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Abstract We study quantum superposition attacks against permutation-based
pseudorandom cryptographic schemes.

We first extend Kuwakado and Morii’s attack against the Even-Mansour
cipher (ISITA 2012), and exhibit key recovery attacks against a large class of
pseudorandom schemes based on a single call to an n-bit permutation, with
polynomial O(n) quantum steps. We also show how to overcome restrictions
on available quantum data in certain relevant settings.

We then consider TPPR schemes, namely, Two Permutation-based Pseu-
doRandom cryptographic schemes. Using the improved Grover-meet-Simon
method of Bonnetain et al. (ASIACRYPT 2019), we show that the keys of a
wide class of TPPR schemes can be recovered with O(n) superposition queries
and O(n2n/2) quantum steps. We also exhibit sub-classes of “degenerated”
TPPR schemes that lack certain internal operations, and exhibit more efficient
key recovery attacks using either the Simon’s algorithm or Chailloux et al.’s
algorithm for collision searching (ASIACRYPT 2017).

Further using the all-subkeys-recovery idea of Isobe and Shibutani (SAC
2012), our results give rise to key recovery attacks against several recently
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proposed permutation-based PRFs, as well as the 2-round Even-Mansour ci-
phers with generic key schedule functions (Chen et al., JoC 2018) and their
tweakable variants (Cogliati et al., CRYPTO 2015). From a constructive per-
spective, our results establish new quantum Q2 security upper bounds for two
permutation-based pseudorandom schemes as well as sound design choices.

Keywords Quantum attacks · permutation-based cryptography · tweakable
blockcipher · PRF

Mathematics Subject Classification (2000) 94A60 · 68P25

1 Introduction

1.1 Permutation-Based Cryptography

A remarkable trend in cryptography is the development of constructions built
upon (public) keyless cryptographic permutations. It seems to originate from
omitting key expansions in blockciphers [7,60], in order to increase efficiency
and to remove a number of attack vectors leveraging correlations between dis-
tinct keys. Subsequent goal of constructing “richer” cryptographic objects from
such permutations would be addressed by provable security. In all, permutation-
based cryptography appears to ease security evaluations, and this has moti-
vated a huge number of designs and constructions to be proposed. In fact, dur-
ing the NIST hash function competition [58], 3 among the 5 finalists utilized
permutations including the final winner Keccak; during the NIST lightweight
competition [56], 6 among the 10 finalists utilized permutations.

Complicated objects from permutation-based cryptography include (tweak-
able) pseudorandom permutations [32,8,22,23,33,37,51,28] and functions [20,
16,31,21], (authenticated) encryption schemes [56,29,5,17], MACs [53,30,16],
and (keyless) hash functions [60,52,4,58]. Such designs have been informally
divided into the sponge-based approach [4] and the “full domain” approach [20,
30]. Roughly speaking, sponge-based designs invoke the permutation with the
concatenation of a secret key/state with an input-dependent value, whereas
“full domain” designs invoke the permutation with φ(k, x) for φ being (close
to) a keyed permutation, and this is crucial for better concrete security. More-
over, to increase efficiency, most designs choose linear transformations for the
keyed function φ.1 This paper focuses on the latter.

It has been shown that pseudorandom schemes using a single call to an
n-bit permutation achieve at most n/2 bit security due to birthday collisions,
even if they employ the “full domain” approach [20]. This is insufficient for
lightweight permutations such as Keccak-f [200] [58], Spongent [39], and
PHOTON [39], and as a result, the approach of using two permutations has
appeared as the best trade-off between efficiency and security, and have been
adopted in a number of recent designs elaborated as follows.

1 Though, there is no formal definition.
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Constructing (tweakable) pseudorandom permutations from public per-
mutations was initiated by Even and Mansour [32], who proposed a scheme
EMP

k1,k2
(x) = k2 ⊕ P (k1 ⊕ x) that whitens a public n-bit permutation P with

two secret keys k1 and k2. Now known as the Even-Mansour construction, the
scheme was proved secure up to n/2 queries, which is then proved tight [24].
To break the n/2 bit security barrier, the scheme was later generalized to
the Iterated Even-Mansour construction [8,19]. In fact, this was also the first
TPPR scheme. With 2 rounds and 3n-bit keys [8], provable security increases
to 2n/3 bits which is tight in the information theoretic sense. Conditions on
the keys were then relaxed to using 2 keys or a single n-bit key with ap-
propriate key derivation functions [18]. Further subsequent work investigated
adding tweaks to the iterated Even-Mansour via the almost universal hash
functions and pinpointed 2-round tweakable Even-Mansour ciphers as the min-
imal permutation-based tweakable blockcipher with 2n/3-bit security [22,28].
The aforementioned advances in provable security also attracted numerous
cryptanalytic efforts [27,55,25,49].

For PRFs, Chen et al. proposed two PRFs SoEM and SoKAC21, both using
two permutation calls that achieve beyond-birthday 2n/3 bit security [20].
Unfortunately, the sequential construction SoKAC21 turned out flawed [54],
and it was Chakraborti et al. [16] to bridge the gap of sequential PRF, and
later Dutta et al. [31] to make the PRF inverse-free, at the expense of using a
longer key. The parallel PRF SoEM remains secure and has inspired Dutta and
Nandi to design a nonce-based MAC scheme nEHtMp [29] and Bhattacharjee
et al. designing CENCPP∗ [5], a permutation-based variant of the blockcipher
mode CENC [41].

In all, the above has established two permutation-based pseudorandom
(TPPR) schemes as a rising class of objects, and relevant research appears
to keep evolving. In the classical setting, it seems 2n/3 bit security has been
accepted as a general upper bound on the security of TPPR schemes, and
designs typically tried to achieve this goal.

1.2 Quantum Superposition Attacks

Advances in quantum algorithms and computing devices have posed serious
threats to common cryptographic schemes. Regarding public-key cryptogra-
phy, the seminal work of Shor [64] enables factoring and computing discrete
logs in polynomial quantum steps. This has triggered the NIST Post-Quantum
Cryptography Standardization Process [57].

Regarding symmetric cryptography, it was believed that the main impact is
due to Grover’s algorithm [34] accelerating brute force search. Concretely, any
cryptosystem with κ-bit secret keys admits a key recovery attack in O(2κ/2)
quantum steps. However, non-trivial symmetric constructions may hide peri-
odic information and lend themselves to surprisingly efficient attacks based
on Simon’s quantum algorithm. Let Ok : X → Y be the classical function
describing the (keyed) oracle of the targeted scheme. When such a scheme is
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implemented in a quantum computer, then the adversary can issue a quantum
superposition

∑
x,y αx,y|x⟩|y⟩ as a query and obtain |x⟩|y⟩ 7→ |x⟩|Ok(x)⊕ y⟩

as the response, where x and y are arbitrary n-bit strings and |x⟩, |y⟩ are
the corresponding n-qubit states expressed in the computational basis. Such a
superposition query may extract some information about Ok(x) for all x ∈ X .
Such attacks are called superposition attacks, and the security model is some-
times referred to as quantum Q2 model.2 With such superposition queries,
Simon’s algorithm is able to compute the hidden period, which corresponds to
the secret key for a number of symmetric schemes. This line of research was
initiated by Kuwakado and Morii [46], who showed that the 3-round Feistel
networks, which are well-known to be CPA secure in the classical setting, can
be fully broken by superposition CPA attacks. Subsequent works relaxed the
conditions for Simon algorithm and exhibited applications to popular MACs
and authenticated encryption modes [61,44].

Perhaps more importantly for us, Kuwakado and Morii [47] showed that
the Even-Mansour construction can be broken in polynomial time in the
quantum CPA-setting. The main idea of [47] was to consider the function
f(x) := EMP

k1,k2
(x)⊕P (x). As this function fulfills f(x) = f(x⊕k1) for all x, an

application of Simon’s algorithm [13,67] immediately yields the unknown pe-
riod k1 of f in O(n) quantum steps. This already showed that the classical ap-
proach to key-length extension via adding whitening keys may not be effective
in the Q2 model. Indeed, Leander and May [48] proposed an approach embed-
ding Simon’s test in a Grover search, and used this to break the FX key-length
extension scheme FXE

k0,k1,k2
(x) = k2⊕E(k0, k1⊕x), which may be viewed as a

Even-Mansour variant built upon a blockcipher E : {0, 1}κ×{0, 1}n → {0, 1}n.
This idea is referred to as Grover-meet-Simon in subsequent works. Later,
Bonnetain et al. [11] improved Grover-meet-Simon process using a careful re-
organization of the online and offline quantum queries, and this reduces the
quantum data complexity to polynomial.

