
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN XXXX-XXXX, Vol. 0, No. 0, pp. 1–24. DOI:XXXXXXXX

SIPFA: Statistical Ineffective Persistent Faults
Analysis on Feistel Ciphers

Nasour Bagheri1,2 , Sadegh Sadeghi3,4 , Prasanna Ravi5 , Shivam
Bhasin5 and Hadi Soleimany6

1 CPS2 lab., Shahid Rajaee Teacher Training University, Tehran, Iran
2 School of Computer Science (SCS), Institute for Research in Fundamental Sciences

(IPM),Tehran, Iran
nbagheri@sru.ac.ir

3 Department of Mathematics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan
45137-66731, Iran

4 Research Center for Basic Sciences and Modern Technologies (RBST), Institute for Advanced
Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran

s.sadeghi@iasbs.ac.ir
5 Temasek Laboratories, NTU, Singapore

prasanna.ravi@ntu.edu.sg,sbhasin@ntu.edu.sg
6 Cyber Research Center, Shahid Beheshti University, Tehran, Iran

h_soleimany@sbu.ac.ir

Abstract.
Persistent Fault Analysis (PFA) is an innovative and powerful analysis technique
in which fault persists throughout the execution. The prior prominent results on
PFA were on SPN block ciphers, and the security of Feistel ciphers against this
attack has received less attention. In this paper, we introduce a framework to
utilize Statistical Ineffective Fault Analysis (SIFA) in the persistent fault setting
by proposing Statistical Ineffective Persistent Faults Analysis (SIPFA) that can be
efficiently applied to Feistel ciphers in a variety of scenarios. To demonstrate the
effectiveness of our technique, we apply SIFPA on three widely used Feistel schemes,
DES, 3DES, and Camellia. Our analysis reveals that the secret key of these block
ciphers can be extracted with a complexity of at most 250 utilizing a single unknown
fault. Furthermore, we demonstrate that the secret can be recovered in a fraction of
a second by increasing the adversary’s control over the injected faults. To evaluate
SIPFA in a variety of scenarios, we conducted both simulations and real experiments
utilizing electromagnetic fault injection on DES and 3DES.
Keywords: Fault Attack · Persistent Fault Analysis · Statistical Ineffective Fault
Analysis · Feistel Ciphers · DES · 3DES · Camellia

1 Introduction
Fault attacks are a powerful type of physical attacks that can jeopardize the security of
cryptographic systems significantly. Such attacks rely on an attacker’s ability to inject a
fault into the target device using a variety of tools such as clock glitches, Electromagnetic
(EM) pulses, laser beam, etc. The faulty output (or some information about it) can be
used to deduce critical information about the cryptographic algorithm and, ultimately, the
secret key.

Starting with the seminal work by Boneh et al. on RSA [BDL97], numerous studies
have assessed the security of cryptographic implementations against a wide range of fault

Licensed under Creative Commons License CC-BY 4.0.

https://doi.org/XXXXXXXX
https://orcid.org/0000-0002-6818-5342
https://orcid.org/0000-0002-1125-6867
https://orcid.org/0000-0003-0201-3705
https://orcid.org/0000-0002-6903-5127
https://orcid.org/0000-0002-3961-4988
mailto:nbagheri@sru.ac.ir
mailto:s.sadeghi@iasbs.ac.ir
mailto:prasanna.ravi@ntu.edu.sg, sbhasin@ntu.edu.sg
mailto:h_soleimany@sbu.ac.ir
http://creativecommons.org/licenses/by/4.0/

2 SIPFA: Statistical Ineffective Persistent Faults Analysis on Feistel Ciphers

attacks. According to the duration of the fault, the generated faults can be categorized
into three classes. The transient fault has a temporary effect on the device. Most of the
fault attacks proposed in the literature fall in this category. One can mention Differential
Fault Analysis (DFA) [BS97], Fault Sensitivity Analysis (FSA) [LSG+10], Differential Fault
Intensity Analysis (DFIA) [GYTS14], Safe-Error Analysis (SEA) [YJ00], Ineffective Fault
Analysis (IFA) [Cla07], Statistical Fault Analysis (SFA) [FJLT13], Statistical Ineffective
Fault Analysis (SIFA) [DEK+18], and so on. The permanent fault is a second sort of fault
that has irreversible consequences that last during the lifetime of the device. Another sort
of fault is the persistent fault, which persists but disappears when the target device is
reset.

1.1 Previous Works
Schmidt et al. [SHP09] introduced the term “permanent” fault when they demonstrated
an attack on AES using ultraviolet light to erase the non-volatile memory. In the follow-up
work [ZLZ+18], the Persistent Fault Analysis (PFA) technique was presented at CHES 2018,
which is a novel and powerful analysis technique in which faults persist throughout the
execution. PFA has several advantages over the previous fault attacks. The fault does not
have to be injected at a particular time-synchronized to the encryption process. Additionally,
PFA is capable of circumventing the majority of redundancy-based countermeasures for
AES, such as detection- or infection-based countermeasures [ZLZ+18]. The typical target
for the persistent fault is memory holding, for example, the Sbox look-up table. The main
shortcoming of the original PFA is that it assumes that the attacker is aware of the location
and the value of the fault, which is hard to achieve in practice. Zhang et. Al. [ZZJ+20]
demonstrated that the requirement for the precise knowledge of the fault value can be
relaxed. However, their solution is only applicable to a single fault and does not work in
the case of multiple faults where the attacker does not know the faulty values. Inspired
by SFA, Engels et al. [ESP20] presented Statistical Persistent Fault Analysis (SPFA) to
perform PFA in the presence of multiple faults. Soleimany et al. proposed a framework
to apply multiple persistent faults analysis without making any assumptions about the
knowledge of faulty values [SBH+21].

1.2 Motivation
Despite significant developments in the application of PFA to SPN ciphers, there is little
study on its influence on Feistel ciphers. It appears that applying it to Feistel ciphers
is challenging. Each round of an SPN cipher is composed of three layers: a non-linear
(substitution) layer, a linear (permutation) layer, and a round key addition. In the majority
of SPN ciphers, bijective Sboxes are applied in parallel to the entire state in the substitution
layer. As a result, an unbiased distribution in the output of Sboxes caused by persistent
fault can result in an unbiased distribution in the rounds’ outputs. This fact has been
used directly in prior works to perform key recovery on SPN ciphers.

The Feistel ciphers divide the input state of the round X into two equal halves (XL, XR).
In comparison to SPN, the round function of a Feistel cipher is applied to only half of
the state Fskr

(XL), where skr denotes the r-th round’s subkey. The result Fskr
(XL) is

then XORed with the other half of the state XR. It means that the output of each round
of Feistel ciphers is masked by the output of the preceding round, thereby destroying
the statistical characteristic in the output of rounds employed in PFA. Specifically, the
presence of an impossible value in the Sbox output does not imply the presence of an
impossible value in the ciphertext. The reason for this is self-evident: first, the substation
layer affects only half of the state. Second, the output of Sboxes is masked by unknown
random values from the preceding round. As a result, techniques that rely on the use of
impossible values will fail to succeed in case of Feistel ciphers. This is the reason that the

N. Bagheri et al. 3

proposed PFA techniques in [ZLZ+18, ZZJ+20, ESP20, SBH+21] are unable to recover
the key from the Feistel ciphers.

Caforio and Banik [CB19] presented a version of PFA on DES. However, they assumed
that the adversary had access to both faulty and fault-free ciphertexts in their study,
which is comparable to DFA attacks. Furthermore, if there is a detection/countermeasure
mechanism on the implemented cipher, the suggested attack would fail. PFA’s two
significant advantages are that it requires only faulty ciphertexts and it is capable of
bypassing detection-based defenses. As a result, the proposed attack in [CB19] has a very
limited impact. Due to this limitation, we investigate a statistical method for extending
PFA’s application to Feistel cipher s in the context of ciphertext-only attacks in the
presence of popular countermeasures.

1.3 Our Contributions
Statistical Ineffective Fault Attacks (SIFA) [DEK+18] is a new type of fault attack that
combines the concepts of Statistical Fault Attack (SFA) [FJLT13] and Ineffective Fault
Attacks (IFA) [Cla07]. SIFA makes use of statistical information from instances in which
the injected fault does not influence the output. If the transient fault has a temporary effect,
SIFA can easily use the statistical distribution of an intermediate value impacted by the
transient fault. However, when a persistent fault exists, applying SIFA can be challenging
since the persistent fault affects not just one intermediate value, but all intermediate values
in different rounds. This paper shows how to adopt the SIFA as a powerful method to
tackle the challenges of applying PFA to Feistel ciphers. SIPFA has many of the same
advantages as original PFA, such as the ability to circumvent detection- and infection-based
countermeasures, and it can be used in the ciphertext-only scenario. Moreover,Pan et
al. [PZRB19] demonstrated that masking countermeasures can be broken at any masking
order, similar to SIFA which can overcome masked implementations [DEG+18]. Hence,
SIPFA can also be applied in the presence of masking countermeasures. In comparison to
SIFA, SIPFA has the following advantages:

• Dummy operations and countermeasure shuffling can affect SIFA’s performance, but
they have no effect on SIPFA’s.

• A noisy setup has a stronger impact on SIFA compared to SIPFA, because SIFA
cannot detect missed faults.

