
Attack on SHealS and HealS:

the Second Wave of GPST

Steven D. Galbraith1 and Yi-Fu Lai1

1University of Auckland, New Zealand

s.galbraith@auckland.ac.nz ylai276@aucklanduni.ac.nz

7th April 2022

Abstract

We cryptanalyse the SHealS and HealS cryptosystems of Fouotsa and Petit from Asiacrypt 2021.

1 Introduction

An efficient and secure static-static public key encryption has been a long-standing desired primitive in the
isogeny community. It has been known that CSIDH [CLM+18] with a slightly different algebraic structure
from SIDH [JD11] can give a straightforward and efficient option and can be used to realize several practical
and competitive cryptographic primitives from isogenies [MOT20, LGd21, LD21, BDK+21]. However, the
algebraic structure also make them falls prey to a subexponential attack – the Kuperberg algorithm [Kup05].
Hence, an efficient protocol with a robust underlying assumption is always a more attractive option.

The main bottleneck for SIDH-family schemes to achieve the notion boils down to the adaptive GPST
attack [GPST16] which enable malicious Bob to bit-wisely extract Alice’s secret key from each handshake,
and vice versa. The known countermeasures against the attack are to embedd zero-knowledge proof [UJ20]
or to utilize the k-SIDH method [AJL17]. However, these countermeasures also incurred multiple parallel
isogeny computations so that the products cannot be practical. To resolve this, Fouotsa and Petit [FP21]
(Asiacrypt’21) presented a variant of SIDH with a devised key validation mechanism. The scheme takes less
number of isogeny computation than SIKE [ACC+17] with parameter size doubled in length which still is
far more efficient than other known abovementioned solutions. They conjecture and claim the scheme gives
a static-static encryption solution from isogenies immune to any adaptive attacks.

In this work we refute the claim by presenting an adaptive attack against their protocol. Our attack
builds on their key validation mechanism which relies on a secret to execute. The attack can be viewed
as a simple tweak of the GPST attack and, surprisingly, it takes the same number of oracle queries as the
GPST attack against SIDH to adaptively recover a secret key. In other words, the additional mechanism
not only slows down the protocol but also gives no advantage to the scheme for preventing the adaptive attack.

1.1 Technique overview

The cornerstone of our attack is the flaw orginating in the proof their main theorem for the key validation
mechanism (Theorem 2 in [FP21]). Their key validation mechanism consists of following three equations:

1



e4a(Ra, Sa) = e4a(P2, Q2)
3b ,

ψ′
A(Ra) = [e1]Rab + [f1]Sab ∈ EAB ,

ψ′
A(Sa) = [e2]Rab + [f2]Sab ∈ EAB ,

where ψ′
A is an isogeny from EB with kernel ⟨[2a]Ra + [α2a]Sa⟩ ∈ EB , (Ra, Sa, Rab, Sab, EB , EAB) is given

by Bob, and (α, e1, f1, e2, f2) is Alice’s secret key.
These relations will be satisfied when Bob produces the input honestly. In their analysis, to make another

valid input except for taking negations on the curve points is equivalent to solve four linear equations with
four unknown variables (e1, f1, e2, f2) over the ring Z/4aZ. Furthermore, the input of Bob also has restric-

tion that e4a(Ra, Sa) = e4a(P2, Q2)
3b and ψ′

A might vary with the choice of Ra and Sa. Therefore, they
conclude that Bob, without knowing the secret, is not able to produce another valid input except for taking
negations on the original input. In this way, since Bob, restricted by the mechanism, behaves honestly, the
cryptosystem will be secure based on the hardness assumption.

However, for an adaptive attack, what malicious Bob want to exploit is that Alice’s behaviour is depend-
ent on the secret. The proof neglects the spirit of the adaptive attack where malicious Bob can learn the

information adaptively. For example, write M =

(
e1 f1
e2 f2

)
∈M2×2(F4a),u = (Ra Sa)

T and v = (Rab Sab)
T .

We may therefore abuse the notation by writing ψ′
Au = Mv. As we will show in Sec. 3, we find a pair of

special matrices P1 =

(
1 0

22a−1 1

)
and P2 = I2 such that the commutativity of P1M = MP2 holds if

and only if e1 = f1 = 0 mod 2. Hence, on input (R′
a, S

′
a, R

′
ab, S

′
ab, EB , EAB) where (R′

a S
′
a)

T = P1u and
(R′

ab S
′
ab)

T = P2v the key validation mechanism will pass if and only if ψ′
AP1u = MP2v if and only if

e1 = f1 = 0 mod 2. Note that because det(P1) = 1 and (2a α2a)P1 = (c c) for some c ∈ Z2a , the Weil
pairing check will also pass and the isogeny used by the mechanism is still ψ′

A. In this way, Bob learns 1-bit
information of e1 and f1. Moreover, as we will show in Sec. 3, this is enough to recover the least significant
bit of α.

On top of that, Bob can utilize the GPST attack in a “reciprocal” sense to extract more information
further. If the significant bit α0 = 1, the secret α is invertible over the ring Z/2aZ. By further replacing
Ra with R′

a = Ra + [22a−2]Ra − [22a−2α0]Sa. The equality of the second equation depends on the second
least significant bit of α. However, e4a(R

′
a, Sa) will never satisfy the first equation. To overcome this, Bob

will replace Sa with [α−1
0 22a−2]Ra+[1− 22a−2]Sa, which is used to extract the second least significant bit of

α−1, because the equality of the third equation depends on the second least significant bit of α−1. Remark
that, the isogeny used in the key validation mechanism is still ψ′

A since the kernel is ⟨[2a]Ra + [α2a]Sa⟩. In
Sec. 4, we present the attack in details including the case that α is even.

Structure of this Paper. We begin in Sec. 3 with some preliminary backgrounds on elliptic curves,
isogenies, a breif outline of their HealSIDH scheme, together with a few immediate propositions of the
scheme derived from the parameter. We then introduce the method of using commutativity of matrices to
extract the least significant bit of Alice’s secret in Sec. 3. Based on the least significant bit information, a
tweak of the GPST attack to recursively and adaptively recover Alice’s secret is presented in the proceeding
sections: Sec. 4. A breif summary is made in Sec. 5. We also provide in App. A a generic attack against
their framework with the key validation mechanism where the primes 2 and 3 are replaced by other small
primes.

2



2 Preliminaries

Notations. We begin by introducing some notations that will be used throughout the paper. Let O rep-
resent the point at infinity, N be the set of natural numbers, and Z be the set of integers. For n ∈ N, let Zn

defined to be Z/nZ and Fn be the finite field of order n. For convenience, when we write u ∈ Zn, we consider
u is a representative taken from {0, · · · , n − 1} ⊂ Z. Similarly, when we write u mod n, we consider the
value is taken from {0, · · · , n− 1} ⊂ Z.

2.1 Elliptic curves and isogenies

An elliptic curve is a rational nonsingular curve of genus one with a distinguished point at infinity denoted
by O. An elliptic curve with O forms an additive commutative group. If E is an elliptic curve defined over
Fp, then E(Fp), collecting Fp-rational points of E, is a finite subgroup of E. Moreover, E is said to be
supersingular if the cardinality of E(Fp) is p + 1. For n ∈ N coprime with p, the n-torsion subgroup E[n],
collecting points of order dividing n, is isomorphic to Zn ⊕ Zn.

An isogeny is a morphism between elliptic curves preserving the point at infinity. The kernel of an isogeny
is always finite and defines the isogeny up to a power of the Frobenius map. We restrict our attention to
separable isogenies (which induce separable extensions of function fields over Fp) between supersingular
elliptic curves defined over Fp. Given a finite subgroup S of E, there exists a unique separable isogeny with
kernel S from E to the codomain denoted by E/S via Vélu’s formulas. We refer [Sil09] to get more exposed
to the elliptic curve theory.