On the constructive side, security definitions and Q2 secure PRFs, PRPs,
MACs, signatures, and encryption schemes have been proposed [68,38,9,10,
3,6]. Alagic and Russell proposed to counter Simon’s algorithm-based attacks
via replacing the common ⊕ operations by modular additions [2], though the
gain was later shown to be limited [12].

1.3 Our Results

Pseudorandom schemes are central building blocks for various cryptosystems
and are thus fundamental for post-quantum cryptography. As mentioned by
Kuwakado and Morii [47] and later re-stressed by Leander and May [48, Sect.
4], an important open question is the quantum Q2 security of the iterated
Even-Mansour with 2 and more rounds. In fact, this constitutes the initial

2 On the other hand, in the Q1 model, attackers have an access to a quantum computer
to perform any offline computation, while they are only allowed to make online queries in a
classical manner.
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motivation of our work. In addition, the state-of-the-art indicates a more se-
vere influence on schemes using whitening keys, which is particularly relevant
to permutation-based cryptography. By these and by the popularity of per-
mutations, we seek for characterization of cryptographic schemes using 2 (or
less) permutation calls in the face of superposition attacks.

We first extend the idea of Kuwakado and Morii [47] and show that the
general design of Chen et al. [20] built on one public permutation preceded and
followed by linear mappings can be broken by Simon’s algorithm. Formally,
F1PP

k1,k2
(x) = a21k2 ⊕ a22x⊕ a23P (a11k1 ⊕ a12x), where P is an n-bit permu-

tation and multiplications are on the finite field Fn
2 . These include a number

of popular classically secure schemes including the Even-Mansour construc-
tion [32], the (1-round) tweakable Even-Mansour construction [22], and some
permutation-based PRFs [36,35,21].

The PRFs [36,21] are typically used in MPC settings, and such protocols
enforce strong restrictions on the form of queries to the PRF oracle. In detail,
the scheme in [35] varies the permutation P after every PRF query, while the
scheme in [21] changes the key after every PRF query. As a consequence, the
number of allowed superposition queries for every single instance or key is
limited to 1. In this respect, we further show that such query restrictions can
be overcome and the Simon-based attack remains applicable even with such
severely restricted superposition queries.

Our main result is on Two Permutation-based PseudoRandom (TPPR)
schemes. In detail, we consider schemes parameterized by eight field elements
a00, a01, a10, a11, a12, a20, a21, a23 ∈ Fn

2 and defined as

F2PP1,P2

A,k (x) = P2

(
a12P1(a01x⊕ a00k1)⊕ a11x⊕ a10k2

)
⊕ a22P1(a01x⊕ a00k1)⊕ a21x⊕ a20k3, (1)

where P1 and P2 are two (independent) n-bit permutations, and k = (k0, k1, k2) ∈
({0, 1}n)3 are three (independent) n-bit keys. We characterize its superposition
attacks as follows.

(i) We first identify a class of TPPR schemes that are “degenerated”, in the
sense that they are easily broken by Simon algorithm and provide no Q2
security at all.

(ii) We then identify two classes of TPPR schemes that are “partially degen-
erated”. Both of them could be viewed as cascading a single permutation-
based keyed function and a variant of the (keyless) Davies-Meyer construc-
tion, and we thereby refer to them as Cascaded constructions with unkeyed
Davies-Meyer (CUDM). In detail, they are defined as

CUDM1P1,P2

k1
(x) = P2(a12P1(a01x⊕ a00k1)⊕ a11x)⊕ a22P1(a01x⊕ a00k1),

a00, a01, a11, a12, a22 ̸= 0,

CUDM2P1,P2

k2,k3
(x) = P2(a12P1(a01x)⊕ a11x⊕ a10k2)⊕ a20k3,

a01, a10, a11, a12, a20 ̸= 0.
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The single permutation-based keyed function, on its own, is clearly vul-
nerable to Simon’s algorithm. The interesting observation is that in both
cases, the additional Davies-Meyer construction eliminates algebraic prop-
erties and prevents polynomial attacks. To understand their Q2 security, we
leverage collisions in their computations and develop key recovery attacks
using the quantum collision searching algorithm of Brassard et al. [14].
For both classes, our attacks O(n) qubits, O(22n/5) quantum steps, and
O(2n/5) classical memory, and remain faster than the näıve Grover key
search.

(iii) Finally, for the remaining “non-degenerated” TPPR schemes, we are able
to mount key recovery attacks using the Grover-meet-Simon approach,
i.e., by guessing a part of the keys to reach periodicity on the remaining
components.

Combining our attack with the all-subkeys-recovery idea of Isobe and
Shibutani [40], we exhibit key recovery attacks against the PEDM PRF of [31],
the SoKAC1 PRF of [20,16], as well as the 2-round Even-Mansour ciphers with
any key schedule functions and with tweaks. For the 2-round Even-Mansour,
as long as the master key length κ has κ≫ n+2 log2 n, our attack complexity
O(n2n/2) is better than O(2κ/2) of the näıve Grover key search and O(22n/3)
of the quantum meet-in-the-middle attack (for all-subkeys-recovery) of Ka-
plan [43]. We also improve the superposition attack of Shinagawa and Iwata
against the SoEM PRF [62] thanks to the use of Alg-PolyQ2 of [11].

Interpretation. Admittedly, superposition attacks and the Q2 model are over
generous to the attacker, and recent works [11] have turned to improve attacks
in the Q1 model (in which accelerations are limited to offline quantum compu-
tations). Though, we view our results as establishing new Q2 security upper
bounds on a wide class of pseudorandom schemes and unveiling potential de-
sign choices, which is fundamental since they may be key building blocks of
various other quantum cryptographic protocols. In particular,

(i) Since TPPRS cannot enjoy more than n/2 bit security in the Q2 model,
TPPRS with n-bit keys (and 2n/3-bit classical security) is preferable;

(ii) Once carefully designed, additional keyless “rounds” may help eliminate
algebraic properties and prevent relevant attacks, despite that they don’t
increase key-length.

1.4 Other Related Work

Quantum Q1 security has been proved for the FX construction and the (1-
round) Even-Mansour cipher [42,1]. This line on Q1 security is largely orthog-
onal to our work.

Finally, quantum versions of well-known cryptanalytic methods have been
developed [45,44], including differential, linear, and slide attacks.
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2 Preliminaries

For an integer n ∈ N, we denote by {0, 1}n the set of bit strings of length n.
For two bit strings x, y, we denote by x∥y their concatenation and by x ⊕ y
their bitwise XOR. When x and y are viewed as bit vectors, we denote by

⟨x, y⟩ the inner product of x and y. If X is a set, by x
$← X we denote

the uniformly random sampling of an element from X . By Pi we denote a
random permutation operating on n bits. For a matrix A, by ai,j we denote
its coefficient at the ith row and jth column. By ai,∗ we denote the ith row of
A, and by a∗,j its jth column. Given an n-bit string x and a ≤ n, denote by
lefta(x) (resp., righta(x)) the a leftmost (resp., rightmost) bits of x.

2.1 Quantum algorithms

In this section, we briefly recall the quantum algorithms that will be used in
this paper, namely, Simon’s algorithm [66] for extracting periodic informa-
tion of functions, Grover’s algorithm [34] for exhaustive searching, and their
combination Grover-meet-Simon algorithm of Leander and May [48].

2.1.1 Simon’s algorithm for extracting periodic information

Consider a Boolean function f : {0, 1}n → {0, 1}n with the promise that there
exists s ∈ {0, 1}n (which is unknown) such that for any (x, x′) ∈ {0, 1}n,
f(x) = f(x′) if and only if x⊕ x′ ∈ {0n, s}. The goal is to recover s. Classical
solutions to this problem consume Θ(2n/2) computations. Whereas Simon’s
algorithm solves its with quantum complexity O(n). To see how it works,
recall that the Hadamard transform H⊗n applied on an n-qubit state |x⟩ for
some x ∈ {0, 1}n gives H⊗n|x⟩ = 1√

2n

∑
y∈{0,1}n(−1)⟨x,y⟩|y⟩. With this, below

we present a description of [44].

1. Initializes a 2n-qubit state |0⟩|0⟩, and then applies the Hadamard transform
H⊗n to the first register to obtain the uniform quantum superposition

1√
2n

∑
x∈{0,1}n

|x⟩|0⟩. (2)

2. Issues a quantum query to the function f and maps Eq. (2) to the state

1√
2n

∑
x∈{0,1}n

|x⟩|f(x)⟩

3. Measures the second register in the computational basis to yield a value
f(z) and collapse the first register to

1√
2

(
|z⟩+ |z ⊕ s⟩

)
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4. Applies the Hadamard transform H⊗n again to the first register and yields

1√
2

1√
2n

∑
y∈{0,1}n

(−1)⟨y,z⟩
(
1 + (−1)⟨y,s⟩

)
|y⟩

5. The vectors y such that ⟨y, s⟩ = 1 have amplitude 0. Therefore, measuring
the state in the computational basis yields a random vector y such that
⟨y, s⟩ = 0.