Our novel techniques enable the extension of PFA’s applicability to several types of
Feistel ciphers.We explore two distinct scenarios depending on whether the attacker is
aware of the fault value or not. Then we apply our techniques to DES [S+77, DES99],
3DES, and Camellia [AIK+00]. To the best of our knowledge, this is the first use of PFA on
these ciphers that can be carried out in the ciphertext-only attack scenario in a reasonable
amount of time, even in the presence of detection- and infection-based countermeasures1.
DES is the most well-known example of a Feistel cipher selected as a standard by the
US government in 1976. Due to the fact that the key size of the original DES cipher was
insufficient for the majority of applications, Triple DES is specified in multiple standards,
including ISO/IEC and NIST. In the literature, triple DES is sometimes abbreviated
as TDES, TDEA, and 3DES. 3DES has been widely employed in practical applications,
although it has been replaced by other ciphers due to the presentation of the Sweet32
attack [BL16] and deprecated by NIST in 2017. Camellia is an ISO/IEC standard and
CRYPTREC-portfolio cipher developed in collaboration between NTT and Mitsubishi.

Table 1 gives a summary of our results as well as a comparison with the relevant
work [CB19]. It demonstrates that a single unknown persistent fault is sufficient to

1The source codes for our simulations in C language are publicly available at https://github.com/
sadeghi87/SIPFA.git

https://github.com/sadeghi87/SIPFA.git
https://github.com/sadeghi87/SIPFA.git

4 SIPFA: Statistical Ineffective Persistent Faults Analysis on Feistel Ciphers

Table 1: The comparison between PFA on DES, 3DES and Camellia-128/192/256 under
different assumptions, where BDC stands for by-pass Detection Countermeasures

Algorithem Attack Scenario Unknown Fault # Fault BDC Time Data Ref.

DES
Chosen Plaintext ✗ 8 ✗ 220 656 [CB19]
Ciphertext only ✓ 8 ✓ neg. 3120 Section 4.1
Ciphertext only ✗ 1 ✓ 242.97 2574

3DES Ciphertext only ✓ 8 ✓ neg. 5176 Section 4.2
Ciphertext only ✗ 1 ✓ 242.97 4255

Camellia-128 Ciphertext only ✓ 4 ✓ neg. 7240

Section 4.3
Ciphertext only ✗ 1 ✓ 249.49 7483

Camellia-192 Ciphertext only ✓ 4 ✓ neg. 7592
Ciphertext only ✗ 1 ✓ 249.67 7843

Camellia-256 Ciphertext only ✓ 4 ✓ neg. 7592
Ciphertext only ✗ 1 ✓ 250.08 7843

extract the master key of DES, triple DES (3DES), and versions of Camellia (Camellia-
128/192/256) in a reasonable amount of time (almost 250) that is feasible in light of current
technologies. If the attacker can inject eight controlled faults on the Sboxes of DES/3DES
or four controlled faults on the Sboxes of Camellia (all versions, i.e., Camellia-128/192/256),
the secret key can be extracted in a fraction of a second.

1.4 Outline

The remainder of this paper is structured as follows. Section 2 provides an overview of PFA
and the block ciphers analyzed in this paper. In Section 3, we describe a new technique
called SIPFA that enables the extension of the PFA algorithm to Feistel ciphers. Section 4
demonstrates the method’s adaptability by describing its applicability to DES, 3DES, and
Camellia in various scenarios. We present our simulation results in Section 5. We discuss
the practical aspects of SIPFA in Section 6 by describing our practical fault injection
experiments. Finally, in Section 7, we conclude.

2 Preliminaries

2.1 Notations

In this section, we introduce the notations used in this paper. We use b and k respectively to
denote the block length and the key length of a target Feistel cipher. K and C respectively
denote the master key and the ciphertext. n represents the total number of rounds of the
cipher, and the round number is denoted by r and appears as a subscript of the target
parameter, e.g., Xn−1 denotes the intermediate value X at the penultimate round. Given
that this study focuses on classic Feistels, L and R are used to refer to the left and right
parts of the state or ciphertext, respectively, and always appear in superscript of the
target parameter. For example, CL refers to the left part of the ciphertext C. Since we
may require N ciphertexts, we use j to distinguish them, e.g., Cj and (Cj)L respectively
denotes j-th ciphertext and its corresponding left part. The target cipher may have several
Sboxes, and the persistent fault may be injected into any of them. The number of distinct
Sboxes is denoted by ℓ, and a ciphertext produced under fault injection in i-th Sbox is
denoted by Ci. Hence, (Cj

i)L denotes the left part of the j-th ciphertext generated when
a fault is injected into the i-th Sbox. Each round r of the target cipher uses a subkey
denoted by skr.

N. Bagheri et al. 5

2.2 Statistical Ineffective Fault Attack (SIFA)
SIFA [DEK+18] is empowered by SFA [FJLT13] and IFA [Cla07] attacks simultaneously.
It is designed to take advantage of faulty encryptions in which the induced faults are
ineffective, and therefore the corresponding ciphertexts are always correct. The redundancy-
based countermeasures fail to identify, suppress, or infect this type of ciphertext. On the
other hand, although the effect of an ineffective fault is not visible in its output, this
does not rule out the possibility that it is leaking exploitable information. [DEK+18]
demonstrates that the majority of practical fault inductions, whether effective or not,
modify the target intermediate variable with a non-uniform probability distribution. SIFA
exploits a bias in a target value’s intermediate value over ineffective events. To apply a
key-recovery attack, the adversary obtains the distribution for the target intermediate value
by partially decrypting the ineffective ciphertexts for each key candidate. The adversary
then attempts to retrieve the correct key from a list of key candidates using a statistical
test. The statistical test is determined according to the attacker’s extent of control over
the injected fault. If the attacker is aware of the distribution of the faulty value, he can
rank the key candidates using LLR. If the attacker does not know the distribution of the
faulty intermediate value other than that it is biased over ineffective events, he can use
the SEI or Pearson’s chi-squared test. Given a large enough sample size of ineffective
ciphertexts, the correct key’s statistic is usually the highest.

2.3 Persistent Faults Analysis on SPN ciphers
Zhang et al. [ZLZ+18] considered an R-round word-oriented Substitution-Permutation
Network (SPN) cipher EK(P), which accepts two inputs: b-bit plaintext block P and
k-bit key K. SPN ciphers are constructed by repeatedly performing an invertible function
known as round R. Typically, the b-bit state X is composed of L words of the same size
m = b/L indicated by X[i] where 0 ≤ i ≤ L − 1. The j-th word input and output of the
substitution layer in the r-th round are denoted by xr[j] and zr[j], respectively. The j-th
word of ciphertext equals to C[j] = y[j] + skn[j], where skn[j] is the last round key’s j-th
word. Assume that the induced fault into the look-up table of Sbox modifies the value v
to the faulty value v∗ ̸= v. Thus, the value of v is missing from yn[j], while the value of
v∗ is supposed to occur twice as frequently in y[j]. While the probability distributions
of yn[j] and C[j] are uniform for the correct encryptions, y[j] and C[j] are not uniformly
in case of faulty encryption. Given some faulty ciphertexts, the adversary can count the
appearances of each of the possible values in C[j] for all 0 ≤ j ≤ L − 1. By utilizing a
sufficiently large number of ciphertexts N , it is possible to determine the minimal and
maximal number of counts for each word of the ciphertext, which are denoted by Cmin[j]
and Cmax[j], respectively. Given Cmin[j] is the value that is never observed in C[j], the
corresponding word of the last round key can be derived as skn[j] = Cmin[j] ⊕ v. Similarly,
if Cmax[j] is the value that occurs twice as frequently as other values, the j-th work of the
last round key can be retrieved as skn[j] = Cmax[j] ⊕ v∗. These methods are based on a
disputable assumption that the adversary is aware of the precise position and the value
of the fault. Zhang et al. followed the main idea proposed in the initial attack but used
Maximum Likelihood Estimation to derive the key in the absence of knowledge of the fault
location or faulty value [ZZJ+20].

2.4 Generalized Round of Feistel Ciphers
We consider a b-bit Feistel cipher E which includes n rounds. A round of this cipher is
depicted in Figure 1, where XL

r and XR
r respectively denote the left and the right half of

the input of the r-th round and:

6 SIPFA: Statistical Ineffective Persistent Faults Analysis on Feistel Ciphers

XL
r+1 = Fr(XL

r , skr) ⊕ XR
r , (1)

XR
r+1 = XL

r (2)

In general, the r-th round-function of such block cipher consists of three layers, as
shown in Figure 1, i.e., Fr,I as the input layer, S as nonlinear layer, and Fr,O as the output
layer. We assume that Fr,I is linear but do not have any restriction on Fr,O. Without the
loss of generality, we assume that the Sbox layer includes ℓ calls to S1, . . . , Sℓ. Some of
the Sboxes can be identical such as that of Camellia or they are all distinct Sboxes such as
that of DES. Furthermore, we make no assumption about the bijectivity of the Sboxes
when considering Feistel structure. We denote the input length of each Sbox by m. The
input and output of Fr,I are respectively denoted by xr and yr and the output of S is
denoted by zr. We denote the input and output of the i-th word of the Sbox layer, for
1 ≤ i ≤ ℓ, in the r-th round by yr[i] and zr[i], respectively. As a consequence, assuming
that Fr,I is a linear function, xn[i] = yn[i] ⊕ skn[i] can be determined from the ciphertext
C, where skn[i] is the last round key.

XL
r+1

XL
r

Fr

skr

XR
r+1

XR
r

Fr : The Round Function

xr Fr,I

skr

yr

Sl

· · ·

S1
zr Fr,O

Figure 1: Generalized round of a Feistel cipher

2.5 Target ciphers
This section introduces the block ciphers that will be analyzed in this paper.

2.5.1 DES Cipher

DES is a 64-bit Feistel cipher. The key is supposed to be 64 bits long, but only 56 of
them are utilized by the algorithm. The general structure of DES is composed of an initial
permutation, sixteen identical rounds, and a final permutation. The round function F
takes a 32-bit intermediate cipher word and a 48-bit round key as inputs. The F -function
consists of four steps:

1) Expansion: The expansion permutation E expands a 32-bit input to a 48-bit
output.