2.2 Brief outline of HealSIDH

Both SHealS and HealS of [FP21] are PKE schemes building on the key exchange scheme of HealSIDH with
a devised key validation mechanism. We breifly introduce a outline of HealSIDH with the key validation
mechanism. The public parameter pp = (E0, P2, Q2, P3, Q3, p, a, b) contains a supersingular curve E0 with
an unknown endomorphism ring and (p, a, b) ∈ N3 where a prime p = 22a32bf −1 such that 2a ≈ 3b. The set
{P2, Q2}, {P3, Q3} are bases for E0[4

a] and E0[9
b] respectively and PA = [2a]P2, QA = [2a]Q2, PB = [3b]P3,

and QB = [3b]Q3. Alice and Bob sample α and β uniformly at random from Z2a and Z3b respectively. Also,
Alice and Bob compute ϕA : E0 → EA = E0/⟨PA + [α]QA⟩ and ϕB : E0 → EA = E0/⟨PB + [β]QB⟩, respect-
ively. Alice and Bob compute (ϕA(P2), ϕA(Q2), ϕA(PB), ϕA(QB)) and (ϕB(P3), ϕB(Q3), ϕB(PA), ϕB(QA))
respectively. Alice’s and Bob’s public keys are (EA, ϕA(P3), ϕA(Q3)) and (EB , ϕB(P2), ϕB(Q2)) respect-
ively. Alice computes the canonical basis {RA, SA} for EA[4

a] and represents ϕA(P2) = [e1]RA + [f1]SA and
ϕA(Q2) = [e2]RA+[f2]SA. Bob computes the canonical basis {RB , SB} for EB [9

a] and represents ϕB(P3) =
[g1]RB + [h1]SB and ϕB(Q3) = [g2]RB + [h2]SB . Alice’s and Bob’s secret keys are skA = (α, e1, f1, e2, f2)
and skB = (β, g1, h1, g2, h2) respectively.

To establish a shared secret with Alice, he collects Alice public key, denoted by (EA, Rb, Sb), and computes
ϕ′B : EA → EAB = EA/⟨[3b]Rb + [β3b]Sb⟩ together with (ϕ′B(RA), ϕ

′
B(SA), ϕ

′
B(Rb), and ϕ

′
B(Sb)). He sends

(Rab = ϕ′B(RA), Sab = ϕ′B(SA)) to Alice.
Upon receiving (Rab, Sab) from Bob, Alice collects Bob’s public key (EB , Ra, Sa). She computes ψ′

A :
EB → EBA = EB/⟨[3b]Ra + [β3b]Sa⟩ together with (ψ′

A(RB), ψ
′
A(SB), ψ

′
A(Ra), ψ

′
A(Sa)). If e4a(Ra, Sa) ̸=

e4a(P2, Q2)
3b , ψ′

A(Ra) ̸= [e1]Rab + [f1]Sab, or ψ
′
A(Sa) ̸= [e2]Rab + [f2]Sab, then Alice aborts (the session).

Otherwise, she sends (Rba = ϕ′A(RB), Sba = ϕ′A(SB)) to Bob and keeps the j-invariant jBA of EBA as the
shared secret.

Similarly, upon receiving (Rba, Sba), Bob aborts if e9a(Rb, Sb) ̸= e9a(P3, Q3)
2a , ϕ′B(Rb) ̸= [g1]Rba +

[h1]Sba, or ϕ
′
B(Sb) ̸= [g2]Rba + [h2]Sba, If not he takes the j-invariant of EAB as the shared secret.

Remark 2.1. Remark that for the issue of eavesdropping security, Bob will give the coordinates of Rab, Sab

with respect to the canonical basis of EB [4
a]. Otherwise, the secretly shared curve EAB can be recontructed

3



by an eavesdropper. Nonetheless, it does not matter in our attack model because (honest) Alice will get the
points eventually and (malicious) Bob does not require Rba, Sba to attack. Hence, for the convenience, we
may assume Bob sends the entire point Rab, Sab to Alice.

We can have following two immediate results.

Proposition 2.2. If Bob honestly generate Ra = ϕB(P2), Sa = ϕB(Q2), Rab = ϕ′B(RA) and Sab = ϕ′B(SA),
then {Rab, Sab} is a basis of EAB [4

a] and {Ra, Sa} is a basis of EB [4
a].

Proof. Since [4a]Ra = ϕB([4
a]P2) = O and [4a]Sa = ϕ′B([4

a]Q2) = O, both Ra and Sa are in EB [4
a].

Due to e4a(Ra, Sa) = e4a(P2, Q2)
3b , we know e4a(Ra, Sa) is a primitive 4a-th root of unity. Similarly, since

[4a]Rab = ϕ′B([4
a]RA) = O and [4a]Sab = ϕB([4

a]SA) = O, both Rab and Sab are in EAB [4
a]. Due to

e4a(Rab, Sab) = e4a(RA, SA)
3b , we know e4a(Rab, Sab) is a primitive 4a-th root of unity. Therefore, the result

follows.

Lemma 2.3. Let e1, e2, f1, f2 defined as above and α ∈ Z2a be the secret key of Alice such that ker(ϕA) =
⟨[2a]P2 + [α2a]Q2⟩. If Alice follows the protocol specification, then e1 + αe2 = f1 + αf2 = 0 mod 2a.

Proof. Given ϕA(P2) = [e1]RA+[f1]SA and ϕA(Q2) = [e2]RA+[f2]SA, we have O = ϕA([2
a]P2+[α2a]Q2) =

[2ae1 + α2ae2]RA + [2af1 + α2af2]SA = [e1 + αe2]([2
a]Ra) + [f1 + αf2]([2

a]SA).
Recall that {[2a]RA, [2

a]SA} is a basis for EA[2
a] due to {RA, SA} being a basis for EA[4

a]. Therefore,
e1 + αe2 = f1 + αf2 = 0 mod 2a.

Modeling. Throughout this paper, we consider adaptive attack against HealSIDH. Bob, as an adversary, is
given access to an oracle OskA → 0/1 taking as input (Ra, Sa, Rab, Sab, EB , EAB) with the relation specified
as above. For simplicity, we denote the oracle by O and omit the inputs of curves EB , EAB without causing
confusion. The oracle returns 1 if and only if the following three equations hold:

e4a(Ra, Sa) = e4a(P2, Q2)
3b , (1)

ψ′
A(Ra) = [e1]Rab + [f1]Sab, (2)

ψ′
A(Sa) = [e2]Rab + [f2]Sab, (3)

where ψ′
A is an isogeny from EB with kernel ⟨[2a]Ra + [α2a]Sa⟩ ∈ EB .

When Bob follows the protocol specification, the three equations hold naturally. The goal of malicious
Bob in our attack is to recover the secret α in skA by adaptively manipulating the oracle.

3 Parity Recovering

In this section, we consider the least significant bits of e1, e2, f1, f2 and α. We can recover the least significant
bit of α with one oracle query by relying the relations given by Lem. 2.3.

The attack presented in this section and the next section relies on following facts:

• {P2, Q2}, is a basis for E0[4
a].

• {Rab, Sab} is a basis of EAB [4
a] (Prop. 2.2).

• {Ra, Sa} is a basis of EB [4
a] (Prop. 2.2).

• e1 + αe2 = f1 + αf2 = 0 mod 2a (Lem. 2.3).

4



The high-level idea in this section is simple. Assume Alice and Bob follows the protocol specification.