Repeating these steps O(n) times yield n − 1 independent vectors orthogo-
nal to s with high probability, and thus s can be recovered by solving linear
equations. However, as discussed by Santoli and Schaffner [61] and Kaplan et
al. [44], functions defined upon cryptographic primitives are seldom “perfectly
periodic”, and random collisions of the form f(x) = f(x′), x ⊕ x′ ̸= s, may
interfere. To rescue, Kaplan et al. [44] showed that Simon’s promise can be
weakened to allow for the aforementioned “false positives” f(x) = f(x′), at
the expense of slightly more repetitions. Formally, for f : {0, 1}n → {0, 1}n
such that f(x⊕ s) = f(x) for all x, define

ε(f, s) := max
t∈{0,1}n\{0,s}

Prx
[
f(x) = f(x⊕ t)

]
. (3)

If ε(f, s) ≤ p0 < 1, then Simon’s algorithm returns s with cn queries, with

probability at least 1−
(
2
(
1+p0

2

)c)n
.

Leander and May [48] introduced the assumption adopted by many [26]
that f(x) behaves like a random periodic function, and argued its practical
relevance. Precise bounds on ε(f, s) are certainly preferable. In our work, the
precise probabilities of such collisions are related to the differential and sec-
ond order differential properties of random permutations. The former has been
characterized by O’Connor [59], while the latter appears unfortunately miss-
ing. We thereby follow the random periodic function assumption of Leander
and May [48] for our complexity analysis, i.e., we also assume that all the
periodic functions used in our attacks behave as random periodic functions.
Under this assumption, Leander and May showed that any function value f(x)
has only two preimages with probability at least 1

2 . Moreover, they show that
λ = 2(n+

√
n) repetitions of the Simon’s algorithm are sufficient to compute

s.

2.1.2 Grover’s algorithm for exhaustive searching

In general, the searching problem is as follows. Given a set X (the “search
space”) and let g : {0, 1}n → {0, 1} be a function such that g(x) = 1 if and
only if x ∈ X. Find a value x ∈ X. Classical solutions have to resort to O( 2n

|X| )

queries. Given a quantum oracle of g, Grover’s algorithm [34] can solve the

problem by using O( 2n/2√
|X|

) quantum queries.
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2.1.3 Grover-meet-Simon

For most cryptographic cracking problems, Simon’s algorithm does not imme-
diately yield solutions. Though, a class of cracking problems is such that once
we fix a part of the guess, the problem instance can be translated into an-
other problem instance that fulfills Simon’s approximate promise. Bonnetain
et al. [11] formalized such problems as Asymmetric Search of a Period, which
is presented below.

Problem 1 (Asymmetric Search of a Period). Let F : {0, 1}κ×{0, 1}n → {0, 1}ℓ

and g : {0, 1}n → {0, 1}ℓ be two functions such that F is a family of functions
indexed by {0, 1}κ. Assume that we are given quantum oracle access to F , and
classical or quantum oracle access to g. (In the Q1 setting, g will be a classical
oracle. In the Q2 setting, g will be a quantum oracle.)

Assume that there exists exactly one i ∈ {0, 1}κ such that F (i, ·) ⊕ g has
a hidden period, i.e., ∀x ∈ {0, 1}n, F (i0, x)⊕ g(x) = F (i0, x⊕ s)⊕ g(x⊕ s)for
some s. Furthermore, assume that

max
i∈{0,1}κ\{i0}
t∈{0,1}n\{0n}

Pr
x

$←−{0,1}n

[
F (i, x⊕ t)⊕ g(x⊕ t) = F (i, x)⊕ g(x)

]
≤ 1

2
. (4)

Then find i0 and s. As remarked in prior works, Eq. (4) is a reasonable as-
sumption for “sufficiently strong” cryptographic functions.

Problem 1 abstracts the key recovery of a number of cryptosystems, which
in particular includes the aforementioned FX construction FXE

k0,k1,k2
(x) = k2⊕

E(k0, k1⊕x) for a blockcipher E : {0, 1}κ×{0, 1}n → {0, 1}n, as well as our gen-
eral TPPR scheme (this enables our attack). More clearly, FXE

k0,k1,k2
collapses

to the 1-round Even-Mansour scheme when k0 is fixed to a guess, and this ap-
peared to motivate Leander and May [48] proposing the Grover-meet-Simon
algorithm and recovering the keys of FXE

k0,k1,k2
(x) in O(n2κ/2) quantum steps.

As mentioned in the Introduction, Bonnetain et al. [11] subsequently improved
Grover-meet-Simon process and developed Alg-PolyQ2 (see Algorithm 1 be-
low). The central idea is to carefully reuse O(cn) superposition states in all
Grover iterations, such that the states are used for testing without being mea-
sured. By this, the number of superposition queries to the quantum oracle |g⟩
is reduced to O(cn) compared with O(n2κ/2) in [48].

For concreteness, we fix a constant c ≃ κ/(n log2(4/3)). Then the offline
Simon’s algorithm finds i0 with a probability in Θ(1) by making O(n) quantum
queries to g and O(n2κ/2) quantum queries to F . The offline computation (the
procedures excluding the ones to prepare the state |ψg⟩) of Algorithm 1 is done
in time O((n3 +nTF )2

κ/2), where TF is the time required to evaluate F once.

3 Breaking Schemes with One Permutation Call

In this section, we show that all “full-domain” pseudorandom schemes that
make only one permutation call and have linear pre-and post-processing func-
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Algorithm 1 Bonnetain et al.’s algorithm Alg-PolyQ2 [11]
1: Start in the all-zero state.
2: Using cn queries to |g⟩ to create the state3

|ψg⟩ =
cn⊗ ∑

x∈{0,1}n
|x⟩|g(x)⟩


The circuit now contains |ψg⟩, the “g-database”, and additional registers on which we
can perform Grover search. Notice that |ψg⟩ contains cn independent (and disentangled)
registers.

3: Create the uniform superposition over indices i ∈ {0, 1}κ:

|ψg⟩ ⊗
∑

i∈{0,1}κ
|i⟩

4: Apply Grover iterations. The testing oracle is a unitary operator test (see Algorithm 2
below) that takes in input a register for |i⟩ and the “g-database”, and tests in superpo-
sition whether F (i, ·) ⊕ g has a hidden period. If this is the case, it returns |b⊕ 1⟩ on
input |b⟩. Otherwise it returns |b⟩. (Algorithm 2 gives the details for test in the case
that i is fixed.)

5: After O(2κ/2) Grover iterations, measure the index i.
6: If the hidden shift is also wanted, apply a single instance of Simon’s algorithm (or re-

use the database and perform a slightly extended computation of test to retrieve the
result).

k1

L1x
x

P

k2

L2 y

Fig. 1: Function F1PP
k1,k2

based on two keys k1 and k2 and a single call to a
public random permutation.

tions can be fully broken in the Q2 model. To formally define our target,
let P be an n-bit permutation, and let L1 : {0, 1}n × {0, 1}n → {0, 1}n and
L2 : {0, 1}n×{0, 1}n → {0, 1}n be any two linear mappings (that only consist
of modular addition and scalar multiplication). Further, write

L1 = (a11, a12), L2 = (a21, a22, a23),

where a11, a12, a21, a22, a23 ∈ Fn
2 .

3 This state be created by an exponential number of classical queries to g as well [11]. As
we only consider superposition attacks, we will focus on the variant relying on |g⟩.
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Algorithm 2 The procedure test that checks if a function F (i, ·) ⊕ g as a
period against the “g-database”, without any new query to g.
1: We start with the g-database

|ψg⟩ =
cn⊗ ∑

x∈{0,1}n
|x⟩|g(x)⟩

 .

2: Using cn superposition queries to F , build the state:

∣∣ψF (i,·)⊕g

〉
=

cn⊗ ∑
x∈{0,1}n

∣∣x〉∣∣g(x)⊕ F (i, x)
〉 .

We will now perform, in a reversible way, the exact computations of Simon’s algorithm
to find if g⊕F (i, ·) has a hidden period or not (in which case F (i, ·) and g have a hidden
shift).