2) Key addition: The state is XORed with the 48-bit round key.

3) Substitution: The state is split into eight 6-bit blocks. Each block is sent into a
separate 6-to-4 Sbox, generating one 4-bit output.

4) Permutation: The fixed 32-bit to 32-bit permutation is applied to the state

The DES key schedule is a linear function that derives the round keys by selecting 48
of the master key’s 56 bits. We refer the interested readers to [S+77, DES99] for more
details.

N. Bagheri et al. 7

2.5.2 3DES Cipher

In the face of contemporary cryptanalytic techniques and super-computing capabilities,
the Data Encryption Standard’s 56-bit key is no longer deemed sufficient. Triple DES
(3DES), an extended variant of DES, provides a straightforward way to increase the key
size without requiring the design of a new block cipher. 3DES performs three iterations of
DES using three distinct keys of 56 bits each: K1, K2, and K3. The encryption algorithm
is defined as C = DESK3(DES−1

K2
(DESK1(M))), and the decryption is the inverse of

encryption: M = DES−1
K1

(DESK2(DES−1
K3

(C))).

2.5.3 Camellia Block Cipher

Camellia [AIK+00] is a 128-bit block cipher with a Feistel structure with a key size range of
128, 192, and 256. Camellia includes 18 rounds for keys with a 128-bit length and 24 rounds
for keys with 192- or 256-bit length. The process of encryption in the Camellia-128 (resp.
192/256-bit key) is as follows. The 128-bit plaintext M is first XORed with whitening
keys kw1||kw2 and then split into two 64-bit data XL

0 and XR
0 . Then, except for r = 6

and 12 (resp. r = 6, 12 and 18), the following operations are performed from r = 1 to 18
(resp. r = 1 to 24).

XL
r = XR

r−1 ⊕ F (XL
r−1, skr), XR

r = XL
r−1,

where skr is the r-th round key and Xr−1 is the input of the the r-th round. The following
operations are performed for r = 6 and 12 (resp. r = 6, 12, and 18):

XL
r = XR

r−1 ⊕ F (XL
r−1, skr), XR

r = XL
r−1

XL
r = FL(XL

r , kfr/3−1), Rr = FL−1(XR
r , klr/3).

Finally, using kw3||kw4 the 128-bit ciphertext C is calculated as C = (XR
18||XL

18) ⊕
(kw3||kw4) (resp. C = (XR

24||XL
24) ⊕ (kw3||kw4)).

The round function F includes three layers: a key-addition layer, a substitution
transformation layer S (non-linear part), and a diffusion layer P (linear part). Therefore,
the round function F for the r-th round is computed as

yr = XL
r−1 ⊕ skr, (3)

zr = S(Yr), (4)
wr = P (Zr), (5)

The nonlinear layer S is composed of four different s-boxes, S1, S2, S3, and S4. If we
demonstrate yr as 8-byte (y[1], y[2], y[3], y[4], y[5], y[6], y[7], y[8]), the output zr is computed
as

zr = S1(y[1]), S2(y[2]), S3(y[3]), S4(y[4]), S2(y[5]), S3(y[6]), S4(y[7]), S1(y[8]).
We refer the interested readers to [AIK+00] for the details.

3 Statistical Ineffective PFA on Feistel ciphers
3.1 Main Idea
Statistical Ineffective Fault Attack takes advantage of faulty encryptions in which the
induced faults are ineffective, and therefore the corresponding ciphertexts are always
correct. It is shown in [DEK+18] that most transient fault inductions cause the targeted
intermediate variable to shift into a new value with a non-uniform probability distribution.
The persistent fault does not affect a single intermediate value, but affects all intermediate

8 SIPFA: Statistical Ineffective Persistent Faults Analysis on Feistel Ciphers

values in all rounds. As a result, when a persistent fault exists, utilizing ineffective faults
should be done cautiously and after thorough analysis.

In contrast to first impressions, we demonstrate that ineffective faults can be leveraged to
overcome the difficulties associated with applying PFA to Feistel ciphers after comprehensive
investigation. In this section, we use the statistical characteristics of persistent faults to
apply PFA on Feistel ciphers, but rather than considering statistical characteristics across
all data we consider only those in which the fault is ineffective.

Let us assume that the inserted fault transforms the correct value Si(δi) = v into the
incorrect value v∗ = v ⊕ ∆i. If yr[i] = δi, for any r ∈ {1, . . . , n}, the ciphertext is also
affected by the fault with the probability 1, and the returned value is either an empty
string ⊥ or a random string ϕ, depending on the employed countermeasure. On the other
hand, if {y1[i], . . . , yn[i]} ∩ δi = ∅, it implies that the persistent fault is ineffective. As a
result, the device returned the correct ciphertext. We denote the ciphertext that is not
affected by the fault injected in the i-th Sbox by Ci.

If the round function makes a single call to the target Sbox per round, the rate of
ineffective events can be estimated based on Equation (6).

Πc = (1 − 2−m)n. (6)

If the Sbox-layer of the round contains t calls to a single Sbox, the rate of ineffective events
can be determined using Equation (7):

Πc = (1 − 2−m)t·n (7)

In a ciphertext only scenario, given N correct ciphertexts C1
i where 1 ≤ j ≤ N , the

following relation holds:

{y1
1 [i], . . . , yN

n [i]} ∩ δi = ∅ (8)

Equation (8) not only implies that there exist a bias in the value of y[i] over correct
ciphertexts (resulted in ineffective events) but also a bias in the value of x. The precise
relationship is determined by Fr,I . If xr[i] = yr[i] ⊕ skr[i], the following relation holds:

{x1
1[i], . . . , xN

n [i]} ∩ (δi ⊕ kn[i]) = ∅ (9)

We assume that the implementation of the target block cipher includes a countermeasure
based on the redundancy encryption in which different Sbox lookup tables are used (common
faulty Sbox naturally bypasses several redundancy scheme [ZLZ+18]). Depending on the
deployed countermeasure, i.e. detection-based or infection-based, the output value of
faulty computation is either an empty string ⊥ or a random string ϕ. In the case of
detection-based countermeasure, given N̂ queries, there exist Πc × N̂ correct ciphertext
that fulfill Eqs. (8) and (9). In the case of infection-based countermeasure, there exist
Πc × N̂ which satisfy Eqs. (8) and (9) but they are not distinguishable. The incorrect
ciphertexts (resulted in effective fault) satisfy Eqs. (8) and (9) with the probability of
2−m. As a result, for large values of N̂ , the distribution of xn[i] = δi ⊕ skn[i] retains a
bias that can be exploited to perform key recovery using a statistical test.

Due to the fact that the bias exists over ciphertexts with ineffective faults and the
injected fault is permanent, we refer to the attack that makes use of this source of
information as Statistical Ineffective PFA, or SIPFA. The remainder of this section discusses
our attack in depth against each of the detection- and infection-based countermeasures.
While knowledge of the fault’s location is a less likely assumption, it can provide more
power to perform a more efficient attack. We will consider two situations depending on
the assumption that the attacker is either aware or unaware of the fault’s value.

N. Bagheri et al. 9

3.2 SIPFA in the Presence of Detection-based Countermeasures
If yr[i] = δi, for any r ∈ {1, . . . , n}, then the ciphertext will be affected by the fault
and the returned value will be an empty string ⊥, in the presence of a detection-based
countermeasure. On the other hand, if the returned value C ≠ ⊥, it implies that the
ciphertext was not affected by the fault. As a result, if the adversary obtains N correct
ciphertexts C1

i , . . . , CN
i then {x1

1[i], . . . , xN
n [i]} ∩ (δi ⊕ kn[i]) = ∅ and for large values of N

the target δi ⊕ skn[i] can be determined uniquely. We consider two scenarios, in which the
fault’s value and position are known or unknown to the attacker.

3.2.1 Known Fault Value and Location

Provided C1
i , . . . , CN

i and knowledge of δi and i, the adversary can determine xn[i] for all
the given ciphertexts. The values appearing at xn[i] cannot be candidates for δi ⊕ skn[i];
only the minimum values appearing at xn[i] will be considered. With a sufficiently large
N , only one minimum value remains at xn[i] which fulfills the relation xn[i] = δi ⊕ skn[i]
and consequently skn[i] can be retrieved as δi = xn[i] ⊕ skn[i]. To determine any other
word of skn, e.g. skn[j], the system will be reset, a specific fault δj is injected at Sj

and the attack is repeated. Hence, we can retrieve skn[i] for every 1 ≤ i ≤ ℓ as well
as the the entire skn. In addition, we can compute (Xj

i)L
n∥(Xj

i)R
n for every ciphertext

Cj
i = (Cj

i)L∥(Cj
i)R given skn. Then, using the same procedure, we can determine skn−1.

This method enables the determination of all round keys. The details of this procedure is
represented in Algorithm 1.

We should have enough ciphertext N so that all possible values occur at xn[i] at least
once. Following [SBH+21], the number of ciphertexts required to observe h values at xn[i]
can be estimated as follows:

N = h · H(h) (10)

where H(h) is the h-th harmonic number. To determine δi ⊕ skn[i] uniquely we set
h = 2m − 1. The required data to obtain N ineffective ciphertexts can be estimated as
follows:

N̂ = N

Πc
= h · H(h)

Πc
(11)

Consequently, the required data to determine the subkeys for all ℓ′ distinct Sboxes
equals to ℓ′ · N̂ .