Write M =

(
e1 f1
e2 f2

)
∈ M2×2(F4a),u = (Ra Sa)

T and v = (Rab Sab)
T . Recall that ψ′

A(Ra) = [e1]Rab +

[f1]Sab, ψ
′
A(Sa) = [e2]Rab + [f2]Sab where Ra, Sa, Rab, Sab are honestly generated by Bob. We may abuse

the notation by writing ψ′
Au = Mv based on Eqs. (2) and (3). The idea is to find a pair of particular square

matrices P1,P2 ∈ M2×2(F4a) where P1 is of determinant 1 such that the commutativity of P1M = MP2

is conditioned on the information (parity for instance) to be extracted from M. Let (R′
a S

′
a)

T = P1u and
(R′

ab S
′
ab)

T = P2v. On input (R′
a, S

′
a, R

′
ab, S

′
ab) the oracle returns 1 if M satisfies the condition of the

commutativity P1M = MP2, because ψ
′
AP1u = P1Mv = MP2v holds. Remark that the determinant 1 of

P1 ensures the new pair (R′
a S

′
a) will satisfy the Weil pairing verification Eq. (1). Futhermore, we require

(2a α2a)P1 = (c c) for some c ∈ Z2a so that the isogeny used by the oracle is still the one with the kernel
⟨[2a]Ra + [α2a]Sa⟩.

Though there are 24 combinations of the least significant bits of e1, e2, f1, f2. The following lemma shows
that when Alice generates them honestly, there are only six patterns.

Lemma 3.1. If Alice produces ϕA(P2) and ϕA(Q2) honestly, then there are only 6 possible patterns of
parities of e1, e2, f1, f2:

1. f2 = 1 mod 2 and e2 = e1 = f1 = 0 mod 2

2. e2 = 1 mod 2 and e1 = f1 = f2 = 0 mod 2,

3. f2 = e2 = 1 mod 2 and e1 = f1 = 0 mod 2,

4. f1 = f2 = 1 mod 2 and e2 = e1 = 0 mod 2,

5. e2 = e1 = 1 mod 2 and f1 = f2 = 0 mod 2,

6. e1 = f1 = e2 = f2 = 1 mod 2.

Proof. Recall e4a(ϕA(P2), ϕA(Q2)) = e4a(P2, Q2)
2a = e4a(RA, SA)

e1f2−e2f1 . Since both {P2, Q2} and {RA, SA}
are bases for E0[4

a], EA[4
a] respectively, both e4a(P2, Q2) and e4a(RA, SA) are primitive 4a-th roots of unity.

Given e4a(RA, SA)
2a(e1f2−e2f1) = 1, we have e1f2 − e2f1 = 0 mod 2a.

Furthermore, e2, f2 cannot be both even. Recall ϕ(Q2) = e2RA + f2SA. Suppose for the purpose of
contradiction that both e2 and f2 are even. Then, [4a−1]ϕA(Q2) = O, which implies ker(ϕA) = ⟨P2 + [α]Q2⟩
contains [4a−1]Q2. That is, [k]P2 + [kα]Q2 = [4a−1]Q2 for some k ∈ Z2a , so k = 0. This contradicts the fact
that {P2, Q2} is a basis for E0[4

a]. The result follows.

We order the six cases according to the lemma above. The following lemmata indicate that we can divide
the overall cases into two partitions: {Case 1, Case 2, Case 3} and {Case 4, Case 5, Case 6} with 1
oracle query.

Lemma 3.2. Assume Bob honestly generates Ra, Sa, Rab, Sab, EB , EAB. On input (Ra, [2
2a−1]Ra + Sa,

Rab, Sab), the oracle returns 1 only for Cases 1 to 3.

Proof. Firstly, the isogeny ψ′
A computed by the oracle is the same one used by Alice in the honest execution.

This is because both kernels are the same:

⟨[2a]Ra + [α2a]Sa⟩ = ⟨[2a]Ra + [α2a]([22a−1]Ra + Sa)⟩.

Therefore, sinceRa, Sa, Rab, Sab are honestly generated, we may assume e4a(Ra, Sa) = e4a(P2, Q2)
3b , ψ′

A(Ra) =
[e1]Rab + [f1]Sab, and ψ

′
A(Sa) = [e2]Rab + [f2]Sab.

For Eq. (1), since e4a(Ra, Sa) = e4a(P2, Q2)
3b , we have

e4a(Ra + [2a−1]Sa, Sa) = e4a(Ra, Sa) = e4a(P2, Q2)
3b .

5



Let e′1, e
′
2, f

′
1, f

′
2 ∈ {0, 22a−1} denote the parity bits of e1, e2, f1, f2 left-shifted by 2a− 1 bits, resp. Given

ψ′
A(Ra) = [e1]Rab + [f1]Sab, ψ

′
A(Sa) = [e2]Rab + [f2]Sab and Rab, Sab ∈ EAB [2

a], we have

ψ′
A(Ra)− [e1]Rab − [f1]Sab = O,

ψ′
A([2

2a−1]Ra + Sa)− [e2]Rab − [f2]Sab = [e′1]Rab + [f ′1]Sab.

Recall that {Rab, Sab} is a basis. Therefore, the oracle returns 1 if and only if [e′1]Rab + [f ′1]Sab = O or,
equivalently, e′1 = f ′1 = 0. The result follows.

Lemma 3.3. Assume Bob honestly generates Ra, Sa, Rab, Sab, EB , EAB. On input ([1+22a−1]Ra−[22a−1]Sa,
[22a−1]Ra + [1− 22a−1]Sa, Rab, Sab), the oracle returns 1 only for Cases 4 to 6.

Proof. Firstly, the isogeny ψ′
A computed by the oracle is the same one used by Alice in the honest execution.

This is because both kernels are the same:

⟨[2a]Ra + [α2a]Sa⟩ = ⟨[2a]([1 + 22a−1]Ra − [22a−1]Sa) + [α2a]([22a−1]Ra + [1− 22a−1]Sa)⟩.

Therefore, sinceRa, Sa, Rab, Sab are honestly generated, we may assume e4a(Ra, Sa) = e4a(P2, Q2)
3b , ψ′

A(Ra) =
[e1]Rab + [f1]Sab, and ψ

′
A(Sa) = [e2]Rab + [f2]Sab.

For Eq. (1), since e4a(Ra, Sa) = e4a(P2, Q2)
3b , we have

e4a([1 + 2a−1]Ra − [2a−1]Sa, [2
a−1]Ra + [1− 2a−1]Sa)

= e4a(Ra, Sa)
1−22a−2+22a−2

= e4a(P2, Q2)
3b .

Let e′1, e
′
2, f

′
1, f

′
2 ∈ {0, 22a−1} denote the parity bits of e1, e2, f1, f2 left-shifted by 2a− 1 bits, resp. Given

ψ′
A(Ra) = [e1]Rab + [f1]Sab, ψ

′
A(Sa) = [e2]Rab + [f2]Sab and Rab, Sab ∈ EAB [2

a], we have

ψ′
A([1 + 22a−1]Ra − [22a−1]Sa)− [e1]Rab − [f1]Sab = [e′1]Rab + [f ′1]Sab + [e′2]Rab + [f ′2]Sab,

ψ′
A([2

2a−1]Ra + [1− 22a−1]Sa)− [e2]Rab − [f2]Sab = [e′1]Rab + [f ′1]Sab + [e′2]Rab + [f ′2]Sab.

Recall that {Rab, Sab} is a basis. Therefore, the oracle returns 1 if and only if e′1 = e′2 and f ′1 = f ′2. The
result follows.

One can observe that it is one of the case in {Case 1, Case 2, Case 3} if and only if the least significant
bit of α is 0 by Lem. 3.1. In fact, by choosing particular matrices P1 and P2, one can precisely recover all
e′1, e

′
2, f

′
1 and f ′2. However, by Lem. 3.1, we do not bother to find them all since the information given in

Lem. 3.2 already is sufficient to recover the least significant bit of α. In the next section, we will start with
the least significant bit of α to recover each higher bit with one oracle query for each.

