the distribution of a′ (mod 1) has statistical distance at most ε = negl(λ)/m
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to U([0, 1)n). Thus, by symmetry over a ∼ (Zq)n, the distribution of a + a′ (mod q) will be
negl(λ)/m-close to uniform over (Tq)n. Therefore, by the triangle inequality, if we are given samples
from U(Zn×mq )× U(Tmq ), the reduction gives samples to the distinguisher that are negl(λ)-close to
U(Tn×mq × Tmq ).

If we are given samples from LWE(m,Znq ,S, Dσ), then the reduction gives us (taking everything
mod q)

(a + a′, 〈a, s〉+ e) = (a + a′, 〈a + a′, s〉+ e− 〈a′, s〉) = (a + a′, 〈a + a′, s〉+ e′),

where we define
e′ = e− 〈a′, s〉

over R. Conditioned on a+a′ mod q, a′ is a discrete Gaussian distributed according toDZn+(a+a′),σ′′ .
By Lemma 3, as long as σ ≥ rσ′′, the distribution of e′ is O(ε) = negl(λ)/m close to Dσ′ , where

σ′ =
√
σ2 + r2(σ′′)2.

Averaging the distribution of e′ over s will not change the distribution over e′, as all secrets s have
fixed norm r. Therefore, if we are given the m samples from LWE(m,Znq ,S, Dσ), the reduction gives
us samples negl(λ)-close to LWE(m,Tnq ,S, Dσ′), as desired.

To set parameters, we choose σ′′ = 3
√

lnn+ lnm+ ω(log λ) to ensure that σ′′ ≥
√

2·ηnegl(λ)/m(Zn).
This gives

σ′ =
√
σ2 + 9r2(lnn+ lnm+ ω(log λ)),

along with the requirement that

σ ≥ rσ′′ = 3r
√

lnn+ lnm+ ω(log λ).

Step 3: Converting uniform to Gaussian samples.

Lemma 17. Let t ∈ R>0 be a parameter. There is a poly(n, log(t), log(λ))-time algorithm such
that on input z ∈ Tn1 , the algorithm outputs some y ∈ Rn such that y = z (mod 1). More-
over, if z ∼ U(Tn1 ), then the distribution on the outputs y is negl(λ)/t-close to Dn

τ , where τ =√
lnn+ ln t+ ω(log λ).

Remark 1. In the discrete setting, there is in some sense a necessary multiplicative Ω(log q) over-
head in the dimension due to entropy arguments, but the above shows that we can overcome that
barrier in the continuous case.

Proof. We give each coordinate of y separately. By the triangle inequality, it suffices to show how
to sample y ∈ R such that y = z (mod 1) and such that if z ∼ T1, then y is negl(λ)/(tn)-close to
Dτ . We sample

y ∼ DZ+z,τ ,

which can be sampled efficiently (see e.g. [BLP+13], Section 5.1 of full version), where we have
negl(λ)/(tn) statistical distance between y and DZ+z,τ , and always satisfy y ∈ Z+z. Since y ∈ Z+z,
it follows that y = z (mod 1).
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Now, we need to argue that the distribution of y looks negl(λ)/(tn)-close to Dτ when z ∼ U(T1).
Note that for fixed z ∈ [0, 1), we can write the generalized PDF of DZ+z,τ as

DZ+z,τ (x) = δ(x− z mod 1) · ρτ (x)

ρτ (Z + z)

for arbitrary x ∈ R, where δ(·) is the Dirac delta function. Thus, as long as τ ≥ ηε(Z) (for ε set
later), the density of the marginal distribution DZ+z,τ where z ∼ U([0, 1)) is given by

DZ+U([0,1)),τ (x) =

∫ 1

0
1 ·DZ+z,τ (x) · dz

=

∫ 1

0
δ(x− z mod 1) · ρτ (x)

ρτ (Z + z)
dz

=
ρτ (x)

ρτ (Z + x)

∈
[
1,

1 + ε

1− ε

]
· ρτ (x)

ρτ (Z)

∝
[
1,

1 + ε

1− ε

]
· ρτ (x),

where the inclusion comes from Lemma 5. Therefore, a standard calculation shows that the statis-
tical distance between DZ+U([0,1)),τ and Dτ is at most O(ε). Setting ε = λ−ω(1)/(t · n), we need to
take τ ≥ ηλ−ω(1)/(t·n)(Z), which we can do by setting τ =

√
lnn+ ln t+ ω(log λ) by Lemma 2.

Lemma 18. Let n,m, q ∈ N, σ, r, γ ∈ R. Let S be a distribution over Zn where all elements in
the support have fixed norm r. Suppose there is no T + poly(n,m, log(q), log(λ)) time distinguisher
between the distributions LWE(m,Tnq ,S, Dσ) and U(Tn×mq × Tmq ). Then, there is no T -time dis-
tinguisher between the distributions CLWE(m,Dn

1 ,
1
r · S, γ, β) and Dn×m

1 × U(Tm1 ) with an additive
advantage loss of negl(λ), where

γ = r ·
√

lnn+ lnm+ ω(log λ),

β =
σ

q
.

Proof. We run the distinguisher for CLWE(m,Dn
1 ,

1
r · S, γ, β) and Dn×m

1 ×U(Tm1 ). For each sample
(a, b) from either LWE(m,Tnq ,S, Dσ) or U(Tn×mq ×Tmq ), we invoke Lemma 17 on a/q with parameter
t = m to get some y ∈ Rn with statistical distance negl(λ)/m from Dn

τ such that y = a/q (mod 1),
where τ =

√
lnn+ lnm+ ω(log λ). We then send (y/τ, b/q) to the distinguisher. Let γ = r · τ ,

y′ = y/τ , s′ = s/r, and e′ = e/q. If (a, b) is a sample from LWE(m,Tnq ,S, Dσ), then for secret
s ∼ S, since s ∈ Zn, we have

(y/τ, b/q) = (y′, 〈a/q, s〉+ e/q (mod 1)) = (y′, 〈y, s〉+ e′ (mod 1))

= (y′, r · τ · 〈y′, s/r〉+ e′ (mod 1))

= (y′, γ · 〈y′, s′〉+ e′ (mod 1))

where this is now negl(λ)/m close to a sample from CLWE(m,Dn
1 ,

1
r · S, γ, β), as y′ ∼ Dn

1 , s′ ∼ 1
r · S,

and e′ ∼ Dσ/q = Dβ . Applying this reduction to U(Tn×mq ×Tmq ) clearly gives us a statistically close
sample to Dn×m

1 × U(Tm1 ) by Lemma 17 and the triangle inequality over all m samples.
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Step 4 (optional): Converting the secret to a random direction. The distribution on the
secret as given above is not uniform over the sphere, so if desired, one can apply the worst-case to
average-case reduction for CLWE ([BRST21], Claim 2.22). For completeness, we provide a proof.

