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Abstract. A multi-key fully homomorphic encryption (MKFHE) scheme allows a public
server to evaluate arbitrary circuits over ciphertexts encrypted under different keys. One of
the main drawbacks of MKFHE schemes is the need for a ciphertext expansion procedure
prior to evaluation, which combines ciphertexts encrypted under different keys to a (much
larger) ciphertext encrypted under a concatenated key. In this paper, we present a new
(leveled) RLWE-based MKFHE scheme without ciphertext expansion.
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1 Introduction

Fully homomorphic encryption (FHE) refers to a class of encryption schemes which are capa-
ble of performing arbitrary computations over encrypted messages without using the secret key.
The interest in this type of encryption scheme skyrocketed after Gentry [Gen09] gave the first
(but still inefficient [vDGHV09]) FHE scheme in 2009. This lead to a plethora of results improv-
ing Gentry’s design, for example [BV11b,BGV11,Bra12,FV12,GSW13,BV13,DM15,CKKS17]. The
aforementioned papers focus on the study of single-key FHE schemes, meaning that a public server
can homomorphically evaluate ciphertexts encrypted under the same secret key. This poses a clear
limitation on the applications of FHE schemes. A more general construction is multi-key fully
homomorphic encryption (MKFHE), first defined in [LTV13]. In MKFHE, a public server can ho-
momorphically evaluate ciphertexts encrypted under different and independent keys. Subsequent
works improved upon the original construction of [LTV13] in many ways, for example, by building
schemes based on standard lattice assumptions [CM14,MW16] or by removing the need for prior
knowledge about the number of parties [BP16,PS16]. All these MKFHE schemes and those that fol-
lowed (e.g. [CZW17,KLP18,CDKS19,LP19,AJJM20,BD21]) present the common disadvantage of
running an expensive ciphertext expansion routine before performing any computation. Ciphertext
expansion takes a collection of ciphertexts encrypted by possibly different parties and produces a
new (and much larger) ciphertext encrypted under a concatenated secret key. This implies that the
size of the ciphertexts depends (quadratically or linearly) on the number of parties participating
in the protocol.
In this work, we present a new MKFHE scheme where the ciphertext size does not depend on the
number of participants of the protocol. As we explain in the related work section of this introduc-
tion, other concurrent works have addressed the problem of ciphertext expansion in recent months.
The key idea behind our scheme is to add the parties’ public keys to obtain a global public key
(and the corresponding global secret key). Our starting point is a single-key encryption scheme
which is additive homomorphic with respect to its keys if we assume the CRS model. That is,
given a suitable CRS, the sum of public/secret keys is a valid public/secret key. Our construc-
tion can be instantiated with any scheme with this property. The second technique that we use is
called relinearization (or key-switching) [BV11a,BGV11]. Relinearization allows us to switch from
a degree two ciphertext to a degree one ciphertext. This is the crucial technique that allows the
size of the ciphertexts to stay constant during multiplication. Finally, the last building block that



we need is a way for two different parties i and j with secret keys si and sj to obtain a mask of
sisj . To achieve this, we adapt the ideas of [CDKS19] to build a suitable matrix, Ki,j such that
Ki,j · (1, si, sj) ≈ (sisj , 2sisj , . . . , 2

hsisj) for some h ∈ Z+.

1.1 Related work

Multi-key fully homomorphic encryption was first defined in [LTV13]. This original construction is
based on the NTRU encryption scheme, and it has a ciphertext expansion of approximately N1+1/ϵ