3: Apply (H⊗n ⊗ Im)cn ⊗ I1 to |ψF (i,·)⊕g⟩ ⊗ |b⟩, to obtain( ∑
u1,x1∈{0,1}n

(−1)u1·x1
∣∣u1〉∣∣F (i, x1)⊕ g(x1)

〉)
⊗ · · ·

⊗
( ∑

ucn·xcn∈{0,1}n
(−1)ucn,xcn

∣∣ucn〉∣∣F (i, xcn)⊕ g(xcn)
〉)

⊗
∣∣b〉

4: Compute d := dim(Span(u1, . . . , ucn)), set r := 0 if d = n and r := 1 if d < n, and add
r to b. Then uncompute d and r, and obtain∑

u1,...,ucn
x1,...,xcn

(−1)u1·x1
∣∣u1〉∣∣F (i, x1)⊕ g(x1)

〉
⊗ · · ·

· · · ⊗ (−1)ucn·xcn
∣∣ucn〉∣∣F (i, xcn)⊕ g(xcn)

〉
⊗
∣∣b⊕ r

〉
5: Uncompute (H⊗n ⊗ Im)cn ⊗ I1.
6: Using cn new superposition queries to F , revert |ψF (i,·)⊕g⟩ to |ψg⟩. There are two cases:

– If g ⊕ F (i, ·) has a hidden period, then r = 1 always holds. Hence, in the output
register, we always write 1.

– If g⊕F (i, ·) does not have a hidden period, then with high probability, r = 0. Hence,
in the output register, we write 0.

Let F1PP
k1,k2

: {0, 1}2n × {0, 1}n → {0, 1}n be the function of Fig. 1, i.e.,

F1PP
k1,k2

(x) = L2

(
k2, x, P

(
L1(k1, x)

))
= a21k2 ⊕ a22x⊕ a23P (a11k1 ⊕ a12x), (5)

where multiplications are over the finite field Fn
2 . Even if k1 and k2 are in-

dependent, the keys can be recovered by Simon’s algorithm. To this end, we
distinguish two subcases.

Case 1: a11 = 0 or a12 = 0. In this case, the input to the permutation is
independent of either the keys or x. As shown by Chen et al. [20], there ex-
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ist distinguishing attacks even in the classical setting. Here we put forward
(obvious) key recovery attacks.

When a11 = 0, given a single pair (x, y) of input/output, it holds

a21k2 ⊕ a22x⊕ a23P (a12x).

Thus, a21k2 = a22x⊕a23P (a12x), and k2 can be recovered by k2 = a−1
21

(
a22x⊕

a23P (a12x)
)
.

On the other hand, when a12 = 0, given a single pair (x, y) of input/output,
it holds

a21k2 ⊕ a22x⊕ a23P (a11k1),

and we have a21k2⊕a23P (a11k1) = a22x. While we cannot further recover the
keys, the n-bit secret a21k2 ⊕ a23P (a11k1) already enables free evaluations of
F1PP

k1,k2
(x) for any x.

Case 2: a11 ̸= 0, a12 ̸= 0. In this case, consider the function f : {0, 1}n →
{0, 1}n defined as

f(x) := F1PP
k1,k2

(x)⊕ a23P (a12x)⊕ a22x
= a21k2 ⊕ a23P (a11k1 ⊕ a12x)⊕ a23P (a12x). (6)

It can be seen that f(x) is periodic with period a−1
12 a11k1, since

f(x⊕ a−1
12 a11k1) = a21k2 ⊕ a23P (a11k1 ⊕ a12x⊕ a11k1)⊕ a23P (a12x⊕ a11k1)

= f(x).

Moreover, as discussed in Sect. 2.1.1, under the assumption that f is a ran-
dom periodic function, then the key a−1

12 a11k1 can be recovered after applying
Simon’s algorithm with 2(n+

√
n) repetitions.

3.1 Extensions to settings with extreme data limit

Simon’s algorithm requires O(n) queries to the keyed oracle. A number of
cryptosystems vary the keyed oracle for every query, and it is thus natural to
ask if this prevents Simon’s attack. Below we show that in two such relevant
settings, the attack remains applicable.

3.1.1 Extension I: varied permutation

For the (non-trivial) case a11 ̸= 0, a12 ̸= 0, the Simon-based attack remains
applicable even if the permutation varies for every online query. Formally,

consider F̃1P : {0, 1}2n × I × {0, 1}n → {0, 1}n, which is a variant of F1PP
k1,k2

defined upon |I| permutations P1, ..., P|I|:

F̃1P
P1,...,P|I|

k1,k2
(i, x) = a21k2 ⊕ a22x⊕ a23Pi(a11k1 ⊕ a12x). (7)
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Moreover, queries to |F̃1P
P1,...,P|I|

k1,k2
⟩ are restricted with respect to i. In de-

tail, the i-th adversarial query to |F̃1P
P1,...,P|I|

k1,k2
⟩ is a quantum superposition∑

x∈{0,1}n,y∈{0,1}n αx,y|x⟩|y⟩, and the corresponding response is the super-

position
∑

x∈{0,1}n,y∈{0,1}n αx,y|x⟩|y ⊕ F̃1P
P1,...,P|I|

k1,k2
(i, x)⊕ y⟩. Namely, all the

function values in the superposition are computed using the same index i.
Even with such query restrictions, Simon’s algorithm remains applicable.

In detail, consider the function f : I × {0, 1}n → {0, 1}n defined as

f(i, x) := F̃1P
P1,...,P|I|

k1,k2
(i, x)⊕ a23Pi(a12x)⊕ a22x

= a21k2 ⊕ a23Pi(a11k1 ⊕ a12x)⊕ a23Pi(a12x). (8)

Then for all i ∈ I, the function f(i, ·) is periodic with period a−1
12 a11k1. We

thus runs the Simon’s algorithm except that we query f(i, ·) with the uni-
form superposition during the i-th iteration. This fulfills the query restriction,
while the vectors produced in all the iterations are orthogonal to the same
secret period a−1

12 a11k1. It thus remains easy to recover a−1
12 a11k1 after O(n)

iterations.
This setting with restricted queries is relevant to some recent proposals.

For example, Guo et al. [35] introduced an AES-based “tweakable correlation
robust hash function” for MPC protocols. In detail, let E : {0, 1}n×{0, 1}n →
{0, 1}n be a blockcipher with n-bit blocks and n-bit keys (e.g., the AES-128
with n = 128). Then, the function is defined as HE(i, x) := E(i, σ(x)) ⊕ σ(x),
where σ : {0, 1}n → {0, 1}n is a fixed linear orthomorphism. The security of
HE(i, x) is proved as follows. Given a random secret key k,

HE(i1, x1 ⊕ k) := E(i1, σ(x1)⊕ σ(k))⊕ σ(x1)⊕ σ(k),
...,

HE(iℓ, xℓ ⊕ k) := E(iℓ, σ(xℓ)⊕ σ(k))⊕ σ(xℓ)⊕ σ(k)

are ℓ independent pseudorandom strings as long as i1, ..., iℓ are distinct and
fixed by the protocol. It is easy to see that this construction and its security
model are exactly captured by our extended attack.

3.1.2 Extension II: varied key

For the (non-trivial) case a11 ̸= 0, a12 ̸= 0, the Simon-based attack re-
mains applicable even if the key varies (in a public manner) for every on-

line query. Formally, consider an oracle F̃1PRK
P

k1,k2
, which replies its i-th

superposition query
∑

x∈{0,1}n,y∈{0,1}n αx,y|x⟩|y⟩ with the superposition of

oracle responses
∑

x∈{0,1}n,y∈{0,1}n αx,y|x⟩|y ⊕ F1PP
ci,1k1,ci,2k2

(i, x)⊕ y⟩, where

ci,1, ci,2 ∈ Fn
2\{0}. Namely, F̃1PRK

P

k1,k2
offers a related-key oracle of F1PP

k1,k2
,

whereas the online data complexity is limited to 1 for every related-key. While
related-key increases adversarial power, the severely limited data complexity
seems to prohibit using Simon’s algorithm.
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However, in this setting, Simon’s algorithm remains applicable. In detail,
consider the function f : I × {0, 1}n → {0, 1}n defined as

f(i, x) := F1PP
ci,1k1,ci,2k2

(i, x)⊕ a23Pi(a12x)⊕ a22x
= a21ci,2k2 ⊕ a23Pi(a11ci,1k1 ⊕ a12x)⊕ a23Pi(a12x). (9)

Then for all i ∈ I, the function f(i, ·) is periodic with period a−1
12 a11ci,1k1.