Lemma 19 ([BRST21], Claim 2.22). Let n,m ∈ N, and let β ∈ R>0. Let S be a distribution over
Rn of fixed norm 1. There is no T -time distinguisher between the distributions CLWE(m,Dn

1 , γ, β)
and Dn×m

1 ×U(Tm1 ), assuming there is no T+poly(n,m) time distinguisher between the distributions
CLWE(m,Dn

1 ,S, γ, β) and Dn×m
1 × U(Tm1 ). That is, we can reduce CLWE to CLWE to randomize

the secret to be a uniformly random unit vector instead of drawn from (possibly discrete) S.

Note that while we do not use Lemma 19 in proving Theorem 6, we do use the lemma in
subsequent sections.

Proof. We run the distinguisher for CLWE(m,Dn
1 , γ, β) and Dn×m

1 × U(Tm1 ). Let R ∈ Rn×n be a
uniformly random rotation matrix in Rn, fixed for all samples. When giving the distinguisher a
sample, we get (a, b) from either CLWE(m,Dn

1 ,S, γ, β) or Dn×m
1 × U(Tm1 ), and send (Ra, b) to the

distinguisher. If (a, b) is drawn from CLWE(m,Dn
1 ,S, γ, β), then we have

(Ra, b) = (Ra, γ〈a, s〉+ e (mod 1)) = (Ra, γ〈Ra, Rs〉+ e (mod 1))

= (a′, γ〈a′,w〉+ e (mod 1)),

for a ∼ Dn
1 , s ∼ S, and e ∼ Dβ , where we set a′ = Ra and w = Rs (fixed for all samples). For an

arbitrary rotation R, since the distribution on a is spherically symmetric, we have a′ = Ra ∼ Dn
1 ,

independently of R. For a random rotation matrix R, for arbitrary s, we have that w = Rs is a
uniformly random unit vector in Rn. Since this holds for arbitrary s, this also holds when averaging
over the distribution s ∼ S. If (a, b) is drawn from Dn×m

1 ×U(Tm1 ), then (Ra, b) is drawn identically
to (a, b), since the distribution on a′ = Ra is spherically symmetric. Thus, the reduction maps the
distributions perfectly.

Now, we are ready to prove the main theorem of this section, Theorem 6.

Proof of Theorem 6. Throughout this proof, when we refer to distinguishing probability, we omit
additive negl(λ) terms for simplicity.

Suppose there is no distinguisher with advantage ε between LWE(m,Znq ,S, DZ,σ) and U(Zn×mq ×
Zmq ). Then, by Lemma 15, there is no ε-distinguisher between LWE(m,Znq ,S, Dσ2) and U(Zn×mq )×
U(Tmq ), where σ2 = O(σ), as long as σ ≥

√
4 ln(m) + ω(log λ), which it is by our assumption on σ.

Then, by Lemma 16, there is no ε-distinguisher between LWE(m,Tnq ,S, Dσ3) and U(Tn×mq × Tmq ),
where σ3 = O(σ2) = O(σ), which holds as long as σ2 ≥ 3r

√
ln(m) + ln(n) + ω(log λ), which it does

because σ2 ≥ σ ≥ 3r
√

ln(m) + ln(n) + ω(log λ). Now, by Lemma 18, there is no ε-distinguisher
between CLWE(m,Dn

1 ,
1
r · S, γ, β) and Dn×m

1 × U(Tm1 ), where

γ = r ·
√

ln(m) + ln(n) + ω(log λ),

and
β =

σ3

q
= O

(
σ

q

)
,

as desired.
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5.1 Full Reduction from LWE to CLWE

Now, to reduce from standard decisional LWE where the secret is drawn uniformly over Znq instead
of a fixed-norm distribution, we need to somehow reduce standard LWE to some version where the
norm is fixed. We show two ways to do this:

1. In Corollary 5, we use a reduction from LWE to binary-secret LWE [Mic18] (i.e. Section 4
but without sparsity) to bridge this gap.

2. In Appendix A, we give another (perhaps simpler) reduction, but we reduce to search CLWE
instead of decisional CLWE. (As a result of Appendix C, we get an indirect search-to-decision
reduction for discrete-secret CLWE that can be applied here.)

In this section, we show the first approach.

Theorem 7 ([Mic18], Theorem 3.1 and Lemma 2.9). Let q, `, n,m ∈ Z, σ ∈ R. There is no T -time
algorithm has advantage ε in distinguishing LWE(m,Zn+1

q , {+1,−1}n+1, DZ,σ′) and U(Z(n+1)×m
q ×

Zmq ), assuming there is no time T+poly(`, n, log(q), log(λ)) algorithm with advantage (ε−negl(λ))/(2m)

in distinguishing LWE(n+1,Z`q,Z`q, DZ,σ) and U(Z`×(n+1)
q ×Zn+1

q ), as long as log(q)/2` = negl(λ), σ ≥
4
√
ω(log λ) + lnn+ lnm, n ≥ 2` log2 q + ω(log λ), and σ′ = 2σ

√
n+ 1.

Remark 2. Note that we phrase the parameter requirements differently here than is done in [Mic18],
mainly because we want to delink the security parameter from n. Explicitly:

• The requirements q ≤ 2poly(n) and ` ≥ ω(log n) in [Mic18] are needed only to make sure that
the first row of a primitive matrix is close to uniform over Zq. Indeed, Lemma 2.2 of [Mic18]
shows the statistical distance is at most log(q)/2`. Thus, the requirement log(q)/2` = negl(λ)
is sufficient.

• We require σ ≥ 4
√
ω(log λ) + lnn+ lnm instead of σ ≥ ω(

√
log n) for various triangle in-

equalities to go through to get negl(λ) overall statistical distance.

Now, we are ready to give a proof of Corollary 5.

Corollary 5 (Full Reduction from LWE to CLWE). Let q, `, n,m ∈ N with m > n, and let
γ, β, σ, ε ∈ R>0. There is no T -time distinguisher with advantage ε between CLWE(m,Dn

1 , γ, β) and
Dn×m

1 ×U(Tm), assuming there is no T +poly(`, n,m, log(q), log(σ), log(λ)) time distinguisher with
advantage (ε− negl(λ))/(2m) between LWE(m,Z`q,Z`q, DZ,σ) and U(Z`×mq × Zmq ), for

γ = O
(√

n ·
√

lnm+ ω(log λ)
)
,

β = O

(
σ
√
n

q

)
,

as long as log(q)/2` = negl(λ), n ≥ 2` log2 q + ω(log λ), and σ ≥ C ·
√

lnm+ ω(log λ) for some
universal constant C.