where N is the number of parties and ϵ depends on the security parameter. The next step was done
in [CM14] and its follow-up paper [MW16] where the authors constructed a MKFHE scheme based
on the LWE assumption with ciphertext expansion of approximately N2. One drawback of these
first MKFHE designs was the fact that some prior knowledge on the number of parties, the input
ciphertexts and/or the circuit to be evaluated, was required at the time of setting parameters. This
problem was successfully addressed in [BP16] and [PS16] where schemes that require no information
about the parties during the key generation step are presented. However, both [BP16] and [PS16]
provide schemes which have linear ciphertext expansion. In [CZW17] the authors provide the first
RLWE-based MKFHE scheme building upon the BGV [BGV11] scheme. In this last work the
authors manage to perform a much simpler ciphertext expansion than the previously mentioned
constructions, however their expansion mechanism still depends on the number of parties. Recently,
a few works [Jia21,DWF22] have addressed the problem of ciphertext expansion. In [Jia21], the
author constructs a LWE-based MKFHE scheme with constant-size ciphertexts in the two non-
collusion server model. This construction is built upon a modification of the GSW [GSW13] scheme.
In [DWF22], the authors provide two MKFHE schemes, one based on the LWE assuption and the
other in the RLWE assumption. This second scheme is similar to the construction presented in this
work, since it obtains a MKFHE without ciphertext expansion from the RLWE assumption. The
main difference between the RLWE scheme of [DWF22] and our work lies in the relinearization
process and the relinearization keys.

1.2 Our results

Our main contribution is a new leveled MKFHE scheme without ciphertext expansion based on the
RLWE assumption. To build our scheme, we provide a new multi-key variant of the LPR [LPR10]
where the size of the keys remain the same as in the single-key setting. Moreover, we put forward
a one-round interactive protocol which allows a set of parties to compute the product of their
individual secret keys.

1.3 Paper organization

In Section 2, we establish notation and provide the necessary definitions and assumptions for the
rest of the paper. In Section 3 we give the details on the components used to construct our scheme.
Finally, in Section 4, we present our leveled MKFHE scheme and study the error growth.

2 Preliminaries

2.1 Basic notation

We will work over the polynomial rings R := Z[x]/⟨xn+1⟩ and Rq := R/qR, where n is a power of 2
and q an odd integer. Single ring elements are written in lowercase (r ∈ R), vectors of ring elements
are written in bold lowercase (r ∈ Rd) and matrices are written in bold uppercase (B ∈ Rd1×d2).
Given a vector of ring elements r ∈ Rd we will denote the i-th element of the vector by r[i].
Given r ∈ R, we will write [r]q to denote the reduction modulo q of each of the coefficients of the
polynomial r. This reduction is done to the integers in the interval (− q

2 ,
q
2 ]. The same notation will

be used for vectors of polynomials in Rd to mean the reduction of each coefficient of each polynomial



in the vector. The infinity norm of a ring element r =
∑n−1

i=0 rix
i ∈ R is defined as ∥r∥ = maxi |ri|

and the infinity norm of a vector of ring elements r ∈ Rd is defined as ∥r∥ = maxi ∥r[i]∥. The
expansion factor γR of R is defined as γR = max{∥a · b∥/∥a∥∥b∥ : a, b ∈ R}. We will make use of
the following polynomial functions over Rn

q :

Powersof2 :Rn
q −→ Rn·⌈log2 q⌉

q BitDecomp :Rn
q −→ Rn·⌈log2 q⌉

q

p 7→ (p, 2p, . . . , 2⌊log2 q⌋p)

⌈log2 q⌉∑
i=0

2i · ui 7→ (u0, . . . ,u⌊log2 q⌋)

For the rest of the paper, λ denotes the security parameter, χ denotes the error distribution over
Rq, B will be the upper bound on the errors sampled from χ, d = ⌈log2 q⌉, and N will correspond
to the number of parties participating in the protocol.

2.2 Definitions

Definition 1 (Decisional RLWE problem). For security parameter λ, let f(x) = xn+1 where
n = n(λ) is a power of 2. Let q = q(λ) ≥ 2 be an integer. Let R = Z[x]/⟨xn+1⟩ and Rq = R/qR. Let
χ = χ(λ) be a distribution over R. The decisional RLWEn,q,χ problem is to distinguish the following
two distributions: In the first distribution, one samples (ai, bi) uniformly at random from R2

q. In
the second distribution, one samples s← Rq uniformly and then samples (ai, bi = ai · s+ ei) ∈ R2

q

by sampling ai ← Rq uniformly and ei ← χ.
The decisional RLWEn,q,χ assumption is that the RLWEn,q,χ problem is infeasible.