3.2.2 Unknown fault value and location

When the adversary is unaware of both δi and i, he should first determine the fault location,
i.e. i. The adversary can determine the location of the fault by considering the fact that
the target intermediate value xn[i] (which corresponds to the faulty Sbox Si), includes at
least one minimum value regardless of the number of ciphertexts, whereas the other words
at xn may contain no minimum value for large N . Given the fault location, to determine
the fault value δi, the adversary can guess the involved bits of subkeys to decrypt over
one round to determine the minimum values at xn−1[i]. The correct guess of the subkeys
should lead to a minimum value at xn−1[i]. In other words, any guess for which xn−1[i]
does not have a minimum value is incorrect. Following this approach it is possible to
determine the location and value of the fault, as well as certain bits of the last round’s
subkey. This technique is described in Algorithm 2.

The probability of a wrong key passing the specified filter in Step 15 is (1 − 2−m)N ,
whereas the total number of remaining subkeys is 2κ · (1 − 2−m)N . If the adversary aims
to gain a-bit advantage, then the expected candidates returned by Step 16 should be 2κ−a.
Hence, N = −a

log2(1−2−m) is the expected value to achieve a bit advantage.

10 SIPFA: Statistical Ineffective Persistent Faults Analysis on Feistel Ciphers

Algorithm 1 Key-recovery on a Feistel cipher with a detection-based countermeasure,
assuming that δi is known for 1 ≤ i ≤ ℓ, where Cj

i = (Cj
i)L∥(Cj

i)R

Require: Ineffective ciphertexts (C1
i , . . . , CN

i), for 1 ≤ i ≤ ℓ, that are all generated using the
same master key K.

Ensure: The candidates for skn, . . . , sk1

1: for i← 1 to ℓ do
2: X = {0, . . . , 2m − 1}
3: Si[δi]← Si[δi]⊕ vi

4: for j ← 1 to N do
5: Get a correct ciphertext Cj

i

6: xn ← Fn,I((Cj
i)L)

7: X ← X/xn[i]
8: skn[i]← X ⊕ δi // returns skn[i]
9: for i← 1 to ℓ do

10: for j ← 1 to N do
11: (Xj

i)L
n−1 ← (Cj

i)L

12: (Xj
i)R

n−1 ← (Cj
i)R ⊕ Fn((Cj

i)L, skn)
13: for r ← n− 1 down to 1 do
14: for i← 1 to ℓ do
15: X = {0, . . . , 2m − 1}
16: for j ← 1 to N do
17: xr ← Fr,I((Xj

i)L
r)

18: X ← X/xr[i]
19: skr[i]← X ⊕ δi

20: for i← 1 to ℓ do
21: for j ← 1 to N do
22: (Xj

i)L
n−1−h ← (Xj

i)R
r

23: (Xj
i)R

n−1−h ← (Xj
i)L

r ⊕ Fr((Xj
i)R

r , skr)
24: return skn, . . . , sk1

If the round’s Sbox-layer includes multiple applications of the faulty Sbox , e.g. Si = Si′ ,
then it is possible to use other techniques to reduce the keyspace. For example, in this
case, Step 9 returns 2 Sboxes with minimum value and they are linearly dependent as
follows:

xn[i] = δi ⊕ skn[i]
xn[i′] = δi ⊕ skn[i′]

}
=⇒ xn[i] ⊕ xn[i′] = skn[i] ⊕ skn[i′] (12)

Consequently, N ciphertext is sufficient to determine the subkeys of those words. More
specifically, if the round function includes ℓ′ distinct Sboxes instantiating and include exactly
t = ℓ

ℓ′ calls to each distinct Sbox, the data complexity will be ℓ′ · (1 − 2−m)−t·n · h · H(h).

3.3 Infection-based countermeasures
In the presence of infection-based countermeasures, the attacker is unable to detect the
ciphertexts, resulting in an ineffective fault. To assess whether a ciphertext is correct
(and corresponds to an ineffective event), one way is to encrypt a specific input in the
chosen-plaintext model using both normal and faulty encryptions. However, the chosen-
plaintext scenario stands in contrast to the aim of PFA, which is to be executed without
input control. This situation complicates the application of SIPFA when an infection-
based countermeasure is utilized. We make use of statistical tests to mount the attack in
the ciphertext-only scenario. Similarly to statistical attacks, we decrypt the ciphertexts
partially and determine the distribution of some intermediate values by guessing the
involved subkeys. To narrow the candidates for the involved subkeys, we need to associate

N. Bagheri et al. 11

Algorithm 2 Key-recovery on a Feistel cipher with a detection-based countermeasure,
assuming that δi and i are unknown
Require: Ineffective ciphertexts (C1

i , . . . , CN
i) that are all generated using the same master key

K and a faulty Sbox S∗
i in which Si[δi]← Si[δi]⊕ vi.

Ensure: The candidates for κ bits of skn

1: for i← 1 to ℓ do
2: X [i] = {0, . . . , 2m − 1}
3: for j ← 1 to N do
4: Get a correct ciphertext Cj

i

5: xn ← Fn,I((Cj
i)L)

6: for i← 1 to ℓ do
7: X [i]← X [i]/xn[i]
8: for e← 1 to ℓ do
9: X [e] ̸= ∅ then i← e // i gives the faulty Sboxs number

10: X [i] = {0, . . . , 2m − 1}
11: for k ← 0 to 2κ − 1 do
12: for j ← 1 to N do
13: xn−1[i]← Fn−1,I((Fn(Cj

i)L, K)⊕ (Cj
i)L)[i]

14: X [i]← X [i]/xn−1[i]
15: if X [i] ̸= ∅ then
16: return K // It determines κ bits of skn

a statistical scoring function. Squared Euclidean Imbalance (SEI) is a statistical scoring
function that is defined as follows:

SEI(k) =
∑
x∈X

(p(x) − θ(x))2 (13)

where, θ denotes uniform distribution which is 2−m in our analysis. With p(x) and θ being
relatively close, the capacity Cap(p, θ) is defined as follows:

C(p, θ) =
∑
x∈X

(p(x) − θ(x))2

θ(x) .

The required number of ciphertexts to get the success probability PS of having the
correct candidate among the first 2a candidates out of all 2κ candidates, can be estimated
as follows [DEK+18, BGN12]:

N ≈
β · Φ−1

0,1(α)
C(p, θ) for PS = 0.5. (14)

where α = 1 − 2−a and β = 2 · m (when the target is a m-bit word). In this paper, we use
SEI to rank candidates whenever applicable.

3.3.1 Known fault value and location

Let us assume that the attacker knows δi and i and N ciphertexts C1
i , . . . , CN

i are given.
The adversary can determine xn[i] for each of the given ciphertexts and then count the
occurrences of each possible value at xn[i]. We expect the correct guess of δi ⊕ skn[i]
appears less frequently than other values at xn[i]. More precisely, δi will never appear at
the input of the faulty Sboxes for the correct ciphertexts, but will occur with a probability
of 2−m for the faulty ciphertext. Hence, the expected counter of the xn[i] corresponding
to δi ⊕ skn[i] is N · (1 − Πc) · 2−m while for any other value at xn[i] the counter is expected
to be N · (Πc · 1

2m−1 + (1 − Πc) · 2−m). For large N , we expect that the counter’s value for

12 SIPFA: Statistical Ineffective Persistent Faults Analysis on Feistel Ciphers

the target δi ⊕ skn[i] be the minimum value. Given δi and the candidate(s) of δi ⊕ skn[i],
the possible value(s) of skn[i] can be determined. The attack can be repeated to determine
other words of skn as well. Given skn, it is possible to decrypt one round and repeat
the attack using the gathered data to determine skn. The details of the procedure is
represented in Algorithm 3.

Algorithm 3 Key-recovery on a Feistel cipher with an infection-based countermeasure,
assuming that δi and i are known for 1 ≤ i ≤ ℓ

Require: Ciphertexts (C1
i , . . . , CN

i), for 1 ≤ i ≤ ℓ, all generated using the same master key K.
Ensure: candidates for skn,sk1

1: for i← 1 to ℓ do
2: for h← 0 to 2m − 1 do
3: cnt[h] = 0
4: for j ← 1 to N do
5: Get a ciphertext Cj

i

6: xn[i]← Fn,I((Cj
i)L)

7: cnt[xn[i]] = cnt[xn[i]] + 1
8: return skn[i] = min(cnt[j])⊕ δi // It determines n bits of skn

9: for i← 1 to ℓ do
10: for j ← 1 to N do
11: (Xj

i)L
n−1 ← (Cj

i)L

12: (Xj
i)L

n−1 ← (Cj
i)R ⊕ Fn((Cj

i)L, skn)
13: for r ← n− 1 down-to 1 do
14: for i← 1 to ℓ do
15: for h← 0 to 2m − 1 do
16: cnt[h] = 0
17: for j ← 1 to N do
18: xr ← Fr,I((Xj

i)L
r)

19: cnt[xr[i]] = cnt[xr[i]] + 1
20: skr[i] = min(cnt[j])⊕ δi // It determines n bits of skr

21: return skn, . . . , sk1

3.3.2 Unknown fault value and location

If δi and i are unknown, the adversary should first determine the location of the fault,
i.e. i. As with Section 3.3.1, we expect the correct value of δi ⊕ skn[i] appears less than
other values at xn[i]. It leads to a biased distribution in xn[i] and a uniform distribution
in other words of xn. Hence, we can compute xj

n[i], for 1 ≤ j ≤ N and 1 ≤ i ≤ ℓ, as well
as the distribution of each words in xn. Given these distributions in hand, we can use SEI
to identify the biased word of xn that corresponds to the fault location. After finding the
location of the fault, the adversary should determine the fault value δi. The adversary
guesses the involved subkeys to decrypt over one round and determine the distributions of
xn−1[i] for each guess. The correct guess results in a biased distribution at xn−1[i], and a
wrong guess results in a uniform distribution at xn−1[i]. Hence, we rank the distributions
corresponding to each guess using SEI, and select the candidates with the highest SEI
as possible candidates of the fault value and the involved bits of subkey(s). Algorithm 4
illustrates this method to determine the fault value and location and recover the bits of
subkeys.