Remark 3. Note that for reasonable parameter settings of CLWE (namely where β � 1), we require
q/σ �

√
n.
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Proof of Corollary 5. Suppose there is no distinguisher with advantage (ε− negl(λ))/(2m) between
LWE(m,Z`q,Z`q, DZ,σ) and U(Z`×mq ×Zmq ). Then, since n < m and more samples can only help, there
is no distinguisher with advantage (ε− negl(λ))/(2m) between LWE(n,Z`q,Z`q, DZ,σ) and U(Z`×nq ×
Znq ). Then, by Theorem 7, there is no distinguisher between LWE(m,Znq , {+1,−1}n, DZ,σ1) and
U(Zn×mq × Zmq ) with advantage ε, where σ1 = 2σ

√
n+ 1, and all other sufficient conditions are

met by the hypotheses of the corollary. (From here on out, we omit additive negl(λ) terms in the
distinguishing probability for simplicity.)

Now, since the secrets all have fixed norm
√
n, we can apply Theorem 6. Then, for parameters

γ =
√
n ·
√

ln(m) + ln(n) + ω(log λ) = O
(√

n ·
√

ln(m) + ω(log λ)
)
,

and
β = O

(
σ1

q

)
= O

(
σ
√
n

q

)
,

there is no distinguisher between CLWE(m,Dn
1 ,

1√
n
{+1,−1}n, γ, β) and Dn×m

1 ×U(Tm), as long as

σ1 = 2σ
√
n+ 1 ≥ 3

√
n
√

ln(m) + ln(n) + ω(log λ),

which indeed holds as long as σ ≥ C ·
√

ln(m) + ω(log λ) for some universal constant C.
Lastly, we make the secret direction for the CLWE distribution a completely random unit vector

in Rn via Lemma 19. This has no effect on any of the parameters, so this means there is no
distinguisher between CLWE(m,Dn

1 , γ, β) and Dn×m
1 × U(Tm), as desired.

5.2 Hardness of Sparse CLWE

In this subsection, we take advantage of our reduction from LWE to k-sparse LWE to reduce LWE
to a k-sparse version of CLWE with a very similar proof to that of Corollary 5. Later on, the main
benefit of this reduction is that in the resulting CLWE distribution, γ will be small, which will result
in a family of GMM instances, each with a small number of Gaussians.

Corollary 6 (Reduction from LWE to k-sparse CLWE). Suppose log(q)/2` = negl(λ), σ ≥ 2 ·√
lnn+ lnm+ ω(log λ), and k log2(n/k) ≥ (`+ 1) log2(q) + ω(log λ). Then, for parameters

γ =
√
k ·
√

ln(m) + ln(n) + ω(log λ)

and

β = O

(
σ
√
k

q

)
for some universal constant C, if LWE(n,Z`q,Z`q, DZ,σ) and U(Z`×nq × Znq ) have
no T + poly(n,m, log(q), log(σ), log(λ)) time distinguisher with advantage ε, then
CLWE(m,Dn

1 ,
1√
k
Sn,k, γ, β) and Dn×m

1 × U(Tm) have no T -time distinguisher with advantage
2εm+ negl(λ).

Proof. By Corollary 4, we know there is no distinguisher with advantage 2εm + negl(λ) between
LWE(m,Znq ,Sn,k, DZ,σ′) and U(Zn×mq × Zmq ), where σ′ = 2σ

√
k + 1. Now, applying Theorem 6,

since all secret vectors have norm
√
k, for parameters

γ =
√
k ·
√

ln(m) + ln(n) + ω(log λ)
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and

β = O

(
σ′

q

)
= O

(
σ
√
k

q

)
,

there is no T -time distinguisher with advantage 2εm+ negl(λ) between CLWE(m,Dn
1 ,

1√
k
Sn,k, γ, β)

and Dn×m
1 × U(Tm), as long as

σ′ = 2σ
√
k + 1 ≥ 3

√
k
√

ln(m) + ln(n) + ω(log λ),

which indeed holds by our assumption on σ.

5.3 Classical Hardness of CLWE

With our reduction from fixed-norm LWE to CLWE, we can now show that worst-case lattice
problems reduce classically to CLWE, whereas Corollary 3.2 of [BRST21] gives a quantum reduction
from worst-case lattice problems to CLWE. This now essentially follows from the following theorem
due to [BLP+13]:

Theorem 8 (Theorem 1.1 of [BLP+13], informal). There is an efficient classical reduction from
(worst-case)

√
n-dimensional gapSVP to decisional LWE in dimension n with modulus q = poly(n).

Given Theorem 8, we can now prove Corollary 3.

Proof Sketch of Corollary 3. One way to approach this (with slightly worse parameters) is to di-
rectly combine Theorem 8 and Corollary 5. However, to be less wasteful, we briefly describe below
how to optimize the reduction by bypassing LWE with U(Znq ) secrets and working instead with just
binary secrets. In fact, Theorem 8 uses a definition of LWE with continuous noise, so one has to be
a bit careful regardless.

At a very high level, we combine Theorem 8 and Theorem 6, but modified (in a small way) so
that the LWE distribution resulting from Theorem 8 has fixed norm. We modify their reduction as
follows:

• We observe that their modulus switching reduction, Corollary 3.2, preserves the secret distri-
bution U({0, 1}n). The last step of their reduction, just after applying Corollary 3.2, reduces
this secret distribution, U({0, 1}n), to U(Znq ) by a standard random self-reduction. This has
the the effect of going back from binary LWE to standard LWE to finish the reduction. In
our case, we remove this final reduction and keep the secret distribution binary.

• Furthermore, throughout the reduction, we substitute U({0, 1}n) secrets with U({+1,−1}n)
secrets. To do this, we modify Theorem 4.1 in [BLP+13] to handle U({+1,−1}n) secrets. Their
proof of Theorem 4.1 is general in that it only requires the secret distribution to be efficiently
samplable, have enough high min-entropy as needed to apply the leftover hash lemma, have
norm at most

√
n, and have small “quality” (see Definition 4.5 of [BLP+13]). Since the quality

of U({+1,−1}n) can be bounded above by 2, it is easy to see that U({+1,−1}n) satisfies all
of these conditions. (We note there are other ways to make this change; Theorem 7, due
to [Mic18], shows a reduction from U(Znq ) with U({+1,−1}n) with very similar parameters.
In fact, if q is odd, {+1,−1}n secrets and {0, 1}n secrets have straightforward reductions to
each other, as shown in Lemma 2.12 and Lemma 2.13 of [Mic18].) The only reason we make
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this change is that the secrets will now have fixed norm
√
n (instead of norm at most

√
n),

which will allow us to use our fixed-norm LWE to CLWE reduction. Lastly, Corollary 3.2 of
[BLP+13] simply requires an upper bound on the norm of the secret distribution, so the same
result holds for U({+1,−1}n) secrets.