Definition 2 (Multi-key FHE encryption scheme).

– Setup: pp ← Setup(1λ). Takes the security parameter and outputs the public parameters for
the rest of the algorithms.

– Key generation: (sk, pk)← KeyGen(pp). Outputs a pair of secret and public keys.

– Encryption: ct← Enc(pk, m). Encrypts a plaintext m ∈M and outputs a ciphertexts c ∈ C.
– Decryption: m ← Dec({ski}i∈[N], ct). Given a ciphertext encrypted under the secret keys
{ski}i∈[N ] outputs a plaintext m ∈ M. This procedure is normally done using one round
threshold distributed decryption:

• pi ← PartDec(ski, ct). On input a ciphertext ct encrypted under possibly many different
secret keys it outputs a partial decryption pi.

• m← FinDec(p1, . . . , pN). On input N partial decryptions, it outputs a plaintext m ∈M.

– Evaluation: ct← Eval(C, (ct1, . . . , ctN), {pki}i∈[N]). Given a circuit C, a tuple of ciphertexts
(ct1, . . . , ctN ) and the corresponding public keys {pki}i∈[N ] outputs a ciphertext ct.

Moreover, a MKFHE scheme should satisfy the following properties:

– Correctness: Let (ct1, . . . , ctN ) be a collection of ciphertexts such that Dec({ski}i∈[N], ctj) =
mj for 1 ≤ j ≤ N . Let C be a circuit and ct ← Eval(C, (ct1, . . . , ctN), {pki}i∈[N]). Then, we
say that the corresponding MKFHE scheme is correct if

Dec({ski}i∈[N], ct) = C(m1, . . . ,mN )

with overwhelming probability.

– Compactness: Let ct ← Eval(C, (ct1, . . . , ctN), {pki}i∈[N]). We say that the corresponding
MKFHE scheme is compact if there exists a polynomial P such that |ct| ≤ P (λ,N). That is,
the size of an evaluated ciphertext is independent of the size of the circuit being evaluated.



2.3 Assumptions

– Circular Security. In order to perform relinearization in our leveled MKFHE scheme and
avoid circular security, each party would need to generate a secret key for each level of the
circuit and produce masks of those keys (see Section 3.3) using a public key generated from the
secret key of the previous level. For the sake of clarity and simpler notation, we have decided
against generating multiple secret keys for each party, and we will allow each party to use a
single secret key for all levels of the circuit, therefore assuming circular security. Moreover,
since our relinearization keys consists of a mask of secret keys, we are assuming that publicly
sharing these keys does not compromise security. As mentioned in [FV12], this is a weak form
of circular security.

– CRS model. We work over the CRS model. That is, the parties have a common vector
of polynomials in Rq which allows them to compute the global public key and the global
relinearization key.

– Semi-honest model. We work in the semi-honest model, that is, we assume that all parties
and the public server follow the specifications of the protocol.

3 Building blocks

In this section we detail the building blocks that we will use to construct our MKFHE scheme.
Our starting point is a single-key encryption scheme which is additive homomorphic on its keys
if we assume the CRS model. That is, given a suitable CRS, the sum of public keys is a valid
public key and the same happens with the secret keys. Our construction can be instantiated with
any scheme with this property. The second technique that we will use is called relinearisation (or
key-switching) which was first introduced in [BV13]. Relinearisation allows us to switch from a
ciphertext of size 3 to a ciphertext of size 2 both decrypting to the same plaintext. This is the key
technique that allows the size of the ciphertexts to stay the same during multiplication. Finally,
the last building block that we need is a way for two different parties i and j with secret keys si
and sj to obtain approximately Powersof2 (sisj).