4 Recover the Secret

In this section, we present a variant of the GPST attack to recover the secret α based on the knowledge
extracted from the previous section. The high-level idea is to use the GPST attack in a “reciprocal” manner.
Recall that Bob has two following equations when he generates the points (Ra, Sa, Rab, Sab) honestly:

ψ′
A(Ra) = [e1]Rab + [f1]Sab,

ψ′
A(Sa) = [e2]Rab + [f2]Sab,

where ker(ψ′
A) = ⟨[2a]Ra + [2aα]Sa⟩.

To extract the second least significant bit of α, denoted by α1, based on the least bit α0, we consider
ψ′
A(Ra+[22a−2]Ra−[22a−2α0]Sa) = [e1]Rab+[f1]Sab+([22a−2e1−22a−2α0e2]Rab+[22a−2f1−22a−2α0f2]Sab)

6



where the purpose of [22a−2α0]Sa is to eliminate the lower bit. Note that ([22a−2e1 − 22a−2α0e2]Rab +
[22a−2f1− 22a−2α0f2]Sab) = ([α12

2a−1][e2]Rab + [α12
2a−1][f2]Sab) because e1 +αe2 = f1 +αf2 = 0 mod 2a

and {Ra, Sa} is a basis for EB [4
a] (Lem. 2.3 and Prop. 2.2). By Lem. 3.1, since e2 and f2 cannot be both

even, at least one of [22a−1e2]Rab and [22a−1f2]Sab is of order 2. It follows that the equation

ψ′
A(Ra + [22a−2]Ra − [22a−2α0]Sa) = [e1]Rab + [f1]Sab

holds if and only if α1 = 0.

Unfortunately, giving (Ra+[22a−2]Ra−[22a−2α0]Sa, Sa, Rab, Sab) to Alice cannot work, because e4a(Ra+

[22a−2]Ra − [22a−2α0]Sa, Sa) never equals e4a(P2, Q2)
3b . In other words, if Bob does so, he will always get

⊥ from Alice. To resolve this, we use the idea of “reciprocal”. Assume α is invertible modulo 2a. Bob will
craft a point replacing Sa for recovering α−1 mod 2a at the same time. Concretely, Bob computes α̂ = α−1

0

mod 4 as if α1 would be 0 (might not be true). For the same reasoning as above, the equation

ψ′
A(α̂[2

2a−2]Ra + [1− 22a−2]Sa) = [e2]Rab + [f2]Sab

holds if and only if α−1 = α̂ mod 4 if and only if α1 = 0.
Moreover, e4a(Ra + [22a−2]Ra − [22a−2α0]Sa, α̂[2

2a−2]Ra + [1 − 22a−2]Sa) = e4a(Ra, Sa). Therefore, by
sending (Ra+[22a−2]Ra− [22a−2α0]Sa, α̂[2

2a−2]Ra+[1−22a−2]Sa, Rab, Sab) to Alice, Bob can know whether
α1 = 0. However, α is not necessarily to be even. We have to use unbalanced powers of 2 on each query and
introduce the concept of quasi-inverse elements.

Remark 4.1. On input (Ra+[22a−2]Ra−[22a−2α0]Sa, α̂[2
2a−2]Ra+[1−22a−2]Sa, Rab, Sab), honest Alice will

use the same isogeny ψ′
A because ⟨[2a](Ra+[22a−2]Ra− [22a−2α0]Sa)+ [α2a](α̂[22a−2]Ra+[1− 22a−2]Sa)⟩ =

⟨[2a]Ra + [α2a]Sa⟩. As a result, the same kernel will derive the same isogeny ψ′
A.

4.1 Quasi-Inverse Element

Definition 4.2. Let p be a prime and a ∈ N. For an element u ∈ Z, a pa-quasi-inverse element of u is a
non-zero element v ∈ Zpa such that uv = p′ mod pa where p′ is the maximal power of p dividing u.

When a = 1, every element obviously has a p-quasi-inverse element by taking either its inverse over Zp

or 1. Unlike the inverse over a ring, a quasi-inverse is not necessarily unique. For instance, 9 and 17 are
25-quasi-inverse elements of 4 over Z32. A non-zero element being not a unit of Zpa can still have a pa-
quasi-inverse element. However, a non-zero element v in Zpa being a pa-quasi-inverse element for a non-zero
integer in Zpa implies v is a unit of Zpa .

Proposition 4.3. Let p be a prime and a ∈ N. For u ∈ Z, a non-zero element over Zpa , any pa-quasi-inverse
element of u is a unit of Zpa .

Proof. Write u = u′pj where u′, j ∈ Z and u′ is not divisible by p and j < a. Say there exists v ∈ Zpa

such that uv = pj mod pa. Since u is a non-zero element over Zpa , we know a > j so that (u/pj)v = 1
mod pj−a. It follows that v is not devided by p, so v is a unit of Zpa .

In fact, for any u ∈ Zpa where pj | u and pj+1 ∤ u for some non-negative integer j, one can always find
a pa-quasi-inverse by taking v = (u/pj)−1 ∈ Zpa−j and naturally lifting v to Zpa Therefore, we may let
QuasiInv(u, p, i) be an efficient algorithm outputting a pi-quasi-inverse element of u and restrict it to output
1 when pi | u.

Looking ahead, in our attack, we need to compute 2i+1-quasi-inverse elements for either αl or αl + 2i

in each iteration where αl = α mod 2i has been extracted. In a more general case where the prime 2 is
replace by q, the attack enumerates qi+1-quasi-inverse elements for αl + tqi for every t ∈ {0, · · · , q − 1},
which corresponds to guess whether the next digit is t or not. See App. A for more details.

7



4.2 Attack on HealS and SHealS

The algorithm in Fig. 1 together with Thm. 4.4 provides a recursive approach for recovering α. It requires
one random oracle query to recover each bit of α in each iteration.

Algorithm: Recover(pp, skB , α0)
Input: pp public parameter of the protocol, skB the secret key of Bob,

α0 = α mod 2
Given: an oracle Oα(Ra, Sa, Rab, Sab;EB , EAB)→ 0/1 returns 1 if and only if

the following equations hold:
e4a(Ra, Sa) = e4a(P2, Q2),
ψ′
A(Ra) = [e1]Rab + [f1]Sab,

ψ′
A(Sa) = [e2]Rab + [f2]Sab,

where ψ′
A is an isogeny from EB with kernel ⟨[2a]Ra + [α2a]Sa⟩ ∈ EB .

Ensure: Alice’s secret key α

1: Compute (Ra, Sa, Rab, Sab) ← (ϕB(P2), ϕB(Q2), ϕ
′
B(RA), ϕ

′
B(SA)) by following the protocol spe-

cification using skB .
2: Obtain a from pp.
3: Obtain αl ← α0.
4: i = 1
5: j =⊥ ▷ j will indicate the maximal power of 2 dividing α.
6: if αl = 1 then j ← 0

7: while i < a do
8: α̂0l ← QuasiInv(αl, 2, i+ 1) ▷ α̂0l(αl) = 0 or 2j mod 2i+1

9: α̂1l ← QuasiInv(αl + 2i, 2, i+ 1) ▷ α̂1l(αl + 2i) = 2i or 2j mod 2i+1

10: if j =⊥ then ▷ Assert α̂0i = 1.
11: c← O([1 + 22a−1]Ra, [α̂0l2

2a−i−1]Ra + [1− 22a−1]Sa, Rab, Sab)
12: c← 1− c
13: if c = 0 then j ← i ▷ Assert 2j is the maximal power of 2 dividing α.