Therefore, we have a (classical) reduction from worst-case lattice problems in dimension
√
n to

(decisional) LWE in dimension n with q = poly(n), with secret distribution S = U({+1,−1}n)
and continuous Gaussian errors. Thus, we can just use Lemma 16 and Lemma 18 to reduce to
CLWE with r =

√
n. If desired, one can use Lemma 19 to make the secret distribution U(Sn−1) in-

stead of U( 1√
n
{+1,−1}n). (The exact parameter dependencies come from combining Theorem 2.16

of [BLP+13], Theorem 2.17 of [BLP+13], Theorem 4.1 of [BLP+13], Corollary 3.2 of [BLP+13],
Lemma 16, Lemma 18, and optionally Lemma 19.)

6 Hardness of Density Estimation for Mixtures of Gaussians

Now, using tools from the previous sections, we reduce LWE to density estimation for mixtures of
Gaussians, using similar ideas as [BRST21]. Our machinery from the previous sections now allows
us to give a fine-grained version of hardness of learning mixtures of Gaussians.

Lemma 20 (Reducing LWE to GMM via k-sparse CLWE). Suppose log(q)/2` = o(1), σ ≥ 10 ·√
lnn+ lnm, k log2(n/k) ≥ (`+ 1) log2(q) + ω(1), q = ω(σ

√
k) and q ≤ m2. Then, for

g = O
(√

k ln(m) ·
√

ln(m) + ln(n)
)
,

if LWE(n,Z`q,Z`q, DZ,σ) and U(Z`×nq ×Znq ) have no T+poly(n,m, q) time distinguisher with advantage
Ω(1/m3), then density estimation for GMM in dimension n with g Gaussian components and m
samples has no T -time solver.

Proof. In short, this follows by composing the reductions from LWE to k-sparse CLWE (Corol-
lary 6), from CLWE to hCLWE (Lemma 9), and from hCLWE to density estimation for mixtures
of Gaussians (Theorem 4).

As used in Corollary 6, let β = Θ(σ
√
k/q) = o(1), and let m′ denote the number of CLWE

samples. In anticipation of applying Lemma 9 in reducing CLWE to hCLWE with δ = β, we set

m′ = Θ

(
m

β

)
= Θ

(
mq

σ
√
k

)
< m3,

where the final inequality holds (for, say, sufficiently large values of m) since q ≤ m2, k ≥ 1, and
σ ≥ 10

√
lnn+ lnm = ω(1). Since m′ < m3, it follows that ln(m′) < ln(m3) = 3 ln(m).

To reduce LWE to k-sparse CLWE, we apply Corollary 6 with ε = 1/(6m′). Since we have the
conditions log(q)/2` = o(1), k log2(n/k) ≥ (`+ 1) log2(q) + ω(1), and

σ ≥ 10
√

lnn+ lnm > 3
√

lnn+ lnm′ > 2
√

lnn+ lnm′ + ω(1),

one can choose sufficiently small λ = ω(1) to satisfy the conditions of Corollary 6 such that the
negl(λ) additive term in the advantage loss is at most 1/100 and such that

γ =
√
k ·
√

ln(m′) + ln(n) + ω(log λ) = O
(√

k ·
√

ln(m) + ln(n)
)
.
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Corollary 6 then implies that there is no T -time distinguisher with advantage

2εm′ +
1

100
<

2

5

between CLWE(m′, Dn
1 ,

1√
k
Sn,k, γ, β) and Dn×m′

1 ×U
(
Tm′

)
. By Lemma 9, we reduce m′ samples of

CLWE to m samples of hCLWE with parameter δ = β, so that β′ =
√

2β and γ′ = γ, at the cost of
poly(n,m, 1/β) = poly(n,m, q) time and 1/1000 additional failure probability. Then, by Theorem 4,
there is no GMM learner for

g = 4γ
√

ln(m)/π + 1 = O
(√

k ln(m) ·
√

ln(m) + ln(n)
)

Gaussians, as long as β′ < 1/32, which holds in our case as β′ =
√

2β = o(1).

Now, we set parameters and invoke Lemma 20.

Corollary 7. Suppose 10
√

ln(m) + ln(n) ≤ σ, ω(σ
√
k) ≤ q ≤ poly(`), k log2(n/k) = (1 +

Θ(1))` log2(q), q ≤ m2, and m ≤ poly(n), and suppose that LWE(n,Z`q,Z`q, DZ,σ) and U(Z`×nq ×Znq )
have no T (`) + poly(n) time distinguisher with advantage at least Ω(1/m3). Then, there is no
algorithm solving density estimation in dimension n with m samples for g Gaussians, where

g = O
(√

k · log(m) · log(n)
)
.

Proof. First, since q ≤ poly(`), we have log(q)/2` ≤ O(log(`)/2`) = o(1). Thus, we can invoke
Lemma 20. This gives

g = O
(√

k ln(m) ·
√

ln(m) + ln(n)
)

= O
(√

k · log(m) · log(n)
)
,

as ln(m) = O(log n) by our assumption that m ≤ poly(n).

Corollary 8. Let ε, δ ∈ (0, 1) be arbitrary constants with δ < ε and let n = 2`
δ . Assuming

LWE
(

2`
δ
,Z`q,Z`q, DZ,σ

)
has no 2O(`ε) time distinguisher from U

(
Z`×2`

δ

q × Z2`
δ

q

)
with advantage at least Ω

(
m
(

2`
δ
)−3

)
,

where σ = `1/2 and q = `2, then there is no algorithm solving density estimation for g Gaus-
sians in Rn with m = m(n) samples in time 2log2(n)ε/δ , where ` ≤ m(n) ≤ poly(n) and g =

O
(

(log n)1/(2δ) ·
√

log(m(n)) ·
√

log logn
)
.