3.1 Single-key encryption scheme

We will use the LPR encryption scheme [LPR10] as our single-key encryption scheme. We present
it as it is done in [FV12]. Recall that we work over the polynomial ring Rq = R/qR, where
R = Z[x]/⟨xn + 1⟩, n is a power of 2 and q an odd integer. Also, recall that χ denotes the error
distribution over Rq.

– Secret Key Generation: sk ← LPR.SecretKeyGen(1λ). Sample the secret key sk = s← χ.
– Public Key Generation: pk ← LPR.PublicKeyGen(sk). Sample a polynomial a ← Rq uni-

formly at random, an error e← χ from the error distribution, and set the public key to be

pk = ([−(a · s+ e)]q , a) = (b, a) ∈ R2
q .

– Encryption: ct ← LPR.Enc(pk, m). Sample u ← χ, errors e1, e2 ← χ from the error distribu-
tion and set the encryption of m ∈ R2 to be

ct =

([
b · u+ e1 +

⌊q
2

⌋
·m
]
q
, [a · u+ e2]q

)
∈ R2

q

– Decryption: m ← LPR.Dec(sk, ct). Given a ciphertext ct = (c0, c1) and the corresponding
secret key s we can recover the plaintext by

m =

[⌊
2 · [c0 + c1 · s]q

q

⌉]
2

.



Observe that this is equivalent to first computing

m̂ = [c0 + c1 · s]q

and then for each coefficient i of m̂ check if it is closer to 0 or to
⌊
q
2

⌋
. In the former set m[i] = 0

and in the latter m[i] = 1.

3.2 Multi-key encryption scheme

In this section we transform the scheme presented in 3.1 to a multi-key encryption scheme. The
key property used is the fact that the LPR scheme is additive homomorphic on its keys (if we
assume the CRS model).

– Setup: LMFV.Setup(1λ). A third trusted party samples a ← Rq uniformly at random and
shares it with the N parties participating in the protocol.

– Secret key generation: LMFV.SecretKeyGen(1λ). Each party i samples its secret key si ← χ
from the error distribution.

– Public key generation: LMFV.PublicKeyGen(sk). Each party samples an error ei ← χ and
sets its public key as pki = ([−(a · si + ei)]q , a). Then, using all the individual public keys
each party can compute the global public key

pk =

(
N∑
i=1

pki[0], a

)
= ([−(a · s+ + e+)]q , a) ∈ R2

q ,

where s+ =
∑N

i=1 si and e+ =
∑N

i=1 ei.
– Encryption: ct← LMFV.Enc(pk, m) = LPR.Enc(pk, m). Encryption is the same as the single-key

setting but using the global public key pk instead of the individual public keys pki.
– Decryption: m ← LMFV.Dec(sk, ct). Since no party should have the global secret key s+,

decryption is done by a standard secret sharing protocol. That is, given a ciphertext ct each
party i computes the partial decryption mi = c0+ c1si and secret-shares it with the rest of the
parties. Once this is done, the parties can easily recover c0+c1s+ and obtain the corresponding
plaintext.

3.3 Relinearisation

Relinearization (or key-switching) is a very powerful technique which allows us to change the key
under which a plaintext is encrypted without the need of decryption. This tool was introduced in
[BV11a] to obtain the first homomorphic encryption scheme based only on the learning with errors
(LWE) assumption. We will explain relinearization directly within the context of our construction.

Suppose that ct1, ct2 ∈ R2
q are two ciphertexts produced by the scheme LMFV. In section 4.2 we

will see that when we compute the multiplication of ct1 and ct2 we obtain a ciphertext ctmult ∈ R3
q

which can be decrypted by computing ⟨ctmult, (1, s+, s
2
+)⟩. This is a problem since the size of the

ciphertext has increased from 2 ring elements to 3 ring elements and it will keep increasing each
time that we do a multiplication. Fortunately, using relinearization we are able to construct another
ciphertext ct′mult which encrypts the same plaintext as ctmult but which is of size 2 and can be
decrypted by computing ⟨ct′mult, (1, s+)⟩. In order be able to compute ct′mult the parties will need
to generate auxiliary information, the relinearization keys. Informally, the relinearization key of
party i consists of a mask of Powersof2

(
s2i
)
. Using the individual keys of each party we are able

to obtain the global relinearization key which consists of maks of Powersof2
(
s2+
)
. The careful

reader will have realized that in order to obtain the global relinearization key we need something
more than the individual relinearization keys of the parties. Indeed, what we need is a mask of
Powersof2 (sisj) for all parties i > j.