14: else
15: c← O([1 + 22a−i+j−1]Ra − [αl2

2a−i+j−1]Sa, [α̂0l2
2a−i−1]Ra + [1− 22a−i+j−1]Sa, Rab, Sab)

16: if c = 1 then ▷ Assert i-th bit of α is 0.
17: α̂l ← α̂0l

18: else ▷ Assert i-th bit of α is 1.
19: αl ← αl + 2i

20: return v

Figure 1: An algorithm to recover the secret α in skA = (α, e1, f1, e2, f2).

Theorem 4.4. Assume Alice follows the protocol specification. The algorithm in Fig. 1 returns α in Alice’s
secret key.

Proof. We are going to prove the theorem by induction on i for the i-th bit of α where i < a. Write
−α = αl + 2iαi + 2i+1αh ∈ Z2a for some i ∈ {1, . . . , a− 1} where αl ∈ Z2i−1 , αi ∈ Z2, αh ∈ Z2a−i represents
the bits has been recovered, the next bit to be recovered, and the remaining higher bits respectively. Since
we has assumed the correctness of the given least significant bit of α, it suffices to show that given αl the
extraction of αi, the i-th bit of α, is correct in each iteration of the while-loop of Fig. 1.

Firstly, within each query, the isogeny ψ′
A computed by the oracle is the same because the kernels are all

identical:

⟨[2a]Ra + [α2a]Sa⟩ = ⟨[2a]([1 + 22a−1]Ra − [t22a−i−1]Sa) + [α2a]([t′22a−i−1]Ra + [1− 22a−1]Sa)⟩
= ⟨[2a]([1 + 22a−i+j−1]Ra − [t22a−i+j−1]Sa) + [α2a]([t′22a−i−1]Ra + [1− 22a−i+j−1]Sa)⟩,

8



for any t, t′ ∈ Z2a where i, j ∈ Za. Therefore, since Ra, Sa, Rab, Sab are honestly generated, we may assume

e4a(Ra, Sa) = e4a(P2, Q2)
3b , ψ′

A(Ra) = [e1]Rab + [f1]Sab, and ψ
′
A(Sa) = [e2]Rab + [f2]Sab.

Also, every input satisfies Eq. (1). Since e4a(Ra, Sa) = e4a(P2, Q2)
3b , we have for any α̂0l ∈ Z2a , and

i, j ∈ Za,

e4a([1 + 22a−1]Ra − [αl2
2a−i−1]Sa, [α̂0l2

2a−i−1]Ra + [1− 22a−1]Sa)

= e4a([1 + 22a−i+j−1]Ra − [αl2
2a−i+j−1]Sa, [α̂0l2

2a−i−1]Ra + [1− 22a−i+j−1]Sa)

= e4a(Ra, Sa)

= e4a(P2, Q2)
3b .

To prove the correctness of the extraction of αi, we claim that Eqs. (2) and (3) are both satisfied if and
only if αi is 1 in the if-loop of j =⊥ or is 0 in the if-loop of j ̸=⊥. We therefore consider two cases.

Case1: the if-loop of j =⊥. The condition is equivalent to αl = 0 which means α = 0 mod 2i. Recall
ψ′
A(Ra) = [e1]Rab + [f1]Sab, and ψ

′
A(Sa) = [e2]Rab + [f2]Sab. For Eq. (2), we have

ψ′
A([1 + 22a−1]Ra)− [e1]Rab − [f1]Sab

= [(1 + 22a−1)e1]Rab + [(1 + 22a−1)f1]Sab − [e1]Rab − [f1]Sab

= [22a−1e1]Rab + [22a−1f1]Sab

= [−α22a−1e2]Rab + [−α22a−1f2]Sab

= O.

That is, Eq. (2) will always hold. Remark the third equation comes from Lem. 2.3 and the fact that i is
less than a. The fourth equation comes from the fact that α = 0 mod 2i and i ≥ 1 and {Rab, Sab} is a basis
for EAB [4

a].

Also, since αl = 0, α̂0l is 1 by the specification of QuasiInv. Recall ψ′
A(Ra) = [e1]Rab + [f1]Sab, and

ψ′
A(Sa) = [e2]Rab + [f2]Sab. For Eq. (3), we have

ψ′
A([α̂0l2

2a−i−1]Ra + [1− 22a−1]Sa)− [e2]Rab − [f2]Sab

= [22a−i−1e1 + (1− 22a−1)e2]Rab + [22a−i−1f1 + (1− 22a−1)f2]Sab − [e1]Rab − [f1]Sab

= [22a−i−1e1 − 22a−1e2]Rab + [22a−i−1f1 − 22a−1f2]Sab

= [−α22a−i−1e2 − 22a−1e2]Rab + [−α22a−i−1f2 − 22a−1f2]Sab

= [αi2
2a−1 − 22a−1][e2]Rab + [αi2

2a−1 − 22a−1][f2]Sab.

Similarly, the third equation comes from Lem. 2.3 and the fact that i is less than a. The fourth equation
comes from the fact that α = 0 mod 2i and {Rab, Sab} is a basis for EAB [4

a]. By Lem. 3.1, e2 and f2 cannot
be both even so that at least one of [22a−1e2]Rab and [22a−1f2]Sab is of order 2. Eq. (3) holds if and only if
αi is 1.

Therefore, by combining conditions of Eqs. (1) to (3), in the if-loop of j =⊥, the oracle outputs c = 1 if
and only if αi = 1.

Case2: the if-loop of j ̸=⊥. The condition is equivalent to 2j is the maxmal power of 2 dividing α. Recall
ψ′
A(Ra) = [e1]Rab + [f1]Sab, and ψ

′
A(Sa) = [e2]Rab + [f2]Sab. For Eq. (2), we have

ψ′
A([1 + 22a−i+j−1]Ra − [αl2

2a−i+j−1]Sa)− [e1]Rab − [f1]Sab

= [(1 + 22a−i+j−1)e1 − αl2
2a−i+j−1e2]Rab + [(1 + 22a−i+j−1)f1 − αl2

2a−i+j−1f2]Sab − [e1]Rab − [f1]Sab

= [22a−i+j−1e1 − αl2
2a−i+j−1e2]Rab + [22a−i+j−1f1 − αl2

2a−i+j−1f2]Sab

= [−α22a−i+j−1 − αl2
2a−i+j−1][e2]Rab + [−α22a−i+j−1 − αl2

2a−i+j−1][f2]Sab

9



Remark the third equation comes from Lem. 2.3 and the fact that i − j is less than a. When j ≥ 1, we
have −α22a−i+j−1 − αl2

2a−i+j−1 = 0 mod 4a. In this case, the oracle will return 1. When j = 0, we have
−α22a−i+j−1 − αl2

2a−i+j−1 = αi2
2a−1 mod 4a. In this case, the oracle will return 1 if and only if αi = 0.

Therefore, Eq. (2) hold if and only if α is even or αi = 0.

Also, for Eq. (3), we have α̂

ψ′
A([α̂0l2

2a−i−1]Ra + [1− 22a−i+j−1]Sa)− [e2]Rab − [f2]Sab

= [α̂0l2
2a−i−1e1 + (1− 22a−i+j−1)e2]Rab + [α̂0l2

2a−i−1f1 + (1− 22a−i+j−1)f2]Sab − [e1]Rab − [f1]Sab

= [α̂0l2
2a−i−1e1 − 22a−i+j−1e2]Rab + [α̂0l2

2a−i−1f1 − 22a−i+j−1f2]Sab

= [−αα̂0l2
2a−i−1e2 − 22a−i+j−1e2]Rab + [−αα̂0l2

2a−i−1f2 − 22a−i+j−1f2]Sab

= [αiα̂0l2
2a−i+j ][e2]Rab + [αiα̂0l2

2a−i+j ][f2]Sab.