In particular, for the number of GMM samples m(n) satisfying ` ≤ m(n) ≤ poly(log(n)) =
poly(`), we have g = O((log n)1/(2δ)·log logn) assuming there is no 1/poly(`)-advantage distinguisher
for LWE, and for m(n) satisfying ` ≤ m(n) = poly(n) = 2O(`δ), we have g = O((log n)1/2+1/(2δ) ·√

log logn) assuming there is no 1/2O(`δ)-advantage distinguisher for LWE.
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Proof. We set n = 2`
δ and k = 4`1−δ log2(`) in Corollary 7. Let us first confirm that all the

hypotheses of Corollary 7 hold. First, observe that

10
√

lnn+ lnm = O(`δ/2) = o(`1/2) ≤ σ.

We also have q = `2 = ω(`1/2 · `) ≥ ω(σ ·
√
k), as needed. Further, we have

k log2(n/k) = (4− o(1))`1−δ log2(`)`δ = (4− o(1))` log2(`) = (2− o(1))` log2(q),

and lastly, q = `2 ≤ m2, as needed. If we have a

2`
ε

= 2log2(n)ε/δ

time distinguisher for the mixture of Gaussians, we get a 2`
ε

+ poly(n) = 2O(`ε) time algorithm for
LWE. The number of Gaussians becomes

g = O
(√

k · logm · log n
)

= O

(√
`1−δ · log(`) · log(n) · log(m)

)
= O

(
(log2 n)

1−δ
2δ ·

√
log log n ·

√
log n ·

√
logm

)
= O

(
(log n)

1
2δ ·
√

logm ·
√

log log n
)
,

as desired.

We give another setting of parameters where the number of Gaussian components in the mixture
is larger, but assumption on LWE is weaker.

Corollary 9. Let α > 1 be an arbitrary constant. Assuming LWE(n,Z`q,Z`q, DZ,σ) and U(Z`×nq ×Znq )

have no T (`) + poly(n) time distinguisher with advantage Ω(1/m3) where n = `α, σ = `1/2 and
q = `2, then there is no algorithm solving density estimation for mixtures of g Gaussians with m
samples in time T (`) = T (n1/α), where g = O

(
n1/(2α) · log n

)
and ` ≤ m ≤ poly(n) = poly(`).

In particular, if T (`) = poly(`), then assuming the LWE problem is hard to distinguish for poly(`)-
time algorithms with advantage 1/poly(`), then density estimation cannot be solved in poly(n) time
with poly(n) ≥ ` samples for g = nΩ(1) Gaussians.

Proof. We set k = 4`/(α− 1) = 4n1/α/(α− 1) and apply Corollary 7. Observe that

k log2(n/k) =
4`

α− 1
· log2

(
`α

4`/α

)
=

4`

α− 1
· ((α− 1) log2(`)−O(1))

= 4` log2(`)−O(`)

= 2` log2(q)−O(`)

= (1 + Θ(1))` log2(q),

as necessary. Let us see that the other hypotheses of Corollary 7 hold. We have

10
√

lnn+ lnm = O
(√

log `
)

= o(σ).

Also observe that q = `2 ≥ ω(`1/2 · `) ≥ ω(σ ·
√
k) and q = `2 ≤ m2.

If we have a time T (n1/α) = T (`) distinguisher for hCLWE, we get a time T (`) + poly(n) time
distinguisher for LWE. The number of Gaussian components becomes

g = O
(√

k · log(m) · log(n)
)

= O
(
n1/(2α) · log(n)

)
.
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A Alternate Reduction from LWE to CLWE

In this section, we propose an alternate reduction from LWE to CLWE than that of Corollary 5.
We note that we reduce to search CLWE, and not decisional CLWE. Here is a brief outline to the
steps of this reduction:

1. First, we start with the standard search version of LWE (dimension n, mod q, and noise DZ,σ).

2. Then, we reduce to the (search) “Hermite normal form” of LWE, where the secret is drawn
from the error distribution instead of uniform over Znq (with a small additive blowup in the
number of samples), following [ACPS09, MR09] (and the more refined analysis by [BLP+13]).

3. Since the secrets are now short, we know there is some (small) r ≈ σ
√
n for which non-

negligibly often, secrets will have `2 norm exactly r. The reduction in this step is the trivial
reduction, but crucially uses the fact that this is a search reduction.

4. Since the secrets now have fixed (and small) norm, we use Theorem 6 to reduce to CLWE,
slightly modified to be a search reduction (as opposed to a decision reduction).

Explicitly, we have the following theorem.

Theorem 9 (Alternate Reduction from LWE to CLWE). Suppose there exists no algorithm run-
ning in time T + poly(n,m, log(λ), log(q)) that outputs s with probability ε when given (A, s>A+ e

(mod q)), where A ∼ U(Zn×mq ), s ∼ U(Znq ), and e ∼ DZm,σ. Suppose q ≤ 22O(n) and σ ≥ 2
√

ln(n).
Then, there is no T -time algorithm outputting s′ with probability at least (ε+ 2−n) · 2σ2n+ negl(λ)
when given (A′, γ · (s′)>A′ + e (mod 1)), where A′ ∼ (D1)n×m

′ , s′ ∼ 1
rS, e ∼ Dm′

β , where S is the
set of all vectors in Zn with norm exactly r, for some r = O(σ

√
n), and where

m′ = m+O(n),

γ = O
(
σ
√
n ·
√

ln(m) + ln(n) + ω(log λ)
)
,

β = O

(
σ
√
n ·
√

ln(m) + ln(n) + ω(log λ)

q

)
.

Note that one can reduce to secret distribution s′ ∼ U(Sn−1) if desired, by using (a search version
of) Lemma 19.
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Proof. First, we invoke Lemma 2 of [ACPS09] to turn the secret distribution from Znq into DZn,σ.
The only loss in parameters we get is the number of samples, which becomes m′ = m + O(n) +
O(log log q), as O(n) +O(log log q) samples suffice to efficiently find n linearly independent vectors
over Zq, with probability of failure at most 2−n. (See Claim 2.13 of the full version of [BLP+13].)
Since q ≤ 22O(n) , O(log log q) can be absorbed into O(n), making m′ = m + O(n). This means
there is no solver for s with probability at least ε + 2−n for this “normal form” of LWE (i.e. with
s ∼ DZn,σ).

Now, we observe that there exists some r ≤ σ
√
n such that non-negligibly often, secrets s ∼ DZn,σ

will have `2 norm exactly r. To see this, we use the proof of Lemma 4.4 in [MR07] (ultimately
based on Lemma 1.5 of [Ban93]) to see that the probability that ‖s‖ ≥ σ

√
n is at most 2−n

for s ∼ DZn,σ. Conditioned on ‖s‖ ≤ σ
√
n, since ‖s‖2 is a non-negative integer, we know it

must take on at most σ2 · n + 1 different values. Let Sr be the set of all vectors in Zn with `2
norm exactly r ∈ R. What we have just shown is that there exists some r ≤ σ

√
n such that

Prs∼DZn,σ [s ∈ Sr] ≥ (1− 2−n)/(σ2 · n+ 1) ≥ 1/(2σ2n). From here on out, we now fix r to be such
an r. Moreover, it is easy to see that r ≥ σ, as the only way for the norm to be below σ is if all
coordinates of the discrete Gaussian have magnitude at most σ, which happens with exponentially
small probability in n.