It is worth noting the expected value of SEI for the wrong guess of the faulty Sbox is
zero, while for the correct guess, it is a non-zero value that can be estimated as follows:

N. Bagheri et al. 13

Algorithm 4 Key-recovery on a Feistel cipher with an infection-based countermeasure,
assuming that δi and i are unknown
Require: Ciphertexts (C1

i , . . . , CN
i) all generated using the same master key K and a faulty

Sbox S∗
i in which Si[δi]← Si[δi]⊕ vi.

Ensure: candidates for κ bits of skn

1: for i← 1 to ℓ do
2: SEI[i] = 0
3: for h← 0 to 2m − 1 do
4: cnt[i][h] = 0
5: for j ← 1 to N do
6: Get a ciphertext Cj

i

7: xn ← Fn,I((Cj
i)L)

8: for i← 1 to ℓ do
9: cnt[i][xn[i]] = cnt[i][xn[i]] + 1

10: for i← 1 to ℓ do
11: for h← 0 to 2m − 1 do
12: q[i][h] = cnt[i][h]

N

13: SEI[i] = SEI[i] + (q[i][h]− 2−m)2

14: return i such that SEI[i] is maximum // i determines the faulty Sbox
15: for k ← 0 to 2κ-1 do
16: SEI[k] = 0
17: for h← 0 to 2m − 1 do
18: cnt[h] = 0
19: for j ← 1 to N do
20: xn−1[i]← Fn−1,I((Fn(Cj

i)L, K)⊕ (Cj
i)L)[i]

21: cnt[xn−1[i]] = cnt[xn−1[i]] + 1
22: for h← 0 to 2m − 1 do
23: p[h] = cnt[h]

N

24: SEI[k] = SEI[k] + (p[h]− 2−m)2

25: return k such that SEI[k] is maximum // It determines κ bits of skn

SEI(k) = (2m − 1) · ((Πc · 1
2m − 1 + (1 − Πc) · 2−m) − 2−m)2 + ((1 − Πc) · 2−m − 2−m)2

= (2m − 1) · (Πc · 1
2m − 1 − Πc · 2−m)2 + (Πc · 2−m)2 (15)

The expected SEI for the correct guess of the κ bits of skn is identical to Section 3.3.2.

4 Application of SIPFA on DES, 3DES and Camellia
In this section, we apply the introduced attacks in Section 3 on various well-known block
ciphers, i.e., DES, 3DES, and the Camellia family.

4.1 Application on DES
To map a round of DES to Figure 1, we can consider the expansion layer in conjunction
with the add round key as Fr,i and the permutation P as the Fr,o. S1, . . . , S8 forms the
Sbox layer.

Assume that the fault is injected into S1[δ1]. Each Sbox is called once during each
round of the cipher. Since DES has 16 rounds, and the input length of Sbox is m = 6 bits,
the probability of obtaining fault-free ciphertext on each encryption can be estimated as

14 SIPFA: Statistical Ineffective Persistent Faults Analysis on Feistel Ciphers

follows (based on Equation (6)):

(1 − 1
26)16 = 0.777 (16)

As a result, the average rate at which a detection-based countermeasure returns a non-
empty output is 77.7%. On average, an infection-based countermeasure generates correct
ciphertexts and random ciphertexts by the probability of 77.7% and 22.3%, respectively.

Assuming that the fault’s value and location are known and a detection-based counter-
measure is used, we can use Algorithm 1 to determine sk16. Following Equation (10), to
achieve the only minimum value at the last round of DES the value of N is 64 · H(64) =
64 · 4.74 ≈ 304 expected correct ciphertexts. As a result, we can identify six bits of the
last round’s key given the fault value and almost 304 ciphertexts that are not impacted
by the fault. The rate of fault-free ciphertext in this framework, on the other hand, is
77.7%. As a result, the overall complexity is about 390 DES calls, following Section 3.1.
Following Algorithm 1, we may apply fault on other Sboxes also, i.e., S2, . . . , S8, and
discover sk16 step by step to determine whole sk16. The attack on average has a total
complexity of 8 · 390 = 3120 calls to DES. It is also feasible to obtain sk15 and the master
key using sk16 and those ciphertexts. As a result, obtaining the DES master key using a
detection-based countermeasure requires 3120 calls to DES under eight faults, assuming
we know the fault values. This attack has negligible time complexity.

To relax the fault model we consider Algorithm 2, where we assumed the attacker
does not know where the fault is injected or even which Sbox is defective. We count the
possible values at xj

16[1], . . . , xj
16[8] for 1 ≤ j ≤ N , given the N ciphertexts. The xj

16[i]
that includes a minimum value, can determine the faulty Sbox. Let us assume that S1
is the faulty Sbox. Following Algorithm 2, we guess the active bits of sk16 to determine
xj

15[1] for 1 ≤ j ≤ N . Given that bits 32, 1, 2, 3, 4, and 5 determine the input of S1 and
those bits of x15[1] are mapped to bits 25, 17, 7, 20, 21, and 23 of y16 in DES, therefore,
we need to estimate 36 bits of sk16 to identify xj

15[1] values. We do not expect to see a
minimum value at x15[1] if we guess those bits incorrectly, but the correct guess always
returns a minimum value at x15[1]. The chance of an incorrect guess to return a minimum
value is calculated as follows:

pw = 64 · (1 − 1
26)N (17)

For N = 2000, we have pw = 2−39.44. Hence, given 2000 fault-free ciphertexts, which costs
2574 calls to DES, we can determine 36 bits of sk16 uniquely. The rest of the key bits,
i.e., 20 bits, can be found by exhaustive search. The total time complexity on average is
2000 · 236 · 1

16 + 220 ≈ 242.97 DES computations.
When an infection-based countermeasure is utilized, we can follow Algorithm 3 (resp.

Algorithm 4) if the fault’s value and location are known (resp. unknown) and SEI can be
used to determine the rank of the candidate subkey’s.

4.2 Application on 3DES
Due to the fact that 3DES utilizes the same Sboxes as DES, the attack may simply be
extended to this cipher as well. However, because the cipher has 48 rounds, the chance of
obtaining a fault-free ciphertext for each encryption is as follows (based on Equation (6)):

(1 − 1
26)48 = 0.47 (18)

As a result, if the aim is to use Algorithm 1 or Algorithm 2, the average rate of returned
values by a detection-based countermeasure is 47%. In an infection-based countermeasure,
where we can use Algorithm 3 or Algorithm 4, the rate of accurate ciphertexts is 47% and
the rate of random ciphertexts is 53%, on average.

N. Bagheri et al. 15

Assuming that the fault’s value and location are known, given the fault value and
approximately 304 ciphertexts that are not impacted by the fault, using Algorithm 1 we
may deduce 6 bits of the last rounds key, resulting in a total complexity of almost 647
3DES calls. We may also apply faults on other Sboxes, i.e., S2, . . . , S8, and discover sk48
step by step. The attack on average has a total complexity of 8 · 647 = 5176 calls to 3DES.
It is also feasible to obtain sk47, sk46, . . . similarly. Assuming that we know the fault
values, the overall complexity of getting the master key of 3DES with detection-based
countermeasure on average is 5176 calls to this cipher under 8 faults. The time complexity
of this attack is likewise negligible.

Given N ciphertexts and no knowledge of the fault location or even the defective Sbox,
we may use Algorithm 2 to compute xj

48[1], . . . , xj
48[8], for 1 ≤ j ≤ N , and identify the

faulty Sbox. Assuming that S1 is faulty, we use xj
47[1], for 1 ≤ j ≤ N , to identify 36 bits of

sk48 .Given a unique candidate for 36 bits of sk48, finding sk47 using xj
46[1] for 1 ≤ j ≤ N

requires only 220 guesses. In this method, the 56 bits of the used key at the outer DES
are determined on average with a complexity of 2000 · 236 · 1

48 + 2000 · 220 · 2
48 ≈ 241.38.

The outer DES is then inverted for all available ciphertexts. Then, for 1 ≤ j ≤ N , we may
apply the same technique as for the outer DES to calculate 36 bits of sk32 based on xj

31[1].
Given a unique candidate for the 36 bits of sk32, the complexity of identifying sk31 using
xj

30[1] for 1 ≤ j ≤ N is around only 220 guesses. In this method, the 56 bits of the involved
key at the middle DES is found with a complexity of 2000 · (16

48 + 236 · 1
48 + 220 · 2

48) ≈ 241.38

. We similarly can determine the involved key in the first DES with an average complexity
of 241.38, if it is distinct from the previous keys. As a result, the overall complexity of
getting 3DES full keys is 3 · 241.38, and the data complexity is 4255 calls to 3DES.

If the fault’s value and location are known (resp. unknown), we may use Algorithm 3
(resp. Algorithm 4) to calculate the rank of the candidate subkeys when an infection-based
countermeasure is applied.