3.4 The CDKS scheme

In order for two different parties to obtain Powersof2 (sisj) we will use the (basic) CDKS scheme
which consists of the following three algorithms.

1. Setup: CDKS.Setup(1λ). Samples a uniformly random vector a← Rd
q

2. Key Generation: CDKS.KeyGen(a). Samples the secret key s ← χ. Sample an error vector
e← χd and set the public key as b = [−a · s+ e]q in Rd

q .
3. Encryption: CDKS.UniEnc(µ; s). For an input plaintext µ ∈ R, generate a ciphertext D =

(d0|d1|d2) ∈ Rd×3
q as follows:

– Sample r ← χ
– Sample d1 ← Rd

q , and set d0 = [−d1 · s+ e1 + Powersof2 (r)]q
– Sample e2 ← χd and set d2 = [a · r + e2 + Powersof2 (µ)]q.

Using CDKS, we can obtain public information that allows two parties i and j to obtain Powersof2 (sisj).
To do so, party i needs to encrypt its secret key si and publish

Di = CDKS.UniEnc(si, si) = (di,0 | di,1 | di,2).

Once this is done, party i can take the public key bj of party j and compute

ki,j,0[z] = ⟨BitDecomp (bj [z]) , di,0⟩, ki,j,1[z] = ⟨BitDecomp (bj [z]) , di,1⟩, ki,j,2 = di,2

to obtain the matrix

Ki,j = (ki,j,0 | ki,j,1 | ki,j,2) ∈ Rd×3
q .

Now notice that Ki,j · (1, si, sj) ≈ Powersof2 (sisj) . In section 4.1 we will explain how two parties
can use Ki,j to add Powersof2 (sisj) to the evaluation key.

4 Our leveled MKFHE encryption scheme

4.1 Adding homomorphic capabilities

To provide homomorphic capabilities to our scheme LMFV we will use relinearization (see 3.3).
To do this, each party needs to compute their individual relinearisation keys which, in our case

are:

rlki =
([
−(a · si + ei) + Powersof2

(
s2i
)]

q
,a
)
∈ Rd×2

q ,

where a ∈ Rd
q is sampled uniformly at random and it is common for all parties and ei ∈ Rd

q is
sampled from the error distribution. As we did with the public key, the parties should find a way
to compute the global relinearisation key:

ˆrlk =

 N∑
i=1

rlki[0] + 2 · Powersof2

∑
i<j

sisj

 ,a

 =
([
−(a · s+ + erlk) + Powersof2

(
s2+
)]

q
,a
)
∈ Rd×2

q ,

where erlk =
∑N

i=1 ei The key ˆrlk will allow us to go from a degree 2 ciphertext (c0, c1, c2) to a
degree 1 ciphertext (c′0, c

′
1). Indeed if we set

c′0 =
[
c0 + ⟨ ˆrlk[0],BitDecomp (c2)⟩

]
q
, c′1 =

[
c1 + ⟨ ˆrlk[1],BitDecomp (c2)⟩

]
q

we get

c′0 + c′1 · s+ = c0 + ⟨−(a · s+ + erlk) + Powersof2
(
s2+
)
,BitDecomp (c2)⟩+ c1 · s+ + ⟨a · s+,BitDecomp (c2)⟩ mod q

= c0 + c1 · s+ + c2 · s2+ − ⟨erlk,BitDecomp (c2)⟩ mod q.



Notice however, that ˆrlk cannot be directly computed from the partial evaluation keys rlki since

we require the term Powersof2
(∑

i<j sisj

)
. For this, we will use the technique explained in 3.4.