Similarly, the third equation comes from Lem. 2.3 and the fact that i is less than a. The fourth equation
comes from the fact that α̂0l is a 2i+1-quasi-inverse element for αl. That is, α̂0lαl = 2j mod 2i+1. Therefore,
−αα̂0l2

2a−i−1 = 22a−i+j−1 +αiα̂0l2
2a−i+j mod 4a where i− j > 0. By Lem. 3.1, e2 and f2 cannot be both

even so that at least one of [22a−1e2]Rab and [22a−1f2]Sab is not O. By Prop. 4.3, α̂0l is a unit. Therefore,
in this case we know Eq. (3) holds if and only if the next bit αi to extracted is 0.

Therefore, by combining conditions of Eqs. (1) to (3), in the if-loop of j ̸=⊥, the oracle outputs c = 1 if
and only if αi = 0.

5 Summary

It takes one oracle query to recover each bit. In the appendix, we consider a more generic situation for
HealSIDH where 2 can be replaced by any distinct prime number q. The algorithm takes a(q − 1) oracle
queries to fully recover Alice’s secret key α ∈ Zqa .

Acknowledgement

This project is supported by the Ministry for Business, Innovation and Employment in New Zealand.

References

[ACC+17] Reza Azarderakhsh, Matthew Campagna, Craig Costello, LD Feo, Basil Hess, Amir Jalali, David
Jao, Brian Koziel, Brian LaMacchia, Patrick Longa, et al. Supersingular isogeny key encapsula-
tion. submission to the NIST post-quantum standardization project, 152:154–155, 2017.

[AJL17] Reza Azarderakhsh, David Jao, and Christopher Leonardi. Post-quantum static-static key agree-
ment using multiple protocol instances. In Carlisle Adams and Jan Camenisch, editors, SAC
2017, volume 10719 of LNCS, pages 45–63. Springer, Heidelberg, August 2017.

[BDK+21] Ward Beullens, Samuel Dobson, Shuichi Katsumata, Yi-Fu Lai, and Federico Pintore. Group
signatures and more from isogenies and lattices: Generic, simple, and efficient. Cryptology
ePrint Archive, Report 2021/1366, 2021. https://eprint.iacr.org/2021/1366.

[CLM+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. CSIDH: An
efficient post-quantum commutative group action. In Thomas Peyrin and Steven Galbraith, ed-
itors, ASIACRYPT 2018, Part III, volume 11274 of LNCS, pages 395–427. Springer, Heidelberg,
December 2018.

10

https://eprint.iacr.org/2021/1366


[FP21] Tako Boris Fouotsa and Christophe Petit. SHealS and HealS: isogeny-based PKEs from akey
validation method for SIDH. Cryptology ePrint Archive, Report 2021/1596, 2021. https://

eprint.iacr.org/2021/1596.

[GPST16] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. On the security of su-
persingular isogeny cryptosystems. In Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIAC-
RYPT 2016, Part I, volume 10031 of LNCS, pages 63–91. Springer, Heidelberg, December 2016.

[JD11] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from supersingular el-
liptic curve isogenies. In Bo-Yin Yang, editor, Post-Quantum Cryptography - 4th International
Workshop, PQCrypto 2011, pages 19–34. Springer, Heidelberg, November / December 2011.

[Kup05] Greg Kuperberg. A subexponential-time quantum algorithm for the dihedral hidden subgroup
problem. SIAM Journal on Computing, 35(1):170–188, 2005.

[LD21] Yi-Fu Lai and Samuel Dobson. Collusion resistant revocable ring signatures and group signatures
from hard homogeneous spaces. Cryptology ePrint Archive, Report 2021/1365, 2021. https:

//eprint.iacr.org/2021/1365.

[LGd21] Yi-Fu Lai, Steven D. Galbraith, and Cyprien de Saint Guilhem. Compact, efficient and UC-
secure isogeny-based oblivious transfer. In Anne Canteaut and François-Xavier Standaert, edit-
ors, EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages 213–241. Springer, Heidelberg,
October 2021.

[MOT20] Tomoki Moriya, Hiroshi Onuki, and Tsuyoshi Takagi. SiGamal: A supersingular isogeny-based
PKE and its application to a PRF. In Shiho Moriai and Huaxiong Wang, editors, ASIAC-
RYPT 2020, Part II, volume 12492 of LNCS, pages 551–580. Springer, Heidelberg, December
2020.

[Sil09] Joseph H Silverman. The arithmetic of elliptic curves, volume 106. Springer, 2009.

[UJ20] David Urbanik and David Jao. New techniques for sidh-based nike. Journal of Mathematical
Cryptology, 14(1):120–128, 2020.

A A Generalized Attack

This section presents a generalized result. We consider a more generic condition where Alice uses q2a torsion
subgroup instead of 22a. The final algorithm takes a(q − 1) oracle queries to fully recover Alice’s secret key
α ∈ Zqa .

To be more specific, the public key parameter pp = (E0, Pq, Qq, Pq′ , Qq′ , p, q, q
′) where p, q, q′ are dis-

tinct primes, p = fq2aq′2b − 1, qa ≈ q′b, and {Pq, Qq} and {Pq′ , Qq′} are bases for E0[q
2a] and E0[q

′2b],
resp. Let [qa]Pq = PA and [qa]Qq = QA. Alice samples a secret α uniformly at random from Zqa , computes
ϕA : E0 → EA = E0/⟨PA+[α]QA⟩ and representing ϕA(Pq) = [e1]RA+[f1]SA and ϕA(Qq) = [e2]RA+[f2]SA

where {RA, SA} is a canonical basis for EA[q
2a]. Alice’s secret key is skA = (α, e1, f1, e2, f2) and public key

is (EA, ϕA(Pq′), ϕA(Qq′)).

We start we following three simple facts similar to Prop. 2.2 and Lems. 2.3 and 3.1.

Proposition A.1. If Bob honestly will generate Ra, Sa, Rab, Sab by Ra = ϕB(P2), Sa = ϕ′B(Q2), Rab =
ϕ′B(RA) and Sab = ϕB(SA), then {Rab, Sab} is a basis of EAB [q

2a] and {Ra, Sa} is a basis of EB [q
2a].

Proof. Since [q2a]Ra = ϕB([q
2a]P2) = O and [q2a]Sa = ϕ′B([q

2a]Q2) = O, both Ra and Sa are in EB [q
2a].

Due to eq2a(Ra, Sa) = eq2a(P2, Q2)
q′b , we know eq2a(Ra, Sa) is a primitive q2a-th root of unity. Similarly,

Since [q2a]Rab = ϕ′B([q
2a]RA) = O and [q2a]Sab = ϕB([q

2a]SA) = O, both Rab and Sab are in EAB [q
2a]. Due

11

https://eprint.iacr.org/2021/1596
https://eprint.iacr.org/2021/1596
https://eprint.iacr.org/2021/1365
https://eprint.iacr.org/2021/1365


to eq2a(Rab, Sab) = eq2a(RA, SA)
q′b , we know eq2a(Rab, Sab) is a primitive q2a-th root of unity. Therefore,

the result follows.

Lemma A.2. Let e1, e2, f1, f2 defined as above and α ∈ Zqa be the secret key of Alice such that ker(ϕA) =
⟨[qa]P2 + [αqa]Q2⟩. If Alice follows the protocol specification, then e1 + αe2 = f1 + αf2 = 0 mod qa.

Proof. Given ϕA(P2) = [e1]RA+[f1]SA and ϕA(Q2) = [e2]RA+[f2]SA, we have O = ϕA([q
a]P2+[αqa]Q2) =

[qae1 + αqae2]RA + [qaf1 + αqaf2]SA = [e1 + αe2]([q
a]Ra) + [f1 + αf2]([q

a]SA).
Recall that {[qa]RA, [q

a]SA} is a basis for EA[q
a] due to {RA, SA} being a basis for EA[q

2a]. Therefore,
e1 + αe2 = f1 + αf2 = 0 mod qa.