4.3 Application on Camellia
When utilizing 128-bit keys, Camellia has 18 rounds, and when using 192- or 256-bit keys,
it has 24 rounds. To map a round of Camellia to Figure 1, we can use the expansion add
round key of the cipher, along with the whitening key of the last round, as Fr,i and the
P-function as Fr,o. The Sbox layer is made up of S1, S2, S3, S4, S2, S3, S4, S1.

Assume the fault’s value and location are known and the fault is injected on the
S1[δ1]. Given that each Sbox is called twice in each round of the cipher, Camellia-128 has
18 rounds, and the Sboxs input length is 8 bits, the probability of achieving fault-free
ciphertext for each encryption is (based on Equation (6)):

(1 − 1
28)18·2 = 0.8686 (19)

and it is 0.8287 for Camellia-192/256. As a result, the average rate of returned values
by a detection-based countermeasure for Camellia-128 (resp. 192/256) is 86.86% (resp.
82.877%).

When we use Algorithm 1 or Algorithm 2, the expected number of ciphertexts N to
observe exactly the proper minimum value in the input of each S1 at round 18 (resp. 24)
of Camellia-128 (resp. 192/256) is N = 256 · H(256) = 256 · 6.1243 ≈ 1572, according to
Section 4. Hence, given the fault value and nearly 1572 ciphertexts that are not influenced
by the fault, we can use Algorithm 1 to identify 16 bits of Camellia-128’s sk3 ⊕ sk18 and
sk3 ⊕ sk24. In this framework, the rate of fault-free ciphertext is 86.86% (vs. 82.87%).
As a result, there are around 1810 (resp. 1898) Camellia-128 (resp. 192/256) calls in
total. We may also apply fault to other Sboxes, such as S2, S3 and S4, to gradually
discover sk3 ⊕ sk18 (resp. sk3 ⊕ sk24). The attack has (on average) a total complexity of
4 · 1810 = 7240 (resp. 7592) calls to Camellia-128 (resp. 192/256). Using sk3 ⊕ sk18 and

16 SIPFA: Statistical Ineffective Persistent Faults Analysis on Feistel Ciphers

those ciphertexts, it is also possible to derive sk4 ⊕ sk17 of Camellia-128 and the master
key. Similarly, the master key of Camellia-192/256 can be determined step by step. Hence,
utilizing a detection-based countermeasure and following Algorithm 1 to retrieve the
Camellia-128 (resp. 192/256) master key requires 7240 (resp. 7592) calls to Camellia-128
(resp. 192/256) under 4 distinct faults, assuming we know the fault values and location.
Likewise, this attack has negligible time complexity.

To use Algorithm 2, we relax the fault model and assume that the attacker does not
know the fault value or the faulty Sbox. Following the proposed approach in Algorithm 2,
given the N ciphertexts the values of xj

18[1], . . . , xj
18[8] are computed for 1 ≤ j ≤ N .

Following the structure of Sbox layer, we should have minimum values on one of the pairs
(x18[1], x18[8]), (x18[2], x18[5]), (x18[3], x18[6]) or (x18[4], x18[7]) which is enough to identify
the faulty Sbox. Let’s assume that S1 is the faulty Sbox, the minimum values of y18[1] and
y18[8] should be the same and we have the minimum values of x18[1] and x18[8]. Hence,
we can retrieves 8 bits of the secret key, i.e., sk3[1] ⊕ sk18[1] ⊕ sk3[8] ⊕ sk18[8]. Next, We
guess sk3[1] ⊕ sk18[1], sk3[4] ⊕ sk18[4], sk3[5] ⊕ sk18[5], sk3[6] ⊕ sk18[6] and sk3[7] ⊕ sk18[7]
to determine xi

17[8] for 1 ≤ j ≤ N ,which costs 40 bits guessing. For wrong guesses, we do
not expect to observe a minimum value at x17[8], but the correct guess always returns a
minimum value at x17[8]. The following formula is used to calculate the probability of an
incorrect key returning a minimum value:

pw = 256 · (1 − 1
28)N (20)

We have pw = 2−28.7 for N = 6500. As a result, given 6500 fault-free ciphertexts and 7483
calls to Camellia, the key candidates of 48 bits of sk3 ⊕ sk18 can be reduced from 248 to
211.29. The remaining round key bits, sk3[2]⊕sk18[2] and sk3[3]⊕sk18[3] plus the remaining
11.29 bit entropy, i.e., 11.29+16=27.29 bits of sk3 ⊕ sk18, can be guessed and the minimum
value of xj

17[1] for 1 ≤ j ≤ N can be determined. A wrong guess will not return a minimum
value at x17[1], but the correct guess always produces a minimum value at x17[1]. The
total time complexity of determining sk3 ⊕ sk18 on average 6500 · (240 + 227.29) · 1

18 ≈ 248.49

Camellia-128 computations. We can also partially decrypt C1, . . . , CN over one round with
sk3 ⊕ sk18 and use the same approach to retrieve sk4 ⊕ sk17. The complexity of this step
of the attack is also 248.795, implying that finding Camellia-128’s master key is on average
249.49 and the data complexity is 7483 calls to the cipher. Camellia 192 and Camellia 256
have time complexities of 249.67 and 250.08, respectively, while the data complexity is 7844.

If an infection-based countermeasure is used, we can use Algorithm 3 (resp. Algorithm 4)
to calculate SEI and rank the candidate subkeys.

5 Simulation Results
To evaluate the efficiency of the proposed framework, we performed extensive simulations
of Algorithm 1 to Algorithm 4 by choosing DES as the target cipher. The results of each
algorithm’s simulation are discussed individually in the remainder of this section2.

5.1 Simulation of Algorithm 1
In Algorithm 1, we assume that the fault location is known and attempt to recover
skn, · · · , sk1 in the detection-based countermeasure scenario. We generated 10,000 random
keys. Then the average number of ineffective ciphertexts required to retrieve the key is
calculated for each of the selected keys. The average is taken for 100 different sets of
random ineffective ciphertexts. Figure 2a illustrates the details of this simulation. The

2The source code for our simulations in C language is publicly available at https://github.com/
sadeghi87/SIPFA.git

https://github.com/sadeghi87/SIPFA.git
https://github.com/sadeghi87/SIPFA.git

N. Bagheri et al. 17

horizontal axis represents the selected random key’s index, and the vertical axis shows the
average number of ineffective ciphertexts required to recover the chosen key.

0 2000 4000 6000 8000 10000
The key index (10,000 random keys selected)

450

455

460

465

470

475

480

485

490

Th
e
nu
m
be
r o

f i
ne
ffe

ct
iv
e
cip

he
rte

xt
s (
N)

(a) The simulation of Algorithm 1 on DES

0 2000 4000 6000 8000 10000
The key index (10,000 random keys selected)

400

420

440

460

480

500

520

540

Th
e
nu

m
be

r o
f i
nf
ec
tio

n-
ba

se
d
cip

he
rte

xt
s (

N)
(b) The simulation of Algorithm 3 on DES.

Figure 2: Distribution of the required number of ciphertexts to determine a word of skn,
when the fault location and value are known

5.2 Simulation of Algorithm 2
In Algorithm 2, we assume that the fault location and its value are unknown to the adversary,
and the purpose is to recover the κ bits of skn for a detection-based countermeasure. To
simulate Algorithm 2, we assumed that only 12 bits of the subkey sk16 were unknown, and
we generated N detection-based countermeasure ciphertexts, all of which were obtained
using the same master key and a faulty Sbox. We repeated the experiments 100 times for
each N to obtain the average number of key candidates. Figure 3 illustrates the results
related to the simulation of Algorithm 2. N0 and nk0 denote the number of ineffective
ciphertexts and the average number of key candidates, respectively.

5.3 Simulation of Algorithm 3
To verify Algorithm 3, around 10,000 random keys were selected. Then for each of the
selected keys, we repeated Algorithm 3 for 100 different sets of random ciphertexts, and
computed the average number of ciphertexts required to recover the key. Figure 2b
illustrates the details of this simulation. The horizontal axis represents the index of the
selected random key, while the vertical axis represents the average number of ciphertexts
required to recover the secret key.

5.4 Simulation of Algorithm 4
We performed the simulation of Algorithm 4 in two parts: first, we simulated steps 1 to 14
to check whether the algorithm would correctly detect the fault location or not. For this
purpose, one of the Sboxes is randomly selected as the faulty Sbox, and then by increasing
the value of N (the number of infection-based ciphertexts). As shown in Figure 4, the
faulty Sbox in both tests is correctly identified by increasing the value of N .

In the second part, we simulated Steps 15 to 25 in Algorithm 4 to verify the key-recovery
attack. Due to time constraints, we assumed only 12 bits of sk16 were unknown. We re-
peated the key-recovery attack for 100 random secret keys with N = 3000, 3500, · · · , 20000)
and counted the average number of the ranks of the candidate keys. Figure 5 illustrates
the results for the different numbers of N .

18 SIPFA: Statistical Ineffective Persistent Faults Analysis on Feistel Ciphers

360 365 370 375
The number of ineffective ciphertexts

0

100

200

300

400

500

600

700

Th
e
nu

m
be

r o
f c

an
di
da

te
 k
ey

s

(N0, nk0)=(357,614)

(N, nk)=(367,1)

(a) Fault in S1.

360 362 364 366 368 370 372 374
The number of ineffective ciphertexts

0

100

200

300

400

500

600

Th
e
nu

m
be
r o

f c
an
di
da
te
 k
ey
s

(N0, nk0)=(359,527)

(N, nk)=(364,1)

(b) Fault in S6.

Figure 3: The simulation of Algorithm 2. The simulation is performed independently when
the fault is injected in S1 and S6.