First, each party i needs to compute Ki,j using Di and bj. Once this is done, each party i needs
to publish

ki,j,0 + ki,j,1si ∀j > i and kj,i,2si ∀j < i.

Then the server can compute

ki,j,0 + ki,j,1si + ki,j,2sj ≈ Powersof2(sisj) ∀ i < j.

Unfortunately, this idea leads to an insecure system since any adversary have both ki,j,2sj and
ki,j,2 leaking sj for example. To fix this issue we need to introduce suitable errors. In particular,
each party i publishes

ki,j,0 + ki,j,1si + 2ei,j ∀j > i and kj,i,2si + 2e′i,j ∀j < i.

Then the server can compute

ki,j,0 + ki,j,1si + ki,j,2sj + 2(ei,j + e′i,j) ≈ Powersof2(sisj) ∀ i < j,

In the next section we will see that there is no need to publish all Ki,j, only kj,i,2si so we will not
need to mask ki,j,0 + ki,j,1si.

4.2 Leveled multi-key homomorphic encryption scheme

In this section, we present our leveled multi-key FHE scheme. It consists of adapting the LPR
encryption scheme to the multi-key setting, together with the necessary modifications needed to
introduce global keys and our relinearization methodology. More precisely, our leveled multi-key
FHE encryption scheme consists of the following algorithms:

– Setup: LMFV.Setup(1λ). A third trusted party samples crt← Rd+1
q and shares it with the N

parties participating in the protocol. Each party sets a = crt[0] and a = crt[1 : d].
– Secret key generation: LMFV.SecretKeyGen(1λ). Each party i samples its secret key si ← χ

from the error distribution.
– Public key generation: LMFV.PublicKeyGen(sk). Each party samples an error ei ← χ and

sets its public key as pki = ([−(a · si + ei)]q , a). Then, using all the individual public keys
each party can compute the global public key

pk =

(
N∑
i=1

pki[0], a

)
= ([−(a · s+ + e+)]q , a) ∈ R2

q ,

where s+ =
∑N

i=1 si and e+ =
∑N

i=1 ei.
– Relinearisation key generation: LMFV.RelinKeyGen(1λ). This consists of the following

steps.
1. Each party i samples ei, e

′
i ← χd, a′i ← Rd and uses the CRS to compute its individual

relinearisation keys and the public key of the basic CDKS scheme:

rlki =
([
−(a · si + ei) + Powersof2

(
s2i
)]

q
,a
)
∈ Rd×2

q , bi = [−a′i · si + e′i]q .

2. Each party i runs UniEnc(si; si) to obtain Di = (d0,i|d1,i|d2,i).
3. Each party i computes

Ki,j = (ki,j,0 | ki,j,1 | ki,j,2) ∀j > i,

and publishes ki,j,2 ∀j > i.



4. Each party i samples ei,j ← χd for each j < i, and then it publishes

ki,j := ki,j,0 + ki,j,1si ∀j > i and k′
i,j := kj,i,2si + 2ei,j ∀j < i.

5. Finally, the relinearization key can be computed as follows:

rlk =

 N∑
i=1

rlki[0] + 2 ·
N∑

j=i+1

(ki,j + k′
i,j)

 ,a

 =
([
−(a · s+ + e

r̂lk
) + Powersof2

(
s2+
)
+ er

]
q
,a
)
,

where e
r̂lk

=
∑N

i=1 ei and er = 4
∑N

i=1

∑N
j=i+1 ei,j.

– Encryption: ct← LMFV.Enc(pk, m) = LPR.Enc(pk, m). Encryption is the same as the single-key
setting but using the global public key pk instead of the individual public keys pki.

– Decryption: m ← LMFV.Dec(sk, ct). Since no party should have the global secret key s+,
decryption is done using a 1-round protocol. Each party computes a partial decryption ci of c
and then it shares it with all the other parties. Once this step of the protocol is finished, the
parties can recover m =

∑
i ci.