Therefore, if we have some solver with success probability (ε+ 2−n) · 2σ2n for LWE with s ∼ S,
then that same solver has success probability at least ε+ 2−n for LWE with s ∼ DZn,σ. Therefore,
we now know there is no solver for LWE with secret distribution S with success probability (ε +
2−n) · 2σ2n.

Before invoking Theorem 6, we simply increase the width of the noise, as the requirement
on the width of the noise is large for the reduction to go through. Specifically, we set σ′ =
3r
√

ln(m′) + ln(n) + ω(log λ) ≥ σ, where the inequality comes from the fact that r ≥ σ. We
can achieve this reduction by simply adding noise.

Now, we directly invoke Theorem 6, as our requirement on σ′ is now satisfied. While the reduction
is formally a decisional reduction, the proof also works in the search setting. In fact, throughout
the reduction, the secret remains the same, up to scaling by r. This implies there is no solver with
success probability at least (ε+ 2−n) · 2σ2n+ negl(λ), for parameters

γ = r ·
√

ln(m′) + ln(n) + ω(log λ) ≤ O
(
σ
√
n ·
√

ln(m) + ln(n) + ω(log λ)
)
,

β = O

(√
(σ′)2 + r2(ln(m′) + ln(n) + ω(log λ)

q

)
= O

(
σ
√
n ·
√

ln(m) + ln(n) + ω(log λ)

q

)
.

B Low-Sample Algorithm for Sparse hCLWE

Theorem 10. Let m = 5k log2(n)/ log2(1/(β
√
k)). Suppose γ ≥ 2

√
k(lnn+ lnm) and

log2(1/(β
√
k)) = ω(log logm). Then, there is a O

(
m · poly(n) · 2k

(
n
k

))
-time algorithm using m

samples that learns the parameters for GMM when restricted to (m sample) mixtures Dn×m
1 and

hCLWE(g)(m,Dn
1 ,

1√
k
Sn,k, γ, β) for any fixed g ≥ C · γ ·

√
logm for some universal constant C. That

is, we view all the parameters as fixed, and the algorithm either learns the correct secret s ∼ 1√
k
Sn,k
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(and thus the corresponding hCLWE(g) distribution), or knows that the distribution is Dn
1 , with

success probability at least 9/10 in both cases.

Remark 4. This theorem can be generalized for other settings of β, γ, but we state it this way
because it suffices for our purposes. It also works for the setting of non-truncated hCLWE.

Remark 5. While the runtime of this algorithm is similar to the algorithm solving hCLWE given
in Theorem 7.5 of [BRST21] as applied in a black-box way, the sample complexity needed here is
� k log2(n), as opposed to roughly 2O(γ2) = nΩ(k).

Algorithm 1: Low Sample algorithm for hCLWE(g)

Input: Sampling oracle to distribution D.
Output: s to indicate D = hCLWE(g) with secret s, and 0 for D = Dn

1 .

Draw m samples a1, . . . ,am ∼ D.
for s ∈ 1√

k
Sn,k do

Compute fs(ai) = 〈ai, s〉 mod γ/(
√
k · γ′2) for all i ∈ [m].

if fs(ai) ∈ [−aβ/γ′, aβ/γ′] for all i ∈ [m] then
return s.

return 0.

Proof. Let t := |Sn,k| =
(
n
k

)
· 2k denote the number of k-sparse {−1, 0,+1}-secrets. For the sake

of this proof, we take the representatives of Tq to be in the interval [−q/2, q/2). Further, let
γ′ =

√
γ2 + β2 and a ∈ Rn and s ∈ 1√

k
Sn,k. We define fs : Rn → Tγ/(√k·γ′2) by

fs(a) := 〈a, s〉 mod γ/(
√
k · γ′2).

We use the main idea in the proof of Claim 5.3 in [BRST21] to give an algorithm that finds the
correct secret s, if it exists, or report that none exists if the distribution is Dn

1 . Given m samples
a1, . . . ,am from an unknown distribution D, we compute fs(ai) for all possible secret directions
s ∈ 1√

k
Sn,k and for all samples i ∈ [m]. This takes time O(m · t · poly(n)), where we allow poly(n)

time to take numbers mod γ/(
√
kγ′2). If there is some s such that fs(ai) is small for all samples

i ∈ [m], then we output s, and otherwise we guess D = Dm
1 .

Now, suppose that the input distribution is D = hCLWE(g)(m,Dn
1 ,

1√
k
Sn,k, γ, β). Let s∗ be the

randomly sampled but fixed secret direction. Then for all the m samples ai, we have that 〈s∗,ai〉
(mod γ/(γ′2)) is distributed as Dβ/γ′ mod γ/γ′2. This can be seen from Equation 2. (As an aside,
note that by Claim 5.3 of [BRST21] this holds even when the input distribution is not truncated,
that is, D = hCLWE(m,Dn

1 ,
1√
k
Sn,k, γ, β).) Now, supposing for simplicity that k is a perfect square,

we can take this mod γ/(
√
k · γ′2) to get that fs∗(ai) is distributed as Dβ/γ′ mod γ/(

√
k · γ′2). (In

case k is not a perfect square, we can take γ/
(⌈√

k
⌉
· γ′2

)
as the modulus instead.)

For a parameter δ > 0 specified later, let a =
√

ln(1/δ). By a standard Chernoff bound, the
probability mass of Dβ/γ′ that is outside the interval [−aβ/γ′, aβ/γ′] is at most δ. Taking a union
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bound over the m samples ai,

Pr
[
∃i ∈ [m] s.t. fs∗(ai) /∈ [−aβ/γ′, aβ/γ′]

]
≤ mδ =

1

100
, (3)

when setting δ = 1/(100m).
We still have to argue that for this D that no other s 6= s∗ passes the test. To see this, fix some

s 6= s∗. Let z = s − s∗ ∈ 1√
k
· {−2,−1, 0, 1, 2}n. Since s ∈ 1√

k
Sn,k and s 6= s∗, it follows that

‖z‖ ≥
√

2/
√
k. We have

〈ai, s〉 = 〈ai, s∗ + z〉 = 〈ai, s∗〉+ 〈ai, z〉. (4)

On its own, for fixed z, 〈ai, z〉 is distributed according to D‖z‖, which is from a discrete Gaussian
wider than D1/

√
k. By Lemma 4 (and the union bound over m samples), it follows that the distribu-

tion of (〈ai, z〉 (mod γ/(
√
k · γ′2)))i∈[m] is m · exp(−γ′4/γ2)/2-close to U(Tγ/(√k·γ′2))

m. Therefore,

Pr
ai

[
(fz(ai))i∈[m] ∈ [−2aβ/γ′, 2aβ/γ′]m

]
≤ ∆

(
Dm

1 mod γ/(
√
kγ′2), U

(
Tγ/(√kγ′2)

)m)
+

(
4aβ
√
k · γ

′

γ

)m
≤ m exp(−γ2)/2 +

(
4aβ
√
k · γ

′

γ

)m
≤ m exp(−γ2)/2 +

(
8aβ
√
k
)m

.