0 2000 4000 6000 8000 10000
The number of infection-based ciphertexts (N)

1

2

3

4

5

6

7

8

Th
e
Sb

ox
 p
os
iti
on

(a) The fault’s location detection, when the fault
is injected in S3

0 2000 4000 6000 8000 10000
The number of infection-based ciphertexts (N)

1

2

3

4

5

6

7

8

Th
e
Sb

ox
 p
os
iti
on

(b) The fault’s location detection, when the fault
is injected in S5

Figure 4: The simulation of the first part of Algorithm 4 for determining the fault location
in DES in infection-based assumption
6 Experimental Results
This section reports the results of practical electromagnetic fault injections (EMFI) per-
formed on 3DES. EMFI offers the advantage of non-invasive manner to inject faults
compared to other approaches like laser fault injection where chip decapsulation might
be required, while providing a good precision in location and timing as compared to
voltage/clock glitching. We investigate the feasibility of single persistent fault injection in
Sboxes of Feistel ciphers when executed on modern microcontrollers and corresponding
key recovery complexity.

6.1 Experimental Platform
The EMFI platform used for the following experiments comprises of three main components:
(1) a high-voltage pulse generator capable of generating pulses up to 200V (in either polarity)
with a very low rise time under 4ns; (2) a hand-crafted electromagnetic probe designed as a
simple loop antenna; and (3) a motorised XYZ table to position the probe over the device
under test (DUT). An optional oscilloscope is also used for verification of pulse strength
and timing characteristics. A software controls the DUT and the EMFI setup. It triggers

N. Bagheri et al. 19

5000 7500 10000 12500 15000 17500 20000
The number of infection-based ciphertexts

0

2

4

6

8

10

Th
e
ra
nk

 o
f c

an
di
da

te
 k
ey

(a) Fault in S4

5000 7500 10000 12500 15000 17500 20000
The number of infection-based ciphertexts

0

2

4

6

8

10

12

Th
e
ra
nk

 o
f c

an
di
da

te
 k
ey

(b) Fault in S8

Figure 5: Simulation results of Algorithm 4 on DES. The simulation is performed indepen-
dently when the fault is injected in S4 and S8.
the pulse injection synchronised with a feedback signal from the DUT. For automation of
the whole system and additional relay switches are used for automated power-on reset of
the DUT.

The target board for the following experiments is a STM32F4DISCOVERY evaluation
board, where the prime target is a 32-bit ARM Cortex-M4 microcontroller (STM32F407VG).
The microcontroller executes a publicly available 3DES implementation3, compiled using
the arm-none-eabi-gcc compiler with optimization level-O3. The communication with
the DUT is done using UART. The flash configuration is performed through OpenOCD
framework and on-chip hardware debugging is done with GNU debugger for ARM
(arm-none-eabi-gdb). ST-LINK/v2.1 add-on board enables these communications. The
faults target the boot-up time Sbox transfer from flash to RAM, similar to other works
reporting practical PFA [MBD+19, SBH+21].

6.2 Experimental Results
We consider a scenario where the target cryptographic software utilizes the Sbox that is
stored as part of the program code within flash memory. Upon power up, the Sbox is
retrieved from flash and is stored in a designated location in the main memory (RAM).
The software subsequently utilizes the Sbox stored in RAM for multiple executions of
the encryption procedure. This approach is particularly advantageous in embedded
microcontrollers, as it leads to reduced Sbox access delays, thereby improving the overall
performance. If an attacker is able to fault the transfer of Sbox from flash to RAM, then
it leads to a persistent fault in the Sbox, since the same faulted Sbox is used for multiple
encryption calls. A similar fault model has been reported by Menu et al. [MBD+19], where
they demonstrated the ability of EMFI to inject precise bit-set and bit-reset faults on data
retrieved from the flash memory. Current scenario of targeting Sbox transfer from flash to
RAM at boot-up is motivated by the public implementations we target in the following.
Different implementations would need different strategy to achieve persistent faults in the
Sbox.

While injecting a persistent fault in cryptographic software has been previously demon-
strated in several previous works [ZLZ+18, ZZJ+20, MBD+19, SBH+21], all these ex-
periments were performed on SPN block ciphers. When moving to Feistel ciphers like
DES, 3DES and Camellia, few challenges arise. Unlike previously studied SPN ciphers,
DES/3DES/Camellia have multiple distinct Sboxes. This would require achieving a precise
control on the timing of the fault to inject faults in different Sboxes for different set of

3https://github.com/lbeatu/The-TRIPLE-DES-Algorithm-Illustrated-for-C-code.git

20 SIPFA: Statistical Ineffective Persistent Faults Analysis on Feistel Ciphers

experiments. Moreover, an optimal way to exploit multiple persistent faults is not yet
known for Feistel ciphers. In this case, a precise control over the position of the probe is
required to trigger faults which affect up to 4/4/8 bits (DES/3DES/Camellia) of a single
Sbox entry in a 32-bit transfer from flash to RAM over the data bus. Lack of precise
control will lead to multiple faults which are known to be more likely than single faults
when considering similar platforms [MBD+19, SBH+21].

For our experiments, we consider the 3DES cipher with 8 distinct Sboxes of size 6 × 4.
Upon power up, our target implementation of 3DES loads the Sbox from flash memory
into registers using multiple 32-bit LDR.W load instructions in an iterative manner, and
subsequently moves them to a designated location in RAM using multiple 32-bit STR.W
store instructions. For fault injection, we fix the voltage of the EM pulse to about 190 v
and the pulse width to 7 ns (nanoseconds), as we are able to observe reliable faults with
these parameters. We then perform a detailed fault injection campaign, sweeping over the
entire surface of the target chip as well different injection delays to achieve different types
of faults over the Sbox values.

We recall that our attack requires to independently fault single entries of all the eight
distinct Sboxes of the 3DES cipher, unlike a single Sbox in other SPN ciphers like AES,
PRESENT [ZZJ+20]. Thus, our main focus is to evaluate the practicality of faulting single
entries of all the 8 Sboxes, independently. Once a particular Sbox is faulted (say S1),
corresponding faulty ciphertext are collected, followed by a reset of the chip and injection
of fault into another Sbox (say S2) and so on. Moreover, we only focus on the number
of faulted Sbox entries, since the exact value of the faulted Sbox entry is not relevant
for our analysis. We refer to the fault on a single SBox entry as a single fault while any
fault affecting more than one SBox entry as multiple faults. Note that our analysis mainly
requires single fault for an effective key recovery. Refer to Figure 6(a) for the distribution
of single versus multiple faults observed from our detailed fault injection campaign. Among
all the observed faults, the number of multiple faults was ≈ 17× more than single faults.
This correlates well with the work of Soleimany et al. [SBH+21] who also observed a
very similar distribution of single versus multiple Sboxes when faulting Sboxes of SPN
block ciphers. However, we observed a few sweet spots with respect to probe location
and injection timing, where single faults on the different Sboxes were obtainable with a
reasonably high repeatability. The repeatability was as high as 80% for certain Sboxes.

Single Multiple
Type of Faults

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

No
. o

f F
au

lts
 in

 T
ho

us
an

ds

0 1000 2000 3000 4000
Time (ns)

0.0

0.2

0.4

0.6

0.8

1.0

Re
pe

ta
bi

lit
y

(S
in

gl
e

Fa
ul

ts
)

S1 S2 S3 S4 S5 S6 S7 S8 S1
S2
S3
S4
S5
S6
S7
S8

(a) (b)
Figure 6: (a) Distribution of no. of faulted entries of the Sbox - Single vs Multiple Faults
(b) Repeatability of single faults on the distinct Sboxes of 3DES over time

Refer Figure 6(b) for the ability to independently achieve single faults on all the eight
distinct Sboxes with respect to the time of fault injection. We can see that single faults on
all the Sboxes occur at distinct non-overlapping time windows. Thus, an attacker who can
precisely control the timing of fault injection can achieve single faults on a targeted Sbox,
while not affecting the other Sboxes. We also observe that the ability of obtaining single
faults varies based on the targeted Sbox. We observe high repeatability of about 70-80%

N. Bagheri et al. 21

for single faults on S2, S7, S8, while the repeatability of single faults drops to about 20%
for S3, S4. We could probably achieve high fault repeatability for all the Sboxes with a
more intensive profiling and a better EM fault injection setup.

Refer Figure 7 for the sensitive areas on the chip surface to EMFI to achieve single
faults on all the eight distinct Sboxes of 3DES. Similar to the distinct time windows of
fault injection for the different Sboxes, we also observe varied sensitivity of the probe
location to single faults for the different Sboxes. Thus, an attacker with precise control
over the probe location as well as injection timing can inject single faults into all the eight
distinct Sboxes of 3DES. The same fault characteristics can also be obtained for other
Feistel ciphers such as Camellia. However, the fault experiments for Camellia are not
presented, due to its similarity with AES with 8 × 8 Sboxes which does not present any
additional challenge with respect to EMFI. Also, in a memory efficient version of Camellia,
the Sboxes S2, S3, S4 can be simply calculated from S1, thus needing only S1 in RAM.