– Addition: ctadd ← LMFV.Add(ct1, ct2). The addition of two ciphertext ct1 and ct2 is ctadd =
(c0, c1), where

c0 = [ct1[0] + ct2[0]]q

c1 = [ct1[1] + ct2[1]]q

– Multiplication: ctmult ← LMFV.Mult(rlk, ct1, ct2). First compute the multiplication of two
ciphertext ct1 and ct2 as c̃tmult = (c0, c1, c2), where

c0 = [2 · ct1[0]ct2[0]]q
c1 = [2 · (ct1[0]ct2[1] + ct1[1]ct2[0])]q

c2 = [2 · ct1[1]ct2[1]]q .

Then call the relinearisation routine and return ctmult ← LMFV.Relin(rlk, c̃tmult)
– Relinearisation: ctrlk ← LMFV.Relin(rlk, ct). Given a degree two ciphertext ct = (c0, c1, c2)

write

c′0 = [c0 + ⟨rlk[0],BitDecomp (c2)⟩]q , c′1 = [c1 + ⟨rlk[1],BitDecomp (c2)⟩]q
and return the degree 1 ciphertext ctrlk = (c′0, c

′
1).

4.3 Error growth

In this section, we present bounds on the parameters of LMFV which enables our scheme to eval-
uate a multiplicative circuit of bounded depth. We back this result by providing bounds on the
noise introduced by encryption and multiplication (taking into account the errors introduced by
relinearization). Overly generalizing, the noise of our construction can be understood as the noise
of the base single-key encryption scheme changing the norm of a single key ∥s∥ by the norm of the
global secret key ∥s+∥ and the norm of a single error ∥e∥ by the norm of the global error ∥e+∥.

Noise after encryption Consider a ciphertext ct = (c0, c1)← LMFV.Enc(pk, m). Notice that after
the first step of the decryption process we have

[c0 + c1 · s+]q = t ·m− e+u+ ec0 + ec1s+.

Therefore, the error after encryption is ect = −e+u+ ec0 + ec1s+ which can be bounded as follows:

∥ect∥ ≤ ∥ec0∥+ ∥ec1s+∥+ ∥e+u∥ ≤ B + γR∥ec1∥∥s+∥+ γR∥e+∥∥u∥ ≤ B + 2γRB
2N.

For correct decryption we need to impose that ∥ect∥ ≤ q
4 . This proves the following lemma, which

summarizes the correctness of our encryption scheme:



Lemma 1. Let q, B, γR and N be as defined in Section 2.1. If

B + 2γRB
2N <

q

4
,

then, we can decrypt correctly a ciphertext produced by LMFV.Enc.

Noise after addition Let (c0, c1) ← LMFV.Add(ct1, ct2) be the ciphertext corresponding to the
homomorphic addition of the ciphertexts ct1 and ct2. Then we have that

[c0 + c1 · s+]q = t · (m1 +m2)− e+(u1 +u2)+ e1c0 + e2c0 +(e1c1 + e2c1)s+ = t · (m1 +m2)+ ect1 + ect2 ,

and we can bound the error after addition eadd = ect1 + ect2 by ∥eadd∥ ≤ 2B + 4γRB
2N . Now let

us assume that we want to evaluate an arithmetic circuit of L levels consisting of fan-in 2 addition
gates. At level 1 the error of the addition is ∥eadd∥, at level 2 the error is 2∥eadd∥, at level 3 the
error is 4∥eadd∥ and so on. Therefore, if we want to evaluate a circuit of L levels we need to impose
that

∥eadd∥ <
q

2L+1

or equivalently that

∥ect∥ <
q

2L+2
.

This proves the following lemma.

Lemma 2. Let q, B, γR, d, and N be as defined in Section 2.1. If

B + 2γRB
2N <

q

2L+2
,

then, the scheme LMFV can evaluate a depth L arithmetic circuit consisting of fan-in two addition
gates.