The Simon’s algorithm thus runs just as before, except that the i-th iteration
produces a vector si orthogonal to the corresponding period a−1

12 a11ci,1k1. By
this, after O(n) iterations, if we view the obtained vectors s1, ..., sℓ as column
vectors, then we have a system of equations

⟨s1, a−1
12 a11c1,1k1⟩ = 0,

⟨s2, a−1
12 a11c2,1k1⟩ = 0,

...
⟨sℓ, a−1

12 a11cℓ,1k1⟩ = 0

=⇒

⟨c−1
1,1a

−1
11 a12s1, k1⟩ = 0,

⟨c−1
2,1a

−1
11 a12s2, k1⟩ = 0,

...
⟨c−1

ℓ,1a
−1
11 a12sℓ, k1⟩ = 0

It thus remains feasible to recover k1 by solving equations.
This setting may appear in modes of operations using the 1-round tweak-

able Even-Mansour ciphers [22,51]. As a concrete example, the tweakable
correlation robust hash function of Chen and Tessaro [21] defines H(i, x) :=
P (tx)⊕ tx mapping an index and an n-bit input to an n-bit output using the
multiplication over Fn

2 , and ensures security that H(i1, x ⊕ k), ...,H(iℓ, x ⊕ k)
are ℓ independent pseudorandom functions. It is easy to see H(ij , x ⊕ k) =
P (ijk ⊕ ijx)⊕ ijk ⊕ ijx, which exactly fits into our above discussion.

4 Schemes with Two Permutations and Attacks

In this section, we first formally define our model for two-permutation-based
pseudorandom (TPPR) schemes. Formally, let P1, P2 be two n-bit permuta-
tions. For a 3× 3 matrix A of the form

A =

a00 a01 0
a10 a11 a12
a20 a21 a22

 , (10)

with aij ∈ Fn
2 . The keyed function F2PP1,P2

A,k : {0, 1}3n × {0, 1}n → {0, 1}n is
defined as

F2PP1,P2

A,k (x) = z, where y1 ← P1(a00k1 ⊕ a01x),
y2 ← P2(a10k2 ⊕ a11x⊕ a12y1),
z ← a20k3 ⊕ a21x⊕ a22y1 ⊕ y2. (11)

where multiplications are on the finite field Fn
2 . The function F2PP1,P2

A,k is de-
picted in Fig. 2. This in particular includes the 2-round Even-Mansour, the



Title Suppressed Due to Excessive Length 15

P2

P1

x

a00k1

a01 a11

a12 a22

a10k2 a20k3

a21

z

Fig. 2: The two permutation-based keyed function FA,k of Eq. (11).

SoEM PRF, the SoKAC1 PRF, and the PEDM PRF: we refer to Sect. 4.3.1
and 4.3.2 for detailed elaboration.

An initial observation is that the final operation of XORing a21x has no
influence on key recovery security since a21 is public, and we can always define

F2PP1,P2

A,k

′
(x) := F2PP1,P2

A,k (x)⊕ a21x
= P2

(
a12P1(a01x⊕ a00k1)⊕ a11x⊕ a10k2

)
⊕ a22P1(a01x⊕ a00k1)⊕ a20k3

as the target of the attack. We thereby simply take a21 = 0 in our attacks.

4.1 Fully Degenerated Cases and Attacks using Simon’s Algorithm

In this section, we identify “fully degenerated” TPPR schemes, i.e., those pro-
vide no Q2 security at all due to Simon’s algorithm. To simplify the language,
we define Bo(aij) = 0 if aij = 0, and Bo(aij) = 1 otherwise. Furthermore, if
aij = 0 then we write a−1

ij = 0.

4.1.1 Case 1: Bo(a01) = 0

Then the P1 invocation does not depend on x at all, and the construction
becomes

F2PP1,P2

A,k (x) = P2(a12P1(a00k1)⊕ a11x⊕ a10k2)⊕ a22P1(a00k1)⊕ a20k3.

Let k′2 = a12P1(a00k1) ⊕ a10k2, k′3 = a22P1(a00k1) ⊕ a20k3. Then the scheme

becomes F2PP1,P2

A,k (x) = P2(k
′
2⊕ a11x)⊕ k′3, and the attacks presented in Sect.

3 applies.

4.1.2 Case 2: Other Degenerated Cases

1. when (Bo(a10) + Bo(a11))Bo(a12) Bo(a22) = 1, the construction pro-
vides no security even in the classical setting. In detail, when Bo(a12) =

Bo(a22) = 1, the scheme becomes F2PP1,P2

A,k (x) = P2(a11x⊕a10k2)⊕a20k3.
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– whenBo(a10) = 1, the scheme becomes F2PP1,P2

A,k (x) = P2(a11x)⊕a20k3,
we can recover k3 by a−1

20 (F2P
P1,P2

A,k (x)⊕ P2(a11x)) = k3;

– when Bo(a11) = 1, the scheme F2PP1,P2

A,k (x) = P2(a10k2) ⊕ a20k3 is a
constant, which is also trivially insecure.

2. whenBo(a10)(Bo(a12)Bo(a22)+Bo(a11)Bo(a12))+Bo(a10)Bo(a12)(Bo(a11)⊕
Bo(a22)) = 1, the scheme again collapses to the EM construction. In detail,

– when Bo(a10) = Bo(a12) = 1, the scheme becomes F2PP1,P2

A,k (x) =

P2(a11x⊕a10k2)⊕a22P1(a01x⊕a00k1)⊕a20k3, we can see if Bo(a11) = 1,

the scheme F2PP1,P2

A,k (x) = P2(a10k2)⊕ a22P1(a01x⊕ a00k1)⊕ a20k3 de-
generate to the Even-Mansour scheme. And we can recover P2(a10k2)⊕
a20k3 if Bo(a00) = 0. If Bo(a22) = 1, the scheme F2PP1,P2

A,k (x) =
P2(a11x⊕ a10k2)⊕ a20k3 degenerate to the Even-Mansour scheme. But

if Bo(a11) = Bo(a22) = 1, the scheme F2PP1,P2

A,k (x) = P2(a10k2)⊕ a20k3
is a constant;

– when Bo(a10) = Bo(a00) = 1, the scheme becomes F2PP1,P2

A,k (x) =
P2(a12P1(a01x) ⊕ a11x) ⊕ a22P1(a01x) ⊕ a20k3. It is trivially insecure.

When Bo(a10) = Bo(a00) = 1, the scheme becomes F2PP1,P2

A,k (x) =
P2(a12P1(a01x⊕a00k1)⊕a11x)⊕a22P1(a01x⊕a00k1)⊕a20k3. Further:
• when Bo(a11) = Bo(a12) = 1, the scheme becomes a keyless func-

tion h whitened by two keys, i.e., F2PP1,P2

A,k (x) = h(x⊕a−1
01 a00k1)⊕

a20k3, where h(u) = P2(a12P1(u)) ⊕ a22P1(u). Then the function

f ′ = F2PP1,P2

A,k (x)⊕ h(x) has period a−1
01 a00k1 which just resembles

the 1-round Even-Mansour cipher, and the scheme is thus breakable
by using Simon’s algorithm;

• whenBo(a12) = Bo(a22) = 1, the scheme F2PP1,P2

A,k (x) = P2(a11x)⊕
a22P1(a01x ⊕ a00k1) ⊕ a20k3, and f ′ = F2PP1,P2

A,k (x) ⊕ P2(a11x) ⊕
a22P1(a01x) has period a−1

01 a00k1 and can be broken by using Si-
mon’s algorithm.

3. when Bo(a00)(Bo(a12) ⊕ Bo(a11)) = 1, the scheme again collapses to the
EM construction. In detail, when Bo(a00) = 1, the input to P1 is not secret,

the scheme becomes F2PP1,P2

A,k (x) = P2(a12P1(a01x)⊕a11x⊕a10k2)⊕a20k3.
– when Bo(a12) = Bo(a11) = 1, the corresponding scheme F2PP1,P2

A,k (x) =
P2(a11x⊕ a10k2)⊕ a20k3 degenerate to the Even-Mansour scheme;

– when Bo(a11) = Bo(a12) = 1, the corresponding scheme F2PP1,P2

A,k (x) =
P2(a12P1(a01x)⊕a10k2)⊕a20k3 degenerate to the Even-Mansour again.

The remaining cases appear secure against Simon’s algorithm and will be
addressed in the subsequent sections.

4.2 Cascaded Constructions with unkeyed Davies-Meyer

In this section, we identify the “partially degenerated” cascaded constructions
with unkeyed Davies-Meyer (CUDM). Such constructions could be viewed as
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x

k1

P1 P2

Fig. 3: Simplest variant of the function CUDM1P1,P2

k1
.

cascading a single permutation-based keyed “round function” and a variant
of the (keyless) Davies-Meyer construction. The permutation invocation in
the Davies-Meyer is somewhat “wasted” due to the non-secrecy. Though, no
periodicity can be exhibited. Our discussion further distinguishes between two
subcases in Sect. 4.2.1 and Sect. 4.2.2 respectively.