Lemma A.3. If Alice produces ϕA(Pq) and ϕA(Qq) honestly, then f1 and f2 cannot be both divisible by q.

Proof. Suppose for the purpose of contradiction that both e2 and f2 are even. Then, [q2a−1]ϕA(Qq) = O,
which implies ker(ϕA) = ⟨Pq + [α]Qq⟩ contains [q2a−1]Qq. That is, [k]Pq + [kα]Q2 = [q2a−1]Q2 for some
k ∈ Zqa , so k = 0. This contradicts the fact that {Pq, Qq} is a basis for E0[q

2a]. The result follows.

The algorithm in Fig. 2 together with Thm. A.4 provides a recursive approach for recovering α. It
requires one random oracle quries to recover each bit of α in each iteration.

Theorem A.4. Assume Alice follows the protocol specification. The algorithm in Fig. 2 returns α in Alice’s
secret key.

Proof. We are going to prove the theorem by induction on i for the i-th bit of α where i < a. Write
−α = αl + qiαi + qi+1αh ∈ Zqa for some i ∈ {0, . . . , a− 1} where αl ∈ Zqi−1 , αi ∈ Z2, αh ∈ Zqa−i represents
the bits has been recovered, the next bit to be recovered, and the remaining higher bits respectively.

Firstly, within each query, the isogeny ψ′
A computed by the oracle is the same, because the kernels are

all identical:

⟨[qa]Ra + [αqa]Sa⟩ = ⟨[qa]([1 + q2a−1]Ra − [t′q2a−i−1]Sa) + [αqa]([tq2a−i−1]Ra + [1− q2a−1]Sa)⟩
= ⟨[qa]([1 + q2a−i+j−1]Ra − [t′q2a−i+j−1]Sa) + [αqa]([tq2a−i−1]Ra + [1− q2a−i+j−1]Sa)⟩,

where i, j ∈ Za and arbitrary t, t′ ∈ Zqa . Therefore, since Ra, Sa, Rab, Sab are honestly generated, we may

assume eqa(Ra, Sa) = eqa(P2, Q2)
q′b , ψ′

A(Ra) = [e1]Rab + [f1]Sab, and ψ
′
A(Sa) = [e2]Rab + [f2]Sab.

Also, every input satisfies Eq. (1). Since eqa(Ra, Sa) = eqa(P2, Q2)
q′b , we have for any t, t′ ∈ Zqa , and

i, j ∈ Za,

eq2a([1 + q2a−1]Ra − [t′q2a−i−1]Sa, [tq
2a−i−1]Ra + [1− q2a−1]Sa)

= eq2a([1 + q2a−i+j−1]Ra − [t′q2a−i+j−1]Sa, [tq
2a−i−1]Ra + [1− q2a−i+j−1]Sa)

= eq2a(Ra, Sa)

= eq2a(P2, Q2)
q′b .

For the case i = 0 of induction, we have to show the correctness of the extraction of α0, the least significant
bit of −α. We restrict our attention to the if-loop of the condition i = 0. Recall ψ′

A(Ra) = [e1]Rab + [f1]Sab,
and ψ′

A(Sa) = [e2]Rab + [f2]Sab. For Eq. (2) t ∈ Zq, we have

ψ′
A([1 + q2a−1]Ra − [tq2a−1]Sa)− [e1]Rab − [f1]Sab

= [(1 + q2a−1)e1 − tq2a−1e2]Rab + [(1 + q2a−1)f1 − tq2a−1f2]Sab − [e1]Rab − [f1]Sab

= [q2a−1e1 − tq2a−1e2]Rab + [q2a−1f1 − tq2a−1f2]Sab

= [−αq2a−1e2 − tq2a−1e2]Rab + [−αq2a−1f2 − tq2a−1f2]Sab

= [α0q
2a−1e2 − tq2a−1e2]Rab + [α0q

2a−1f2 − tq2a−1f2]Sab

12



Algorithm: Recover(pp, skB)
Input: pp public parameter of the protocol, skB the secret key of Bob,
Given: an oracle Oα(Ra, Sa, Rab, Sab;EB , EAB)→ 0/1 returns 1 if and only if

the following equations hold:
eq2a(Ra, Sa) = eq2a(Pq, Qq),
ψ′
A(Ra) = [e1]Rab + [f1]Sab,

ψ′
A(Sa) = [e2]Rab + [f2]Sab,

where ψ′
A is an isogeny from EB with kernel ⟨[qa]Ra + [αqa]Sa⟩ ∈ EB .

Ensure: Alice’s secret key α

1: Obtain (Ra, Sa, Rab, Sab)← (ϕB(Pq), ϕB(Qq), ϕ
′
B(RA), ϕ

′
B(SA)) by following the protocol specific-

ation using skB .
2: Obtain a from pp.
3: i = 0
4: j =⊥
5: while i < a do
6: c = 0
7: t = q
8: for t ∈ {0, · · · , q − 1} do
9: α̂tl ← QuasiInv(αl + tqi, q, i+ 1)

10: if i = 0 then ▷ Extract α0.
11: while c = 0 or t > 0 do
12: t −= 1
13: c← O([1 + q2a−1]Ra − [tq2a−1]Sa, [α̂tlq

2a−1]Ra + [1− q2a−1]Sa, Rab, Sab)

14: αl ← t
15: i += 1
16: if t ̸= 0 then j ← i ▷ Assert q is the maximal power of q dividing α.

17: if j =⊥ then ▷ Assert α̂tlt = 1 or 0 mod q.
18: while c = 0 or t > 0 do
19: t −= 1
20: c← O([1 + q2a−1]Ra, [α̂tlq

2a−i−1]Ra + [1− q2a−1]Sa, Rab, Sab)

21: αl ← αl + tqi ▷ Assert i-th bit of α is t.
22: if t ̸= 0 then j ← i ▷ Assert qj is the maximal power of q dividing α.

23: else ▷ Assert α̂tl(αl + tqi) = qj mod qi+1.
24: while c = 0 or t > 0 do
25: t −= 1
26: c← O([1 + q2a−i+j−1]Ra− [(αl + tqi)q2a−i+j−1]Sa, [α̂lα̃i

q2a−i−1]Ra+[1− q2a−i+j−1]Sa,
Rab, Sab)

27: αl ← αl + tqi ▷ i-th digit of α is t.

28: i += 1

29: return −v mod qa

Figure 2: A general algorithm to recover the secret α.

That is, Eq. (2) will always hold. Remark the third equation comes from Lem. A.2. Therefore, the
condition of Eq. (2) is satisfied if and only if t = α0.

13



Similarly, for Eq. (3), we have

ψ′
A([α̂tlq

2a−i−1]Ra + [1− q2a−1]Sa)− [e2]Rab − [f2]Sab

= [α̂tlq
2a−1e1 + (1− q2a−1)e2]Rab + [α̂tlq

2a−1f1 + (1− q2a−1)f2]Sab − [e1]Rab − [f1]Sab

= [α̂tlq
2a−1e1 − q2a−1e2]Rab + [α̂tlq

2a−1f1 − q2a−1f2]Sab

= [−αα̂tlq
2a−1e2 − q2a−1e2]Rab + [−αα̂tlq

2a−1f2 − q2a−1f2]Sab

= [α0α̂tlq
2a−1 − q2a−1][e2]Rab + [α0α̂tlq

2a−1 − q2a−1][f2]Sab.