Noise after multiplication (without relinearisation) To study the noise after multiplication,
we will make use of the analysis done by FV for the single-key case. Within the context of our
paper, this analysis can be summarized in the following lemma.

Lemma 3. Let cti ← LPR.Enc(pk, mi) for i = 1, 2 be two ciphertexts, with [cti(s)]q =
⌊
q
2

⌋
·mi+ecti

and ∥ecti∥ < E <
⌊
q
2

⌋
, then the error after multiplying ct1 and ct2 can be bounded by

4γRE(γR∥s∥+ 1) + 8γ2
R(∥s∥+ 1)2.

Given this result, it is very easy to perform the analysis of the error for the multi-key case. We
only need to take into account that we are not working with a single key s but with the collective
key s+. If we do so, we get the following lemma.

Lemma 4. Let cti ← LMFV.Enc(pk, m) for i = 1, 2 be two ciphertexts, with [cti(s+)]q =
⌊
q
2

⌋
·mi +

ecti and ∥ecti∥ < E < t
2 , then the error after multiplying ct1 by ct2 can be bounded by

4γR(γRNB(E + 2NB + 4) + E + 2γR).

Noise introduced by relinearisation After relinearisation we have that

c′0 + c′1 · s+ = c0 + ⟨−(a · s+ + erlk) + Powersof2
(
s2+
)
+ er,BitDecomp (c2)⟩+ c1 · s+ + ⟨s+ · a,BitDecomp (c2)⟩

= c0 + c1s+ + c2s
2
+ + ⟨er − erlk,BitDecomp (c2)⟩.

Recall that the error in the relinearisation key is given by er = 4
∑N

i=1

∑N
j=i+1 ei,j which can be

upper bounded as follows:



∥er∥ ≤ 4

N∑
i=1

N∑
j=i+1

∥ei,j∥ ≤ 4

N∑
i=1

N∑
j=i+1

·B = 2 ·B · (N − 1) (4.1)

Therefore, the error after relinearisation is bounded as follows:

∥⟨er−erlk,BitDecomp (c2)⟩∥ ≤
d∑

i=1

∥er[i]∥+∥erlk[i]∥ ≤
d∑

i=1

2·B·(N−1)·N+N ·B = d·N ·B·(2·N−1),

(4.2)

where we have used the bound in 4.1 and ∥erlk[i]∥ ≤
∑N

j=1 ∥ej [i]∥ ≤ N ·B.

Noise after multiplication (with relinearisation) Using the bound on the multiplication
noise given in 4 and the bound on the relinearisation noise obtained in (4.2) we can find a bound
for the error after multiplication followed by relinearisation. To simplify the analysis we will use
approximations on the obtained bounds. Recall that the error after encryption is ≈ 2γRB

2N . We
will assume that when using 4 we have γRE > NB. This allows us to approximate the error after
multiplication by 4γ2

RNBE. With these approximations we see that after a single multiplication
(l = 1) we have an error of 8γ3

RN
2B3. If we multiply two ciphertexts at level 1 we get an error of

32γ5
RN

3B4 and so on. This means that at level l of multiplication we have a multiplication error
of ≈ (2δR)

2l+1N l+1Bl+2. Doing the same analysis for the relinearisation error we see that it is
≈ 22l−1γ2l−2

R N l+1Bld. Therefore the error at level l after multiplying and performing relinearisation
is

≈ (2δR)
2l+1N l+1Bl+2 + 22lγ2l−2

R N l+1Bld.

To decrypt we need this error to be smaller than q
4 , imposing this condition we obtain the following

bound
N l+1γ2l−2

R Bl(2γ3
RB

2 + d) <
q

22l+2
.

This proves the following theorem.

Theorem 1. Let q, B, γR, d, and N be as defined in Section 2.1. If

NL+1γ2L−2
R BL(2γ3

RB
2 + d) <

q

22L+2
.

then, the scheme LMFV can evaluate a depth L arithmetic circuit consisting of fan-in two multipli-
cation gates.
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