Since this was for a particular secret s 6= s∗, we can union bound over all s 6= s∗ to see that

Pr
ai

[
∃s 6= s∗ s.t. (fz(ai))i∈[m] ∈ [−2aβ/γ′, 2aβ/γ′]m

]
≤ t ·m exp(−γ2)/2 + t ·

(
8 · aβ

√
k
)m

. (5)

Note that if fz(ai) /∈ [−2aβ/γ′, 2aβ/γ′] and fs∗(ai) ∈ [−aβ/γ′, aβ/γ′], then by equation (4), it
follows that fs(ai) /∈ [−aβ/γ′, aβ/γ′]. Thus, equations (3) and (5) fully characterize the “bad”
events, as if both events do not happen, then s∗ passes the test, and no other s 6= s∗ passes the test.
Therefore, if samples are from the hCLWE distribution, then the probability of failure is at most

1

100
+ t ·m exp(−γ2)/2 + t ·

(
8aβ
√
k
)m

.

We first analyze the middle term. Since γ ≥ 2
√
k(lnn+ lnm), we have

t ·m · exp(−γ2)/2 ≤ 2k · nk ·m
2 ·m4k · n4k

<
1

100

for large enough m and k. For the last term, we have

t ·
(

8aβ
√
k
)m

= t ·
(

8 · ln(100m) · β
√
k
)m

= t ·
(

23+log2(ln(100m))−log2(1/(β
√
k))
)m

≤ t · 2−(m/2)·log2(1/(β
√
k))

≤ 2k+k log2(n)−(m/2)·log2(1/(β
√
k))

≤ 2−k log2(n)

≤ 1

100
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for sufficiently large k, n, where we have used our hypothesis on log2(1/(β
√
k)) and choice of m.

Thus, for the hCLWE distribution, we output the correct secret s∗ with probability at least 19/20.
Now, suppose we are given samples from Dn

1 . For any fixed s ∈ 1√
k
Sn,k, we have 〈ai, s〉 ∼ D1,

independently of s. By Lemma 4 and Lemma 2,

∆(Dm
1 mod γ/(

√
k · γ′2),Tm

γ/(
√
k·γ′2)

) ≤ m exp(−γ′4k/γ2)/2 ≤ m exp(−γ2)/2.

Therefore, by a simpler analysis than the one above, we have

Pr
ai

[
∃s ∈ Sn,k s.t. (fs(ai))i∈[m] ∈ [−aβ/γ′, aβ/γ′]m

]
≤ t ·m exp(−γ2)/2 + t ·

(
8 · aβ

√
k
)m

, (6)

which we have previously bounded above by 2/100. This completes the proof, as we will output 0
(to indicate D = Dn

1 ) with probability at least 19/20 in this case.

Now, we combine Theorem 10 and Corollary 8 to get the following tightness for the mixtures of
Gaussians we consider.

Corollary 10. Following the notation of Corollary 8, there is an algorithm solving for the param-
eters for GMM, when restricted to Dn

1 and hCLWE, using m = O(`) = O
(
(log n)1/δ

)
samples and

time 2O((logn)1/δ log logn).

Proof. We apply Theorem 10. If we trace β in the proof of Corollary 8, we see that

β
√
k = O

(
σk

q

)
= O

(√
` · `
`2

)
= O

(
`−1/2

)
.

Therefore, log(1/(β
√
k)) = Ω(log `), which implies

m =
5k log2(n)

log2(1/β
√
k)

= O

(
`1−δ · log(`) · `δ

log(`)

)
= O(`) = O((log n)1/δ),

and thus that log(1/(β
√
k)) = ω(log logm). For the runtime, observe that

m · poly(n) · 2k
(
n

k

)
≤ m · nO(k) ≤ m · 2O(log(n)`1−δ log(`)) ≤ poly(log n) · 2O(log(n)1/δ log logn)

= 2O(log(n)1/δ log logn),

as desired.

C Reduction from CLWE to LWE

Here, we show a reversed version of Theorem 6, i.e. a reduction from discrete-secret CLWE to
fixed-norm LWE. Note that this gives a reduction only from discrete-secret CLWE to LWE, and
not CLWE with secrets s ∼ U(Sn−1) to LWE.
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Theorem 11 (CLWE to LWE). Let r ∈ R≥1, and let S be an arbitrary distribution over Zn where
all elements in the support of S have `2 norm r. Then, for

γ = r ·
√

ln(m) + ln(n) + ω(log λ), and
σ = O(β · q),

if there is no T + poly(n,m, log(q), log(λ)) time distinguisher between CLWE(m,Dn
1 ,

1
r · S, γ, β) and

Dn×m
1 × U(Tm) with advantage at least ε − negl(λ), then there is no T -time distinguisher between

LWE(m,Znq ,S, Dσ) and U(Zn×mq ×Tmq ) with advantage ε, as long as β·q ≥ 3r
√

ln(m) + ln(n) + ω(log λ).

Note that we reduce to a continuous-error version of LWE. Using standard techniques (see
Theorem 3.1 of [Pei10]), this can be reduced to discrete Gaussian errors. Similarly, the final LWE
distribution can be made to have secrets U(Znq ) by a standard random self-reduction. Lastly, the
proof of Theorem 11 preserves the secret vector up to scaling, so it also is a reduction between the
search versions of the problems.

With this reduction from discrete-secret CLWE to LWE, we get a search-to-decision reduction
for discrete-secret CLWE. This can be obtained immediately by combining (the search version of)
Theorem 11, standard search-to-decision reductions for LWE (see [Pei09, ACPS09, MM11, MP12,
BLP+13]), and Theorem 5 (or Theorem 6 if the LWE search-to-decision reduction preserves the
norm of the secret). We leave open the question of whether there is a more direct search-to-decision
reduction for CLWE.