0 1 2

0
1
2

(a)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.20

0.30

0.40

0.50

0.10
0 1 2 0 1 2

0

1

2

0

1

2

(b) S1 (c) S2

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.07

0.08

0.09

0.02

0.00

0.18

0.04

0.05

0.06

0.01

0.02

0.03

0.00
0 1 2 0 1 2

0

1

2

0

1

2

(d) S3 (e) S4

0.30

0.35

0.08

0.10

0.20

0.25

0.10

0.15

0.00

0.05

0.04

0.06

0.00

0.02

0 1 2 0 1 2

0

1

2

0

1

2

(f) S5 (g) S6

0.70

0.80
0.70

0.80

0.50

0.60

0.30

0.40

0.10

0.20

0.00

0.50

0.60

0.30

0.40

0.10

0.20

0.00
0 1 2 0 1 2

0

1

2

0

1

2

(h) S7 (i) S8

Figure 7: Sensitive area to EMFI for single faults (a) Physical location of sensitive spots
to EMFI on the target chip (STM32F407VG) (b-i) Repeatability of Single Faults on the
eight distinct Sboxes of 3DES

7 Conclusion

In this paper, we discussed critical limits on the application of PFA to Feistel ciphers
and demonstrated how they might be overcome. We introduced Statistical Ineffective
Persistent Faults Analysis (SIPFA), which enables us to apply PFA efficiently to Feistel
ciphers in a range of scenarios. The proposed techniques were applied to DES, 3DES,
and Camellia. SIPFA can be quite efficient against Feistel ciphers, as illustrated by the
findings. Additionally, we conducted both simulations and real experiments on DES and
3DES using electromagnetic fault injection.

22 SIPFA: Statistical Ineffective Persistent Faults Analysis on Feistel Ciphers

Acknowledgement
The authors wish to thank Florian Mendel and the anonymous reviewers for their detailed
comments and helpful suggestions. Prasanna Ravi and Shivam Bhasin acknowledge the
support from the Singapore National Research Foundation (“SOCure” grant NRF2018NCR-
NCR002-0001 – www.green-ic.org/socure).

References
[AIK+00] Kazumaro Aoki, Tetsuya Ichikawa, Masayuki Kanda, Mitsuru Matsui, Shiho

Moriai, Junko Nakajima, and Toshio Tokita. Camellia: A 128-bit block cipher
suitable for multiple platforms—design and analysis. In International workshop
on selected areas in cryptography, pages 39–56. Springer, 2000.

[BDL97] Dan Boneh, Richard A. DeMillo, and Richard J. Lipton. On the importance
of checking cryptographic protocols for faults (extended abstract). In Walter
Fumy, editor, Advances in Cryptology - EUROCRYPT ’97, International Con-
ference on the Theory and Application of Cryptographic Techniques, Konstanz,
Germany, May 11-15, 1997, Proceeding, volume 1233 of Lecture Notes in
Computer Science, pages 37–51. Springer, 1997.

[BGN12] Céline Blondeau, Benoît Gérard, and Kaisa Nyberg. Multiple differential
cryptanalysis using LLR and χ2 statistics. In Ivan Visconti and Roberto De
Prisco, editors, Security and Cryptography for Networks – SCN 2012, volume
7485 of LNCS, pages 343–360. Springer, 2012.

[BL16] Karthikeyan Bhargavan and Gaëtan Leurent. On the practical (in-) security of
64-bit block ciphers: Collision attacks on http over tls and openvpn. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, pages 456–467, 2016.

[BS97] Eli Biham and Adi Shamir. Differential fault analysis of secret key cryptosys-
tems. In Advances in Cryptology - CRYPTO ’97, 17th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 17-21, 1997,
Proceedings, volume 1294 of Lecture Notes in Computer Science, pages 513–525.
Springer, 1997.

[CB19] Andrea Caforio and Subhadeep Banik. A study of persistent fault analysis. In
Shivam Bhasin, Avi Mendelson, and Mridul Nandi, editors, Security, Privacy,
and Applied Cryptography Engineering - 9th International Conference, SPACE
2019, Gandhinagar, India, December 3-7, 2019, Proceedings, volume 11947 of
Lecture Notes in Computer Science, pages 13–33. Springer, 2019.

[Cla07] Christophe Clavier. Secret external encodings do not prevent transient fault
analysis. In Pascal Paillier and Ingrid Verbauwhede, editors, Cryptographic
Hardware and Embedded Systems - CHES 2007, 9th International Workshop,
Vienna, Austria, September 10-13, 2007, Proceedings, volume 4727 of Lecture
Notes in Computer Science, pages 181–194. Springer, 2007.

[DEG+18] Christoph Dobraunig, Maria Eichlseder, Hannes Groß, Stefan Mangard, Florian
Mendel, and Robert Primas. Statistical ineffective fault attacks on masked
AES with fault countermeasures. 11273:315–342, 2018.

[DEK+18] Christoph Dobraunig, Maria Eichlseder, Thomas Korak, Stefan Mangard, Flo-
rian Mendel, and Robert Primas. SIFA: Exploiting ineffective fault inductions

N. Bagheri et al. 23

on symmetric cryptography. IACR Transactions on Cryptographic Hardware
and Embedded Systems, 2018(3):547–572, 2018.

[DES99] NIST DES. Fips publication 46-3-data encryption standard, 1999.

[ESP20] Susanne Engels, Falk Schellenberg, and Christof Paar. SPFA: SFA on multiple
persistent faults. In 17th Workshop on Fault Detection and Tolerance in
Cryptography, FDTC 2020, Milan, Italy, September 13, 2020, pages 49–56.
IEEE, 2020.

[FJLT13] Thomas Fuhr, Éliane Jaulmes, Victor Lomné, and Adrian Thillard. Fault
attacks on AES with faulty ciphertexts only. In Wieland Fischer and Jörn-
Marc Schmidt, editors, 2013 Workshop on Fault Diagnosis and Tolerance in
Cryptography, Los Alamitos, CA, USA, August 20, 2013, pages 108–118. IEEE
Computer Society, 2013.

[GYTS14] Nahid Farhady Ghalaty, Bilgiday Yuce, Mostafa Taha, and Patrick Schaumont.
Differential fault intensity analysis. In 2014 Workshop on Fault Diagnosis and
Tolerance in Cryptography, pages 49–58. IEEE, 2014.

[LSG+10] Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Toshinori Fukunaga, Junko
Takahashi, and Kazuo Ohta. Fault sensitivity analysis. In Stefan Mangard and
François-Xavier Standaert, editors, Cryptographic Hardware and Embedded
Systems, CHES 2010, 12th International Workshop, Santa Barbara, CA, USA,
August 17-20, 2010. Proceedings, volume 6225 of Lecture Notes in Computer
Science, pages 320–334. Springer, 2010.

[MBD+19] Alexandre Menu, Shivam Bhasin, Jean-Max Dutertre, Jean-Baptiste Rigaud,
and Jean-Luc Danger. Precise spatio-temporal electromagnetic fault injections
on data transfers. In 2019 Workshop on Fault Diagnosis and Tolerance in
Cryptography (FDTC), pages 1–8. IEEE, 2019.

[PZRB19] Jingyu Pan, Fan Zhang, Kui Ren, and Shivam Bhasin. One fault is all it needs:
Breaking higher-order masking with persistent fault analysis. In Jürgen Teich
and Franco Fummi, editors, Design, Automation & Test in Europe Conference
& Exhibition, DATE 2019, Florence, Italy, March 25-29, 2019, pages 1–6.
IEEE, 2019.

[S+77] Data Encryption Standard et al. Federal information processing standards
publication 46. National Bureau of Standards, US Department of Commerce,
23, 1977.

[SBH+21] Hadi Soleimany, Nasour Bagheri, Hosein Hadipour, Prasanna Ravi, Shivam
Bhasin, and Sara Mansouri. Practical multiple persistent faults analysis. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2022(1):1–24, 2021.

[SHP09] Jörn-Marc Schmidt, Michael Hutter, and Thomas Plos. Optical fault attacks on
AES: A threat in violet. In Luca Breveglieri, Israel Koren, David Naccache, Elis-
abeth Oswald, and Jean-Pierre Seifert, editors, Sixth International Workshop
on Fault Diagnosis and Tolerance in Cryptography, FDTC 2009, Lausanne,
Switzerland, 6 September 2009, pages 13–22. IEEE Computer Society, 2009.

[YJ00] Sung-Ming Yen and Marc Joye. Checking before output may not be enough
against fault-based cryptanalysis. IEEE Transactions on computers, 49(9):967–
970, 2000.

24 SIPFA: Statistical Ineffective Persistent Faults Analysis on Feistel Ciphers

[ZLZ+18] Fan Zhang, Xiaoxuan Lou, Xinjie Zhao, Shivam Bhasin, Wei He, Ruyi Ding,
Samiya Qureshi, and Kui Ren. Persistent fault analysis on block ciphers. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2018(3):150–172, 2018.

[ZZJ+20] Fan Zhang, Yiran Zhang, Huilong Jiang, Xiang Zhu, Shivam Bhasin, Xinjie
Zhao, Zhe Liu, Dawu Gu, and Kui Ren. Persistent fault attack in practice.
IACR Trans. Cryptogr. Hardw. Embed. Syst., 2020(2):172–195, 2020.

	Introduction
	Previous Works
	Motivation
	Our Contributions
	Outline

	Preliminaries
	Notations
	Statistical Ineffective Fault Attack (SIFA)
	 Persistent Faults Analysis on SPN ciphers
	Generalized Round of Feistel Ciphers
	Target ciphers

	Statistical Ineffective PFA on Feistel ciphers
	Main Idea
	SIPFA in the Presence of Detection-based Countermeasures
	Infection-based countermeasures

	Application of SIPFA on DES, 3DES and Camellia
	Application on DES
	Application on 3DES
	Application on Camellia

	Simulation Results
	Simulation of alg:knwon-delta
	Simulation of alg:unknwon-delta
	Simulation of alg:knwon-delta-SEI
	Simulation of alg:unknwon-delta-SEI

	Experimental Results
	Experimental Platform
	Experimental Results

	Conclusion