4.2.1 Subcase 1: Keyed round comes first

By “keyed round comes first”, it means the function is defined as

CUDM1P1,P2

k1
(x) := P2(a12P1(a01x⊕ a00k1)⊕ a11x)⊕ a22P1(a01x⊕ a00k1),

where Bo(a00), Bo(a01), Bo(a11), Bo(a12), Bo(a22) ̸= 0. The simplest variant
has all the constants equal 1, and is depicted in Fig. 3.

Algorithm 3 A (non-unique) claw-finding algorithm based on [15, Algorithm
4].

The input are two functions h : {0, 1}n → {0, 1}n and g : {0, 1}n → {0, 1}n to which we have
quantum oracle access.4 The output is a claw (x, u) such that h(x) = g(u). The parameters
r and t are fixed and will be optimized later. For r ∈ [1, ..., n], let Sh

r :=
{
(x, h(x)) :

leftr
(
h(x)

)
= 0r

}
and Sg

r :=
{
(x, g(x)) : leftr

(
g(x)

)
= 0r

}
. The algorithm works as follows.

1. Define a helper function fSg
r
(x) := 1 if x ∈ Sg

r and fSg
r
(x) := 1 otherwise. Run Grover’s

search algorithm on fSg
r
for 2t−r times to construct a list L of 2t−r elements from Sg

r .

Let fhL(x) := 1 if ∃(u, g(u)) ∈ L such that h(x) = g(u) and fhL(x) := 0 otherwise.
2. Apply a quantum amplification algorithm where

– The setup is the construction of |ϕr⟩ := 1√
|Sh

r |

∑
x∈Sh

r
|x, h(x)⟩.

– The projector is a quantum oracle query to Ofh
L

meaning that

Ofh
L

(
|x, h(x)⟩ |b⟩

)
= |x, h(x)⟩

∣∣b⊕ fhL(x)
〉
.

The above quantum amplification algorithm is essentially a Grover search algorithm for fhL
but on input space Sh

r . The algorithm will output an element (x, h(x)) such that fhL(x) = 1,
which means that ∃(u, g(u)) ∈ L, h(x) = g(u). This gives rise to a claw.

4 As argued in [15], when the input length of h, resp. g, is larger than the output length
n, one can insert a pad to turn them into functions on {0, 1}n.



18 Shaoxuan Zhang et al.

For simplicity, define DMxP2(u) := P2(a22a
−1
12 u)⊕a22a

−1
12 u. Then we have

CUDM1P1,P2

k1 k
(x)⊕ a22a−1

12 a11x = DMxP2
(
P1(a01x⊕ a00k)⊕ a11x

)
. We defer

discussion on obstacles on seeking for periodicity to the end of this subsec-
tion. For our attack, we seek for x, u ∈ {0, 1}n such that CUDM1P1,P2

k1 k
(x) ⊕

a22a
−1
12 a11x = DMxP2(u). Once such a pair is found, it might indicate P1(a01x⊕

a00k) ⊕ a11x = u, and k1 is recovered by k1 = a−1
00

(
P−1
1 (a11x ⊕ u) ⊕ a01x

)
.

This type of collision was also used in [54], though in the classical setting.
In our quantum setting, it indicates the possibility of faster attacks using the
quantum collision algorithm of Brassard et al. [14].

However, Chailloux et al. [15] argued that the use of O(2n/3) qubits and
O(2n/3) quantum steps in [14] may be less convincing, and developed a quan-
tum algorithm using O(n) qubits, O(22n/5) quantum steps, and O(2n/5) clas-
sical memory. Chailloux et al.’s algorithm [15, Algorithm 4] aims at finding
collisions h(x) = h(x′) on a single function, whereas we are seeking for claws
h(x) = g(u) in this subsection. As we believe (non-unique) claw-finding in
such specific settings is commonly used in symmetric cryptography, we adapt
Algorithm 4 of Chailloux et al. and provide a dedicated claw-finding algorithm
in Algorithm 3.

Running Algorithm 3 with h(x) = CUDM1P1,P2

k1
(x)⊕a22a−1

12 a11x and g(u) =

DMxP2(u) yields a random x such that there exists (u, g(u)) ∈ L with h(x) =
g(u). The attacker then outputs k1 = a−1

00

(
P−1
1 (a11x⊕ u)⊕ a01x

)
as the key.

The complexities are the same as Chailloux et al., i.e., O(n) qubits, O(22n/5)
quantum steps, and O(2n/5) classical memory. This remains faster than the
näıve Grover key search (which needs O(2n/2) quantum steps).

Regarding success probability, let X ⊆ {0, 1}n be the set such that ∀x ∈
X , there exists (u, g(u)) ∈ L with h(x) = g(u). Then Algorithm 3 returns
a random x from X . By constructions, for every (u, g(u)) ∈ L, a “clawed”
x ∈ {0, 1}n with h(x) = g(u) may fall into two cases:

– Right claw: it holds P1(a01x ⊕ a00k) ⊕ a11x = u. The number of such
collision is at least 1 for every u.

– False positive: P1(a01x ⊕ a00k) ⊕ a11x = u′ ̸= u, though DMxP2(u) =
DMxP2(u′). Since the probability to have DMxP2(u) = DMxP2(u′) is
1/(2n − 1), the expected number of such false positives for a single u is
(2n − 1)/(2n − 1) = 1.

By the above, the size of X is expected to be 2|L|, and the number of right
clawed x in X is at least |L|. Therefore, with probability 1/2, the value x in the
resulted claw (x, u) does have P1(a01x⊕a00k)⊕a11x = u, and the subsequently
recovered key k1 is correct. Namely, the expected success probability of the
above attack is 1/2.

Further discussion. Such schemes are clearly unpreferable since the keyless
“second round” does not increase security in the classical setting. In addition,
symmetric cryptographic schemes typically have the key addition that goes
“ahead of” the feeding forward. Though, the interesting observation is that
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the keyless “second round” as well as the abnormal key addition seem to
protect the scheme against Simon attacks. To this end, consider the variant in
Fig. 3 for simplicity:

– Without the keyless “second round” computation P2(u) ⊕ u, the scheme
further collapses to a single permutation-based function, and attacks in
Sect. 3 becomes feasible;

– Consider the variant CUDM1′
P1,P2

k1
(x) := P2(P1(x⊕k1)⊕x⊕k1)⊕P1(x⊕k1),

in which the input whitening key “runs ahead” of the feeding forward of
x. This variant is a special case of whitened functions h(x ⊕ k1) for h a
keyless function h(u) = P2(P1(u) ⊕ u) ⊕ P1(u), and Simon-based attacks
become feasible again. The abnormal key addition, to some extent, renders
the “inner” cryptographic function key-dependent, and this prohibits the
approach of [47].

4.2.2 Davies-Meyer comes first

When Bo(a00) = 0 and further Bo(a12)Bo(a11) ̸= 0, let k′2 = a10k2, k
′
3 =

a20k3. Then the input to P1 is not secret, and the scheme becomes CUDM
with “Davies-Meyer coming first”. In detail, the function is defined as

CUDM2P1,P2

k2,k3
(x) := P2

(
a12P1(a01x)⊕ a11x⊕ k′2

)
⊕ k′3.

Let u = P1(a01x)⊕ a−1
12 a11x, then we have CUDM2P1,P2

k2,k3
(x) = EMxP2

k′
2,k

′
3
(u) :=

P2(a12u ⊕ k′2) ⊕ k′3. While EMxP2

k′
2,k

′
3
is a variant of the Even-Mansour cipher

with known periodic properties for Simon’s algorithm, the “first round” keyless
function x 7→ P1(a01x)⊕ a−1

12 a11x effectively destroys the periodic properties.
In detail, to apply Simon’s algorithm to EMxP2

k′
2,k

′
3
, it is required to construct the

superposition
∑

u∈{0,1}n |u⟩
∣∣EMxP2

k′
2,k

′
3
(u)⊕ P2(u)

〉
. One may attempt to make

a superposition query to |P1⟩ and turn
∑

x∈{0,1}n |x⟩|0⟩|CUDM2P1,P2

k2,k3
(x)⟩ into∑

x∈{0,1}n |x⟩|P1(a01x)⊕ a−1
12 a11x⟩|CUDM2P1,P2

k2,k3
(x)⟩. However, the subtlety is

that, when a11, a12 ̸= 0, the “first round” transformation x 7→ P1(a01x) ⊕
a−1
12 a11x is unlikely injective. Consequently, the second quantum register of the

superposition
∑

x∈{0,1}n |x⟩|P1(a01x)⊕ a−1
12 a11x⟩|CUDM2P1,P2

k2,k3
(x)⟩ does not

spam over {0, 1}n. It is thus infeasible to expect both a12P1(a01x) ⊕ a11x
and a12P1(a01x)⊕ a11x⊕ k′2 are in the second quantum register of the super-

position
∑

x∈{0,1}n |x⟩|P1(a01x)⊕ a−1
12 a11x⟩|CUDM2P1,P2

k2,k3
(x)⟩. This also means

Bonnetain et al.’s offline Simon’s attack against the Even-Mansour [11, Sect.
5.1] is inapplicable either: their attack still crucially relies on the hidden peri-
odicity, which, as discussed, was broken by the keyless “first round”.