The steps of this proof are essentially just versions of Lemma 18 and Lemma 16 but in the reverse
directions. We give these “reversed” lemmas below.

Lemma 21 (Reverse of Lemma 18). Let n,m, q ∈ N, σ, r, γ ∈ R. Let S be a distribution over Zn
where all elements in the support have fixed norm r. Suppose there is no T+poly(n,m, log(λ), log(q))
time distinguisher between the distributions CLWE(m,Dn

1 ,
1
r · S, γ, β) and Dn×m

1 × U(Tm1 ). Then,
there is no T -time distinguisher between the distributions LWE(m,Tnq ,S, Dσ) and U(Tn×mq × Tmq ),
with an additive advantage loss of negl(λ), where

γ = r ·
√

lnn+ lnm+ ω(log λ),

σ = β · q.

Proof. Suppose we have one sample (a, b), from either CLWE(m,Dn
1 ,

1
r · S, γ, β) or Dn×m

1 ×U(Tm1 ).
Now, consider the sample (a · τ · q (mod q), b · q (mod q)), where τ =

√
ln(n) + ln(m) + ω(log λ)

and γ = r · τ . Let s ∼ 1
r · S be the CLWE secret, and let a′ = a · τ · q, let e′ = e · q, and let

s′ = r · s ∈ Zn. If (a, b) is from the CLWE distribution, then we have (taking all components mod
q)

(a · τ · q, b · q) = (a′, (γ · 〈s,a〉+ e) · q)
= (a′, γ · 〈s, q · a〉+ e′)

= (a′,
γ

r · τ
· 〈r · s, τ · q · a〉+ e′)

= (a′, 〈r · s, τ · q · a〉+ e′)

= (a′, 〈s′,a′〉+ e′)

= (a′, 〈s′,a′ (mod q)〉+ e′).
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Note that s′ = s · r ∼ S and e′ = e · q ∼ Dβ·q, so s′ and e′ have the right distribution. Lastly,
a′ = τ · q · a ∼ Dn

τ ·q, so by Lemma 4, a′ (mod q) is negl(λ)/m-close to Tnq as long as q · τ ≥
ηnegl(λ)/m(q ·Zn), which holds by Lemma 2 by construction of τ . Thus, taking the triangle inequality
over all m samples, the resulting distribution is negl(λ)-close to LWE(m,Tnq ,S, Dσ) where σ = β · q.

Lastly, if (a, b) is from the null distribution, then clearly b · q ∼ Tq, and by the same argument as
above, a′ (mod q) is negl(λ)/m-close to Tnq , which by the triangle inequality, implies the resulting
distribution is negl(λ)-close to U(Tn×mq × Tmq ), as desired.

Lemma 22 (Reverse of Lemma 16). Let n,m, q ∈ N, σ ∈ R. Let S be a distribution over Zn where
all elements in the support have fixed norm r, and suppose that

σ ≥ 3r
√

lnn+ lnm+ ω(log λ).

Suppose there is no T+poly(m,n, log(λ), log(q))-time distinguisher between the distributions LWE(m,Tnq ,S, Dσ)
and U(Tn×mq ×Tmq ). Then, there is no T -time distinguisher between the distributions LWE(m,Znq ,S, Dσ′)
and U(Zn×mq × Tmq ) with an additive negl(λ) advantage loss, where we set

σ′ =
√
σ2 + 9r2(lnn+ lnm+ ω(log λ)) = O(σ).

Proof. Suppose we are given a sample (a, b) from either LWE(m,Tnq ,S, Dσ) or U(Tn×mq ×Tmq ). Let
a′ ∼ DZn−a,τ , where τ =

√
ln(n) + ln(m) + ω(log λ). Let a′′ = a + a′ (mod q), and observe that

a′′ = a + a′ (mod q) ∈ Znq , as a′ is supported on Zn − a. Now, consider the sample (a′′, b). Let
s ∼ S be the LWE secret. If this is from the LWE distribution, we have

(a′′, b) = (a′′, 〈s,a〉+ e)

= (a′′, 〈s,a′′ − a′〉+ e)

= (a′′, 〈s,a′′〉 − 〈s,a′〉+ e)

= (a′′, 〈s,a′′〉+ e′),

where we define e′ = e − 〈s,a′〉. First, let’s analyze the distribution of e′. By applying Lemma 3,
since s has norm r, we know that e′ is negl(λ)/m close to Dσ′ where

σ′ =
√
σ2 + r2τ2 =

√
σ2 + r2(ln(n) + ln(m) + ω(log λ),

as long as

ηnegl(λ)/m(Zn) ≤ 1√
1/τ2 + (r/σ)2

,

which holds if τ, σ/r ≥
√

2 ·ηnegl(λ)/m(Zn), which it does by Lemma 2 and construction of τ and our
condition on σ. Therefore, by the triangle inequality over allm samples, the errors look negl(λ)-close
to Dσ′ .

Now, we consider the distribution of a′′ = a + a′ (mod q) ∈ Znq . Note that the lattice Zn + a
depends only on a (mod 1), so given Zn+a, the conditional distribution on a is U(Znq+(a (mod 1))).
Therefore, by a one-time pad argument, the distribution of a+a′ is exactly U(Znq ), even conditioned
on a′. Therefore, (a′′, 〈s,a′′〉 + e′) looks negl(λ)/m-close to a sample from LWE(m,Znq ,S, Dσ′),
which by the triangle inequality over m samples, makes the resulting distribution negl(λ)-close to
LWE(m,Znq ,S, Dσ′).

Lastly, suppose (a, b) is from the null distribution. Then by (a simpler version of) the above
argument, the distribution of a′′ is given by a′′ ∼ U(Znq ), making (a, b) ∼ U(Znq ×Tq), as desired.

41



Now we are ready to prove Theorem 11.

Proof of Theorem 11. Suppose there is no T + poly(n,m, log(q), log(λ)) time distinguisher between
CLWE(m,Dn

1 ,
1
r · S, γ, β) and Dn×m

1 × U(Tm) with advantage at least ε − negl(λ). Then, by
Lemma 21, there is no distinguisher between LWE(m,Tnq ,S, Dσ) and U(Tn×mq × Tmq ), where γ =

r
√

ln(n) + ln(m) + ω(log λ) and σ = β · q. Then, by Lemma 22, there is no T -time distinguisher
between LWE(m,Znq ,S, Dσ′) and U(Zn×mq × Tmq ) with advantage ε, where σ′ = O(σ), as long as
σ = β · q ≥ 3r

√
lnn+ lnm+ ω(log λ).
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