That is, Eq. (3) will always hold. Remark the third equation comes from Lem. A.2. Therefore, the
condition of Eq. (3) is satisfied if and only if α0α̂tl = 1 mod q. Equivalently, t = α0, because tα̂tl = 1
mod q. If α0α̂tl ̸= 1 mod q for all t ∈ {1, · · · , q − 1}, then α0 = 0. Therefore, by combining conditions of
Eqs. (1) to (3), the extraction of α0 is correct.

It suffices to show that given αl the extraction of αi, the i-th bit of −α mod qa for i ≥ 1, is correct in
each iteration of the while-loop of Fig. 2. To prove the correctness of the extraction of αi, in either the if-loop
of j =⊥ or the else-loop (j ̸=⊥), we claim that Eqs. (2) and (3) are both satisfied if and only if the output
of the oracle is c = 1 for t ∈ {1, · · · , q − 1} used in the loop if and only if αi = t for some t ∈ {1, · · · , q − 1}.
We therefore consider two cases.

Case1: the if-loop of j =⊥. The condition is equivalent to αl = 0 which means −α = 0 mod qi. Recall
ψ′
A(Ra) = [e1]Rab + [f1]Sab, and ψ

′
A(Sa) = [e2]Rab + [f2]Sab. For Eq. (2), we have

ψ′
A([1 + q2a−1]Ra)− [e1]Rab − [f1]Sab

= [(1 + q2a−1)e1]Rab + [(1 + q2a−1)f1]Sab − [e1]Rab − [f1]Sab

= [q2a−1e1]Rab + [q2a−1f1]Sab

= [−αq2a−1e2]Rab + [−αq2a−1f2]Sab

= O.

That is, Eq. (2) will always hold. Remark the third equation comes from Lem. A.2 and the fact that i is
less than a. The fourth equation comes from the fact that α = 0 mod qi for i ≥ 1 and {Rab, Sab} is a basis
for EAB [q

2a].

Also, since αl = 0, α̂tlt = 1 mod q. Recall ψ′
A(Ra) = [e1]Rab + [f1]Sab, and ψ

′
A(Sa) = [e2]Rab + [f2]Sab.

For Eq. (3), we have

ψ′
A([α̂tlq

2a−i−1]Ra + [1− q2a−1]Sa)− [e2]Rab − [f2]Sab

= [α̂tlq
2a−i−1e1 + (1− q2a−1)e2]Rab + [α̂tlq

2a−i−1f1 + (1− q2a−1)f2]Sab − [e1]Rab − [f1]Sab

= [α̂tlq
2a−i−1e1 − q2a−1e2]Rab + [α̂tlq

2a−i−1f1 − q2a−1f2]Sab

= [−αα̂tlq
2a−i−1e2 − q2a−1e2]Rab + [−αα̂tlq

2a−i−1f2 − q2a−1f2]Sab

= [αiα̂tlq
2a−1 − q2a−1][e2]Rab + [αiα̂tlq

2a−1 − q2a−1][f2]Sab.

Similarly, the third equation comes from Lem. A.2 and the fact that i is less than a. The fourth equation
comes from the fact that α = 0 mod qi and {Rab, Sab} is a basis for EAB [q

2a]. By Lem. A.3, e2 and f2
cannot be both even so that at least one of [q2a−1e2]Rab and [q2a−1f2]Sab is of order q. Eq. (3) holds if and
only if the next bit to extracted αi is t = α̂−1

tl mod q. If αiα̂tl ̸= 1 mod q for all t ∈ {1, · · · , q − 1}, then
αi = 0. Therefore, by combining conditions of Eqs. (1) to (3), in the if-loop of j =⊥, the oracle outputs

14



c = 1 for t ∈ {1, q − 1} used in the loop if and only if αi = t. Moreover, if all outputs of the oracle in the
loop is 0, then αi = 0.

Case2: the if-loop of j ̸=⊥. The condition is equivalent to qj is the maxmal power of q dividing α. Recall
ψ′
A(Ra) = [e1]Rab + [f1]Sab, and ψ

′
A(Sa) = [e2]Rab + [f2]Sab. For Eq. (2), we have

ψ′
A([1 + q2a−i+j−1]Ra − [(αl + tqi)q2a−i+j−1]Sa)− [e1]Rab − [f1]Sab

= [(1 + q2a−i+j−1)e1 − (αl + tqi)q2a−i+j−1e2]Rab + [(1 + q2a−i+j−1)f1 − (αl + tqi)q2a−i+j−1f2]Sab − [e1]Rab − [f1]Sab

= [q2a−i+j−1e1 − (αl + tqi)q2a−i+j−1e2]Rab + [q2a−i+j−1f1 − (αl + tqi)q2a−i+j−1f2]Sab

= [−αq2a−i+j−1 − (αl + tqi)q2a−i+j−1][e2]Rab + [−αq2a−i+j−1 − (αl + tqi)q2a−i+j−1][f2]Sab

= [(αi − t)q2a−1][e2]Rab + [(αi − t)q2a−1][f2]Sab

Remark the third equation comes from Lem. A.2 and the fact that i− j is less than a. If j ≥ 1, we always
have −αq2a−i+j−1 − (αl + tqi)q2a−i+j−1 = 0 mod q2a. In this case, the oracle will return 1. If j = 0, we
have −αq2a−i+j−1 − (αl + tqi)q2a−i+j−1 = (αi − t)q2a−1 mod q2a. In this case, the oracle will return 1 if
and only if αi = t. If αi = 0, then the oracle will always return 0. Therefore, Eq. (2) hold if and only if q | α
or αi = t for some t ∈ {1, · · · , q − 1}.

Also, for Eq. (3), we have α̂

ψ′
A([α̂tlq

2a−i−1]Ra + [1− q2a−i+j−1]Sa)− [e2]Rab − [f2]Sab

= [α̂tlq
2a−i−1e1 + (1− q2a−i+j−1)e2]Rab + [α̂tlq

2a−i−1f1 + (1− q2a−i+j−1)f2]Sab − [e1]Rab − [f1]Sab

= [α̂tlq
2a−i−1e1 − q2a−i+j−1e2]Rab + [α̂tlq

2a−i−1f1 − q2a−i+j−1f2]Sab

= [−αα̂tlq
2a−i−1e2 − q2a−i+j−1e2]Rab + [−αα̂tlq

2a−i−1f2 − q2a−i+j−1f2]Sab

= [(αi − t)α̂tlq
2a−i+j ][e2]Rab + [(αi − t)α̂tlq

2a−i+j ][f2]Sab.

Similarly, the third equation comes from Lem. A.2 and the fact that i is less than a. The fourth equation
comes from the fact that α̂tl is a p

i+1-quasi-inverse element for αl+tq
i. That is, α̂tl(αl+tq

i) = qj mod qi+1.
Therefore, −αα̂tlq

2a−i−1 = q2a−i+j−1+(αi− t)α̂tlq
2a−i+j mod q2a where i− j ≥ 1. By Lem. A.3, e2 and f2

cannot be both divisible by q so that at least one of [q2a−1e2]Rab and [q2a−1f2]Sab is not O. By Prop. 4.3,
α̂tl is a unit. Therefore, in this case we know Eq. (3) holds if and only if −αα̂tl = 1 mod qi+1 if and only if
αi = t.

Therefore, by combining conditions of Eqs. (1) to (3), in the if-loop of j ̸=⊥, the oracle outputs c = 1 for
t ∈ {1, · · · , q − 1} used in the loop if and only if αi = t. Moreover, if all outputs of the oracle in the loop is
0, then αi = 0.

15


	Introduction
	Technique overview

	Preliminaries
	Elliptic curves and isogenies
	Brief outline of HealSIDH

	Parity Recovering
	Recover the Secret
	Quasi-Inverse Element
	Attack on HealS and SHealS

	Summary
	A Generalized Attack