On the other hand, the idea of Kuwakado and Morii’s attack [47] remains
exploitable. Concretely, note that the periodic property of the “second round”

u = u′ ⊕ a−1
12 k2 ⇔ P2(a12u⊕ k′2)⊕ k′3 ⊕ P2(u) = P2(a12u

′ ⊕ k′2)⊕ k′3 ⊕ P2(u
′)
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can be naturally extended to

a12P1(a01x)⊕ a11x = a12P1(a01x
′)⊕ a11x′ ⊕ k′2

⇒ CUDM2P1,P2

k2,k3
(x)⊕ P2(a12P1(a01x)⊕ a11x)

= CUDM2P1,P2

k2,k3
(x′)⊕ P2(a12P1(a01x

′)⊕ a11x′). (12)

With this in mind, define

h(x) := CUDM2P1,P2

k2,k3
(x)⊕ P2(a12P1(a01x)⊕ a11x). (13)

Then, once we observe h(x) = h(x′), it might hold a12P1(a01x) ⊕ a11x =
a12P1(a01x

′) ⊕ a11x
′ ⊕ k′2, in which case k′2 could be recovered by k′2 =

a12P1(a01x)⊕a11x⊕a12P1(a01x
′)⊕a11x′. This inspires using quantum collision

searching algorithm [15, Algorithm 4], which is essentially Algorithm 3 with
g = h. In this case, a detailed investigation indicates that Algorithm 3 returns
a random x such that there exists (x′, h(x′)) ∈ L with h(x′) = h(x). By con-
structions, for every (x′, h(x′))) ∈ L, a collided x ∈ {0, 1}n with h(x) = h(x′)
may fall into three cases:

– Right collision: it holds a12P1(a01x)⊕ a11x = a12P1(a01x
′)⊕ a11x′ ⊕ k′2,

though x ̸= x′. For every (x′, h(x′)) ∈ L, the number of such collision is
expected to be ≈ 1.

– False positive I: a12P1(a01x) ⊕ a11x = a12P1(a01x
′) ⊕ a11x′. For every

(x′, h(x′)) ∈ L, the number of such collision is expected to be ≈ 1.
– False positive II: a12P1(a01x) ⊕ a11x ̸= a12P1(a01x

′) ⊕ a11x′ ⊕ k′2 and
a12P1(a01x) ⊕ a11x ̸= a12P1(a01x

′) ⊕ a11x
′, though h(x) = h(x′). The

expected number of such false positives for a every (x′, h(x′)) ∈ L is also
close to 1.

– False positive III: x = x′. For every (x′, h(x′)) ∈ L, the number of such
collision is 1.

Therefore, with probability ≈ 1/4, the value x in the resulted collision (x, x′)
does have a12P1(a01x)⊕a11x = a12P1(a01x

′)⊕a11x′⊕k′2, and the subsequently
recovered key k′2 is correct. Namely, after a single application of Algorithm 3,
the expected success probability is ≈ 1/4. Note that the first and third types
of false positives are easily detected, and an attacker could thus repeat the
above iteration to increase the success probability.

We remark that, for CUDM2P1,P2

k2,k3
, the interesting observation is that the

keyless “first round” seems to protect the scheme against Simon’s algorithm.

4.3 The Non-degenerated Case and Its Grover-meet-Simon Attack

When (and only when)Bo(a10)Bo(a12)+Bo(a10)Bo(a22)Bo(a11) = 1, the best
key recovery attack we found is based on the Grover-meet-Simon algorithm.
We call such cases non-degenerated, and elaborate our attack and concrete
applications in this subsection.
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In detail, we define g(k, u) = P2(a12P1(a01u) ⊕ a11u ⊕ k) ⊕ a22P1(a01u),

F2PP1,P2

A,k = P2(a12P1(a01x⊕a00k1)⊕a11x⊕a10k2)⊕a22P1(a01x⊕a00k1)⊕a20k3,
and further

f ′(x) =F2PP1,P2

A,k (x)⊕ F2PP1,P2

A,k (x⊕ 1)

g′(k, x) =g(k, x)⊕ g(k, x⊕ 1)

Then

f ′(x)⊕ g′(k′, x) = f ′(x⊕ a−1
01 a00k1)⊕ g′(k′, x⊕ a

−1
01 a00k1)

holds with k′ = a10k2⊕a11a−1
01 a00k1, i.e., f

′(x)⊕g′(k′, x) has a period a−1
01 a00k1.

Thus the problem of recovering k fulfills the conditions of Problem 1 (Sect.
2.1.3), and we can apply Algorithm 1. Formally, the attack procedure is as
follows.

Attack Description

1. Run Algorithm 1 for the above f ′ and g′ to recover k′.
2. Apply Simon’s algorithm to f ′(x)⊕ g′(k′, x) to recover k1.
3. Compute the two involved secret keys a10k2 = k′ ⊕ a11a

−1
01 a00k1 and

a20k3 = F2PP1,P2

A,k (0n)⊕ P2(a12P1(a00k1)⊕ a10k2)⊕ a22P1(a00k1).

To ensure that the first step recovers k′ successfully, the condition Eq.
(4) should be satisfied. For i ̸= k′, the involved noisy collision event f ′(x) ⊕
g′(i, x) = f ′(x′)⊕ g′(i, x′) translates into

P2(a12P1(a01x⊕ a00k1)⊕ a11x⊕ a10k2)
⊕ a22P1(a01x⊕ a00k1)⊕ a20k3

⊕P2(a12P1(a01(x⊕ 1)⊕ a00k1)⊕ a11(x⊕ 1)⊕ a10k2)
⊕ a22P1(a01(x⊕ 1)⊕ a00k1)⊕ a20k3

⊕P2(a12P1(a01x)⊕ a11x⊕ i)
⊕ a22P1(a01x)

⊕P2(a12P1(a01(x⊕ 1))⊕ a11(x⊕ 1)⊕ i)
⊕ a22P1(a01(x⊕ 1))

=P2(a12P1(a01x
′ ⊕ a00k1)⊕ a11x′ ⊕ a10k2)

⊕ a22P1(a01x
′ ⊕ a00k1)⊕ a20k3

⊕P2(a12P1(a01(x
′ ⊕ 1)⊕ a00k1)⊕ a11(x′ ⊕ 1)⊕ a10k2)

⊕ a22P1(a01(x
′ ⊕ 1)⊕ a00k1)⊕ a20k3

⊕P2(a12P1(a01x
′)⊕ a11x′ ⊕ i)

⊕ a22P1(a01x
′)

⊕P2(a12P1(a01(x
′ ⊕ 1))⊕ a11(x′ ⊕ 1)⊕ i)

⊕ a22P1(a01(x
′ ⊕ 1)).
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On the other hand, to ensure that the second step recovers k1 successfully,
the condition Eq. (3) should be satisfied. For i = k′, the involved collision
event is f ′(x)⊕g′(k′, x) = f ′(x⊕t)⊕g′(k′, x⊕t), t ̸= a−1

01 a00k1. This condition
translates into

P2(a12P1(a01x⊕ a00k1)⊕ a11x⊕ a10k2)
⊕ a22P1(a01x⊕ a00k1)⊕ a20k3
⊕P2(a12P1(a01(x⊕ 1)⊕ a00k1)⊕ a11(x⊕ 1)⊕ a10k2)
⊕ a22P1(a01(x⊕ 1)⊕ a00k1)⊕ a20k3

⊕P2(a12P1(a01x)⊕ a11x⊕ k′)
⊕ a22P1(a01x)

⊕P2(a12P1(a01(x⊕ 1))⊕ a11(x⊕ 1)⊕ k′)
⊕ a22P1(a01(x⊕ 1))

=P2(a12P1(a01(x⊕ t)⊕ a00k1)⊕ a11(x⊕ t)⊕ a10k2)
⊕ a22P1(a01(x⊕ t)⊕ a00k1)⊕ a20k3

⊕P2(a12P1(a01(x⊕ t⊕ 1)⊕ a00k1)⊕ a11(x⊕ t⊕ 1)⊕ a10k2)
⊕ a22P1(a01(x⊕ t⊕ 1)⊕ a00k1)⊕ a20k3

⊕P2(a12P1(a01(x⊕ t))⊕ a11(x⊕ t)⊕ k′)
⊕ a22P1(a01(x⊕ t))

⊕P2(a12P1(a01(x⊕ t⊕ 1))⊕ a11(x⊕ t⊕ 1)⊕ k′)
⊕ a22P1(a01(x⊕ t⊕ 1)).

Both of the above two equations are related to third order differential
properties of P2. While we found no explicit upper bound in the literature,
the bound 1

2 is likely fulfilled when P2 is a random permutation. In all, we can
assume that f ′(x) ⊕ g′(k′, x) is far from periodic for all i ̸= k′, and that the
condition Eq. (4) in Problem 1 is fulfilled. By this and by the discussion in

2.1.3 and [11, Proposition 2], our attack recovers the keys of F2PP1,P2

A,k (x) with
overwhelming probability by making O(n) quantum queries to the (keyed) on-

line oracle |F2PP1,P2

A,k (x)⊕ F2PP1,P2

A,k (x⊕ 1)⟩ and performing O(n2n/2) quantum

steps as well as O(n32n/2) classical computations. Note that when the keys
k1, k2, k3 are not independent, the attack remains effective: it just runs as if
the keys are independent.

4.3.1 Straightforward applications

In this section, we discuss (straightforward) applications of our attack to recent
permutation-based PRFs. First, the SoEM PRF introduce by Chen et al. [20]
is defined as

SoEMP1,P2
ν1,ν2

(x) = P2(x⊕ ν2)⊕ P1(x⊕ ν1)⊕ ν1 ⊕ ν2,

where ν1, ν2 ∈ {0, 1}n are two independent keys. This corresponds to a00 =
a01 = a10 = a11 = a20 = a22 = 1, a12 = a21 = 0, and (k1, k2, k3) =
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(ν1, ν2, ν1 ⊕ ν2). The application of our attack in Sect. 4.3 is straightforward
(recall that our attack remains effective against correlated keys k1, k2, k3).
The complexity of our attack is O(cn) superposition queries to

∣∣SoEMP1,P2
ν1,ν2

〉
and O(n2n/2) quantum steps. Superposition attacks against SoEM have been
exhibited in [63], which are applications of the original Grover-meet-Simon
algorithm of [48] and consume O(n2n/2) superposition queries to

∣∣SoEMP1,P2
ν1,ν2

〉
and quantum steps. Thanks to our use of Bonnetain et al. [11], our attack has
a much smaller quantum data complexity.

The construction SoEM is parallel. Chen et al. [20] also proposed a sequen-
tial PRF

SoKAC21P1,P2
ν (x) = ν ⊕ P2

(
ν ⊕ P1(ν ⊕ x)

)
⊕ P1(ν ⊕ x),

and proved security up to 22n/3 queries. As mentioned in the Introduction,
this result turned out flawed [54], and Chakraborti et al. [16] proposed a two
key variant

SoKAC1Pν1,ν2
(x) = ν1 ⊕ ν2 ⊕ P

(
ν2 ⊕ P (ν1 ⊕ x)

)
⊕ P (ν1 ⊕ x)

and bridge the gap. Later Dutta et al. [31] proposed an inverse-free PRF PEDM
using two n-bit keys k1, k2, which is defined as

PEDMP
ν1,ν2

(x) = ν1 ⊕ P
(
ν1 ⊕ x⊕ ν2 ⊕ P (ν1 ⊕ x)

)
.

It is easy to see SoKAC1Pν1,ν2
corresponds to a00 = a01 = a10 = a12 = a20 =

a22 = 1, a11 = a21 = 0, and (k1, k2, k3) = (ν1, ν2, ν1 ⊕ ν2). On the other
hand, PEDMP

ν1,ν2
corresponds to a00 = a01 = a10 = a11 = a12 = a20 = 1,

a21 = a22 = 0, and (k1, k2, k3) = (ν1, ν1 ⊕ ν2, ν1). The applications of our
attack in Sect. 4.3 to SoKAC1Pν1,ν2

and PEDMP
ν1,ν2

are thus straightforward,

and the costs are O(cn) quantum data and O(n2n/2) quantum steps as before.

4.3.2 Application to 2-round (tweakable) Even-Mansour ciphers

The 2-round Even-Mansour cipher using three independent round keys first
appears in [8] and is defined as

EM2IKP1,P2

k0,k1,k2
(x) := k2 ⊕ P2

(
k1 ⊕ P1(k0 ⊕ x)

)
. (14)

This corresponds to a00 = a01 = a10 = a12 = a20 = 1 and a11 = a21 =
a22 = 0, and the application of our attack in Sect. 4.3 is straightforward. The
complexity of our attack is O(cn) data and O(n2n/2) quantum steps.

The näıve Grover key search consumes O(23n/2) quantum steps. If we
apply the idea of Kaplan [43] to the classical meet-in-the-middle attack on

EM2IKP1,P2

k0,k1,k2
, we obtain a quantummeet-in-the-middle attack on EM2IKP1,P2

k0,k1,k2

with O(22n/3) quantum steps. Though, both are more expensive than our at-
tack.
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The construction EM2IKP1,P2

k0,k1,k2
is generalized to many variants with corre-

lated round keys [19,18], i.e., the keys k0, k1, k2 are derived from a single master
key K ∈ {0, 1}κ using a key schedule function (k0, k1, k2)← γ(K). We denote

such variant by EM2P1,P2

K,γ . Though, using the idea of all-subkeys-recovery of
Isobe and Shibutani [40], we can simply assume that the cipher EM2 is us-
ing independent round keys k0, k1, k2, and directly recover these round keys
instead of the master key K. Therefore, our attack in Sect. 4.3 remains appli-
cable to EM2P1,P2

K,γ . As long as κ≫ n+2 log2 n, our attack complexity O(n2n/2)

is better than O(2κ/2) of the näıve Grover key search.
Cogliati et al. [22] introduce the 2-round tweakable Even-Mansour cipher,

which is defined as

TEM2P1,P2

h1,h2
(t, x) := h2(t)⊕ P2

(
h2(t)⊕ h1(t)⊕ P1

(
h1(t)⊕ x

))
, (15)

where the keys h1 and h2 are two (secret) universal hash functions. Cogliati
et al. proved that this construction is a secure tweakable blockcipher up to
beyond birthday 22n/3 adversarial queries. Subsequently Dutta [28] proved

that a simplified variant of TEM2P1,P2

h1,h2
(t, x) with P1 = P2 remains secure up

to 22n/3 queries.
While the attack spectrum of tweakable blockciphers is much wider than

a standard PRF/PRP, here we simply focus on (the most devastating) key
recovery attack. To this end, note that once we fix the tweak t, the scheme
TEM2P1,P2

h1,h2
(t, ·) collapses to the aforementioned EM2IKP1,P2

k0,k1,k2
with k0 = h1(t),

k1 = h2(t)⊕h1(t), and k2 = h2(t). Therefore, once allowed to make O(cn) su-
perposition queries with the same tweak t, the two corresponding secrets h1(t)
and h2(t) can be recovered after O(n2n/2) quantum steps. Then, the secret
keys h1 and h2 are typically computable. For example, the multiplication-based
hash introduce by Shoup [65] is defend as

h(t1∥...∥tℓ) :=
ℓ∑

j=1

sjtj ,

where s ∈ Fn
2 is the key of the hash, and multiplications are on the field Fn

2 . It

is clearly easy to recover s via solving the equation hi(t1∥...∥tℓ) =
∑ℓ

j=1 s
j
i tj .

5 Conclusion

We study superposition attacks against pseudorandom schemes built upon n-
bit keyless permutations. Using Simon’s algorithm, we exhibit key recovery
attacks against all “full-domain” pseudorandom schemes built upon a single
permutation, with polynomial O(n) quantum complexities. Using the recently
proposed improved Grover-meet-Simon algorithm, we exhibit key recovery at-
tacks against all “full-domain” pseudorandom schemes built upon two permu-
tations, with O(n) quantum data and O(n2n/2) quantum computations. We
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also identify certain weak designs and exhibit faster attacks using either Si-
mon’s algorithm or quantum collision searching. Our attacks are applicable to
a number of popular permutation-based schemes.

In the classical setting, the t-round iterated Even-Mansour cipher ensures

security up to at most 2
tn
t+1 queries. By this, it seems natural to conjec-

ture a superposition attacker (with unlimited quantum steps) could break t

permutation-based schemes within n2
(t−1)n

t permutation queries, which some-
how matches the “Reciprocal Plus 1 Rule” of Liu and Zhandry [50]. However,
the straightforward application of Grover-meet-Simon does not work since the
number of to-be-guessed key bits quickly exceeds 2n.
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